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Abstract
With industries pushing towards digitalized production, adaption to expectations and increasing requirements for modern 
applications, has brought additive manufacturing (AM) to the forefront of Industry 4.0. In fact, AM is a main accelerator 
for digital production with its possibilities in structural design, such as topology optimization, production flexibility, cus-
tomization, product development, to name a few. Fused Filament Fabrication (FFF) is a widespread and practical tool for 
rapid prototyping that also demonstrates the importance of AM technologies through its accessibility to the general public 
by creating cost effective desktop solutions. An increasing integration of systems in an intelligent production environment 
also enables the generation of large-scale data to be used for process monitoring and process control. Deep learning as a 
form of artificial intelligence (AI) and more specifically, a method of machine learning (ML) is ideal for handling big data. 
This study uses a trained artificial neural network (ANN) model as a digital shadow to predict the force within the nozzle 
of an FFF printer using filament speed and nozzle temperatures as input data. After the ANN model was tested using data 
from a theoretical model it was implemented to predict the behavior using real-time printer data. For this purpose, an FFF 
printer was equipped with sensors that collect real time printer data during the printing process. The ANN model reflected the 
kinematics of melting and flow predicted by models currently available for various speeds of printing. The model allows for 
a deeper understanding of the influencing process parameters which ultimately results in the determination of the optimum 
combination of process speed and print quality.

Keywords Additive manufacturing · Fused Filament Fabrication · 3D printing · Artificial intelligence · Neural networks · 
Machine learning · Deep learning · Big data · Process control · Process monitoring · Signal processing · Industry 4.0

1 Introduction

While the quality and speed of additive manufacturing pro-
cesses have improved significantly since the first patent in 
selective laser sintering (SLA) in 1986 [1], AM is still con-
sidered a relatively new production method. However, in 
Fig. 1, a strong growth in the past decade can be observed 
when comparing total revenues of AM systems and products 
worldwide between 1993 and 2018. The total revenues grew 

by 323% up to 8.3 billion US $ with a potential growth of 
428% to a total value of 35.6 billion US $ by 2024 [2].

Over the past decade, the degree of production consist-
ency as well as the monitoring and control of these produc-
tion processes has developed considerably, but still does not 
compare to that of traditional manufacturing methods. In 
order to make improvements in areas of industrialization, 
even pushing towards industry 4.0, a better understanding 
of the respective processes and what is actually happening 
during a build process is needed.

Monitoring possibilities and the associated generation of 
data are only available to a limited extent due to the rela-
tively small number of sensors in use. If available, machine 
and process data is a large yet disorganized resource which 
can be tapped for collection, however, the evaluation of such 
information, especially in large quantities, becomes a core 
challenge.

The recent, some might say, second coming of artificial 
intelligence allows for a potential form-fitting cooperation 
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between a field full of excitement yet wrought with problems 
surrounding quality and stability, and a field that can take 
large amounts of abstract data and information, character-
izing highly complex processes [3].

This study uses an FFF printer as a production system and 
an artificial neural network to investigate the influence of 
filament speed and process temperature on the force within 
the nozzle, which is directly related to print-quality and 
speed. Large amounts of data recorded in real time using a 
customized printer with sensors are required as an input for 
the ANN, achieving a comprehensive proof of concept for 
process monitoring and control in AM technologies.

1.1  Artificial neural networks in additive 
manufacturing

AM technologies offer a broad range of relatively new pro-
cesses using different procedures, energy sources and mate-
rials for a layer wise production. All have complex manu-
facturing mechanisms in common, such as surface quality, 
mechanical properties, process time, cost and many more, 
suggesting a high number of influential process parameters 

are needed in order to achieve optimum results [4]. This con-
dition in combination with a lack of inline process monitor-
ing and unknown failure mechanisms suggests the possibil-
ity to generate large amounts of data, which is an important 
prerequisite for the use of AI.

ANN algorithms are ideal for taking large amounts of 
data, which are either directly or indirectly interrelated, and 
processing it in a way which allows a user to better under-
stand any patterns or effects hidden within this information. 
Possible ways of processing data with a NN are regression 
or classification problems [5], shown in Fig. 2. Depending 
on the inputs and outputs for specific AM applications, an 
outcome could be a prediction of process parameters or 
detection of failure within prints, to name a few.

