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Abstract
We address the structure identification and the uniform approximation of two fully
nonlinear layer neural networks of the type f (x) = 1T h(BT g(AT x)) on R

d ,
where g = (g1, . . . , gm0), h = (h1, . . . , hm1), A = (a1| . . . |am0) ∈ R

d×m0 and
B = (b1| . . . |bm1) ∈ R

m0×m1 , from a small number of query samples. The solution of
the case of two hidden layers presented in this paper is crucial as it can be further gener-
alized to deeper neural networks.We approach the problem by sampling actively finite
difference approximations to Hessians of the network. Gathering several approximate
Hessians allows reliably to approximate the matrix subspace W spanned by sym-
metric tensors a1 ⊗ a1, . . . , am0 ⊗ am0 formed by weights of the first layer together
with the entangled symmetric tensors v1 ⊗ v1, . . . , vm1 ⊗ vm1 , formed by suitable
combinations of the weights of the first and second layer as v� = AG0b�/‖AG0b�‖2,
� ∈ [m1], for a diagonal matrix G0 depending on the activation functions of the first
layer. The identification of the 1-rank symmetric tensors withinW is then performed
by the solution of a robust nonlinear program, maximizing the spectral norm of the
competitors constrained over the unit Frobenius sphere. We provide guarantees of
stable recovery under a posteriori verifiable conditions. Once the 1-rank symmetric
tensors {ai ⊗ ai , i ∈ [m0]} ∪ {v� ⊗ v�, � ∈ [m1]} are computed, we address their
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correct attribution to the first or second layer (ai ’s are attributed to the first layer). The
attribution to the layers is currently based on a semi-heuristic reasoning, but it shows
clear potential of reliable execution. Having the correct attribution of the ai , v� to the
respective layers and the consequent de-parametrization of the network, by using a
suitably adapted gradient descent iteration, it is possible to estimate, up to intrinsic
symmetries, the shifts of the activations functions of the first layer and compute exactly
the matrix G0. Eventually, from the vectors v� = AG0b�/‖AG0b�‖2’s and ai ’s one
can disentangle the weights b�’s, by simple algebraic manipulations. Our method of
identification of the weights of the network is fully constructive, with quantifiable
sample complexity and therefore contributes to dwindle the black box nature of the
network training phase. We corroborate our theoretical results by extensive numerical
experiments, which confirm the effectiveness and feasibility of the proposed algorith-
mic pipeline.

Keywords Deep neural networks · Active sampling · Exact identifiability ·
Deparametrization · Frames · Nonconvex optimization on matrix spaces
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1 Introduction

Deep learning is perhaps one of the most sensational scientific and technological
developments in the industry of the last years. Despite the spectacular success of deep
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neural networks (NN) outperforming other pattern recognition methods, achieving
even superhuman skills in some domains [12,36,57] and confirmations of empirical
successes in other areas such as speech recognition [27], optical character recognition
[8], games solution [44,55], the mathematical understanding of the technology of
machine learning is in its infancy. This is not only unsatisfactory from a scientific,
especially mathematical point of view, but it also means that deep learning currently
has the character of a black box method, and its success can not be ensured yet by
a full theoretical explanation. This leads to lack of acceptance in many areas, where
interpretability is a crucial issue (like security, cf. [10]) or for those applications where
one wants to extract new insights from data [60].

Several general mathematical results on neural networks have been available since
the 1990s [2,17,38,39,46–48], but deep neural networks have special features and in
particular superior properties in applications that still cannot be fully explained from
the known results. In recent years, new interesting mathematical insights have been
derived for understanding approximation properties (expressivity) [19,53] and stabil-
ity properties [9,67] of deep neural networks. Several other crucial and challenging
questions remain open.

A fundamental one is about the number of required training data to obtain a good
neural network, i.e., achieving small generalization errors for future data. Classical
statistical learning theory splits this error into bias and variance and gives general
estimations by means of the so-called VC dimension or Rademacher complexity of
the used class of neural networks [54]. However, the currently available estimates of
these parameters [26] provide very pessimistic barriers in comparison to empirical
success. In fact, the trade-off between bias and variance is function of the complexity
of a network, which should be estimated by the number of sampling points to identify
it uniquely. Thus, on the one hand, it is of interest to know which neural networks can
be uniquely determined in a stable way by finitely many training points. On the other
hand, the unique identifiability is clearly a form of interpretability.

The motivating problem of this paper is the robust and resource-efficient identifica-
tion of feedforward neural networks. Unfortunately, it is known that identifying a very
simple (but general enough) neural network is indeed NP-hard [7,33]. Even without
invoking fully connected neural networks, recent work [22,41] showed that even the
training of one single neuron (ridge function or single index model) can show any pos-
sible degree of intractability, depending on the distribution of the input. Recent results
[3,34,42,52,56], on the other hand, are more encouraging and show that minimizing a
square loss of a (deep) neural network does not have in general or asymptotically (for
large number of neurons) poor local minima, although it may retain the presence of
critical saddle points.

In this paper, we present conditions for a fully nonlinear two-layer neural network to
be provably identifiable with a number of samples, which is polynomially depending
on the dimension of the network. Moreover, we prove that our procedure is robust to
perturbations. Our result is clearly of theoretical nature, but also fully constructive and
easily implementable. To our knowledge, this work is the first, which allows provable
de-parametrization of the problem of deep network identification, beyond the simpler
case of shallow (one hidden) layer neural networks already considered in very recent
literature [3,23,32,34,42,43,52,56]. For the implementation, we do not require black
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box high-dimensional optimization methods and no concerns about complex energy
loss landscapes need to be addressed, but only classical and relatively simple calculus
and linear algebra tools are used (mostly function differentiation and singular value
decompositions). The results of this paper build upon the work [22,23], where the
approximation from a finite number of sampling points has been already derived for
the single neuron and one-layer neural networks. The generalization of the approach
of the present paper to networks with more than two hidden layers is surprisingly
simpler than one may expect, and it is in the course of finalization [21], see Sect. 5 (v)
below for some details.

1.1 Notation

Let us collect here some notation used in this paper. Given any integer m ∈ N, we use
the symbol [m] := {1, 2, . . . , m} for indicating the index set of the first m integers.
We denote by Bd

1 the Euclidean unit ball in R
d , Sd−1 the Euclidean sphere, and

μSd−1 is its uniform probability measure. We denote �d
q the d-dimensional Euclidean

space endowed with the norm ‖x‖�d
q

=
(∑d

j=1 |x j |q
)1/q

. For q = 2, we often write

indifferently ‖x‖ = ‖x‖2 = ‖x‖�d
2
. For a matrix M , we denote σk(M) its kth singular

value. We denote S the sphere of symmetric matrices of unit Frobenius norm ‖ · ‖F .
The spectral norm of a matrix is denoted ‖ · ‖. Given a closed convex set C , we denote
PC the orthogonal projection operator onto C . (Sometimes we use such operators to
project onto subspaces ofRd or subspaces of symmetric matrices or onto balls of such
spaces.) For vectors x1, . . . , xk ∈ R

d , we denote the tensor product x1 ⊗ · · · ⊗ xk as
the tensor of entries (x1i1 . . . xk ik )i1,...,ik . For the case of k = 2, the tensor product
x ⊗ y of two vectors x, y ∈ R

d equals the matrix xyT = (xi y j )i j . For any matrix
M ∈ R

m×n

vec(M) := (m11, m21, . . . , mm1, m12, m22, . . . , mmn)T ∈ R
mn,

is its vectorization, which is the vector created by the stacked columns of M .

1.2 FromOne Artificial Neuron to Shallow and Deeper Networks

1.2.1 Meet the Neuron

The simplest artificial neural network f : � ⊂ R
d → R is a network consisting of

exactly one artificial neuron, which is modeled by a ridge-function (or single-index
model) f as

f (x) = φ(aT x + θ) = g(aT x),

where g : R → R is the shifted activation function φ(· + θ) and the vector a ∈
R

d expresses the weight of the neuron. Since the beginning of the 1990s [30,31],
there is a vast mathematical statistics literature about single-index models, which
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addresses the problem of approximating a and possibly also g from a finite number
of samples of f to yield an expected least-squares approximation of f on a bounded
domain � ⊂ R

d . Now assume for the moment that we can evaluate the network f
at any point in its domain, we refer to this setting as active sampling. As we aim at
uniform approximations, we adhere here to the language of recent results about the
sampling complexity of ridge functions from the approximation theory literature, e.g.,
[13,22,41]. In those papers, the identification of the neuron is performed by using
approximate differentiation. Let us clarify how this method works as it will be of
inspiration for the further developments below. For any ε > 0, points xi , i = 1, . . . mX ,
and differentiation directions ϕ j , j = 1, . . . m	 we have

f (xi + εϕ j ) − f (xi )

ε
≈ ∂ f (xi )

∂ϕ j
= g′(aT xi )a

T ϕ j . (1)

Hence, differentiation exposes the weight of a neuron and allows to test it against
test vectors ϕ j . The approximate relationship (1) forms for every fixed index i a
linear system of dimensions m	 × d, whose unknown is x∗

i = g′(aT xi )a. Solv-
ing approximately and independently, the systems for i = 1, . . . mX yield multiple
approximations â = x∗

i /‖x∗
i ‖2 ≈ a of the weight, the most stable of themwith respect

to the approximation error in (1) is the one for which ‖x∗
i ‖2 is maximal. Once â ≈ a

is learned, then one can easily construct a function f̂ (x) = ĝ(âT x) by approximating
ĝ(t) ≈ f (ât) on further sampling points. Under assumptions of smoothness of the
activation function g ∈ Cs([0, 1]), for s > 1, g′(0) �= 0 and compressibility of the
weight, i.e., ‖a‖�d

q
is small for 0 < q ≤ 1, then by using L sampling points of the func-

tion f and the approach sketched above, one can construct a function f̂ (x) = ĝ(âT x)

such that

‖ f − f̂ ‖C(�) ≤ C‖a‖�d
q

{
L−s + ‖g‖Cs ([0,1])

(
1 + log(d/L)

L

)1/q−1/2
}

.

In particular, the result constructs the approximation of the neuron with an error,
which has polynomial rate with respect to the number of samples, depending on the
smoothness of the activation function and the compressibility of the weight vector a.
The dependence on the input dimension is only logarithmical. To take advantage of
the compressibility of the weight, compressive sensing [24] is a key tool to solve the
linear systems (1). In [13] , such an approximation result was obtained by active and
deterministic choice of the input points xi . In order to relax a bit the usage of active
sampling, in the paper [22] a random sampling of the points xi has been proposed
and the resulting error estimate would hold with high probability. The assumption
g′(0) �= 0 is somehow crucial, since it was pointed out in [22,41] that any level of
tractability (polynomial complexity) and intractability (super-polynomial complexity)
of the problem may be exhibited otherwise.
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1.2.2 Shallow Networks: The One-Layer Case

Combining several neurons leads to richer function classes [38,39,46–48]. A neural
network with one hidden layer and one output is simply a weighted sum of neurons
whose activation function only differs by a shift, i.e.,

f (x) =
m∑

i=1

biφ(aT
i x + θi ) =

m∑
i=1

gi (a
T
i x), (2)

where ai ∈ R
m and bi , θi ∈ R for all i = 1, . . . , m. Sometimes, it may be convenient

below the more compact writing f (x) = 1T g(AT x) where g = (g1, . . . , gm) and
A = [a1| . . . |am] ∈ R

d×m .1 Differently from the case of the single neuron, the use of
first-order differentiation

∇ f (x) =
m∑

i=1

g′
i (a

T
i x)ai ∈ A = span {a1, . . . , am} , (3)

may furnish information about A = span {a1, . . . , am} (active subspace identification
[14,15], see also [22, Lemma 2.1]), but it does not allow yet to extract information
about the single weights ai . For that higher-order information is needed. Recent work
shows that the identification of a network (2) can be related to tensor decompositions
[1,23,32,43]. As pointed out in Sect. 1.2.1, differentiation exposes the weights. In
fact, one way to relate the network to tensors and tensor decompositions is given by
higher-order differentiation. In this case, the tensor takes the form

Dk f (x) =
m∑

i=1

g(k)
i (x) ai ⊗ · · · ⊗ ai︸ ︷︷ ︸

k−times

,

which requires that the gi ’s are sufficiently smooth. In a setting where the samples
are actively chosen, it is generally possible to approximate these derivatives by finite
differences. However, even for passive sampling there are ways to construct similar
tensors [23,32], which rely on Stein’s lemma [58] or differentiation by parts or weak
differentiation. Let us explain how passive sampling in this setting may be used for
obtaining tensor representations of the network. If the probability measure of the sam-
pling points xi ’s is μX with known (or approximately known [18]) density p(x) with
respect to the Lebesgue measure, i.e., dμX (x) = p(x)dx , then we can approximate
the expected value of higher order derivatives by using exclusively point evatuations

1 Below, with slight abuse of notation, we may use the symbol A also for the span of the weights {ai : i =
1, . . . , m}.
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of f . This follows from

1

N

N∑
i=1

f (xi )(−1)k ∇k p(xi )

p(xi )
≈
∫

Rd
f (x)(−1)k ∇k p(x)

p(x)
p(x)dx

=
∫

Rd
∇k f (x)dμX (x) = Ex∼μX [∇k f (x)]

=
m∑

i=1

(∫

Rd
g(k)(aT

i x)dμX (x)

)
ai ⊗ · · · ⊗ ai︸ ︷︷ ︸

k−times

.

In the work [32], decompositions of third-order symmetric tensors (k = 3) [1,35,51]
have been used for the weights identification of one hidden layer neural networks.
Instead, beyond the classical results about principal Hessian directions [37], in [23] it
is shown that using second derivatives (k = 2) actually suffices and the corresponding
error estimates reflect positively the lower order and potential of improved stability,
see e.g., [16,28,29]. The main part of the present work is an extension of the latter
approach, and therefore, we will give a short summary of it with emphasis on active
sampling, which will be assumed in this paper as the sampling method. The first step
of the approach in [23] is taking advantage of (3) to reduce the dimensionality of the
problem from d to m.

Reduction to the active subspace Before stating the core procedure, we want to
introduce a simple and optional method, which can help to reduce the problem com-
plexity in practice. Assume f : � ⊂ R

d → R takes the form (2), where d ≥ m
and that a1, . . . , am ∈ R

d are linearly independent. From a numerical perspective the
input dimension d of the network plays a relevant role in terms of complexity of the
procedure. For this reason in [23], the input dimension is effectively reduced to the
number of neurons in the first hidden layer. With this reasoning, in the sections that
follow we also consider networks where the input dimension matches the number of
neurons of the first hidden layer.

Assume for the moment that the active subspace A = span {a1, . . . , am} is known.
Let us choose any orthonormal basis of A and arrange it as the columns of a matrix
Â ∈ R

d×m . Then

f (x) = f (PAx) = f ( Â ÂT x),

which can be used to define a new network

f̂ (y) := f ( Ây) : Rm → R.

whose weights are α1 = ÂT a1, . . . , αm = ÂT am ; all the other parameters remain
unchanged. Note that Âαi = PAai = ai , and therefore, ai can be recovered from
αi . In summary, if the active subspace of f is approximately known, then we can
construct f̂ , such that the identification of f and f̂ are equivalent. This allows us
to reduce the problem to the identification of f̂ instead of f , under the condition
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Algorithm 1: Active subspace identification [23]
Input: Given a shallow neural network f as in (2), step-size of finite differences ε > 0, number of

samples m X
1 begin
2 Draw x1, . . . , xm X uniformly from the unit sphere Sd−1

3 Calculate the estimated gradients �ε f (x1), . . . , �ε f (xm X ) by first-order finite differences with
stepsize ε.

4 Compute the singular value decomposition

(
�ε f (x1)

∣∣. . .∣∣�ε f (xm X )
) = ( Û1 Û2

) ( ̂1 0
0 ̂2

)(
V̂ T
1

V̂ T
2

)
,

where ̂1 contains the m largest singular values. Set PÂ = Û1Û T
1 .

5 end
Output: PÂ

that we approximate PA well enough [23, Theorem 1.1]. As recalled in (3), we can
produce easily approximations to vectors in A byapproximatefirst order differentiation
of the original network f and, in an ideal setting, generating m linear independent
gradients would suffice to approximate A. However, in general, there is no way to
ensure a priori such linear independence and we have to account for the error caused
by approximating gradients by finite differences. By suitable assumptions on f (see
the full rank condition on the matrix J [ f ] defined in (4) below) and using Algorithm
1, we obtain the following approximation result.

Theorem 1 ([23],Theorem 2.2) Assume the vectors (ai )
m
i=1 are linear independent

and of unit norm. Additionally, assume that the gi ’s are smooth enough. Let PÂ be
constructed as described in Algorithm 1 by sampling m X (d + 1) values of f . Let
0 < s < 1, and assume that the matrix

J [ f ] := EX∼μ
Sd−1∇ f (X) ⊗ ∇ f (X)

=
∫

Sd−1
∇ f (x)∇ f (x)T dμSd−1(x) (4)

has full rank, i.e., its m-th singular value fulfills σm (J [ f ]) ≥ α > 0. Then

‖PA − PÂ‖F ≤ 2C1εm√
α(1 − s) − C1εm

,

with probability at least1−m exp
(
−m X αs2

2m2C2
2

)
, where C1, C2 > 0 are absolute constants

depending on the smoothness of gi ’s.

Identifying the weights As clarified in the previous section, we can assume from
now on that d = m without loss of generality. Let f be a network of the type (2),
with twice differentiable activation functions (gi )i=1,...,m , and independent weights
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(ai )i=1,...m ∈ R
m of unit norm. Then f has second derivative

∇2 f (x) =
m∑

i=1

g′′
i (aT

i x)ai ⊗ ai ∈ A = span {a1 ⊗ a1, . . . , am ⊗ am} , (5)

whose expression represents a nonorthogonal rank-1 decomposition of the Hessian.
The idea is, first of all, to modify the network by an ad hoc linear transformation
(withening) of the input

f (W T x) =
m∑

i=1

gi (a
T
i W T x)

in such a way that (Wai/‖Wai‖2)i=1,...,m forms an orthonormal system. The com-
putation of W can be performed by spectral decomposition of any positive definite
matrix

G ∈ Â ≈ A, γ I � G.

In fact, from the spectral decomposition of G = U DU T , we define W = D− 1
2 U T

(see [23, Theorem 3.7]). This procedure is called whitening and allows to reduce
the problem to networks with nearly-orthogonal weights, and presupposes to have
obtained Â ≈ A = span {a1 ⊗ a1, . . . , am ⊗ am}. By using (5) and a similar approach
asAlgorithm 1 (one simply substitutes there the approximate gradients with vectorized
approximate Hessians), one can compute Â under the assumption that also the second-
order matrix

H [ f ] := EX∼μ
Sm−1 vec(∇2 f (X)) ⊗ vec(∇2 f (X))

=
∫

Sm−1
vec(∇2 f (x)) ⊗ vec(∇2 f (x))dμSm−1(x)

is of full rank, where vec(∇2 f (x)) is the vectorization of the Hessian ∇2 f (x).
After whitening one could assume without loss of generality that the vectors

(ai )i=1,...m ∈ R
m are nearly orthonormal in the first place. Hence the representa-

tion (5) would be a near spectral decomposition of the Hessian and the components
ai ⊗ ai would represent the approximate eigenvectors. However, the numerical sta-
bility of spectral decompositions is ensured only under spectral gaps [6,50]. In order
to maximally stabilize the approximation of the ai ’s, one seeks for matrices M ∈ Â
with the maximal spectral gap between the first and second largest eigenvalues. This
is achieved by the maximizers of the following nonconvex program

M = argmax ‖M‖ s.t. M ∈ Â, ‖M‖F ≤ 1, (6)

where ‖ ·‖ and ‖ ·‖F are the spectral and Frobenius norms, respectively. This program
can be solved by a suitable projected gradient ascent, see for instance [23, Algorithm
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3.4] andAlgorithm3, and any resultingmaximizer has the eigenvector associated to the
largest eigenvalue in absolute value close to one of the ai ’s. Once approximations âi to
all the ai ’s are retrieved, it is not difficult to perform the identification of the activation
functions gi , see [23, Algorithm 4.1, Theorem 4.1]. The recovery of the network
resulting from this algorithmic pipeline is summarized by the following statement.

