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Abstract
In this paper, load step reduction techniques are investigated for adjoint sensitivity analysis of path-dependent nonlinear 
finite element systems. In particular, the focus is on finite strain elastoplasticity with typical hardening models. The aim is to 
reduce the computational cost in the adjoint sensitivity implementation. The adjoint sensitivity formulation is derived with 
the multiplicative decomposition of deformation gradient, which is applicable to finite strain elastoplasticity. Two properties 
of adjoint variables are investigated and theoretically proved under certain prerequisites. Based on these properties, load 
step reduction rules in the sensitivity analysis are discussed. The efficiency of the load step reduction and the applicabil-
ity to isotropic hardening and kinematic hardening models are numerically demonstrated. Examples include a small-scale 
cantilever beam structure and a large-scale conrod structure under huge plastic deformations.

Keywords Adjoint sensitivity analysis · Finite strain · Elastoplasticity · Multiplicative decomposition · Load step 
reduction · Work hardening

1 Introduction

Shape optimization plays an important role in industrial 
structure design. Non-parametric shape optimization, which 
dates back to the work by Zienkiewicz and Campbell (1973), 
employs nodal coordinates in a finite element system as 
design variables. Due to a detailed description of structure 
shape and enlarged design space, non-parametric shape opti-
mization shows great success in engineering applications 
(Clausen and Pedersen 2006; Furbatto et al. 2009; Böhm 
and Clausen 2012; Shimoda et al. 2019).

Both gradient-based and gradientless methods have been 
investigated to address the non-parametric shape optimi-
zation with linear finite element systems (Schnack 1979; 
Meske et al. 2005; Meske 2007; Le et al. 2011). In the recent 
decade, the focus is more on optimization of path-dependent 

nonlinear problems (Pedersen et al. 2017). So far, in almost 
all the literature about structural optimization consider-
ing elastoplasticity, the investigations are based on small 
strain theory where an additive decomposition of the total 
strain applies (Schwarz et al. 2001; Bogomolny and Amir 
2012; Amir 2017; Li and Khandelwal 2017; Shi et al. 2019). 
Exceptions are only few in recent years (Wallin et al. 2016; 
Ivarsson et al. 2018).

One major challenge of gradient-based optimizations for 
path-dependent finite element systems is the significantly 
increased computational cost in the sensitivity analysis. Due 
to path dependency, mechanical responses and hence sen-
sitivities of these responses at one load step are determined 
not only by the current load condition but also by previous 
load histories (Park and Choi 1999; Choi and Kim 2005). 
Direct sensitivity analysis, also called direct differentiation 
method, must follow an incremental sensitivity analysis 
procedure (Spivey and Tortorelli 1994; Chattopadhyay and 
Guo 1995; Kleiber and Kowalczyk 1996; Kim et al. 2000; 
Schwarz and Ramm 2001; Schwarz 2001; Wisniewski et al. 
2003; Gu et al. 2009). A unified framework has been pre-
sented on how to formulate sensitivity with adjoint variable 
method for a wide range of path-dependent system behaviors 
(Michaleris et al. 1994; Alberdi et al. 2018). It shows that the 
adjoint variable method should follow a backward solution 
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procedure (Michaleris et al. 1994; Lee 1999; Schwarz and 
Ramm 2001; Maute et al. 2003; Chung et al. 2003; Alberdi 
et al. 2018). No matter the direct approach or the adjoint 
approach is employed, the computational effort of path-
dependent sensitivity analysis grows in proportional to the 
number of load steps. Therefore, techniques to reduce the 
computational cost in the sensitivity analysis are highly 
demanded.

For this purpose, sensitivity reanalysis in the frame of 
independent coefficients strategy has been suggested, which 
employs local modification of a large-scale structure to avoid 
repeated solutions of full finite element analysis (Liu and 
Wang 2008). However, this has been demonstrated to be 
effective only for linear structural systems. Various strategies 
have been investigated to reduce the number of load steps in 
the small strain elastoplasticity sensitivities analysis. Numer-
ical study of a structure with single tetrahedral element and 
a two-bar truss structure under bilinear isotropic hardening 
model show that sensitivities may only need to be calculated 
at the last load step given a monotonic load history (Köbler 
2015). The sensitivities are only necessary to calculate at the 
unloading and reloading points given a cyclic load history 
(Cardoso 2005). It has been theoretically proved that, for 
small strain elastoplasticity, intermediate elastic load steps 
could be skipped in the sensitivity analysis, and the former 
ones among consecutive plastic steps can also be skipped if 
directions of flow vectors are unchanged (Wang et al. 2017).

The present publication extends the load step reduction 
strategies from small strain case to finite strain elastoplastic-
ity. It also demonstrates the applicability to various harden-
ing models. This extension is not straightforward for several 
reasons. Firstly, the multiplicative decomposition of defor-
mation gradient in finite strain theory leads to a more com-
plicated formulation of adjoint sensitivity. Secondly, as will 
be shown, the prerequisites for load step reduction in finite 
strain problems are stricter than in small strain cases. The 
extent to which the load step reduction is possible should 
be investigated. Thirdly, the accuracy of sensitivities with 
reduced load steps must be demonstrated for large strain 
problems.

The paper is organized as follows: Sect. 2 introduces 
the finite strain elastoplastic analysis procedure which is 
employed in this study. In Sect. 3, adjoint sensitivity for-
mulation is presented. In Sect. 4, the properties of adjoint 
variables and load step reduction method for elastic steps 
and plastic steps are proposed and theoretically investi-
gated. In Sect. 5, the efficiency and accuracy of the load 
step reduction method is demonstrated with a solid beam 
structure under severe deformations and a large-scale con-
necting rod example. In Sect. 2 to Sect. 5, an isotropic 
hardening model is assumed to reduce complexity of the 
discussion. In Sect. 6, the load step reduction method is 
extended to combined hardening and kinematic hardening 

cases. Additionally, a short discussion on the applicability 
to nonlinear elasticity and multilinear elastoplasticity are 
presented. Finally, the conclusions are drawn in Sect. 7.

2  Finite strain elastoplastic analysis

In this section, the finite strain elastoplastic analysis is 
introduced based on the total Lagrangian formulation and 
logarithmic strain measure. Following Lee’s multiplicative 
decomposition (Lee and Liu 1967; Lee 1969), the total 
deformation gradient t

0
X is expressed as the multiplica-

tion of an elastic deformation gradient t
i
X
e and a plastic 

deformation gradient i
0
X
p:

where 0 refers to the undeformed configuration and i refers 
to the intermediate stress-free configuration. The elastic 
deformation gradient can be further decomposed by right 
polar decomposition:

where Re is a unitary matrix, called the elastic rotation ten-
sor, and Ue is a symmetric positive-definite matrix, called 
the elastic right stretch tensor.

The logarithmic strain, also known as Hencky strain, is 
often employed as a proper strain measure for finite strain 
problem. The elastic logarithmic strain tensor is defined 
by:

The rotated Kirchhoff stress tensor �  , which is the spa-
tial Kirchhoff stress rotated to the intermediate stress-free 
configuration by Re (Gabriel and Bathe 1995; Caminero 
et al. 2011; Neff et al. 2016), is the work-conjugate stress 
measure to the elastic logarithmic strain:

where De is the elastic constitutive relation matrix. The spa-
tial Kirchhoff stress � is eventually obtained by back rotating 
� :

The Kirchhoff stress is related to the Cauchy stress � 
through the Jacobian determinant:

The internal force can be obtained by integration under 
deformed volume V or initial volume V0

(1)t
0
X = t

i
X
ei
0
X
p

(2)t
i
X
e
= ReUe

(3)�e =
1

2
lnXeTXe = lnUe

(4)� = De�e

(5)� = Re�ReT

(6)� = J�
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Newton–Raphson method is employed in the nonlinear 
finite element analysis. The flowchart of the method is 
depicted in Fig. 1. tU is the nodal displacement, t�p

eqv
 is 

equivalent plastic strain, tXp is plastic deformation gradient, 
tF is external force. The upper left superscript denotes the 
load step.

