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Abstract
Building structures from identical components organized in a periodic pattern is a common design strategy to reduce design 
effort, structural complexity and cost. However, any periodic pattern will impose certain design restrictions often leading to 
lower structural efficiency and heavier weight. Much research is available for periodic structures with connected components. 
This paper addresses minimal compliance design for periodic arrangements of unconnected components. The design problem 
discussed here is relevant for many applications where a tightly nested, space-saving arrangement of identical components 
is required. We formulate an optimal design problem for a component being part of a periodic arrangement. The orientation 
and position of the component relatively to its neighbours are prescribed. The component design is computed by topology 
optimization on a design domain possibly shared by several neighbouring components. Additional constraints prevent com-
ponents from overlapping. Constraint aggregation is employed to reduce the computational cost of many local constraints. 
The effectiveness of the method is demonstrated by a series of 2D and 3D examples with an ever-smaller distance between 
the components. Moreover, problem-specific ranges with only little to no increase in compliance are reported.

Keywords Topology optimization · Periodic multi-component optimization · Shared design domains · Non-overlap 
constraint

1 Introduction

A great number of technical products exhibit some level 
of periodicity by design. The reason behind is that reus-
ing a certain component multiple times can save cost of 
manufacture, improve ease of assembly, facilitate mainte-
nance, enhance modularity and, most importantly, lower 
the design effort and structural complexity of the entire 
product. The repeating pattern may extend along one or 
more spatial directions. Examples of one-dimensional 
periodicity include zippers and chains. Plywood, like many 
other composite materials, is produced from multiple lay-
ers arranged along a single stacking direction. Prominent 

examples of two-dimensional periodicity are honeycomb 
cores, isogrids and pin fin heat sinks. Structures with up to 
three-dimensional periodicity range from very large trusses 
to small-scale additively manufactured lattice structures. 
From a manufacturing point of view, usually the periodic-
ity is achieved by appending additional components. How-
ever, the repeating topological feature can also be a cutout. 
Structural members receive a periodic structure by partly 
removing material or introducing perforations. For instance, 
beams with evenly spaced web openings are quite common 
in construction, architecture or shipbuilding. In the aviation 
and space industry the concept is often used in the form of 
so-called flanged lightening holes and can be seen in some 
structural parts such as floor beams, frames and formers. 
All the aforementioned structures have in common that they 
are built from a number of identical components which are 
organized in a spatially periodic arrangement. To achieve 
that the components act together as a single, macroscopic 
structure they are joint together or connected at discrete joint 
locations which enables mechanical load and heat transfer 
between them.
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In this work we will focus on unconnected periodic 
arrangements. Each component is subject to the same set of 
design loads and has its own support. The periodic arrange-
ment will be defined such that the components are placed 
with a potential to overlap. This induces a competition for 
available space during the design process. The gap between 
adjacent components may vanish, however there will be 
no contact forces. This particular design problem can be 
identified in many existing products. Shopping carts, nesta-
ble pallets or stackable chairs must be designed to provide 
a sufficient bearing load capacity while a close nesting is 
essential to reduce the area necessary for storage when not in 
use. Periodic Assemblies of components that must stay spa-
tially separated can be found in mechanisms where moving 
structural parts are arranged close to each other. For exam-
ple, in centrifugal clutches two or more hinged shoes are 
installed on the inner shaft following a cyclically symmetric 
positioning. The shoes are closely nested when the clutch 
is disengaged and start to swing outward when exceeding 
the engagement speed. Another example where the compo-
nents are not even part of the same structural assembly is 
multi-part production. For instance, in sheet metal process-
ing multiple copies of a 2D part are cut from a metal sheet. 
If the geometrical lay-out of the part allows for a closely 
nested, periodic arrangement of components without overlap 
and only a little gap in between overall material usage can 
be improved significantly. Similarly, in powder-bed-based 
additive manufacturing a dense packing of 3D parts leads 
to improved build space usage which is known to affect cost 
efficiency (Khorram and Nonino 2018). One may argue 
that a comparable nesting could alternatively be achieved 
by an irregular arrangement. However, in both sheet metal 
processing and additive manufacturing there exist certain 
preferential directions related to the direction of rolling and 
the movement of the recoater, respectively. Hence, a peri-
odic arrangement will sometimes be preferred for the sake 

of similar, more reproducible mechanical properties among 
the components. Some of the previous examples are illus-
trated in Fig. 1.

A straightforward design approach, suitable for both, 
periodic structures of connected components and periodic 
arrangements of unconnected components, may consist of 
two sequential steps. In the first step, a partitioning of the 
entire design domain into equal subdomains has to be deter-
mined. In the second step, a suitable design of the compo-
nent has to be found within the subdomain. Regarding the 
case of unconnected components, the latter step equals a 
classical optimal design problem on a fixed design domain 
that can be addressed with readily available tools. In the case 
of connected components, the second step of the suggested 
design approach is also well investigated. Since the early 
90s, researchers started applying topology optimization to 
find the yet unknown inner structural lay-out of the base 
component that maximizes some mechanical performance 
measure of a larger periodic structure. In fact, the concept 
of periodically repeating micro structures even was a key 
factor to the first successful implementation of the mate-
rial distribution method described in Bendsøe and Kikuchi 
(1988) as it provided a physical model of a continuous den-
sity material as a composite consisting of an infinite number 
of microvoids periodically dispersed in a base material. The 
authors used a parametric material model based on a square 
unit cell of solid material with a square or rectangular hole 
in the middle to modify the overall density of a unit cell by 
adjusting edge length and orientation of the hole. In the limit 
of a periodic microstructure with infinitely small unit cells 
the macroscopic elastic properties can then be derived using 
homogenization theory assuming a separation of micro and 
macro scales. Sigmund (1994) was the first to use topology 
optimization in material design for finding the topology of 
a unit cell subject to periodic boundary conditions with-
out making simplifying assumptions on the shape of void 

Fig. 1  Examples of compact periodic arrangements of unconnected 
structural components found in existing products and industrial appli-
cations: dense packing of multiple parts on the build plate of a selec-
tive laser melting machine (left), confined spaces within a centrifu-

gal clutch requiring closely nested shoes when disengaged (middle), 
stackable chair design combining load bearing capacity and space-
saving functionality (right)
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and solid regions. This technique is referred to as inverse 
homogenization and has subsequently been adopted by other 
authors to successfully solve microstructural design prob-
lems (Kikuchi et al. 1998; Neves et al. 2000).

If the cell size is not an order of magnitude smaller than 
the characteristic lengthscale of the entire structure, a mac-
roscopic approach will be more appropriate as it resolves all 
structural details of the periodic pattern and also captures 
influences of inhomogeneous load distributions. One or two-
dimensional translational periodicity has been studied in the 
context of cellular core design of sandwich structures (Zhang 
and Sun 2006; Huang and Xie 2008), bridges (Thomas et al. 
2020; Huang and Xie 2008), roof frames (Rong et al. 2013) 
and thermo-elastic problems (Chen et al. 2010). Application 
of cyclic periodicity has been investigated for the design of 
car wheels (Zuo et al. 2011; Jiang et al. 2020), flywheels 
(Jiang and Wu 2017) and spur gears (Schmitt et al. 2019).

