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Abstract: We analyze the propagation of wave packets through general Hamiltonian
systems presenting codimension one eigenvalue crossings. The class of time-dependent
Hamiltoniansweconsider is of general pseudodifferential formwith subquadratic growth.
It comprises Schrödinger operators with matrix-valued potential, as they occur in quan-
tum molecular dynamics, but also covers matrix-valued models of solid state physics
describing the motion of electrons in a crystal. We calculate precisely the non-adiabatic
effects of the crossing in terms of a transition operator, whose action on coherent states
can be spelled out explicitly.

1. Introduction

We consider systems of N ≥ 2 equations of pseudodifferential form

iε∂tψ
ε = ̂H(t)ψε, ψε|t=t0 = ψε

0 , (1)

where (ψε
0 )ε>0 is a bounded family in L2(Rd ,CN ). The Hamiltonian operator

̂H(t) = H(t, x,−iε∇x )

is the semi-classical Weyl quantization of a time-dependent Hamiltonian

H : R× R
d × R

d → C
N×N , (t, x, ξ) �→ H(t, x, ξ),

that is a smooth matrix-valued function and satisfies suitable growth conditions guar-
anteeing a well-defined and unique solution of the system. We denote with a “̂·” the
semi-classical Weyl quantization, the definition of which is recalled in Sect. 2.1. Phase
space variables are denoted by z = (x, ξ) ∈ R

2d . The semi-classical parameter ε > 0
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is assumed to be small. The initial data are wave packets associated with one of the
eigenspaces of the Hamiltonian matrix. That is,

ψε
0 = ̂�V0 WPε

z0ϕ0, (2)

where �V0(z) is a normalized eigenvector of thematrix H(t0, z) such that �V0 : R2d → C
N

is a smooth vector-valued function, andWPε
z0ϕ0 denotes the wave packet transform of

a Schwartz function ϕ0 ∈ S(Rd ,C) for a phase space point z0 = (x0, ξ0) ∈ R
2d ,

WPε
z0ϕ0(x) = ε−d/4 eiξ0·(x−x0)/εϕ0

(

x−x0√
ε

)

. (3)

Such matrix systems arise from the analysis of scalar Schrödinger equations in an
adiabatic limit, where higher energy levels are not taken into account due to a positive
gap separating them from the part of the spectrum that corresponds to the eigenvalues
of the Hamiltonian matrix H(t, z), see [28,36] for example. Our aim is to describe the
structure of the N × N system’s solutions in the case, when eigenvalues of the matrix
H(t, z) coincide for some point (t, z) ∈ R×R

2d , while all eigenvalues and eigenvectors
retain their smoothness. The literature refers to them as codimension one crossings. In
the presence of eigenvalue crossings the key assumption for space-adiabatic theory (the
existence of a positive gap between eigenvalues) is violated, and the knowledge of the
dynamics associated with one of the eigenvalues is not enough any more. Moreover, in
addition to the necessity to include more than one eigenvalue for an effective dynamical
description, also the non-adiabatic transitions between the coupled eigenspaces have to
be properly resolved. These questions have already been addressed for special systems
corresponding to the following physical settings: In his monograph [13, Chapter 5],
G. Hagedorn investigated Schrödinger Hamiltonians with matrix-valued potential,

̂HS = −ε
2

2
�x ICN + V (x), V ∈ C∞(Rd ,CN×N ). (4)

More recently, in [39], A. Watson andM.Weinstein studied models arising in solid state
physics in the context of Bloch band decompositions,

̂HA = A(−iε∇x ) +W (x)IC2 , A ∈ C∞(Rd ,CN×N ), W ∈ C∞(Rd ,C). (5)

In both settings, the eigenvalues of the matrices V (x), x ∈ R
d , respectively A(ξ),

ξ ∈ R
d , have a codimension one crossing of their eigenvalues.

We develop here a new analytical method which applies for general matrix-valued
Hamiltonians with a codimension one crossings of eigenvalues, which might also have
multiplicity larger than one. In particular, we give a general and unified computation of
the transfer operator which describes the non-adiabatic interactions due to the crossing.
The non-adiabatic transition formulae of Corollary 3.9 are explicit and derived in a
self-contained and more accessible way than the previous ones in the literature. Due
to their explicit form, they can directly be applied to numerical simulations based on
thawed Gaussians that are currently investigated in chemical physics, see for example
[2,24,25,37] or the recent review [38].

As another byproduct of our method, we also obtain an effortless generalization of
the semi-classical Herman–Kluk approximation to the case of systems with eigenvalue
gaps (see Corollary 3.5 below). We expect that a refinement of the present error analysis
is possible, such that our codimension one result can be extended to the Herman–Kluk
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framework as well. This is work in progress, which might also contribute to the algorith-
mical development of superpositions of surface-hopping approximations using frozen
(or thawed) Gaussian wave packets in the spirit of [40], see also [21].

We assume that the matrix H(t, z) has a smooth eigenvalue h1(t, z), the eigenspace
of which admits a smooth eigenprojector �1(t, z), that is,

H(t, z)�1(t, z) = �1(t, z)H(t, z) = h1(t, z)�1(t, z).

We shall consider two situations, depending on whether the eigenvalue h1(t, z) crosses
another smooth eigenvalue h2(t, z) or not. Because we assume the Hamiltonian matrix
H(t, z) to be independent of ε, then, in the gap situation, the eigenvalue h1(t, z) is
separated from h2(t, z) by a gap larger than some fixed positive real number δ0 > 0 that
is of order one with respect to the semi-classical parameter ε. In the second case, the
smooth crossing case, both eigenvalues are smooth and have smooth eigenprojectors.
Note that it is not the case in general since eigenvalues may develop singularities at
the crossing; however, we do not consider those situations here. We shall also assume
that H(t, z) has no other eigenvalues since one can reduce to that case as soon as the
set of these two eigenvalues is separated from the remainder of the spectrum of the
matrix H(t, z) by a gap (uniformly in t and z).

The gap situation is well understood and corresponds to adiabatic situations that have
been studied by several authors (see in particular the lecture notes [36] of S. Teufel or the
memoirs [28] ofA.Martinez andV. Sordoni and note that the thesis [3] is devoted towave
packets in the adiabatic situation). For avoided crossings, the coupling of the gap and
the semi-classical parameter violates the key requirement for adiabatic decoupling. The
resulting non-adiabatic dynamics have been studied for wave packets by G. Hagedorn
and A. Joye in [14,15] and for the Wigner function of general initial data in [22].
Smooth crossings have been less studied so far. Some results on the subject focus on
the evolution at leading order in ε of quadratic quantities of the wave function for initial
data which are not necessarily wave packets (see [9,20] and the references therein). The
main results devoted to wave packet propagation through smooth eigenvalue crossings
are the references [13] and [39] mentioned above. There, for the specific Hamiltonian
operators (4) and (5), respectively, the authors gave rather explicit descriptions of the
propagated wave packet, exhibiting non-adiabatic transitions that occur at the crossing
between the two eigenvalues that are of order

√
ε. As in these contributions, we assume

that the crossing set

ϒ = {(t, z) ∈ R
2d+1, h1(t, z) = h2(t, z)} (6)

of two smooth eigenvalues h1(t, z) and h2(t, z) is a codimension one manifold.
Our main result (Theorem 3.8 below) makes the following assumptions for the initial

data ψε
0 . Let v

ε
0 be a wave packet centered in a phase space point z0, that is,

vε0 =WPε
z0ϕ0 for some ϕ0 ∈ S(Rd ,C).

Let �V0(z) be a smooth normalized eigenvector of H(t0, z), that is, �V0 ∈ C∞(R2d ,CN )

is a smooth vector-valued function that satisfies in a neighborhood U of z0,

H(t0, z) �V0(z) = h1(t0, z) �V0(z) for all z ∈ U.

Then, we define the initial wave packet according to (2). Let z1(t) denote the classical
trajectory associated with the eigenvalue h1(t, z) initiated in wave packet’s core z0. Let
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t� > t0 be the first time, when the trajectory z1(t) meets the crossing set ϒ , and let
z2(t) denote the classical trajectory associated with the second eigenvalue h2(t, z), that
is initiated in the crossing point z1(t�). That is,

ż1(t) = J∂zh1(t, z1(t)), z1(t0) = z0,

ż2(t) = J∂zh2(t, z2(t)), z2(t
�) = z1(t

�).

Then, the solution of system (1) satisfies

ψε(t) = �̂V1(t)WPε
z1(t)

(ϕ01(t) +
√
εϕ11(t)) +

√
ε1t>t�

�̂V2(t)WPε
z2(t)

ϕ2(t) + o(
√
ε),

where the profiles of the wave packets

WPε
z1(t)

(ϕ01(t) +
√
εϕ11(t)) and WPε

z2(t)
ϕ2(t)

are Schwartz functions ϕ01(t), ϕ
1
1(t), and ϕ2(t), that solve ε-independent PDEs on [t0, t�]

and [t�, t0 + T ], respectively, that are explicitly given in terms of the classical dynamics
associated with the eigenvalues h1(t, z) and h2(t, z). The profile associated with the
second eigenvalue is generated by the leading order profile of the first eigenvalue via

ϕ2(t
�) = T �ϕ01(t

�),

where the non-adiabatic transfer operator T � is a metaplectic transform (which implies
that the structure of Gaussian states is preserved, see Corollary 3.9). The two fami-
lies �V1(t, z) and �V2(t, z) are smooth normalized eigenvectors for h1(t, z) and h2(t, z),
respectively, that are obtained by parallel transport.

We point out that, in the uniform gap case, an initial datum that is associated with
one eigenvalue issues a solution at time t that is associated with the same eigenvalue up
to terms of order ε, which is the standard order of the adiabatic approximation, while for
smooth crossings a perturbative term of order

√
ε associated with the other eigenvalue

has to be taken into account for an order ε approximation.
Before giving a more precise statement of the result, we mention that the propagation

of wave packets was also studied for nonlinear systems in [6,7,16,17], including situ-
ations with avoided crossings [16]. However, nonlinear systems with codimension one
crossings have not yet been analysed. We expect that our result can be extended when
imposing appropriate assumptions on the nonlinearity.

2. Preliminary Results

In this section, we introduce the relevant function spaces for the unitary propagation and
also recall some known results on wave packets for scalar evolution equations.

2.1. Function spaces and quantization. Let a ∈ C∞(R2d) be a smooth scalar-, vector-
or matrix-valued function with adequate control on the growth of derivatives. Then, the
Weyl operator â = opwε (a) is defined by

opwε (a) f (x) := â f (x) := (2πε)−d
∫

R2d
a
( x + y

2
, ξ
)

eiξ ·(x−y)/ε f (y) dy dξ
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for all f ∈ S(Rd). According to [29], the unitary propagator Uε
H (t, t0) associated with

the Hamiltonian operator ̂H(t),

iε ∂t Uε
H (t, t0) = ̂H(t)Uε

H (t, t0), Uε
H (t0, t0) = IL2(Rd ),

is well defined when the map (t, z) �→ H(t, z) is in C∞(R × R
2d ,CN×N ), valued in

the set of self-adjoint matrices and that it has subquadratic growth, i.e.

∀α ∈ N
2d , |α| ≥ 2, ∃Cα > 0, sup

(t,z)∈R×R2d
‖∂αz H(t, z)‖CN×N ≤ Cα. (7)

These assumptions guarantee the existence of solutions to equation (1) in L2(Rd ,CN )

and, more generally, in the functional spaces

�k
ε (R

d) = { f ∈ L2(Rd), ∀α, β ∈ N
d , |α| + |β| ≤ k, xα(ε∂x )

β f ∈ L2(Rd)}
endowed with the norm

‖ f ‖�k
ε
= sup
|α|+|β|≤k

‖xα(ε∂x )β f ‖L2 .

We note that also with respect to the�k
ε (R

d) spaces, the unitary propagator Uε
H (t, t0) is

ε-uniformly-bounded in the sense, that for all T > 0 there exists C > 0 such that

sup
t∈[t0,t0+T ]

‖Uε
H (t, t0)‖L(�k

ε )
≤ C.

Remark 2.1. The analysis below could apply to more general settings as long as the
classical quantities are well-defined in finite time with some technical improvements
that are not discussed here.

2.2. Scalar propagation and scalar classical quantities. The most interesting property
of the coherent states is the stability of their structure through evolution, which can be
described by means of classical quantities. Note that for all z ∈ R

2d and k ∈ N, the
operator ϕ �→WPε

zϕ is a unitary map in L2(Rd) which maps continuously�1
k into�

ε
k

with a continuous inverse. Other elementary properties of the wave packet transform are
listed in Lemma A.1. We shall use the notation

J =
(

0 IRd

−IRd 0

)

. (8)

For smooth functions f, g ∈ C∞(R2d), that might be scalar-, vector- or matrix-valued,
we denote the Poisson bracket by

{ f, g} := J∇ f · ∇g =
d
∑

j=1

(

∂ξ j f ∂x j g − ∂x j f ∂ξ j g
)

.

Let h : R × R
2d → R, (t, z) �→ h(t, z) be a smooth function of subquadratic

growth(7).We now review the main tools for the semi-classical propagation of wave-
packets. We let z(t) = (q(t), p(t)) denote the classical Hamiltonian trajectory issued
from a phase space point z0 at time t0, that is defined by the ordinary differential equation

ż(t) = J∂zh(t, z(t)), z(t0) = z0.



1700 Clotilde Fermanian-Kammerer, Caroline Lasser, and Didier Robert

The trajectory z(t) = z(t, t0, z0) depends on the initial datum and defines via�t,t0
h (z0) =

z(t, t0, z0) the associated flow map z �→ �
t,t0
h (z) of the Hamiltonian function h. We will

also use the trajectory’s action integral

S(t, t0, z0) =
∫ t

t0
(p(s) · q̇(s)− h(s, z(s))) ds, (9)

and the Jacobian matrix of the flow map

F(t, t0, z0) = ∂z�
t,t0
h (z0).

Note that F(t, t0, z0) is a symplectic 2d × 2d matrix, that satisfies the linearized flow
equation

∂t F(t, t0, z0) = JHesszh(t, z(t)) F(t, t0, z0), F(t0, t0, z0) = IR2d . (10)

We denote its blocks by

F(t, t0, z0) =
(

A(t, t0, z0) B(t, t0, z0)
C(t, t0, z0) D(t, t0, z0)

)

. (11)

In a last step, we define the corresponding unitary evolution operator, the metaplectic
transformation, that acts on square integrable functions in L2(Rd).

Definition 2.2. (Metaplectic transformation) Let h : R×R
2d → R be a smooth function

of subquadratic growth (7). Let t, t0 ∈ R and z0 ∈ R
2d . Let F(t, t0, z0) be the solution of

the linearized flow equation (10) associated with the Hamiltonian function h(t). Then,
we call the unitary operator

M[F(t, t0, z0)] : ϕ0 �→ ϕ(t)

that associates with an initial datum ϕ0 the solution at time t of the Cauchy problem

i∂tϕ = opw1 (Hesszh(t, z(t))z · z)ϕ, ϕ(t0) = ϕ0,

the metaplectic transformation associated with the matrix F(t, t0, z0).

