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Abstract
To harness the full potential of predictive maintenance (PdM), PdM information has to be used to optimally plan production 
and maintenance actions. Hence, operation-specific modelling of degradation, i.e. predictions of the health condition under 
time-varying operational conditions, has to be realized. By utilizing operation-specific degradation information, maintenance 
and production can be planned with regard to each other and thus, predictive maintenance integrated production schedul-
ing (PdM-IPS) is enabled. This publication proposes a novel PdM-IPS approach consisting of two interacting modules: 
an operation-specific Prognostics and Health Management (PHM) module and an integrated production scheduling and 
maintenance planning (IPSMP) module. Specifically, the mathematical problem of the IPSMP module based on an extended 
version of the maintenance integrated flexible job shop problem is formulated. A two-stage genetic algorithm to efficiently 
solve this problem is designed and subsequently applied to simulated condition monitoring, as well as real industrial data. 
Results indicate that the approach is able to find feasible high quality PdM integrated production schedules.

Keywords Predictive maintenance · Integrated scheduling · Genetic algorithm · Decision support

1 Introduction

Predictive maintenance (PdM) is one of the core Industry 4.0 
innovations that substantially increases machine availabil-
ity by preventing machine failure and enabling maintenance 
actions just in time. Using advanced analytics on condition 
monitoring (CM) data collected by powerful sensors, the 
current health condition and remaining useful life (RUL) 
of machines can be predicted. This enables the introduc-
tion of new maintenance strategies. Recent studies indicate 
that while industrial companies do acknowledge the upside 
potential of PdM, this technology still faces challenges 

regarding its value-adding implementation in industry [1]. 
RUL estimation alone does not lead to value-added, deci-
sion support does [2]. One crucial missing link to generate 
value-added is the inability of most existing PdM models to 
account for varying operational conditions, i.e. to estimate 
operation-specific degradation [3]. On the one hand, opera-
tion-specific predictions are needed for subsequent schedul-
ing of production and maintenance since different products 
and their required operations induce different stresses on the 
machine. On the other hand, existing scheduling algorithms 
are not designed to jointly optimize production scheduling 
and maintenance planning using PdM information. Thus, the 
focus of this publication is the mathematical formulation of 
the integrated production scheduling and maintenance plan-
ning (IPSMP) problem, its interactions with the Prognostics 
and Health Management (PHM) module developed by Zhai 
et al. [4] and the subsequent solution of the problem using 
a novel two-stage genetic algorithm (TSGA) that is specifi-
cally designed for interacting with PHM modules.

This paper is structured as follows: Sect. 2 gives an over-
view of related work and derives the research objective of 
this publication. Section 3 introduces the concept of the PdM 
integrated production scheduling (PdM-IPS) approach. Its 
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mathematical model is presented in Sect. 4, while Sect. 5 
proposes a two-stage Genetic Algorithm for its optimization 
and solution. Computational results applying the approach to 
benchmark data, as well as real industrial data, are presented 
in Sect. 7. Finally, Sect. 8 concludes the main findings of 
this paper.

2  State of the art and research objective

A detailed literature study was carried out to shed light on 
the current advances in IPSMP, as well as to highlight exist-
ing shortcomings to derive research objectives. The entity 
of IPSMP approaches can be divided into the categories 
time-based and condition-based maintenance integrated 
approaches [5]. Time-based approaches plan production 
and maintenance according to predetermined maintenance 
actions with fixed starting times or time windows, i.e. inte-
grating the preventive maintenance strategy into produc-
tion scheduling without considering the real health condi-
tion of a machine, see for example [6–8]. Condition-based 
approaches, such as PdM, carry out maintenance actions 
based on the assessed or predicted health condition and will 
be the focus for the following section. The literature will be 
reviewed and assessed according to the industrial viability 
of condition-based IPSMP approaches. In detail, these cri-
teria are:

1. consideration of a job shop scheduling problem (JSSP) 
or flexible job shop scheduling problem (FJSSP) and 
their respective production metrics (e.g. makespan) in 
order to be applicable for different shop floor layouts and 
not being limited to single machine setups,

2. consideration of the machine condition for PdM plan-
ning,

3. operation-specific modeling of machine degradation,
4. consideration of the non-linearity, i.e. the operation 

sequence-dependency, of the machine degradation pro-
cess, and

5. use of real industrial data for the assessment and predic-
tion of machine condition.