As outlined above, many researchers have focussed on the 
second step: finding an optimized topology within a fixed 
component design domain. In contrast, far less attention was 
paid to the first step, which is the partitioning of the entire 
design domain into equal subdomains each allowed to be 
occupied by a single component only. In the context of con-
nected components, the application of polygonal unit cells 
has been studied for homogenization-based material design 
by Diaz and Bénard (2003). A similar investigation is cur-
rently missing for macroscopic cyclic and translational peri-
odicity, where almost exclusively simple geometric shapes 
like rectangles or circular segments are used. In the case of 
arrangements of unconnected components the first step turns 
out to be the crucial part of the optimization problem. As 
illustrated in Fig. 1, the distance between the components 
is typically small to achieve a space-saving arrangement 
which is desirable for technical or economical reasons. If 
the design domain of the component is chosen improperly, a 
significant amount of material may be placed at its boundary 
suggesting that better designs could become accessible in the 
second step by reshaping the design domain of the compo-
nent. Unfortunately, anticipating the design domain of the 
component which for a given periodic pattern finally leads 
to an optimal component design is not trivial and difficult 
to be achieved manually. This becomes even more evident 
from the numerical examples, see Section 4.

The sketched two-step procedure for the optimization of 
periodic arrangements of identical components bears simi-
larities to the recent work of Previati et al. (2019) and Ballo 
et al. (2020). Using a SIMP-based approach, the authors 
minimize the summed compliance of two different, uncon-
nected components with partly shared design domains. 

Overlapping regions are removed from the designs at the 
end of every iteration. The logic is to penalize the density 
field of a component where its local contribution to compli-
ance minimization is smaller compared to the other overlap-
ping component. Further modifications can still be neces-
sary to establish connectedness of the updated component 
designs. Thus, the procedure ensures feasible designs before 
continuing with the next iteration, albeit it may also affect 
convergence. Note that without any further assumptions the 
concurrent optimization of two not necessarily equal compo-
nents is a multi-objective optimization. The authors’ choice 
of using an unweighted sum of the individual compliances 
can be seen as just one possibility.

Furthermore, the problem of altering both the topology of 
a component and the shape of the design domain boundary 
also arises in other situations, most notably in the context 
of optimizing structures with contact interfaces. Promis-
ing results have been achieved using the level set method, 
see Lawry and Maute (2015), Lawry and Maute (2018) for 
bilaterial contact and Liu et al. (2016) for multi-material 
optimization with cohesive interfaces.

Our current work addresses the design of an infinite 
periodic arrangement of identical components with the aim 
of minimizing compliance. Hence, the problem naturally 
reduces to a single-objective optimization where the compo-
nent design domain and its topology are sought. By means of 
the shared design domain approach we fully remain within 
the framework of topology optimization on a fixed mesh 
and avoid any shape optimization of the component design 
domain boundary. In contrast to Previati et al. (2019), the 
separation of the components is established by introducing 
a relaxed non-overlap constraint represented by a differenti-
able function that is directly handled by the optimizer. How-
ever, it is known that a large number of constraints makes 
optimization methods tailored for many design variables but 
only a few constraints inefficient. We address this issue using 
aggregation techniques to reduce the number of constraints 
necessary to satisfy the local non-overlap requirement.

The remainder of the present paper is organized as fol-
lows. In the following Section 2, we provide the mathemati-
cal formulation of the design optimization problem. Then, in 
Section 3, we present a new solution approach and elaborate 
on all its necessary ingredients including SIMP interpola-
tion, constraint formulation, aggregation techniques, finite 
element discretization and sensitivity analysis. The proposed 
method has been applied to 2D and 3D problems, covering 
both translational and rotational periodicity. The results will 
be discussed in Section 4. We conclude with a short sum-
mary and perspectives on future work in Section 5.
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2  Problem statement

Our study addresses the minimum compliance design of 
an infinite periodic arrangement consisting of unconnected 
components. In Fig. 2 the problem set-up is illustrated sche-
matically for a component i adjacent to its predecessor ( i − 1 ) 
and the following component ( i + 1 ). The design domain �(i) 
is subdivided into a part 𝛺(i)

⋆  exclusively allocated to the i-th 
component and the intersections with the design domains of 
the previous component and following component denoted 
as �(i)

−
= �(i) ∩�(i−1) and �(i)

+ = �(i) ∩�(i+1) , respectively. 
Intersections of more than two component design domains 
are not explicitly considered here. However, the method we 
propose is not necessarily limited to only pairwise intersec-
tions, as we will discuss later. All components are related 
to the same linear elasticity problem. Each component i is 
subject to its individual load set f (i) and has its own support 
Γ(i)
u

 . No contact interaction is considered between the com-
ponents. We assume an infinite periodic arrangement ( i ∈ Z ) 
as opposed to the finite periodic case, where distinct first and 
last components exist. This assumption can be either exactly 
satisfied, as in the cyclic periodicity case, or it may be seen 
as a reasonable simplification if the number of components 
is in fact finite.

We seek a single, unique component design �(i)
mat = �mat , 

thus restricting the yet unknown topologies of the compo-
nents to be identical. We focus on the special case of one-
dimensional periodicity where the distance and orientation 
between two consecutive components is specified by one 
single rigid motion �(x) . With these definitions, the optimi-
zation task can be formulated as:

Here u and v are the fields of displacements and virtual dis-
placements, respectively. U denotes the set of kinematically 
admissible displacements. The constitutive behaviour is 
described by the fourth order tensor C which is equal to the 
linear elastic, isotropic stiffness tensor C0 of the material 
within the final domain of the component �(i)

mat and vanishes 
elsewhere. Also, we have introduced a constraint limiting 
the material volume of each component to a prescribed value 
V. The compliance function is l(u) = ∫

�(i) f
(i)u d� + ∫

Γ
(i)
�
t(i)u dΓ 

and the internal virtual work is given by the bilinear form 
a(u, v) = ∫

�(i) �(u) ∶ C ∶ �(v) d� . One may note that solving 
the minimization problem for one arbitrary component i is 
sufficient, as the entire periodic pattern can be concluded 
from the last equation of the optimization problem statement 
(1).

3  Solution approach

The structure we are seeking is supposed to be a periodic 
arrangement of multiple, macroscopic components. This 
allows us to further reduce the problem’s scope to the design 
of only a single component i. To simplify notation we drop 
the index in the following if not strictly necessary.

3.1  Density interpolation scheme

To solve the optimal topology problem we apply the Solid 
Isotropic Material with Penalization (SIMP) interpolation 
scheme introduced by Bendsøe (1989). The discrete 0–1 
nature of the stiffness tensor is omitted and replaced by the 
common power-law approach

In this way the local stiffness properties at any point x are 
expressed with reference to the dense material via a smooth 
pseudo-density field �(x) which is defined on the entire 
design domain � and subject to the simple bound constraints

(1)

min
u∈U,�

(i)

mat

l(u)

s.t.: a(u, v) = l(v), ∀v ∈ U,

C =

{
C0 on 𝛺

(i)
mat,

0 on 𝛺(i) � 𝛺
(i)
mat,

𝛺
(i)
mat ⊆ 𝛺(i),

Vol(𝛺
(i)
mat) ≤ V ,

𝛺
(i)
mat ∩𝛺

(i+1)
mat = �,

𝛺
(i+1)
mat = {�(x) | x ∈ 𝛺

(i)
mat}.

(2)C(x) = �(x)pC0.

Fig. 2  Design domain, boundary conditions, loads (left) and opti-
mized design (right) of three sequential components. The distance 
and the orientation of a component relative to its predecessor is 
described by the rigid motion �(x)
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The power p is used to drive the optimization towards a solu-
tion with only a small fraction of areas having intermediate 
densities.