The return mapping algorithm is employed to obtain the 
plastic deformation gradient, equivalent plastic strain and 
stress tensor at step t + 1 inside each Newton–Raphson itera-
tion. Given the deformation gradient 0t+1X at step t + 1, the 
plastic deformation gradient and equivalent plastic strain at 
previous step t, the workflow of return mapping algorithm 
(Eterovic and Bathe 1990; Dvorkin et al. 1994) is summa-
rized in Table 1. It should be noted that, the algorithm works 
with the rotated stress tensor. The spatial stress is obtained 
thereafter by back rotating.

As it has been pointed out (Montáns and Bathe 2005; 
Caminero et al. 2011), Eqs. (16) and (17) can be approxi-
mated by

This approximation holds for moderately large elastic 
strains, which is typically fulfilled in metal plasticity. Eter-
ovic and Bathe (1990) also claim that Eq. (19) is exact for 

(7)Fint = ∫ V

B�dv = ∫ V0

B�dv

(19)�e ≈ �e
∗
− Δ�p

isotropic hardening plasticity with associated flow rule or 
for combined isotropic-kinematic hardening cases where 
the stress and back stress tensors commute. In view of this, 
Eq. (18) can be written as

When the stopping condition of the return mapping algo-
rithm is satisfied, the following quantities at step t + 1 can 
be obtained by

In Eq. (21), the trial elastic rotation tensor t+1Re
∗
 is used 

to back rotate the stress tensor to the undeformed configura-
tion. Under the associated flow rule, the incremental plastic 
stretch Δ�p and the trial elastic stress tensor t+1Ue

∗
 have the 

same eigenvectors. Therefore, it can be verified the trial elas-
tic rotation tensor equals the real elastic rotation tensor t+1Re.

Following Eq. (7), the consistent tangent stiffness matrix is

where the constitutive relation matrix D is (Simo and Taylor 
1985; Crisfield 2000)

where

(20)� = De�e
∗
− DeΔ�p

(21)t+1� = t+1Re
∗
� t+1Re

∗

T

(22)t+1�
p

eqv
= t�

p

eqv
+ Δ�p

eqv

(23)t+1X
p
= eΔ�

p tX
p

(24)

Ktan = ∫
V0

dB

dU
�dv + ∫

V0

B
dR

e

dU
�ReT

dv

+ ∫
V0

BR
e
D
dlnU

e

∗

dU
R
𝐞T
dv + ∫

V0

BR
e�

dR
eT

dU
dv

(25)D =

{
De (elasticstep)

Dep = Q−1De −
d

�
Tr+Ep

(plasticstep)

(26)Q = I + De d�

d�
Δ�p

eqv

(27)
d�

d�
=

1
�����eqv

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −0.5

−0.5 1

−0.5

−0.5

−0.5 −0.5 1

3

3

3

⎤
⎥⎥⎥⎥⎥⎥⎦

− �
T
⋅ �

⎞⎟⎟⎟⎟⎟⎟⎠

(28)r = Q−1D
e
�

(29)d = rrT

Fig. 1  Newton–Raphson solution procedure for finite strain elasto-
plasticity
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3  Adjoint sensitivity formulation for finite 
strain elastoplasticity

The formulation of adjoint sensitivity analysis for finite 
strain elastoplasticity is derived in this section. The solu-
tion procedure for the adjoint variables is also explained.

There are two key points in deriving the adjoint formu-
lation. One is the selection of a set of state variables, from 
which all quantities at each finite element analysis load 
step can be reconstructed. The selection of state variables 
is not unique. A proper selection of them will reduce the 
complexity of the sensitivity formulation. The other key 
issue is a set of governing equations of the state variables. 
These equations should be identically equal to zero and 
have the same number as state variables.

Displacement, stress, strain, plastic strain, equivalent 
plastic strain and flow vector are typical quantities that to 
be determined in an elastoplastic analysis. Some of these 
variables are not independent and can be derived from 
others. After investigating different combinations, the 
following four quantities are selected as state variables: 

displacement, rotated stress tensor, equivalent plastic 
strain and inverse of plastic deformation gradient

The reason of using inversed plastic deformation gradi-
ent is it leads to a simpler evaluation of derivatives of the 
trial rotated stress tensor with Eqs. (8) to (11).

One natural governing equation of the state variables is 
the equilibrium condition. The residual force is identical 
to zero at each load step:

where s denotes the design variables, and the elastic rotation 
tensor tRe is a function of tU and t−1Xp−1.

Other governing equations are found on the element 
level. According to Eqs. (15) and (20), the rotated stress 
tensor and the elastic right stretch tensor should follow

(30)tU, tV
def

=
{

t� , t�p
eqv

, tX
p−1

}

(31)0 ≡ tR
(
tU, tV, t−1V, s

)
= tF − � V0

BtRet� tReTdv

Table 1  Return mapping 
algorithm for finite strain von-
Mises elastoplasticity

1. The trial elastic state calculation
 a. Assume trial elastic state, i.e. Δ�peqv = 0 . Obtain the trial elastic deformation gradient

t+1
X
e

∗
=t+1

0
X ⋅

t
X
p−1 (8)

 b. Perform the right polar decomposition
t+1

X
e

∗
= t+1

R
e
∗
⋅
t+1

U
e
∗

(9)
 c. Calculate the trial elastic logarithmic strain and trial elastic stress

�e
∗
= lnt+1Ue

∗
=

1

2
ln
(
t+1

X
e
∗

Tt+1
X
e

∗

)
(10)

�
∗
= D

e�e
∗

(11)
 d. Obtain the trial von-Mises equivalent stress

||�∗||eqv = s
∗
=

√
3

2
S
∗
⋅ S

∗

(12)

where S∗ is the deviatoric stress of the trial stress �∗.
2. Check for yield condition. If s∗ ≤ t�Y + Ep

⋅ Δ�
p
eqv , then stop. Otherwise, enter return mapping. In 

the formula, Ep is the plastic modulus
3. Return mapping
 (a) Obtain associated flow vector �:

t+1
𝐚 =

3

2

S
∗

s
∗

(13)

 (b) Update the incremental equivalent plastic strain Δ�peqv and incremental plastic stretch Δ�p:

Δ�
p
eqv = Δ�

p
eqv +

s∗−(t�Y+E
p
⋅Δ�

p
eqv)

t+1
�
T
⋅D

e
⋅
t+1

�+Ep

(14)

Δ�p = Δ�
p
eqv

t+1
� (15)

 (c) Update trial elastic deformation gradient and trial elastic strain
t+1

X
e
= t+1

X
e

∗
e−Δ�

p (16)

�e =
1

2
ln

(
t+1

X
eT t+1

X
e
)

(17)

 (d) Update trial elastic stress and then go back to Step 2 to check yield condition
� = D

e�e (18)
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The yield and consistency condition is

According to Eq. (23), the plastic deformation gradients 
of two consecutive steps follow

The governing Eqs. (32) to (34) on element level define 
the so-called dependent residual tH (Michaleris et al. 1994), 
which identically equals zero at each load step:

For a system response, it can be expressed as a function 
of all state variables and design variables

where the superscript N is the total number of load steps.
The direct differentiation of the response with respect to 

a design variable s is

To avoid time-consuming evaluations of dtU∕ds and 
dtV∕ds , two adjoint variable vectors t� and t� are introduced. 
They are in the same size as tR and tH respectively. Since 
tR in Eq. (31) and tH in Eq. (35) are identical to zero at all 
load steps, adding dot product of t� and tR and dot product 
of t� and tH to the response function will not change the 
value of it, i.e.