Using these three ε-independent building blocks – the classical trajectories, the action
integrals, and the metaplectic transformations associated with the linearized flow map –
we can approximate the action of the unitary propagator

iε∂t Uε
h (t, t0) = opwε (h(t))Uε

h (t, t0), Uε
h (t0, t0) = IL2(Rd )

on wave packets as follows.

Proposition 2.3. [8, §4.3] Consider a smooth scalar Hamiltonian h(t) of subquadratic
growth (7). Let T > 0, k ≥ 0, z0 ∈ R

2d , and ϕ0 ∈ S(Rd). Then, there exists a positive
constant C > 0 such that

sup
t∈[t0,t0+T ]

∥

∥

∥Uε
h (t, t0)WPε

z0ϕ0 − e
i
ε
S(t,t0,z0)WPε

z(t)ϕ
ε(t)
∥

∥

∥

�k
ε

≤ Cε,

where the profile function ϕε(t) is given by

ϕε(t) =M[F(t, t0, z0)]
(

1 +
√
ε b1(t, t0, z0)

)

ϕ0, (12)
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and the correction function b1(t, t0, z0) satisfies

b1(t, t0, z0)ϕ0 =
∑

|α|=3

1

α!
1

i

∫ t

t0
∂αz h(s, z(s)) op

w
1 [(F(s, t0, z0)z)α]ϕ0 ds. (13)

The constant C = C(T, k, z0, ϕ0) > 0 is independent of ε but depends on derivative
bounds of the flow map �t,t0

h (z0) for t ∈ [t0, t0 + T ] and the �k+3
1 -norm of the initial

profile ϕ0.

Let us discuss the especially interesting case of initialGaussian states.Gaussian states
are wave packets with complex-valued Gaussian profiles, whose covariance matrix is
taken in the Siegel half-spaceS+(d) of d × d complex-valued symmetric matrices with
positive imaginary part,

S+(d) =
{

� ∈ C
d×d , � = �τ , Im� > 0

}

.

With � ∈ S+(d) we associate the Gaussian profile

g�(x) := c� e
i
2�x ·x , x ∈ R

d , (14)

where c� = π−d/4det1/4(Im�) is a normalization constant in L2(Rd). It is a non-
zero complex number whose argument is determined by continuity according to the
working environment. By Proposition 2.3, the Gaussian states remain Gaussian under
the evolution by Uε

h (t, t0). Indeed, for �0 ∈ S+(d), we have

M[F(t, t0, z0)]g�0 = g�(t,t0,z0),

where the width �(t, t0, z0) ∈ S+(d) and the corresponding normalization c�(t,t0,z0) are
determined by the initial width �0 and the Jacobian F(t, t0, z0) according to

�(t, t0, z0) = (C(t, t0, z0) + D(t, t0, z0)�0)(A(t, t0, z0) + B(t, t0, z0)�0)
−1

c�(t,t0,z0) = c�0 det
−1/2(A(t, t0, z0) + B(t, t0, z0)�0). (15)

The branch of the square root in det−1/2 is determined by continuity in time.
The semiclassical wave packets used by G. Hagedorn in [11,12] are Gaussian wave

packets, which are multiplied with a specifically chosen complex-valued polynomial
function, that depends on theGaussian’s widthmatrix. If A ∈ C∞(R2d ,C) is an arbitrary
polynomial function, then opw1 (A)g

�0 is the product of a polynomial times a Gaussian,
and we can again describe the action of the metaplectic transformation explictly. Indeed,
by Egorov’s theorem (which is exact here),

M[F(t, t0, z0)](opw1 (A)g�0) = opw1 (A ◦ F(t, t0, z0))M[F(t, t0, z0)]g�0

= opw1 (A ◦ F(t, t0, z0))g�(t,t0,z0).
In particular, functions that are polynomials times a Gaussian remain of the same form
under the evolution, even the polynomial degree is preserved.

3. Precise Statement of the Results

We now present our main results, that extend the previous theory of wave packet propa-
gation for scalar evolution equations to systems associated with Hamiltonians that have
smooth eigenvalues and eigenprojectors.
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3.1. Vector-valued wave packets and parallel transport. We consider initial data that
are vector-valued wave packets associated with a normalized eigenvector of the Hamil-
tonian matrix H(t0, z) as given in (2). The evolution of such a function also requires
an appropriate evolution of its vector part, which we refer to as parallel transport. The
following construction generalizes [6, Proposition 1.9], which was inspired by the work
of G. Hagedorn, see [13, Proposition 3.1]. Let us denote the complementary orthogonal
projector by �⊥(t, z) = ICN −�(t, z) and assume that

H(t, z) = h(t, z)�(t, z) + h⊥(t, z)�⊥(t, z) (16)

with the second eigenvalue given by h⊥(t, z) = tr(H(t, z))−h(t, z). The situation with
more than two eigenvalues of constant multiplicity is a generalization of this case and
can be treated similarly.

We introduce the auxiliary matrices

�(t, z) = − 1
2

(

h(t, z)− h⊥(t, z)
)

�(t, z){�,�}(t, z)�(t, z), (17)

K (t, z) = �⊥(t, z) (∂t�(t, z) + {h,�}(t, z))�(t, z), (18)

�(t, z) = i�(t, z) + i(K − K ∗)(t, z), (19)

that are smooth and satisfy algebraic properties detailed in Lemma B.1 below. In par-
ticular, � is skew-symmetric and � is self-adjoint, � = −�∗ and � = �∗. We note,
that for the Schrödinger and the Bloch Hamiltonian,

HS(z) = 1
2 |ξ |2 ICN + V (x) and HA(z) =

(

0 ξ1 + iξ2
ξ1 − iξ2 0

)

+W (x)IC2 ,

the skew-symmetric �-matrix vanishes, that is, �S = 0 and �A = 0. For Dirac Hamil-
tonians with electromagnetic potential or Hamiltonians that describe acoustic waves in
elastic media, the �-matrix need not vanish.

Proposition 3.1. Let H(t, z) be a smooth Hamiltonian with values in the set of self-
adjoint N × N matrices that is of subquadratic growth (7) and has a smooth spectral
decomposition (16).We assume that both eigenvalues are of subquadratic growth aswell.
We consider �V0 ∈ C∞0 (R2d ,CN ) and z0 ∈ R

2d such that there exists a neighborhood U
of z0 such that for all z ∈ U

�V0(z) = �(t0, z) �V0(z) and ‖ �V0(z)‖CN = 1.

Then, there exists a smooth normalized vector-valued function �V (t, t0) satisfying
�V (t, t0, z) = �(t, z) �V (t, t0, z) for all z ∈ �t,t0

h (U ),

such that for all t ∈ R and z ∈ �t,t0
h (U ),

∂t �V (t, t0, z) + {h, �V }(t, t0, z) = −i�(t, z) �V (t, t0, z), �V (t0, t0, z) = �V0(z). (20)

Proposition 3.1 is proved in Appendix C. Note that it does not require any gap
condition for the eigenvalues. We will use it in the crossing situation, with smooth
eigenvalues and eigenprojectors.

The parallel transport is enough to describe at leading order the propagation of wave-
packets associated with an eigenvalue h(t, z) of the matrix H(t, z), that is uniformly
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separated from the remainder of the spectrum in the sense that there exists δ > 0 such
that for all (t, z) ∈ R× R

2d ,

dist (h(t, z), σ (H(t, z)) \ {h(t, z)}) > δ. (21)

Note that, this gap assumption implies the existence of aCauchy contourC in the complex
plane, such that its interior only contains the eigenvalue h(t, z) and no other eigenvalues
of H(t, z). Then, one can write the eigenprojector as �(t, z) = − 1

2π i

∮

C(H(t, z) −
ζ )−1dζ,which implies that the projector�(t, z) inherits the smoothness properties of the
Hamiltonian H(t, z) in the presence of an eigenvalue gap. However, if the symbol� is of
course ofmatrix norm1, its derivativesmay grow as |z| goes to infinity andwe shallmake
assumption below (see (23)) in order to guarantee that this growth is at most polynomial.
Since the pioneering work of T. Kato [23], numerous studies have been devoted to this
adiabatic situation (see for example [28,30,31,36] and references therein). One can
derive from these results the following statement of adiabatic decoupling.

Theorem 3.2. [6,28,36] Let H(t, z) be a smooth Hamiltonian with values in the set of
self-adjoint N×N matrices and h(t, z) a smooth eigenvalue of H(t, z). Assume that both
H(t, z) and h(t, z) are of subquadratic growth (7) and that there exists an eigenvalue
gap as in Assumption (21). Consider initial data (ψε

0 )ε>0 that are wave packets as in (2).
Then, for all T > 0, there exists C > 0 such that ψε(t) = Uε

H (t, t0)ψ
ε
0 satisfies the

estimate

sup
t∈[t0,t0+T ]

(

∥

∥

∥�̂⊥(t)ψε(t)
∥

∥

∥

L2(Rd )
+

∥

∥

∥

∥

ψε(t)− �̂V (t)vε(t)
∥

∥

∥

∥

L2(Rd )

)

≤ Cε

where vε(t) = Uε
h (t, t0)v

ε
0 and �V (t) is determined by Proposition 3.1. Besides, if there

exists k ∈ N such that (ψε
0 )ε>0 is a bounded family in the space�k

ε , then the convergence
above holds in �k

ε .

Theorem 3.2 is obtained as an intermediate result in the proof of Proposition 4.1,
see Sect. 4 below. There, we perform a refined analysis of the adiabatic approximation
that explicitly accounts for the size of the eigenvalue gap. We note that the estimate of
Theorem 3.2 is unchanged, when allowing for perturbations of the initial data that are
of order ε in L2(Rd) or�k

ε , respectively. We also note, that in general the operator ̂�(t)
is not a projector, but coincides at order ε with the superadiabatic operators constructed
in [28,36], which are projectors (see also Appendix B).

Remark 3.3. The result of Theorem 3.2 can be generalized by means of superadiabatic
projectors, showing that ψε(t) can be approximated at any order by an asymptotic
sum of wave packets. The precise time evolution of coherent states was studied in the
adiabatic setting in [3,28,32]. These results are obtained via an asymptotic quantum
diagonalization, in the spirit of the construction of the superadiabatic projectors of [28,
36].

Theorem 3.2 allows a semi-classical description of the dynamics of an initial wave
packet, that is associated with a gapped eigenvalue. The building blocks are the scalar
classical quantities introduced in Sect. 2.2 and the parallel transport of eigenvectors given
in Proposition 3.1. This is stated in the next Corollary; our aim is to derive a similar
description for systems presenting a codimension one crossing.
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Corollary 3.4. (Adiabatic wave packet) In the situation of Theorem 3.2, for any T > 0,
k ∈ N, z0 ∈ R

2d , and ϕ0 ∈ S(Rd ,C), there exists a constant C > 0 such

sup
t∈[t0,t0+T ]

∥

∥

∥

∥

Uε
H (t, t0)

̂�V0 WPε
z0ϕ0 − ei S(t,t0,z0)/ε �̂V (t, t0)WPε

�
t,t0
h (z0)

ϕε(t)

∥

∥

∥

∥

�k
ε

≤ Cε,

where the profile ϕε(t) is given by (12), and all the classical quantities are associated
with the eigenvalue h(t).

We close this section devoted to gapped systems by formulating another semi-
classical consequence of adiabatic theory using the Herman–Kluk propagator. This
approximate propagator has first been proposed by M. Herman and E. Kluk in [18] for
scalar Schrödinger equations and later used as a numerical method for quantum dy-
namics in the semi-classical regime, see for example [26] or more recently [5,27] with
references therein. The rigorous mathematical analysis of the Herman–Kluk propagator
is due to [33,35]. The starting point of this approximation is the wave packet inversion
formula

ψ(x) = (2πε)−d
∫

z∈R2d
〈gεz , ψ〉gεz (x)dz

that allows to write any square integrable function ψ ∈ L2(Rd) as a continuous super-
position of Gaussian wave packets of unit width,

gεz (x) = WPε
z(g

iI)(x) = (πε)−d/4e−|x−q|2/(2ε)+i p·(x−q)/ε.

The semi-classical description of unitary quantum dynamics within the framework of
Gaussians of fixed unit width becomes possible due to a reweighting factor, the so-called
Herman–Kluk prefactor,

ah(t, t0, z) = 2−d/2 det1/2 (A(t, t0, z) + D(t, t0, z) + i(C(t, t0, z)− B(t, t0, z))) ,

which is solely determined by the blocks of the Jacobian matrix of the classical flow
map. The resulting propagator

ψ �→ Iεh(t, t0)ψ = (2πε)−d
∫

R2d
〈gεz , ψ〉ah(t, t0, z)ei S(t,t0,z)/εgε�t,t0

h (z)
dz

provides an order ε approximation to the scalar unitary propagator Uε
h (t, t0) in operator

norm. Combining [35, Proposition 2 and Theorem 2] or [33, Theorem 1.2] with our
previous results we obtain a Herman–Kluk approximation for gapped systems.

Corollary 3.5. (AdiabaticHerman–Kluk approximation) In the situationof Theorem3.2,
for all T > 0 there exists a constant C = C(T ) > 0 such that

sup
t∈[t0,t0+T ]

∥

∥Uε
H (t, t0)ψ

ε
0 − IεH (t, t0)ψε

0

∥

∥

L2(Rd )
≤ Cε,

where the vector-valued Herman–Kluk propagator is defined by

IεH (t, t0)ψε
0 = (2πε)−d

∫

R2d
〈gεz , vε0〉Z(t, t0, z)ei S(t,t0,z)/εgε�t,t0

h (z)
dz.

The prefactorZ(t, t0, z) is given byZ(t, t0, z) = �V (t, t0, z)ah(t, t0, z), where ah(t, t0, z) is
the Herman–Kluk prefactor associated with the eigenvalue h(t).
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Theorem3.2 formulates adiabatic decoupling for a single eigenvalue that is uniformly
separated from the remainder of the spectrum. As it is well-known, adiabatic theory also
extends to the situation where a subset of eigenvalues is isolated from the remainder of
the spectrum. For this reason, in the next section, we reduce our analysis to the case of
matrices with two eigenvalues that coincide on a hypersurface ϒ of codimension one
and differ away from it. We explicitly describe the dynamics of wave packets through
this type of crossings, which is our main result.

3.2. Main result: propagation of wave packets through codimension one crossings. We
assume that H(t, z) has two smooth eigenvalues h1 and h2 that cross on a hypersurfaceϒ
and we write the Hamiltonian matrix H(t, z) as

H(t, z) = v(t, z)ICN + H0(t, z), v(t, z) = 1

2
(h1(t, z) + h2(t, z)) (22)

where v(t, z) is a real number and H0(t, z) a self-adjoint N × N matrix, that is trace-
free if N = 2. Such a situation is called a codimension one crossing (see Hagedorn’s
classification [13] for example). Let us formulate our assumptions on the crossing set
more precisely.