3.2  Spatial separation of components

Considering only 𝛺⋆ , the part of the design domain which 
is unique to the component, the problem statement is not 
different to the classical one of compliance minimization 
on a fixed design domain. The difficulty lies in the treat-
ment of the non-overlap requirement given by the second 
last equation in (1). The parts of a component design domain 
shared with the previous and the following components are 
related via

In addition to (3), within �− and �+ the density field of a 
component must be further constrained such that any overlap 
between the neighbouring components is avoided. Exploit-
ing the periodic nature of the multi-component systems 
studied in this work, this non-overlap constraint can easily 
be established via a coupling of the mass distribution of a 
component within these two regions through

One possibility to satisfy (5) during an iterative solution 
procedure would be to reallocate the volume at a point x in 
the shared design domain in every iteration to either �− or 
�+ . Here we take a different approach and account for the 
spatial separation of the components by directly introduc-
ing a non-overlap constraint function g(x) into the optimiza-
tion problem. We propose the following relaxed form of (5) 
suited for a gradient-based solution method:

A graphical representation of (6) is shown in Fig. 3. The 
blue hyperbolae represent the equality cases g(x) = �min , 
feasible combinations of �(x) and �(�(x)) are located below 
this graph. While the extreme case of two discrete over-
lapping components (top-right corner) is now far outside 
the feasible domain, it is still possible that x is occupied 
by both components, especially in the low-density region 
with 𝜌(�(x)), 𝜌(x) ≪ 1 . However, these intermediate com-
binations are ineffective and usually too uneconomical, as 
explained below.

The way how overlap between adjacent components is 
removed from the design during a typical optimization pro-
cess is illustrated on the right of Fig. 4. Starting from an 
initial configuration ( 1  ) with distinct overlap, the topology 
changes more or less substantially to reduce and eliminate 

(3)�min ≤ �(x) ≤ 1.

(4)�+ = {�(x) | x ∈ �−}.

(5)�(x)�(�(x)) = 0 on �−.

(6)g(x) = �(x)�(�(x)) ≤ �min on �−.

overlapping. Blurry areas of low-density may evolve within 
the shared part of the design domain �(i)

−
= �

(i−1)
+  where the 

placement of material is likewise efficient for both compo-
nents ( 2  ). The optimizer will decide for every point of these 
highly competitive areas whether it should be allocated pref-
erably to either component i or i − 1 , or, expressed in terms 
of a single component, whether material is placed at either 
x or �(x) . This choice is based on the impact on compliance 
minimization and it can also change at a later stage of the 
optimization process. Once the density fields of neighbour-
ing components are no longer overlapping and the topology 
has been adapted to compensate these imposed restrictions 
as far as possible, the solution finally converges towards to 
a 0-1 design exhibiting a sharp dividing line between the 
components ( 3 ).

A possible evolution of the densities at the fixed point 
x can be tracked in the 3D plot on the left of Fig. 4. The 
horizontal plane is split by the graph of g(x) = �min into two 
domains containing all feasible or infeasible combinations of 
�(�(x)) and �(x) . The respective penalized pseudo-densities 
are shown on the vertical axis. Just like in Fig. 3, it can 
be seen that feasible intermediate combinations with both 
�(�(x)) and �(x) being non-negligible have low-density. As a 
consequence, large blurry areas could arise within the design 
which try to compensate for the low-density. However, this 
can be suppressed by means of a sufficient penalization by 
the SIMP interpolation (2) making the specific stiffness con-
tribution of low-densities excessively small, see the surface 

Pseudo-density ρ(x) on Ω− [−]
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ρ
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))
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Ω

+
[−

]

ρmin = 10−1
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0.0
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Fig. 3  Relaxed non-overlap constraint  (6) for two different lower 
bounds �min on the pseudo-density. The area below the graphs is the 
feasible domain. When �min tends to zero, the blue curve approaches 
the orange-coloured graph of (5)
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plot in Fig. 4. For sake of clarity, a lower bound on the densi-
ties �min = 0.1 was chosen for the graph, although this is too 
large for practical use. In fact, the value of �min should be 
chosen relatively small to effectively inhibit the occurrence 
of overlapping regions in the sense that both �(�(x)) and �(x) 
or at least one of them equals �min . This is particularly rel-
evant for larger problems where the use of constraint aggre-
gation techniques becomes inevitable, see Subsection 3.3.

3.3  Constraint aggregation

A pure compliance minimization problem can be seen as a 
special case of (1) with a priori separated design domains 
( �− = � ). In this situation, the global volume constraint is 
the only constraint function to be considered as against a 
number of design variables that is, depending on the prob-
lem size and the spatial descretization, in general very large. 
In the case of at least partly shared design domains, the num-
ber of constraints typically will reach the same order of mag-
nitude as the number of design variables associated with the 
density field �(x) . The reason is that the spatial separation 
of the components is a local requirement. Thus, in a discre-
tized setting the non-overlap constraint (6) must be enforced 
for every design variable on �− . These N− additional con-
straints, though linear with respect to the design variables, 
drastically increase the computational cost of commonly 
used dual optimization methods like the popular method of 

moving asymptotes (MMA) by Svanberg (1987) that would 
otherwise perform very efficiently.

A common approach to handle the known difficulties aris-
ing from imposing local constraints in topology optimization 
is the use of aggregation functions which has been studied 
in the context of local stress constraints by Yang and Chen 
(1996) and which we will also adopt here. The central idea is 
to satisfy a global constraint max (g1,… , gN−

) ≤ �min , where 
the maximum of the discretized non-overlap constraints 
function values gk is approximated by a suitable aggrega-
tion function g̃(g1,… , gN−

) ≈ max (g1,… , gN−
).

The differentiability and the easy availability of gradient 
information are important advantages of aggregation func-
tions. The main challenge is that aggregation functions only 
provide an estimation of the exact maxium. The accuracy of 
this approximation will become rather low if N− takes large 
values as it is the case for problems where the shared portion 
of the design domain is dominant. To address this, we apply 
a simple grouping strategy to improve the approximation 
inspired by the block aggregation technique suggested by 
París et al. (2010), i.e., we divide the N− constraint function 
values into Ng groups each having its own scalar aggregation 
function g̃m that only merges the values of its group. For a 
compact notation, for every group m = 1,… ,Ng we define a 
set Nm

−
 storing its Nm

−
 constraint functions numbers.

A popular type of aggregation function is the so-called 
KS-norm introduced by Kreisselmeier and Steinhauser 
(1979). In its original formulation, the KS-norm is an 

Fig. 4  Schematic visualization of three characteristic stages 1  , 2  
and 3  of a typical design optimization sequence: Detailed view of 
the topology in the vicinity of a point x lying on the design domain 

shared by the blue and red components (right). Surface plot of the 
penalized densities ( p = 3 ) at x showing the convergence from the 
infeasible domain towards a non-overlapping and nearly 0-1 solution 
(left)
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upper bound approximation and considerably overesti-
mates the real maximum if all constraint function values 
are equal. For that reason, we use the following modified 
variant proposed by París et al. (2009):

where P is a so-called aggregation parameter. The sec-
ond term of the right-hand side in (7) has been chosen 
such that the approximation is now exact if all local func-
tion values of a group are equal, including the critical case 
gk = �min∀k ∈ N

m
−
.

A large P in (7) is desirable as in the limit of P → ∞ 
the KS-norm will always yield the exact maximum of any 
set. However, in practice P must be chosen carefully with 
respect to the possible range of local constraint function 
values. The reason is that the terms of the sum in (7) grow 
exponentially which might come along with very large 
gradients that can have a detrimental effect on the numeri-
cal stability. In fact, our numerical experiments have indi-
cated that this issue becomes the limiting factor still well 
within the representable range of the floating-point format. 
For our implementation of the optimization problem at 
hand, an aggregation parameter of P = 8 has proven to be 
a satisfactory choice. Another question is how to choose 
Ng . We found that limiting the group size N−∕Ng to a value 
in the range of roughly 103...104 was sufficient to solve the 
numerical examples presented in Section 4.