From Eqs. (31) and (35), the derivatives of tR and tH with 
respect to the design variable are

(32)t� = DelntU
e

∗
− De

(
t�

p

eqv
− t−1�

p

eqv

)
t
�

(33)
(
t�

p

eqv
− t−1�

p

eqv

)
⋅

[||t�||eqv − �Y

(
t�

p

eqv

)]
= 0

(34)tX
p−1

= t−1X
p−1

⋅ e
−
(
t�

p
eqv

−t−1�
p

eqv

)
t
�

(35)

tH
�
tU, tV, t−1V, s

�
=

⎛
⎜⎜⎜⎜⎝

t� − De ln tU
e

∗
+ De

�
t�

p
eqv

− t−1�
p

eqv

�
t
�

�
t�

p
eqv −

t−1�
p
eqv

�
⋅

���t���eqv − �Y
�
t�

p
eqv

��

tX
p−1 − t−1X

p−1
⋅ e

−
�
t�

p
eqv

−t−1�
p

eqv

�
t
�

⎞
⎟⎟⎟⎟⎠
≡ 0

(36)f = f
(
1U,… , NU, 1V,… , NV, s

)

(37)
df

ds
=

�f

�s
+

N∑
t=1

�f

�tU

T
dtU

ds
+

N∑
t=1

�f

�tV

T
dtV

ds

(38)f = f −

N∑
t=1

t�
TtR −

N∑
t=1

t�
TtH

(39)

dtR

ds
=

�tR

�s
+

�tR

�tU
⋅

dtU

ds
+

�tR

�tV
⋅

dtV

ds
+

�tR

�t−1V
⋅

dt−1V

ds

By taking the total derivative of the response in Eq. (38) 
with respect to the design variable s, and substituting Eqs. 
(37), (39) and (40) into it, it follows

By enforcing the coefficients of dtU∕ds and dtV∕ds in 
Eq. (41) to zero, a series of systems of linear equations 
regarding the adjoint variables are obtained

With these adjoint variables, the adjoint sensitivity for-
mulation of the response is

The expressions of partial derivatives in Eqs. (42) and 
(43) are presented in Appendix A. As shown in Appendix 
B, solving adjoint variables directly from Eqs. (42) and (43) 
yields:

where tKtan is the consistent tangent stiffness matrix follow-
ing Eq. (24). Since the adjoint variables at step t is depend-
ent on the adjoint variables at the next step t + 1, the solution 
for the adjoint variables must be carried out backwards from 
the last load step to the first load step.

(40)

dtH

ds
=

�tH

�s
+

�tH

�tU
⋅

dtU

ds
+

�tH

�tV
⋅

dtV

ds
+

�tH

�t−1V
⋅

dt−1V

ds

(41)

df

ds
=

�f

�s
−

N∑
t=1

t�
T �tR

�s
−

N∑
t=1

t�
T �tH

�s
+

N∑
t=1

(
�f

�tU
− t�

T �tR

�tU
− t�

T �tH

�tU

)
dtU

ds

+

(
�f

�NV

T

− N�
T �NR

�NV
− N�

T �NH

�NV

)
dNV

ds

+

N−1∑
t=1

(
�f

�tV

T

− t�
T �tR

�tV
− t�

T �tH

�tV
− t+1�

T �t+1H

�tV
− t+1�

T �t+1R

�tV

)
dtV

ds

(42)

(
�NR

�NU

�NH

�NU
�NR

�NV

�NH

�NV

)T(
N�
N�

)
=

(
�f

�NU
�f

�NV

)

(43)

⎛⎜⎜⎝

�tR

�tU

�tH

�tU

�tR

�tV

�tH

�tV

⎞⎟⎟⎠

T⎛⎜⎜⎝

t�

t�

⎞⎟⎟⎠
= −

⎛⎜⎜⎝
0

�t+1H

�tV

⎞⎟⎟⎠

T

t+1� −

⎛⎜⎜⎝
0

�t+1R

�tV

⎞⎟⎟⎠

T

t+1� +

⎛⎜⎜⎝

�f

�tU

�f

�tV

⎞⎟⎟⎠
(t = N − 1,… , 1)

(44)
df

ds
=

�f

�s
−

N∑
t=1

t�
T �tR

�s
−

N∑
t=1

t�
T �tH

�s

(45)

t
Ktan

t� =
�f

�tU
−

�tH

�tU

T
�tH

�tV

−T
(

�f

�tV
−

�t+1H

�tV

T
t+1� −

�t+1R

�tV

T
t+1�

)

(46)

t� =
�tH

�tV

−T
(

�f

�tV
−

�t+1H

�tV

T
t+1� −

�t+1R

�tV

T
t+1� −

�tR

�tV

T
t�

)
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4  Load step reduction in the adjoint 
sensitivity analysis

According to Eqs. (44) to (46), the major computational effort 
in the adjoint sensitivity analysis is the backwards solution 
of adjoint variables. For each load step, a system of linear 
equations, which is in the same size as the number of degrees 
of freedom of the underlying finite element model, needs to 
be solved. Therefore, the computational cost increases in pro-
portional to the total number of load steps. In this section, 
strategies to reduce the number of load steps that are used in 
the sensitivity analysis are investigated.

Besides the computational cost, the memory cost in imple-
mentation may also be challenging if it is not properly handled. 
The memory cost is measure by number of non-zero values 
that must be stored at the same time. Following Eqs. (45) and 
(46), tangent stiffness matrices at the equilibrium point, partial 
derivatives of residual force and partial derivatives of depend-
ent residual are required in the solutions of adjoint variables. 
These quantities will be gradually collected after the nonlinear 
analysis at each step. Due to the backward solution procedure, 
they must be kept in memory until the last step finite element 
analysis is finished. Although the stiffness matrices are sparse, 
the direct storage of all these quantities at all load steps is not 
the most cost-efficient way.

By looking into the formulation of these quantities in 
Appendices A and B, the tangent stiffness matrices are fully 
determined by state variables in Eq. (30). This is also the case 
for the partial derivative quantities. Therefore, to minimize the 
memory cost, it is suggested to store only state variables at all 
load steps. During the sensitivity analysis, intermediate quanti-
ties are then retrieved from state variables. The regeneration 
happens only on element level, where the computational effort 
is neglectable. However, it is worth mentioning that the storage 
space is anyway in proportional to the number of load steps in 
sensitivity analysis. Therefore, strategies to reduce load steps 
in the sensitivity analysis also contribute to save memory cost 
in implementation.

Before presenting the load step reduction method, one 
assumption regarding the responses should be made clear. 
Given a sequence of load steps L = {1, 2,…, t − 1, t, t + 1,…, 
N}, the system responses that are investigated in this paper are 
assumed to be functions of quantities of only the last load step, 
i.e. it assumes that the system response f  satisfies

(47)
𝜕f

𝜕tU
= 0 for all t < N

(48)
𝜕f

𝜕tV
= 0 for all t < N

Many responses fulfill these requirements, such as maxi-
mum equivalent stress or final displacement. Besides that, 
many other responses can also be expressed as a composition 
of such functions, i.e.

where function fk is dependent only on quantities at step k. 
If this is the case, the sensitivity of individual fk could be 
calculate first, where the step k is treated as the last load 
step. And then the sensitivity of g can be obtained eventually 
by the chain rule.

4.1  Load step reduction for elastic steps

In the following, an elastic load step describes a step of finite 
element analysis, in which all elements behave elastically. 
Otherwise, if any element behaves plastically in the load 
step, then the step is called a plastic load step.

The following property of adjoint variables at elastic steps 
was first found in additive decomposition based small strain 
case (Wang et al. 2017). This property also holds for multi-
plicative decomposition based finite strain elastoplasticity.

Property 1. If load step t is an intermediate elastic step (t 
is not the last step), then the adjoint variable t� at this step 
is zero.

Due to limited space, the proof of this property is pre-
sented in Appendix C. The property eventually leads to the 
following load step reduction rule.