Assumption 3.6. (Codimension one crossing) Let H : R
2d+1 → C

N×N be a smooth
function with values in the set of self-adjoint N × N matrices that is of subquadratic
growth (7). We assume:
Growth assumptions.

a) The matrix H(t, z) has two smooth eigenvalues h1(t, z) and h2(t, z) that are of
subquadratic growth (7).

b) These eigenvalues satisfy a polynomial gap condition at infinity, in the sense that
there exist constants c0, n0, r0 > 0 such that

|h1(t, z)− h2(t, z)| ≥ c0〈z〉−n0 for all (t, z) with |z| ≥ r0, (23)

where we denote 〈z〉 = (1 + |z|2)1/2.
Crossing assumptions.

c) These eigenvalues cross on a hypersurface ϒ of R
2d+1 and differ outside of ϒ .

d) The crossing is non-degenerate in a fixed point (t�, z�) ∈ ϒ in the sense, that the
matrix H0(t, z) defined by the decomposition (22) satisfies

dt,z H0(t
�, z�) �= 0.

e) The crossing is transverse in (t�, z�) ∈ ϒ in the sense that for any smooth function f
such that f = 0 is a local equation of ϒ close to (t�, z�), then the scalar function
(t, z) �→ v(t, z) defined by the decomposition (22) satisfies

(∂t f + {v, f })(t�, z�) �= 0. (24)

Example 3.7. Take N = 2,v, f ∈ C∞(R2d+1,R) andu ∈ C∞(R2d+1,R3)with |u(t, z)| =
1 for all (t, z). Consider the Hamiltonian

H(t, z) = v(t, z)Id + f (t, z)

(

u1(t, z) u2(t, z) + iu3(t, z)
u2(t, z)− iu3(t, z) −u1(t, z)

)

.

The smooth eigenvalues of H , h1 = v+ f and h2 = v− f , cross on the setϒ = { f = 0},
and H satisfies Assumption 3.6 as soon as the conditions (24) and (23) hold.
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Assuming (d) and considering an equation f = 0 ofϒ in a neighborhood�of (t�, z�),
we deduce from H0 = 0 on ϒ that we have H0 = f H̃0 for some smooth matrix-valued
map (t, z) �→ H̃0(t, z) defined on �. Besides, the matrix H̃0(t, z) is invertible and its
spectrum consists of two opposite distinct eigenvalues of constant multiplicity. We can
then choose the function f = 1

2 (h1 − h2) as an equation of ϒ and the eigenvalues of
H̃0(t, z) are +1 and−1 in�. In particular, the smooth eigenvalues of the matrix H(t, z)
then satisfy

h j (t, z) = v(t, z)− (−1) j f (t, z), j ∈ {1, 2}, (25)

We shall choose f in that manner throughout the paper.
Note also that the condition (e) is satisfied as soon as it holds for one equation f = 0

of ϒ . Besides, by restricting � if necessary, one can assume that ∂tv + { f, v} �= 0 in �.
We will also use that condition (e) implies the transversality of the classical trajectories
to the crossing set ϒ .

The gap condition at infinity (b) ensures that the derivatives of the eigenprojectors
� j (t), j = 1, 2, grow at most polynomially, in the sense that for all β ∈ N

2d
0 there exists

a constant Cβ > 0 such that

‖∂βz � j (t, z)‖ ≤ Cβ〈z〉|β|(1+n0) for all (t, z) with |z| ≥ r0, (26)

see [6, Lemma B.2] for a proof of this estimate.
The growth condition (a) implies that the Hamiltonians h1 and h2 satisfy all the

conditions of Sect. 2.2 and we associate with each eigenvalue h j the classical quantities
introduced therein, that we index by j : �t,t0

j , S j (t, t0), Fj (t, t0), etc.
We consider initial data at time t = t0 as in (2), where the coherent state is associated

with the first eigenvalue h1 and centered in a phase space point z0 such that (t0, z0) /∈ ϒ ,
while z �→ �V0(z) is a smooth map with ‖ �V0(z)‖ = 1 for all z.

We assume that the Hamiltonian trajectory z1(t, t0, z0) = �
t,t0
1 (z0) reachesϒ at time

t = t� and point z = z�. We denote by S� the corresponding action

S� = S1(t
�, t0). (27)

We assume that (24) holds in t�, z�. Therefore, f (t, z) = 0 is a local equation of ϒ
in a neighborhood � of (t�, z�), and the assumption 3.6 implies

d

dt
f (t, z1(t, t0)) �= 0

close to (t�, z�), and guarantees that the trajectory z1(t, t0, z0) passes through ϒ . The
same holds for trajectories �t,t0

1 (z) starting from z close enough to z0.
We associate with �V0(z) the time-dependent eigenvector ( �V1(t, z))t≥t0 constructed

as in Proposition 3.1 for the eigenvalue h1(t, z) with initial data �V0(z) at time t0.
We set

γ (t�, z) = ‖ (∂t�2 + {v,�2}) �V1(t�, z)‖CN

and when γ (t�, z�) �= 0, we consider the time-dependent eigenvector ( �V2(t, z))t≥t�
constructed for t ≥ t� and z in a neighborhood of z� as in Proposition 3.1 for the
eigenvalue h2(t, z) and with initial data at time t�

�V2(t�, z) = −γ (t�, z)−1�2(∂t�2 + {v,�2}) �V1(t�, z). (28)
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Note that if γ (t�, z�) = 0, there will be no transitions of order
√
ε (see (31) below).

We introduce a family of transformations, which describes the non-adiabatic effects
for a wave packet that passes the crossing. For (μ, α, β) ∈ R×R

2d and ϕ ∈ S(Rd), we
set

Tμ,α,βϕ(y) =
(∫ +∞

−∞
eiμs

2
eis(β·y−α·Dy)ds

)

ϕ(y). (29)

By the Baker-Campbell-Hausdorff formula, we have

eisβ·ye−isα·Dy = eisβ·y−isα·Dy+is2α·β/2,

and we deduce the equivalent representation

Tμ,α,βϕ(y) =
∫ +∞

−∞
ei(μ−α·β/2)s2eisβ·yϕ(y − sα)ds. (30)

We prove in Proposition E.1 below that this operator maps S(Rd) into itself if and only
if μ �= 0. Moreover, for μ �= 0, it is a metaplectic transformation of the Hilbert space
L2(Rd), multiplied by a complex number. In particular, for any Gaussian function g� ,
the function Tμ,α,βg� is a Gaussian:

Tμ,α,β g� = cμ,α,β,� g�μ,α,β,� ,

where �μ,α,β,� ∈ S+(d) and cμ,α,β,� ∈ C are given in Proposition E.1.
Combining the parallel transport for the eigenvector and the metaplectic transforma-

tion for the non-adiabatic transitions, we obtain the following result.

Theorem 3.8. (Propagation through a codimension one crossing) Let Assumption 3.6 on
the Hamiltonian matrix H(t) hold, and assume that the initial data (ψε

0 )ε>0 are wave
packets as in (2). Let T > 0 be such that the interval [t0, t�] is strictly included in the
interval [t0, t0 + T ]. Then, for all k ∈ N there exists a constant C > 0 such that for all
t ∈ [t0, t�) ∪ (t�, t0 + T ] and for all ε ≤ [t − t�|9/2,

∥

∥

∥ψ
ε(t)− ̂�V 1(t)v

ε
1(t)−

√
ε1t>t�

̂�V 2(t)v
ε
2(t)
∥

∥

∥

�k
ε

≤ C εm,

with an exponent m ≥ 5/9. The components of the approximate solution are

vε1(t) = Uε
h1(t, t0)v

ε
0 and vε2(t) = Uε

h2(t, t
�)vε2(t

�)

with
vε2(t

�) = γ �ei S
�/εWPε

z�T
�ϕ1(t

�), (31)

where ϕ1(t) = M[Fh1(t, t0, z0)]ϕ0 is the leading order profile of the coherent state
vε1(t) given by Proposition 2.3, and

γ � = γ (t�, z�) = ‖ ({v,�2} + ∂t�2) �V1(t�, z�)‖CN . (32)

The transition operator
T � = Tμ�,α�,β� (33)

is defined by the parameters

μ� = 1
2 (∂t f + {v, f }) (t�, z�) and (α�, β�) = Jdz f (t

�, z�). (34)

The constant C = C(T, k, z0, ϕ0) > 0 is ε-independent but depends on the Hamiltonian
H(t, z), the final time T , and on the initial wave packet’s center z0 and profile ϕ0.
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Theorem 3.8 approximates the action of the unitary propagator Uε
H (t, t0) on the

initial wave packet ψε
0 by combining the two scalar evolutions Uε

h1
(t, t0) and Uε

h2
(t, t�)

with transitions of order
√
ε. The approximation error is of order εm with m ≥ 5/9.

In particular, if the transition coefficient γ � does not vanish, then the codimension one
crossing clear reduces the usual adiabatic approximation error of order ε that holds for
systems with positive eigenvalue gap.

Note that by Assumption 3.6, μ� �= 0, which guarantees that T �ϕ1(t�) is Schwartz
class. Besides, if the Hamiltonian is time-independent, then Assumption 3.6 also implies
that (α�, β�) �= (0, 0). The coefficient γ � quantitatively describes the distortion of the
projector �1 during its evolution along the flow generated by h1(t). In particular, we
have

γ � = ‖ ({v,�2} + ∂t�2) �V1(t�, z�)‖CN = ‖ ({v,�1} + ∂t�1) �V1(t�, z�)‖CN .

Moreover, if the matrix H is diagonal (or diagonalizes in a fixed orthonormal basis that
is (t, z)-independent), then γ � = 0: the equations are decoupled (or can be decoupled),
and one can then apply the result for a system of two independent equations with a scalar
Hamiltonian and, of course, there is no interaction between the modes. As an opposite
situation, γ � is non-zero in the simple examples (4) and (5) for which the eigenprojectors
of H are non constant.

The proof uses two types of arguments, one of them applying away from the crossing
set ϒ , and the other one in a boundary layer of ϒ . The boundary layer is taken of
size δ > 0, and we have to balance the two estimates: an error of order εδ−2 which
comes from the adiabatic propagation of wave packets outside the boundary layer, and
an additional error of order δε1/3 generated by the passage through the boundary. The
choice of δ = ε2/9 optimizes the combined estimate and yields convergence of order
εm with m ≥ 5/9. We also want to emphasize that the method of proof we propose
here allows to systematically avoid the impressive computations, which appear in [13]
pages 65 to 72, and are also present in [39] via the reference [46] to which the authors
refer therein.

The wave packet that makes the transition to the other eigenspace can be described
even more explicitly for the special case that the initial wave packet is a Gaussian state.
The following corollary is proved in Proposition E.1.

Corollary 3.9. (Transitions for Gaussian wave packets) We consider the situation of
Theorem 3.8 and in particular the transition operator T � defined by the parameters
μ� �= 0 and (α�, β�) ∈ R

2d .

(1) If vε0 =WPε
z0(g

�0) is a Gaussian state with width matrix �0 ∈ S+(d), then

vε2(t
�) = γ �

√

2iπ

μ�
ei S

�/ε WPε
z� (g

��)

with �� = �1(t
�, t0, z0)− (β� − �1(t�, t0, z0)α�)⊗ (β� − �1(t�, t0, z0)α�)

2μ� − α� · β� + α� · �1(t�, t0, z0)α�

and �1(t�, t0, z0) is the image of �0 by the flow map associated with h1(t, z) by (15).
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(2) If P ∈ C∞(R2d) is a polynomial function and vε0 =WPε
z0(op

w
1 (P)g

�0), then

vε2(t
�) = γ �

√

2iπ

μ�
ei S

�/ε WPε
z�

(

opw1 (P
�)g�

�
)

with P� = P ◦ �α�,β�((4μ
�)−1) where �α�,β�(t) is the symplectic 2d × 2d matrix

given by

�α�,β�(t) =
(

I− 2tβ� ⊗ α� 2tα� ⊗ α�,

−2tβ� ⊗ β� I + 2tα� ⊗ β�

)

. (35)

As a concluding remark of this section, we want to emphasize that our results indeed
generalize those of [13,39].

(1) In the Schrödinger example (4), denoting by EA(x) and EB(x) the two eigenvalues
of the potential matrix V (x) as in [13], one has

α
�
S = 0, β

�
S = ∇(EA − EB)(q

�), μ
�
S = p� · ∇(EA − EB)(q

�).

These coefficients appear in equation (5.3) of [13]. There, the initial states are Gaus-
sian wave packets that are multiplied with a polynomial function. Thus, the second
part of Corollary 3.9 reproduces these results.

(2) For the Bloch example (5), we obtain

α
�
A = ∇(E+ − E−)(p�), β

�
A = 0, μ

�
A = −

1

2
∇W (q�) · ∇(E+ − E−)(p�),

where E±(ξ) are the eigenvalues of A(ξ) as in equation (3.41) of [39]. The result of
[39, Theorem 3.20 (via Definition 3.18)] is therefore a special case of ours.

We notice, that for these special examples either one of the coefficients α� or β�

is 0. This need not be the case for more general Hamiltonians that have position and
momentum variables mixed in the matrix part of the Hamiltonian. Actually, for Dirac
Hamiltonians with electromagnetic potential (V, A), the function ξ − A(t, x) appears
in the coefficients of the matrix. Also for the propagation of acoustical waves in elastic
media the Hamiltonian is of the form ρ(x)ICN −�(x, ξ),where ρ(x) > 0 is the density
and �(x, ξ) the elastic tensor.

Remark 3.10. A straightforward extension of our result to the case of Hamiltonians of
the more general form ̂H + ε ̂H1 does not seem possible. A sub-principal operator ̂H1
contributes both to the adiabatic decoupling outside and the transition analysis inside
the crossing region. We believe that higher order asymptotic expansions with respect to
ε and the distance parameter δ, that will be introduced below, are needed to reveil the
effect of such a sub-principal contribution. We will comment on the possibility of such
higher order expansions alongside the proof.

3.3. Organization of the paper. The proof of Theorem 3.8 is decomposed into two
steps: an analysis outside the crossing region in Sect. 4 and an analysis in the crossing
region in Sect. 5, that allows to conclude the proof in Sect. 5.4, together with the one of
Corollary 3.9. Finally, we gather in four Appendices various results about wave packets,
algebraic properties of the projectors and parallel transport, analysis of the transfer
operators Tμ,α,β , and technical computations.
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4. Adiabatic Decoupling Outside the Crossing Region

In this section, we consider a family of solutions to equation (1) in the case where
the Hamiltonian H(t, z) satisfies Assumption 3.6 and with an initial datum which is
a coherent state as in (2). We focus here on regions where the classical trajectories
associated with the coherent state do not touch the crossing set ϒ but are close enough.
We prove the next adiabatic result.

Proposition 4.1. Let k ∈ N, δ = δ(ε) be such that
√
ε � δ ≤ 1. Let f (t, z) = 0 be an

equation of ϒ in an open set � ⊂ R× R
2d . Assume that for j ∈ {1, 2},

uεj =WPε
z̃ j (ϕ̃ j ),

where ϕ̃1, ϕ̃2 ∈ S(Rd), z̃1, z̃2 ∈ R
d are such that there exist s1, s2 ∈ R, c,C > 0 such

that for all j ∈ {1, 2} and t ∈ [s1, s2], z j (t) := �
t,s1
j (̃z j ) ∈ � with | f (z j (t))| > cδ and

∥

∥

∥

∥

ψε(s1)− �̂V1(s1)uε1 − �̂V2(s1)uε2
∥

∥

∥

∥

�k
ε

≤ Cε.