3.4  Finite element discretization 
of the optimization problem

To solve the equilibrium equations, to evaluate both the 
objective and the constraint functions and to provide the 
necessary sensitivities we use a geometrically linear finite 
element method. We use first order triangular elements to 
interpolate the nodal displacements u inside the elements. 
Similarly, we choose a nodal-based representation of the 
density with the same standard C0 shape functions on the 
common mesh so that the design variables of the problem 
are given by the global vector � comprising the N nodal 
densities. Written in discrete form, the equilibrium equa-
tion is now given by the linear system

where K is the system stiffness matrix and f  is the vector of 
nodal forces. The stiffness matrix is generated in an assem-
bly process K = �

Ne

e=1
ke from Ne element stiffness matrices 

defined as

(7)g̃m =
1

P
ln

⎛
⎜⎜⎝
�
k∈Nm

−

ePgk
⎞
⎟⎟⎠
−

1

P
ln
�
Nm
−

�
, m = 1, ...,Ng,

(8)K(�)u = f ,

Here C0 is the constitutive matrix of the material, B(x) 
denotes the usual operator matrix relating the nodal dis-
placements to the strains, �e is the vector of element nodal 
densities and Ne(x) is the vector of shape functions to inter-
polate between the nodal densities on the element domain 
�e.

Handling the simple bound constraints (3) in the discretized 
setting is trivial, as we impose them directly on the discrete 
design variables. The evaluation of the volume constraint is 
also easily accomplished by a local integration of the approxi-
mated density field over the element domain and adding up the 
contributions from all elements, i.e.,

where we have taken account of the linear relation between 
the actual volume and the nodal densities by introducing 
a constant vector h that once assembled can be stored and 
reused throughout the optimization. Note that the derivative 
of the volume constraint with respect to the nodal densities 
is readily given by the entries of h . A detailed expression 
to compute them is given in the following Subsection 3.5.

A suitable discrete counterpart is to be formulated in the 
case of the relaxed non-overlap constraint (6). Here we follow 
an approach in the form of a point-wise constraint enforcement 
which is intuitive and easy to implement. As depicted in Fig. 5, 
we take the density at the nodal coordinates xk , i.e., the nodal 
density �k , and project it onto the density at �(xk) interpolated 
from the nodal values �e of the element e, the element domain 
�e of which includes �(xk) . This leads to the following set of 
N− constraints:

(9)ke = ∫�e

B(x)T (Ne(x)�e)
pC0B(x) d�.

(10)g0 =

Ne∑
e=1

(
∫�e

Ne(x)�e d�

)
= hT�,

(11)gk = �kNe(�(xk))�e, �(xk) ∈ �e, k ∈ N−.

Fig. 5  Illustration of the pointwise non-overlap constraint in the dis-
cretized setting: The nodal density at xk is compared with the interpo-
lated density at �(xk)
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Here we have introduced a set N− storing the N− constraint 
function numbers. As every constraint function gk cor-
responds to a node number k, the set N− can equally be 
regarded as a node set containing the N− global node num-
bers of all the nodes lying on the shared part of the design 
domain �−.

For the reason outlined in the previous Subsection 3.3, 
we will split the large number of constraint functions into 
smaller groups according to N− =

⋃Ng

m=1
N

m
−

 . It seems rea-
sonable to keep the size of the groups balanced. Apart 
from that, we allocate the constraint function numbers to 
the individual groups simply in ascending order based on 
the corresponding node numbers assigned by the finite 
element routine. Thus, the groups do not necessarily have 
any geometrical meaning. The numerical performance can 
be affected by choosing a more sophisticated strategy to 
form the groups instead of assigning the constraints in ran-
dom order. Different strategies have been suggested based 
on either geometrical considerations (París et al. 2010) 
or the current values of the constraint functions (Le et al. 
2010; Holmberg et al. 2013). Although improvements have 
been reported, these findings may be very much problem 
dependent, which is why we do not examine this in more 
detail here.

Using these definitions, the discrete form of the optimi-
zation problem can be written as

3.5  Sensitivity analysis

The optimization problem (12) is to be solved by a gradi-
ent-based mathematical programming method. This sec-
tion provides the necessary sensitivities with respect to 
the design variables.

By means of the adjoint method, the well-known 
expression for the derivative of the compliance 
�l

��j
=

�(fTu)

��j
= −uT

�K

��j
u can be obtained. Using the definition 

of the element stiffness matrices (9) we get

(12)

min
u∈U,�

l

s.t.: fTu = l�
�
Ne

e=1
ke(�e)

�
u = f ,

𝜌min ≤ 𝜌j ≤ 1, j = 1,… ,N,

g0 = hT� ≤ V ,

g̃m(�) =
1

P
ln

⎛⎜⎜⎝
�
k∈Nm

−

eP𝜌kNe(�(xk))�e

Nm
−

⎞⎟⎟⎠
≤ 𝜌min,

�(xk) ∈ 𝛺e, m = 1,… ,Ng.

where Ej represents a set containing the element numbers 
of all elements that are connected to the j-th node and Nj

e 
denotes the shape function associated to the nodal density 
at that node on the respective element. Moreover, we have 
introduced the specific strain energy density w(x) in the sec-
ond line of (13). For further manipulation, the specific strain 
energy density is projected onto the linear FE space to obtain 
a discretized representation w(x) = N(x)w.

As investigated by Jog and Haber (1996), minimum 
compliance optimization using a finite element implemen-
tation with C0 continuity of both the displacement and the 
density field suffers from numerical instability. Though 
not affected by the formation of checkerboard patterns 
known from element-density-based approaches (Matsui 
and Terada 2004), the optimal topology generated using 
such an implementation will also exhibit mesh-dependent 
anomalies, so-called “islanding” (Rahmatalla and Swan 
2004). To suppress these artefacts, we apply a filterting 
of the sensitivities very similar to the heuristic procedure 
originately introduced by Sigmund (1994) for element-
wise constant densities. This is done by smoothing the 
nodal values of the specific strain energy density in (13) 
through the following convolution:

where Hj(x) is a triangular kernel function defined as:

Here rmin has the meaning of a filter radius by controlling the 
support size of the kernel function. The filtered sensitivity 
expression then becomes:

In addition to the derivative of the objective function, we 
also need to provide the same for the constraints. The sensi-
tivity of the volume constraint function is given as

For the sensitivities of the Ng aggregated non-overlap con-
straints considered in (12) one needs to compute both the 

(13)

�l

��j
= −

∑
e∈Ej

(
∫�e

Nj
e
uT
e
BTp(Ne�e)

p−1C0Bue d�

)

= −
∑
e∈Ej

(
∫�e

Nj
e
(x)w(x) d�

)
,

(14)ŵj =
1

∫
�
Hj(x) d� ��

Hj(x)w(x) d�,

(15)H
j
(x) =

�
r
min

− ‖x − x
j
‖ for ‖x − x

j
‖ ≤ r

min
,

0 else.

(16)
�̂l

��j
= −

∑
e∈Ej

(
∫�e

Nj
e
(x)ŵ(x) d�

)
.

(17)
�g0
��j

=
∑
e∈Ej

(
∫�e

Nj
e
(x) d�

)
= hj.
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derivative of the aggregation function and the derivative of 
the constraint function itself. The former can be written as

and the derivative of the non-overlap constraint is given by

where Ne represents a set containing the global node num-
bers of the element e and we again assume that �(xk) ∈ �e . 
By application of the chain rule, the sensitivities of the 
aggregated non-overlap constraints 𝜕g̃m

𝜕𝜌j
=
∑

k

𝜕g̃m
𝜕gk

𝜕gk
𝜕𝜌j

 follow 

from (18) and (19).