Elastic load step reduction rule For a sequence of load steps 
L = {1, 2,…, t − 1, t, t + 1,…, N}, if step t is an intermediate 
elastic load step, then the exact same sensitivity results can 
be obtained by skipping step t as the load steps contain only 
S = {1, 2,…, t − 1, t + 1,…, N}.

Mathematically, it means

where

(49)
g
(
1U,… , NU, 1V,… , NV

)
= h◦(f1

(
1U, 1V

)
,… , fN

(
NU, NV

)
)

(50)
dLf

ds
=

dsf

ds

(51)
dLf
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The subscript S and L on the left denote the step set 
from which a quantity is calculated. In Eq. (52), the par-
tial derivatives of R and H are based on load steps set 
S, where the original step t − 1 and step t + 1 become 
adjacent load steps. The theoretical proof of this rule is 
presented in Appendix D. It follows that all intermediate 
elastic load steps can be skipped in the sensitivity analy-
sis. It should be noted that this rule applies to all types 
of elements, and no accuracy will be lost after the load 
step reduction.

4.2  Load step reduction for plastic steps

Under certain conditions, the adjoint variable � equals zero 
even at plastic steps. The following property is proved in 
Appendix E.

Property 2. If �
t
�

�t�
= 0 , t� = t+1

� , �
t+1Re

�tXp−1 = 0 , t+1Δ�p and tXp 
commute, then t� = 0.

Physically, the four prerequisites mean that the flow 
vectors at adjacent load steps should be in the same direc-
tion, the elastic rotation tensor should be constant with 
respect to the plastic deformation gradient, and the incre-
mental plastic strain should have the same principal direc-
tions as the accumulated plastic strain. If all these condi-
tions are met, then the following load step reduction rule 
for plastic steps could be proved. Due to limited space, the 
proof is presented in Appendix F.

Plastic load step reduction rule For a sequence of load 
steps L = {1, 2,…, t − 1, t, t + 1,…, N}, if the prerequisites in 
Property 2 are all fulfilled, additionally tΔ�p and t−1Xp also 
commute and � tRe∕� t−1X

p−1
= 0 , then the same sensitivity 

results can be obtained by skipping load step t as the load 
steps contain only S = {1, 2,…, t − 1, t + 1,…, N}.

In comparison with small strain case (Wang et  al. 
2017), the condition on incremental plastic f low is 
stricter. Not only the consecutive two steps should have 
the same flow vector, but the incremental quantities 
should also be consistent with the accumulated plastic 
quantities. The prerequisites of plastic reduction rule 
could be satisfied only by 1D bar elements when there is 
no switch between tension and compression in two con-
secutive plastic steps. For general 2D and 3D elements, 
it is impossible that these requirements are all fulfilled. 
Therefore, the following empirical rule is suggested for 
finite strain elastoplasticity.

Empirical rule If two consecutive plastic steps are in a mono-
tonic loading procedure, and the incremental plastic flow is 
in close direction to the accumulated plastic flow, then the 
former step can be skipped in the sensitivity analysis.

Load steps reduction following the empirical rule will not 
lead to exact sensitivity results for 2D and 3D elements. By 
doing so, the accuracy of sensitivities needs to be verified. 
Its applicability in practice and influence on the sensitivity 
results will be investigated through numerical examples in 
the next sections.

It must be made clear that, the proposed reduction rules 
are derived on the structural level. It means that, as defined 
at the beginning of Sect. 4.1, the whole structure is treated 
as plastic even if only just one element behaves plastically. 
If one plastic element is not in monotonic loading, then the 
load step for the whole structure cannot be skipped. This 
strategy applies well for shape optimization, where it is rare 
that abnormality occurs only in one or a few local elements.

To apply in topology optimization, the load step reduc-
tion may be limited by the complicated behaviors of a few 
or even just one single intermediate element. This doesn’t 
mean the proposed scheme cannot by applied to topology 
optimization. In such cases, the proposed reduction rules 
provide guidance on which load steps could be skipped in 
the sensitivity analysis. A further reduction, however, may 
still be possible by investigating adjoint variables on the ele-
ment level. The element level load step reduction is an open 
issue to investigate. On the other hand, there are already 
studies on how to avoid abnormality of intermediate element 
plasticity in topology optimization. One typical solution is 
to choose separate penalization exponents and lower bounds 
for stiffness and yield properties in the SIMP interpolation 
(Maute et al. 1998; Alberdi and Khandelwal 2017) They 
are done to avoid large plastic strains in intermediate mate-
rial regions and mitigate convergence issues brought by low 

Fy

Fx

X
Y

Fig. 2  Cantilever beam structure in size 300 mm × 15 mm × 15 mm. 
Design nodes are indicated by red dots
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density elements near their yield limits (Amir 2017; Zhang 
et al. 2017). The combination of these techniques and load 
step reduction rules in topology optimization may be inter-
esting for further investigation.

5  Numerical examples of adjoint sensitivity 
analysis with load step reduction

5.1  Solid beam under severe bending

In this section, the load step reduction rules are verified 
through a cantilever beam structure meshed with 3D tet-
rahedral elements. The finite element model is depicted 
in Fig. 2. One end of the structure is fixed. Two external 
forces in horizontal x-direction and in vertical y-direction 
are applied on the free end of the structure simultaneously. 
A bilinear isotropic hardening material is assumed. The 

Young’s modulus is 210 GPa, plastic modulus is 50 GPa, 
initial yield stress is 235 MPa and Poisson’s ratio equals 
0.3.

There are 11 load steps as described in Fig. 3. The ver-
tical load pointing downwards increases in the first three 
steps and then decreases gradually. The horizontal load in 
x direction increases throughout the procedure. According 
to the nonlinear finite element analysis, all the load steps 
are plastic steps.

The maximum equivalent plastic strain at the last step is 
25.2%. The contour of the equivalent plastic strain is pre-
sented in both initial and deformed configurations in Fig. 4. 
Areas where equivalent plastic strain is larger than 5% are 
depicted in red. The deformation shows that the beam struc-
ture is severely bended under the given loads.

In the sensitivity analysis, the design variables are the 
vertical coordinates of center nodes on the bottom surface 
of the beam. These nodes are indicated by red dots in Fig. 2. 
The maximum equivalent plastic strain at the fixed end and 
average vertical displacement at the free end are defined as 
two system responses.

Since the structure is in an increasingly bending pro-
cedure under the given loads, the plastic flows are all in 
close directions. According to the empirical rule, all the 
intermediate load steps in monotonic loading stage could 
be skipped. Therefore, only step 3, where the vertical load 
turns from increasing to decreasing, and the last load step 
must be included in the sensitivity analysis. The sensitiv-
ity results using only step 3 and step 11 are compared 
with sensitivities using all load steps in Figs. 5 and 6. 
In subfigures (a), the values of sensitivities are plotted 
with respect to the position of design nodes. Subfigures 
(b) present the percentage error in term of relative value, 
which is defined by

In subfigures (a), sensitivities obtained by central finite 
differencing scheme with a perturbation size of  10−5 mm 
are also presented. Both Figs. 5a and 6a show that, the 
adjoint sensitivity results match well with finite defencing 
results. Therefore, the adjoint sensitivity analysis procedure 
is validated.

Focusing on the adjoint sensitivity results, the results with 
reduced load steps match well with that using all load steps. 
The percentage errors at most of the design variables are 
small. It increases significantly as closing to the free end of 
the beam. This increase in error is partially because the sen-
sitivity at the free end is close to zero. The relative error is 
calculated with a small denominator and hence is amplified. 

(53)relative value =
sensitivities with reduced load steps

sensitivites with all load steps
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Load step

0
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Fig. 3  Load history in horizontal and vertical direction with penta-
grams depicting the reduced load steps in the sensitivity analysis

Fig. 4  Contour of the equivalent plastic strain under original and 
deformed configurations
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Filtering out sensitivities whose absolute value is smaller 
than 1% of the maximum sensitivity, the sensitivity errors 
for both responses are summarized in Table 2. The average 
errors are smaller than 3%, which demonstrate a good match 
of sensitivities when the load steps are reduced. Hence the 
empirical rule applies for this example.

