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Abstract
Purpose of Review Our review provides an overview of forest attributes measurable by forest inventory that may support the
integration of non-provisioning ecosystem services (ES) and biodiversity into forest planning. The review identifies appropriate
forest attributes to quantify the opportunity for recreation, biodiversity promotion and carbon storage, and describes new criteria
that future forest inventories may include. As a source of information, we analyse recent papers on forest inventory and ES to
show if and how they address these criteria. We further discuss how mapping ES could benefit from such new criteria and
conclude with three case studies illustrating the importance of selected criteria delivered by forest inventory.
Recent Findings Recent studies on forest inventory focus mainly on carbon storage and biodiversity promotion, while
very few studies address the opportunity of recreation. Field sampling still dominates the data collection, despite the
fact that airborne laser scanning (ALS) has much improved the precision of large-scale estimates of the level of
forest ES provision. However, recent inventory studies have hardly addressed criteria such as visible distance in
stands, presence of open water bodies and soil damages (important for the opportunity of recreation) and naturalness
(here understood as the similarity of the forest to its natural state) and habitat trees and natural clearings (important
for biodiversity promotion). The problem of quantifying carbon stock changes with appropriate precision has not
been addressed. In addition, the reviewed studies have hardly explored the potential of inventory information to
support mapping of the demand for ES.
Summary We identify challenges with estimating a number of criteria associated with rare events, relevant for both
the opportunity of recreation and biodiversity promotion. These include deadwood, rare species and habitat trees.
Such rare events require innovative inventory technology, such as point-transect sampling or ALS. The ALS tech-
nology needs relatively open canopies, to achieve reliable estimates for deadwood or understorey vegetation. For the
opportunity of recreation, the diversity among forest stands (possibly quantified by geoinformatics) and information
on the presence of open water bodies (provided by RADAR, ALS data or use of existing maps) may be important.
Naturalness is a crucial criterion for native biodiversity promotion but hard to quantify and assess until now. Tree
species identification would be crucial for this criterion, which is still a challenge for remote sensing techniques.
Estimating carbon storage may build on biomass estimates from terrestrial samples or on remotely sensed data, but
major problems exist with the precision of estimates for carbon stock changes. Recent approaches for mapping the
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supply side of forest ES are promising, while providing so far uncommon structural information by revised inventory
concepts could be helpful also for mapping the demand for ES. We conclude that future studies must find holistic
inventory management systems to couple various inventory technologies in support of the integration of non-
provisioning ES and biodiversity into forest planning.

Keywords Forest’s contributions to societal needs . Ecosystem service criteria . Recreation . Biodiversity . Carbon storage .

Inventory techniques .Mapping of ecosystem services

Introduction

The sustainable management of forests is important to meet
current needs for forest products and services and also to
maintain or expand the capacity of forests to meet the needs
of future generations [1]. In this context, “forest management”
concerns all activities necessary to produce a continuous flow
of desired forest goods and services, while accounting for the
forest’s intangible values [2]. The integration of non-
provisioning ecosystem services (ES) and biodiversity into
forest planning may address these intangible values and thus
enhance the contribution of forests to a good life for people
[3]. However, accounting for non-provisioning ES [4, 5] in
forest planning and optimization, such as recreation and car-
bon sequestration, but also the conservation of forest biodi-
versity, is uncommon up to now. This demanding task re-
quires appropriate data and information about the forests’ ac-
tual condition and development.

Forest inventories provide a crucial source of information
for forest planning [6] and may offer information about
criteria and indicators to assess the forest status, sustainable
management and its provision of goods and services [7]. The
term forest inventory means both an information catalogue
and the process of measuring and evaluating the data from
which the inventory draws the information [8]. While the data
merely represent observable properties, the information is us-
able, processed data [9]. To illustrate, when decision-makers
ask questions starting with “what …”, “how much …” or
“where …”, an inventory may provide information to answer
these questions based on processed data. Therefore, the need
for an inventory to provide appropriate information for inte-
grating ES and biodiversity into forest planning is acute.

In our review, we focus on new inventory criteria to pro-
vide information concerning the integration of non-
provisioning ES and biodiversity into forest management
planning, which we qualitatively derive from published anal-
yses of stakeholder preferences. A qualitative analysis of such
criteria was necessary, as our quantitative review of forest
inventory studies published from 2015 to 2019 (see below)
was not successful in revealing sufficient information on
criteria preferred by stakeholders. For the same reason, we
complemented the results of our general search with specific
searches for the inventory of single criteria. We discovered a
gap in the availability of specific inventory criteria to improve

the inclusion of non-provisioning ES into forest planning. Our
objective is thus to provide an overview on new inventory
criteria and on recent studies dealing with the inventory of
such criteria. On this basis, we derive a roadmap for future
inventory-related forest research.

Our review begins with specific forest attributes which
stakeholders preferred in choice experiments or which other
studies recommended as suitable indicators (from here on-
wards called attributes or criteria) concerning our non-
provisioning ES and biodiversity-related management objec-
tives. The review derives forest attributes associated with rec-
reation, promotion of biodiversity and conservation as well as
carbon storage. We identify currently uncommon attributes,
not covered by classical timber-based inventories, and formu-
late new criteria to elucidate what future forest inventories
may include to support considering ES and biodiversity in
forest planning. We then analyse recent papers on forest in-
ventory and ES in light of these criteria to show if and how
these papers quantify them. This part focuses on techniques to
answer the question of how much forests may contribute to
these criteria. The paper continues with mapping topics, ad-
dressing where forests provide the ES of interest and how
forest inventory may help inform about the demand for the
analysed ES. We conclude our paper by providing three case
studies illustrating the importance of selected criteria for
forest-related decision-making.

Selected ES Categories and Reviewed Studies

The annual output of scientific papers dealing with ES is enor-
mous and continues to grow (Fig. 1). We systematically
reviewed studies included in Elsevier’s database SCOPUS
published from 2015–2019, which mention ES and forest
and inventory in their title, abstract and keywords. Their num-
ber is much smaller than the number of studies dealing with
ES. However, despite their relatively small number, we count-
ed 39 different forest-related ES covered by these studies. For
a better focus, we concentrated our paper on three categories
through which forests contribute to a good life for people: (1)
providing opportunities for recreation, (2) biodiversity promo-
tion and conservation and (3) carbon storage.