Theorem 2 ([23],Theorem 1.2) Let f be a real-valued function defined on the neigh-
borhood of � = Bd

1 , which takes the form

f (x) =
m∑

i=1

gi (ai · x),

for m ≤ d. Let gi be three times continuously differentiable on a neighborhood
of [−1, 1] for all i = 1, . . . , m, and let {a1, . . . , am} be linearly independent. We
additionally assume both J [ f ] and H [ f ] of maximal rank m. Then, for all ε > 0
(stepsize employed in the computation of finite differences), using at most mX [(d +
1)+ (m + 1)(m + 2)/2] random exact point evaluations of f , the nonconvex program
(6) constructs approximations {â1, . . . , âm} of the weights {a1, . . . , am} up to a sign
change for which ( m∑

i=1

‖âi − ai‖22
)1/2

� ε, (7)

with probability at least 1 − m exp
(
− mX c

2max{C1,C2}2m2

)
, for a suitable constant c > 0

intervening (together with some fixed power of m) in the asymptotical constant of
the approximation (7). Moreover, once the weights are retrieved one constructs an
approximating function f̂ : Bd

1 → R of the form

f̂ (x) =
m∑

i=1

ĝi (âi · x),

such that
‖ f − f̂ ‖C(�) � ε. (8)

While this result have been generalized to the case of passive sampling in [23]
and through whitening allows for the identification of nonorthogonal weights, it is
restricted to the case of m ≤ d and linearly independent weights {ai : i = 1, . . . , m}.

The main goal of this paper is generalizing this approach to account for both the
identification of two fully nonlinear hidden layer neural networks and the case where
m > d and the weights are not necessarily nearly orthogonal or even linearly inde-
pendent (see Remark 10 below).

1.2.3 Deeper Networks: The Two-Layer Case

What follows further extends the theory discussed in the previous sections to a wider
class of functions, namely neural networks with two hidden layers. By doing so, we
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will also address a relevant open problem that was stated in [23], which deals with
the identification of shallow neural networks where the number of neurons is larger
than the input dimension. First, we need a precise definition of the architecture of the
neural networks we intend to consider.

Definition 3 Let 0 < m1 ≤ m0 ≤ d, {a1, . . . , am0} ⊂ S
d−1, {b1, . . . , bm1} ⊂

S
m0−1, and let g1, . . . , gm0 and h1, . . . , hm1 be univariate functions. Denote A :=

(a1| . . . |am0) ∈ R
d×m0 , B := (b1| . . . |bm1) ∈ R

m0×m1 , G0 := diag
(
g′
1(0), . . . , g′

m0

(0)
)
, and assume the following:

(A1) g′
i (0) �= 0 for all i ∈ [m0],

(A2) the system {a1, . . . , am0 , v1, . . . , vm1} ⊂ S
d−1 with v� := AG0b�‖AG0b�‖ satisfies a

frame condition

c f ‖x‖2 ≤
m0∑
i=1

〈x, ai 〉2 +
m1∑
�=1

〈x, v�〉2 ≤ CF ‖x‖2

for 0 < c f ≤ cF and all x ∈ span{a1, . . . , am0}, (9)

(A3) the derivatives of gi and h� are uniformly bounded according to

max
i=1,...,m0

sup
t∈R

∣∣∣g(k)
i (t)

∣∣∣ ≤ κk , and max
i=1,...,m1

sup
t∈R

∣∣∣h(k)
� (t)

∣∣∣ ≤ ηk , k = 0, 1, 2, 3.

Then we define a set of two-layer networks by

F(d, m0, m1)

:=
{

f : Rd → R : f (x)=
m1∑
�=1

h�

(
m0∑
i=1

bi�gi

(
aT

i x
))

, (A1)−(A3) are satisfied

}
,

where bi� is the (i, �)-th entry of B, respectively, the i-th entry of vector b�.

Sometimes it may be convenient to use the more compact writing f (x) =
1T h(BT g(AT x)) where g = (g1, . . . , gm0), h = (h1, . . . , hm1). In the previous
section, we presented a dimension reduction that can be applied to one layer neural
networks and which can be useful to reduce the dimensionality from the input dimen-
sion to the number of neurons of the first layer. The same approach can be applied to
networks defined by the classF(d, m0, m1). For the approximation error of the active
subspace, we end up with the following corollary of Theorem 1.

Corollary 4 (cf. Theorem 1)Assume that f ∈ F(d, m0, m1) and let PÂ be constructed
as described in Algorithm 1 by sampling m X (d + 1) values of f . Let 0 < s < 1 and
assume that the m0-th singular value of J [ f ] fulfills σm0 (J [ f ]) ≥ α > 0. Then we
have

‖PA − PÂ‖F ≤ 2C3εm0m1√
(1 − s)α − C3εm0m1

,
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with probability at least 1 − m0 exp(− s2mx α
2C4m1

) and constants C3, C4 > 0 that depend
only on κ j , η j for j = 0, . . . , 3.

In view of Corollary 4, we can again apply [23, Theorem 1.1] and assume, without
loss of generality, that d = m0, for which frame condition (9) automatically implies
invertibility of A, as the vectors v�’s are linear combinations of the ai ’s.

2 Approximating the Span of Tensors of Weights

In the one layer case, which was described earlier, the unique identification of the
weights is made possible by constructing a matrix space whose rank-1 basis elements
are outer products of the weight profiles of the network. This section illustrates the
extension of this approach beyond shallow neural networks. Once again, we will make
use of differentiation, and overall there will be many parallels to the approach in [23].
However, the intuition behind the matrix space will be less straightforward, because
we cannot anymore directly express the second derivative of a two-layer network as
a linear combination of symmetric rank-1 matrices. This is due to the fact that the
Hessian matrix of a network f ∈ F(m0, m0, m1) has the form

∇2 f (x) =
m1∑
�=1

h′
�(b

T
� g(AT x))

m0∑
i=1

bi�g′′
i (aT

i x)ai ⊗ ai

+ 1

2

m1∑
�=1

m0∑
i, j=1

h′′
�

(
bT
� g(AT x)

)
bi�b j�g′

i (a
T
i x)g′

j (a
T
j x)(ai ⊗ a j + a j ⊗ ai ).

Therefore,∇2 f (x) ∈ span {ai ⊗ a j + a j ⊗ ai | i, j = 1, . . . , m0}, which has dimen-
sion m0(m0+1)

2 and is in general not spanned by symmetric rank-1 matrices. This
expression is indeed quite complicated, due to the chain rule and the mixed ten-
sor contributions, which are consequently appearing. At a first look, it would seem
impossible to use a similar approach as the one for shallow neural networks recalled in
the previous section. Nevertheless a relatively simple algebraic manipulation allows
to recognize some useful structure: For a fixed x ∈ R

m0 , we rearrange the expression
as

∇2 f (x) =
m1∑
�=1

h′
�(b

T
� g(AT x))

m0∑
i=1

bi�g′′
i (aT

i x)ai ⊗ ai

+ 1

2

m1∑
�=1

h′′
�

(
bT
� g(AT x)

)[ m0∑
i=1

bi�g′
i (a

T
i x)ai

]
⊗
⎡
⎣

m0∑
j=1

b j�g′
j (a

T
j x)a j

⎤
⎦ ,
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Fig. 1 Illustration of the
relationship between W (black
line) and

span
{
∇2 f (x)

∣∣∣x ∈ R
m0
}
(light

blue region) given by two
nonlinear cones that fan out from
∇2 f (0). There is no reason to
believe that the these cones are
symmetric aroundW . The gray
cones show the maximal
deviation of Ŵ fromW

∇2f(0)

W

Ŵ

which is a combination of symmetric rank-1 matrices since
∑m0

j=1 b j�g′
j (a

T
j x)a j ∈

R
m0 . We write the latter expression more compactly by introducing the notation

∇2 f (x) =
m0∑
i=1

γi (x)ai ⊗ ai +
m1∑
�=1

τ�(x)v�(x) ⊗ v�(x), (10)

where Gx = diag
(
g′
1(a

T
1 x), . . . , g′

m0
(aT

m0
x)
) ∈ R

m0×m0 and

v�(x) = AGx b� ∈ R
m0 for � ∈ [m1], (11)

γi (x) = g′′
i (aT

i x)

m1∑
�=1

h′
�(b

T
� g(AT x))bi� ∈ R for i ∈ [m0], (12)

τ�(x) = 1

2
h′′

�

(
bT
� g(AT x)

)
∈ R for � ∈ [m1]. (13)

Let us now introduce the fundamental matrix space

W = W( f ) := span
{
a1 ⊗ a1, . . . , am0 ⊗ am0 , v1 ⊗ v1, . . . , vm1 ⊗ vm1

}
, (14)

where the span is taken over R, a1, . . . , am0 are the weight profiles of the first layer,
and

v� := v�(0)

‖v�(0)‖2 = AG0b�

‖AG0b�‖2 , for � ∈ [m1],

encode “entangled” information between A and B. For this reason, we call the v�’s
entangled weights. Let us stress at this point that the definition and the constructive
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approximation of the spaceW is perhaps the most crucial and relevant contribution of
this paper. In fact, by inspecting carefully the expression (10), we immediately notice
that ∇2 f (0) ∈ W , and also that the first sum in (10), namely

∑m0
i=1 βi (x)ai ⊗ ai ,

lies in W for all x ∈ R
m0 . Moreover, for arbitrary sampling points x , deviations of

∇2 f (x) from W are only due to the second term in (10). The intuition is that for
suitably centered distributions of sampling points x1, . . . , xm X , with aT

j xi ≈ 0 so

that Gxi ≈ G0, the Hessians {∇2 f (xi ) : i ∈ [m X ]} are distributed around the space
W , see Fig. 1 for a two dimensional sketch of the geometrical situation. Hence, we
would attempt an approximation of W by PCA of a collection of such approximate
Hessians. Practically, by active sampling (targeted evaluations of the network f ) we
first construct estimates {�2

ε f (xi ) : i ∈ [m X ]} by finite differences of the Hessian
matrices {∇2 f (xi ) : i ∈ [m X ]} (see Sect. 2.1), at sampling points x1, . . . , xm X ∈ R

m

drawn independently from a suitable distribution μX . Next, we define the matrix

Ŵ =
(
vec(�2

ε f (x1))| . . . | vec(�2
ε f (xm X ))

)
∈ R

m2
0×m X ,

whose columns are the vectorization of the approximate Hessians. Finally, we produce
the approximation Ŵ to W as the span of the first m0 + m1 left singular vectors of
the matrix Ŵ , where the choice m0 + m1 enforces dim(Ŵ) = dim(W) = m0 + m1.
The whole procedure of calculating Ŵ is given in Algorithm 2. It should be clear that
the choice of μX plays a crucial role for the quality of this method. In the analysis
that follows, we focus on distributions that are centered and concentrated. Figure 1
helps to form a better geometrical intuition of the result of the procedure. It shows the
region covered by the Hessians, indicated by the light blue area, which envelopes the
spaceW in a sort of nonlinear/nonconvex cone originating from ∇2 f (0). In general,
the Hessians do not concentrate aroundW in a symmetric way, which means that the
“center of mass” of the Hessians can never be perfectly aligned with the space W ,
regardless of the number of samples. In this analogy, the center of mass is equivalent
to the space estimated by Algorithm 2, which essentially is a noncentered principal
component analysis of observed Hessian matrices. The primary result of this section
is Theorem 5, which provides an estimate of the approximation error of Algorithm 2
depending on the sub-Gaussian norm of the sample distributionμX and the number of
neurons in the respective layers. More precisely, this result gives a precise worst case
estimate of the error caused by the imbalance of mass. For reasons mentioned above,
the error does not necessarily vanish with an increasing number of samples, but the
probability under which the statement holds will tend to 1. In Fig. 1, the estimated
region is illustrated by the gray cones that show the maximal, worst-case deviation of
Ŵ . One crucial condition for Theorem 5 to hold is that there exists an α > 0 such that

σm0+m1

(
EX∼μX vec(∇2 f (X)) ⊗ vec(∇2 f (X))

)
≥ α.

This assumption ensures that the space spanned by the observed Hessians has, in
expectation, at least dimension m0 + m1. Aside from this technical aspect this condi-
tion implicitly helps to avoid network configurations, which are reducible, for certain
weights can not be recovered. For example, we can define a network inF(2, 2, 1)with
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Algorithm 2: Approximating W
Input: Neural network f , number of estimated Hessians m X , step-size of the finite difference

approximation ε > 0, probability distribution μX
1 begin
2 Draw x1, . . . xm X independently from μX

3 Calculate the matrix Ŵ =
(
vec(�2

ε f (x1))| . . . | vec(�2
ε f (xm X ))

)

4 Set Û̂V̂ T = SVD(Ŵ )

5 Denote by Û1 the first m0 + m1 columns of Û .

6 Set PŴ := Û1Û T
1

7 end
Output: PŴ

weights given by

a1 =
(

1√
2
1√
2

)
, a2 =

(
1√
2

− 1√
2

)
, b1 =

(
1
0

)
.

It is easy to see that a2 will never be used during a forward pass through the network,
which makes it impossible to recover a2 from the output of the network.

In the theorem below and in the proofs that follow, we will make use of the sub-
Gaussian norm ‖·‖ψ2 of a random variable. This quantitymeasures how fast the tails of
a distribution decay and such a decay plays an important role in several concentration
inequalities. More in general, for p ≥ 1, the ψp-norm of a scalar random variable Z
is defined as

‖Z‖ψp = inf
{
t > 0 : E exp(|Z/t |p) ≤ 2

}
.

For a random vector X on R
d the ψp-norm is given by

‖X‖ψp = sup
x∈Sd−1

‖|〈X , x〉|‖ψp
.

The random variables for which ‖X‖ψ1 < ∞ are called subexponential and those
for which ‖X‖ψ2 < ∞ are called sub-Gaussian. More in general, the Orlicz space
Lψp = Lψp (�,,P) consists of all real random variables X on the probabillity
space (�,,P) with finite ‖X‖ψp norm and its elements are called p-subexponential
random variables. Below, we mainly focus on sub-Gaussian random variables. In
particular, every bounded random variable is sub-Gaussian, which covers all the cases
we discuss in this work. We refer to [65] for more details. One example of a sub-
Gaussian distribution is the uniform distribution on the unit sphere, X ∼ Unif(Sd−1),
which has sub-Gaussian norm ‖X‖ψ2 = 1√

d
.

Theorem 5 Let f ∈ F(m0, m0, m1) be a neural network within the class described
in Definition 3 and consider the space W as defined in (14). Assume that μX is a
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probability measure with supp (μX ) ⊂ Bm0
1 , EX = 0, and that there exists an α > 0

such that

σm0+m1

(
EX∼μX vec(∇2 f (X)) ⊗ vec(∇2 f (X))

)
≥ α. (15)

Then, for any ε > 0, Algorithm 2 returns a projection PŴ that fulfills

∥∥PW∗ − PŴ
∥∥

F
≤

(
C�εm1m

3
2
0 + C ‖A‖2 ‖B‖2 ‖X‖ψ2

√
m1 log(m0 + 1)

)

√
α
2 − C�εm1m

3
2
0

, (16)

for a suitable subspace W∗ ⊂ W (we can actually assume that W∗ = W according
to Remark 6 below) with probability at least

1 − 2e−cm1m X − (m0 + m1)e
− α

8C1‖A‖4‖B‖4m1
m X

where c > 0 is an absolute constant and C, C1, C� > 0 are constants depending on
the constants κ j , η j for j = 0, . . . , 3.

Remark 6 If ε > 0 is sufficiently small, due to (15) the space Ŵ returned by Algo-
rithm 2 has dimension m0 + m1. If the error bound (16) in Theorem 5 is such that∥∥PW∗ − PŴ

∥∥
F

< 1, then Ŵ and W∗ must have the same dimension. Moreover,
W∗ ⊂ W and dim(W) = m0 + m1 would necessarily imply that W = W∗. Hence,
for
∥∥PW∗ − PŴ

∥∥
F

< 1 and ε > 0 sufficiently small, we have W∗ = W .

As already mentioned above, for μX = Unif(Sm0−1) we have ‖X‖ψ2 = 1√
m0

. In this
case, the error bound 16 behaves like

∥∥PW − PŴ
∥∥

F
≤ O

(
εm1m

3
2
0 +

√
m1

m0
log(m0 + 1)

)
,

which is small for ε > 0 small and m0 � m1. The latter condition seems favoring
networks, for which the inner layer has a significantly larger number of neurons than
the outer layer. This expectation is actually observed numerically, see Sect. 4. We
have to add, though, that the parameter α > 0 that intervenes in the error bound
(16) might also depend on m0, m1 (as it is in fact an estimate of an (m0 + m1)

th

singular value as in (15)). Hence, the dependency on the network dimensions is likely
more complex and depends on the interplay between the input distribution μX and
the network architecture. In fact, at least judging from our numerical experiments,
the error bound (16) is rather pessimistic, and it certainly describes a worst case
analysis. One more reason might be that some crucial estimates in its proof could
be significantly improved. Another reason could be the rather great generality of the
activation functions of the networks, which we analyze in this paper, as described
in Definition 3. Perhaps the specific instances used in the numerical experiments are
enjoying better identification properties.
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2.1 Estimating Hessians of the Network by Finite Differences

Before addressing the proof of Theorem 5, we give a precise definition of the finite dif-
ferences we are using to approximate the Hessian matrices. Denote the i-th Euclidean
canonical basis vector inRd by ei and the second-order finite difference approximation
of ∇2 f (x) by

�2
ε f (x)i j := f (x + εei + εe j ) − f (x + εei ) − f (x + εe j ) + f (x)

ε2
(17)

for i, j = 1, . . . , d = m0 and a step-size ε > 0.

Lemma 7 Let f ∈ F(m0, m0, m1) be a neural network. Further assume that �2
ε f (x)

is constructed as in (17) for some ε > 0. Then we have

sup
x∈B

m0
1

‖∇2 f (x) − �2
ε f (x)‖F ≤ C�εm1m

3
2
0 ,

where C� > 0 is a constant depending on the constants κ j , η j for j = 0, . . . , 3.

For the proof of Lemma 7, we simply use the Lipschitz continuity of the functions g, h
and of their derivatives, and make use of ‖a‖2 , ‖b‖2 ≤ 1. The details can be found in
the Appendix (Sect. 1).

2.2 Span of Tensors of (Entangled) NetworkWeights: Proof of Theorem 5

The proof can essentially be divided into two separate bounds. Both will be addressed
separately with the two lemmas below. For both lemmas, we will assume that
X1, . . . , Xm X ∼ μX independently and that supp (μX ) ⊆ Bm0

1 . Additionally, we
define the random matrices

W := (vec(∇2 f (X1))| . . . | vec(∇2 f (Xm X ))), (18)

Ŵ := (vec(�2
ε f (X1))| . . . | vec(�2

ε f (Xm X )), (19)

W ∗ := (vec(PW∇2 f (X1))| . . . | vec(PW∇2 f (Xm X ))), (20)

where PW denotes the orthogonal projection onto W (cf. (14)). For reader’s conve-
nience, we recall here from (10) that the Hessian matrix of f ∈ F(m0, m0, m1) can
be expressed as

∇2 f (x) =
m0∑
i=1

γi (x)ai ⊗ ai +
m1∑
�=1

τ�(x)v�(x) ⊗ v�(x),
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where γi (x), τ�(x), and v�(x) are introduced in (11)–(13). We further simplify this
expression by introducing the notations

Vx = (v1(x)| . . . |vm1(x)
) = AGx B,

�x = diag
(
γ1(x), . . . , γm0(x)

)
,

Tx = diag
(
τ1(x), . . . , τm1(x)

)
,

which allow us to rewrite (10) in terms of matrix multiplications

∇2 f (x) = A�x AT + Vx Tx V T
x .