(a) Sensitivity of vertical displacement at the free end (b) Relative sensitivity of vertical displacement at the 
free end
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Fig. 5  Sensitivity of average vertical displacement at the free end. a Comparison of sensitivities with all load steps and only the reduced load 
steps (step 3 + step 11). b Relative value to show the percentage error between two results

(a) Sensitivity of maximum equivalent plastic strain (b) Relative sensitivity of maximum equivalent plastic 
strain
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Fig. 6  Sensitivity of maximum equivalent plastic strain. a Comparison of sensitivity with all load steps and only the reduced load steps (step 
3 + step 11). b Relative value to show the percentage error between two results

Table 2  Error of sensitivities of the cantilever beam example

Response Maximum error (%) Average 
error 
(%)

Vertical displacement 15 2.3
Equivalent plastic strain 11 0.8
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5.2  Solid beam under severe bending and twisting

One of the prerequisites of the empirical rule is incremen-
tal plastic flow should be in close direction to the accumu-
lated plastic flow. Due to the vagueness of this statement, 
it is worth presenting a case to show when the load steps 

can’t be further reduced even under a monotonic loading 
procedure.

In this example, the same cantilever beam model as in 
Sect. 5.1 is employed. The horizontal and vertical load 
history are plotted in Fig. 7, and there are 20 load steps in 
total. Besides these two forces, a constant force of 2 kN 
is applied at the free end in horizontal Z direction. All the 
load steps are plastic steps.

The deformation of the beam at representative load steps 
are depicted in Fig. 8 with contour of equivalent plastic 
strain. The red color represents the area with equivalent plas-
tic strain larger than 5%. The maximum equivalent plastic 
strain at final step is 36.3%. The deformations show that 
the beam slightly bends out of the X–Y plane at the begin-
ning. After large enough plastic strain is accumulated near 
the fixed end of beam, the out-of-plane load in Z direction 
gradually causes the beam to twist.

According to the empirical rule, the turning points of 
monotonic load procedures should be included in the sensi-
tivity analysis. These are step 3, step 13, and step 20. Under 
twisting of the beam, the principal directions of stress tensor 
will change significantly. It leads to the change in direction 
of the associated plastic flow. Therefore, the prerequisite of 

-20 0 20 40 60 80
Fx (kN)

-100

-50

0

50

100

150

200
Fy

 (k
N

)

1

2

3 4
5

6
7

8
9

10
11
12
1314

15161718
19

20
load history
sensitivity load step

Fig. 7  Load history for beam under bending and twisting with penta-
grams depicting the reduced load steps in the sensitivity analysis

Fig. 8  Deformation and contour 
of equivalent plastic strain at 
representative load steps of 
solid beam example under 
severe bending and twisting
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the empirical rule is violated. Following the empirical rule, 
from step 15 on all the steps must be included in the sensitiv-
ity analysis although they are in a monotonic loading proce-
dure. It means that the load steps in the sensitivity analysis 
can only be reduced to step 3, step 13, and steps from 15 to 
20 as depicted by pentagrams in Fig. 7. Take the vertical 
displacement at the free end as the response function. The 
sensitivity results with all load steps and the reduced load 
steps are compared in Fig. 9. It shows a good match between 
these two results.

To demonstrate the necessity of step 15 to step 19 in 
the sensitivity analysis, several try-outs are also presented 
in Fig. 9. In each of these results, the same reduced load 
steps are used in the sensitivity analysis except one step 
between 15 and 19 is additionally skipped. It shows that, 
if any step between 15 and 19 is skipped in the sensitivity 
analysis, the result will have significant errors.

This example shows that, to follow the empirical rule, 
good engineering judgment may be needed in practical 
applications. A solution to avoid the subjectivity could be 
quantification of the empirical rule. This is also important 
for implementing the empirical rule into a non-intrusive 
optimization procedure because there are cases where 
structural behaviors change essentially between iterations 
and hence an automatic load steps reselection is required. 
How to properly quantify the conditions in the empirical 
rule and set criteria for selection are still open issues to 
be investigated.

5.3  Demonstration with a connecting rod structure

In this section, the applicability of load step reduction rules 
is demonstrated through a connecting rod example under 
cyclic load history. The finite element model of a typical 
connecting rod (or called conrod) in an internal combustion 
piston engine is presented in Fig. 10a. The design variables 
are x-coordinates of 223 nodes which are highlighted by 
red dots in Fig. 10b. These nodes lie on the outer surface 
between the small end and big end of the conrod. A bilinear 
elastoplastic material is assumed. Material properties are 
listed in Table 3.

The rod bolts of the structure are fixed, and a horizontal 
force (Fx) and a vertical force (Fy) are applied uniformly 
on the inner surface of the small end. The load history is 
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Fig. 9  Sensitivity of vertical displacement at the free end

Fig. 10  Finite element model of 
a connecting rod structure

(a) Model description and boundary conditions (b) Design nodes on the outer surface

rod bolt, fixed

small end

big end

Fy

Fx

Table 3  Material parameters of the connecting rod

Young’s modu-
lus (GPa)

Plastic modulus 
(GPa)

Initial yield 
stress (MPa)

Poisson’s ratio

210 100 450 0.3
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depicted in Fig. 11. The forces are generated by the internal 
pressure on the piston in a four-stroke cycle. The magnitudes 
of the forces are artificially enlarged to represent an extreme 
load case during engine failure.

In the load cycle, the structure is purely compressed in 
y-direction at step 1. From step 2 to step 7, the compres-
sion load increases. At the same time, a horizontal force in 
x-direction is gradually applied which causes bending of the 
rod. From step 8 to step 12, the x-direction force is gradu-
ally unloaded to zero and the y-direction force is partially 
unloaded. The horizontal load increases in negative x-direc-
tion at step 13 to step 16 accompanied by a slight increase of 
the compression load. From step 17 to step 19, the horizontal 
force is fully unloaded to zero while the y-direction force 
gradually increases to the same level as in step 1.

The contour of the equivalent plastic strain at the last 
load step is depicted in both initial and deformed configu-
rations in Fig. 12. Areas where equivalent plastic strain is 
larger than 10% are depicted in red. The maximum equiva-
lent plastic strain is 22.3%, which is close to strain at break 
of typical steel material. The maximum value point lies on 
the outer surface near the big end. The average equivalent 
plastic strain of 106 elements around this point is defined 
as one system response. The average x-displacement and 
average y-displacement of the small end at the last step are 
defined as other two responses.

According to the nonlinear analysis, steps 2 to step 7 and 
step 16 are plastic, other load steps are elastic. Following 
the elastic load step reduction rule, all elastic load steps are 
skipped in the sensitivity analysis except step 19. Based on 
the empirical rule, plastic steps 2 to 6 are also skipped since 
they lie in a monotonic load procedure. The three load steps 
that must be involved in the sensitivity analysis are high-
lighted by pentagrams in Fig. 11 and listed in Table 4.

In Fig. 13, the contour of sensitivities calculated with the 
reduced load steps are compared with those using all load 
steps. The results match very well for all three responses.

The percentage errors of sensitivities are evaluated and 
summarized in Table 5. To eliminate the effect of small 
denominator, sensitivities whose absolute value is smaller 
than 1% of the maximum sensitivity are ignored. It shows 
that the average percentage errors of sensitivities for all 
three responses are less than 10%. Hence, the empirical rule 
applies well in this example.

5.4  Efficiency in terms of computational time

Up to here, the efficiency of load step reduction rules is 
measured by the number of load steps used in the sensi-
tivity analysis. It is assumed that the computational time 
of sensitivity analysis will be reduced proportionally to the 
number of load steps. This assumption is verified explicitly 
in this section.