We selected (2) and (3) because the systematically
reviewed studies addressed these categories most frequently.
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While providing the opportunity for recreation was not often
addressed in our set of reviewed studies, a recent review has
shown a large willingness to pay for the opportunity of recre-
ation [10] so we may assume a high demand for the opportu-
nity of recreational activities. Concerning this ES, we refer to
“characteristics of living systems that enable activities pro-
moting health, recuperation or enjoyment through passive or
observational interactions” [11]. We also consider the conser-
vation of biodiversity as an important contribution to a good
life for people. With biodiversity, we refer to the “… variabil-
ity among living organisms…”, including “… diversity with-
in species, between species and between ecosystems” [12].
The apparent high willingness to pay for biodiversity promo-
tion and conservation [10] shows that people obtain satisfac-
tion from enjoying the presence, diversity and abundance of
organisms or ecosystems [13]. For example, Martínez-

Jauregui et al. [14] and Fraser et al. [15] confirmed the large
social and cultural value people associate with biodiversity
indicators. Biodiversity can bring indirect [13] and direct val-
ue to people [3]; hence, the importance of its integration into
forest planning is evident. The ES of carbon storage refers to a
contribution of forests to the “regulation of chemical compo-
sition of atmosphere…” [11]. Carbon storage is an important
topic [16] that often requires much consideration in forest-
related decision-making [17].

In addition to our systematic review, we carried out quali-
tative searches. Using Google Scholar, for example based on
the word combination “choice experiment forest biodiversi-
ty”, we selected studies to provide us with qualitative infor-
mation on forest criteria useful to consider biodiversity con-
servation in forest planning. From the range of possible
criteria, we concentrated on criteria not commonly seen so

Fig. 1 Frequency of studies
addressing a ecosystem services
(ES) or b ES and forest, ES and
inventory or ES and forest and
inventory. Search categories
focused on article title, abstract
and keywords for studies listed in
the Elsevier database Scopus
(https://www.scopus.com).
Search carried out for period
2015-2019 up to the date 31.12.
2019
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far in our review of recent studies, which are only partially
included or totally absent from timber-based inventories. As
detailed below, for the opportunity of recreation, we searched
the systematically selected studies for criteria including the
diversity among forest stands, tree spacing, forest edges, vis-
ible distance inside the forest stands, presence of open water
bodies (e.g. lakes, rivers or streams) and soil damage. We
associated deadwood and naturalness with the objective of
native biodiversity promotion and conservation. Further
criteria for the biodiversity objective are habitat for endemic
species, natural ecological processes (set aside areas), large
trees, habitat trees, rare species, natural clearings and biodi-
versity indices. For carbon storage, we focus on carbon con-
tent in living biomass, carbon in dead organic matter and
carbon in soils.

Our review excluded timber production as well as non-
timber forest products, such as wild berries. Comprehensive
reviews of wild edible fruits and their inventory exist [18–20]
and various articles have studied the integration of wild berry
yield in forest planning and optimization [21–23]. In addition,
we refer the reader to Andrew et al. [24•], Galbraith et al. [25•]
or Vargas et al. [26] for more details with regards to remotely
sensed ES. Concerning the ways which components of the ES
cascade [27] have been analysed in recent studies, we recom-
mend Boerema et al. [28].

Criteria Not Commonly Found in Current
Timber-Based Forest Inventories

Inventories must provide input information for specific plan-
ning or decision criteria, which quantify how the forest has the
potential to contribute to the objectives of decision-makers.
The decision criteria depend on decision-makers’ preferences,
which are variable [29] and depend, for example on the spatial
scale of decision-making (Table 1). Based on information on
decision criteria, decision variables and optimisation algo-
rithms, planning tools may inform forest-related decision-
making [42]. While decision criteria have classically focused
on timber production and economic profit, today they include
additional criteria. For example, various previously uncom-
mon forest attributes are now relevant for specific ES and
biodiversity promotion (Table 2). At the national level, attri-
butes such as the proportion of broadleaves and forest with a
composition similar to the natural vegetation or the changes in
carbon storage in forests are important decision criteria for
government programs and related forest policies. The avail-
ability of timber resources will be a decision criterion to es-
tablish new capacities in the timber industry.

While decision criteria depend on stakeholder preferences,
decision variables are controllable by decision-makers.
Studies on forest-related management planning may differ in
their decision variables, as we will show with our case studies

at the end of the paper. Forest management requires informa-
tion for spatial scales from local to regional, from plot to stand
to enterprise levels and the relevant decision variables will
differ depending on the scale considered.

For example, at the forest stand and enterprise levels, the
decision variables include (a) when to harvest a tree or stand;
(b) the number or volume or area of remaining and harvested
trees per size or age class and (c) the long-term tree species or
stand-type composition of the forest enterprise. These deci-
sion variables remain relatively robust over time, because a
limited number of silvicultural operations are basic actions
suitable to control the development of a forest. Such opera-
tions include harvesting or leaving aside stands or trees and
establishing new forest by natural regeneration, planting or
sowing (Table 1).

Clearly, good planning decisions need more information
than inventories can provide. A considerable part of the deci-
sion criteria listed in Table 1 depends on models, socio-
economic information and assessment of uncertainty, coupled
with inventory information to support good decisions.
However, inventory information is indispensable to character-
ise the actual and past forest status, without which decision-
makers may never derive optimal strategies to meet their ob-
jectives. Inventory information can also be a base for projec-
tion and monitoring, as a means of validating the development
of decision criteria over time.

Our qualitative searches provided us with a range of possi-
ble forest attributes associated with our non-provisioning ES
and biodiversity, which scientists have investigated in various
papers (Table 2) [31–35, 37, 38, 41, 43]. For example,
Giergiczny et al. [33] published results of a detailed choice
experiment, showing that the Polish public preferred irregu-
larly structured, multiple tree species stands of higher age (see
Table 2 for more detailed attributes). Polish people also ap-
preciated variability among forest stand types alongside the
preferred hiking roads or paths. However, for deadwood and
the presence or absence of an understorey vegetation, people
showed inverted U-shaped preferences, meaning that they
preferred medium levels of these attributes. Based on recrea-
tional preferences surveyed during the 1990s in Sweden and
Denmark, Eggers et al. [32] developed a recreation index with
negative coefficients for deadwood, harvest residues and soil
damage. Similar to the preferences modelled for deadwood in
[32], the results of a study focusing on the Alpine region have
shown that naturalness influenced the frequency of recreation
activities rather negatively [35]. Improving the opportunities
for recreation may thus form a trade-off with the objective of
biodiversity promotion and conservation, where natural pro-
cesses and deadwood are generally preferred attributes [38].
Only in a choice experiment with German participants by
Meyerhoff et al. [37], carried out in 2004, respondents ranked
deadwood for biodiversity conservation as having low impor-
tance. For carbon storage, the decision-makers’ preferences
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are less controversial. Here, measuring the carbon content in
above- and belowground, living and dead biomass and partic-
ularly quantifying the carbon stock changes precisely enough
is important [41]. The conventional timber-related forest in-
ventories will provide already valuable information for this
ES. Table 2 shows a summary of common and previously
uncommon criteria to support integrating ES and biodiversity
into forest planning.