Then, there exists Ck > 0 such that for all j ∈ {1, 2},

sup
t∈[s1,s2]

∥

∥

∥

∥

̂� jψ
ε(t)− �̂Vj (t)Uε

h j
(t, s1)u

ε
j

∥

∥

∥

∥

�k
ε

≤ Ck ε δ
−2.

The constant Ck does not depend on δ and ε.

For fixed δ, that is independent of ε, this Proposition implies Theorem 3.8 for t ∈
[0, t�[. We shall choose later δ = ε1/3 for obtaining a global a priori estimate in Sect. 4.2
below. Finally with δ = ε2/9, we will prove Theorem 3.8 in Sect. 5.4 by using the
Proposition 4.1 for propagation times t ∈ [t0, t� − δ] and t ∈ [t� + δ, t0 + T ] with initial
data at times t = t0 and t = t� + δ respectively.

Remark 4.2. Pushing the construction of superadiabatic projectors of Appendix B, we
would obtain that ψε(t) can be approximated by an asymptotic sum of wave packets up
to order εN δ p(N ) for some p(N ) ≤ N to be computed precisely.

4.1. Proof of the adiabatic decoupling. We prove here Proposition 4.1.

Proof. Because of the linearity of the equation, it is enough to assume that the contribu-
tion ofψε(s1) on one of the modes is negligible at the initial time s1. The roles of the two
modes being symmetric, we can choose equivalently one or the other one. Therefore,

without loss of generality, we assume ψε(s1) = �̂V1(s1)uε1, and we focus on

ψε
1,app(t) := �̂V1(t)Uε

h1(t, s1)u
ε
1

Then, using the parallel transport equation (20) associated with the eigenvalue h1,

iε∂tψ
ε
1,app(t) =̂h1ψε

1,app(t) +

([

�̂V1(t),̂h1
]

+ iε∂t �̂V1(t)
)

Uε
h1(t, s1)u

ε
1

= (̂h1Id + ε̂�1)ψ
ε
1,app(t) + ε

2̂r(t)Uε
h1(t, s1)u

ε
1, (36)
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where the remainder r(t) depends on second order derivatives of h1 and �V1. Since uε1 is
a wave packet with a Schwartz function amplitude, we obtain

iε∂tψ
ε
1,app(t) = (̂h1Id + ε̂�1)ψ

ε
1,app(t) + O(ε2) (37)

in �k
ε for all k ∈ N.

We now use the superadiabatic correctors of�1 and�2 defined in Definition B.3 (see
also [28,36]) that we denote by P1 and P2, respectively, and the associated correctors
�1 and �2 of the Hamiltonian H . Since P1 and P2 are singular on ϒ , we use cut-off
functions that follow the flows arriving at time s2 in �

s2,s1
h1

(z̃1). We introduce two sets
of cut-off functions, one for each mode. Let I be an interval containing [s1, s2] and for
j ∈ {1, 2} let the cut-off functions χδj , χ̃ δj ∈ C(I, C∞0 (R2d)) satisfy as in Lemma B.5:

(1) For any t ∈ I and any z in the support of χδj (t) and χ̃
δ
j (t) we have | f (t, z)| > δ.

(2) The functions χδj and χ̃
δ
j are identically equal to 1 close to a trajectory �

t,s1
j (z̃1) for

all t ∈ I and they satisfy

∂tχ
δ
j +
{

h j , χ
δ
} = 0, ∂t χ̃

δ
j +
{

h j , χ̃
δ
j

}

= 0.

(3) The functions χ̃ δj are supported in {χδj = 1}.
(4) Finally, we require χδ1 (s2) = χδ2 (s2) and χ̃

δ
1 (s2) = χ̃ δ2 (s2).

We set for t ∈ [s1, s2]

wε
1(t) =̂χ̃ δ1 (̂χδ1�ε

1ψ
ε(t)− ψε

1,app(t)), wε
2(t) =̂χ̃ δ2̂χδ2�

ε
2ψ

ε(t),

where �ε
j (t, z) = � j (t, z) + εP j (t, z), ∀z ∈ R

2d \ϒ, t ∈ I, j ∈ {1, 2}.
Then, as a consequence of (37) and of Lemma B.5, we have for j ∈ {1, 2} and in �k

ε ,

iε∂tw
ε
j (t) = (ĥ j + ε̂� j )w

ε
j (t) + O(ε2δ−2).

For the initial data at time t = s1, we have in �k
ε ,

wε
1(s1) =̂χ̃ δ1

(

̂χδ1�
ε
1
̂�V1 − ̂�V1

)

uε1 = O(εδ−1), wε
2(s1) =̂χ̃ δ2 ̂χδ2�

ε
2
̂�V1uε1 = O(εδ−1).

We deduce that for any k ∈ N, j ∈ {1, 2} and t ∈ [s1, s2], we have in �k
ε , w

ε
j (t) =

O(εδ−2).When t = s2, we have

wε
1(s2) + w

ε
2(s2) =̂χ̃ δ1

(

opε(χ
δ
1 (�

ε
1 +�

ε
2))ψ

ε(s2)− ψε
1,app(s2)

)

=̂χ̃ δ1 (ψε(s2)− ψε
1,app(s2)) + O(εδ−1)

and thus ̂χ̃ δ1 (s2)ψ
ε(s2) =̂χ̃ δ1 (s2)ψε

1,app(s2) + O(εδ−2). Because of the localisation of

the wave packet ψε
1,app(s2), as stated in Remark A.2, we have in �k

ε for any N ∈ N,

̂χ̃ δ1 (s2)ψ
ε
1,app(s2) = ψε

1,app(s2) + O(εN/2δ−N ).
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Hence, choosing N = 2, we obtain

̂χ̃ δ1 (s2)ψ
ε(s2) = ψε

1,app(s2) + O(εδ−2),

and it only remains to study (1−̂χ̃ δ1 (s2))ψε(s2). Before that, some remarks are in order.
Note that the arguments developed above do not depend on the choice of s2 and could
have been developed for any s ∈ [s1, s2]. They are also independent of the choices of the
functions χδj and χ̃

δ
j as long as they satisfy the properties stated above. Therefore, we

have actually obtained a more general result, namely that for any function θ supported
in {| f | > δ} and equal to 1 close to �t,s1

1 (̃z1), we have for t ∈ [s1, s2],
̂θψε(t) = ̂θψε

1,app(t) + O(εδ−2). (38)

We can now study (1−̂χ̃ δ1 (s2))ψε(s2).We set for s ∈ [s1, s2],wε(s) = (1−̂χ̃ δ1 (s))ψε(s).
We have

iε∂sw
ε(s) = ̂H(s)wε(s)−

[

̂χ̃ δ1 (s), ̂H(s)
]

ψε(s)− iε ̂∂s χ̃
δ
1 (s)ψ

ε(s)

= ̂H(s)wε(s)− εr̂εδ (s)ψ
ε(s) + O(ε2δ−2)

where rεδ (s) depends linearly on dχ̃ δ1 (s), and thus is compactly supported close to the
trajectory�t,s1

1 (̃z1) and equal to 0 very close to it. Therefore, by (38) and Remark A.2,

ε r̂εδ (s)ψ
ε(s) = ε r̂εδ (s)ψ

ε
1,app(s) = O(εN/2+1δ−N−1)

for any N ∈ N. Choosing N = 1, we deduce wε(s2) = O(εδ−2). ��

4.2. A global a priori estimate. In this section, we prove the following a priori estimate.

Lemma 4.3. Let k ∈ N and T > 0 such that [t0, t�] is strictly included in [t0, t0 + T ].
Then there exists a constant Ck > 0 such that

sup
t∈[t0,t0+T ]

‖ψε(t)− ̂�V1(t)vε1(t)‖�k
ε
≤ Ck ε

1/3, (39)

where vε1(t) = Uε
h1
(t, t0)vε0 for all t ∈ [t0, t0 + T ].

In the next section, we shall improve this estimate to go beyond this approximation
and exhibits elements of order

√
ε. However, we shall use this a priori estimate, together

with elements developed in this section.

Proof. Of course, in view of the results of the preceding section, we choose δ > 0
and we focus on the time interval [t� − δ, t� + δ], taking into account that for times
t ∈ [t0, t� − δ], we have

‖ψε(t)− ̂�V1(t)vε1(t)‖�k
ε
≤ Ck εδ

−2

for some constant Ck > 0, and that for t ∈ [t� + δ, t0 + T ] we can use the same kind
of transport estimate since the trajectory does not meet again the crossing set. It is thus
enough to pass from t� − δ to t� + δ and analyze ψε(t� + δ). Between the times t� − δ

and t� + δ, we cannot use the super-adiabatic corrections to the projectors �1 and �2,
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because they become singular when the eigenvalue gap closes. We thus simply work
with the projectors �1 and �2. We define the families wε(t) = (wε

1(t), w
ε
2(t)) by

wε
1 = ̂�1ψ

ε − ̂�V1vε1, wε
2 = ̂�2ψ

ε. (40)

Sinceψε(t) and ̂�V1vε1(t) are in all spaces��
ε(R

d) for � ∈ N and t ∈ [t0, t0 +T ], the same
is true for wε

1(t) and w
ε
2(t). We now use our former observations, that is, the evolution

equation (36) for the approximate wave packet and the relation (53) of Appendix B,
which gives that wε(t) satisfies the following system:

{

iε∂twε
1 =̂h1wε

1 + iε f ε1 ,

iε∂twε
2 =̂h2wε

2 +
iε
2 B̂2�1

̂�V1v1 + iε f ε2

with

f ε1 = −î�1w
ε
1 +

1
2 B̂1�2w

ε
2 + εr

ε
1 and f ε2 = −î�2w

ε
2 +

1
2 B̂2�1w

ε
1 + εr

ε
2 . (41)

The matrices B1 and B2 are defined according to

Bj = −2∂t� j − {h j ,� j } + {� j , H}, j = 1, 2,

and the sequences (rε1 (t))ε>0 and (rε2 (t))ε>0 are uniformly bounded in �k
ε (R

d) due to
the polynomial growth estimate (26) for the eigenprojectors. We immediately deduce
that for all t ∈ [t0, t0 + T ],

wε
1(t) = Uε

h1(t, t
� − δ)wε

1(t
� − δ) +

∫ t

t�−δ
Uε
h1(t, σ ) f

ε
1 (σ )dσ,

wε
2(t) = Uε

h2(t, t
� − δ)wε

2(t
� − δ) +

∫ t

t�−δ
Uε
h2(t, σ ) f

ε
2 (σ )dσ

+
1

2

∫ t

t�−δ
Uε
h2(t, σ )B̂2�1

̂�V1(σ )vε1(σ )dσ. (42)

Therefore, in�k
ε (R

d), for all times t ∈ [t�−δ, t�+δ] and j ∈ {1, 2},wε
j (t) = O(εδ−2)+

O(δ). Choosing δ = ε1/3, we obtain (39). ��

5. Analysis in the Crossing Region

We now want to pass through the crossing and derive a more precise estimate on the
function ψε(t� + δ). We prove the following result.

Proposition 5.1. Assume
√
ε � δ � 1. Then, for all k ∈ N, there exists a constant

Ck > 0 such that
∥

∥

∥ψ
ε(t� + δ)− ̂�V1(t� + δ)vε1(t� + δ)−

√
ε
̂�V2(t� + δ)vε2(t� + δ)

∥

∥

∥

�k
ε

≤ Ck(εδ
−2 + ε1/3δ),

where vε1(t) = Uε
h1
(t, t0)vε0 and v

ε
2(t) = Uε

h2
(t, t�)vε2(t

�) are as in Theorem 3.8.
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Proof. We split the proof in several steps. In Lemma 5.2 we use the a priori estimate of
Lemma 4.3 to simplify the approximation of ψε(t� + δ) and exhibit the contribution of
order

√
ε according to

ψε(t� + δ) = ̂�V1(t� + δ)vε1(t� + δ) + ei S
�/ε Uε

h2(t
� + δ, t�) Aε + O(εδ−2) + O(ε1/3δ).

Then, we carefully analyze the contribution Aε and construct a preliminary transfer
operator T ε satisfying

Aε =WPε
z�T

εϕ1(t
�) + O(

√
εδ),

see Lemma 5.3. As the third step, Lemma 5.5 establishes the relation to the transfer
operator T � according to

T ε = √εQε(0)T � + O(
√
εδ) + O(εδ−1)

withQε(0) = opw1 ((γ �V2)(t�, z� +
√
ε•)). The wave packet relation (50) in combination

with symbolic calculus implies for all ϕ ∈ S(Rd) that

WPε
z�Q

ε(0)ϕ =̂
γ �V2(t�)WPε

z�ϕ

= ̂�V2(t�)γ̂ (t�)WPε
z�ϕ + O(ε) = ̂�V2(t�)γ �WPε

z�ϕ + O(
√
ε).

Hence, we have proven that

ei S
�/ε Uε

h2(t
� + δ, t�) Aε

= √ε γ � ei S�/ε Uε
h2(t

� + δ, t�)̂�V2(t�)WPε
z�T

�ϕ1(t
�) + O(εδ−2) + O(ε1/3δ)

= √ε Uε
h2(t

� + δ, t�) ̂�V2(t�)vε2(t�) + O(εδ−2) + O(ε1/3δ).

It remains to analyze the function ω(t) = �V2(t)Uε
h2
(t, t�) − Uε

h2
(t, t�) �V2(t�). An anal-

ogous calculation to the one at the beginning of the proof of Proposition 4.1 yields
that

iε∂tω =̂h2ω + O(ε).

Since ω(t�) = 0, the Duhamel principle implies that ω(t� + δ) = O(δ) and

ei S
�/ε Uε

h2(t
� + δ, t�) Aε = √ε ̂�V2(t� + δ)Uε

h2(t
� + δ, t�) vε2(t

�) + O(εδ−2) + O(ε1/3δ).

��
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5.1. Using the a priori estimate. We start describing the part of the wave packet that
has been transferred at the crossing and identify its main contribution.

Lemma 5.2. Let k ∈ N. With the assumptions of Proposition 5.1, we have in �k
ε (R

d),

ψε(t� + δ) = ̂�V1(t� + δ)vε1(t� + δ) + ei S
�/ε Uε

h2(t
� + δ, t�) Aε + O(εδ−2) + O(ε1/3δ)

with Aε =
∫ t�+δ

t�−δ
Uε
h2(t

�, σ )
̂
γ �V2(σ )Uε

h1(σ, t
�)WPε

z�ϕ1(t
�)dσ, (43)

where the eigenvector �V2 is defined in (28) and the Schwartz function ϕ1(t�) is associated
with the profile ϕ0 of the initial wave packet according to Proposition 2.3.

Proof. We again analyse the functions wε
1(t) and w

ε
2(t) introduced in (40), that are of

order εδ−2 at time t = t�−δ. By the a priori estimate of Lemma 4.3, the remainder terms
f ε1 (t) and f ε2 (t), which appear in (41), are of order ε1/3. Therefore, the relation (42)
gives for all times t ∈ [t� − δ, t� + δ] and in �k

ε (R
d),

wε
1(t) = O(εδ−2) + O(δε1/3),

wε
2(t) = O(εδ−2) + O(δε1/3) +

1

2

∫ t

t�−δ
Uε
h2(t, σ )B̂2�1

̂�V1(σ )vε1(σ )dσ.