Lemma 8 Let f ∈ F(m0, m0, m1) and let Ŵ , W ∗ be defined as in (19)–(20), where
μX satisfies supp (μX ) ⊆ Bm0

1 and has sub-Gaussian norm ‖X‖ψ2 . Then the bound

∥∥∥Ŵ − W ∗
∥∥∥

F
≤ √

m X

(
C�εm1m

3
2
0 + C ‖A‖2 ‖B‖2 ‖X‖ψ2

√
m1 log(m0 + 1)

)

holds with probability at least 1 − 2 exp (−cm1m X ), where c > 0 is an absolute
constant and C, C� > 0 depend only on the constants κ j , η j for j = 0, . . . , 3.

Proof By triangle inequality, we get

∥∥∥Ŵ − W ∗
∥∥∥

F
≤
∥∥∥Ŵ − W

∥∥∥
F

+ ∥∥W ∗ − W
∥∥

F . (21)

For the first term on the right-hand side, we can use the worst-case estimate from
Lemma 7 to get

∥∥∥Ŵ − W
∥∥∥

F
≤ √

m X sup
x∈B

m0
1

‖�2
ε f (x) − ∇2 f (x)‖F ≤ √

m X C�εm1m
3
2
0 (22)

for some constantC� > 0. The second term in (21) can be bounded by (the explanation
of the individual identities and estimates follows immediately below)

∥∥W − W ∗∥∥2
F =

m X∑
i=1

∥∥∥vec(∇2 f (Xi )) − vec(PW∇2 f (Xi ))

∥∥∥
2

2

=
m X∑
i=1

∥∥∥VXi TXi V T
Xi

− V0TXi V T
0

∥∥∥
2

F
≤

m X∑
i=1

4
∥∥∥(VXi − V0)TXi V T

Xi

∥∥∥
2

F

≤ 4
m X∑
i=1

∥∥VXi − V0
∥∥2 ∥∥TXi

∥∥2
F

∥∥VXi

∥∥2

≤ 4 ‖A‖4 ‖B‖4
m X∑
i=1

∥∥G Xi − G0
∥∥2 ∥∥TXi

∥∥2
F

∥∥G Xi

∥∥2
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≤ 4 ‖A‖4 ‖B‖4 m1κ
2
1η22

m X∑
i=1

∥∥G Xi − G0
∥∥2

≤ 4κ2
1κ2

2η22 ‖A‖4 ‖B‖4 m1

m X∑
i=1

∥∥∥AT Xi

∥∥∥
2

∞ .

In the first two equalities, we made use of the fact that A�x AT ∈ W and

that by definition of an orthogonal projection
∥∥∥VXi TXi V T

Xi
− PWVXi TXi V T

Xi

∥∥∥
F

≤∥∥∥VXi TXi V T
Xi

− V0TXi V T
0

∥∥∥
F
. The remaining inequalities follow directly from the

submultiplicativity of ‖·‖F and ‖·‖ combined with the Lipschitz continuity of the
activation functions and their derivatives (cf. 3 in Definition 3). Since

∥∥a j
∥∥ ≤ 1, we

can estimate the sub-exponential norm of
∥∥AT Xi

∥∥2∞ = max1≤ j≤m0〈Xi , a j 〉2 by
∥∥∥∥ max
1≤ j≤m0

〈Xi , a j 〉2
∥∥∥∥

ψ1

≤ c1 log(m0 + 1) max
1≤ j≤m0

∥∥〈Xi , a j 〉2
∥∥

ψ1

= c1 log(m0 + 1) max
1≤ j≤m0

∥∥〈Xi , a j 〉
∥∥2

ψ2
≤ c1 log(m0 + 1) ‖X‖2ψ2

,

for an absolute constant c1 > 0, where we applied [64, Lemma 2.2.2] in the
first inequality and used that ‖Y‖2ψ2

= ∥∥Y 2
∥∥

ψ1
for any scalar random variable

Y together with the fact that the sub-Gaussian norm of a vector is defined by
‖X‖ψ2 = supx∈Sm0−1 |〈x, X〉| (cf. [65]). The random vectors Xi ∼ μX are i.i.d.,
which allows us to drop the dependency on i in the last step. The previous bound also
guarantees a bound on the expectation, which is due to E[|Y |p] ≤ p! ‖Y‖ψ1 (cf. [64]),
namely, for p = 1 and Y = max1≤ j≤m0〈X , a j 〉2

E

[
max

1≤ j≤m0
〈X , a j 〉2

]
≤
∥∥∥∥ max
1≤ j≤m0

〈Xi , a j 〉2
∥∥∥∥

ψ1

≤ c1 log(m0 + 1) ‖X‖2ψ2
. (23)

Denote Zi := ∥∥AT Xi
∥∥2∞ for all i = 1, . . . , m X , then

∥∥W − W ∗∥∥2
F ≤ 4κ2

1κ2
2η22 ‖A‖4 ‖B‖4 m1

m X∑
i=1

Zi . (24)

Therefore, applying the Bernstein inequality for sub-exponential random variables
[65, Theorem 2.8.1] to the right sum in (24) yields

∥∥W − W ∗∥∥2
F ≤ 4κ2

1κ2
2η22 ‖A‖4 ‖B‖4 (c1m X m1 log(m0 + 1) ‖X‖2ψ2

+ t),
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with probability at least

1 − 2 exp

(
−cmin

(
t2∑m X

i=1 ‖Zi‖2ψ1

,
t

maxi≤m X ‖Zi‖ψ1

))

≥ 1 − 2 exp

(
−cmin

(
t2

m X (c1 log(m0 + 1) ‖X‖2ψ2
)2

,
t

c1 log(m0 + 1) ‖X‖2ψ2

))
,

for all t ≥ 0 and an absolute constant c > 0. Then, by choosing t = c1m X m1 log(m0+
1) ‖X‖2ψ2

, we get

∥∥W − W ∗∥∥2
F ≤ 8κ2

1κ2
2η22 ‖A‖4 ‖B‖4 c1m X m1 log(m0 + 1) ‖X‖2ψ2

(25)

with probability at least

1 − 2 exp
(
−cmin

(
m2

1m X , m1m X

))
= 1 − 2 exp (−cm1m X ) . (26)

From (21), combining (22) and (25) yields

∥∥∥Ŵ − W ∗
∥∥∥

F
≤ √

m X sup
x∈B

m0
1

‖�2 f (x) − ∇2 f (x)‖F

+√8c1κ1κ2η2 ‖A‖2 ‖B‖2 ‖X‖ψ2

√
m X m1 log(m0 + 1)

≤ √
m X C�εm1m

3
2
0

+√8c1κ1κ2η2 ‖A‖2 ‖B‖2 ‖X‖ψ2

√
m X m1 log(m0 + 1),

where we used Lemma 7 in the second inequality, and the result holds at least with
the probability given as in (26). Setting C := √

8c1κ1κ2η2 > 0 finishes the proof.

Lemma 9 Let μX be centered with supp (μX ) ⊆ Bm0
1 . Furthermore, assume that

f ∈ F(m0, m0, m1) and that Ŵ is given by (19) with step-size ε > 0. If

σm0+m1

(
EX∼μX vec(∇2 f (X)) ⊗ vec(∇2 f (X))

)
≥ α > 0,

then we have

σm0+m1(Ŵ ) ≥ √
m X

(√
α

2
− C�εm1m

3
2
0

)
,

with probability at least 1 − (m0 + m1) exp
(
− m X α

8C1‖A‖4‖B‖4m1

)
, where C�, C1 > 0

depend only on the constants κ j , η j for j = 0, . . . , 3.
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Proof By Weyl’s inequality and re-using (22), we obtain

σm0+m1(Ŵ ) ≥ σm0+m1(W ) −
∥∥∥W − Ŵ

∥∥∥ ≥ σm0+m1(W ) − C�εm1m
3
2
0 . (27)

For the first term of the right-hand side, we have σm0+m1(W )2 = σm0+m1(W W T ),
which can be written as a sum of the outer products of the columns

σm0+m1(W W T ) =
m X∑
i=1

vec(∇2 f (Xi )) ⊗ vec(∇2 f (Xi )).

Additionally, the matrices vec(∇2 f (Xi )) ⊗ vec(∇2 f (Xi )) are independent and pos-
itive definite random matrices. The Chernoff bound for the eigenvalues for sums of
random matrices, due to Gittens and Tropp [25], applied to the right-hand side of the
last equation yields the following lower bound:

σm0+m1

(m X∑
i=1

vec(∇2 f (Xi )) ⊗ vec(∇2 f (Xi ))

)
≥ tm Xα for t ∈ [0, 1],

with probability at least

1 − (m0 + m1) exp
(
−(1 − t)2

m Xα

2K

)
,

where we set K = maxx∈B
m0
1

∥∥vec(∇2 f (x)) ⊗ vec(∇2 f (x))
∥∥. To estimate K more

explicitly, we first have to bound the norm of the Hessian matrices. Let X ∼ μX , then

∥∥∥∇2 f (X)

∥∥∥
F

≤ sup
x∈B

m0
1

∥∥∥∇2 f (x)

∥∥∥
F

= sup
x∈B

m0
1

∥∥∥A�x AT + Vx Tx V T
x

∥∥∥
F

≤ sup
x∈B

m0
1

‖A‖2
⎛
⎝κ2‖B‖

√√√√
m1∑
�=1

h′
�(b

T
� g(AT x + θ)) + ‖B‖2 κ2

1‖�x‖F

⎞
⎠

≤ ‖A‖2
(
κ2‖B‖η2√m1 + ‖B‖2 κ2

1η2
√

m1

)
≤ √C1 ‖A‖2 ‖B‖2 √

m1,

for some constant C1 > 0. Now we can further estimate K by

K = max
x∈B

m0
1

∥∥vec(∇2 f (x)) ⊗ vec(∇2 f (x))
∥∥ = max

x∈B
m0
1

∥∥vec(∇2 f (x)) ⊗ vec(∇2 f (x))
∥∥

F

= max
x∈B

m0
1

∥∥∇2 f (x)
∥∥2

F ≤ C1 ‖A‖4 ‖B‖4 m1.

Finally, we can finish the proof by plugging the above into (27) and by setting t = 1
2 .
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Proof of Theorem 5 The proof is a combination of the previous lemmas together with
an application of Wedin’s bound [59,66]. Given Ŵ , W ∗, let Û ̂V̂ T , U∗∗V ∗T be
their respective singular value decompositions. Furthermore, denote by Û1, U∗

1 the
matrices formed by only the first m0 +m1 columns of Û , U∗, respectively. According
to this notation, Algorithm 2 returns the orthogonal projection PŴ = Û1Û T

1 . We

also denote by PW∗ the projection given by PW∗ = U∗
1 U∗

1
T . Then we can bound the

difference of the projections by applying Wedin’s bound

∥∥PŴ − PW∗
∥∥

F
=
∥∥∥Û1Û T

1 − U∗
1 U∗

1
T
∥∥∥

F
≤

2
∥∥∥Ŵ − W ∗

∥∥∥
F

ᾱ
,

as soon as ᾱ > 0 satisfies

ᾱ ≤ min
1< j≤m0+m1
m0+m1+1≤k

∣∣∣σ j (Ŵ ) − σk(W ∗)
∣∣∣ and ᾱ ≤ min

1≤ j≤m0+m1
σ j (Ŵ ).

Since W has dimension m0 + m1, we have maxk≥m0+m1+1 σk(W ∗) = 0. Therefore
the second inequality is equivalent to the first, and we can choose ᾱ = σm0+m1(Ŵ ) ≤
min1≤ j≤m0+m1 σ j (Ŵ ). Thus, we end up with the inequality

∥∥PŴ − PW∗
∥∥

F
≤

2
∥∥∥Ŵ − W ∗

∥∥∥
F

σm0+m1(Ŵ )
.

Applying the union bound for the two events in Lemma 8 and Lemma 9 in combination
with the respective inequalities yields

∥∥PŴ − PW∗
∥∥

F
≤ C�εm1m

3
2
0 + C ‖A‖2 ‖B‖2 ‖X‖ψ2

√
m1 log(m0 + 1)

√
α
2 − C�εm1m

3
2
0

with probability at least 1 − 2e−cm1m X − (m0 + m1)e
− α

8C1‖A‖4‖B‖4m1
m X

, where
C, C1, C�, c > 0 are the constants from the lemmas above.

3 Recovery of Individual (Entangled) Neural NetworkWeights

The symmetric rank-1 matrices {ai ⊗ ai : i ∈ [m0]} ∪ {v� ⊗ v� : � ∈ [m1]} made
of tensors of (entangled) neural network weights are the spanning elements of W ,
which in turn can be approximated by Ŵ as has been proved above. In this section,
we explain under which conditions it is possible to stably identify approximations to
the network profiles {ai : i ∈ [m0]} ∪ {v� : � ∈ [m1]} by a suitable selection process,
Algorithm 3.

To simplify notation, we drop the differentation between weights ai and v� and
simply denote W = span {w1 ⊗ w1, . . . , wm ⊗ wm}, where m = m0 + m1, and
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every w� equals either one of the ai ’s or one of the v�’s. Thus, m may be larger
than d. We also use the notations W j := w j ⊗ w j , and Ŵ j := PŴ (W j ). Provided
that the approximation error δ := ∥∥PW − PŴ

∥∥
F
satisfies δ < 1 (cf. Theorem 5),

{Ŵ j : j ∈ [m]} is the image of a basis under a bijective map and thus can be used
as a basis for Ŵ (see Lemma 32 in the Appendix). We quantify the deviation from
orthonormality by ν := CF −1, see (9). As an example of suitable frames, normalized
tight frames achieve the bounds c f = CF = m/d [4, Theorem 3.1], see also [11].
For instance, for such frames m = �1.2d� > d would allow for ν = 0.2. These
finite frames are related to the Thomson problem of spherical equidistribution, which
involves finding the optimal way in which to place m points on the sphere S

d−1 in
R

d so that the points are as far away from each other as possible. We further note
that if 0 < ν < 1 then {W j : j ∈ [m]} is a system of linearly independent matrices,
and therefore a Riesz basis (see Lemma 29 and (47) in the Appendix). We denote the
corresponding lower and upper Riesz constants by cr , CR .

Finally, for any real, symmetric matrix X , we let X =∑d
j=1 λ j (X)u j (X)⊗u j (X)

be the spectral decomposition ordered according to ‖X‖ = λ1(X) ≥ . . . ≥ λd(X) (in
case λ1(X) = −‖X‖, we actually consider −X instead of X ). In the following, we
are able to provide in Theorem 11 general recovery guarantees of network weights
provided by the eigenvector associated to the largest eigenvalue in absolute value of
any suitable matrix M ∈ Ŵ ∩ S.

Remark 10 The problem considered in this section is how to approximate the individ-
ual w� ⊗ w� within the spaceW or more precisely by using its approximation Ŵ . As
the analysis below is completely unaware of how the space Ŵ has been constructed,
in particular it does not rely on the fact that it comes from second-order differentiation
of a two hidden layer network, here we are actually implicitly able of addressing also
the problem of the identification of weights for one hidden layer networks (2) with a
number m of neurons larger than the input dimension d, which was left as an open
problem from [23].

3.1 Recovery Guarantees

The network profiles {w j , j ∈ [m]} are (up to sign) uniquely defined bymatrices {W j :
j ∈ [m]} as they are precisely the eigenvectors corresponding to the unique nonzero
eigenvalue. Therefore, it suffices to recover {W j : j ∈ [m]}, and we have to study
when such matrices can be uniquely characterized within the matrix spaceW by their
rank-1 property. Let us stress that this problem is strongly related to similar and very
relevant ones appearing recently in the literature addressing nonconvex programs to
identify sparse vectors and low-rank matrices in linear subspaces, see, e.g., in [45,49].
In Appendix 2 (Lemma 30 and Corollary 31), we prove that unique identification is
possible if any subset of �m/2� + 1 vectors of {w j : j ∈ [m]} is linearly independent
and that such subset linear independence is actually implied by the frame bounds (9)
if ν = CF − 1 < �m

2 �−1. Unfortunately, this assumption seems a bit too restrictive
in our scenario; hence, we instead resort to a weaker and robust version given by the
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following result. In particular, we prove that any near rank-1 matrix in Ŵ of unit
Frobenius norm is not too far from one of the W j ’s, provided that δ and ν are small.

Theorem 11 Let M ∈ Ŵ ∩ S and assume max{δ, ν} ≤ 1/4. If λ1(M) >

max{2δ, λ2(M)} then

min
j=1,...,m,
s∈{−1,1}

∥∥sw j − u1(M)
∥∥ ≤ √

8
c−1/2

r
√

ν + ν + 2δ

λ1(M) − λ2(M)
. (28)

Before proving Theorem 11, we need the following technical result.

Lemma 12 For any M = ∑m
j=1 σ j Ŵ j ∈ Ŵ ∩ S with λ1(M) ≥ δ/(1 − δ) we have

maxi σi ≥ 0.

Proof Assume, to the contrary, that max j σ j < 0, and denote Z = ∑m
j=1 σ j W j with

M = PŴ (Z). Z is negative definite, since vT Zv = ∑m
j=1 σ j

〈
w j , v

〉2, and σ j < 0

for all i = 1, . . . , m. Moreover, we have ‖Z‖F ≤ (1 − δ)−1 by Lemma 32, and thus,
we get a contradiction by

δ

1 − δ
≤ λ1(M) ≤ λ1(Z) + ‖M − Z‖F < ‖M − Z‖F ≤ δ

1 − δ
.