2.1  Literature review

Bougacha et  al. [9] proposed a PdM integrated IPSMP 
framework with two modules; an algorithm used for long-
term RUL predictions of the system and an algorithm used 
for short-term predictions to estimate the system’s future 
state while executing a job or maintenance.

The proposed framework adopts an iterative approach by 
considering “the effect of a selected decision on the sys-
tem health and the new possible decision that can be intro-
duced by a change in the estimated RUL” [9]. The authors 

considered a single machine with several operational pro-
files. The degradation processes were modeled using expo-
nential functions. However, it was not specified how the 
parameters of the exponential functions were determined 
and in what relation they stand to the individual operating 
profiles of the machine.

Ghaleb et al. [5] followed a similar approach to those 
of Sloan and Shanthikumar [10] and Bajestani et al. [11] 
by modelling the degradation process as a continuous-time 
Markov chain with discrete states. A single machine with 
different repair policies was studied: full repair, partial 
repair (one-step or multi-step) and no repair. The duration 
and cost of a repair depend on the policy and the condition 
of the machine. Furthermore, deteriorating machine condi-
tion was assumed to lengthen the job processing times and 
increase the energy consumption. The model was solved 
using a genetic algorithm (GA) with a total cost minimiza-
tion objective.

Pan et al. [12] utilized sensor and prognostic technologies 
to continuously monitor a single machine, i.e. to predict its 
degradation process during the processing of a job sequence. 
Based on this predictive information, maintenance opera-
tions are scheduled simultaneously with production jobs.

Fitouri et al. [13] proposed a decision-making heuris-
tic with decision rules. They considered a job shop with 
machines subject to operation-dependent degradation. A 
prognostic module continuously monitors the job shop sys-
tem and provides RUL predictions for each operation on 
each machine. Based on the predictive RUL, the cumulative 
machine degradation ∆ imposed by an operation is calcu-
lated as follows:

where p denotes the operation’s processing duration. The 
total degradation of a machine imposed by a production 
schedule equals to the linear accumulation of operation-spe-
cific degradations of the assigned operations. Each machine 
is associated with a minimum and maximum threshold of 
degradation. The proposed heuristic aims at finding optimal 
starting times for PdM actions as well as the production jobs.

Ladj et al. [14] pursued a similar approach as Fitouri 
et al. [13] and studied the operation-specific degradation 
of a single machine. The cumulative degradation of each 
operation is calculated using Eq. (1) based on RUL predic-
tions provided by a PHM module. The formulated IPSMP 
problem was solved using a GA with a total cost minimiza-
tion criterion. The proposed approach was later extended 
by Ladj et al. [15] to take uncertainty in production shops 
into account. They considered a flow shop with uncertain 
RUL values and degradation of machines, which were both 
represented using fuzzy sets. The fuzzy sets are constructed 

(1)Δ =
p

RUL
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using the probability density function of machine failures 
based on historical data.

Another study investigating the RUL uncertainty was car-
ried out by Benaggoune et al. [16]. The authors considered 
a multifunctional single machine and studied the impact of 
RUL uncertainty on maintenance planning. A PHM mod-
ule was deployed to continuously monitor the machine 
and deliver its estimated RUL after the processing of each 
operation. The operations can be scheduled with respect to 
a predefined maximum degradation threshold, which cannot 
be exceeded in any situation. An operation-specific degrada-
tion δ was considered, whereas the evolution of the machine 
degradation f(δ) was considered linear. The aim of the for-
mulated model is the minimization of total maintenance cost 
formulated as follows:

where CPdM,fix is the fixed cost of maintenance and CPdM,adv 
is the total cost of advancement, which is a linear function 
of the cost of advancement per unit time.