How to Quantify Previously Uncommon
Forest Criteria

The set of systematically reviewed studies comprised of only
nine studies dealing with the opportunity of recreation. While
Delgado-Aguilar et al. [44] analysed hunting and tourism in
the tropics, other studies were less specific about the activities
associated with recreation [36, 43, 45–47]. Biodiversity pro-
motion and conservation were topics in 54 studies. With 74
papers on forest carbon storage, the reviewed papers most
frequently addressed this ES (Fig. 2). However, while carry-
ing out the systematic review, we observed that a couple of
important studies were missing. We thus complemented our
review by further in-depth searches on alternative methods to
quantify the identified forest criteria, using Google Scholar.

We have listed the additional studies in Table 3, third column,
which provide only examples, subjectively selected based on
the expertise of the authors.

For the opportunity of recreation, people may consider
built infrastructure as very important [109].Wemust be aware
that the current forest attributes are sometimes less important
than infrastructural aspects. However, there still appears to be
potential for improvement of the forest structure, given the
documented preferences of visitors (Table 3). For example,
the diversity among forest stand types is an important attri-
bute, being of particular importance alongside forest roads and
hiking paths. GIS evaluation may build on delineated stand
types and help assess this criterion, for example based on an
adapted Shannon diversity which is until now mostly used for
assessing landscape diversity [48]. Field samples can deliver
information on tree density (given enough samples per stand),
while the presence/absence of understory may require field
inspection or, as remote sensing alternative, airborne laser
scanning (ALS) data analysis. In addition, national forest in-
ventory information may support assessing the forest’s attrac-
tiveness for recreation [110, 111]. Forest edges mapped in
plots will deliver the total length (and types) of forest edges
[50]. Information on soil damage is uncommon at this point,
but terrestrial plots may deliver such information when appro-
priately designed [56]. RADAR remote sensing may provide

Table 1 Possible decision variables and decision criteria. We have compiled this Table drawing on the authors’ research experiences, to provide
background for our review

Spatial level Decision variables (examples) Decision criteria (examples)

For timber production For ES and biodiversity, further detailed in Table 2

Tree When to harvest, if at all? Vigour, stability, quality, net
present value, size

Habitat/deadwood quality to inform about
biodiversity promotion and conservation

Stand How much timber (or area) of which tree species,
when to harvest, rotation period, how to
establish new forest?

How much standing/lying deadwood to have?
How much large trees to have?

Growth rate, stability, quality,
net present value, economic
utility

Biomass data to inform about carbon storage;
amount of standing and lying deadwood;
variability/diversity data to inform about
biodiversity promotion and conservation;
number of large trees

Forest
(enter-
prise)

How much area to allocate to which stand types?
What is the spatial configuration?

Growth performance,
diversification, net present
value, economic utility

Infrastructural criteria, variability among forest
stands, naturalness criteria to inform about
recreation opportunities; variability/diversity
data; patchiness, fragmentation; data on carbon
stock changes; revenues for additional carbon
stored; costs of sampling

When to harvest how much timber and where?
How much area to set aside?

Standing timber stock, timber
growth, economic profit,
minimum opportunity costs

How large should the standard error of an
inventory be?

Costs of sampling and
opportunity costs of poor
decisions

Landscape What is the percentage of land to allocate to which
land-use/land-cover type? What is the size and
number of forest and agricultural parcels?

Contribution of the forest to
economic profit and
economic risk mitigation

Other levels
(e.g.
national
or global)

How to allocate subsidies? Which political
programs to develop? How large shall the
investments into the timber industry be?

Tree species, standing timber
stock, timber growth,
expected timber flows for the
wood industry
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information on the presence of open water bodies [54, 112],
when information from existing maps is unavailable. Using
ALS would be another alternative [55].

We found a substantial number of forest criteria to support
biodiversity promotion and conservation, which are previous-
ly uncommon in timber-based forest inventories (Fig. 2,
Table 3). Biodiversity indices are most popular among pub-
lished criteria to measure biodiversity promotion and conser-
vation. Classical inventory data may already inform these

indices well quite often, e.g. tree species richness or
Shannon’s diversity, based on the proportions of recorded tree
species and/or size classes. However, measuring rare events is
still problematic, such as standing and downed deadwood,
rare species, habitat trees or endemic species. The classical
plot-based field sampling methods are not efficient in
representing these criteria with appropriate precision, given
limited inventory budgets. For rare events represented by
standing trees, we would have intelligent terrestrial alterna-
tives. For example, point-transect sampling is a very promis-
ing technique based on individual detection probabilities, suit-
able to collect data on still standing, but dead (or habitat
or rare) trees [80]. This allows the recording of all
events visible in the inventory, making representative
results by computing and considering their inclusion
probability post hoc (e.g. based on distance functions).
Another innovative approach is a method building on
“triangulation based inclusion probabilities” for a fixed
number of trees [113]. For the case of downed dead-
wood, the classical line intersection technique is still the
most efficient method [80, 114]. Similar to the famous
relascope technique with sampling proportional to tree
size [115, 116], line intersect sampling considers indi-
vidual inclusion probabilities for the elements to be
sampled (e.g. depending on the angle between the sam-
pling line and the downed deadwood log as well as the
log’s length).

Using ALS to detect downed deadwood [117] has made
substantial progress, but successful detection requires relatively
open canopies. The segmentation correctness would benefit
from learning processes [118]. As another remote sensing-
based alternative, Heurich et al. [51] have applied colour-
infrared imagery to detect dead trees following bark beetle out-
breaks in a National Park. Practical forest inventories have so
far hardly absorbed such methods, neither the terrestrial nor the
remote sensing-based techniques. The reviewed studies have
not made use of them, but inventories supporting biodiversity
promotion and conservation could achieve much higher effi-
ciency when using such well-tailored designs. Finally, record-
ing the naturalness of forests poses rather great challenges.
Once we would have more clarity about the composition of a
“perfectly” natural ecosystem [97], informative indices would
help assess similarity [98] or hemeroby [119] (dissimilarity) of
the existing forest compared to the natural forest.