At this stage of the proof, we write B2�1 = �1B2�1 + �2B2�1 and take advantage
of �1B2�1 = (h2 − h1)�1{�1,�1}�1 (see Lemma B.1) to write

∫ t

t�−δ
Uε
h2(t, σ )�̂1B2�1

̂�V1(σ )Uε
h1(σ, t

� − δ)vε1(t
� − δ)dσ

= iε
∫ t

t�−δ
d

dσ

(

Uε
h2(t, σ ) op

w
ε

(

�1{�1,�1}�1 �V1(σ )
)

Uε
h1(σ, t

� − δ)
)

vε1(t
� − δ) dσ + ερε(t)

= ερ̃ε(t),

where both families (ρε(t))ε>0 and (ρ̃ε(t))ε>0 are uniformly bounded in�k
ε (R

d). There-
fore,
∫ t

t�−δ
Uε
h2(t, σ )B̂2�1

̂�V1(σ )vε1(σ )dσ =
∫ t

t�−δ
Uε
h2(t, σ )�̂2B2�1

̂�V1(σ )vε1(σ )dσ + O(ε).

By Lemma B.1 and the definition of the eigenvector �V2 (see (28))
1
2�2B2 �V1 = �2(−∂t�2 − {v,�2}) �V1 = γ �V2.

According to Proposition 2.3, we have for the wave packet

vε1(σ ) = Uh1(σ, t
�)vε1(t

�) = Uh1(σ, t
�)ei S

�/εWPε
z�ϕ1(t

�) + O(ε).

Therefore,

1

2

∫ t

t�−δ
Uε
h2(t, σ )B̂2�1

̂�V1(σ )vε1(σ )dσ
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= ei S
�/ε Uε

h2(t, t
�)

∫ t

t�−δ
Uε
h2(t

�, σ )
̂
γ �V2(σ )Uh1(σ, t

�)WPε
z�ϕ1(t

�)dσ + O(ε),

and, in terms of the function Aε is defined in (43), we are left at time t = t� + δ with

wε
1(t

� + δ) = O(εδ−2) + O(δε1/3),

wε
2(t

� + δ) = ei S
�/ε Uε

h2(t
� + δ, t�) Aε + O(εδ−2) + O(δε1/3).

��

5.2. Constructing the transfer operator. Next, we relate the transition term Aε to an
integral operator that is defined in terms of the crossing parameters μ� and (α�, β�)

introduced in Theorem 3.8.

Lemma 5.3. Let k ∈ N. With the assumptions of Proposition 5.1, there exist

– a smooth real-valued map σ �→ �(σ) with �(0) = 0, �̇(0) = 0, �̈(0) = 2μ� +
α� · β�,
– a smooth vector-valued map σ �→ z(σ ) = (q(σ ), p(σ )) with z(0) = 0, ż(0) =
(α�, β�),
– a smooth map σ �→ Qε(σ ) of operators, that map Schwartz functions to Schwartz
functions, with Qε(0) = opw1 (γ �V2(t�, z� +

√
ε•)),

such that the transition quantity Aε defined in Lemma 5.2 satisfies

Aε =WPε
z�T

εϕ1(t
�) + O(

√
εδ) (44)

in �k
ε (R

d) for the integral operator T ε defined by

T εϕ(y) =
∫ +δ

−δ
e

i
ε
�(σ)Qε(σ )ei pε(σ )·(y−qε(σ ))ϕ(y − qε(σ )) dσ, ϕ ∈ S(Rd),

where we have used the scaling notation zε(σ ) = z(σ )/
√
ε.

Proof. WeuseEgorov’s semi-classical theorem [8, Theorem12] (see also [4]) and obtain
that in �k

ε (R
d),

Uε
h2(t

�, σ )
̂
γ �V2(σ ) f = opwε ((γ �V2)(σ ) ◦�σ,t�

2 )Uε
h2(t

�, σ ) f + O(ε)

for all f ∈⋂�≥k ��
ε(R

d). Hence,

Aε =
∫ t�+δ

t�−δ
opwε ((γ �V2)(σ ) ◦�σ,t�

2 )Uε
h2(t

�, σ )Uε
h1(σ, t

�)WPε
z�ϕ1(t

�)dσ + O(δε).

We set �Q2(σ ) = (γ �V2)(t� + σ) ◦ �σ+t�,t�

2 , and note that �Q2(0) = (γ �V2)(t�). We get
after a change of variables

Aε =
∫ δ

−δ
̂�Q2(σ )Uε

h2(t
�, t� + σ)Uε

h1(t
� + σ, t�)WPε

z�ϕ1(t
�)dσ + O(δε).
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Now we apply successively Proposition 2.3 to the evolutions Uε
h1

and Uε
h2

without en-
corporating the first amplitude correction, that is, for a basic approximation of order

√
ε.

We obtain

Uε
h2(t

�, t� + σ)Uε
h1(t

� + σ, t�)WPε
z�ϕ1(t

�) = e
i
ε
S(σ )WPε

ζ(σ )M(σ )ϕ1(t
�) + O(

√
ε),

where we denoted the combined center, phase and metaplectic transform by

ζ(σ ) = �
t�,t�+σ
2

(

�
t�+σ,t�

1 (z�)
)

,

S(σ ) = S1(t
� + σ, t�, z�) + S2(t

�, t� + σ,�t�+σ,t�

1 (z�)),

M(σ ) =M[F2(t�, t� + σ,�t�+σ,t�

1 (z�))]M[F1(t� + σ, t�, z�)].
This implies

Aε =
∫ +δ

−δ
̂�Q2(σ )e

i
ε
S(σ )WPε

ζ(σ )M(σ )ϕ1(t
�)dσ + O(δ

√
ε).

We observe that

ζ(0) = z�, S(0) = 0, M(0) = I,

and write ζ(σ ) = z� + z(σ ) with z(0) = 0. By Lemma D.1,

ż(0) = (α�, β�), Ṡ(0) = p� · α�.
Moreover, using the group and translation properties of the wave packet transform (49)
and (48), we have

WPε
ζ(σ ) = e−

i
ε
p�·q(σ )WPε

z��
−1
ε WPε

z(σ )

= e−
i
ε
p�·q(σ )e−

i
2ε p(σ )·q(σ )WPε

z��
−1
ε
̂T ε(z(σ ))�ε

= e−
i
ε
p�·q(σ )e−

i
2ε p(σ )·q(σ )WPε

z�
̂T 1(zε(σ )),

By the translation properties of the metaplectic transform [8, Section 3.3], we have

̂T 1(zε(σ ))M(σ ) =M(σ )̂T 1(̃zε(σ ))

with new center

z̃(σ ) = F1(t
� + σ, t�, z�)−1F2(t�, t� + σ,�t�+σ,t�

1 (z�))−1z(σ )

We observe that

z̃(0) = z(0) = 0, ˙̃z(0) = ż(0) = (α�, β�).

Moreover, in view of the relation (50),

̂�Q2(σ )WPε
ζ(σ )M(σ ) = e−

i
ε
p�·q(σ )e−

i
2ε p(σ )·q(σ )̂�Q2(σ )WPε

z�M(σ )̂T 1(̃zε(σ ))

= e−
i
ε
p�·q(σ )e−

i
2ε p(σ )·q(σ )WPε

z�op
w
1 (
�Q2(σ, z

� +
√
ε•))

M(σ )̂T 1(̃zε(σ )).
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Since

̂T 1(̃zε(σ ))ϕ1(t
�, y) = e

i
2 q̃ε(σ )· p̃ε(σ )ei p̃ε(σ )·(y−q̃ε(σ ))ϕ1(t�, y − q̃ε(σ )),

we may introduce the phase ˜�(σ) and the operator Qε(σ ) acccording to

˜�(σ) = S(σ )− p� · q(σ )− p(σ ) · q(σ ) + p̃(σ ) · q̃(σ ),
Qε(σ ) = opw1 ( �Q2(σ, z

� +
√
ε•))M(σ ), (45)

to obtain the approximation

Aε =WPε
z�

∫ +δ

−δ
e

i
ε
˜�(σ)Qε(σ )ei p̃ε(σ )·(y−q̃ε(σ ))ϕ1(t�, y − q̃ε(σ )) dσ + O(δ

√
ε).

We clearly have ˜�(0) = ˙̃�(0) = 0 and Qε(0) = opw1 ((γ �V2)(t�, z� +
√
ε•)), whereas,

by Lemma D.1,

¨̃�(0) = S̈(0)− p� · q̈(0) = 2μ� + α� · β�.

��
Remark 5.4. Note that the first step of the proof of Lemma 5.3 can be performed at any
order in ε with a remainder of the form O(δεN ): pushing the Egorov theorem at higher
order, we obtain

Aε =
∫ t�+δ

t�−δ
�̂Qε,N
2 (σ )Uε

h2(t
�, σ )Uε

h1(σ, t
�)WPε

z�ϕ1(t
�)dσ + O(δεN+1)

with �Qε,N
2 = �Q2 + ε �Q(1)

2 + · · · + εN �Q(N )
2 .

Similarly, also Proposition 2.3 can be generalized at any order in ε, which then implies

Aε =WPε
z� T

ε,Nϕε1(t
�) + O(εN/2+1δ)

where ϕε1 = ϕ1 +
√
εϕ

(1)
1 + · · · + εN/2ϕ(N )1 and

T ε,Nϕ(y) =
∫ +δ

−δ
e

i
ε
�(σ)Qε,N (σ )ei(y−qε(σ )))·pε(σ )ϕ(y − qε(σ ))dσ

for all ϕ ∈ S(Rd). The phase function �(σ) and the phase space center z(σ ) stay the
same as in Lemma 5.3, while the operatorQε,N (σ ) is associatedwith �Qε,N

2 (σ ) according
to (45) by selecting terms up to order εN/2 in its definition.
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5.3. The transfer operator . Consider the family of operators

T εϕ(y) =
∫ +δ

−δ
e

i
ε
�(σ)Qε(σ )ei(y−qε(σ )))·pε(σ )ϕ(y − qε(σ ))dσ, ϕ ∈ S(Rd),

as introduced in Lemma 5.3. We next describe such an operator T ε, when ε goes to 0,
with control in the norm of �k

ε (R
d) for k = 0. In Appendix 5.4 we slightly extend the

construction of the transfer operator to gain control also for the general case k ≥ 0.

Lemma 5.5. Let k ∈ N. If
√
ε � δ � 1, then for all ϕ ∈ S(Rd),

T εϕ = √εQε(0)T �ϕ + O(
√
εδ) + O(εδ−1) (46)

in L2(Rd) with T � =
∫ +∞

−∞
eiμ

�s2eis(β
�·y−α�·Dy) ds.

Proof. The proof relies on the analysis of the integrand close to σ = 0. We write

T ε = √ε
∫ +δ/

√
ε

−δ/√ε
e

i
ε
�(
√
εs)− i

2 qε(s
√
ε)·pε(s√ε)Qε(s

√
ε)ei L

ε(s)ds

where Lε(s) := pε(s
√
ε) · y − qε(s

√
ε)Dy defines a family of self-adjoint operators

s �→ Lε(s) mappping S(Rd) into itself. Recall that the functions s �→ pε(s
√
ε) and

s �→ qε(s
√
ε) are uniformly bounded with respect to ε, and that q(0) = p(0) = 0,

while

μ� = 1

2

(

�̈(0)− q̇(0) · ṗ(0)) , α� = q̇(0), β� = ṗ(0). (47)

We set L = β� · y − α� · Dy . Using Taylor expansion in s = 0, we obtain

1

ε
�(
√
εs)− 1

2
qε(s

√
ε) · pε(s√ε) = μ�s2 +

√
εs3 f1(s

√
ε)

with σ �→ f1(σ ) bounded, together with its derivatives, for σ ∈ [t0, t0 + T ]. In the
following, the notation f j will denote functions that have the same property. We also
have

Lε(s) = sL +
√
εs2Lε1(s

√
ε)

where the family of operator σ �→ Lε1(σ ) maps S(Rd) into itself, for σ ∈ [t0, t0 + T ].
Besides, the commutator [L , L1(s

√
ε)] is a scalar, and we set

1

2
[L , L1(s

√
ε)] = f2(s

√
ε)

with the notation we have just introduced. Therefore, by Baker-Campbell-Hausdorff
formula

ei L
ε(s) = eisLeis

2√εL1(s
√
ε)ei

√
εs3 f2(s

√
ε).

Besides,

ei
√
εs2L1(s

√
ε) = Id +

√
εs2�(s

√
ε)
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where the operator-valuedmapσ �→ �(σ) is smooth and such that for allσ ∈ [t0, t0+T ],
the operator �(σ) and its derivatives maps S(Rd) into itself. Setting f3 = f1 + f2, we
deduce that T ε writes

T ε = √ε
∫ +δ/

√
ε

−δ/√ε
eiμ

�s2+
√
εs3 f3(s

√
ε)Qε(s

√
ε)eisLds + Rε,δ

with Rε,δ = ε

∫ +δ/
√
ε

−δ/√ε
eiμ

�s2+
√
εs3 f3(s

√
ε)Qε(s

√
ε)eisL s2�ε(s

√
ε)ds.

Let us analyze Rε,δ . For this, we perform an integration by parts. Indeed,

∂s(μ
�s2 +

√
εs3 f3(s

√
ε)) = 2μ�s(1 + s

√
ε f4(s

√
ε))

for some smooth bounded function f4 with bounded derivatives. Moreover, since δ is
small, we have 1 + s

√
ε f4(s

√
ε) > 1/2 for all s ∈]− δ/

√
ε,+δ/

√
ε[. Therefore, we can

write

Rε,δ =
[

εs

2iμ�(1 + s
√
ε f4(s

√
ε))

eiμ
�s2+i

√
εs3 f3(s

√
ε)Qε(s

√
ε)eisL

]+ δ√
ε

− δ√
ε

− ε

2iμ�

∫ + δ√
ε

− δ√
ε

eiμ
�s2+i

√
εs3 f3(s

√
ε) d

ds

(

s

1 + s
√
ε f4(s

√
ε)
Qε(s

√
ε)eisL

)

ds,

where μ� �= 0 by the transversality condition (24). We deduce that for all k ∈ N and
ϕ ∈ S(Rd), we have in L2(Rd) that Rε,δϕ = O(

√
εδ) + Rε,δ1 ϕ with

Rε,δ1 ϕ = − ε

2iμ�

∫ + δ√
ε

− δ√
ε

eiμ
�s2+i

√
εs3 f3(s

√
ε)

(

s

1 + s
√
ε f4(s

√
ε)
Qε(s

√
ε)eisL Lϕ

)

ds.

We then need another integration by parts to obtain that Rε,δ1 ϕ = O(
√
εδ). Note that this

additional integration by parts is required by the presence of a s without a coefficient√
ε in the integrand. We write

Rε,δ1 ϕ = − ε

(2iμ�)2

[

eiμ
�s2+i

√
εs3 f3(s

√
ε)

(

1

(1 + s
√
ε f4(s

√
ε))2

Qε(s
√
ε)eisL Lϕ

)]+ δ√
ε

− δ√
ε

+
ε

(2iμ�)2

∫ + δ√
ε

− δ√
ε

eiμ
�s2+i

√
εs3 f3(s

√
ε) d

ds

(

1

(1 + s
√
ε f4(s

√
ε))2

Qε(s
√
ε)eisL Lϕ

)

ds

= O(δ
√
ε)

Therefore, we are left with

T ε = √ε
∫ + δ√

ε

− δ√
ε

eiμ
�s2+i

√
εs3 f3(s

√
ε)Qε(s

√
ε)eisL ds + O(

√
εδ).