4  Numerical examples

4.1  Implementation details

The proposed method described in the previous section has 
been implemented in Python. To solve the optimization 
problem we apply the method of moving asymptotes (MMA) 
by Svanberg (1987) which is accessed through the Python-
based optimization package pyOpt (Perez et al. 2012). To 
compute function values and sensitivities for both objective 
and constraints we make use of the finite element analysis 
tools which are developed under the umbrella of the FEniCS 
project (Alnæs et al. 2015) with its core component DOLFIN 
(Logg and Wells 2010) providing major part of the function-
ality as well as a high-level Python interface. By default, 
we apply the sparse direct solver UMFPACK for the 2D 
problems. Due to the memory efficiency of iterative solvers, 
we switch to the minimal residual (MINRES) method paired 
with successive over-relaxation (SOR) preconditioning to 
solve the linear systems in 3D. We use the graphics package 
Matplotlib (Hunter 2007) for plotting the 2D topologies and 
a CAD program to visualize the 3D topologies.

4.2  2D plane stress cantilever with translational 
periodicity

To demonstrate the effectiveness of the proposed method 
we have solved a series of cantilever optimization problems 
where the shared part of the design domain is progressively 
increased. The first example is essentially two-dimensional 
and has also been chosen to illustrate how the optimal topol-
ogy of the structure evolves when the spacing between the 

(18)
𝜕g̃m
𝜕gk

=

{
1

Nm
−

eP(gk−g̃m) for k ∈ N
m
−
,

0 else,

(19)
�gk
��j

=

⎧
⎪⎨⎪⎩

Ne(�(xk))�e for j = k,

�kN
j
e(�(xk)) for j ∈ N

e
,

0 else,

components is gradually reduced and to investigate how this 
affects its mechanical performance.

The problem set-up is given in Fig. 6. The design domain 
� is rectangular with a fixed support in the left half of its 
lower boundary while a single point load F is acting on the 
midpoint of the right boundary in vertical direction. The 
design domain is discretized by a structured grid of trian-
gular elements as illustrated in Fig. 7. The values of the 
parameters are summarized in Table 1. The value of the filter 
radius equals twice the element edge length such that the 
support of the filter kernel function comprises at least two 
layers of surrounding elements. We assume that the design 
problem has converged if the relative objective change falls 
below 10−6 for three consecutive iterations and the aggre-
gated non-overlap constraints are satisfied. In every case, the 
optimization is started using a homogeneous material distri-
bution � = V∕(2BH) . This initial condition uses only half of 
the available amount of material V and is therefore compat-
ible with the volume constraint. However, the non-overlap 
constraint is violated because gk = �(xk)�(�(xk)) = (

V

2BH
)2 

is larger than admissible limit �min for any node k on �−.
To validate the basic functionality of the implementa-

tion we first compared the optimization results for the case 
b = 0 , i.e., essentially a pure minimal compliance problem 
without overlapping design domains, to those obtained by 

Fig. 6  Design of a two-dimensional, infinite and translationally peri-
odic arrangement of a single load cantilever using shared design 
domains: Schematic representation of the optimization problem

Fig. 7  Finite element discretization of the 2D plane stress cantilever 
problem with translational periodicity: Triangular cell mesh, Dirichlet 
boundary conditions and nodal point load
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the popular 99-line Matlab code by Sigmund (2001). To 
ensure comparability we used identical parameters. The only 
exception refers to the sensitivity filter radius of the Mat-
lab implementation, which we have set to rmin∕2 to account 
for the ability of a nodal-based approach to resolve finer 
variations of the density compared to element-wise constant 
densities. However, note that the 99-line Matlab code shows 
further differences, primarily the use of rectangular finite 
elements, application of the optimality criteria method and 
a slightly different filtering technique. Nevertheless, the opti-
mized material distributions obtained are similar, as it can 
be seen from Fig. 8. Moreover, the difference in compliance 
is found to be less than 1.5%.

Increasing the portion of the shared design domain �−∕� 
now initiates the transition from the classical topology opti-
mization problem with its exclusive design domain to the 
case of shared design domains. The rectangular design 
domains are moved purely horizontally until they overlap 
the neighbouring design domains by b, which corresponds 

to the rigid motion �(x) =
(
x + B − b

y

)
 . The proposed 

method has been applied to solve this optimization task 

separately for a number of increasing values of the design 
domain overlap b/B. The optimizations are performed inde-
pendently of each other. Each starts from the same initial 
condition and is directly solved for a predefined design 
domain overlap. It is noteworthy that for a given mesh the 
design domain overlap can still be chosen continuously as 
there is no need to ensure matching nodes on �+ or �− . A 
selection of the computed final designs is illustrated in 
Fig. 9. Note that we have included a design problem where 
b∕B > 0.5 which implies that parts of the design domain are 
shared by even more than two components. As mentioned 
earlier, we do not take measures to explicitly prevent any 
overlap between a component i and the component after next 
i + 2 . However, for the optimization problem at hand, this 
situation can not occur for any meaningful design, as dem-
onstrated in Fig. 9.

The evolution of the structure’s topology may be divided 
into three phases. The first one is characterized by a forma-
tion of a unique topology that remains unaffected by the 
overlap between the design domains. By inspection of the 
optimal topology for b∕B = 0 , one observes a considerable 
amount of empty space between the components. Thus, it 
is plausible that the topology does not change before the 
point of application of the force starts touching the diagonal 
member of the adjacent component at around b∕B ≈ 0.15 . 
This assumption is also confirmed by the value of the objec-
tive shown in Fig. 10. The computed topology in the first 
phase is a discrete truss-like structure that resembles one 
of the famous Michell frames, namely the top half of the 
symmetric centrally loaded beam (Michell 1904). This is 
not surprising since both problem statements are almost 
equivalent, albeit differ in the direction of the force F and 
its point of application.

In the second phase, the components have already come 
close enough and the non-overlap constraints are activated 
locally to ensure feasibility. Hence, the modification of the 
density field itself leads to the formation of a curved divid-
ing line between the components. Once the optimization has 
converged, the topology shows a distinct separation of the 
components, see Fig. 11. Despite the necessary adaption 
of the topology, the increase in compliance is small until 
b∕B ≈ 0.25 . Thus, the second phase is of particular interest 
when a large b/B is for some reason economically desirable 
however one is willing to accept only very little losses of 
mechanical performance. As expected, the method does not 
preserve a minimum gap in the form of at least one single 
layers of void elements between the components. However, 
this could lead to unwanted contact between the components 
under operational loads or it might result in components 
being unintentionally bonded together during additive manu-
facturing. In a practical workflow, this could be solved by 
manually adding a small clearance to the design in a subse-
quent post-processing step.

Table 1  2D plane stress problems: Dimensions, loads, material prop-
erties, volume limit and numerical parameters

Parameter Symbol Value

Design domain width B 25.0
Design domain height H 17.0
Force magnitude F 1.0
Young’s modulus E

0
1.0

Poisson’s ratio � 0.3
Normalized material volume limit V/(BH) 0.18
Number of nodes in x-direction n

x
201

Number of nodes in y-direction n
y

137
Minimum pseudo-density �

min 10−8

Sensitivity filter radius r
rmin

√
2∕4

Penalty factor p 3
Aggregation parameter P 8
Maximum group size N−∕Ng 4 ⋅ 103

Fig. 8  Cantilever problem with separated design domains: Optimal 
topology for b = 0 (left) compared to the solution obtained using the 
99-line Matlab code (right)
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For larger design domain overlap, feasibility reduces stiff-
ness. This third phase is characterized by a rapid increase of 
the compliance, see again Fig. 10. Due to the tight spacing 

of the components the size of the design domain that can still 
effectively be occupied by a single component is narrowed 
down. This induces substantial structural modifications and 

1.0

0.5

ρmin

Pseudo-density ρ

Fig. 9  2D plane stress cantilever problem with translational periodicity: Optimal topologies obtained for increasing values of the design domain 
overlap b/B. To illustrate the infinite periodic arrangement, a series of three consecutive, identical components are shown by their density fields
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the stiffness is compromised. The black graph in Fig. 10 
indicates almost without exception that in the second and 
third phase the compliance is a strictly convex function 
of the design space overlap with a vertical asymptote at 
b∕B = 1.