However, understanding the fundamental mechanisms of 
processes is important when verifying results generated with 
an ANN, which might be based on experimental input data. 
This underlines the need for supporting data infrastructure, 
integrating closed loop iterations between experimental and 
mathematical/physical modeling [6]. While experimental 
results may be hard to gain, numerical datasets can also 
be used for training of an ANN by generating unlimited 
amounts of data, thus, solving one of the key challenges 
in data science. This procedure is balancing computational 
costs and time between conventional mathematical, and data 
science simulation approaches [7].

Existing approaches using AI in the field of FFF print-
ing include the work by Bayraktar which uses an ANN to 
predict the mechanical properties using print orientation, 
nozzle temperature and layer thickness as input parameters 
[8]. Additionally, in 2016 Wu et al. uses an acoustic sensor 
to set up a real time state detection system to distinguish the 
extrusion and material loading state as well as identifying 
nozzle blockages [9]. While these approaches are novel find-
ings for the area of AI in AM, they do not rely on fundamen-
tal process knowledge in polymer processing and additive 
manufacturing. The model developed in this study combines 

Fig. 1  Total revenues of AM services and products between 1993 and 
2018 with a prognosis until 2024 [2]

Fig. 2  Exemplary representa-
tion of a classification (left) and 
regression (right) problem
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existing physical models of the FFF extrusion process to 
verify the validity of the ANN.

1.2  Kinematics of melting and flow 
inside the nozzle

During manufacture of a part using the material extrusion 
process, an amorphous or semi-crystalline thermoplastic 
filament is melted and extruded through a heated nozzle 
[10–14]. The extruded filament or bead is deposited and 
fused onto a previously applied layer and subsequently 
cooled down and solidified. The central component of this 
process is the extruder, which consists of the drive system 
and the nozzle. The nozzle melts the plastic and the move-
ment generated by the drive pushes it through the capillary 
to form the bead. After three decades of existence, there is 
still controversy on how the material melts inside the nozzle 
[11]. It is clear that the limiting factor of the fused filament 
fabrication (FFF) process is the melting rate which controls 
the printing speed [11].

Modeling the nozzle that produces the bead, has been of 
interest to various researchers in past decades [7, 10–17]. 
There are two general approaches of thought, schematically 
depicted in Fig. 3, that are plausible, depending on the speed 
that the filament is pushed through the nozzle:

1. For low filament speeds, the filament melts soon after 
entering the nozzle. Here, the nozzle is assumed filled 
with molten polymer and the filament acts as a piston 

that pushes the melt through the capillary, much like a 
syringe pushes a fluid through a needle [10].

2. For high filament speeds, the molten material only exists 
at the bottom of the nozzle, in form of a thin film, where 
the filament pushes the melt toward the capillary in a 
squeezing flow fashion [11].

The first, or slow speed assumption [10, 12], computes the 
pressures required to push the melt through Sects. 1, 2 and 3 
at a certain speed and computes the force required to push the 
filament based on the sum of those pressures. The first sec-
tion, denoted by “I” in the schematic, can be approximated 
by a Hagen-Poiseuille flow, or pressure flow through a tube, 
with a pressure requirement of ΔpI . It should be pointed out 
here, that the length of the molten Sect. 1, denoted by LI , is 
actually unknown and depends on the speed the filament is 
driven through the nozzle. For a shear thinning polymer melt, 
represented using a power-law viscosity model given by

the volumetric flow rate is given by

where, �̇� is the magnitude of the rate of deformation tensor, 
n is the power-law index, m is the consistency index, LI is 
the length of the section and ΔpI the pressure required to 
push the melt through Sect. 1 at the given volumetric flow 

(1)𝜂 = m ̇(T)𝛾
n−1

(2)Q =
(

n�

3n + 1

)

[

−
RI

3n+1

2mLI
1∕n

]

ΔpI
1∕n

Fig. 3  Melting modes inside the 
nozzle for low filament move-
ment (left) and high filament 
speed (right)
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rate. The second section is where the melt transitions from 
a larger radius RI to a smaller radius RIII , a contraction that 
leads to a pressure loss ΔpII . Finally, the third section is also 
a Hagen-Poiseuille flow that for a certain volumetric 
throughput has a pressure requirement of ΔpIII . Although the 
model starts with the assumption that the nozzle is filled 
with molten polymer, the pressure required to push the melt 
through this section is negligible compared to the pressure 
required to push the melt through the capillary. For example, 
a typical filament measures 1.75 mm or 2.85 mm in diame-
ter, while the capillary typically measures 0.4 mm. From the 
Hagen-Poiseuille equation, we know that the pressure 
requirement is proportional to 1