Proof of Theorem 11 Let λ1 := λ1(M), u1 := u1(M) for short in this proof. We can
represent M in terms of the basis elements of Ŵ as M =∑m

j=1 σ j Ŵ j , and let Z ∈ W
satisfy M = PŴ (Z). Furthermore, let σ j∗ = max j σ j ≥ 0 where the nonnegativity
follows from Lemma 12. Using Z = ∑m

j=1 σ jw j ⊗ w j and ‖Z‖F ≤ (1 − δ)−1, we
first notice that

λ1 = 〈M, u1 ⊗ u1〉 = 〈Z , u1 ⊗ u1〉 + 〈M − Z , u1 ⊗ u1〉

≤
m∑

j=1

σ j
〈
w j , u1

〉2 + ‖M − Z‖F ≤ σ j∗CF + 2δ ≤ σ j∗ + ν + 2δ,
(29)

and

λ1 = 〈M, u1 ⊗ u1〉 ≥ max
j

〈
Z , w j ⊗ w j

〉− 2δ ≥ σ j∗ +
∑
i �= j∗

σi 〈wi , u1〉2 − 2δ

≥ σ j∗ − ‖σ‖∞ ν − 2δ ≥ σ j∗ − 2ν − 2δ,

where we used ‖σ‖∞ ≤ (1 − δ)−1(1 − ν)−1 ≤ 2 according to Lemma 33. Hence∣∣λ1 − σ j∗
∣∣ ≤ 2δ + 2ν. Define now Q := Id − u1 ⊗ u1. Choosing s ∈ {−1, 1} so that

s
〈
w j∗ , u1

〉 ≥ 0, we can bound the left hand side in (28) by

∥∥sw j∗ − u1
∥∥2 = 2(1 − 〈sw j∗ , u1

〉
) ≤ 2(1 − 〈w j∗ , u1

〉2
) = 2

∥∥Qw j∗
∥∥2 = 2

∥∥QW j∗
∥∥2

F .
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Viewing W j∗ = w j∗ ⊗ w j∗ as the orthogonal projection onto the eigenspace of the
matrix λ1W j∗ , corresponding to eigenvalues in [∞, λ1], we can use Davis-Kahans
Theorem in the version of [6, Theorem 7.3.1] to further obtain

∥∥sw j∗ − u1
∥∥ ≤ √

2
∥∥QW j∗

∥∥
F ≤ √

2

∥∥Q(λ1W j∗ − M)W j∗
∥∥

F

λ1 − λ2

≤ √
2

∥∥(λ1W j∗ − M)W j∗
∥∥

F

λ1 − λ2
. (30)

To bound the numerator, we first use ‖Z − M‖F ≤ δ/(1 − δ) in the decomposition

∥∥(λ1W j∗ − M)W j∗
∥∥

F ≤ ∥∥(λ1W j∗ − Z)W j∗
∥∥

F + ‖Z − M‖F

≤ ∥∥(λ1W j∗ − Z)W j∗
∥∥

F + δ

1 − δ
,

and then bound the first term using
∣∣λ1 − σ j∗

∣∣ ≤ 2δ + 2ν and the frame property (9)
by

∥∥(λ1W j∗ − Z)W j∗
∥∥

F =
∥∥∥∥∥∥
(λ1 − σ j∗)W j∗ +

∑
j �= j∗

σ j (w j ⊗ w j )W j∗

∥∥∥∥∥∥
F

≤ ∣∣λ1 − σ j∗
∣∣+
∥∥∥∥∥∥
∑
j �= j∗

σ j
〈
w j∗, w j

〉
w j∗ ⊗ w j

∥∥∥∥∥∥
F

≤ 2δ + 2ν +
∑
j �= j∗

∣∣σ j
∣∣ ∣∣〈w j∗ , w j

〉∣∣

≤ 2δ + 2ν + ‖σ‖2
√∑

j �= j∗

〈
w j∗ , w j

〉2 ≤ 2δ + 2ν + ‖σ‖2
√

ν.

Combining these estimates with (30) and δ/(1 − δ) ≤ 2δ, we obtain

∥∥sw j∗ − u1(M)
∥∥ ≤ √

2
2δ + 2ν + ‖σ‖2

√
ν + 2δ

λ1 − λ2
= √

2
‖σ‖2

√
ν + 2ν + 4δ

λ1 − λ2

The result follows since {w j ⊗ w j : j ∈ [m]} is a Riesz basis and thus ‖σ‖2 ≤
c−1/2

r ‖Z‖F ≤ 2c−1/2
r .

The preceding result provides recovery guarantees for network weights provided
by the eigenvector associated to the largest eigenvalue in absolute value of any suit-
able matrix M ∈ Ŵ ∩ S. The estimate is inversely proportional to the spectral gap
λ1(M)−λ2(M). The problem then becomes the constructive identification ofmatrices
M belonging to Ŵ ∩ S, which simultaneously maximize the spectral gap. Inspired
by the results in [23], we propose to consider the following nonconvex program as
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selector of such matrices

M = argmax ‖M‖ s.t. M ∈ Ŵ, ‖M‖F ≤ 1. (31)

Bymaximizing the spectral normunder a Frobenius normconstraint, a localmaximizer
of the program should be as nearly rank one as possible within a given neighborhood.
Moreover, if rank one matrices exist in Ŵ , these are precisely the global optimizers.

3.2 A Nonlinear Program: Properties of Local Maximizers of (31)

In this section, we prove that, except for spurious cases, local maximizers of (31) are
generically almost rank-1 matrices in Ŵ . In particular, we show that local maximizers
either satisfy ‖M‖2 ≥ 1−cδ−c′ν, for some small constants c, c′, implying near min-
imal rankness, or ‖M‖2 ≤ cδ+c′ν, i.e., all eigenvalues of M are small, the mentioned
spurious cases. Before addressing these estimates, we provide a characterization of
the first- and second-order optimality conditions for (31), see [23] and also [61,62].

Theorem 13 (Theorem 3.4 in [23]) Let M ∈ Ŵ ∩S and assume there exists a unique
i∗ ∈ [d] satisfying |λi∗(M)| = ‖M‖. If M is a local maximizer (31); then, it fulfills
the stationary or first order optimality condition

ui∗(M)T Xui∗(M) = λi∗(M) 〈X , M〉 (32)

for all X ∈ Ŵ . A stationary point M (in the sense that M fulfills (32)) is a local
maximizer of (31) if and only if for all X ∈ Ŵ

2
∑
k �=i∗

(ui∗(M)T Xuk(M))2

|λi∗(M) − λk(M)| ≤ |λi∗(M)| ‖X − 〈X , M〉 M‖2F . (33)

Proof The statement requires minor modification of [23, Theorem 3.4] and the proof
follows along analogous lines. For reader’s convenience, we give self-contained proof
of the statement below, with some key computations borrowed from [23].

For simplicity, we drop the argument M in λi , ui , and without loss of generality
we assume λi∗ = ‖M‖, otherwise we consider −M . Following the analysis in [23],
for X ∈ Ŵ ∩ S we can consider the function

fX (α) = ‖M + αX‖
‖M + αX‖F

,

because M is a local maximizer if and only if α = 0 is a local maximizer of fX for
all X ∈ Ŵ ∩ S.

Let us consider X ∈ Ŵ ∩ S with X ⊥ M first. We note that the simplicity of λi∗
implies that there exist analytic functions λi∗(α) and ui∗(α) with (M + αX)ui∗(α) =
λi∗(α)ui∗(α) for all α in a neighborhood around 0 [40,50]. Therefore we can use a
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Taylor expansion ‖M + αX‖ = λi∗ + λ′
i∗(0)α + λ′′

i∗(0)α
2/2 + O(α3) and combine

it with ‖M + αX‖F = √
1 + α2 = 1 − α2/2 + O(α4) to get

fX (α) =
(
1 − α2/2

) (
λi∗ + λ′

i∗(0)α + λ′′
i∗(0)α

2/2
)

+ O(α3) as α → 0.

Differentiating once, we get f ′
X (0) = λ′

i∗(0); hence, α = 0 is a stationary point if
and only if λ′

i∗(0) vanishes. Following the computations in [23], we find that λ′
i∗(0) =

ui∗(0)T Xui∗(0) = 0, and thus, (32) follows for any X ⊥ M . For general X , we
split X = 〈X , M〉 M + X⊥, and get ui∗(0)T Xui∗(0) = 〈X , M〉 ui∗(0)T Mui∗(0) =
λi∗(0) 〈X , M〉.

For (33), we have to check additionally f ′′
X (α) ≤ 0. The second derivative of fX (α)

at zero is given by f ′′
X (0) = λ′′

i∗(0) − λi∗(0); hence, the condition for attaining a local
maximum is λ′′

i∗(0) ≤ λi∗(0). Again, we can follow the computations in [23] to obtain

λ′′
i∗(0) = 2

∑
k �=i∗

(uT
i∗(0)Xuk(0))2

|λi∗(0) − λk(0)| ,

and (33) follows immediately for any X ⊥ M , ‖X‖F = 1. For general X , we decom-
pose it into X = 〈X , M〉 M + X⊥. Since uT

i∗(0)Muk(0) = 0 for all k �= i∗, we
get

2
∑
k �=i∗

(uT
i∗(0) (〈X , M〉 M + X⊥) uk(0))2

|λi∗(0) − λk(0)|

=2 ‖X⊥‖2F
∑
k �=i∗

(
uT

i∗(0)
(

X⊥‖X⊥‖F

)
uk(0)

)2

|λi∗(0) − λk(0)| ≤λi∗(0) ‖X⊥‖2F ,

and the result follows from ‖X⊥‖F = ‖X − 〈X , M〉 M‖F .

For simplicity, we denote ui := ui (M) and λi = λi (M) throughout the rest of this
section. Moreover, we assume M satisfies

(A1) λ1 = ‖M‖ (this is without loss of generality because −M and M may be both
local maximizers),

(A2) λ1 > λ2. (This is a useful technical condition in order to use the second-order
optimality condition (33).)

To derive the bounds for λ1, we establish an inequality 0 ≤ λ21(λ
2
1 − 1) + cδ + c′ν,

which implies that λ21(M) is either close to 0 or close to 1. A first ingredient for
obtaining the inequality is

∥∥∥Ŵ j u1

∥∥∥
2

2
≥ uT

1 Ŵ j u1 − 2δ = λ1

〈
Ŵ j , M

〉
− 2δ, (34)
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where we used
∣∣∣‖Ŵ j u1‖2 − uT

1 Ŵ j u1

∣∣∣ ≤ 2δ in the inequality, see Lemma 33 in

Appendix 2, and (32) in the equality. The other useful technical estimate is provided
in the following Lemma, which is proven by leveraging the second order optimality
condition (33).

Lemma 14 Assume that M is a local maximizer satisfying (A1) and (A2) and let
max{δ, ν} < 1/4. For any X ∈ Ŵ with ‖X‖F ≤ 1 we have

‖Xu1‖22 ≤ λ21
1 + 〈X , M〉2

2
+ 5δ + 2ν. (35)

For the proof of Lemma 14, we need a lower bound for the smallest eigenvalue (see
Appendix 2 for the proof of Lemma 15).

Lemma 15 Assume that M is a stationary point of (31) satisfying (A1) and (A2). If
max{δ, ν} < 1/4, then λD ≥ −2δλ−1

1 − 8δ − 4ν.

Proof of Lemma 14 We first use (32) and (33) to get

2

λ1 − λD

(
‖Xu1‖22 − λ21 〈X , M〉2

)
= 2

λ1 − λD

(
‖Xu1‖22 − 〈Xu1, u1〉2

)

= 2

λ1 − λD

D∑
i=2

〈Xu1, uk〉2

≤ 2
D∑

i=2

(uT
1 Xuk)

2

λ1 − λk
≤ λ1 ‖X − 〈X , M〉 M‖2F ,

and then rearrange the inequality to obtain

‖Xu1‖22 ≤ λ1(λ1 − λD)

2

(
‖X‖2F − 〈X , M〉2

)
+ λ21 〈X , M〉2

≤ λ1(λ1 − λD)

2
+ λ1(λ1 + λD)

2
〈X , M〉2

= λ21
1 + 〈X , M〉2

2
− λ1λD

1 − 〈X , M〉2
2

.

Using the lower bound for λD from Lemma 15, and λ1 ≤ 1, we get

‖Xu1‖22 ≤ λ21
1 + 〈X , M〉2

2
+ λ1

(
2δλ−1

1 + 8δ + 4ν
) 1 − 〈X , M〉2

2

≤ λ21
1 + 〈X , M〉2

2
+ (10δ + 4ν)

1 − 〈X , M〉2
2

= λ21
1 + 〈X , M〉2

2
+ 5δ + 2ν.

By combining (34) and (35), the bounds for λ1 follow.
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Theorem 16 Assume that M is a local maximizer of (31) satisfying 3.2 and 3.2, and
assume 38δ + 13ν < 1/4. Then we have λ21 ≥ 1 − 38δ − 13ν or λ21 ≤ 38δ + 13ν.

Proof Let j∗ = argmax j σ j . We first note that we can assume σ j∗ ≥ 0 without loss of
generality by Lemma 12, since there is nothing to show if λ1 ≤ 2δ. Now we consider
(34) and (35) for X = Ŵ j∗ to get the inequality

λ21

1 +
〈
Ŵ j∗ , M

〉2

2
+ 5δ + 2ν ≥ λ1

〈
Ŵ j∗ , M

〉
− 2δ,

or, equivalently, 0 ≤ λ21 − 1 +
(
1 − λ1

〈
Ŵ j , M

〉)2 + 14δ + 4ν

or, equivalently, 0 ≤ λ21 − 1 +
(
1 − λ1σ j∗

∥∥∥Ŵ j

∥∥∥
2

F
+ λ1

(
σ j∗
∥∥∥Ŵ j

∥∥∥
2

F
−
〈
Ŵ j , M

〉))2

+ 14δ + 4ν.

(36)
We separate two cases. In the first case, we have σ j∗ > 1, which implies 〈Ŵ j , M〉 >

1 − 5δ − 2ν and thus 〈W j , M〉 > 1 − 6δ − 2ν by Lemma 33 and max{δ, ν} < 1/4.
Since 〈W j , M〉 = wT

j Mw j , this implies λ1 > 1 − 6δ − 2ν, i.e., the result is proven.

We continue with the case σ j∗ ≤ 1, which implies λ1σ j∗‖Ŵ j‖2F ≤ 1. Using Lemma
33 to bound σ j∗‖Ŵ j‖2F − 〈Ŵ j , M〉, λ1 < 1 and ‖Ŵ j‖2F ≥ 1 − 2δ, the last inequality
in (36) implies

0 ≤ λ21 − 1 + (1 − λ1σ j∗ + 6δ + 2ν
)2 + 14δ + 4ν. (37)

Furthermore, by following the computation we performed for (29), we get σ j∗ ≥
λ1 − ν − 2δ, and inserting it in (37) we obtain

0 ≤ λ21 − 1 +
(
1 − λ21 + 8δ + 3ν

)2 + 14δ + 4ν,

implying 0 ≤ λ21

(
λ21 − 1

)
+ 38δ + 13ν.

Provided that 38δ + 13ν < 1/4, this quadratic inequality (in the unknown λ21) has
solutions λ21 ≥ 1 − 38δ − 13ν, or λ21 ≤ 38δ + 13ν.

In Sect. 3.2, we analyze local maximizers of (31) and show that there exist small
constants c, c′ such that either ‖M‖2 ≥ 1− cδ + c′ν, or ‖M‖2 ≤ cδ + c′ν. Therefore,
a local maximizer of (31) is either almost rank-1 or it has its energy distributed across
many eigenvalues. This criterion can be easily checked in practice, and therefore max-
imizing (31) is a suitable approach for finding near rank-1 matrices in Ŵ . In this
section, we show how those individual symmetric rank-1 tensors can be approximated
by a simple iterative algorithm, Algorithm 3, making exclusive use of the projection
PŴ . Algorithm 3 strives to solve the nonconvex program (31), by iteratively increas-
ing the spectral norm of its iterations. Our approach is closely related to the projected
gradient ascent iteration [23, Algorithm 4.1], but we introduce some modifications, in
particular we exchange the order of the normalization and the projection onto Ŵ . The
proof of convergence of [23, Algorithm 4.1] takes advantage of that different ordering
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Algorithm 3: Approximating neural network profiles
Input: PŴ with arbitrary basis {bi }i=1,...,m , stepsize γ > 0, number of iterations J

1 begin
2 Sample g ∼ N (0, Idm ), and let M0 := PS(

∑m
i=1 gi bi ).

3 If ‖M0‖ is not an eigenvalue, take −M0 instead.
4 for j = 1,…,J do
5 M j+1 = PS ◦ PŴ (M j + γ u1(M j ) ⊗ u1(M j )).

6 end
7 end
Output: u1(MJ )

of these operations to address the case whereW is spanned by at most m ≤ d rank-1
matrices formed as tensors of nearly orthonormal vectors (after whitening). In fact,
its analysis is heavily based on approximated singular value or spectral decomposi-
tions. Unfortunately in our case, the decomposition M =∑m

j=1 σ jw j ⊗ w j does not
approximate the singular value or spectral decomposition since thew j ’s are redundant
(they form a frame) and therefore are not properly nearly orthonormal in the sense
required in [23].

Algorithm 3 is based on the iterative application of the operator Fγ defined by

Fγ (X) := PS ◦ PŴ (X + γ u1(X) ⊗ u1(X)),

with γ > 0 and PS as the projection onto the sphere S = {X : ‖X‖F = 1}. The
following Lemma shows that, if λ1(X) > 0, the operator Fγ is well-defined, in the
sense that it is a single-valued operator.

Lemma 17 Let X ∈ Ŵ ∩S with λ1(X) > 0 and γ > 0. Then ‖PŴ (X +γ u1(X)⊗u1

(X))‖2F = 1+2γ λ1(X)+γ 2
∥∥PŴ (u1(X) ⊗ u1(X))

∥∥2
F

. In particular, Fγ (X) is well-
defined and can be explicitly expressed as

Fγ (X) = PŴ (X + γ u1(X) ⊗ u1(X))∥∥PŴ (X + γ u1(X) ⊗ u1(X))
∥∥

F

.

Proof The result follows from
〈
X , PŴ (u1(X) ⊗ u1(X))

〉 = λ1(X) and computing

explicitly the squared norm
∥∥PŴ (X + γ u1(X) ⊗ u1(X))

∥∥2
F
.

We analyze next the sequence (M j ) j∈N generated by Algorithm 3. We show that
(λ1(M j )) j∈N is a strictly monotone increasing sequence, converging to a well-defined
limit λ∞ = lim j→∞ λ1(M j ), and, if λ1(M j ) > 1/

√
2 for some j , all convergent

subsequences of (M j ) j∈N converge to fixed points of Fγ . Moreover, we prove that
such fixed points satisfy (32) and are thus stationary points of (31). We begin by
providing two equivalent characterizations of (32).

Lemma 18 For M ∈ Ŵ and c �= 0, we have

vT Xv = c 〈X , M〉 for all X ∈ Ŵ if and only if M = c−1PŴ (v ⊗ v).
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Proof Assume that vT Xv = c 〈X , M〉 for all X . We notice that the assumption is
equivalent to 〈X , v ⊗ v − cM〉 = 0 for all X ∈ Ŵ . Therefore PŴ (v ⊗ v − cM) = 0,

and the result follows from M ∈ Ŵ . In the case where M = c−1PŴ (v ⊗ v), we

compute c 〈X , M〉 = 〈X , PŴ (v ⊗ v)
〉 = vT Xv since X ∈ Ŵ .

Lemma 19 Let X ∈ Ŵ ∩ S. We have
∥∥PŴ (u j (X) ⊗ u j (X))

∥∥
F

≥ ∣∣λ j (X)
∣∣ with

equality if and only if X = λ j (X)−1PŴ (u j (X) ⊗ u j (X)).

Proof We drop the argument X for λ j (X) and u j (X) for simplicity. We first calculate

∥∥PŴ (u j ⊗ u j )
∥∥

F
= ∥∥PŴ (u j ⊗ u j )

∥∥
F

‖X‖F ≥ ∣∣〈PŴ (u j ⊗ u j ), X
〉∣∣

= ∣∣〈u j ⊗ u j , X
〉∣∣ = ∣∣λ j

∣∣ . (38)

Moreover, we have equality if and only if
∥∥PŴ (u j ⊗ u j )

∥∥
F

= ∣∣λ j
∣∣, hence (38) is

actually a chain of equalities. Specifically,

∥∥PŴ (u j ⊗ u j )
∥∥

F
‖X‖F = ∣∣〈PŴ (u j ⊗ u j ), X

〉∣∣ ,

which implies X = cPŴ (u j ⊗ u j ) for some scalar c. Since ‖X‖F = 1, c = λ−1
j

follows from

1 = 〈cPŴ (u j ⊗ u j ), X
〉 = c

〈
u j ⊗ u j , X

〉 = cλ j .

Lemmas 18 and 19 show that the stationary point condition (32) for M with ‖M‖ =
|λi∗(M)| and isolated λi∗ is equivalent to both

M = λ−1
i∗ PŴ (ui∗(M) ⊗ ui∗(M)), and

∥∥PŴ (ui∗(M) ⊗ ui∗(M))
∥∥

F
= |λi∗(X)| .

A similar condition appears naturally if we characterize the fixed points of Fγ .