We perform the change of variable

z = s(1 +
√
εs f3(s

√
ε)/μ�)1/2
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and observe that s = z(1+
√
εzg1(z

√
ε)) and ∂s z = 1+

√
εzg2(z

√
ε) for some smooth

bounded functions g1 and g2 with bounded derivatives. Note that, here again, we have
used that s

√
ε is small in the domain of the integral. Besides, there exists a family of

operator ˜Qε(z) such that Qε(s
√
ε) = ˜Qε(z

√
ε) with ˜Qε(0) = Qε(0). We deduce that

there exists a bounded function of δ denoted by b(δ) such that

T ε = √ε
∫ + δ√

ε
b(δ)

− δ√
ε

eiμ
�z2
˜Qε(z

√
ε)ei z(1+

√
εzg1(z

√
ε)) L dz

1 +
√
εzg2(z

√
ε)
.

A Taylor expansion allows to write

˜Qε(z
√
ε)ei z(1+

√
εzg1(z

√
ε)) L 1

1 +
√
εzg2(z

√
ε)
= ˜Qε(0) +

√
εz(˜Qε

1(z
√
ε) + z˜Qε

2(z
√
ε))

= Qε(0) +
√
εz(˜Qε

1(z
√
ε) + z˜Qε

2(z
√
ε))

for some smooth operator-valued maps z �→ ˜Qε
j (z
√
ε) mapping S(Rd) into itself, such

that for all ϕ ∈ S(Rd) the family (˜Qε
j (z
√
ε)ϕ)ε>0 is bounded in L2(Rd). We obtain

T ε = √ε Qε(0)
∫ + δ√

ε
b(δ)

− δ√
ε

eiμ
�z2ei zLdz + R̃ε,δ

with R̃ε,δ = ε

∫ + δ√
ε
b(δ)

− δ√
ε

z eiμ
�z2(˜Qε

1(z
√
ε) + z˜Qε

2(z
√
ε)) dz.

Arguing by integration by parts as previously, we obtain

R̃ε,δ =ε
[

1

2iμ�
eiμ

�z2(˜Qε
1(z
√
ε) + z˜Qε

2(z
√
ε))

]+ δ√
ε
b(δ)

− δ√
ε

− ε

2iμ�

∫ + δ√
ε
b(δ)

− δ√
ε

eiμ
�z2 d

dz
(˜Qε

1(z
√
ε) + z˜Qε

2(z
√
ε)) dz = O(

√
εδ).

We deduce T ε = √εQε(0)
∫ + δ√

ε
b(δ)

− δ√
ε
b(δ)

eiμ
�s2eisL ds + O(

√
εδ) and it remains to pass to

infinity in the domain of the integral. For this, we set mε = δ√
ε
b(δ) and consider for

ϕ ∈ S(Rd),

Gε0ϕ =
∫ +∞

mε

eiμ
�s2eisLϕ ds.

We make two successive integration by parts. We write in L2(Rd),
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Gε0ϕ =
[

(2isμ�)−1eiμ�s2eisLϕ
]+∞
mε

−
∫ +∞

mε

eiμ
�s2 d

ds

(

eisLϕ

2isμ�

)

ds

= O(m−1ε )‖ϕ‖�k −
∫ +∞

mε

eiμ
�s2 ie

isL Lϕ

2isμ�
ds +

∫ +∞

mε

eiμ
�s2 eisLϕ

2iμ�s2
ds

= O(m−1ε )‖ϕ‖�k−
[

(2isμ�)−2eiμ�s2 ieisL Lϕ
]+∞
mε

+
∫ +∞

mε

eiμ
�s2 d

ds

(

ieisL Lϕ

(2isμ�)2

)

ds

= O(m−1ε )
(

‖ϕ‖�k + ‖Lϕ‖�k + ‖L2ϕ‖�k

)

.

We deduce that T ε = √εQε(0)
∫ +∞

−∞
eiμ

�s2eisL ds + O(
√
εδ) + O(εδ−1). ��

Remark 5.6. Note that the previous remainder terms could again be transformed by
integration by parts. This implies that T εϕ has an asymptotic expansion in

√
ε and δ at

any order and each term of the expansion is a Schwartz function.

5.4. Proof of Theorem 3.8 and Corollary 3.9.. We now complete the proof of Theo-
rem 3.8. We choose δ = ε2/9, and ε is small enough so that ε ≤ |t − t�|9/2. Then, one
has |t−t�| ≥ δ. If t ∈ [t0, t�−δ], thenProposition 4.1 gives the result. If t ∈ [t�+δ, t0+T ],
then one combines Proposition 4.1 between times s1 = t� + δ and s2 = t with Proposi-
tion 5.1. In summary, we obtain an error estimate of order εδ−2 = ε1/3δ = ε5/9.

Corollary 3.9 comes from Theorem 3.8 and point (3) of Proposition E.1.
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Appendix A: The Wave Packet Transform

We discuss here useful properties of the wave-packet transform. We define the Weyl
translation operator ̂T ε

̂T ε(z) = e
i
ε
(p·̂x−q·̂ξ), z = (q, p) ∈ R

2d ,

http://creativecommons.org/licenses/by/4.0/
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the semi-classical scaling operator �ε

�εϕ(x) = ε−d/4ϕ
(

x√
ε

)

, ϕ ∈ S(Rd),

and we denote by aε,z ∈ C∞(R2d) the function aε,z(w) = a(
√
εw + z), w ∈ R

2d .

Lemma A.1. The wave packet transform satisfies for all points z, z′ ∈ R
2d and all

smooth functions a ∈ C∞(R2d)

WPε
z = e−

i
2ε p·q T̂ ε(z)�ε, (48)

WPε
z+z′ = e−

i
ε
p·q ′ WPε

z �
−1
ε WPε

z′ , (49)

opwε (a)WPε
z =WPε

z op
w
1 (aε,z), (50)

Proof. We consider ϕ ∈ S(Rd). Then ̂T ε(z)ϕ is the solution at time t = 1 of the initial
value problem

iε∂tψ = (q ·̂ξ − p · x̂)ψ, ψ(0) = ϕ.

The explicit form of this solution

ψ(t, x) = e−
i
2ε t

2q·p e
i
ε
tp·xϕ(x − tq)

implies for the action of the Weyl translation that

̂T ε(z)ϕ(x) = e−
i
2ε q·p e

i
ε
p·xϕ(x − q).

This yields

e−
i
2ε p·q T̂ ε(z)�εϕ(x) = ε−d/4 e−

i
ε
p·q e

i
ε
p·xϕ( x−q√

ε
) =WPε

zϕ(x).

For the commutation property we compute

e−
i
ε
p·q ′WPε

z�
−1
ε WPε

z′ϕ(x) = e−
i
ε
p·q ′WPε

ze
i
ε
p′·(√εx−q ′)ϕ

(√
εx−q ′√
ε

)

= e−
i
ε
p·q ′ε−d/4e

i
ε
p·(x−q)e

i
ε
p′·(x−q−q ′)ϕ

(

x−q−q ′√
ε

)

=WPε
z+z′ϕ(x).

Moreover,

WPε
z op

w
1 (aε,z)ϕ(x)

= ε−d/4e
i
ε
p·(x−q)(2π)−d

∫

R2d
a
(√

ε

2

(

x−q√
ε
+ y
)

+ q,
√
εξ + p

)

)eiξ ·((x−q)/
√
ε−y)ϕ(y) dy dξ

= ε−d/4e
i
ε
p·(x−q)(2πε)−d

∫

R2d
a
( 1
2 (x + y′) + q, ξ ′

)

e
i
ε
(ξ ′−p)·(x−y′)ϕ

(

y′−q√
ε

)

dy′ dξ ′

= opwε (a)WPε
zϕ(x).

��
The intertwining property (50), that relates the wave packet transform with Weyl quan-
tization, allows to describe the localisation properties of wave packets as follows.
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Remark A.2. (Localisation on scale
√
ε) Let χ ∈ C∞0 (R2d) be a cut-off function such

that χ = 1 close to 0 and 0 ≤ χ ≤ 1. Define for R > 0, χR(z) = χ(R−1z) for all
z ∈ R

2d . Then, for any k, N ∈ N and any Schwartz function ϕ ∈ S(Rd)
∥

∥opw1 (1− χR)ϕ
∥

∥

�k
1
≤ CR−N ,

where the constant C > 0 depends on k, N and the norm of ϕ in �k+N
1 . Decomposing

a wave packet as

WPε
0ϕ =WPε

0 op
w
1 (χR)ϕ +WPε

0 op
w
1 (1− χR)ϕ,

the combination of the above estimate with equation (50) and the continuity of the wave
packet transform as a mapping from �k

1 to �k
ε yields

∥

∥

∥WPε
0ϕ − opwε (χR

√
ε)WPε

0ϕ

∥

∥

∥

�k
ε

≤ CR−N . (51)

Appendix B: Algebraic Properties of the Eigenprojectors

We consider a smooth eigenvalue h(t, z) of a matrix-valued Hamiltonian H(t, z), asso-
ciated with a smooth eigenprojector �(t, z) so that H = h� + h⊥�⊥. We emphasize
that, in this section, we just assume smoothness of the projector and make no gap as-
sumption. Let us project the solution of the Hamiltonian system (1) to the eigenspace
and consider the function w̃ε(t) = ̂�ψε(t). We have

iε∂t w̃
ε(t) =

(

i ε̂∂t� + ̂�̂H
)

ψε(t),

and by symbolic calculus

̂�̂H = ̂h� +
ε

2i
̂{�, H} + O(ε2) =̂ĥ�− ε

2i
{̂h,�} + ε

2i
̂{�, H} + O(ε2),

where the order ε2 remainder will be given a precise meaning in Lemma B.2 and
Lemma B.5 below. Therefore, if we introduce the matrix

B = −2∂t�− {h,�} + {�, H}, (52)

then we may write

iε∂t w̃
ε(t) =̂hw̃ε(t) +

ε

2i
̂Bψε(t) + O(ε2).

Let us examine the algebraic properties of the first order contribution B in more detail.

Lemma B.1. Consider a Hermitian matrix H = h� + h⊥�⊥ with eigenvalues h, h⊥
and corresponding eigenprojectors�,�⊥. Then, the matrix {�,�} is skew-symmetric
and diagonal,

�⊥{�,�}� = �{�,�}�⊥ = 0.

The matrix B defined in (52) satisfies

B� = −2(� + K ) = 2i�� and �⊥B�⊥ = (h − h⊥)�⊥{�,�}�⊥,
where the matrices�, K , and� have been introduced in (17), (18), and (19). Moreover,
the matrix � is skew-symmetric and � self-adjoint.
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Proof. We use the relation {A,BC} − {AB, C} = {A,B}C − A{B, C}. and apply it to
A = B = C = �. Since �2 = �, we obtain 0 = {�,�}�−�{�,�} and therefore

�⊥{�,�}� = �{�,�}�⊥ = 0.

Besides, by the definition of the Poisson bracket, we have {�,�}∗ = −{�,�}, so that
{�,�} and � = − 1

2 (h − h⊥)�{�,�}� are skew-symmetric. In view of

{�, H} = (h − h⊥){�,�} − {h,�}�− {h⊥,�}�⊥,
{h,�} = {h,�}� + {h,�}�⊥,

we obtain that

B = −2∂t�− {h,�} + {�, H}
= −2∂t� + (h − h⊥){�,�} − 2{h,�}�− {h + h⊥,�}�⊥.

Hence,

B� = −2�⊥(∂t� + {h,�})� + (h − h⊥)�{�,�}� = −2(K +�)

and �⊥B�⊥ = (h − h⊥)�⊥{�,�}�⊥.
The matrix � = i� + i(K − K ∗) is hermitian, since �∗ = −i�∗ − i(K ∗ − K ) = �.
It also satisfies 2i�� = 2i(i� + i K )� = B�. ��
Decomposing the matrix B = B� + B�⊥, we may view the contribution associated
with the projector� as an effective dynamical correction to the eigenvalue h. We obtain
the following:

Lemma B.2. Let H = h�+h⊥�⊥ be a smoothmatrix-valuedHamiltonianwith smooth
eigenvalues h, h⊥ and smooth eigenprojectors �,�⊥. Then, there exists a smooth
matrix-valued symbol Rε such that

̂�(iε∂t − ̂H) =(iε∂t −̂h − ε̂�)̂� +
ε

2i
B̂�⊥̂�⊥ + ε2̂Rε, (53)

where the matrices B and � have been defined in (52) and (19), respectively. If the
Hamiltonian and its eigenvalues are of subquadratic growth (7), while the projectors
grow at most polynomially (26), then for all k ∈ N there exist Ck > 0 and � ∈ N such
that

sup
t∈[t0,t0+T ]

‖̂Rε(t)ϕ‖�k
ε
≤ Ck‖ϕ‖��

ε
∀ϕ ∈ �k

ε (R
d).

Proof. We write

̂�(iε∂t − ̂H) =(iε∂t −̂h)̂�− i ε̂∂t� +̂ĥ�− ̂�̂H .
The symbolic calculus gives

̂ĥ�− ̂�̂H = ε

2i

(

{̂h,�} − ̂{�, H}
)

+ ε2Rε,
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where the remainder ̂Rε(t) satisfies the claimed estimate due to the growth assumptions
on the symbols h, H and �. In view of Lemma B.1, we have

−i∂t� +
1

2i
({h,�} − {�, H}) = �� +

1

2i
B�⊥,

which concludes our proof. ��
We note that for the projected solution w̃ε(t) = ̂�ψε(t), equation (53) implies an
evolution equation of the form

iε∂t w̃
ε(t) = (̂h + ε̂�)w̃ε(t)− ε

2i
B̂�⊥̂�⊥ψε(t) + O(ε2).

In a next stepweuse thematrix B for introducing thefirst order super-adiabatic correction
of the eigenprojector �, following ideas from [3,10,28,30,31,34,36].

Definition B.3. We assume that H is a smooth Hermitian matrix that has two smooth
eigenvalues h and h⊥ and smooth eigenprojectors� and�⊥, that is, H = h�+h⊥�⊥.
The first super-adiabatic corrector of � is the hermitian matrix P = P

∗ defined by

�P�⊥ = i

h − h⊥
�

(

∂t� +
1

2
{h + h⊥,�}

)

�⊥,

�⊥P� = − i

h − h⊥
�⊥

(

∂t� +
1

2
{h + h⊥,�}

)

�,

�P� = − 1

2i
�{�,�}�, �⊥P�⊥ = 1

2i
�⊥{�,�}�⊥.

Note that one has P�⊥ = 1

2i
(h − h⊥)−1B�⊥ and P� = − 1

2i
(h − h⊥)−1B�.

Note that the diagonal part of the matrix P is smooth, while the off-diagonal part of P is
singular on the crossing set ϒ = { f = 0}. Besides, for all β ∈ N

2d and R > 0,

∃Cβ,R > 0, ∀z ∈ B(0, R) ∩ { f (t, z) > δ}, ∀t ∈ R, ‖∂βz P(t, z)‖ ≤ Cβ,R δ
|β|+1.