R4
 . Therefore, assuming the 

length of the sections are of the same order of magnitude, 
the pressure required to push the melt through the 0.4 mm 
capillary is 366 times higher than pushing melt through a 
1.75 mm nozzle 

(

R4

I

R4

III

= 366

)

 . Similarly, the pressure require-
ment to push the resin through the conical contraction is 
proportional to 

(

1

RIII
4 −

1

RI
4

)

 , making it also insignificant 
when comparing it to the flow requirement though the 
0.4 mm capillary. For this reason, the Bellini model [10] 
works quite well, as long as there is a significant amount of 
melt inside the nozzle body. Hence, the melting rate, or fila-
ment speed Usz , is a function of the force Fz applied to the 
filament, as schematically depicted in Fig. 4, and given by

Note that for a power-law index n = 0.5 , Usz ∝ Fz
2.

(3)Usz ∝ Fz
1∕n

The second, or fast speed assumption [11], is when the 
speed is fast enough that not enough time is given to melt the 
plastic in the main body of the nozzle and the solid front at 
the tip of the filament reaches the bottom of the nozzle. Here, 
the melting is similar to melting a stick of butter against the 
hot surface of a pan, except the melt is not pressed outward 
but toward the center and out the capillary. Within the poly-
mer processing community this type of melting is known as 
melting with pressure flow removal [11]. This model is based 
on a mass, momentum and energy balance of the melt within 
the melt film. With the resulting model, the melting rate is 
proportional to the fourth root of the force applied to the fila-
ment [10], as schematically depicted in Fig. 4 and given by

The melt film between the heated nozzle is much smaller 
than the radius of the filament, typically under 100 µm in 
thickness [11].

Most publications [12–14, 16, 17] use the first model, 
proposed by Bellini et al. [10]. However, as the filament 
speed increases and the space between solid front and the tip 
of the nozzle � becomes small, the melting and flow modes 
transition to melting with pressure flow removal, basically 
representing an upper bound or limiting factor of any FFF 
printer [11].

2  Materials and methods

The custom-made FFF printer Minilab by Fused Form 
Corp., shown in Fig. 5, is used in this study to generate data 
produced in the printing process. The Minilab was equipped 
with a force sensor, an encoder and a thermistor in order 
to monitor filament force, filament speed, nozzle- and sur-
rounding temperature while 3D printing. This data was col-
lected using an Arduino board connected to Matlab for data 
visualization, processing and logging. A special extruder in 
combination with a compact diaphragm capsule force sensor 
was developed with the purpose of having a force feedback 
of the extrusion process while keeping the original perfor-
mance of the printer. This allows for the recording of the 
actual filament extrusion forces which occur during printing. 
This was achieved by placing the force sensor just above 
the hot end in a Bowden extruder architecture. The filament 
extrusion length and speed were detected with a two quadra-
ture AB-channel, incremental rotary GTS-AB Series encoder 
placed before the Bowden extruder motor as shown in Fig. 5. 
By separating the motor from the encoder, the system is also 
able to detect filament slipping when reaching the maximum 
speeds and forces.

(4)Usz ∝ Fz
1∕4

Fig. 4  Schematic of filament speed as a function of force applied to 
the filament
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The sensor provides an accuracy of ± 20 g or 0.2 N. The 
temperature of the nozzle was detected in the hot end cube 
with a NTC100K sensor placed aside of the thermistor used 
for controlling the nozzle temperature during printing.

A cylindrical helix shaped part (Fig. 6) made out of a 
single row of filament with a wall thickness of 0.4 mm and 
a diameter and height of 150 mm × 100 mm is used to moni-
tor the variation of speed and force in combination with 
different nozzle temperatures throughout the printing pro-
cess. A brim consisting of one layer with an outer diameter 
of 156.8 mm is first printed around the cylinder to prevent 
warpage as well as a detachment from the build platform. 
The geometry is selected due to a constant speed of the x 
and y axis while printing the continuous helix shape along 
the z axis. The filament speed is therefore set to a certain 
value, increasing every ten rotations to capture the whole 
range in one print. The adjustment of the speed is done by 
a command in the gcode at the end of a full rotation. The 

transition between speeds is done seamless without stopping 
the filament feed. Three temperatures from 200 to 230 °C 
are tested in total.