Lemma 20 Let γ > 0 and X ∈ Ŵ ∩ S with λ1(X) > 0. Then we have

0 < λ1(X) <
∥∥PŴ (u1(X) ⊗ u1(X))

∥∥
F

if and only if λ1(F(X)) > λ1(X), (39)

λ1(X) = ∥∥PŴ (u1(X) ⊗ u1(X))
∥∥

F
if and only if Fγ (X) = X . (40)

Proof For simplicity, we denote u := u1(X) and λ = λ1(X) in this proof. We first
prove that 0 < λ <

∥∥PŴ (u ⊗ u)
∥∥

F
implies λ1(F(X)) > λ. It suffices to show that

there exists any unit vector v such that vT Fγ (X)v > λ. In particular, we can test
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Fγ (X) with v = u, which yields the identity

uT Fγ (X)u − λ = ∥∥PŴ (X + γ u ⊗ u)
∥∥−1

F

〈
PŴ (X + γ u ⊗ u), u ⊗ u

〉− λ

= ∥∥PŴ (X + γ u ⊗ u)
∥∥−1

F

(〈X , u ⊗ u〉 + γ
〈
PŴ (u ⊗ u), u ⊗ u

〉)− λ

= ∥∥PŴ (X + γ u ⊗ u)
∥∥−1

F

(
λ + γ

∥∥PŴ (u ⊗ u)
∥∥2

F

)
− λ

=
λ
(
1 − ∥∥PŴ (X + γ u ⊗ u)

∥∥
F

)
+ γ

∥∥PŴ (u ⊗ u)
∥∥2

F∥∥PŴ (X + γ u ⊗ u)
∥∥

F

.

By using now λ <
∥∥PŴ (u ⊗ u)

∥∥
F
, we can bound

1 − ∥∥PŴ (X + γ u ⊗ u)
∥∥

F
= 1 −

√∥∥PŴ (X + γ u ⊗ u)
∥∥2

F

= 1 −
√∥∥X + γ PŴ (u ⊗ u)

∥∥2
F

= 1 −
√
1 + γ 2

∥∥PŴ (u ⊗ u)
∥∥2

F
+ 2γ

〈
X , PŴ (u ⊗ u)

〉

= 1 −
√
1 + γ 2

∥∥PŴ (u ⊗ u)
∥∥2

F
+ 2γ λ

> 1 −
√
1 + γ 2

∥∥PŴ (u ⊗ u)
∥∥2

F
+ 2γ

∥∥PŴ (u ⊗ u)
∥∥

F

= 1 −
√(

1 + γ
∥∥PŴ (u ⊗ u)

∥∥
F

)2

= −γ
∥∥PŴ (u ⊗ u)

∥∥
F

.

Inserting this inequality in the previous identity, we obtain the wished result by

uFγ (X)u − λ =
λ
(
1 − ∥∥PŴ (X + γ u ⊗ u)

∥∥
F

)
+ γ

∥∥PŴ (u ⊗ u)
∥∥2

F∥∥PŴ (X + γ u ⊗ u)
∥∥

F

>
−λγ

∥∥PŴ (u ⊗ u)
∥∥

F
+ γ

∥∥PŴ (u ⊗ u)
∥∥2

F∥∥PŴ (X + γ u ⊗ u)
∥∥

F

> 0.

(41)

We show now that Fγ (X) = X implies λ = ∥∥PŴ (u1(X) ⊗ u1(X))
∥∥

F
. We notice that

Fγ (X) = X implies λ(Fγ (X)) = λ, and thus λ ≥ ‖PŴ (u ⊗ u)‖F according to (39).
Since generally λ ≤ ‖PŴ (u ⊗ u)‖F by Lemma 19, equality follows.

We address now the converse, i.e., λ = ∥∥PŴ (u ⊗ u)
∥∥

F
implies Fγ (X) = X , and

we note that λ = ‖PŴ (u ⊗ u)‖F implies X = λ−1PŴ (u ⊗ u) by Lemma 19. Using
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this and the definition of Fγ (X), we get

Fγ (X) = PŴ (X + γ u ⊗ u)∥∥PŴ (X + γ u ⊗ u)
∥∥

F

= (λ−1 + γ )PŴ (u ⊗ u)

(λ−1 + γ )
∥∥PŴ (u ⊗ u)

∥∥
F

= PŴ (u ⊗ u)∥∥PŴ (u ⊗ u)
∥∥

F

= X

To conclude the proof it remains to show λ1(F(X)) > λ implies 0 < λ <∥∥PŴ (u ⊗ u)
∥∥

F
. As λ ≤ ‖PŴ (u ⊗u)‖F and λ1(F(X)) > λ implies Fγ (X) �= X and

therefore λ �= ‖PŴ (u ⊗ u)‖F , then necessarily λ < ‖PŴ (u ⊗ u)‖F .

The preceding Lemma implies the convergence of (λ1(M j )) j∈N by monotonicity.
Moreover, we can also use such convergence to establish ‖M j+1 − M j‖F → 0.

Lemma 21 Let γ > 0, M0 ∈ Ŵ ∩S with λ1(M0) > 0, and let M j := Fγ (M j−1). The
sequence (λ1(M j )) j∈N converges to a well-defined limit λ∞, and lim j→∞ ‖M j+1 −
M j‖F = 0.

Proof DenoteU j := PŴ (u(M j )⊗u(M j )), λ j = λ(M j ) for simplicity. The sequence
(λ j ) j∈N is monotone in the bounded domain [0, 1] by Lemma 20 and therefore con-
verges to a limit λ∞. To prove ‖M j+1− M j‖F → 0, wewill exploit (λ j+1−λ j ) → 0.
We first have (

∥∥U j
∥∥

F − λ j ) → 0 since (41) yields

λ j+1 − λ j ≥ γ
∥∥U j

∥∥
F∥∥M j + γU j
∥∥
(∥∥U j

∥∥
F − λ j

) ≥ γ

1 + γ

∥∥U j
∥∥

F

(∥∥U j
∥∥

F − λ j
)
,

and
∥∥U j

∥∥
F ≥ λ j ≥ λ0 for all j . Define the shorthand � j := ∥∥U j

∥∥
F − λ j . We will

now show that
∥∥M j+1 − M j

∥∥
F ≤ C� j for some constant C . First notice that

∥∥∥M j − λ−1
j U j

∥∥∥
F

=
√√√√1 +

∥∥U j
∥∥2

F

(λ j )2
− 2λ−1

j

〈
M j , U j

〉 =
√√√√
∥∥U j

∥∥2
F

(λ j )2
− 1

=
√√√√
∥∥U j

∥∥2
F − (λ j )2

(λ j )2
≤ λ−1

0

√
2� j .

Therefore there exists a matrix E j with M j = λ−1
j U j + E j and

∥∥E j
∥∥ ≤ λ−1

0

√
2� j .

Furthermore, by the triangle inequality we have

∥∥M j+1 − M j
∥∥

F ≤
∥∥∥M j+1 − λ−1

j U j

∥∥∥
F

+ λ−1
0

√
2� j ,

hence it remains to bound the first term. Using M j = λ−1
j U j + E j and M j+1 =∥∥M j + γU j

∥∥−1
F (M j + γU j ), we have

∥∥M j + γU j
∥∥

F M j+1 = (λ−1
j + γ )U j + E j
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and thus
∥∥∥∥∥M j + γU j

∥∥
F (M j+1 − λ−1

j U j )

∥∥∥
F

=
∥∥∥(λ−1

j + γ )U j + E j −
∥∥∥(λ−1

j + γ )U j + E j

∥∥∥
F

λ−1
j U j

∥∥∥
F

≤
∣∣∣λ−1

j + γ −
∥∥∥(λ−1

j + γ )U j + E j

∥∥∥
F

λ−1
∣∣∣ ∥∥U j

∥∥
F + ∥∥E j

∥∥
F

≤
(
(λ−1

j + γ )
∥∥U j

∥∥
F λ−1

j − (λ−1
j + γ ) + 2

∥∥E j
∥∥

F λ−1
j

) ∥∥U j
∥∥

F + ∥∥E j
∥∥

F

≤ (λ−1
j + γ )

(∥∥U j
∥∥

F λ−1
j − 1

) ∥∥U j
∥∥

F + (1 + 2λ−1
0 )
∥∥E j

∥∥
F

≤ (λ−1
0 + γ )λ−1

0 � j + (1 + 2λ−1
0 )
√

� j .

Since
∥∥M j + γU j

∥∥
F ≥ 1 according to Lemma 17,

∥∥M j+1 − M j
∥∥→ 0 follows.

It remains to show that convergent subsequences of (M j ) j∈N converge to fixed points
of Fγ . Then by (40), Lemmas 18 and 19, fixed points satisfy the first-order optimality
condition (32) and are stationary points of (31). To prove convergence of subsequences
to fixed points, we require continuity of Fγ . The following Lemma shows that Fγ is
continuous for matrices X satisfying λ1(X) > 1/

√
2, i.e., if the largest eigenvector is

isolated and u1(X) is a continuous function of X .

Lemma 22 Let γ > 0, ε > 0 arbitrary, and define Mε := {M ∈ Ŵ ∩ S : λ(M) ≥
( 12 + ε)−1/2}. Then Fγ (X) ∈ Mε for all X ∈ Mε , and Fγ is ‖·‖F -Lipschitz continu-
ous, with Lipschitz constant (1 + γ /ε).

Proof Fγ (X) ∈ Mε follows directly fromLemma20, i.e., from the fact that the largest
eigenvalue is only increased by applying Fγ . For the continuity, consider X , Y ∈
Mε . We first note that by using [6, Theorem 7.3.1] and λi (Y ) ≤ √

1/2 − ε for
i = 2, . . . , m0 we get

∥∥X + γ PŴ (u1(X) ⊗ u1(X)) − Y − γ PŴ (u1(Y ) ⊗ u1(Y ))
∥∥

F

≤ ‖X − Y‖F + γ ‖u1(X) ⊗ u1(X) − u1(Y ) ⊗ u1(Y )‖F

≤ ‖X − Y‖F + γ
‖X − Y‖F√

1
2 + ε −

√
1
2 − ε

≤
(
1 + γ

ε

)
‖X − Y‖F .

Furthermore, we have
∥∥X + γ PŴ (u1(X) ⊗ u1(X))

∥∥2
F

≥ 1 according to Lemma 17,
and therefore, PS acts on X + γ PŴ (u1(X) ⊗ u1(X)) and Y + γ PŴ (u1(Y ) ⊗ u1(Y ))

as a projection onto the convex set {X : ‖X‖F ≤ 1}. Therefore it acts as a contraction
and the result follows from

∥∥Fγ (X) − Fγ (Y )
∥∥

F ≤ ∥∥X + γ PŴ (u1(X) ⊗ u1(X)) − Y − γ PŴ (u1(Y ) ⊗ u1(Y ))
∥∥

F .

The convergence to fixed points of any subsequence of (M j ) j∈N now follows as a
corollary of Lemma 34 in the Appendix.
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Theorem 23 Let ε > 0, γ > 0, M0 ∈ Ŵ ∩ S with λ(M0) ≥ 1/
√
2 + ε and let

M j+1 := Fγ (M j ) as generated by Algorithm 3. Then (M j+1) j∈N has a convergent
subsequence, and any such subsequence converges to a fixed point of Fγ , respectively,
a stationary point of (31).

Proof ByLemma22, the operator Fγ is continuous onMε := {M ∈ Ŵ∩S : λ1(M) ≥
( 12 + ε)−1/2} for any ε > 0. Moreover, by Lemma 20 we have (M j+1) j∈N ⊂ Mε ,
and by Lemma 21 we have

∥∥M j+1 − M j
∥∥

F → 0. Therefore we can apply Lemma
34 to see that any convergent subsequence converges to a fixed point of Fγ . More-
over, since (M j+1) j∈N is bounded, there exists at least one convergent subsequence
by Bolzano–Weierstrass. Finally, any fixed point M̄ of Fγ can be written as M̄ =
λ1(M̄)PŴ (u1(M̄) ⊗ u1(M̄)) by Lemma 19 and Lemma 20. Since λ1(M̄) > 1/

√
2,

it is an isolated eigenvalue satisfying λ1(M̄) = ∥∥M̄
∥∥, and thus, M̄ satisfies the first

order optimality condition (32) of (31) by Theorem 13.

Remark 24 The analysis of the convergence of Algorithm 3we provide above does not
use the structure of the spaceW and it focuses exclusively on the behavior of the first
eigenvalue λ1. As a consequence, it does guarantee that its iterations have monotoni-
cally increasing spectral norm and that they generically converges to stationary points
of (31). However, it does not ensure convergence to nonspurious, minimal rank local
minimizers of (31). In the numerical experiments of Sect. 4, where {w j : j ∈ [m]} are
sampled randomly from certain distributions, an overwhelming majority of sequences
(M j ) j∈N converges to a near rank-1 matrix with an eigenvalue close to one, whose
corresponding eigenvector approximates a network profile with good accuracy. To
explain this success, we would need a finer and quantitative analysis of the increase
of the spectral norm during the iterations, for instance by quantifying the gap

[
�
∥∥PŴ (u1(X) ⊗ u1(X))

∥∥
F

− λ1(X)
]

≥ 0,

by means of a suitable constant 0 < � < 1. As clarified in the proof of Lemma
19, the smaller the constant � > 0 is, the larger is the increase of the spectral norm
‖M j+1‖ > ‖M j‖ between iterations ofAlgorithm3. The following result is an attempt
to gain a quantitative estimate for� by injecting more information about the structure
of the space W .

In order to simplify the analysis, let us assume δ = 0 or Ŵ = W .

Proposition 25 Assume that {W� := w� ⊗ w� : � ∈ [m]} forms a frame for W , i.e.,
there exist constants cW , CW > 0 such that for all X ∈ W

cW‖X‖2F ≤
m∑

�=1

〈X , w� ⊗ w�〉2F ≤ CW‖X‖2F .

Denote {W̃� : � ∈ [m]} the canonical dual frame so that

PW (X) =
m∑

�=1

〈X , W̃�〉F W�,
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for any symmetric matrix X. Then, for X ∈ W and the notation λ j := λ j (X),
λ1 = ‖X‖ and u j := u j (X), we have

λ1 = ‖PW (u1 ⊗ u1)‖F

⎛
⎝

m0∑
j=1

m∑
�=1

λ j
〈u j ⊗ u j , W̃�〉F 〈W�, u1 ⊗ u1〉F

‖PW (u1 ⊗ u1)‖F

⎞
⎠

≤ ‖PW (u1 ⊗ u1)‖F

(
CW
cW

)1/2⎛
⎝∑

λ j >0

λ j‖PW (u j ⊗ u j )‖F

⎞
⎠

︸ ︷︷ ︸
:=�

(42)

Proof Let us fix X ∈ W . Then we have two ways of representing X , its frame decom-
position and its spectral decomposition:

X =
m∑

�=1

〈X , W̃�〉F W� =
m0∑
j=1

λ j u j ⊗ u j .

By using both the decompositions and again the notation W� = w� ⊗ w�, we obtain

λ1 = uT
1 Xu1 =

m∑
�=1

〈
m0∑
j=1

λ j u j ⊗ u j , W̃�

〉

F

uT
1 W�u1

=
m∑

�=1

〈
m0∑
j=1

λ j u j ⊗ u j , W̃�

〉

F

〈w�, u1〉2

=
m∑

�=1

m0∑
j=1

λ j 〈u j ⊗ u j , W̃�〉F 〈w�, u1〉2

= ‖PW (u1 ⊗ u1)‖F

⎛
⎝

m0∑
j=1

m∑
�=1

λ j
〈u j ⊗ u j , W̃�〉F 〈w�, u1〉2

‖PW (u1 ⊗ u1)‖F

⎞
⎠ .

By observing that
∑m

�=1〈u j ⊗ u j , W̃�〉2F ≤ A−1‖PW (u j ⊗ u j )‖2F (canonical dual
frame upper bound), and using Cauchy–Schwarz inequality, we can further estimate

λ1 ≤ ‖PW (u1 ⊗ u1)‖F

⎛
⎝c−1/2

W
∑
λ j >0

λ j‖PW (u j ⊗ u j )‖F

‖PW (u1 ⊗ u1)‖F

⎞
⎠
(

m∑
�=1

〈w�, u1〉4
)1/2

≤ ‖PW (u1 ⊗ u1)‖F

(
CW
cW

)1/2⎛
⎝∑

λ j >0

λ j‖PW (u j ⊗ u j )‖F

⎞
⎠ ,
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where in the last inequality we applied the estimates

m∑
�=1

〈w�, u1〉4 =
m∑

�=1

〈w� ⊗ w�, u1 ⊗ u1〉2F

≤ CW‖PW (u1 ⊗ u1)‖2F .

The meaning of estimate (42) is explained by the following mechanism: When-
ever the deviation of an iteration M j of Algorithm 3 from being a rank-1 matrix
in W is large, in the sense that ‖PW (u1 ⊗ u1)‖F is small, the constant � =(

CW
cW

)1/2 (∑
λ j >0 λ j‖PW (u j ⊗ u j )‖F

)
is also small and the iteration M j+1 =

Fγ (M j ) will efficiently increase the spectral norm. The gain will reduce as soon
as the iteration M j gets closer and closer to a rank-1 matrix. It would be perhaps
possible to get an even more precise analysis of the behavior of Algorithm 3, by con-
sidering simultaneously the dynamics of (the gaps between) different eigenvalues (not
only focusing on λ1). Unfortunately, we could not find yet a proper and conclusive
argument.

4 Numerical Experiments About the Recovery of Network Profiles

In this section, we present numerical experiments about the recovery of network
weights {ai : i ∈ [m0]} and {v� : � ∈ [m1]} from few point queries of the network. The
recovery procedure leverages the theoretical insights that have been provided in previ-
ous sections.Withoutmuch loss of generality, we neglect the active subspace reduction
and focus on the case d = m0.We construct an approximation PŴ ≈ PW using Algo-

rithm 2. Then we randomly generate a number of matrices {Mk
0 : k ∈ [K ]} ∈ Ŵ ∩ S

and compute the sequences Mk
j+1 = Fγ (Mk

j ) as in Algorithm 3. For each limiting

matrix {Mk∞ : k ∈ [K ]}, we compute the largest eigenvector u1(Mk∞), and then cluster
{u1(Mk∞) : k ∈ [K ]} into m = m0 + m1 classes using kMeans++. After projecting
the resulting cluster centers onto S

d−1, we obtain vectors {ŵ j : j ∈ [m0 + m1]} that
are used as approximations to {ai : i ∈ [m0]} and {v� : � ∈ [m1]}.

We perform experiments for different scenarios, where either the activation function
or the construction of the networkweights varies. Guided by our theoretical results, we
pay particular attention to how the network architecture, e.g., m0 and m1, influences
the simulation results. The entire procedure is rather flexible and can be adjusted in
different ways, e.g., changing the distribution μX . To provide a fair account of the
success, we fix hyperparameters of the approach throughout all experiments. Test
scenarios, hyperparameters, and error measures are reported below in more detail.
Afterwards, we present and discuss the results.

Scenarios and construction of the networks The network is constructed by choosing
activation functions and networkweights {ai : i ∈ [m0]}, {b� : � ∈ [m1]}, for which v�

is then defined via v� = AG0b�‖AG0b�‖2 , see Definition 3. To construct activation functions,
we set gi (t) = φ(t + θi ) for i ∈ [m0], and h�(t) = φ(t + τ�) for � ∈ [m1]. We choose
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either φ(t) = tanh(t) or φ(t) = 1
1+e−t − 1

2 (shifted sigmoid function), and sample
offsets (called also biases) θi , τ� independently at random from N (0, 0.01).