Besides the number of load steps, the computational 
time of sensitivity analysis is also dependent on many other 
factors including degrees of freedom of the underlying FE-
model, number of responses, number of design variables, 
computing environment, coding efficiency, etc. To focus on 
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Fig. 11  Load history on the small end of the conrod. Pentagrams 
depict the reduced load steps in the sensitivity analysis

Max. equivalent 
plas�c strain point 
and cri�cal area

Fig. 12  Equivalent plastic strain of the connecting rod at the last load 
step

Table 4  Reduced load steps in sensitivity analysis for the connecting 
rod example

Reduced 
load step

Corresponding load step 
in nonlinear analysis

Force

1 7 Fx = 240 kN, Fy = − 200 kN
2 16 Fx = − 240 kN, Fy = − 56 kN
3 19 Fx = 0 kN, Fy = − 80 kN
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the factor of number of load steps, the ratio of sensitivity 
analysis time using reduced load steps to the time using all 
load steps could be evaluated.

In Fig. 14, the ratio of time of sensitivity analysis is pre-
sented in the vertical axis. The horizontal axis presents the 
ratio of number of reduced load steps to the number of all 
load steps. There are four points in the figure, representing 
the results of four numerical examples in this paper. For 
better organization of the paper, the example presented in a 
later Sect. 6.1 is also included here.

It clearly shows the reduction of sensitivity analysis time 
is proportional to the reduction of number of load steps with 
proportionality constant close to one. Although there are not 
enough data from statistics point of view, the linear relation 
could still be concluded, which is also in accordance with 
intuition.

5.5  Influence on the computational cost 
of optimization

As shown in previous examples, the accuracy of sensitiv-
ity will be lost to some extent while reducing the number 
of plastic load steps. It naturally leads to the question, how 
the loss of sensitivity accuracy will influence the optimiza-
tion? Will the gain in the sensitivity analysis be consumed 

Fig. 13  Comparison of sensitivity results of three system responses. In each subfigure, the result with reduced load steps is depicted on the left 
and the result using all load steps is presented on the right

Table 5  Relative errors of sensitivities for the connecting rod exam-
ple

Response Maximum error (%) Average 
error 
(%)

Equivalent plastic strain 25 8.5
x-Displacement 19 6.6
y-Displacement 8.7 4.6
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by the increased number of iterations in optimization? Espe-
cially when the system evaluation of a new design requires 
time-consuming nonlinear finite element analysis. These are 
open question to be investigated. The following three aspects 
should be paid attention to while addressing the questions. 
They show the answers are not straightforward.

Firstly, will and how the slight loss of accuracy jeopard-
izes information provided to an optimization algorithm? In 
gradient-based optimizations, sensitivities are usually used 
to generate a search direction in which to improve system 
responses. As demonstrated, following the empirical rule, the 
degree of inaccuracy of the sensitivities are very limited. There 
is no obvious change of sensitivity magnitudes, and the spatial 
distributions are also the same. Therefore, it is sufficient to 
believe that the directional information is still well preserved 
after proper load step reduction. The influence on the optimi-
zation process is thus minimized.

Secondly, on the nature of optimization algorithm, in 
which framework the sensitivities are utilized leads to algo-
rithm-dependent answers to aforementioned questions. In 
the literature, efforts are taken to reduce computational cost 
by improving optimization procedures and algorithms. An 
accelerated gradient algorithm has been proposed (Arouri 
and Sayyafzadeh 2020), which is less sensitive to the gradient 
approximation accuracy than the steepest descent algorithm. 
Switching back and forth between accurate sensitivity and 
Broyden approximation (Li et al. 2007), both trust region and 
SQP based minmax algorithm may take even fewer optimiza-
tion iterations to converge to an optimal point. The method of 
moving asymptotes (MMA) is a popular algorithm for shape 
and topology optimization (Svanberg 1987). An interesting 
study presented by Amir (2021) shows that, aiming at deliv-
ering viable engineering designs within limited number of 
function evaluations, inexact design sensitivities do not lead 
MMA algorithm to a significantly inferior solution. In short, 
the choice of algorithms will lead to different requirement on 
sensitivity accuracy.

Last but not least, how to use sensitivities in shape opti-
mization procedure is also a topic. Two general problems in 
gradient-based shape optimization are the mesh-dependency 
of sensitivities and non-smooth shapes resulted by noisy sen-
sitivity fields. Successful techniques to address these issues are 
sensitivity filters (Le et al. 2011; Stück and Rung 2011; Sig-
mund and Maute 2012; Bletzinger 2014), sensitivity weighting 
(Kiendl et al. 2014) and vertex-morphing (Hojjat et al. 2014). 
The common point of these methods is that the shape sensitivi-
ties are smoothed before they are used for design update. These 
intentional modifications will unavoidably lead to discrepancy 
between post-processed sensitivities and raw sensitivities. The 
requirement on the accuracy of raw sensitivities is loosened to 
some extent under these circumstances.

Generally speaking, how the loss of raw sensitivity accu-
racy influences the optimization performance is a case-by-case 

question. This paper focuses on the reduction of computational 
cost in sensitivity analysis with least loss of raw accuracy. In 
practical optimization applications, the requirement on the 
sensitivity accuracy should be considered in a comprehensive 
way.

6  Extension to more general constitutive 
models

6.1  Extension to kinematic and combined 
hardening model

In this section, the load step reduction technique is extended 
to kinematic hardening and mixed hardening case. The 
adjoint sensitivity analysis and the reduction rules are briefly 
discussed under these models. The applicability of the 
empirical rule is demonstrated through a conrod example.

In the adjoint sensitivity analysis with kinematic or mixed 
hardening, the major differences to isotropic hardening case 
lie in the state variables and dependent residual. They are 
caused by the introduction of the back stress and the harden-
ing ratio. Denote the back stress under stress-free configura-
tion by tb . For bilinear mixed hardening elastoplasticity, the 
yield surface is

where � is the hardening ratio lies in the range from 0 to 
1. If � is equal to 1, it describes a pure isotropic hardening 
behavior, and with � equals 0, it describes a pure kinematic 
hardening model. The back stress of two consecutive steps 
follows

where

Except the state variables in Eq. (30), the back stress is 
taken as an additional one, i.e.

Correspondingly, Eq.  (55) is an additional governing 
equation in the dependent residual:
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There are no other changes in the adjoint sensitivity 
analysis procedure. The two properties and two load steps 
reduction rules presented in Sect. 4.1 and 4.2 can be proved 
following the same procedures as in Appendices C to F. 
Therefore, the same empirical rule as in Sect. 4.2 is also pro-
posed to reduce plastic load steps in the sensitivity analysis.

The following example demonstrates the applicability 
of the empirical rule for kinematic hardening elastoplastic-
ity. In this example, the same conrod model as in Sect. 5.3 
is used, including the structure, boundary conditions and 
design nodes. The material properties are also the same as 
in Table 3, except the hardening model is pure kinematic, 
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i.e. � = 0 . The load history on the small end of the con-
rod is depicted in Fig. 15, which is the same as in Fig. 11. 
However, it should be noted that, all the load steps behave 
plastically with kinematic hardening material.

The contour of the equivalent plastic strain at the turn-
ing steps of monotonic load procedures are depicted in 
Fig. 16. Areas where equivalent plastic strain is larger than 
20% are depicted in red. The maximum equivalent plastic 
strain at the final step is 73%. It shows that the structure 
experiences severe back and forth bending under the given 
load history.