A total of approximately 12.000 data points are recorded 
for each print. A 0.4 mm nozzle is used in combination with 
a 1.75 mm filament. The prints are performed with the com-
mercially available Natural PLA PRO, by Matterhackers, to 
reduce effects caused by colors and additives existing in the 
material. The print bed is preheated for every test to 60 °C. 
The nozzle temperature is set as well before starting a print. 
The parameters used for printing are summarized in Table 1.

3  Artificial neural networks

The idea of deep learning is actually one that is based on 
how humans process information and learn. Our memory, 
our actions, our thoughts are controlled by our central nerv-
ous system which is composed of neurons. The concept on 
which ANN are based upon is how our brains process and 
store information through connections between various neu-
rons and their relative strengths. With this in mind, we can 
basically describe a neural network as a group of connected 
neurons, where the number of layers (depth) and number of 
neurons per layer (width) define the networks architecture. 
Each input is multiplied with a weight, connecting the input 
to the neuron itself. These weights are determined during 

Fig. 5  FFF printer “Minilab” 
by Fused Form Corp. equipped 
with sensors
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Fig. 6  Cylindrical geometry used to test the neural network

Table 1  FFF printing parameters

Print Nr Material Nozzle tem-
perature (°C)

Printed tem-
perature (°C)

Filament 
speed ( 
mm/s)

1 PLA 200  60 1.0–7.0
2 PLA 215 60 1.0–7.0
3 PLA 230 60 1.0–7.0
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training of the neural network using application specific 
data. The data is then fed to an activation function, modi-
fying the input with non-linear functions and passing the 
output to the next neuron, able to model highly complex 
relationships. [18]

A simple artificial neural network (ANN) consists of at 
least three layers. The first layer is called the input layer, 
followed by a hidden layer, and finally, by the output layer 
neurons, as schematically depicted in Fig. 7.

Information, such as filament velocity, Usz , and nozzle 
temperature, TH , is fed into the input layer, and using the 
connections between the neurons, passes through the hidden 
layers and delivers a value to the output layer which is then 
compared to the actual output value. The output contains 
information such as filament force, Fz , that is physically 
dependent on the input parameters. Every connection in the 
ANN has a weight, wij , associated with it, and each neuron 
has a bias or threshold value, bj , and an activation function, 
� , designated to it. This allows nodes in the input layer, or 
neurons in the hidden layer to be connected to a neuron on 
its right-hand side, schematically depicted in Fig. 8.

In equation form, the diagram depicted in Fig. 8 is writ-
ten as

During the training of an ANN, the input values are 
passed through each of the hidden layers in the network 
with a starting set of weights and biases. The complex 
procedure involves numerous steps, parameters and 

(5)yi = Φ(wijxi + bi)

hyperparameters to be chosen based on the application in 
order to generate the best possible results. The dataset and 
an initialized set of parameters is fed to the model, calcu-
lating the model’s predictions based on the given input. 
The computed output is compared to the desired output 
that was fed to the ANN and the weights and biases are 
adjusted using a gradient descent back-propagation error 
minimization scheme [19].

The ANN executes many iterations, continuously 
adjusting the weights and biases. The error is constantly 
calculated during training using a loss function. In order 
to minimize the error, the derivative of the loss-function is 
calculated, and weights and biases are adjusted before the 
next iteration. This basic principle refers to the gradient 
descent algorithm for solving an optimization problem. 
The starting point for the algorithm is set by the initialized 
weights for the training of the ANN. First, the gradient 
of the loss function is calculated, and the local steepest 
direction of descent is chosen for the next iteration, using 
a specific step size for adjusting the weights. Dynamically 
adjusting the step size and choosing the best algorithm 
is of particular importance in optimizing functions to 
ensure a fast convergence of the problem and also depends 
strongly on the application.