As made clear by our theory, see Theorem 16, a sufficient condition for successful
recovery of the entangled weights is ν = CF − 1 to be small, where CF is the upper
frame constant of the entangled weights as in Definition 3. In the following numerical
experiments, we wish to verify how crucial is this requirement. Thus, we test two
different scenarios for the weights. The first scenario, which is designed to best fulfill
the sufficient condition ν ≈ 0, models both {ai : i ∈ [m0]} and {b� : � ∈ [m1]} as
perturbed orthogonal systems. For their construction, we first sample orthogonal bases
uniformly at random and then apply a random perturbation. The perturbation is such
that (

∑m0
i=1(σi (A) − 1)2)−1/2 ≈ (

∑m1
i=1(σi (B) − 1)2)−1/2 ≈ 0.3, where σi (A) and

σi (B) denote singular values of A and B. In the second case, we sample the (entangled)
weights independently from Uni(Sm0−1). In this situation, as the dimensionality d =
m0 is relatively small, the system will likely not fulfill well the condition ν ≈ 0;
however, as the dimension d = m0 is chosen larger, the weights tend to be more
incoherent and gradually approaching the previous scenario.

Hyperparameters Unless stated differently, we sample m X = 1000 Hessian loca-
tions from μX = √

m0Uni
(
S

m0−1
)
, and use ε = 10−5 in the finite difference

approximation (17). We generate 1000 random matrices {Mk
0 : k ∈ [1000]} by sam-

pling mk ∼ N (0, Idm0+m1), and by defining Mk
0 := PS(

∑m0+m1
i=1 mk

i ui ), where the
ui ’s are as in Algorithm 2. The constant γ = 2 is used in the definition of Fγ , and the
iteration is stopped if λ1(Mk

j+1)−λ1(Mk
j ) < 10−5, or after 200 iterations. kMeans++

is run with default settings using sklearn. All reported results are averages over 30
repetitions.

Error measures Three error measures are reported:

• the normalized projection error
‖P̂W−PW‖2F

m0+m1
,

• a false positive rate FP(T ) = #{ j :E(ŵ j )>T }
m0+m1

, where T > 0 is a threshold, and E(u)

is defined by,

E(u) := min
w∈{±ai ,±v�:i∈[m0],�∈[m1]}

‖u − w‖22 ,

• recovery rate Ra(T ) = #{i :E(ai )<T }
m0

, and Rv(T ) = #{�:E(v�)<T }
m1

, where

E(u) := min
w∈{±ŵ j : j∈[m0+m1]}

‖u − w‖22 .

The results of the study are presented in Figs. 2 and 3 and show that our procedure
typically recovers many of the network weights, while suffering only few false posi-
tives. Considering for example a sigmoidal network, we have almost perfect recovery
of the weights in both layers at a threshold of T = 0.05 for any network architecture,
see Fig. 3a, c. For a tanh-network, the performance is slightly worse, but we still
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(a) Sigmoid activation function (b) tanh activation function

Fig. 2 Error in approximating W for perturbed orthogonal weights and different activation functions

(a) False positives, sigmoid
 activation function

(b) False positives, tanh
activation function

(c) Recovery rates, sigmoid
activation function

(d) Recovery rates, tanh
activation function

Fig. 3 False positive and recovery rates for perturbed orthogonal weights and for different activation func-
tions

recover most weights in the second layer, and a large portion in the first layer at a
reasonable threshold, see Fig. 3b, d.

Inspecting the plots more closely, we can notice some shared trends and differences
between sigmoid and tanh networks. In both cases, the performance improves when
increasing the input dimensionality or, equivalently, the number of neurons in the
first layer, even though the number of weights that need to be recovered increases
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accordingly. This is particularly the case for tanh-networks as visualized in Fig. 3b, d
and is most likely caused by reduced correlation of the weights in higher dimensions.
As previously mentioned, the correlation is encoded within the constant ν = CF − 1
used in the analysis in Sect. 3.

For fixed m0 on the other hand, different activation functions react differently to
changes of m1. For m1 larger, considering a sigmoid network, the projection error
increases, and the recovery of weights in the second layer worsens as shown in Fig. 2a,
c. This is expected by Theorem 5. Inspecting the results for tanh networks, the pro-
jection error actually decreases when increasing m1, see Fig. 2b, and the recovery
performance gets better. Figure 3d shows that especially weights in the first layer are
more easily recovered if m1 is large, such that the case m0 = 45, m1 = 23 allows for
perfect recovery at a threshold T = 0.05. This behavior cannot be fully explained by
our general theory, e.g., Theorem 5.

Results for randomweights from the unit sphere When sampling the weights inde-
pendently from the unit sphere, the recovery problem seems more challenging for
moderate dimension d = m0 and for both activation functions. This confirms the
expectation that the smallness of ν = CF − 1 is somehow crucial. Figure 4c, d sug-
gest that especially recovering the weights of the second layer is more difficult than
in the perturbed orthogonal case. Still, we achieve good performance in many cases.
For sigmoid networks, Fig. 4c shows that we always recover most weights in the first
layer, and a large portion of weights in the second layer if m1/m0 is small. Moreover,
keeping m1/m0 constant while increasing m0 improves the performance significantly,
as we expect from an improved constant ν = CF −1. Figure 4a, c show almost perfect
recovery for m0 = 45, m1 = 5, while suffering only few false positives.

For tanh-networks, Fig. 4d shows that increasing m0 benefits recovery of weights
in both layers, while increasing m1 benefits recovery of first layer weights and harms
recovery of second layer weights. We still achieve small false positive rates in Fig. 4b,
and good recovery for m0 = 45, and the trend continues when further increasing m0.

Finally, a notable difference between the perturbed orthogonal case and the unit-
sphere case is the behavior of the projection error ‖PŴ − PW‖F/(m0 + m1) for
networkswith sigmoid activation function. Comparing Figs. 2a and 5a, the dependency
of the projection error on m1 is stronger when sampling independently from the unit-
sphere. This is explained by Theorem 5 since ‖B‖2 is independent of m1 in the
perturbed orthogonal case and grows like O(

√
m1) when sampling from the unit-

sphere.

5 Open Problems

With the previous theoretical results of Sect. 3 and the numerical experiments of Sect. 4,
we show how to reliably recover the entangled weights {ŵ j : j ∈ [m0 +m1]} ≈ {w j :
j ∈ [m0 + m1]} = {ai : i ∈ [m0]} ∪ {v� : � ∈ [m1]}. However, some issues remain
open.
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(i) In Theorem 5, the dependency of α > 0 on the network architecture and on the
input distribution μX is left implicit. However, it plays a crucial role for fully
estimating the overall sample complexity.

(ii) While we could prove that Algorithm 3 is increasing the spectral norm of its
iterates in Ŵ ∩ S, we could not show yet that it converges always to nearly
rank-1 matrices in Ŵ , despite it is so numerically observed, see also Remark
24. We also could not exclude the existence of spurious local minimizers of the
nonlinear program (31), as stated in Theorem 16. However, we conjecture that
there are none or that they are somehow hard to observe numerically.

(iii) Obtaining the approximating vectors {ŵ j : j ∈ [m0 + m1]} ≈ {w j : j ∈
[m0+m1]} = {ai : i ∈ [m0]}∪{v� : � ∈ [m1]} does not suffice to reconstruct the
entire network. In fact, it is impossible a priori to knowwhether ŵ j approximates
one ai or some other v�, up to sign and permutations, and the attribution to the
corresponding layer needs to be derived from quering the network.

(iv) Oncewe obtained, up to sign and permutations, {âi : i ∈ [m0]} ≈ {ai : i ∈ [m0]}
and {v̂� : � ∈ [m1]} ≈ {v� : � ∈ [m1]} from properly grouping {ŵ j : j ∈ [m0 +
m1]}, it would remain to approximate/identify the activations functions gi and h�.
In the casewhere gi (·) = φ(·−θi ) and h�(·) = φ(·−τ�), this would simplymean
to be able to identify the shifts θi , i ∈ [m0], and τ�, � ∈ [m1]. Such identification
is also crucial for computing the matrix G0 = diag(g′

i (0), . . . , g′
m0

(0)) which
allows the disentanglement of the weights b� from the weights A and v� =
AG0b�/‖AG0b�‖2. At this point, the network is fully reconstructed.

(v) The generalization of our approach to networkswithmore than two hidden layers
is clearly the next relevant issue to be considered as a natural development of
this work.

While problems (i) and (ii) seem to be difficult to solve by the methods we used
in this paper, we think that problems (iii) and (iv) are solvable both theoretically
and numerically with just a bit more effort. For a self-contained conclusion of this
paper, in the following sections we sketch some possible approaches to these issues,
as a glimpse towards future developments, which will be more exhaustively included
in [21]. The generalization of our approach to networks with more than two hid-
den layers as mentioned in (v) is surprisingly simpler than one may expect, and it
is in the course of finalization [21]. For a network f (x) := f (x; W1, . . . , WL) =
1T gL(W T

L gL−1(W T
L−1 . . . (g1(W T

1 x)) . . . ), with L > 2, again by second order differ-
entiation is possible to obtain an approximation space

Ŵ ≈ span{w1,i ⊗ w1,i , (W2G1w1, j ) ⊗ (W2G1w1, j ),

. . . , (WL GL . . . W2G1w1, j ) ⊗ (WL GL . . . W2G1w1, j )},

of the matrix space spanned by the tensors of entangled weights, where Gi

are suitable diagonal matrices depending on the activation functions. The tensors
(Wk Gk . . . W2G1w1, j ) ⊗ (W T

k Gk . . . W T
2 G1w1, j ) can be again identified by a mini-

mal rank principle. The disentanglement goes again by a layer by layer procedure as
in this paper, see also [5].
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(a) False positives, sigmoid
      activation function

(b) False positives, tanh
activation function

(c) Recovery rates, sigmoid
activation function

(d) Recovery rates, tanh
activation function

Fig. 4 False positive and recovery rates for weights sampled uniformly at random from the unit sphere and
for different activation functions

(a) Sigmoid activation function (b) tanh activation functiont

Fig. 5 Error in approximatingW for weights sampled independently from the unit sphere and for different
activation functions

6 Reconstruction of the Entire Network

In this section, we address problems (iii) and (iv) as described in Sect. 5. Our final goal
is of course to construct a two-layer network f̂ with number of nodes equaling m0
and m1 such that f̂ ≈ f . Additionally we also study whether the individual building
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blocks (e.g., matrices Â, B̂, and biases in both layers) of f̂ match their corresponding
counterparts of f .

To construct f̂ , we first discuss how recovered entangled weights {ŵi : i ∈ [m0 +
m1]} (see Sect. 4) can be assigned to either the first, or the second layer, depending on
whether ŵ j approximates one of the ai ’s, or one of the v�’s. Afterwards we discuss
a modified gradient descent approach that optimizes the deparametrized network (its
entangled weights are known at this point!) over the remaining, unknown parameters
of the network function, e.g., biases θi and τ�.

6.1 Distinguishing First and Second LayerWeights

Attributing approximate entangled weights to first or second layer is generally a chal-
lenging task. In fact, even the true weights {ai : i ∈ [m0]}, {v� : � ∈ [m1]} cannot
be assigned to the correct layer based exclusively on their entries when no additional
a priori information (e.g., some distributional assumptions) is available. Therefore,
assigning ŵ j , j ∈ [m0 + m1] to the correct layer requires using again the network f
itself and thus to query additional information.

The strategy we sketch here is designed for sigmoidal activation functions and
networks with (perturbed) orthogonal weights in each layer. Sigmoidal functions
are monotonic, have bell-shaped first derivative, and are bounded by two horizon-
tal asymptotes as the input tends to ±∞. If activation functions {gi : i ∈ [m0]} and
{h� : � ∈ [m1]} are translated sigmoidal, their properties imply

‖∇ f (tw)‖2 =
⎛
⎝

m0∑
i=1

g′
i (ta

T
i w)2

(
m1∑
�=1

h′
�(b

T
� g(t AT w))bi�

)2
⎞
⎠

1
2

→ 0, as t → ∞,

(43)
whenever any direction w has nonzero correlation aT

i w �= 0 with each first layer
neuron in {ai : i ∈ [m0]}.

Assume now that {ai : i ∈ [m0]} is a perturbed orthonormal system, and that
second layer weights {b� : � ∈ [m1]} are generic and dense (nonsparse). Recalling the
definition v� = AG0b�/ ‖AG0b�‖, the vector v� has, in this case, generally nonzero
angle with each vector in {ai : i ∈ [m0]}, while aT

i a j ≈ 0 for any i �= j . Utilizing this
with observation (43), it follows that ‖∇ f (tai )‖ is expected to tend to 0 much slower
than ‖∇ f (tv�‖ as t → ∞. In fact, if {ai : i ∈ [m0]} was an exactly orthonormal
system, ‖∇ f (tai )‖ eventually would equal a positive constant when t → ∞. We
illustrate in Fig. 6 the different behavior of the trajectories t → ‖∇ f (tw)‖2 for
w ∈ {ŵ j ≈ ai for some i} and for w ∈ {ŵ j ≈ v� for some �}.

Practically, for T ∈ N and for each candidate vector in {ŵ j : j ∈ [m0 + m1]} we
query f to compute �ε f (tkŵ j ) for few steps {tk : k ∈ [T ]} in order to approximate

∥∥∥∥∇ f (tŵ j )
∥∥
2

∥∥2
L2([−∞,∞]) ≈

T∑
k=1

∥∥∇ f (tkŵ j )
∥∥2 ≈

T∑
k=1

∥∥�ε f (tkŵ j )
∥∥2 := Î(w j ).

123



518 Constructive Approximation (2022) 55:475–536

Fig. 6 We illustrate the trajectories t → ‖∇ f (tw)‖2 for w ∈ {ŵ j : j ∈ [m]}. The blue trajectories are
those for w ∈ {ŵ j ≈ ai for some i} and the red trajectories are those for w ∈ {ŵ j ≈ v� for some �}. We
can observe the separation of the trajectories due to the different decay properties

Table 1 Success rates L1 and L2 (see (44)) when assigning candidates {ŵi : i ∈ [m0 + m1]} to either first
or second layer of the network

Scenario m0 = 30 m0 = 45
m1 = 3 m1 = 9 m1 = 15 m1 = 5 m1 = 14 m1 = 23
L1, L2 L1, L2 L1, L2 L1, L2 L1, L2 L1, L2

POD/sig 0.99, 0.99 0.99, 1.0 0.99, 1.00 0.99, 0.99 0.99, 1.0 1.00, 1.00

POD/tanh 0.87, 0.89 0.97, 0.98 0.99, 1.00 0.91, 0.97 0.99, 1.0 1.00, 1.00

S
m0−1/sig 0.94, 0.71 0.89, 0.61 0.85, 0.58 0.95, 0.72 0.89, 0.63 0.86, 0.65

S
m0−1/tanh 0.80, 0.48 0.80 0.54 0.77, 0.58 0.83, 0.56 0.82 0.57 0.79, 0.64

We consider the same scenarios as in Sect. 4, e.g., POD/sig stands for perturbed orthogonal design with
sigmoid activation, and S

m0−1/ tanh for weights sampled independently from the unit sphere with tanh
activation

Thenwecompute a permutationπ : [m] → [m] to order theweights so that Î(wπ(i)) ≥
Î(wπ( j)) whenever π(i) > π( j). The candidates {wπ( j) : j = 1, . . . , m0} have the
slowest decay, respectively, largest norms and are thus assigned to the first layer. The
remaining candidates {wπ(�) : � = m0 + 1, . . . , m1} are assigned to the second layer.

Numerical experiments We have applied the proposed strategy to assign vectors
{ŵ j : j ∈ [m0+m1]}, which are outputs of experiments conducted in Sect. 4, to either
the first or the second layer. Since each ŵ j does not exactly correspond to a vector in
{ai : i ∈ [m0]} or {v� : � ∈ [m1]}, we assign a ground truth label L j = 1 to ŵ j if
the closest vector to ŵ j belongs to {ai : i ∈ [m0]}, and L j = 2 if it belongs to the set
{v� : � ∈ [m1]}. Denoting similarly the predicted label L̂ j = 1 if π( j) ∈ {1, . . . , m0}
and L̂ j = 2 otherwise, we compute the success rates

L1 := #{ j : L j = 1 and L̂ j = 1}
m0

, L2 := #{ j : L j = 2 and L̂ j = 2}
m1

(44)
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to assess the proposed strategy. Hyperparameters are ε = 10−5 for the step length in
the finite difference approximation �ε f (·), and tk = −20 + k for k ∈ [40].

The results for all four scenarios considered in Sect. 4 are reported in Table 1.
We see that our simple strategy achieves remarkable success rates, in particular if the
network weights in each layer represent perturbed orthogonal systems. If the weights
are sampled uniformly from the unit sphere with moderated dimension d = m0, then,
as one may expect, the success rate drops. In fact, for small d = m0, the vectors
{ai : i ∈ [m0]} tend to be less orthogonal, and thus, the assumption aT

i a j ≈ 0 for
i �= j is not satisfied anymore.

Finally, we stress that the proposed strategy is simple, efficient and relies only on
few additional point queries of f that are negligible compared to the recovery step
itself (for reasonable query size T ). In fact, the method relies on a single (nonlinear)
feature of the map t �→ ∥∥∇ f (tŵ j )

∥∥
2 in order to decide upon the label of ŵ j . We

identify it as an interesting future investigation to develop more robust approaches,
potentially using higher-dimensional features of trajectories t → ∥∥∇ f (tŵ j )

∥∥
2,

to achieve high success rates even if aT
i a j ≈ 0 for i �= j may not hold any-

more.

6.2 Reconstructing the Network Function Using Gradient Descent

The previous section allows assigning unlabeled candidates {ŵ j : j ∈ [m0 + m1]}
to either the first or second layer, resulting in matrices Â = [â1| . . . |âm0 ] and V̂ =
[v̂1| . . . |v̂m1 ] that ideally approximate A and V up to column signs and permutations.
Assuming that the network f ∈ F(m0, m0, m1) is generated by shifts of one activation
function, i.e., gi (t) = φ(t + θi ) and h�(t) = φ(t + τ�) for some φ, this means only
signs, permutations, andbias vectors θ ∈ R

m0 , τ ∈ R
m1 aremissing to fully reconstruct

f . In this section, we show how to identify these remaining parameters by applying
a gradient descent method to minimize the least squares of the output misfit of the
deparametrized network. In fact, as we clarify below, the original network f can be
explicitly described as a function of the known entangled weights ai and v� and of the
unknown remaining parameters (signs, permutations, and biases), see Proposition 26
and Corollary 27.

Let now Dm denote the set of m × m diagonal matrices, and define a parameter
space � := Dm1 ×Dm0 ×Dm0 ×R

m0 ×R
m1 . To reconstruct the original network f ,

we propose to fit parameters (D1, D2, D3, w, z) ∈ � of a function f̂ : Rm0 ×� → R

defined by

f̂ (x; D1, D2, D3, w, z) = 1T φ(D1V̂ T Â−T D2φ(D3 ÂT x + w) + z)

to a number of additionally sampled points {(Xi , Yi ) : i ∈ [m f ]} where Yi = f (Xi )

and Xi ∼ N (0, Idm0). The parameter fitting can be formulated as solving the least
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squares

min
(D1,D2,D3,w,z)∈�

J (D1, D2, D3, w, z) :=
m f∑
i=1

(
Yi − f̂ (Xi ; D1, D2, D3, w, z)

)2
.

(45)
We note that, due to the identification of the entangled weights and deparametrization
of the problem, dim(�) = 3m0 + 2m1, which implies that the least squares has
significantly fewer free parameters compared to the number m2

0 + (m0 ×m1)+ (m0 +
m1) of original parameters of the entire network. Hence, our previous theoretical
results of Sect. 3 and numerical experiments of Sect. 4 greatly scale down the usual
effort of fitting all parameters at once. We may also mention at this point that the
optimization (45) might have multiple global solutions due to possible symmetries,
see also [20] and Remark 28, and we shall try to keep into account the most obvious
ones in our numerical experiments.

We will now show that there exists parameters (D1, D2, D3, w, z) ∈ � that allow
for exact recovery of the original network, whenever Â and V̂ are correct up to signs
and permutation. We first need the following proposition that provides a different
reparametrization of the network using Â and V̂ . The proof of the proposition requires
only elementary linear algebra and properties of sign and permutationmatrices. Details
are deferred to Appendix 3.