Zhai et al. [17] studied a job shop scheduling problem 
(JSSP) under time-varying operational conditions. The 
machines are subject to degradation and stochastic failures 
that follow the Weibull distribution. An operation-specific 
stress equivalent was introduced to represent the machine 
degradation imposed by a job operation. A not specified 
PHM module supplies RUL values, which are transformed 
into the operation-specific stress equivalents using Eq. (1). 
The authors assumed a linear accumulation of operation-
specific degradation values that in turn influence the fail-
ure probability using the Weibull distribution. A GA was 
employed to solve the formulated problem.

Morariu et al. [18] explored the potentials of Big Data 
techniques and machine learning algorithms in PdM inte-
grated production planning concerning energy use on the 
shop floor. They considered a large-scale manufacturing 
system, in which production scheduling decisions are based 
on real time learning from Big Data and data-driven deci-
sion making. Deep learning was employed to identify pos-
sible anomalies of energy consumption in the production 
processes. The current energy use is compared to learned 
energy consumption patterns, i.e. the predicted energy data 
based on previous production data. The proposed approach 
has two stages: long-term batch planning for optimal sched-
uling and resource allocation, and short-term resource health 
monitoring to detect anomalies in energy use and maintain 
the affected machine.

Paprocka et al. [19] aimed at generating robust schedules 
for job shops based on historical data of failure frequency 
using the Maxwell distribution. Time-varying machine 
failure rates were considered. The optimal schedules are 
selected assessing makespan, total tardiness, flow time and 

(2)CPdM = CPdM,fix + CPdM,adv

(
�i(t)

)

total idle time, while also taking into account the stability 
robustness and quality robustness of the schedules. In case of 
machine breakdown, jobs are rescheduled based on heuristic 
shifting rules.

Denkena et  al. [20] proposed a statistical method to 
estimate failure durations of machine tools in order to 
improve production scheduling. By using data from prac-
tical experiments, their method showcases high accuracy 
of these prognosis that in turn can be used for production 
scheduling purposes. While operation-specific prediction of 
RUL and subsequent scheduling was not within the scope of 
their work, the results have potential for holistically improve 
IPSMP.

2.2  Research Gap and Research Objective

The assessment of the relevant literature regarding the crite-
ria given in the beginning of this chapter is given in Table 1.

It is notable that those publications with focus on solving 
IPSMP problems apply genetic algorithms as solvers due to 
its ability to solve multi-objective optimization problems in 
reasonable time. In addition to the presented literature, fur-
ther publications were studied and listed in the table to fully 
capture the scientific landscape, but not described in the sec-
tion above for the sake of brevity. As the analysis indicates, 
the state of the art does not provide an efficient approach for 
the PdM integrated production scheduling of flexible job 
shops under varying operational conditions. Especially the 
linear accumulation of degradation as found in publications 
[13–17] does not hold true in industry and simplifies the 
problem at hand. Although some publications have dealt 
with the specific aspects of the problem formulation of this 
work, no holistic approach was found.

Thus, the present work aims at developing a PdM-IPS 
approach consisting of an optimization model for the main-
tenance integrated flexible job shop scheduling problem 
(MIFJSSP) using non-linear health predictions from a PHM 
module.

3  Concept

Figure  1 presents the concept of the overall PdM-IPS 
approach with its modules. Information from the scheduler, 
production orders and from the shop floor serve as inputs to 
the approach. The Planning Module receives performance 
measures and the weights for both production and mainte-
nance plans. In addition, it receives the job due dates from 
production orders. The PHM Module receives CM data from 
sensors installed in machines on the shop floor. Correspond-
ing operating data derived from production orders enable the 
PHM Module to correlate CM and operating data. An Inter-
face Module enables the information exchange. Schedule 
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candidates are sent to the PHM Module and the predicted 
degradation imposed by this very schedule candidate will 
be transmitted back to the Planning Module. Based on both 
production and degradation metrics, the Planning Module 
derives the output of the framework: an integrated produc-
tion schedule with maintenance actions. Mathematically, 

the IPSMP part is based on a maintenance integrated ver-
sion of the FJSSP to account for different shop floor layouts 
(i.e. MIFJSSP). As mentioned, this publication focuses the 
planning optimization using a two-stage Genetic Algorithm. 
Thus, the Interface, Planning Module and the interactions 
with the PHM Module will be explained in detail. Based on 