(54)
The main interest in the corrector P comes from the following relations:

Lemma B.4. With the assumptions of Definition B.3, the corrector matrix P satisfies

[H,P] = i∂t�− 1

2i
({H,�} − {�, H}) and P� +�P = P− 1

2i
{�,�}, (55)

as well as

i∂t� + P(H − h) +
1

2i
{�, H + h} = �� and i(∂t� + {h,�}) = [�,�],

where the matrix � is given by (19).

Proof. Since H is acting as a scalar on Ran� and Ran�⊥, we have

[H,P] = [H,�P�⊥ +�⊥P�] = (h − h⊥)�P�⊥ + (h⊥ − h)�⊥P�

= i(∂t� + 1
2 {h + h⊥,�}).
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Since

{H,�} − {�, H} = �{h,�} +�⊥{h⊥,�} − {�, h}�− {�, h⊥}�⊥ = {h + h⊥,�},
we have proven the first equation. For the second equation, we calculate

P� +�P = 2�P� +�⊥P� +�P�⊥ = P +�P�−�⊥P�⊥ = P− 1
2i {�,�},

where we have used that {�,�} is diagonal. For the first relation with �, we write
H − h = (h⊥ − h)�⊥ and obtain

P(H − h) = (h⊥ − h)P�⊥ = − 1

2i
B�⊥.

Therefore, by Lemma B.1,

i∂t� + P(H − h) +
1

2i
{�, H + h} = 1

2i
B − 1

2i
B�⊥ = ��.

For the commutator of � and �, we have

[�,�] = i[�,�] + i[K ,�] − i[K ∗,�]
= i�⊥(∂t� + {h,�})� + i�(∂t�

⊥ + {h,�})� = i(∂t� + {h,�}).
��

If the crossing set ϒ were empty and all the symbols in consideration were bounded,
the relations of Lemma B.4 would imply that setting �ε = � + εP, then ̂�ε would be
“better” than ̂� in terms of being an eigenprojector of ̂H : in L(L2(Rd)),

̂�ε̂�ε = ̂�ε + O(ε2) and ̂�ε(−iε∂t + ̂H) = (−iε∂t +̂h + ε̂�)̂�ε + O(ε2),

while the estimate would be only O(ε)when using the uncorrected ̂�. However, because
the symbols we consider are smooth only outside ϒ , we need to use cut-off functions to
correctly state such properties.

Lemma B.5. Let I be an interval of R and χδ, χ̃δ ∈ C(I, C∞0 (R2d)) be two cut-off
functions that satisfy:

(1) For any t ∈ I and z in the support of χδ(t) and χ̃ δ(t) we have |(h − h⊥)(t, z)| > δ.
(2) The functions χδ and χ̃ δ satisfy

∂tχ
δ +
{

h, χδ
} = 0, ∂t χ̃

δ +
{

h, χ̃ δ
} = 0.

(3) The functions χ̃ δ are supported in {χδ = 1}.
Let k ∈ N. Then, we have for all t ∈ I in �k

ε ,

̂χ̃ δ
(

−iε∂t + (ĥ + ε̂�)
)

χ̂ δ�ε =̂χ̃ δχ̂ δ�ε(−iε∂t + ̂H) + O(ε2δ−2).

In particular, the function wε(t) =̂χ̃ δχ̂ δ�εψε(t) satisfies for all t ∈ I in �k
ε ,

iε∂tw
ε(t) = (ĥ + ε̂�)wε(t) + O(ε2δ−2).
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Proof. We write

χ̂ δ�ε(−iε∂t+̂H) = opε(χ
δh�)+εopε(χ

δ
PH+

1

2i
{χδ�, H})−χ̂ δ�ε(iε∂t ) + ε

2 R̂δ(t),

where the remainder Rδ(t) depends on first order derivatives of χδP and H as well as
second order derivatives of χδ� and H . Hence, ̂Rδ(t) = O(δ−2). Next, we write

opε(χ
δh�)− χ̂ δ�ε(iε∂t ) = opε(h)opε(χ

δ�)− ε

2i
opε({h, χδ�})

− (iε∂t )χ̂ δ�ε + iεopε(∂t (χ
δ�ε)) + ε2 ̂ρδ2(t),

where ρδ2(t) depends linearly on second derivatives of χ
δ� and h. By Lemma B.4, one

part of the first order contributions can be combined according to

i∂t� + P(H − h) +
1

2i
{�, H + h} = ��.

All this implies

χ̂ δ�ε(−iε∂t + ̂H) = (−iε∂t + opε(h + ε�))opε(χ
δ�ε)

+ εopε(ρ
δ
1(t)) + ε

2opε(ρ
δ
2(t) + Rδ(t)),

where the remainder is given by

ρδ2(t) = �(i∂tχ
δ +

1

2i
{χδ, H + h})

= �(i∂tχ
δ +

1

i
{χδ, h} + 1

2i
(h − h⊥){χδ,�})

= 1

2i
(h − h⊥)�{χδ,�}�⊥,

since ∂tχδ + {h, χδ} = 0. We note that ρδ1(t) and ρ
δ
2(t) are smooth symbols, depending

linearly on derivatives of χδ and thus are 0 on the support of χ̃ δ . The latter observation
implies the first result. For the function wε(t) we then have

(iε∂t − ĥ − ε̂�)wε(t)

=̂χ̃ δ(iε∂t − ĥ − ε̂�)χ̂δ�εψε(t) + [(iε∂t − ĥ − ε̂�),̂χ̃ δ]χ̂ δ�εψε(t)

=̂χ̃ δχ̂ δ�ε(iε∂t − ̂H)ψε(t) + [(iε∂t − ĥ − ε̂�),̂χ̃ δ]χ̂ δ�εψε(t) + ε2 R̂δ(t).

Moreover, since ∂t χ̃ δ + {h, χ̃ δ} = 0, we have

[(iε∂t − ĥ − ε̂�),̂χ̃ δ] = ε3̂r δ3(t) + ε
2̂r δ1(t),

where the first part of the remainder r δ3(t) depends on third derivatives of h and χ̃
δ , while

the second part r δ1(t) depends on first derivatives of� and χ̃ δ . Since δ � √
ε, we have

[(iε∂t − ĥ − ε̂�),̂χ̃ δ] = O(ε2δ−1).

Using (iε∂t − ̂H)ψε(t) = 0, we obtain the equation for wε(t). ��
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Appendix C: Parallel Transport

We prove here Proposition 3.1 that provides the time-dependent eigenvector �V (t, z)
defined by parallel transport. We adapt the proof of [6, Proposition C.1] to account for
the matrix �(t, z), noting that we only require that �(t, z) is a skew-symmetric matrix
mapping into the range of �(t, z).

Proof. Weconsider the solution �V (t, z)of theparallel transport equation and setY (t, z) =
�V (t,�t,t0

h (z)). We observe that Y (t, z) solves the equation

∂t Y (t, z) = ∂t �V (t,�t,t0
h (z)) + J∂zh(�

t,t0
h (z))V (t,�t,t0

h (z))

= �(t,�t,t0
h (z))Y (t, z) + K (t,�t,t0

h (z))Y (t, z). (56)

In particular, since �(t, z) maps into the range of �(t, z),

�⊥(t,�t,t0
h (z)) ∂t Y (t, z) = K (t,�t,t0

h (z))Y (t, z).

We now start proving that for z ∈ U , �(t,�t,t0
h (z))Y (t, z) = Y (t, z), or equivalently

that

Z(t, z) = �⊥(t,�t,t0
h (z))Y (t, z)

is constant and equal to 0. We compute

∂t Z(t, z) =
(−∂t�(t,�t,t0

h (z))− J∂zh(�
t,t0
h (z))∂z�(t,�

t,t0
h (z)) + K (t,�t,t0

h (z))
)

Y (t, z).

We recall that K = (I −�)(∂t� + {h,�})�. Since all derivatives of the projector are
off-diagonal, we have

−∂t�− {h,�} + K = −�(∂t� + {h,�})�⊥
and therefore

∂t Z(t, z) = −�(t,�t,t0
h (z))

(

∂t�(t,�
t,t0
h (z)) + J∂zh(�

t,t0
h (z))∂z�(t,�

t,t0
h (z))

)

Z(t, z).

In particular, ∂t Z(t, z) is an element of the range of �(t,�t,t0
h (z)) and thus orthogonal

to Z(t, z). Hence, its norm is constant, Z(t, z) = 0 and Y (t, z) ∈ Ran�(t,�t,t0
h (z)).

Besides, we have for any z ∈ R
2d

∂t Y (t, z) · Y (t, z) = �(t,�t,t0
h (z))Y (t, z) · Y (t, z) + K (t,�t,t0

h (z))Y (t, z) · Y (t, z) = 0,

because

�(t, z)∗ = −�(t, z) and K (t, z) = �⊥(t, z)K (t, z).
Therefore, ‖Y (t, z)‖CN = 1. ��
Remark C.1. (Polynomial growth of the eigenvector) The above proof shows that the
time-evolution of Y (t, z) = �V (t,�t,t0

h (z)) is generated by a norm-conserving evolution
operator, that is, Y (t) = L(t, t0)Y (t0). This observation allows to literally repeat the
inductive argument in the proof of [6, Proposition C.1] for inferring from a polynomial
bound on the projector�(t, z) a polynomial bound for the eigenvector �V (t, z). Indeed,
if (26) holds for �(t, z), then for all T > 0 and β ∈ N

2d+1
0 there exists a constant

cβ,T > 0 such that

sup
t∈[t0,t0+T ],|z|≥r0

‖∂βt,z �V (t, z)‖ ≤ cβ,T 〈z〉|β|(1+n0).
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Appendix D: The Phase �(σ) and the Function ζ(σ )

Lemma D.1. Let � and ζ be defined as

ζ(σ ) = �
t�,t�+σ
2

(

�
t�+σ,t�

1 (z�)
)

,

�(σ) = S1(t
� + σ, t�, z�) + S2(t

�, t� + σ,�t�+σ,t�

1 (z�))− q(σ ) · p�. (57)

We have

ζ(0) = (q(0), p(0)) = z�, ζ̇ (0) = (q̇(0), ṗ(0)) = J∂z(h1 − h2)(t
�, z�) (58)

�(0) = �̇(0) = 0, (59)

�̈(0) = ∂t (h2 − h1)− ∂qh2 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1) (60)

In particular, we have

1

2
(�̈(0)− ṗ(0) · q̇(0))

= 1

2

(

∂t (h2−h1)−∂qh2 · ∂p(h2−h1)+∂ph1 · ∂q(h2−h1)+∂p(h2−h1) · ∂q(h2−h1)
)

= 1

2

(

∂t (h2 − h1)− ∂qh1 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1)
)

= 1

2

(

∂t (h2 − h1) +

{

h1 + h2
2

, h2 − h1

})

which yields that (47) is consistent with (34).

Proof. We begin with the function ζ and we compute the Taylor expansion at the order 2
for (q(σ ), p(σ )) = ζ(σ )− z� at σ = 0. Let be h = h1, h2. We have :

�
t,t0
h (z) = z + (t − t0)J∂zh(t0, z) +

(t − t0)2

2

(

J∂2t,zh(t0, z) + J∂2z,zh(t0, z)J∂zh(t0, z)
)

+ O(|t − t0|3). (61)

Applying this formula, we obtain (omitting the argument (t�, z�) in the functions h1, h2
and their derivatives)

�
t�+σ,t�

1 (z�) = z� + σ J∂zh1 +
σ 2

2

(

J∂2t,zh1 + J∂2z,zh1 J∂zh1
)

+ O(|σ |3),

ζ(t) = �
t�+σ,t�

1 (z�)− σ J∂zh2(t
� + σ,�t�+σ,t�

1 (z�)) +
σ 2

2

(

J∂2t,zh2 + J∂2z,zh2 J∂zh2
)

+ O(|σ |3).

We deduce

ζ(t) = z� + σ J∂z(h1 − h2) + O(|σ |3)
+
σ 2

2

(

J∂2t,z(h1 − h2) + J∂2z,z(h1 − h2)J∂zh1 + J∂2z,zh2 J∂z(h2 − h1)
)

,

and, for further use, the relation

−p�q̇(0) =− p� · ∂q(h1 − h2), (62)



Propagation of Wave Packets for Systems 1731

−p� · q̈(0) =− p� · (∂2t,p(h1 − h2) + ∂
2
z,p(h1 − h2)J∂zh1 + ∂

2
z,ph2 J∂z(h2 − h1))

(63)

We continue with the function � (defined in (57)) and we use Taylor expansion of
the actions for general Hamiltonian h. In view of (9) and (61), we have (omitting the
argument (t0, z0) in the terms of the form ∂αh(t0, z0))

S(t, t0, z0) =
∫ t

t0
(p0 − (s − t0)∂qh) · (∂ph + (s − t0)(∂

2
t,ph + ∂2z,ph J∂zh))ds

−
∫ t

t0
(h + (s − t0)∂t h)ds + O((t − t0)

3)

= (p0 · ∂ph − h)(t − t0)− (t − t0)2

2
(∂t h + ∂qh · ∂ph − p0 · (∂2t,ph + ∂2z,ph J∂zh))

+ O((t − t0)
3).

We first apply the formula with h = h1, t = t� + σ , t = t� and z = z�, which gives
(when the arguments of the functions are omitted, they are fixed to (t�, z�))

S1(t
� + σ, t�, z�) = σ(p · ∂ph1 − h1)

− σ 2

2
(∂t h1 + ∂qh1 · ∂ph1 − p · (∂2t,ph1 + ∂2z,ph1 J∂zh1)) + O(σ 3).

We now use the same formula with h = h2, t = t�, t0 = t� + σ , z0 = �
t�+σ,t�

1 (z�). We
obtain

S2(t
�, t� + σ,�t�+σ,t�

1 (z�))

= −σ(p1(t� + σ, t�, z�) · ∂ph2(t� + σ,�t�+σ,t�

1 (z�))− h2(t
� + σ,�t�+σ,t�

1 (z�)))

− σ 2

2
(∂t h2 + ∂qh2 · ∂ph2 − p · (∂2t,ph2 + ∂2z,ph2 J∂zh2)) + O(σ 3)

Note that the treatment of the term of order σ has to be performed carefully in the case

of S2(t�, t� + σ,�
t�+σ,t�

1 (z�)). We obtain

S2(t
�, t� + σ,�t�+σ,t�

1 (z�))

= −σ(p · ∂ph2 − h2)

− σ 2(−∂t h2 − ∂qh2 · ∂ph1 + p · (∂2t,ph2 + ∂2z,ph2 J∂zh2))

− σ 2

2
(∂t h2 + ∂qh2 · ∂ph2 − p · (∂2t,ph2 + ∂2z,ph2 J∂zh1)) + O(σ 3)

= (p · ∂ph2 − h2)σ

+
σ 2

2
(∂t h2 + ∂qh2 · ∂p(2h1 − h2)− p · (∂2t,ph2 + ∂2z,ph2 J∂z(2h2 − h1)

+ O(σ 3)

As a consequence,
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S1(t
� + σ, t�, z�) + S2(t

�, t� + σ,�t�+σ,t�

1 (z�)) = σ p · ∂p(h1 − h2) +
σ 2

2
(∂t (h2 − h1)

− ∂qh2 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1)

+ p · (∂2t,p(h1 − h2) + ∂
2
z,p(h1 − h2)J∂zh1 + ∂

2
z,ph2 J∂z(h1 − h2))) + O(σ 3).