For an assessment of naturalness, one would need the cur-
rent tree species composition. Tree species identification is a
persisting difficulty in applying remote sensing technology.
Even if some remarkable progress is reported by using
multi-spectral and hyperspectral imagery [83, 95, 120, 121]
or building on ALS data combined with alpha shape metrics
[122], tree species identification based on remote sensing data
still poses a challenge. However, various authors have devel-
oped promising approaches to tackle the problems with the

Fig. 2 Distribution of possible and previously uncommon inventory
criteria related to recreation opportunities, biodiversity promotion and
conservation as well as carbon storage in the reviewed studies. Data
based on 212 studies mentioning ES, forest and inventory in article
title, abstract or keywords for studies listed in the Elsevier database
Scopus (https://www.scopus.com). Search carried out for period 2015-
2019 up to the date 31.12.2019
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Table 3 Quantification methods for the identified criteria (examples). Alternative methods in the third column identified based on in-depth searches
using Google Scholar

Criterion Applied method in systematically reviewed studies Alternative methods

Opportunity
for
recreation

Diversity among forest
stands

Counting number of different forest stand types along a
5-km trail through the forest [31, 43] (field inspection
or maps)

Shannon’s diversity over the whole forest [36] (maps)

Shannon’s compositional diversity [48] of stands
in buffer zones alongside forest roads (e.g.
GIS-based evaluation)

Tree spacing Terrestrial inventory [36, 43] Airborne laser scanning (ALS) [49]

Forest edges - Sample plots, line intersect sampling [50];
object-orientated image analysis based on
colour-infrared imagery [51];
compartment-based inventory for forest edges
at stand level [52]

Visible distance in a
forest stand (visual
penetration through
stand)

Stand density index [36] Presence of an understorey (yes/no) (field
inspection, laser scanning); understory volume
estimated by terrestrial laser scanning [53]

Presence of open water
bodies

- RADAR images [54], ALS [55], topographic
maps, field inspection, use of existing maps

Soil damage - Vehicle tracks recorded in sample plots [56]

Biodiversity
conservation
and
promotion

Biodiversity indices Mainly species richness, but also Shannon and various
similarity or dissimilarity indices [15, 36, 45, 46,
57–74]

Habitat for endemic
species

Presence/absence of nesting platforms on sample trees
[75•], field sampling for native understory palms [76],
field-based mapping of silvo-pastoral systems
(Montados) [77], field samples analysed for
bryophyte and lichen indicators [78], field sampling
for deadwood, mean tree diameter, broadleaf
proportion [79]

Point-transect sampling for trees with nesting
platforms, see habitat trees [80], estimation of
forest structural data with ALS [81], remotely
sensed data for tree species identification [82]
based on multi-temporal data [83]; forest field
inventories plus additional ecological
information gained during the inventory, and
aerial photographs used for habitat modelling
[84]

Deadwood Line intersect sampling [85], nested plots and
line-transect sampling [75•], forest ecosystem model
[71], spatial datasets and model [86]

Point-transect sampling for standing deadwood
[80]; terrestrial laser scanning [87, 88];
object-orientated image analysis based on
colour-infrared imagery [51]

Natural ecological
processes (set aside
areas, protected areas)

Participatory mapping in sacred agroforests and transect
sampling [15]; forest inventory plots combined with
IUCN red list criteria [89]; GIS, GPS and remote
sensing technology (3S) [90]

Satellite-based remote sensing of natural
ecosystem processes, such as vegetation
phenology, primary production [91]

Naturalness Photo-plots (on aerial photos) [92] Tree species identification supported by
hyperspectral [93, 94], multi-spectral [95] and
multi-temporal data [83]; characteristic species
identified by deep learning [96]; deviations
between the current state of a forest and a
reference state [97], evaluation, for example,
with stability index by Orwin andWardle [98],
however, reference system (the natural state)
unclear.

Large trees Field samples from national inventories [36, 61] ALS [99], very high-resolution satellite images
[96]

Rare species Field samples from national forest inventories [36],
drone-based mapping [100]

Point-transect sampling [80], ALS data and
colour-infrared aerial imagery [101]

Habitat trees Field samples from national forest inventories [36]

Natural clearings - Multi-seasonal high-resolution satellite imagery
[102]; high-resolution aerial orthophotos for
recent clearings caused by natural events [103]

Carbon storage Carbon content in living
biomass

Field sampling for the living tree [57, 85, 104, 105] for
carbon storage and social costs of carbon [58]; global:
Shuttle Radar TopographyMission (SRTM) to obtain
rough estimates for vegetation height, which is
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identification of tree species. For example, efficient algo-
rithms using convolutional neural networks have become in-
creasingly popular in forest inventory [96, 103, 123]. Such
techniques build on deep learning techniques [124] and may,
for instance, help delineate tree crowns [123] and allow iden-
tification of characteristic tree species [96]. We perceive the
analysis of multi-seasonal observations of shifts in tree spe-
cies’ phenology as one promising approach to support the
identification of tree species. The new generation of high tem-
poral frequency systems may inform a multi-seasonal ap-
proach, facilitating the assessment of phenology and finally
the identification of tree species (for example, based on sys-
tems such as RapidEye or Sentinel 2) [95, 125]. In combina-
tion with structural information via neighbourhood analysis
and the option of height estimates, optical systems may pro-
vide a broad information basis for species assessment.
However, even these approaches do not offer fingerprint-like
identification accuracies, but merely estimations with a high
probability of correct classification. Remote sensing builds on
indirectly derived, diffuse information, but we may expect
further advances from combining remote sensing methods,
for example with physiological growth models and site-
specific information [126, 127].