Proposition 26 Let f ∈ F(m0, m0, m1) with gi (t) = φ(t +θi ) and h�(t) = φ(t +τ�),
and define the function f̃ : Rm0 × Dm0 × Dm1 × R

m0 × R
m1 → R via

f̃ (x; D, D′, w, z) = 1T φ(D′ B̂T φ(D ÂT x + w) + z), with b̂l

:=
diag

((
φ′(w)

)−1
)

D Â−1v̂�∥∥∥diag ((φ′(w))−1) D Â−1v̂�

∥∥∥
.

If there are sign matrices SA, SV , and permutations πA, πV such that AπA = ÂSA,
V πV = V̂ SV , then we have f (x) = f̃ (x; SA, SV , πT

A θ, πT
V τ).

We note here that replacing f̂ by f̃ in (45) is tempting because it further reduces
the number of parameters (dim(Dm0 × Dm1 × R

m0 × R
m1) = 2(m0 + m1)), but, by

an explicit computation, one can show that evaluating the gradient of f̃ with respect
to D requires also the evaluation of D−1. Having in mind that D ideally converges
to SA during the optimization, diagonal entries of D are likely to cross zero while
optimizing. Thus such minimization may result unstable, and we instead work with f̂ .
The following Corollary shows that also this form allows finding optimal parameters
leading to the original network.

Corollary 27 Let f ∈ F(m0, m0, m1) with gi (t) = φ(t + θi ) and h�(t) = φ(t + τ�).
If there exist sign matrices SA, SV , and permutations πA, πV such that AπA =
ÂSA, V πV = V̂ SV , there exist diagonal matrices D1, D2 such that f (x) =
f̂ (x; D1, D2, SA, πT

A θ, πT
V τ).
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Proof Based on Proposition 26, we can rewrite f (x) = 1T φ(SV B̂T φ(SA ÂT x +
πT

A w)+πT
V z), so it remains to show that SV B̂T = D1V̂ T Â−T D2 for diagonalmatrices

D1, D2. First we note

diag(φ′(πT
A θ)−1) = πT

A diag(φ′(θ)−1)πA = πT
A G−1πA.

Using this, and D = SA in the definition of B̂ in Proposition 26, it follows that

B̂T = diag(‖πT
A G−1πA SA Â−1v1‖, . . . , ‖πT

A G−1πA SA Â−1vm1‖)V̂ T Â−T SAπT
A G−1πA

Multiplying by SV from the left, we obtain

SV B̂T = SV diag(‖πT
A G−1πA SA Â−1v1‖, . . . , ‖πT

A G−1πA SA Â−1vm1‖)︸ ︷︷ ︸
=D1

V̂ T Â−T SAπT
A G−1πA︸ ︷︷ ︸
=D2

.

Remark 28 (Simplification for odd functions) If φ in Proposition 26 satisfies φ(−t) =
−φ(t), then f̂ (x; D1, SD2, SD3, Sw, z) = f̂ (x; D1, D2, D3, w, z) for arbitrary sign
matrix S ∈ Dm0 . Thus, choosing S = SA, there are also diagonal D1 and D2 with
f (x) = f̂ (x; D1, D2, Idm0 , SAπT

A w,πT
V τ).

Assuming Â and V̂ are correct up to sign and permutation, Corollary 27 implies that
J = 0 is the global optimum, and it is attained by parameters leading to the original
network f . Furthermore, Remark 28 implies that there is ambiguitywith respect to D3,
if φ is an odd function. Thus we can also prescribe D3 = Idm0 and neglect optimizing
this variable if φ is odd.

We now study numerically the feasibility of (45). First, we consider the case Â = A
and V̂ = V to assess (45), isolated so not to suffer possible errors from other parts of
our learning procedure (see Sects. 4 and 6.1). Afterwards we take into consideration
also these additional approximations, and present results for Â ≈ A and V̂ ≈ V .

We minimize (45) by standard gradient descent and learning rate 0.5 if φ(t) =
1

1+e−t − 1
2 (shifted sigmoid), respectively, learning rate 0.025 if φ(t) = tanh(t). We

sample m f = 10(m0 + m1) additional points, which is only slightly more than the
number of free parameters. Gradient descent is run for 500K iterations (due to small
number of variables, this is not time consuming), and only prematurely stopped it, if
the iteration stalls. Initially we set D2 = D3 = Idm0 , and all other variables are set to
random draws from N (0, 0.1).

Denoting ω∗ = (D∗
1 , D∗

2 , D∗
3 , w

∗, z∗) ∈ � as the gradient descent output, we
measure the relative mean squared error (MSE) and the relative L∞-error

MSE =
∑mtest

i=1 ( f̂ (Zi ;ω∗) − f (Zi ))
2

∑mtest
i=1 f (Zi )2

, E∞ =
maxi∈[mtest]

∣∣∣ f̂ (Zi ;ω∗) − f (Zi )

∣∣∣
maxi∈[mtest] | f (Zi )| ,
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Table 2 Errors of the reconstructed network using (45) when prescribing Â = A and V̂ = V

Scenario m0 = 30 m0 = 45

m1 = 3 m1 = 9 m1 = 15 m1 = 5 m1 = 14 m1 = 23

POD/sig MSE 1.2e−5 5.4e−6 4.7e−5 1.1e−5 4.6e−6 5.6e−6

E∞ 4.3e−3 3.8e−3 4.9e−3 3.9e−3 3.4e−3 4.4e−3

Eθ 4.1e−1 2.7e−1 1.7e−1 4.4e−1 2.6e−1 1.7e−1

Eτ 3.9e−2 1.9e−2 3.1e−2 4.4e−2 2.1e−2 3.3e−2

POD/tanh MSE 1.9e−7 1.5e−9 1.2e−10 1.1e−7 7.5e−10 8.4e−12

E∞ 7.3e−4 5.4e−5 1.3e−5 4.6e−4 4.2e−5 3.6e−6

Eθ 2.9e−3 6.8e−8 4.2e−8 2.6e−3 2.1e−7 1.5e−9

Eτ 3.3e−4 1.1e−7 2.1e−8 1.1e−4 8.4e−8 9.5e−10

S
m0−1/sig MSE 1.3e−5 9.7e−6 1.4e−5 1.2e−5 9.4e−6 1.6e−5

E∞ 4.9e−3 5.7e−3 8.2e−3 4.5e−3 5.5e−3 8.5e−3

Eθ 4.5e−1 3.5e−1 3.0e−1 4.5e−1 2.7e−1 2.4e−1

Eτ 3.7e−2 7.0e−2 1.2e−1 5.3e−2 5.5e−2 1.1e−1

S
m0−1/tanh MSE 4.4e−7 4.8e−9 4.9e−10 7.7e−8 1.5e−9 1.6e−11

E∞ 1.3e−3 1.4e−4 3.0e−5 5.0e−4 6.0e−5 5.7e−6

Eθ 1.9e−2 1.5e−6 3.1e−7 3.7e−4 3.5e−7 4.9e−9

Eτ 7.6e−4 1.4e−6 5.7e−8 7.5e−5 2.8e−7 1.5e−9

The scenarios correspond to those in Sects. 4 and 6.1

using mtest = 50,000 samples Zi ∼ N (0, Idm0). Moreover, we also report the relative
bias errors

Eθ = ‖w∗ − θ‖2
‖θ‖2 , Eη = ‖z∗ − η‖2

‖η‖2 ,

which indicate if the original bias vectors are recovered. We repeat each experiments
30 times and report averaged values.

Table 2 presents the results of the experiments and shows that we reconstruct a
network function that is very close to the original network f in both L2 and L∞ norm,
and in every scenario. The maximal error is ≈ 10−3, which is likely further reducible
by increasing the number of gradient descent iterations, or using finer-tuned learning
rates or acceleration methods. Therefore, the experiments strongly suggest that we
are indeed reconstructing a function that approximates f uniformly well. Inspecting
the errors Eθ and Eη also supports this claim, at least in all scenarios where the
tanh activation is used. In many cases, the relative errors are below 10−7, implying
that we recover the original bias vectors of the network. Surprisingly, the accuracy
of recovered biases slightly drops of few orders of magnitude in the sigmoid case,
despite convincing results when measuring predictive performance in L2 and E∞. We
believe that this is due to faster flattening of the gradients around the stationary point
compared to the case of a tanh activation function and that it can be improved by using
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Table 3 Errors of the reconstructed network using (45) when using approximated Â ≈ A and V̂ ≈ V (up
to sign and permutation)

Scenario m0 = 30 m0 = 45

m1 = 3 m1 = 9 m1 = 15 m1 = 5 m1 = 14 m1 = 23

POD/sig MSE 6.4e−5 3.1e−2 2.9e−2 6.8e−5 1.1e−2 5.4e−4

E∞ 1.1e−2 7.9e−2 9.0e−2 1.4e−2 4.5e−2 4.7e−2

Trials [%] 63 80 90 37 67 93

POD/tanh MSE − 2.7e−2 8.9e−3 − 4.2e−3 7.7e−3

E∞ − 1.9e−1 1.2e−1 − 8.3e−2 9.7e−2

Trials [%] 0 23 76 0 43 96

Trials indicates the percentage of repetitions where Â and V̂ satisfy (46). The scenarios correspond to those
in Sects. 4 and 6.1

more sophisticated strategies of choosing a gradient descent step size. We also tested
(45) when fixing D = Idm0 since tanh and the shifted sigmoid are odd functions, and
thus Remark 28 applies. The results are consistently slightly better than Table 2, but
are qualitatively similar.

We ran similar experiments for perturbed orthogonal weights and when using Â
and V̂ precomputed with the methods we described in Sects. 4 and 6.1. The quality
of the results varies dependent on whether Â ≈ A and V̂ ≈ V (up to sign and
permutation) holds, or a fraction of the weights has not been recovered. To isolate
cases where Â ≈ A and V̂ ≈ V holds, we compute averaged MSE and L∞ over all
trials satisfying

m0∑
i=1

E(ai ) +
m1∑
�=1

E(v�) < 0.5, (see Section 4 for the Definition of E). (46)

We report the averaged errors and the number of trials satisfying this condition in
Table 3. It shows that the reconstructed function is close to the original function,
even if the weights are only approximately correct. Therefore we conclude that that
minimizing (45) provides a very efficient way of learning the remaining network
parameters from just few additional samples, once entangled network weights A and
V are (approximately) known.
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Appendix

The following Lemma implies that {a1 ⊗ a1, . . . am0 ⊗ am0 , v1 ⊗ v1, . . . , vm1 ⊗ vm1}
satisfying the properties of Definition 3 is a system of linearly independent matrices.

Lemma 29 Let {z1, . . . , zm} ⊂ R
m have unit norm and satisfy

∑m
i=1

〈
z j , zi

〉2 ≤ CF

for all j = 1, . . . , m. If 1 < CF < 2, the system {z1 ⊗ z1, . . . , zm ⊗ zm} is linearly
independent.

Proof Assume to the contrary the {z1⊗ z1, . . . , zm ⊗ zm} are not linearly independent,
then there exists σ �= 0 ∈ R

m with 0 = ∑m
i=1 σi zi ⊗ zi , or equivalently 0 =∑m

i=1 σi 〈x, zi 〉2 for all x ∈ R
d . Without loss of generality assume ‖σ‖∞ = maxi σi

(otherwisewemultiply the representation by−1), and denote by i∗ the index achieving
the maximum. Then we have

0 =
N∑

i=1

σi 〈zi , zi∗〉2 = σi∗ +
∑
i �=i∗

σi 〈zi , zi∗〉2 ≥ σi∗ + min
i

σi

∑
i �=i∗

〈zi , zi∗〉2,

where we used ‖zi∗‖ = 1. Since mini σi ≥ 0 immediately yields a contradiction, we
continue with the case mini σi < 0. We can further bound

0 ≥ σi∗ + min
i

σi

∑
i �=i∗

〈zi , zi∗〉2 ≥ σi∗ + min
i

σi (CF − 1) ‖zi∗‖2

= σi∗ + min
i

σi (CF − 1) ,

and by division through (CF − 1) and subtracting mini σi we obtain |mini σi | ≥
σi∗(CF − 1)−1. Since (CF − 1)−1 > 1, this yields the contradiction ‖σ‖∞ ≥
|mini σi | > σi∗ = ‖σ‖∞.

The linear independence of the system {a1⊗a1, . . . am0 ⊗am0 , v1⊗v1, . . . , vm1⊗vm1}
implies that it is aRiesz basis forW := span{a1⊗a1, . . . am0⊗am0 , v1⊗v1, . . . , vm1⊗
vm1}. As such there exists constants cr , CR such that for every σ ∈ R

m0+m1

cr ‖σ‖22 ≤
∥∥∥∥∥

m0∑
i=1

σi ai ⊗ ai +
m1∑
i=1

σm0+ivi ⊗ vi

∥∥∥∥∥
2

≤ CR ‖σ‖22 . (47)

Additional Proofs for Section 2

Proof of Lemma 7 Fix any pair k, n ∈ [d] and define φ(t) = f (x + tek +εen)− f (x +
tek), where ek denotes the k-th standard vector. By the mean value theorem and for
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�2
ε f (x) ∈ R

d×d given as in (17), there exist 0 < ξ1, ξ2 < ε such that

(�2
ε [ f ](x))kn = φ(ε) − φ(0)

ε2
= φ′(ξ1)

ε

=
∂ f
∂xk

(x + ξ1ek + εen) − ∂ f
∂xk

(x + ξ1ek)

ε

= ∂2 f

∂xk∂xn
(x + ξ1ek + ξ2en).

Hence, we obtain

∣∣∣(∇2 f (x))kn − (�2
ε [ f ](x))kn

∣∣∣ =
∣∣∣∣

∂2 f

∂xk∂xn
(x) − ∂2 f

∂xk∂xn
(x + ξ1ek + ξ2en)

∣∣∣∣ .

Assume k, n to be fixed and denote x̃ = x + ξ1ek + ξ2en . By recalling our definition

of ∇2 f (x) in (10), it follows ∂2 f
∂xk∂xn

(x) = ϕ1(x) + ϕ2(x), where

ϕ1(x) :=
m1∑
�=1

m0∑
i, j=1

h′′
�(b

T
� g(AT x))g′

i (a
T
i x)g′

j (a
T
j x)aki anj bi�b j�,

ϕ2(x) :=
m1∑
�=1

m0∑
i=1

h′
�(b

T
� g(AT x))g′′

i (aT
i x)aki ani bi�.

Thus
∣∣∣(∇2 f (x))kn − (�2

ε [ f ](x))kn

∣∣∣ ≤ |ϕ1(x) − ϕ1(x̃)| + |ϕ2(x) − ϕ2(x̃)| .

As before, we start by applying the Lipschitz continuity to the summands of
|ϕ1(x) − ϕ1(x̃)|:
∣∣∣h′′

� (b
T
� g(AT x))g′

i (a
T
i x)g′

j (a
T
j x) − h′′

� (b
T
� g(AT x̃))g′

i (a
T
i x̃)g′

j (a
T
j x̃)

∣∣∣
≤
∣∣∣h′′

� (b
T
� g(AT x))g′

i (a
T
i x)g′

j (a
T
j x) − h′′

� (b
T
� g(AT x))g′

i (a
T
i x̃)g′

j (a
T
j x̃)

∣∣∣
+
∣∣∣h′′

� (b
T
� g(AT x))g′

i (a
T
i x̃)g′

j (a
T
j x̃) − h′′

� (b
T
� g(AT x̃))g′

i (a
T
i x̃)g′

j (a
T
j x̃)

∣∣∣
≤ η2

∣∣∣g′
i (a

T
i x)g′

j (a
T
j x) − g′

i (a
T
i x̃)g′

j (a
T
j x̃)

∣∣∣
+ κ2

1

∣∣∣h′′
� (b

T
� g(AT x)) − h′′

� (b
T
� g(AT x̃))

∣∣∣
≤ η2

[∣∣∣g′
i (a

T
i x)g′

j (a
T
j x) − g′

i (a
T
i x̃)g′

j (a
T
j x)

∣∣∣
+
∣∣∣g′

i (a
T
i x̃)g′

j (a
T
j x) − g′

i (a
T
i x̃)g′

j (a
T
j x̃)

∣∣∣
]

+ κ2
1η3

∣∣∣∣∣
m0∑
I=1

bI�

(
gI (a

T
I x) − gI (a

T
I x̃)
)∣∣∣∣∣
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≤ η2

[
κ1

∣∣∣g′
i (a

T
i x) − g′

i (a
T
i x̃)

∣∣∣+ κ1

∣∣∣g′
j (a

T
j x) − g′

j (a
T
j x̃)

∣∣∣
]

+ κ3
1η3

∣∣∣∣∣
m0∑
I=1

bIla
T
I (x − x̃)

∣∣∣∣∣

≤ η2κ1κ2

[∣∣∣aT
i (x − x̃)

∣∣∣+
∣∣∣aT

j (x − x̃)

∣∣∣
]

+ κ3
1η3

∣∣∣∣∣
m0∑
I=1

bI�aT
I (x − x̃)

∣∣∣∣∣

≤ η2κ1κ2
[|ξ1aki + ξ2ani | + ∣∣ξ1akj + ξ2anj

∣∣]+ κ3
1η3

∣∣∣∣∣
m0∑
I=1

bI�(ξ1ak I + ξ2anI )

∣∣∣∣∣

≤ η2κ1κ2ε
[|aki | + |ani | + ∣∣akj

∣∣+ ∣∣anj
∣∣]+ κ3

1η3ε

m0∑
I=1

|bI�| (|ak I | + |anI |)

≤ C̃ε

[
|aki | + |ani | + ∣∣akj

∣∣+ ∣∣anj
∣∣+

m0∑
I=1

|bI�| (|ak I | + |anI |)
]

,

where C̃ = max {η2κ1κ2, κ3
1η3}. Hence,

|ϕ1(x) − ϕ1(x̃)| ≤
m1∑
l=1

m0∑
i, j=1

C̃ε

[
|aki | + |ani | + ∣∣akj

∣∣+ ∣∣anj
∣∣+

m0∑
I=1

|bI�| (|ak I | + |anI |)
] ∣∣bi�b j�aki anj

∣∣ .

Now

m1∑
�=1

m0∑
i, j=1

C̃ε
[|aki | + |ani | + ∣∣akj

∣∣+ ∣∣anj
∣∣] ∣∣bi�b j�aki anj

∣∣

=
m1∑
�=1

m0∑
i, j=1

C̃ε
[∣∣∣a2

ki anj

∣∣∣+ ∣∣ani aki anj
∣∣+ ∣∣akj aki anj

∣∣+
∣∣∣a2

nj aki

∣∣∣
] ∣∣bi�b j�

∣∣ .