According to the empirical rule, all the turning steps 
which are plastic should be involved in the sensitivity 
analysis. These are step 7, step 12, step 16 and step 19. In 
comparison with isotropic hardening case, the step 12 is 
additional. This is because step 12 is a plastic step under 
kinematic hardening model. The sensitivity results of aver-
age equivalent plastic strain response, which is defined in 
Sect. 5.3, is presented in Fig. 17.
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Fig. 15  Load history of connecting rod example with kinematic hard-
ening model

Fig. 16  Deformation and contour of equivalent plastic strain at representative load steps of conrod example under kinematic hardening model
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It shows that the sensitivity analysis with reduced load 
steps match well with results using all load steps. Exclud-
ing sensitivities whose absolute value is smaller than 1% 
of the largest value, the maximum percentage error is 41% 
with an average error of only 3.6%. The point with maxi-
mum error is also identified in Fig. 17. It shows that the 
large error is due to the small denominator in calculating 
with Eq. (53). Therefore, the applicability of empirical 
rule to kinematic hardening model is demonstrated.

6.2  Extension to nonlinear elasticity 
and multilinear plasticity

The deductions and examples in this paper are all based on 
bilinear elastoplasticity. However, the applicability can be 
extended to nonlinear elasticity and multilinear plasticity 
without difficulties.

To extend for nonlinear elasticity, the change is in the 
dependency of elastic modulus on the total strain. The elastic 
constitutive relation De is not constant, but dependent on the 
strain at each load step:

Therefore, the dependent residual is formulated as

For multilinear plasticity, the change is in the relation of 
yield strength to the equivalent plastic strain. The formula-
tion of dependent residual is the same as in Eq. (35). The 
only change appears when the derivative of yield strength 
with respect to equivalent plastic strain is calculated, where 
the result is not a constant Ep , but a function of t�peqv:

With these changes, all the deduction presented in this 
paper can still be verified. Therefore, the two properties, two 
load steps reduction rules and the empirical rule still apply.

(59)De = tD(ln tUe
∗
)

(60)tH
�
tU, tV, t−1V, s

�
=

⎛⎜⎜⎝

t� − tD ln tU
e

∗
t�

p
eqv −

t−1�
p
eqv

tX
p−1 − t−1X

p−1

⎞⎟⎟⎠
≡ 0

(61)
dt�Y

dt�
p
eqv

= tEp(t�p
eqv

)

7  Conclusion

In this paper, load step reduction method for adjoint sensi-
tivity analysis of finite strain elastoplasticity is investigated. 
Two properties regarding adjoint variables are proved the-
oretically. Based on these properties, it proves that inter-
mediate elastic load steps can be skipped in the sensitivity 
analysis without loss of accuracy; under certain conditions, 
the former ones of consecutive plastic load steps can also 
be skipped.

The applicability for general element types is demonstrated 
through structures with 3D solid elements. Both isotropic 
hardening and kinematic hardening examples are presented. 
Numerical examples show that, the strategies apply well for 
structures under complicated load history and severe deforma-
tion. Following the presented method, satisfying results could 
be obtained with significantly reduced number of load steps 
in the sensitivity analysis.

Appendix A. Derivatives of residual force R 
and dependent residual H

For convenience in further deductions, the computation of 
derivatives of residual force tR and dependent residual tH 
with respect to state variables are presented in this appendix.

Taking derivatives of Eq. (31) yields

And taking derivatives of Eq. (35) results in

(A.1)

�tR

�tU
= ∫ V0

�B

�tU
t�dv + ∫ V0

B
�tRe

�tU
t� tReTdv + ∫ V0

BtRet�
� tReT

�tU
dv

(A.2)

�tR

�tV
=

(
�

�t�
,

�

�t�
p
eqv

,
�

�tXp−1

)
tR =

(
−∫ V0

B
�tRet� tReT

�t�
dV , 0, 0

)

(A.3)

�t+1R

�tV
=

(
�

�t�
,

�

�t�
p
eqv

,
�

�tXp−1

)
t+1

R

=

(
0, 0,−∫ V0

B

(
�t+1Re

�tXp−1

t+1� t+1
R
eT + t+1

R
et+1�

� t+1ReT

�tXp−1

)
dv

)

(A.4)�tH

�tU
=

⎛⎜⎜⎝

−De � ln
tUe

∗

�tU

0

0

⎞⎟⎟⎠
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When step t is an elastic step, from Eq. (35) it follows

When step t is a plastic step, from Eq. (35) it yields

where Q and Dep follow the expressions in Eqs. (25) to (29).

Appendix B. Solution of adjoint variables

In this appendix, deduction to obtain Eqs. (45) and (46) 
is presented.

Solving Eqs. (42) and (43) directly results in.

Comparing with Eqs. (45) and (46), it only needs to show

where tKtan follows the expression in Eq. (24).

(A.5)
�tH

�tV
=

(
�

�t�
,

�

�t�
p
eqv

,
�

�tXp−1

)
tH = I

(A.6)

�tH

�t−1V
=

�
�

�t−1�
,

�

�t−1�
p
eqv

,
�

�t−1X
p−1

�
tH =

⎡
⎢⎢⎢⎣

0 0 −De � ln tUe
∗

�t−1X
p−1

0 −1 0

0 0 −I

⎤
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(A.7)
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p−1tΔ�p
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�tH

�t−1V
=

�
�

�t−1�
,

�
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p
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,
�
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�
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0 0 0

0 −tX
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−tΔ�p
eqv
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(B.1)

(
�tR

�tU
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�tR

�tV

�tH

�tV

−1
�tH

�tU

)T
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�f

�tU

−
�tH

�tU

T
�tH

�tV

−T
(
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�tV
−

�t+1H
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(B.2)
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�tH

�tV
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(B.3)�tR

�tU
−

�tR

�tV

�tH

�tV

−1
�tH

�tU
= t

Ktan

Using Eqs. (A.1), (A.2), (A.4) and (A.5), the Eq. (B.3) can 
be verified for an elastic step. For a plastic step, Eq. (B.3) can be 
obtained using Eqs. (A.1), (A.2), (A.4) and (A.8).

Appendix C. Property of adjoint variables 
at an elastic step

In this appendix, the property of adjoint variables at an elas-
tic step is mathematically proved.

Property 1. If load step t is an intermediate elastic step (t is 
not the last step), then t� = 0.

Proof: Combining Eqs. (45), (A.5) and assumptions in Eqs. 
(47) and (48) yields.

Using Eqs. (A.4) and (A.6) or (A.9), for an elastic or 
plastic step t + 1, we have always

From Eqs. (A.3) and (A.4) it follows

Therefore, the right-hand side of Eq. (C.1) is equal to zero, 
which yields

Appendix D. Elastic load step reduction rule

In this appendix, the elastic load step reduction rule is math-
ematically proved.

Elastic load step reduction rule For a sequence of load steps 
L = {1, 2,…, t − 1, t, t + 1,…, N}, if load step t is an elastic 
load step and not the last load step, then the exact same sen-
sitivity results can be obtained by skipping step t as the set 
of load steps contains only S = {1, 2,…, t − 1, t + 1,…, N}.

Before entering the proof, it should be noted that, the 
load step reduction happens only in the sensitivity analysis 

(C.1)t
Ktan

t� =
�tH

�tU

T
(
�t+1H

�tV

T
t+1� +

�t+1R

�tV

T
t+1�

)

(C.2)�tH

�tU

T
�t+1H

�tV

T

= 0

(C.3)�tH

�tU

T
�t+1R

�tV

T

= 0

(C.4)t� = 0
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phase. The nonlinear finite element analysis procedure is 
not influenced by it. Therefore, the partial derivatives of 
R with respect to design variables are the same for both 
step sets, i.e.:

where the subscript S and L on the left denote the step set, 
from which R and H are calculated.

Furthermore, partial derivatives of R and H are also the 
same for both step sets if they are independent on quantities 
at step t. Specifically, it means

Obviously, adjoint variables from step N to step t + 1 are 
the same for both step sets since there is nothing changed 
yet in the backward solution procedure, i.e.,

Now we begin the proof.