Carbon stock estimates commonly build on terrestrial sam-
ples, established to quantify carbon in living biomass, dead
organic matter and in soils (Table 3). For carbon, the assess-
ment of stock changes is essential. Changes in the above-
ground biomass, for example through forest degradation, con-
tribute significantly to carbon stock changes. Soil organic mat-
ter may show constant values over long periods [128]. Dead
organic matter is usually correlated with living aboveground
biomass and positive changes may result mainly from in-
creases in the forest area [107]. To obtain carbon stock esti-
mates for larger areas, studies correlate terrestrial above-
ground biomass [24•] or soil organic carbon recorded on

sample plots [108, 129] with remotely sensed data. For very
large areas, this approach may reveal good average estimates,
while large deviations are common at the plot level [108, 130,
131]. ALS facilitates the most precise yet expensive remote
sensing-based estimates of aboveground carbon stocks.
Vauhkonen [30••] showed how ALS data for a local scale
study may improve predictions of the supply for several ES
(including carbon storage). While dynamic growth models
may support estimating prospective carbon stock changes
[132], they may not deliver sufficiently reliable estimates of
current carbon stock changes, which, for example carbon ac-
counting would require. Insufficient precision of stock change
estimates will continually be a challenge when stock changes
are small [133], such as in private forest properties aiming to
sell certified carbon credits at the voluntary carbon market.

Carbon stock changes are also important for assessing the
climate impacts of forests and forestry at national or global
levels. When appropriately harmonized and based on repre-
sentative data, national forest inventories may provide such
information at both the country and continental levels [134,
135]. However, at these scale levels, remote sensing would
provide applicable methods fulfilling both the condition on
large area coverage within a comparable period and on repe-
tition frequency as required for global modelling purposes.
Typical high-resolution systems for such tasks provide data
at pixel resolutions between 5 and 30m. Examples include the
Landsat series, Sentinel-2, Spot, Indian Remote Sensing
Satellites (IRS) or RADAR systems. The RADAR systems
include Sentinel 1, TerraSar X and TanDEM-X, Radarsat.

Recent studies gained progress in enhancing the precision
of biomass estimates as a basis to quantify carbon stock
changes. Promising examples for combining multiple remote
sensing information sources to improve biomass estimation
include Durante et al. [136, 137] and Næsset et al. [137••].
However, sampling at global scales based on data from

Table 3 (continued)

Criterion Applied method in systematically reviewed studies Alternative methods

correlated with aboveground biomass (field samples)
[106]; local: biomass estimates based on ALS point
clouds [30••]; tree carbon based on biomass estimates
and field samples; saplings and shrubs; herbs and
grasses [70]

Carbon in dead organic
matter

Field sampling for standing deadwood and coarse
woody debris, calculation based on decay factors or
wood density classes [57, 85, 104], leaf litter [70, 105]

Object-oriented image analysis [51], collecting
and weighing coarse and fine woody debris as
well as litter from terrestrial sample plots [107]

Carbon in soils Various soil-subsamples per inventory plot [57, 70, 105] Kumar et al. [108] used the normalised difference
vegetation index (NDVI) derived from satellite
imaginary and correlated with soil organic
carbon [108]; however, deviations at plot level
remained very high; soil profiles [107]
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satellites such as IceSat2 and GEDI may still suffer from er-
rors increasing with dense canopy cover and steeper slopes
[138]. Monitoring forest degradation processes, for example
through the extraction of the economically most attractive tree
species by selective logging, based on such systems is a chal-
lenge. This means that for the case of reducing forest degra-
dation (REDD+ target), inventories dominated by remote
sensing techniques may fail to deliver information at a preci-
sion high enough to quantify stock changes reliably.
However, even based on very intense terrestrial sampling,
uncertainties remain high [133, 139, 140]. Consequently, we
need terrestrial inventory data complemented by remotely
sensed data for informing carbon stock changes. For example,
Næsset et al. [137••] showed a relative efficiency of such
approaches of up to 3.6 when using remotely sensed data
as auxiliary information. This would mean that we could
achieve the same precision as with conventional field
sampling with a sampling density reduced by the factor
of 3.6. Where a conventional inventory would need 360
plots to achieve the desired precision, the approach using
remotely sensed data as auxiliary information would only
need 100 samples to obtain the same precision.

Importantly, inventory data for carbon stock estimates
needs very high precision so that a reliable assessment of
carbon stock changes is possible. While Grussu et al. [141]
recommended achieving a standard error of 5% when sam-
pling the carbon stock, this precision is likely not sufficient for
measuring carbon stock changes with appropriate precision.
An undifferentiated recommendation of one desirable level of
precision is problematic, because there is no scientific support
for such guidance [142]. For example, a standard error for a
carbon stock estimate of 5%maymean a standard error for the
carbon stock change of close to 50%, even if permanent sam-
ple plots are available to achieve the so far highest possible
precisions for forest stock changes. We will show this assum-
ing a carbon stock change in a forest from 113 to 123 Mg per
hectare. Referring to Grussu et al. [141], we let both stock
estimates be associated with a standard error of 5% and mea-
sured on permanent sample plots, showing a correlation of
ρ = 0.7 for the carbon stock measurements of two successive
inventories. We can then combine the absolute standard errors
of both stocks, ± 5.65 and ± 6.15, to obtain the standard error
(sΔC ) of the stock change of + 10 Mg per hectare as (Eq. (1)):

s
ΔC

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:652 þ 6:152−2:0:7:5:65:6:15

p
¼ �4:59 ð1Þ

Given a stock change of + 10 Mg per hectare, the standard
error of the change amounts to ~ 46%. This means that a
commonly recommended “desirable” standard error of 5%
will likely not translate to similar precisions for estimates of
stock changes. We will further address this important topic in
one of the case studies concluding our paper.

Where Do Forests Supply ES and Where Is
Their Demand?

Providing spatially explicit information comprises the creation
of maps. Such ES maps may show the supply or the demand
for ES. In recent years, the mapping of ES has advanced
substantially [143–145]. Mapping the supply of ES dominates
so far, while studies mapping the demand are less frequent.
Maps can show information for polygons obtained by delin-
eating the reference units (e.g. land-cover classes, forest stand
types) or by providing gridded information [146].

Tiered approaches have been proposed for mapping ES
[147]. ES mapping may address the range from local [148]
to global scales [149]. Under such approaches, information on
the provisioning of ES may build on “service providing units”
(SPU), which comprise the full collection of organisms need-
ed to deliver a specific ES [150]. For practical reasons, how-
ever, land-cover classes will frequently provide the reference
units, where a land-cover class is a spatially explicit biophys-
ical landscape unit [151]. Tier 1 maps provide the simplest
approach using land-cover maps associated with expert judge-
ment of the ES that certain land-cover classes can pro-
vide. Tier 2 maps add statistical data for provisioning
ES as attributes to the various land-cover classes. Tier 3
maps involve process-based and empirical models to
estimate the level of ES [143].