This process can be done in batches by splitting the data 
into k folds. The model is then trained on folds 2-k and 
tested on fold 1. This process is repeated k times, using 
the remaining fold (2, 3, …, k) as a test fold. By averaging 
the loss function, the out-of-sample model performance 
can be estimated. A commonly used loss function can be 
the root mean squared error (RMSE). Choosing a func-
tion again depends on the problem and highly affects the 
model’s performance. The previously explained steps on 
training are repeated using different values for the models 
hyperparameters. These include in particular a dropout 
rate, used to prevent a model from overfitting as well as 
the depth and width. Depending on the application, oth-
ers are available and should be considered based on the 
application [20].Fig. 7  Architecture of a neural network (according to [19])
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Fig. 8  Neuron with input parameters xi , weights wij , bias bij , activa-
tion function Φ and output yi (according to [19])
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4  Development of an artificial neural 
network FFF model

The process of developing an artificial neural network 
model requires several important steps in order to achieve 
suitable results, and strongly depends on the existing 
problem. Predicting the force within the nozzle of an FFF 
printer as a continuous value using filament speed and 
nozzle temperatures as input data is defined as a super-
vised regression problem. The generated data provides the 
basis for parameters and methods to be defined during the 
process and must therefore be closely examined and pre-
processed. The model’s architecture is defined by the num-
ber of input parameters, hidden layers (depth), neurons 
within the hidden layers (width) and output parameters.

Training and validation of the model describes the main 
process step and is key to achieve accurate results for the 
existing problem when testing it. When training a model 
with the amount of predefined labeled data, the resulting 
output yi,m is constantly compared to the actual value yi,d of 
the dataset, forming an error. As described previously, the 
weights and biases are optimized by minimizing the error 
using a loss function within a gradient descent algorithm, 
until the weights converge. The number of iterations the 
dataset is passed through the model is controlled by the 
variable epochs. When validating the model, the remain-
ing data which has not been used for training is fed to the 
model. In this process, the actual value is compared to the 
target value, without any further adjustment of the neuron 
properties to ultimately calculate the model’s accuracy.

Choosing the optimum configuration of width and depth 
involves starting with a rough guess as there is no generic 
way on how to determine the best values a priori. This 
is also a result of an interaction of width and depth with 
other hyperparameters of the model. A possible starting 
point can be choosing the number of neurons and hidden 
layers closely to the number of input parameters and build 
up complexity based on the model’s output [21]. The next 
step involves hyperparameter tuning which determines the 
networks structure as well as how the network is trained. 
The goal is always set so prevent the model from overfit-
ting while increasing its complexity and ability to general-
ize well. This means that a model trained on certain data 
is able to make accurate predictions on new data from the 
same class as the training set [22]. A common technique, 
the dropout rate is a regularization method to avoid overfit-
ting by dropping units randomly with a certain rate during 
training of the neural network. This prevents units within 
the network from co-adapting too much [23].

With each input variable of the total number of 20.000 
datapoints being on different scales (filament speed 
between 1 and 7  mm/s and temperatures from 200 to 

230 °C), a feature standardization shown in Eq. (6) is used 
to improve the performance of the model [24]. By sub-
tracting the mean value 

−
x from the original value xi and 

dividing the sum by the standard deviation s , the product 
zi has a mean of 0 with a standard deviation of 1.

A network architecture with three hidden layers, consist-
ing of five neurons each was found as an effective and eco-
nomical ANN. The decision process is based on recording 
the training and validation error of both, the training and 
validation dataset over the number of epochs. The results 
were compared to other configurations of width and depth 
and showed, that increasing the number of neurons and/ or 
layers resulted in overfitting while decreasing led to under-
fitting and higher errors. Here, 80% of the datapoints were 
used to train the ANN and 20% were used to validate and 
test the model. The common loss- and evaluation functions 
for regression problems, mean square error (MSE) and mean 
absolute error (MAE) are used to record the error vs. epochs 
for training and validation loss. By plotting the development 
of both values, the most suitable number of epochs can be 
visualized, avoiding excessive computing time or overfit-
ting of the model, and again evaluating the chosen network 
architecture.

Figure 9 shows the results by plotting the mean abso-
lute error  (Fz) of the training and validation dataset over the 
epochs for the previous selected architecture. An early stop-
ping function is also used to prevent overfitting of the model 
by stopping the training process, if the validation loss is not 
decreasing after a preset number of epochs [5]. Using this 
model, the mean absolute error was minimized to 0.72 N.

Figure 10 shows the predictions made on the test dataset 
against the actual, true values (left), and the distribution 

(6)zi =
xi−

−
x

s

Fig. 9  Mean absolute error of training (Train) and validation (Val) 
dataset using early stopping function



474 Production Engineering (2021) 15:467–478

1 3

of the prediction error (right). A diagonal line with the 
slope of 1 is added to the actual vs. predicted plot, show-
ing the region where the prediction is equal to the values 
computed by the algorithm. It can be seen that the model 
shows good results especially below force values of 25 N. 
Predictions above 25 N relate to observations made during 
the print, showing a high rate of filament slipping at higher 
print speeds especially at lower temperatures.