Table 1  Evaluation of the reviewed condition-based maintenance integrated production scheduling approaches (✔: considered, ✗: not consid-
ered)

JSSP/ FJSSP PdM planning based on 
Machine Condition

Operation-Spe-
cific Degradation

Non-Linear Accumulation of 
Operation-Specific Degradation

Use of Real 
Industrial 
Data

Benaggoune et al. [16] ✗ ✔ ✗ ✗ ✔
Denkena et al. [20] ✗ ✗ ✗ ✔ ✔
Morariu et al. [18] ✗ ✔ ✔ ✗ ✔
Ghaleb et al. [5] ✗ ✗ ✗ ✗ ✗
Bougacha et al. [9] ✗ ✔ ✗ ✗ ✔
Khatab et al. [21] ✗ ✗ ✗ ✗ ✔
Ladj et al. [15] ✗ ✔ ✔ ✗ ✔
Zhai et al. [17] ✔ ✔ ✔ ✗ ✗
Zandieh et al. [22] ✔ ✗ ✗ ✗ ✗
Fitouri et al. [13] ✔ ✔ ✔ ✗ ✔
Aramon Bajestani et al. [11] ✗ ✗ ✗ ✗ ✔
Xiang et al. [23] ✗ ✗ ✗ ✗ ✗
Pan et al. [12] ✗ ✔ ✗ ✗ ✔

Fig. 1  Overall PdM-IPS frame-
work (MP maintenance plan, PS 
production schedule)
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literature analysis [24] and the author’s own studies [17], 
genetic algorithms are well-suited to solve IPSMP problems.

The PHM Module that will be applied is based on the 
work of Zhai et al. [4] and is able to assess and predict the 
health condition of a machine after manufacturing a specific 
production schedule. Specifically, two Conditional Varia-
tional Autoencoder Neural Networks are applied to derive 
operation-specific health indicator prediction of machines. 
The algorithms presented in this publication are able to work 
with any other PHM module that is capable of returning an 
operation or product-specific health indicator prediction. We 
recommend our approach for short-term planning, i.e. for 
planning multiple shifts or weekly schedules. Depending 
on the data quality and availability of the PHM module, and 
thus the quality of predictions, longer planning horizons can 
be also realized.

4  Modelling

Based on the conceptual approach presented in the previous 
chapter, this chapter establishes the mathematical foundation 
of the PdM-IPS. Hereby, the interaction between the Plan-
ning and the PHM Module is presented in depth.

4.1  Problem description

The present work studies a flexible job shop scheduling prob-
lem with integrated predictive maintenance planning based 
on operation-specific machine degradation. Mathemati-
cally, the integrated problem consists of two simultaneous 
optimization problems: namely the production scheduling 
and maintenance planning in a flexible job shop setting, i.e. 
MIFJSSP. The production scheduling further comprises the 
machine assignment and operation sequencing subproblems. 
The MIFJSSP is extended to the PdM-IPS approach by inte-
grating information from a PHM Module and resulting PdM 
actions. The product portfolio contains several product vari-
ants, which are produced on the multifunctional machines of 
the flexible job shop. The machines are subject to varying 
operating conditions, and thus varying degradation, due to 
the execution of multiple types of operation using the same 
machine. A production order initiates the manufacturing 
process of a specific number of units of a product variant, 
each unit corresponds to a job. In the following section, a 
system model for the PdM-IPS is established with the fol-
lowing subsystems: (1) machine, (2) product and operation, 
and (3) production order and job. All introduced variables 
and descriptions can be found in Appendix Tables 5, 6 and 7.

4.2  Subsystem 1: machine

The flexible job shop comprises a set of machines, denoted 
as � , on which the jobs are produced. A single machine is 
denoted as Mk ∈ � , whereas the total number of machines 
in the shop floor equals to m . The following assumptions 
(A) hold:

A.1 A machine can only execute one activity (job opera-
tion or a PdM action) at a time.

A.2 The degree of degradation on each machine is oper-
ation-specific. The health state, i.e. the degradation level, of 
the machine remains constant during setups and idle state.

A.3 PdM actions reset the machine to an “as good as 
new” state.