Combining with (63), we obtain

�(σ) = σ 2

2
(∂t (h2 − h1)− ∂qh2 · ∂p(h2 − h1) + ∂ph1 · ∂q(h2 − h1)) + O(σ 3),

whence (60). ��

Appendix E: The Operators Tμ,α,β

We study here the operators Tμ,α,β that are defined in (29) for (μ, α, β) ∈ R
2d+1. An

explicit computation gives the following useful connection with the Fourier transform

FTμ,α,β = Tμ+α·β,β,−αF . (64)

The next proposition sumsup themain information thatwewill use about these operators.

Proposition E.1. Let (μ, α, β) ∈ R
2d+1.

(1) The operator Tμ,α,β maps S(Rd) into itself if and only if μ �= 0.
(2) Moreover, if μ �= 0, Tμ,α,β is a metaplectic transformation in the Hilbert space

L2(Rd) multiplied by a complex number:

Tμ,α,β =
√

2iπ

μ
e−

i
4μ (β·y−α·Dy)

2
. (65)

(3) If μ �= 0, � ∈ S+(d) and P ∈ C∞(R2d) is a polynomial function then there exists
�μ,α,β,� ∈ S+(d) such that

Tμ,α,β(opw1 (P)g�) =
√

2iπ

μ
opw1 (P ◦�α,β((4μ)

−1)g�μ,α,β,�

where �α,β satisfies (35) and

�μ,α,β,� = � − (β − �α)⊗ (β − �α)

2μ− α · β + α · �α . (66)

Remark E.2. The matrix �μ,α,β,� is in S+(d) since g�μ,α,β,� is proved to be Schwartz
class. It is also important to notice that 2μ − α · β + α · �α is non zero because its
imaginary part is non zero.
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Proof. Point (1) is linked with Point (2) and comes from the formula (30) and (29).
Indeed, when μ �= 0, equation (65) is an application of relation (29) and of functional
calculus on the self-adjoint operator (β · y−α · Dy)

2 and the Fourier-transform formula
of complex Gaussian functions:

∫ +∞

−∞
eis

2μeisτds =
√

2iπ

μ
e

τ2
4iμ with arg(iμ) ∈] − π, π [. (67)

It remains to analyze the case where μ = 0. The computations are different whether
α · β = 0 or not. We assume α �= 0 and we set

α̂ = α

|α| , y = (y · α̂)α̂ + y⊥.

Similar formulas can be obtained when β �= 0 using (64). Let us first assume α · β = 0.

T0,α,βϕ(y) =
∫

eisβ·y⊥ϕ(y · α̂α̂ − sα + y⊥)ds

= |α|−1
∫

ei |α|−1(y·α̂−σ)(β·y⊥)ϕ(σ α̂ + y⊥)dσ

= |α|−1ei |α|−1(y·α̂)(β·y⊥)Fαϕ

(

β · y⊥
|α| , y⊥

)

where ϕ ∈ S(Rd), y⊥ = y − α̂ · yα̂ and Fα is the partial Fourier transform in the
direction α.
In the case where α · β �= 0, we write

T0,α,βϕ(y) = (2π)−1
∫

R2
e−is2

α·β
2 +isβ·y+iη(y·α̂−s|α|)Fαϕ(η, y⊥)dηds

=
√

1

iπβ · α
∫

ei
(β·y−η|α|)2

2α·β +iηy·α̂Fαϕ(η, y⊥)dη

=
√

1

iπβ · α e
i (β·y)

2

2β·α
∫

e−iη
β⊥·y⊥
β·α̂ e

i η
2 |α|2
2β·α Fαϕ(η,y⊥)dη

=
√

1

iπβ · α e
i (β·y)

2

2β·α
∫

e
−iη β⊥·y⊥

β·α̂ Fα

⎛

⎝e
i
(Dy ·α)2
2β·α ϕ

⎞

⎠(η,y⊥)dη

=
√

4π

iβ · α e
i (β·y)

2

2β·α
(

ei
(Dy ·α)2
2β·α ϕ

)(

−β⊥ · y⊥
β · α̂ α̂ + y⊥

)

This concludes the proof of Points (1) and (2).
Point (3) derives from the formulation of Tμ,α,β as a metaplectic transform. We use
general results concerning the action of a metaplectic transformation on Gaussian g�

(for details see [8], Chapter 3).With the quadratic Hamiltonian K (y, η) = (β ·y−α ·η)2,
one associates the linear flow �α,β(t) = (�i j (t))1≤i, j≤2 (in a d × d block form) given
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by (35). Besides, the Egorov theorem and the classical propagation of the Gaussian are
both exact: we have for P a smooth polynomial function

e−i t K̂ (opw1 (P)g�) = opw1 (P ◦�α,β(t))e
−i t K̂ g� = (opw1 (P ◦�α,β(t))g

�t ,

where,in view of (15), the matrix �t ∈ S+(d) is given by

�t = (�21(t) +�22(t)�)(�11(t) +�12(t)�)
−1, c�t = c� det−1/2(�11(t) +�12(t)�),

We deduce that if μ �= 0,

Tμ,α,βg� =
√

2iπ

μ
e−

i
4μ K̂ g� =

√

2iπ

μ
g�(4μ)−1 .

This induces the existence of thematrix�μ,α,β,� ∈ S+(d) of Point (3) of the Proposition.
It remains to prove the formula (66). We use that if ϕ = g� , we have

Tμ,α,βg�(y) = c�

∫ +∞

−∞
eis

2(μ−α·β/2)eisβ·ye
i
2 (y−sα)·(�(y−sα))ds.

Applying again (67) we get,

Tμ,α,βg�(y) = c�

√

4iπ

2μ− α · β + α · �α e
i
2

(

y·�y− (y·(β−�α))2
2μ−α·β+α·�α

)

,

which gives (66). ��

Appendix F: k-Norms Estimates

Here we give the mathematical details for proving our results on the approximation of
the transfer operator

T ε = √ε
∫ +δ/

√
ε

−δ/√ε
e

i
ε
�(
√
εs)− i

2 qε(s
√
ε)·pε(s√ε)Qε(s

√
ε)ei L

ε(s)ds, ϕ ∈ S(Rd),

in �k
ε -norms with k > 0. We recall that the proof of Lemma 5.5 works with the phase

space translated function ei L
ε(s)ϕwhose�k

ε -normmaygrowas sk . Therefore, integration
by parts with respect to s introduces uncontrolled boundary terms, if k > 0. The first
step towards a proof avoiding such terms is to revisit the equations (41) that initiate
the construction of the transfer operator. The second step then works with the estimates
around the transfer operator.
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F.1. The system of equations (41) . We recall that the function wε(t) = (wε
1(t), w

ε
2(t)),

that describes the approximation error, satisfies the system
{

iε∂twε
1 =̂h1wε

1 + iεFε
1 ,

iε∂twε
2 =̂h2wε

2 + iεFε
2

with

Fε
1 = f ε1 , Fε

2 =
1

2
B̂2�1

̂�V1v1 + f ε2 ,

where the function f ε(t) = ( f ε1 (t), f
ε
2 (t)) is defined in (41). Analysing the evolution

for the time-interval [t�− δ, t� + δ], we replace the characteristic function I[t�−δ,t�+δ] by
a smooth version in a δ-neighborhood of t�. For that we introduce a partition of unity on
the time interval under consideration [t0, t0 + T ]. It is convenient to use a Littlewood-
Paley decomposition defined as follows (see [1, p. 91]): Let χ0 ∈ C∞0 (R) be such that
χ0(u) = 1 if |u| ≤ 1/2 and χ0(u) = 0 if |u| ≥ 1. Define χ1(u) = χ0(u/2) − χ0(u)
(supported in {1/2 ≤ |u| ≤ 2}). Then we have

1 = χ0(u) +
∑

j≥0
χ1(2

− j u), ∀u ∈ R.

We set χc
0 = 1− χ0 and define for j = 1, 2,

Fε
j (t) = χ0,δ(t)F

ε
j (t) + χ

c
0,δ(t)F

ε
j (t)

where

χ0,δ(t) = χ0

(

t − t�

δ

)

, χc
0,δ(t) = χc

0

(

t − t�

δ

)

.

We split the above system into two systems with the two input functions χ0,δFε
j and

χc
0,δF

ε
j ,

{

iε∂t w̃ε
1 =̂h1w̃ε

1 + iεχ0,δFε
1 ,

iε∂t w̃ε
2 =̂h2w̃ε

2 + iεχ0,δFε
2

and
{

iε∂t w̃
ε,c
1 =̂h1w̃ε,c

1 + iεχc
0 F

ε
1 ,

iε∂t w̃
ε,c
2 =̂h2w̃ε,c

2 + iεχc
0 F

ε
2 .

We choose the initial values ( j = 1, 2)

w̃ε
j (t

� − δ) = wε
j (t

� − δ), w̃
ε,c
j (t� − δ) = 0.

By the uniqueness of the solution for Cauchy problems we get that

wε
j (t) = w̃ε

j (t) + w̃
ε,c
j (t), ∀t ∈ [t0, t0 + T ].

Moreover we also have the Duhamel formulas

w̃ε
j (t) = Uh j (t, t

� − δ)w̃ε
j (t

� − δ) +
∫ t

t�−δ
Uh j (t, σ )χ0,δ(σ )F

ε
j (σ )dσ
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w̃
ε,c
j (t) =

∫ t

t�−δ
Uh j (t, σ )χ

c
0,δ(σ )F

ε
j (σ )dσ. (68)

Recall that supp(χ0,δ) ⊆]t� − δ, t� + δ[ and that χc
0,δ(t) = 0 for |t − t�| ≤ δ/2. So for

computing the transfer operator T ε we only consider the contribution of w̃ε
j (t), while

the contribution of w̃ε,c
j (t) falls into the remainder estimates.

F.2. Reduction to a quadratic phase. Revisiting the arguments of Sect. 5.3 we have to
estimate

T̃ ε = √ε
∫ +∞

−∞
χ0

( s

λ

)

eiμ
�s2+

√
εs3 f3(

√
εs)Qε(

√
εs)eisLds + R̃ε,δ

with R̃ε,δ = ε

∫ +∞

−∞
χ0

( s

λ

)

eiμ
�s2+

√
εs3 f3(

√
εs)Qε(

√
εs)eisL s2�ε(

√
εs)ds,

where f3 is a smooth function, that is bounded together with its derivatives, andQε is a
boundedoperator built from the opw1 quantisation of a smooth functionwith polynomially
controlled derivatives and metaplectic transformations. Note that λ := δ√

ε
is a large

parameter. Recall that χ0
( s
λ

)

is smooth and supported in s ∈] − λ,+λ[. To estimate
the remainder R̃ε,δ we integrate by parts as in Sect. 5.3. But here no boundary terms
appear, so we easily get k-norms estimates. We detail the argument for T̃ ε. The first step
is to reduce the integral with the quadratic phase μ�σ 2. To do that we use a deformation
argument like in [19, Section 7.7] . Let us denote

T̃ ε(θ) =
∫ +∞

−∞
eiφ

ε
θ (s)Aε,δ(s)ds, θ ∈ [0, 1],

where

φεθ (s) = μ�s2 + θ
√
εs3 f3(

√
εs), Aε,δ(s) = √ε χ0

( s

λ

)

Qε(
√
εs)eisL .

Differentiating 2 j times in θ we get

T̃ ε,(2 j)(θ) = (i
√
ε)2 j

∫ ∞

−∞
eiφ

ε
θ (s)(s3 f3(

√
εs))2 jAε,δ(s)ds (69)

There exists δ0 > 0 such that for λ
√
ε = δ ≤ δ0 we have

|∂sφεθ (s)| ≥ μ�|s|, ∀s ∈ [−λ, λ].
Hence we can integrate by parts to eliminate powers of s. These occur also in Aε,δ(s),
since ‖ei Lsϕ‖k = Oϕ(|s|k) and for any ϕ ∈ S(Rd). Furthermore we can transform the
oscillating integral (69) into a convergent integral. To get that we can use and iterate the
following relation, for s �= 0,

1

s

(

s

i∂sφεθ (s)

)

∂se
iφεθ (s) = eiφ

ε
θ (s),
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see also the proof of Lemma F.1 below. Now let us apply the Taylor formula in the
deformation parameter θ , for any ϕ ∈ S(Rd) and any k-norm with k ≥ 0,

‖T̃ ε(1)ϕ −
∑

0≤�<2 j

T̃ ε,(�)(0)ϕ‖k ≤ sup
0≤θ≤1

‖T̃ ε,(2 j)(θ)ϕ‖k

And from the above estimates and arguments we get

‖T̃ ε(1)ϕ −
∑

0≤�<2 j

T̃ ε,(�)(0)ϕ‖k ≤ C(ϕ)ε j .

where C(ϕ) depends on semi-norms of ϕ in S(Rd). Hence it is enough to consider
T̃ ε(0)ϕ where the phase is purely quadratic.

F.3. k-estimates for the transfer operator. ATaylor expansion ofQε(
√
εs) around s = 0

leads us to the final step of the proof, where we consider the operators

T̃ ε
0,λ :=

√
ε

∫ +∞

−∞
χ0

( s

λ

)

eiμ
�s2eisLds

and

T̃ ε
0,∞ :=

√
ε

∫ +∞

−∞
eiμ

�s2eisLds

Lemma F.1. For any ϕ in S(Rd), any k ≥ 0, and any N ≥ 1, there exists a constant
Ck,N (ϕ) > 0 such that for all λ ≥ 1,

‖T̃ ε
0,∞ − T̃ ε

0,λ‖k ≤ Ck,N (ϕ)λ
−N . (70)

Proof. Using the Littlewood-Paley decomposition introduced above we have

T̃ ε
0,∞ϕ − T̃ ε

0,λϕ =
∑

j≥0

∫

χ1

( s

2 jλ

)

eiμ
�s2eisLϕds.

Then we integrate by parts using the differential operator P := 1
2iμ�s

∂
∂s . We have

∫

χ1

( s

2 jλ

)

eiμ
�s2eisLϕds =

∫

eiμ
�s2(P")M

(

χ1

( s

2 jλ

)

eisL
)

ϕds.

Besides, for any M ∈ R, there exists a constant CM > 0 such that if f ∈ C∞0 (R),

|(P")M f (s)| ≤ CM 〈s〉M sup
1≤p≤M

| f (p)(s)|.

Therefore, using that ‖eisLϕ‖k = Oϕ(|s|k), and noticing that |s| is of order 2 jλ on the
support of the amplitude, we obtain
∥

∥

∥

∥

∫

χ1

( s

2 jλ

)

eiμ
�s2eisLϕds

∥

∥

∥

∥

�k
≤ Cϕ

∫

|s|∼2 jλ

|s|M−kds ≤ C ′k(2 jλ)−M+k+2
∫ 2

1/2

ds

s2
.

Therefore, taking M large enough, the series is convergent and we have (70). ��
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