Changes in the capacity of a landscape to provide ES may
depend on changes in the allocation of land to the reference
units. Information on land cover is available from various
sources, for example through (1) classification of satellite im-
ages; (2) available CORINE Land Cover data [152] and (3)
global land-cover information provided by the Copernicus
Climate Change Service. The latter is part of the Climate
Change Initiative (CCI) of the European Space Agency
(ESA) [153]. Other information can come from models like
LUISA, maintained by the Joint Research Center (JRC) [154]
or from the land-cover data provided by the European field
survey program LUCAS [155].

Forest mapping is a major component of forest inventory
[156]. For example, Vauhkonen and Ruotsalainen [46] have
used wall-to-wall information based on pixels to model the
contribution of forests to a range of management objectives,
including biodiversity promotion, the attractiveness for recre-
ation and carbon storage. In an advanced approach,
Vauhkonen [30••] has improved this type of modelling based
on ALS data and achieved much higher precision in the pre-
diction of ES levels than is achieved based on common re-
source maps. This approach offers very interesting future per-
spectives to improve supply maps for forest ES, which will
facilitate informed decision-making and prioritisation of areas
for the provisioning of specific ES. Such mapping of forest
biodiversity, supported by remotely sensed data, is of partic-
ular importance. For example, Bae et al. [157] used satellite-
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borne RADAR data for mapping various facets of biodiversity
for multiple taxa across several regions in central Europe.
Asner et al. [158] provided an example for mapping forest
trait diversity. For the case of forest carbon storage, mapping
studies are also common [159].

Although less often applied in the context of ES, the map-
ping of the demand for forest functions started back in the
1950s. In Germany and other European countries, this type
of mapping has become common in part due to the theory of
so-called social forest functions, established by Viktor
Dieterich [160]. Such forest function maps (sometimes also
called forest development maps or regional forest plans) are
legal instruments, for example in Germany, to account for the
public demand for specific ES, such as protection and recrea-
tion. Forest function maps support regional forest planning
and are demand oriented by nature. For example, the pragmat-
ic mapping of forest functions commonly identifies forest with
high priority for recreation where appropriate infrastructure is
available (e.g. beer gardens or guesthouses). As another ex-
ample, forest function planners pragmatically delineate forest
with priority for protection on steep slopes, where forests pro-
tect railways or buildings against gravitational natural hazards.
Tiemann and Ring [161] have suggested aligning existing
forest function mapping and the mapping of forest ES.

One could debate whether the demand for ES is a concern
of forest inventory. While numerous studies on mapping ES
focus mainly on supply [162], we think that forest inventory
should support the tradition of demand-based mapping of for-
est functions or ES. Forest inventory may contribute valuable
information to estimate the demand for forest ES. Modern
mapping of the demand for ES builds almost exclusively on
socio-economic data [146], which is not the domain of forest
inventory. However, forest inventory may well improve de-
mand estimates by appropriate forest structural criteria.
Economists measure demand for goods and services based
on people’s preferences, often expressed by their willingness
to pay. For example, in an informative study on the opportu-
nity for recreation, Termansen et al. [163••] used choice
modelling and a GIS technique to derive visitor’s willingness
to pay for obtaining access to individual recreational forest
sites in Denmark. In addition to infrastructural criteria,
Termansen et al. used the proportion of broadleaves and the
edge fraction of natural areas as important attributes to esti-
mate the demand for recreation. As another example, Watson
et al. [164] have shown how mapping the demand for recrea-
tion (and two other ES) may improve conservation planning.
Zhao and Sander [165] have suggested mapping the demand
for carbon storage based on local anthropogenic CO2 emis-
sions. However, forest inventory likely has nothing to deliver
for mapping the demand for carbon storage.

The prevailing practice in estimating the demand for ES is
less informative for forest planning and so far mainly applied
to regional, national or global scales, and therefore not limited

to forestland. An increasing number of studies use already
existing economic evaluations to describe the demand for
ES [166–173]. These economic values derive from studies
carried out elsewhere [10]. Using the results of an economic
evaluation obtained from a primary study site (elsewhere) to
inform about the assumed value of ES at a secondary (policy)
site has been established as the benefit transfer method [174].
Applying the economic value for an ES obtained from the
literature as an indicator for demand would only need very
coarse information on the forest type (for example at biome
level, whether tropical, temperate or boreal forest), but the link
tomore specific forest information has been lacking until now.
Vice versa, the information provided by the existing databases
on such economic valuation results for forest planning is lim-
ited. Müller et al. [10] have published a recent review on this
topic showing an extreme variation of such economic valua-
tion for certain ES, too large to be meaningfully applied to
inform forest management planning.

Using economic ES values as the basis to estimate the
demand builds on peoples’ willingness to pay for ES.
Willingness to pay is variable in space (e.g. demand for rec-
reation), time (changing income levels and preferences will
influence willingness to pay) and in other aspects of the
socio-economic and ecological context (e.g. different prefer-
ences for specific forest structures). Only very few studies
have managed to consider this variability appropriately,
whereas forest inventory could help improve it. For example,
changes in land cover, as commonly assumed in the studies
monitoring changes in the economic value of ES [173], will
influence the supply of ES, but not necessarily their demand.
A substantial change in ES supply will alter the marginal
economic value of ES, i.e. the willingness to pay for a small
change in the level of an ES.

This might have the consequence that the actual economic
value of an area-based reference unit (i.e. area times value
coefficient) would hardly change when reducing the area, be-
cause scarcity-related increases in the per hectare value would
compensate for the reduced area (Fig. 3). Combining willing-
ness to pay estimates with area changes measured by forest
inventory could help update the area-related economic values.

An economically more sophisticated approach could build
on utility functions, which would help address an increasing
scarcity of ES. For example, Nordhaus [175] implemented
utility functions into his model to assess the social costs of
carbon, but most studies on the value of ES still ignore the
effects when such ES become scarcer. However, ignoring the
variability of the willingness to pay for ES in mapping studies
often makes their information unreliable and sometimes
makes it less useful.

As an alternative to the prevailing use of coarse and some-
times unreliable information on economic ES value to map the
demand for ES, measuring specific forest attributes by forest
inventories could improve modelling the demand for ES and
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biodiversity on a spatially explicit basis. This information
could be combined with sophisticated choice modelling tech-
niques, for example based on the method published by
Termansen et al. [163••]. Consequently, in conjunction with
stakeholder/visitor information, providing spatial information
on forest attributes listed in Table 3 would support informative
maps showing the demand for non-provisioning ES and
biodiversity.