The evolution of compliance and volume is plotted in 
Fig. 12 for the smallest, the largest as well as an intermedi-
ate design domain overlap. One observes a fast decrease 
of the compliance during the first twenty iterations largely 
irrespective of b/B. However, to finally converge to a stable 
configuration it takes a few tens of iterations more for the 
case of overlapping design domains compared to b∕B = 0 . 
One also notices a decrease of the volume accompanied by 
an increase in compliance at n = 4 , which corresponds to 
the solution after three iterations. Interestingly, the classi-
cal minimum compliance problem with b∕B = 0 is slightly 

more affected than the two other optimization problems with 
b∕B = 0.35 and b∕B = 0.55 . This effect is not related to the 
proposed method of handling shared design domains itself. 
It can rather be attributed to the fact that the largest and most 
fundamental structural modifications appear during the early 
optimization phase and that the design updates predicted by 
the optimizer seem to be somewhat too aggressive in the 
first three iterations. The fluctuation disappears for n ≥ 4.

To verify, that the obtained results are in fact feasible, 
we compared the maximum among all the N− nodal overlap 
values max(gk) with the maximum of the Ng constraint func-
tions max(g̃m) , which is expected to be a sufficiently accurate 
approximation of the former. This comparison is shown in 

Fig. 10  Minimized compliance for different values of b/B. The black 
curve corresponds to the 2D plane stress cantilever problem with 
translational periodicity (values normalized by l(b = 0) = 69.55 ). The 
blue curve shows the results found for the similar 3D problem (values 
normalized by l(b = 0) = 237.01)

Fig. 11  2D plane stress cantilever problem with translational perio-
dicity: Detail view of the density fields (bottom) in a region where the 
clearance between two adjacent components vanishes. The location is 
indicated by the red circle (top)

Fig. 12  2D plane stress cantilever problem with translational perio-
dicity: Convergence of the compliance (values normalized by the 
initial compliance l

1
= 2.4 ⋅ 104 ) and the volume. The optimizations 

start at n = 1 (initital condition) and terminate once the respective 
convergence criterion has been met

Fig. 13  2D plane stress cantilever problem with translational perio-
dicity: Evolution of the maximum among the aggregated non-overlap 
constraints g̃m compared to the actual maximum among the nodal 
non-overlap constraints gk . Note that the respective m and k possibly 
vary between iterations
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Fig. 13. Because of the particular formulation of (7), the 
approximation is exact for the homogeneous initial guess 
at n = 1 . Although the divergence of the graphs indicates 
a rather low quality of approximation during the following 
iterations, the constraint function value for b∕B = 0.35 is 
reduced or at least kept roughly constant while the design 
undergoes significant structural modifications. In principle, 
this is also true for the much more demanding optimization 
problem b∕B = 0.55 , apart from the rise at 20 ≤ n ≤ 30 . 
Once max(g̃m) has finally dropped below �min the design 
becomes feasible and does no longer violate the non-overlap 
requirement. There are two observations in Fig. 13 that may 
warrant further discussion, the sudden drop of max(gk) and 
the sharp peak at n = 70 for the b∕B = 0.55 case. The reason 
for this becomes evident from Fig. 14. The graph shows 
that the number of violated constraints, which corresponds 
to the size of the overlap between the components, in fact 
monotonically decreases to zero. An even closer look reveals 
that for example in the case of b∕B = 0.55 there is only one 
remaining constraint at n = 38 which the solution does not 
satisfy yet. This overlap is finally removed from the design 
in a single iteration, which makes plausible why the graph 
of max(gk) in Fig. 13 suddenly drops. Likewise, the small 
increase at n = 70 , which appears as a sharp peak, is caused 
by a marginal overlap where again only a single gk is still 
larger than �min . One may also note that the graph in Fig. 13 
appears overly sensitive due to its log-log scale.

4.3  2D plane stress problem with rotational 
periodicity and single point load

The 2D example of translational periodicity from the previ-
ous Section 4.2 shall be supplemented by a complementary 
case study covering rotational periodicity. The problem 

set-up consists of a circular pattern of nc evenly distributed 
and identical components, as exemplified in Fig. 15. The 
distance and the relative orientation between two neighbour-
i n g  c o m p o n e n t s  i s  g i ve n  by  t h e  m o t i o n 

�(x) =

(
cos 2�∕nc sin 2�∕nc
− sin 2�∕nc cos 2�∕nc

)(
x

y

)
 , which describes a 

pure rotation about the origin. Besides the motion, the shape 
of the design domain, the support area, the vertical point 
load, the initial material distribution � = V∕(2BH) , the con-
vergence criterion and the values of the parameters (see 
Table  1) remain unchanged compared to the previous 
example.

As it can be seen from the optimization results illustrated 
in Fig. 16, the rotation angle 360

◦

nc
 leads to a closed periodic 

pattern where the identical topologies of component i and 
i + nc are congruent. This shows why it makes sense to use 
only integer numbers of components. For nc ≤ 3 the designs 
are the same as in the translational periodicity problem for 
b∕B ≤ 0.15 , cf. the two topmost topologies in Fig. 9. The 
reason is that in these cases the design domains do not inter-
sect at all or at least the intersection does not disturb the 
formation of an optimized topology. When the number of 
components equals four, one third of the support Γu now 
reaches into the design domain of the neighbouring compo-
nent leading to an interference of efficient potential load 
paths. Thus, the topology needs to be reorganized signifi-
cantly to prevent overlapping. When the number of 

Fig. 14  2D plane stress cantilever problem with translational perio-
dicity: number of nodal non-overlap constraints for which gk > 𝜌min 
holds. Numbers greater than zero indicate that a certain overlap 
between the components still remains

360◦

nc

B

H

B/2

B/6

Ω(i−1)

F

Ω(i)

Ω(i+1)F

FΩ
(i)
+

Ω
(i)
−

Ω
(i)
�

Γ
(i)
u

Γ
(i+1)
u

Γ
(i−1)
u

x

y

H/2

Fig. 15  Design of a two-dimensional structure with rotationally peri-
odicity and signle point load consisting of nc identical components: 
Schematic representation of shared design domains, supports and 
loads for nc = 5
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components is increased further, the structural modifications 
appear much less conspicuous. However, the structure is 
shifted more an more to the right so that it extends beyond 
the end of the supported edge causing an increase in compli-
ance. Another interesting structural detail is the boundary 

shape of a component where it is directly bordering the 
neighbouring component. From Fig. 17, it can be seen that 
these particular sections of the boundary are not necessarily 
straight lines. In the rotationally periodic case, for instance, 
the boundary shape is a curve opening in anti-clockwise 

F

F

F

F

F
F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

1.0

0.5

ρmin

Pseudo-density ρ

F

F

F

F

FF
F

F

FF

F

F

F

F

F

F

F

F

F

FFF

F

F

F

F

F

F

1.0

0.5

ρmin

Pseudo-density ρ

Fig. 16  2D plane stress problem with rotational periodicity and sinlge point load: Arrangement of optimal topologies for different numbers of 
components between nc = 3 (bottom) and nc = 7 (top)
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direction ( nc = 5 ) and changes into a curve opening in clock-
wise direction ( nc = 7 ). As opposed to this, in the transla-
tionally periodic case with a design domain overlap of 
b∕B = 0.55 , the topology has a gentle s-shaped boundary.