The developed ANN is shown in Fig. 11. Each neu-
ron within the hidden layers is using the ReLU (Rectifier 
Linear Unit) activation function. The lines between input 
nodes, output nodes and each neuron symbolize a pos-
sible connection for the dataset to be processed. It should 
be considered that certain arrangements are particularly 
suitable for specific problems and configurations of data. 
The network presented here shows good results in this 
particular case and has therefore been selected for this 
application. The parameters used to set up the model are 
summarized in Table 2.

Finally, the trained deep learning model is saved with 
the defined weights and bias and can be applied for data-
sets generated with different temperatures trained previ-
ously, ultimately replacing the force sensor. Future work 
includes printing and training of more datasets, expanding 
the model to a higher range of process temperatures.

Fig. 10  Test data predictions against true values (left) and distribution of the error (right)

Fig. 11  Sequential deep neural network used for the regression problem

Table 2  Neural network summary

Layer Layer type Specification Nodes Dropout rate

1 Input Usz,  Th 2 –
2 Hidden ReLu, dense 5 0.2
3 Hidden ReLu, dense 5 0.2
4 Hidden ReLu, dense 5 0.2
5 Output Fz 1 –
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5  Experimental results

Raw data generated during the print, using speed, force and 
temperature sensors, is first exported and plotted to verify 
the assumptions of kinematics of melting and flow inside 
the nozzle. Figure 12 shows the raw data of prints using 
PLA filament performed with three temperature profiles 
from 200 °C (right) to 230 °C (left). The filament speed 
was successively increased until a significant decrease in the 
part quality was detected. This could be either delamination 
between layers, changes in wall thickness due to an unsteady 
feed of melted material or a catastrophic print failure. This 
can be experienced when the feeding unit is reaching a cer-
tain threshold in throughput and slippage occurred between 
the feeding wheel and the filament.

It can be seen that especially in areas of lower speeds the 
data follows the model proposed by Bellini et al. [10]. At 
higher filament speeds however, the melting and flow modes 
transition to the model melting with pressure flow removal 
[11] as previously assumed in Fig. 4. A shift of the curves 
with higher temperatures to the left is also clearly visible, 
showing a decrease of force at constant filament speeds.

A scattering of the datapoints is also observed in all prints 
with filament speeds exceeding the maximum range. This 
behavior can be seen especially when printing PLA material 
with nozzle temperatures below 215 °C (middle and right). 
Observations show that the scattering of data points is due to 
filament slipping in the feeding unit, especially when reach-
ing a certain speed. Smaller deflections in the interaction of 
the filament, the feeding unit and the speed signal also result 
in scattering of data points around the mean. Improving the 
signals quality in this study will be within the range of post-
processing tools for data analysis and not based on hardware 

improvements. While the datasets with 200 °C and 215 °C 
show this behavior above 5 mm/s, prints performed with 
230 °C have a higher resistance against filament slipping. 
This can be attributed to the decreased forces while using 
equivalent filament speeds.

The raw datasets were processed before training the 
model to generate accurate results. Therefore, data recorded 
incorrectly with speed values below 0 mm/s and above 
5 mm/s, as well as forces below 0 N and above 35 N were 
removed from the dataset. Finally, the dataset containing the 
pre-processed data is shuffled to avoid any dependency on 
the order of the final results.

In a next step, filament speeds and nozzle temperature of 
230 °C were fed to the trained neural network as input data 
(Fig. 13). The trend between the slow printing model [10] 
and the fast melting with pressure flow removal model [11] 
can be observed well, showing a clearly visible transition 
point around the filament speed of 4.1 mm/s and a force of 
17 N.

The results can also be seen for predictions made with 
the 200 °C dataset, used as a lower bound for nozzle tem-
peratures. Here, a transition can be seen around 4.10 mm/s 
of filament speed and 25 N of force. For the purpose of 
providing an optimal overview, only data generated with 
200 °C and 230 °C nozzle temperature is used in Fig. 13. 
The contrast between resulting forces at equivalent filament 
speeds increases with higher speeds and a maximum varia-
tion of about 9 N at 4 mm/s.