Case Studies

Informing a Landscape Recreation Index by Forest
Structural Criteria

In a study on forest management for both timber production
and the opportunity of recreation, Eggers et al. [32] have de-
veloped a landscape recreation index to quantify the appropri-
ateness of a forest for recreation. The decision variable used
for the optimization in this example study was “when to har-
vest trees/stands?” (i.e. optimal rotation). The aim of the study
by Eggers et al. [32] was balancing the attractiveness for rec-
reation, inter alia influenced by the rotation-length-dependent
number of large trees and economic efficiency. In addition,
their recreation index would allow for optimising other vari-
ables by asking “how much deadwood (standing and lying),
which forest type and which reduction of soil damages would
be optimal?” The index combines aspects of forest stand struc-
ture (forest stand index) and information on the location of the
forest stand as well as the availability of open water bodies
(location index). While maps on the locations of the forest
stands (how close to the places of residence of potential visi-
tors) and the presence of open water bodies in combination
with GIS analyses will inform the location index, the forest
stand index uses forest structural criteria as contained in

Table 3 of our review. The structural criteria include, for ex-
ample information on deadwood, stand type, tree species pro-
portions and the number of large trees (Fig. 4).

The number of large trees (positive influence compared
with homogenous forest) and the amount of lying deadwood

Fig. 3 Change in the marginal willingness to pay for ES, when the area of
a certain land-cover class is reduced, for example when tropical forests
shrink in their area due to deforestation (see Paul et al. [13],
supplementary information, for a similar example). Note that we used a

somewhat unusual supply curve, suggested by Costanza et al. [166] for
essential (non-substitutable) ES. However, the effect we showwould also
apply, if we had used a “normal” supply curve, with a slope greater than
zero and smaller than infinity.

Fig. 4 Influence of location and decision criteria on the attractiveness of a
landscape for recreation. Values close to one indicate high attractiveness
for recreation. The recreation index is the product of a the location index
and b the forest stand index
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(negative influence) cause the largest variation in the forest
stand index, while the location index uses information not
under the control of forest managers. Newly designed inven-
tories to monitor the partly uncommon forest structural data,
such as the number of large trees and the amount of dead-
wood, would facilitate an assessment of the status of a forest
concerning the recreation. In addition, such a recreation index,
informed in part by forest inventory data, would help to eval-
uate if this ES improves or worsens over time.

Is Inventory Information Influential for Promoting
Biodiversity Conservation?

We have derived various previously uncommon attributes that
future forest inventories could record to improve forest man-
agement planning. However, the attributes that would mostly
have an impact on the planning decisions are unclear. As we
did not find a forest science study providing an analysis of
influential, but previously uncommon decision criteria, we
came back to a land-use study that simulated deforestation
scenarios. In this example study, the decision variables were
the area proportions allocated to certain land-use/land-cover
types. These simulations were based on various attributes of
land-use/land-cover types, defined as decision criteria [176],
some of which are obtained by terrestrial sampling and others
by modelling or household surveys. Future forest research
could carry out similar studies to elucidate the importance of
considering the aforementioned forest attributes as criteria for
decisions on a forest’s composition and management.

The land-use study mentioned above tested how the con-
sideration of multiple socio-economic and ecological criteria
would influence the allocation of land in a still forested region
in tropical South Ecuador (Fig. 5). This consideration does not
mean that we expect forest inventory to deliver all socio-eco-
nomic, multiple model-based and household survey informa-
tion needed for simulating decision-making. Rather, we want
to show the possible influence of inventory data (e.g. for spe-
cies richness or carbon stocks), given that decision-making
would also integrate many other criteria.

The analysis shows that considering the species richness of
the land-use/land-cover types as a decision criterion had a
major influence on deforestation scenarios (Fig. 5 a). Due to
the importance of the species richness, the very species-rich
natural forests obtainedmuch higher weight in the future land-
scape composition so that deforestation was much re-
duced. Carbon storage was also important. Excluding
this criterion has led to higher deforestation than con-
sidering the full set of criteria.

Based on similar analyses for predicting the future compo-
sition and management of forests [177], multi-criteria optimi-
sation could support finding influential forest attributes.
Future inventories could then prioritise collecting data for
providing such particularly influential information.

Inventory Challenges to Quantify Carbon Stock
Changes

Forest inventory can provide value by reducing information un-
certainty [178–180, 181••]. With the term uncertainty, we refer to
our limited knowledge on the true level of a specific criterion we
have measured. One would usually quantify the uncertainty of
such inventory information by the standard error of the sampled
variable.Wewill illustrate the possible impact of the uncertainty of
inventory information on decision-making with an example ad-
dressing the inclusion of private forest owners into initiatives to
enhance the carbon storage in existing forests [182]. We assume
that forest owners may generate carbon credits, which are tradable
at voluntary carbon markets, if forest owners can show increased
carbon storage in their forests. Certain providers of CO2 compen-
sation opportunitieswould buy such carbon credits, for example to
offer compensation opportunities to passengers for the emissions
caused by their flying activities. The quantification of such carbon
stock changes should follow the principle of conservativeness
[183] to enhance credibility. Consequently, Köhl et al. [139] rec-
ommend using the lower 95% confidence limit to quantify carbon

Fig. 5 Influence of various sets of decision criteria on simulated
deforestation scenarios for a region in South Ecuador. Part a shows
how considering species richness (number of vascular plant species) in
addition to socio-economic criteria would influence the proportion of
natural forest, while part b demonstrates the importance of indicators
for carbon storage for the proportion of natural forest, when carbon
storage is one aspect among many others
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stock changes. Forest inventory must then make sure of an appro-
priate precision of data on forest carbon stocks. In the following,
wewill use a simplified example to demonstrate the importance of
the precision of carbon stock estimates for such initiatives to en-
hance carbon stocks in existing forests. The decision variable in
this example consideration was the desirable standard error in
support of measuring carbon stock changes.

For our illustrative example, we assume an intended
change of the carbon stock represented by the standing timber
volume of 10 Mg per hectare (over 30 years), which equals
about 29 cubic metres of timber volume. Following the
principle of conservativeness, we assume that possible
buyers accept only the lower confidence limit of the
reported carbon stock change to estimate the generated
carbon credit, Ccredit (Eq. (2)).