A quantitative comparison of the topology optimization 
results obtained for different numbers of components is pro-
vided Fig. 18. Following the aforementioned idea of sub-
dividing the evolution of the topology of the structure into 
three phases, one can easily identify the first phase as the 
interval nc ≤ 3 . A distinct second phase, where a larger num-
ber of components would be accompanied by only a mod-
est increase in compliance, is not recognisable. Instead, one 
observes that the compliance quickly increases for nc ≥ 4.

This is contrary to the translational periodicity example 
presented in the previous Section 4.2. This shows that the 
non-overlap requirement has an influence on the compli-
ance that is strongly dependent on the specific problem, for 
example the position and orientation of loads and supports 
and, in particular, the motion � . The area of �− alone, does 
not necessarily indicate a poor mechanical performance of 
a component. For instance, the area of the shared part of the 
design domain �− is approximately the same for nc = 7 and 
b∕B = 0.55 . Nevertheless, the compliances of the optimized 
designs, which also look quite comparable at first sight, dif-
fer by a factor of 3. It should be noted that the number of 
components nc , and hence the extend of intersection of the 
design domains, can only be increased gradually and that 

these increments might be too large to resolve a visible sec-
ond phase. This contrasts with the translational periodicity 
example, where the design domain overlap b/B is continu-
ously variable.

A log-log plot of the objective and the volume is pre-
sented in Fig. 19 providing insights into the convergence 
behaviour. Based on the same convergence criterion used 
before, the iteration process is stopped when the design is 
feasible and the relative objective change has been smaller 
than 10−6 for the last three iterations. The number of 
iterations required for the solution to converge is roughly 
2...4 ⋅ 102 . However, a satisfactory result with a compliance 
being close to that of the fully converged solution is already 

Fig. 17  Comparison of the boundary shapes of different 2D topolo-
gies bordering each other: Results from the translational periodicity 
example (bottom) and the rotational periodicity example (top-left 
and top-right). The violet curves trace the imaginary dividing lines 
between adjacent components

Fig. 18  2D plane stress problem with rotational periodicity and single 
point load: Minimized compliance for increasing number of compo-
nents nc (values normalized by l(nc = 3) = 69.55)

Fig. 19  2D plane stress problem with rotational periodicity and single 
point load: Convergence of the compliance (values normalized by the 
initial compliance l

1
= 2.4 ⋅ 104 ) and the volume during design opti-

mization



 J. Rieser, M. Zimmermann 

1 3

18 Page 16 of 22

achieved after n = 4 ⋅ 101 , which is about an order of mag-
nitude less.

The evolution of the constraint functions g̃m is illustrated 
in Fig. 20. For nc = 4 the initial design converges from an 
infeasible to a feasible solution in six iterations. In the more 
demanding case nc = 7 , the maximum among the aggregated 
non-overlap constraints g̃m is also drastically reduced before 
it reaches a minimum at n = 11 . Until this point, the number 
of violated constraints ( gk > 𝜌min ) has been reduced to 6 as 
it can be seen from Fig. 21. All these constraints belong 
to nodes lying on a narrow strip where two neighbouring 
components are still slightly overlapping. Both components 
aim at occupying as much space as possible in this highly 
stressed area. It takes about twenty additional iterations 
before this localized overlap is removed and a sharp divid-
ing line has been found, cf. the violet curve in Fig. 17.

With regard to the proposed method, it can be stated that 
the results found from this 2D case study on rotational perio-
dicity resemble those obtained for the translational perio-
dicity covered in the previous Subsection. This conclusion 
is also confirmed from a numerical perspective, as demon-
strated by several convergence plots. Although the precise 
relation is problem-specific, both examples also exhibit the 
same expected behaviour whereby a closer arrangement 
leads to a less efficient design.

4.4  2D plane stress problem with rotational 
periodicity and double point load

To further substantiate the method, we present another two-
dimensional example with a rotationally periodic arrange-
ment of nc = 5 components. The problem set-up is sketched 

in Fig. 22. The shape of the design domain, the support 
area, the vertical point load, the initial material distribution 
� = V∕(2BH) , the motion �(x) and the convergence criterion 
have been adopted from the previous example. We also use 
the same values of the parameters that can be gathered from 
Table 1. However, to make the problem more challenging 
and to promote a more sophisticated design, we have added 
a second point load of equal magnitude F acting on the mid-
point of the left boundary in horizontal direction.

The optimization result is illustrated in Fig.  23. As 
expected, the computed final design shows a greater geomet-
ric complexity compared to the previous example. A consid-
erable accumulation of material can be found at both ends 
of the supported edge Γu . While the structure at the left end 
is still truss-like with thick members, one observes a plate-
like structure in the highly loaded region a the right end. 
Two larger and somewhat more filigree trusses are attached 
to these structures and carry the two applied forces. The 
contours of the two trusses are strongly interdependent as 
both lie mostly on the shared parts of the design domain �− 
and �+ , see Fig. 23. The tight periodic arrangement and the 
corresponding non-overlap requirement has a great influence 
on the optimal topology as the shared portion of the design 
domain is relatively large. Furthermore, especially important 
locations like supported edges and points of application of 
loads reach far into the design domains of adjacent compo-
nents. This effect is best illustrated in Fig. 24, showing a 
visual comparison with the results of a classical topology 
optimization ( 𝛺 = 𝛺⋆ ) without shared design domains.

A convergence plot for the objective function and the vol-
ume constraint function is provided in Fig. 25. The result is 
similar to the previous example exhibiting fluctuations dur-
ing the first four iterations followed by a smooth convergence 

Fig. 20  2D plane stress problem with rotational periodicity and sin-
gle point load: Evolution of the maximum among the aggregated 
non-overlap constraints g̃m compared to the actual maximum among 
the nodal non-overlap constraints gk . Note that the respective m and k 
possibly vary between iterations

Fig. 21  2D plane stress problem with rotational periodicity and sin-
gle point load: Number of nodal non-overlap constraints for which 
gk > 𝜌min holds. Numbers greater than zero indicate that a certain 
overlap between the components still remains
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behaviour. For completeness, we also provide a visualiza-
tion of how the non-overlap constraint function evolves over 

iterations, see Fig. 26. It shows the maximum among the 
aggregated constraint function values max(g̃m) contrasted 
with the maximum nodal overlap values max(gk) . The result 
is comparable to the previous example, too. This confirms 
once more that there is basically neither a conceptual nor a 
numerical difference between the problem with translational 
periodicity from Subsection 4.2 and the rotationally periodic 
case treated here.
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Fig. 22  Design of a two-dimensional structure with rotationally peri-
odicity and double point load consisting of five identical components: 
Schematic representation of shared design domains, supports and 
loads

Fig. 23  2D plane stress problem 
with rotational periodicity and 
double point load: Arrangement 
of five identical components 
with optimized topology F
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Fig. 24  Optimized topology from Subsection  4.4 considering rota-
tional periodicity (grey) compared to the results from a classical 
topology optimization without shared design domains (blue). The 
compliance of the grey structure is 2.1 times larger than that of the 
blue structure
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4.5  3D cantilever with translational periodicity

In a fourth example, which is an extension of the plane stress 
example from Subsection 4.2 to three dimensions, we dem-
onstrate the effectiveness of the proposed method also for 
larger 3D problems.