Finally, the ANN model was tested to predict filament 
force sensor response during one whole 3D printing job that 
lasted 3000 s. The simple cylindrical geometry presented in 
Fig. 6 was chosen for the printing job. The same PLA used 
in the other tests was employed, and the nozzle was set to 

Fig. 12  FFF print data recorded 
with filament force and -length 
sensors
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230 °C. Figure 14 presents the recorded filament velocity 
and force sensor output data during the 3000 s printing job.

To test the ANN model, the unprocessed filament velocity 
data was given as input data, and using the set temperature 

of 230 °C, the NN was used to predict the axial filament 
force. Figure 15 presents the comparison of the measured 
and NN-predicted force required to drive the filament at the 
given speed. It is interesting to note that the NN prediction 

Fig. 13  Neural network model 
predictions for 230 °C (left) and 
200 °C (right)

Fig. 14  Filament force and 
velocity sensor data during 
printing of the cylinder

Fig. 15  Comparison of the 
measured force signal with NN-
predicted force using filtered 
and unfiltered speed signal data
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reflects the variability reflected by the unprocessed velocity 
sensor data.

Due to the nature of the feeding unit and the derivative of 
the length signal to the speed signal, reflections in the data 
can be observed. In order to reduce the variability of the 
predicted force signal, simple signal processing techniques 
have been applied to process the original input speed data. 
Therefore, the signal has been analyzed in the frequency 
domain using Fourier transformation. The information was 
then used to design and apply a low pass filter to the sig-
nal. The filtered speed data was again used as input data 
for the NN model and predictions were plotted against the 
unprocessed data shown in Fig. 15. The graph shows a major 
improvement in results using the filtered signal. However, 
it is clear that with any given filament velocity and noz-
zle temperature, the ANN model can accurately predict the 
required axial filament force.

6  Conclusion

The artificial neural network model developed for monitor-
ing and predicting the force within the nozzle of an FFF 
printer, using filament speed and nozzle temperature as 
input data, accurately reflects the physical behavior within 
the nozzle. The model uses a neural network, where sen-
sor data collected in real time can be pre-processed prior 
to the training and validation of the NN model, achieving 
an accuracy of 0.72 N. Comparing the results with existing 
mathematical models verifies previous theories, and is able 
to combine those into a single powerful model that is able to 
characterize the relationship between process -speed, -tem-
peratures and -forces. The model can ultimately be used to 
choose process parameters for printing based on the gained 
process knowledge.

The neural network was able to capture the two modes of 
melting and flow proposed by various researchers, helping 
to shed some light on the underlying physics that control the 
heat transfer and flow within FFF nozzles. Acting as a digital 
shadow, the ANN meets the requirements of process moni-
toring and control during production, being cost effective 
and fast with low computational effort. The combination of 
AM and AI enables a new family of high-performance tech-
nologies, establishing AM 4.0, and further solving complex 
relationships with excellent results.

Furthermore, the process monitoring and control proce-
dures in this work can be extended with predicting structural 
strength of printed parts, within the context of a failure sur-
face development for FFF, first presented by Mazzei Capote 
et al. [25]. While generating a failure surface, complex test-
ing methods using combined multiaxial loadings have to be 
conducted. Predicting the shear strength for various combi-
nations of tensile- and compressive stresses, testing can be 

simplified without the need of special equipment for apply-
ing combined loading stress states. This allows ultimately to 
generate a powerful model, that captures the entire process 
of selecting the optimum parameters, the actual printing as 
well as the component quality with mechanical properties.

While applications of artificial intelligence are already 
gaining ground in the field of additive manufacturing, there 
is no use so far in FFF desktop applications contributing 
extended process knowledge to the state of the art. This 
study has shown great potential for generating a deeper 
understanding of these complex processes and is considered 
to enable a process monitoring- and control solution for a 
wide range of AM technology, capturing applications from 
desktop- to high-end solutions used in production industries. 
The model is also capable of replacing the force sensor unit 
when properly trained for a range of temperatures and mate-
rials for a printer, making the technology accessible to the 
general public.

The implementation of this model to existing printers will 
allow the user to model the process which will lead to a bet-
ter understanding of the process windows for various materi-
als and printing parameters such as nozzle temperature and 
filament speed. Additionally, this model will allow the user 
to verify the quality of the print by continuously monitoring 
the printing conditions.
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