Ccredit ¼ ΔCStock−t:rS
Δc
:ΔCStock ¼ ΔCStock

: 1−t:rS
Δc

� �
ð2Þ

Equation (2), with ΔCStock as the expected carbon stock
change, shows that the carbon credits decrease proportionally
with an increasing tolerated relative standard error of the car-
bon stock change, rSΔc. Figure 6 mirrors this effect based on
the expected revenues from selling the carbon credits. For
example, if we assume a value of t = 1.96 for constructing
confidence limits, which include the true mean with 95%
probability, we see that we can hardly generate any carbon
credit, given a relative standard error of 50% of the carbon
stock change. The value of 50% appears high, but we
should bear in mind that quantifying carbon stock
changes associated with this uncertainty already requires
a quantification of carbon stocks with a relative stan-
dard error of not much more than 5%.

We derived the costs building on the number of samples
needed as follows (Eq. (3)).

n ¼ V2
Δc

rS2
Δc

ð3Þ

VΔc is the variation coefficient of the carbon stock change.
As the stock changes are usually small, but burdened with the
standard error of estimating the whole carbon stock at both
successive inventories, the variation coefficient VΔc is very
high for stock changes. In our example, we assumed a varia-
tion coefficient Vc of 0.53 for the carbon stock, which results
in a variation coefficient VΔc for carbon stock changes of 4.87
(even when assuming a correlation between plot-based carbon
stocks of two inventories of ρ = 0.7).

The results for the optimal precision to estimate the carbon
stock change now depend heavily on the size of the forest under
consideration. For example, given a forest with a 500-ha area
and using the lower bound of a 95% confidence interval to
estimate the carbon credit, the “optimal” precision was rSΔc
¼ 0:23 for stock changes and rSc ¼ 0:024 for each of the
successively sampled carbon stocks. The discounted profit
was 160 Euro per hectare and the optimum sampling density
was 0.91 plots per hectare. In contrast, for a forest with 15,000
ha, the “optimal” precision was rSΔc ¼ 0:08 for stock changes
and rSc ¼ 0:009 for sampling the successive carbon stocks.
For this larger forest, the profit per hectare was 394 Euro and
the desirable sampling density was 0.25 plots per hectare.

Less conservative assumptions (e.g. a 68% confidence lim-
it associated with t = 1) would allow higher profits (Fig. 5).
Considering larger changes per hectare could improve the
economic consideration. Higher profits may also result from

Fig. 6 Influence of the precision
of estimates for carbon stock
changes on possible revenues and
costs from enhancing the carbon
stock represented by the standing
timber volume by 10 Mg per
hectare (over a period of 30
years). We assumed a price of
91.75 (25 Euro per Mg of CO2)
for storing 1 additional Mg
carbon per hectare. We
discounted revenues with a factor
of 2% over 30 years. For the costs
of one sample plot, we assumed
130 Euro

Curr Forestry Rep



considerations at the national level, for example when reduc-
ing deforestation and forest degradation [139]. Moreover,
when using remote sensing techniques to stratify forest area
or to provide auxiliary information, the precision of terrestrial
sampling may improve [137, 184].

Conclusions

Most papers addressing the inventory of ES are technical by
nature. Technical advances may indeed substantially improve
the quality of inventory information. However, we think that
identifying new forest attributes, well aligned with the prefer-
ences of stakeholders, would bring research and practice of the
inventory of ES substantially forward. A benefit provided by
information lies in reducing uncertainty, which results in bet-
ter decision-making [185]. Reducing information uncertainty
embraces at least two aspects: clarity about the type of infor-
mation decision-makers would need and about the required
degree of precision. We have focused on the first aspect by
discussing new, and currently rather uncommon inventory
criteria to describe the preferences of stakeholders and to in-
tegrate the opportunity of recreation, biodiversity promotion
and carbon storage into forest planning. A roadmap to develop
the inventory further, in supporting forest-related planning for
the provision of ecosystem services and biodiversity, may
include:

1) Establishing further innovative decision criteria associat-
ed with stakeholder preferences, which future inventories
may inform by measuring appropriate forest attributes.

2) To achieve (1), future inventories may benefit from the
evaluation of a number of existing and sophisticated
choice experiments as well as choice modelling studies.

3) The standard plot-based field inventories will not deliver
some informative criteria in the most effective manner.
Future inventory concepts would thus need to integrate
various inventory techniques and multiple data sources.
Forest inventory science needs to find holistic forest in-
ventory management systems to couple various inventory
concepts in support of the integration of ES into forest
planning (see Woudenberg et al. [186] for possible data-
base organisation and management).

4) Recreation indices require forest structural information and
visitor information. Future inventory systems may partly
inform the demand side for recreation services by providing
distance information to the residence places of potential vis-
itors, the presence of open water bodies and forest informa-
tion on visitors’ preferred forest structural attributes.

5) We need more efficient inventory concepts for “rare
events”, for example addressing the criteria deadwood,
rare species, habitat trees and tall trees. They provide
important information not only for the opportunity of

recreation but in particular for the promotion of biodiver-
sity. Future inventory concepts need better integration of
functions to estimate inclusion probabilities, informing
terrestrial point-transect and line intersect inventory tech-
niques and possibly remote sensing techniques to quanti-
fy the aforementioned rare events.

6) Methodology for precise estimation of carbon stock
changes needs further attention. The potential of using
remotely sensed data as auxiliary information to enhance
the precision of carbon stock change may provide a re-
warding future field of research [137••].

7) Future inventory concepts may also inform mapping the
demand for ES, which studies have hardly considered as a
field of research in forest inventory so far. The existing
approaches based on economic ES values may benefit
from building on the valuation of important forest attri-
butes (delivered by inventory) obtained from choice ex-
periments. Inventory systems focusing on specific forest
attributes related to ES and biodiversity could thus pro-
vide basic information to create useful maps on the de-
mand for ES and biodiversity.

8) Transforming forest attributes delivered from existing inven-
tories into levels of expected ES may benefit from remote
sensing technology and is a promising future line of research
[30••]. This would enhance prioritisation of ES in supply-
orientedmaps and providewall-to-wall information for large
areas (e.g. biomass for further carbon considerations).
Remote sensing-based technology may also enhance the
efficiency of terrestrial sampling by facilitating effective
stratification and providing informative auxiliary data.
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