The problem set-up is sketched in Fig. 27. The design 
domain is cuboidal, the left half of its bottom face is fixed 
and the point load F is now acting on the center of the 
right side face. To make the optimization problem more 
demanding, we wish to obtain a design that is symmetric 
about the x-y-plane. The design domain is discretized by 
a structured mesh of tetrahedral elements. The values of 
all relevant parameters are summarized in Table 2. Each 

optimization is started using a homogeneous material dis-
tribution � = V∕(2BHD) as the initial condition.

Similar to the 2D example, we consider a translationally 
periodic arrangement constituted by the motion 

�(x) =

⎛⎜⎜⎝

x + B − b

y

z

⎞⎟⎟⎠
 . A selection of the computed final 

designs corresponding to three different values of b/B is 
shown in Fig. 28. It is noteworthy, that the empty space 
between the components obtained from the conventional 
optimization with b∕B = 0 can be partly eliminated through 
a subsequent nesting along the x-axis. By this means, space 
savings can be achieved equivalent to b∕B ≈ 0.3 which 
marks the end of what we have earlier called the first phase. 
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Fig. 25  2D plane stress problem with rotational periodicity and dou-
ble point load: Convergence of the compliance (values normalized by 
the initial compliance l

1
= 4.4 ⋅ 104 ) and the volume during design 

optimization

Fig. 26  2D plane stress problem with rotational periodicity and dou-
ble point load: Evolution of the maximum among the aggregated 
non-overlap constraints g̃m compared to the actual maximum among 
the nodal non-overlap constraints gk . Note that the respective m and k 
possibly vary between iterations

Fig. 27  Design of a three-dimensional, infinite periodic arrangement 
of a single load cantilever using shared design domains: Schematic 
representation of the design domain, supports and loads (top), sim-
plified problem set-up using half of the design domain with mirror 
symmetry about the x-y-plane (middle), and translationally periodic 
arrangement of three neighbouring components (bottom)
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Beyond this point, an even closer arrangement of compo-
nents can only be realized considering shared design 
domains during the topology optimization. The optimized 
compliance of ten different designs is plotted as a function 
of the design domain overlap, see the blue curve in Fig. 10. 
As expected, the compliance of the designs remains largely 
similar during the first phase. However, what is probably 
most striking is the small variation in compliance of about 
±2% over the entire range investigated. Furthermore, one can 
observe a constant increase in compliance around b∕B = 0.5 . 
This is likely due to the overlap of two areas of the design 
domains where the placement of material is particularly eco-
nomical, namely the outmost parts of the fixed bottom face 
in the vicinity of x = 0 and x = B∕2.

From the above findings we draw the conclusion that 
in comparison to a 2D problem, a 3D problem allows to 
prescribe a closer spacing between the components before 
the loss of stiffness ultimately becomes unacceptable. We 
attribute this to the much greater flexibility in designing non-
overlapping load paths within a three-dimensional rather 
than a two-dimensional design domain. One may think of 
two straight members belonging to different components 
that are initially intersecting. A trivial solution would be to 
move one of the members in the out-of-plane direction such 
that the members are now bypassing each other. While for 
a 3D problem this structural modification can most likely 
be realized and possibly even at low cost, it is impossible 
in a planar problem. This leads to comparatively less effi-
cient designs in a 2D setting. On the contrary, it also has 
the convenient side-effect of a component acting as a bar-
rier between its left and right neighbours. Thus, the overlap 

between components other than direct neighbours is often 
‘naturally’ prevented in a meaningful 2D design while this 
is no longer true in 3D. In the current example, this needs 
to be considered for b∕B > 0.6 . To solve this issue, the non-
overlap constraint (6) must be generalized to more than two 
components. The larger design freedom in 3D also gives 
rise to another issue, namely the prediction of arrangements 
of interlocking component designs. If for example such an 
interlocking arrangement was manufactured using additive 
manufacturing, it would afterwards be impossible to separate 
the components from each other.

Finally we briefly present some numerical aspects of the 
proposed method applied to the described 3D problem. The 
evolution of the objective as well as the volume constraint 
can be studied in Fig. 29. The blue curves show a relatively 
smooth convergence behaviour for all three different optimi-
zations. We found that, although the total number of degrees 
of freedom is more than six times larger, the number of itera-
tions needed to meet a desired relative objective tolerance 
criterion does not increase significantly compared to the 2D 
example. Furthermore, we also reviewed the evolution of the 
constraint functions g̃m to assure compliance with the non-
overlap requirement. The results are illustrated in Fig. 30. It 
can be observed, that the overlap between the components is 
continuously reduced until max(g̃m) drops below �min . Inter-
estingly, there is almost no difference between the dashed 
( b∕B = 0.4 ) and the solid ( b∕B = 0.6 ) blue curve.

5  Conclusion

We have presented a novel approach to the optimal design 
problem of a structure that is part of an infinite periodic 
arrangement of identical, unconnected components. The 
difficulty is to find an optimized structural lay-out such that 
neighbouring components do not intersect. Depending on 
the arrangement of design domains, this leads to reduced 
design freedom and often to less efficient designs.

We address this optimization problem by allowing for 
shared design domains among the components and guide 
the optimization process towards non-overlapping designs. 
This is accomplished by local non-overlap constraints. The 
large number of local constraints is effectively reduced to 
a small fraction by an appropriate aggregation technique. 
The method is applied to a series of 2D as well as a large-
scale 3D minimal compliance problems where the spac-
ing between the components is gradually reduced. Starting 
from an infeasible, uniform initial material distribution, we 
demonstrate that the proposed method converges towards 
optimized designs where overlapping regions have been 
removed entirely.

The results reflect a sort of competition for available 
space between neighbouring components. This can be seen 

Table 2  3D cantilever problem with translational periodicity: Dimen-
sions, loads, material properties, volume limit and numerical param-
eters

Parameter Symbol Value

Design domain width B 25.0
Design domain height H 17.0
Design domain depth D 4.0
Force magnitude F 1.0
Young’s modulus E

0
0.1

Poisson’s ratio � 0.3
Normalized material volume limit V/(BHD) 0.18
Number of nodes in x-direction n

x
101

Number of nodes in y-direction n
y

69
Number of nodes in z-direction n

z
17

Minimum pseudo-density �
min 10−8

Sensitivity filter radius r
min

√
3∕4

Penalty factor p 3
Aggregation parameter P 8
Maximum group size N−∕Ng 15 ⋅ 103
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from the topologies that, to some degree, border each other 
and establish a curvilinear dividing line that is optimal with 
respect to the design goal. The competition does not only 
depend on the extend of intersection of their design domains 
but also on whether important regions such as supports are 
affected. The results are in clear contrast to those typically 
expected from a similar optimization problem considering 
connected structural components. In such a case the opti-
mal topology incorporates members that enable mechani-
cal load transfer between the components, and thus looks 
fundamentally different. The more specific differences will 
depend on the particular kind of load interface connecting 
the components, though.

Future work should include the development of a con-
straint that explicitly considers more than two potentially 
overlapping components, even though sometimes this is not 
necessary to achieve feasible designs, as demonstrated in 
our first and second 2D example. Furthermore, the treat-
ment of interlocking, unseparable designs might warrant 
additional investigation. Another promising extension would 
be to generalize the mapping �(x) to other linear transforma-
tions like scaling or reflection. For testing and validation, the 
proposed method should be applied to the design of a real 
product in an industrial application context. Insights gained 
from an industrial case study would also help to identify 
potential needs for improvement and directions for further 
development.
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ments with all their nodal densities exceeding a threshold of � = 0.5 
are included
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Fig. 29  3D cantilever problem: Convergence of the compliance and 
the volume during design optimization

Fig. 30  3D cantilever problem: Evolution of the maximum among 
the aggregated non-overlap constraints g̃m compared to the actual 
maximum among the nodal non-overlap constraints gk . Note that the 
respective m and k may vary between iterations
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