Applying the triangle inequality of the Frobenius norm results in

C̃ε

⎛
⎜⎝

d∑
k,n=1

⎡
⎣

m1∑
�=1

m0∑
i, j=1

[∣∣∣a2
ki anj

∣∣∣+ ∣∣ani aki anj
∣∣+ ∣∣akj aki anj

∣∣+
∣∣∣a2

nj aki

∣∣∣
] ∣∣bi�b j�

∣∣
⎤
⎦
2
⎞
⎟⎠

1
2

≤ 2C̃ε

⎛
⎜⎝

d∑
k,n=1

⎡
⎣

m1∑
�=1

m0∑
i, j=1

∣∣∣a2
ki anj

∣∣∣ ∣∣bi�b j�
∣∣
⎤
⎦
2
⎞
⎟⎠

1
2

+ 2C̃ε

⎛
⎜⎝

d∑
k,n=1

⎡
⎣

m1∑
�=1

m0∑
i, j=1

∣∣ani aki anj
∣∣ ∣∣bi�b j�

∣∣
⎤
⎦
2
⎞
⎟⎠

1
2
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≤ 2C̃ε

m1∑
�=1

m0∑
i, j=1

∣∣bi�b j�
∣∣
⎛
⎝

d∑
k,n=1

∣∣∣a2
ki anj

∣∣∣
2

⎞
⎠

1
2

+ 2C̃ε

m1∑
�=1

m0∑
i, j=1

∣∣bi�b j�
∣∣
⎛
⎝

d∑
k,n=1

∣∣ani aki anj
∣∣2
⎞
⎠

1
2

≤ 2C̃ε

m1∑
�=1

m0∑
i=1

|bi�|
m0∑
j=1

∣∣b j�
∣∣
⎧
⎪⎨
⎪⎩

⎛
⎝

d∑
k,n=1

∣∣∣a2
ki anj

∣∣∣
2

⎞
⎠

1
2

+
⎛
⎝

d∑
k,n=1

∣∣ani aki anj
∣∣2
⎞
⎠

1
2

⎫
⎪⎬
⎪⎭

≤ 2C̃ε

m1∑
�=1

m0∑
i=1

|bi�|
m0∑
j=1

∣∣b j�
∣∣
⎧
⎪⎨
⎪⎩

(
d∑

k=1

a4
ki

d∑
n=1

a2
nj

) 1
2

+
(

d∑
k=1

a2
ki

d∑
n=1

a2
nj

) 1
2

⎫
⎪⎬
⎪⎭

≤ 4C̃ε

m1∑
�=1

m0∑
i=1

|bi�|
m0∑
j=1

∣∣b j�
∣∣ ‖ai‖2‖a j‖2

≤ 4C̃ε

m1∑
�=1

‖b�‖21

≤ 4C̃εm1m.

The last inequalities are due to ‖ai‖2 = 1 for all i ∈ [m0] and ‖b�‖1 ≤ √
m0‖b�‖2 =√

m0 for all � ∈ [m1]. A similar computation yields

C̃ε

⎛
⎜⎝

d∑
k,n=1

⎡
⎣

m1∑
�=1

m0∑
i, j=1

m0∑
I=1

(|ak I | + |anI |)
∣∣aki anj

∣∣ ∣∣bI�bi�b j�
∣∣
⎤
⎦
2
⎞
⎟⎠

1
2

≤ 4C̃εm1m
3
2
0 .

Combining both results gives

⎧⎨
⎩

d∑
k,n=1

∣∣ϕ1(x) − ϕ1(x + ξ1,knek + ξ2,knen)
∣∣2
⎫⎬
⎭

1
2

≤ 8C̃εm1m
3
2
0 .

Here we denote ξ1,kn, ξ2,kn , to make clear that ξ1, ξ2 are changing for every partial
derivative of second order. However, all ξ1,kn, ξ2,kn are bounded by ε, so our result
still holds. Applying the same procedure to |ϕ2(x) − ϕ2(x̃)| yields

∣∣∣h′
�(b

T
� g(AT x))g′′

i (aT
i x) − g′

�(b�g(AT x̃))g′′
i (aT

i x̃)

∣∣∣

≤ η1κ3ε(|aki | + |ani |) + κ2η2κ1ε

∣∣∣∣∣
m1∑
I=1

bI�(|aI k | + |aI n|)
∣∣∣∣∣ .
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By setting Ĉ = max {η1κ3, κ1κ2η2}, we can can develop the same bounds for both
parts of the right sum as for ϕ1, and get

⎧
⎨
⎩

d∑
k,n=1

∣∣ϕ2(x) − ϕ2(x + ξ1,knek + ξ2,knen)
∣∣2
⎫
⎬
⎭

1
2

≤ 8Ĉεm1m
3
2
0 .

Finally, we get

‖∇2 f (x) − �2
ε f (x)‖F ≤

⎧⎨
⎩

d∑
k,n=1

∣∣∣∣
∂2 f

∂xk∂xn
(x) − ∂2 f

∂xk∂xn
(x + ξ1,knek + ξ2,knen)

∣∣∣∣
2
⎫⎬
⎭

1
2

=
⎧⎨
⎩

d∑
k,n=1

∣∣ϕ1(x) + ϕ2(x) − ϕ1(x + ξ1,knek + ξ2,knen) − ϕ2(x + ξ1,knek + ξ2,knen)
∣∣2
⎫⎬
⎭

1
2

≤ 8C̃εm1m
3
2
0 + 8Ĉεm1m

3
2
0 .

Setting C� = 16max {C̃, Ĉ} finishes the proof.

Additional Results and Proofs for Section 3

Lemma 30 Let {w�⊗w� : � ∈ [m]} be a set of m < 2d −1 rank one matrices in S such
that any subset of �m/2�+1 vectors {w� j : j ∈ [�m/2�+1]} is linearly independent.
Then for any X ∈ span {w� ⊗ w� : � ∈ [m]} ∩ S with rank(X) = 1, there exists �∗
such that X = w�∗ ⊗ w�∗ .

Proof Let X = ∑m
�=1 α�w� ⊗ w� ∈ S, and denote I = {� ∈ [m] : α� �= 0}. If

1 < |I| ≤ �m/2� + 1, the vectors {wi : i ∈ I} are linearly independent, and thus,
rank(X) = |I| > 1. Otherwise, we split I = I1 ∪ I2 with |I1| = �m/2� + 1
and |I2| ≤ m − �m/2� − 1 ≤ m/2 − 1. If we accordingly split X = X1 + X2
with X j := ∑�∈I j

α�w� ⊗ w�, the assumption implies rank(A1) = �m/2� + 1 and
rank(A2) ≤ m/2− 1. Since furthermore rank(X) ≥ rank(X1) − rank(X2), it follows
that rank(X) ≥ �m/2� + 1 − (m/2 − 1) ≥ 2.

Corollary 31 Assume m < 2d −1, and {w� : � ∈ [m]} satisfies the upper frame bound
(9) with ν := CF − 1 < �m

2 �−1. Then for X ∈ W ∩ S of rank(X) = 1, there exists �∗
such that X = w�∗ ⊗ w�∗ .

Proof To apply Lemma 30, we establish a lower bound for the size of the smallest
linearly dependent subset of {w� : � ∈ [m]}, denoted commonly also by spark({w� :
� ∈ [m]}), see [63]. Following [63], it is bounded from below by

spark({w� : � ∈ [m]}) ≥ min{k : μ1(k − 1) ≥ 1},
where μ1(k − 1) := max

I⊂[m]
|I|=k−1

max
j /∈I
∑
i∈I

∣∣〈wi , w j
〉∣∣ .
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Using the frame property (9), we can bound

μ1(k − 1) = max
I⊂[m]

|I|=k−1

max
j /∈I
∑
i∈I

∣∣〈wi , w j
〉∣∣

≤ √
k − 1 max

I⊂[m]
|I|=k−1

max
j /∈I

√∑
i∈I

〈
wi , w j

〉2 ≤ √(k − 1)ν.

Taking additionally into account ν < �m
2 �−1, it follows that

spark({w� : � ∈ [m]}) ≥ min{k : μ1(k − 1) ≥ 1} ≥ min{k : √(k − 1)ν ≥ 1}
= min

{
k : k ≥ 1 + 1

ν

}
> 1 +

⌈m

2

⌉
.

The result follows by applying Lemma 30.

Lemma 32 Let W, Ŵ be matrix subspaces of equal dimensions (e.g., subspaces of
matrices in R

d×d) with corresponding orthogonal projections PW , PŴ . Assume
δ := ∥∥PW − PŴ

∥∥
F

< 1. For any W ∈ W we have

∥∥PŴ (W )
∥∥

F
≤ ‖W‖F ≤ (1 − δ)−1

∥∥PŴ (W )
∥∥

F
.

In particular PŴ : W → Ŵ is a bijection.

Proof The right inequality follows by

∥∥PŴ (W )
∥∥

F
= ∥∥W + PŴ (W ) − PW (W )

∥∥
F

≥
(
1 − ∥∥PŴ − PW

∥∥
F

)
‖W‖F ≥ (1 − δ) ‖W‖F .

Lemma 33 Let {wi : i ∈ [m]} ⊂ R
d be a set of unit-norm vectors satisfying the frame

assumption

(1 − ν) ‖x‖22 ≤
m∑

i=1

〈x, wi 〉2 ≤ (1 + ν) ‖x‖22 for all v ∈ R
d

and some 0 < ν < 1. Let W = span{wi ⊗ wi : i ∈ [m]} with corresponding
orthogonal projection PW and let Ŵ ⊂ R

d×d be a subspace of symmetric matrices
with orthogonal projection PŴ such that δ := ∥∥PW − PŴ

∥∥
F

< 1. Define Ŵi :=
PŴ (wi ), take M ∈ Ŵ∩Swith M =∑m

i=1 σi Ŵi , and let Z ∈ W satisfy M = PŴ (Z).
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Then

‖σ‖∞ ≤ 1

(1 − δ)(1 − ν)
, (48)

∣∣∣∣σ j

∥∥∥Ŵ j

∥∥∥
2

F
−
〈
Ŵ j , M

〉∣∣∣∣ ≤
δ

1 − δ
+ (δ + ν) ‖σ‖∞ (49)

Moreover, for any unit norm vector v and any Ŵ j , we have

∣∣∣∣
∥∥∥Ŵ jv

∥∥∥
2 − vT Ŵ jv

∣∣∣∣ ≤ 2δ. (50)

Proof We first note that 1 = ‖M‖F = ∥∥PŴ (Z)
∥∥

F
≥ (1 − δ) ‖Z‖F implies ‖Z‖F ≤

(1− δ)−1. For (48), we assume without loss of generality max σk = ‖σ‖∞ (otherwise
we perform the proof for −M), and denote j = argmaxi σi . Then we have

(1 − δ)−1 ≥ ‖Z‖F ≥ ‖Z‖ ≥ wT
j Zw j =

m∑
i=1

σi
〈
w j , wi

〉2 = ‖σ‖∞ +
∑
i �= j

σi
〈
w j , wi

〉2

≥ ‖σ‖∞

⎛
⎝1 −

∑
i �= j

〈
w j , wi

〉2
⎞
⎠ ≥ ‖σ‖∞ (1 − (CF − 1)) ≥ ‖σ‖∞ (1 − ν).

For (49), we first notice that

〈
Ŵ j , M

〉
=
〈

Ŵ j ,

m∑
i=1

σi Ŵi

〉
= σ j

∥∥∥Ŵ j

∥∥∥
2

F
+
〈

Ŵ j ,
∑
i �= j

σi Ŵi

〉

= σ j

∥∥∥Ŵ j

∥∥∥
2

F
+
〈

Ŵ j ,
∑
i �= j

σi Wi

〉

= σ j

∥∥∥Ŵ j

∥∥∥
2

F
+
〈

Ŵ j − W j ,
∑
i �= j

σi Wi

〉
+
∑
i �= j

σi
〈
W j , Wi

〉
,

and thus is suffices to bound the last two terms. For the first term, we get

∣∣∣∣∣∣

〈
Ŵ j − W j ,

∑
i �= j

σi Wi

〉∣∣∣∣∣∣
≤ δ

∥∥∥∥∥∥
∑
i �= j

σi Wi

∥∥∥∥∥∥
F

= δ
∥∥Z − σ j W j

∥∥
F ≤ δ

1 − δ
+ ‖σ‖∞ δ,

and for the second
∣∣∣∣∣∣
∑
i �= j

σi
〈
W j , Wi

〉
∣∣∣∣∣∣
≤ ‖σ‖∞

∑
i �= j

〈
w j , wi

〉2 ≤ ‖σ‖∞ ν.
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For (50), we first rewrite

∣∣∣∣
∥∥∥Ŵ j u

∥∥∥
2

2
− uT Ŵ j u

∣∣∣∣ =
∣∣∣
〈
Ŵ j

2
, u ⊗ u

〉
−
〈
Ŵ j , u ⊗ u

〉∣∣∣ ≤
∥∥∥Ŵ 2

j − Ŵ j

∥∥∥ .

Now denote � := Ŵ j − W j . Since W 2
j = W j , we have

∥∥∥Ŵ 2
j − Ŵ j

∥∥∥ =
∥∥∥Ŵ 2

j − Ŵ j

∥∥∥ =
∥∥∥(� + W j )

2 − W j − �

∥∥∥
=
∥∥∥�2 + W j� + �W j − �

∥∥∥
=
∥∥∥Ŵ j� − �(Id − W j )

∥∥∥ ≤ ‖�‖
(∥∥∥Ŵ j

∥∥∥+ ∥∥Id − W j
∥∥) ≤ 2δ,

since Id − W j is a projection matrix onto span{w j }⊥.

Proof of Lemma 15 We first calculate a lower bound for λD in terms of the mini σi by

λD =
m∑

i=1

σi

〈
u D ⊗ u D, Ŵi

〉
=

m∑
i=1

σi 〈u D ⊗ u D, Wi 〉 +
m∑

i=1

σi

〈
u D ⊗ u D, Ŵi − Wi

〉

≥
m∑

i=1

σi 〈u D, wi 〉2 −
∥∥∥∥∥

m∑
i=1

σi (Ŵi − Wi )

∥∥∥∥∥
F

≥ C min
i

σi − ∥∥PŴ (Z) − Z
∥∥

F
≥ C min

i
σi − δ

1 − δ
,

where C = c f if mini σi > 0 and C = CF if mini σi ≤ 0. We are left with bounding
σ j∗ := mini σi . Clearly, if σ j∗ > 0, the result follows immediately. Therefore, we
concentrate on the case σ j∗ ≤ 0 in the following. We first use (32) to get

λ1

〈
Ŵ j∗ , M

〉
=
〈
Ŵ j∗ , u1 ⊗ u1

〉
= 〈W j∗ , u1 ⊗ u1

〉+
〈
Ŵ j∗ − W j∗ , u1 ⊗ u1

〉

≥ 〈w j∗ , u1
〉2 −

∥∥∥Ŵ j∗ − W j∗
∥∥∥ ≥ −δ. (51)

Applying now Lemma 33, and ‖Ŵ j∗‖ ≥ 1 − δ, we obtain from (51)

− δ

λ1
≤
〈
Ŵ j∗ , M

〉
≤ σ j∗

∥∥∥Ŵ j∗
∥∥∥
2

F
+
∣∣∣∣σ j∗

∥∥∥Ŵ j∗
∥∥∥
2

F
−
〈
Ŵ j∗ , M

〉∣∣∣∣

≤ σ j∗(1 − δ)2 + δ

1 − δ
+ (δ + ν) ‖σ‖∞ ,

⇒ σ j∗ ≥ − δ

λ1(1 − δ)2
− δ

(1 − δ)3
− (δ + ν)

(1 − δ)2
‖σ‖∞ .

123



532 Constructive Approximation (2022) 55:475–536

Using this in the previously derived bound for λm , and using CF < 1 + ν, we have

λD ≥ CFσ j∗ − δ

1 − δ

≥ −(1 + ν)

(
δ

λ1(1 − δ)2
+ δ

(1 − δ)3
+ (δ + ν)

(1 − δ)2
‖σ‖∞

)
− δ

1 − δ
.

Since δ, ν < 1/4 we obtain from (48) that ‖σ‖∞ ≤ 2, and

λD ≥ −2δλ−1
1 − 3δ − 2(δ + ν) ‖σ‖∞ ≥ −2δλ−1

1 − 8δ − 4ν.

Lemma 34 Let (A, d) be a metric space and F : A → A be a continuous function.
Let (X j ) j∈N be a sequence generated by X j = F j (X0) for some X0 ∈ A and assume
d(X j+1, X j ) → 0. Then any convergent subsequence of (X j ) j∈N converges to a fixed
point of F.

Proof Let (X jk )k∈N be a convergent subsequence of (X j ) j∈N with limit X̄ =
limk→∞ X jk . Then the subsequence X jk+1 satisfies d(X jk+1, X̄) ≤ d(X jk+1, X jk ) +
d(X jk , X̄) → 0 as k → ∞ and thus also (X jk+1)k∈N converges to X̄ . By construction
X jk+1 = F(X jk ). Taking the limit k → ∞ on both sides and using the continuity of
F , we get

X̄ = lim
k→∞ X jk+1 = lim

k→∞ F(X jk ) = F

(
lim

k→∞ X jk

)
= F(X̄).

Proof of Proposition 26

Proof of Proposition 26 The first step is to replace first layer weights A by ÂSA. This
can be achieved by inserting the permutation πA in the first layer and replacing by
ÂSA according to

f (x) = 1T φ(BT φ(AT x + θ) + τ) = 1T φ(BT πAφ((AπA)T x + πT
A θ) + τ)

= 1T φ((πT
A B)T φ(SA ÂT x + πT

A θ) + τ).
(52)

Next we need to replace the matrix πT
A B using V respectively V̂ . Let n ∈ R

m1 be
defined as n� = ‖AGb�‖−1, and N = diag(n). By definition of the entangled weights,
we have V = AG B N , implying the relation B = G−1A−1V N−1. Using assumptions
A = ÂSAπT

A and V = V̂ SV πT
V , and the properties S−1

A = SA, π
−1
A = πT

A , it follows
that

πT
A B = πT

A G−1πA SA Â−1V̂ SV πT
V N−1 = (πT

A GπA)−1SA Â−1V̂ SV πT
V N−1

123



Constructive Approximation (2022) 55:475–536 533

Since G = diag(φ′(θ)), we have πT
A GπA = diag(πT

A (φ′(θ))) = diag((φ′(πT
A θ))) =:

G̃. Inserting into (52), we get

f (x) = 1T φ(N−1πV SV V̂ T Â−T SAG̃−1φ(SA ÂT x + πT
A θ) + τ)

The dot product with a 1-vector is permutation invariant; hence, we can get an addi-
tional πT

V into the second layer. Then, using that the diagonal matrix Ñ := πT
V NπV

commutes with SV we get

f (x) = 1T φ(Ñ SV V̂ T Â−T SAG̃−1φ(SA ÂT x + πT
A θ) + πT

V τ)

= 1T φ(Ñ−1SV V̂ T Â−T SAG̃−1φ(SA ÂT x + πT
A θ) + πT

V τ)

= 1T φ(SV Ñ−1V̂ T Â−T SAG̃−1φ(SA ÂT x + πT
A θ) + πT

V τ).

It remains to show that B̂ = G̃−1SA Â−1V̂ Ñ−1, which is implied if Ñ�� =
‖G̃−1SA Â−1v̂�‖. By the normalization property ‖b�‖ = 1 (see Definition 3) and
B = G−1A−1V N−1, we first have

1 = ‖b�‖ =
∥∥G−1A−1v�

∥∥
n�

and thus n� =
∥∥∥G−1A−1v�

∥∥∥ .

Using this, and the assumptions A−1 = πA SA Â−1, V πV = V̂ SV , we obtain

Ñ = πT
V NπV = diag(πT

V n) = diag
(
πT

V

(∥∥∥G−1A−1v1

∥∥∥ , . . . ,

∥∥∥G−1A−1vm1

∥∥∥
))

= diag
(∥∥∥G−1A−1(V πV )1

∥∥∥ , . . . ,

∥∥∥G−1A−1(V πV )m1

∥∥∥
)

= diag
(∥∥∥G−1πA SA Â−1(V̂ SV )1

∥∥∥ , . . . ,

∥∥∥G−1πA SA Â−1(V̂ SV )m1

∥∥∥
)

= diag
(∥∥∥G−1πA SA Â−1v̂1

∥∥∥ , . . . ,

∥∥∥G−1πA SA Â−1v̂m1

∥∥∥
)
,

where we used that SV affects v� only by multiplication with ±1. The result follows
since πT

A is orthogonal and thus ‖G−1πA SA Â−1v̂�‖ = ‖πT
A G−1πA SA Â−1v̂�‖ =

‖G̃−1SA Â−1v̂�‖.
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