Proof: Mathematically, it is to prove Eq. (50). Taking out 
equal terms in Eqs. (51) and (52), then it suffices to prove 
the following three items:

1. t
L
� = 0

2. n
s
� = n

L
� and n

s
� = n

L
� , for n ≤ t − 1

3. t
L
�
T �t

L
H

�s
+ t+1

L�
T �t+1LH

�s
= t+1

s�
T �t+1sH

�s

(D.1)
�n
s
R

�s
=

�n
L
R

�s
(for n ≠ t)

(D.2)
�n
s
H

�s
=

�n
L
H

�s
(for n ≠ t, t + 1)

(D.3)
�n
s
H

�nU
=

�n
L
H

�nU
(for n ≠ t, t + 1)

(D.4)
�n
s
H

�nV
=

�n
L
H

�nV
(for n ≠ t, t + 1)

(D.5)
�n+1sH

�nV
=

�n+1LH
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(for n ≠ t, t − 1)

(D.6)t
s
K

tan
= t

L
K

tan
(for n ≠ t)

(D.7)n
s
� = n

L
�(for n > t)

(D.8)n
s
� = n

L
�(for n > t)

The first one is obtained from Appendix C since step t is 
elastic.

For the second one, we firstly prove it holds at load step 
t − 1. Combining Eqs. (46), (A.5), (D.7), (D.8), assumptions 
in Eqs. (46), (47), and t

L
� = 0 , it follows

From Eqs. (D.7) and (D.8), we have

For an elastic step t,

Hence naturally

and

Using Eqs. (A.6), Eq. (A.9), and Eqs. (D.12), (D.14), 
(D.16), we compute

And using Eqs. (A.3), (A.6), and Eqs. (D.11), (D.13), 
we have

Substituting Eqs. (D.17) and (D.18) into Eq. (D.10), it 
follows

(D.9)t
L
� = −

�t+1LH

�tV

T

t+1
L� −

�t+1LR

�tV

T

t+1
L�

(D.10)

�t
L
H

�t−1V

T

t
L
� = −

�t
L
H

�t−1V

T
�t+1LH

�tV

T

t+1
s� −

�t
L
H

�t−1V

T
�t+1LR

�tV

T

t+1
s�

(D.11)tX
p−1

= t−1X
p−1

(D.12)t+1
LU

e

∗
(t+1U, tX

p−1
) = t+1

sU
e

∗
(t+1U, t−1X

p−1
)

(D.13)t+1
LR

e
(t+1U, tX

p−1
) = t+1

sR
e
(t+1U, t−1X

p−1
)

(D.14)t+1
L� = t+1

s�

(D.15)t
L
Δ�

p

eqv
= t�

p

eqv
− t−1�

p

eqv
= 0

(D.16)t+1
sΔ�

p

eqv
= t+1

LΔ�
p

eqv
+ t

L
Δ�

p

eqv
= t+1

LΔ�
p

eqv

(D.17)

−
�t
L
H

�t−1V

T
�t+1LH

�tV

T

=

⎡⎢⎢⎢⎣

0 −Det+1
s𝐚 −De � ln

t+1
sU

e

∗

�t−1X
p−1

0 0 0

0 −t+1
X
p−1t+1

s𝐚 −e
−t+1

sΔ�
p

eqv
t+1
s𝐚

⎤⎥⎥⎥⎦

T

=
�t+1sH

�t−1V

T

(D.18)−
�t
L
H

�t−1V

T
�t+1LR

�tV

T

=

(
0, 0,−∫ V0

B

(
�t+1sR

e

�t−1X
p−1

t+1� t+1sR
eT + t+1

sR
et+1�

�t+1sR
eT

�t−1X
p−1

)
dV

)T

=
�t+1sR

�t−1V

T



Load step reduction for adjoint sensitivity analysis of finite strain elastoplasticity  

1 3

Page 19 of 23 19

Using Eqs. (45), (D.3), (D.4), (D.6), (D.19), assumptions 
in Eqs. (47), (48) and t

L
� = 0 , we compute

Using Eqs. (46), (D.4), (D.19), assumptions in Eqs. (47), 
(48) and t

L
� = 0 , we compute

Hence item 2 holds at step t − 1. Backwards calculating 
with Eqs. (45) and (46), it follows.

Thirdly, from Eq. (35), the second and third row block of 
�t
L
H∕�s are zero:

Therefore, from Eqs. (A.3), (A.6) and (A.9), it yields

Using Eqs. (D.19), (D.24) and (D.25), it follows
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From Eq. (D.12), it yields

With Eqs. (D.26) and (D.27), the third item also holds

 □
�

Appendix E. Property of adjoint variables 
at a plastic step

In this appendix, the property of adjoint variables at a plastic 
step is mathematically proved.

Property 2. If �
t
�

�t�
= 0 , t� = t+1

� , �
t+1Re

�tXp−1 = 0 , t+1Δ�p and tXp 
commute, then t� = 0.

Proof: From � t+1Re∕� tXp−1 = 0 and Eq. (A.3), it follows.

Then using Eqs. (45) and assumption in Eqs. (47) and 
(48), it yields

From �t�∕�t� = 0 , t� = t+1
� , and combining Eqs. (A.4), 

(A.8) and (A.9), it computes
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Since t+1Δ�p and tXp commute, then

To  compu te  � ln t+1Ue
∗
∕�tXp−1 ,  we  compu te 

�t+1Ue
∗
∕�tXp−1 first. Taking derivative of Eq. (9), using Eq. 

(8) and �t+1Re∕�tXp−1 = 0 , it yields

Premultiplying t+1ReT on both sides results in

For material which follows associated flow rule, from 
t+1Δ�

p and tXp commute follows t+1Ue
∗
 and tXp also com-

mute. Therefore using Eq. (E.6) it follows

Substituting Eqs. (E.4) and (E.7) into Eq. (E.3) yields

Hence, it follows t� = 0 from Eq. (E.2).
 □

Appendix F. Plastic load step reduction rule

In this appendix, the plastic load step reduction rule is math-
ematically proved.

Plastic load step reduction rule For a sequence of load steps 
L = {1, 2,…, t − 1, t, t + 1,…, N}, if the prerequisites in 
Property 2 are all fulfilled, additionally tΔ�p and t−1Xp also 
commute and� tRe∕� t−1X

p−1
= 0 , then the same sensitivity 

results can be obtained by skipping load step t as the set of 
load steps contains only S = {1, 2,…, t − 1, t + 1,…, N}.

Proof: The same as the proof in Appendix D, it suffices to 
prove the following three points:
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The first one is proved in Appendix E.
Secondly, combining Eqs. (46), (E.1), assumptions in 
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Substituting Eq. (F.9) into Eq. (F.2) we obtain

From � tRe∕� t−1X
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= 0 and Eq. (A.3), it follows

Combining Eqs. (45), (F.10), (F.11), (D.3), (D.4), (D.6) 
and assumptions in Eqs. (47), (48), we have
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t − 1 and backward calculation with Eqs. (45) and (46), it 
easily verifies.
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Taking derivative of Eq. (35) yields

It follows from Eqs. (F.17) and (F.18) that

Hence the coefficient of t+1s�
T in Eq. (F.16) is

From Eq. (F.6) it follows

Substituting Eq. (F.21) into (F.20) we have

And from Eq. (F.16) it yields
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Replication of results There are four numerical examples presented in 
this paper. For the first example, the finite element model, the bound-
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ary conditions, mechanical loads, material properties and design nodes 
are described in full detail in Sect. 5.1. For the second to the fourth 
example, the finite element models in ABAQUS format are attached to 
this submission. At the same time, the boundary conditions, mechanical 
loads, material properties and design nodes are described respectively 
in Sect. 5.2, Sect. 5.3 and Sect. 6 in detail. To reproduce the results, 
the finite element analysis procedure is presented in Sect. 2 and the 
adjoint sensitivity analysis procedure is derived in Sect. 3. The authors 
wish to withhold the source code for commercialization purposes. This 
includes Python code implementing the finite strain elastoplastic analy-
sis and adjoint sensitivity analysis.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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