A.4 No unexpected machine breakdown or failure occurs 
during the schedule horizon.

The HIk of machine takes a value between 0 (degraded) 
and 1 (new) representing the health of the machine Mk . RULk 
refers to the time period in which the machine is expected to 
be functional without breakdowns. Appendix Table 5 gives 
an overview of the introduced notations and variables to 
describe the machines in a flexible job shop.

4.3  Subsystem 2: Product and Operation

The flexible job shop can produce numerous product vari-
ants, denoted as Pv . The set of all product variants is referred 
to as product portfolio denoted by � . Each product variant 
comprises several successive operations Ovj with index j of 
variant v . For each product Pv ∈ � , the following holds:

A.5 The operations Ovj of a product variant Pv are subject 
to precedence constraints.

The total number of operations comprised by a product 
variant Pv is denoted as ov , with �v being its ordered set 
of operations. The set of machines an operation Ovj can be 
assigned to is referred to as the eligible machine set of that 
operation and is denoted by �vj . Each operation Ovj has a 
deterministic processing duration pvjk on machine Mk:

A.6 The processing times of operations on machines are 
fixed, i.e. deterministic.

Appendix Table 6 gives an overview of the introduced 
notations and variables. Operations are associated with dif-
ferent operating conditions which are defined by the com-
bination of different operational parameters [25] that lead 
to distinct CM values. These can be clustered into different 
load profiles, so called operating regimes. This concept will 
be introduced in detail in Sect. 4.5.2.
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4.4  Subsystem 3: Production Order and Job

Each workpiece requested by a production order represents 
a job J

ℴi with the following data:

• product variant v(ℴ) to be produced, and
• due date d

ℴi equal to the due date d
ℴ
 of the production 

order ��
ℴ
 it belongs to,

where i is the running index of jobs. The total number of 
production orders is denoted as Q . Within the scope of this 
work, following holds:

A.7 Production orders correspond to only one type of 
product variant Pv each.

Accordingly, each job inherits the specifications of the 
product variant v(ℴ) it corresponds to. Based on the subsys-
tem “products and operations”, following notations are intro-
duced: each job J

ℴi comprises ov(ℴ) operations O
ℴij , whereas 

the j-th operation O
ℴij of job J

ℴi is an instance of the j-th 
operation Ov(ℴ)j of product Pv(ℴ) with the same machine pro-
gram (cf. Fig. 2) and processing duration p

ℴijk as follows:

The starting and completion times of an operation O
ℴij 

are denoted by S
ℴij and C

ℴij . The completion time of job 
J
ℴi is denoted by C

ℴi . Once a job operation O
ℴij has started 

on a machine Mk , it cannot be interrupted or preempted by 
another operation:

A.8 Job preemptions are not allowed.
The set of all jobs of the PdM-IPS instance is denoted as 

� , where n denotes the total number of jobs. The job opera-
tions of these jobs form an unordered set of all job opera-
tions, denoted as � , the number of all job operations in the 
problem instance is denoted as N.

A.9 The jobs in the flexible job shop are independent and 
can be sequenced in any order that benefits the objective 
function values.

(3)poijk = pv(o)jk

The operations of a job are subject to precedence con-
straints, i.e., must be executed in the given order. Each oper-
ation is associated with a set of eligible machines �

ℴij on 
which it can be processed:

Figure 2 illustrates the notation and the principle of inher-
itance between product variants and jobs.

Appendix Table 7 gives an overview of introduced vari-
ables to describe production orders and jobs.

4.5  Mathematical formulation

This section deals with the mathematical formulation of 
the PdM-IPS approach based on the assumptions made in 
Sect. 4.1.

4.5.1  The production scheduling problem

The production scheduling problem of the PdM-IPS com-
prises the machine assignment and operation sequencing 
subproblems of the FJSSP.

A.10 All jobs are available at the beginning of the plan-
ning horizon.

Following decision variable Y
ℴij,ℴ

′
i
′
j
′
,k is introduced to the 

model:

In accordance with A.1, a machine can execute only one 
operation at a time, meaning that the starting time of an 
operation on machine Mk must be greater than the comple-
tion time of its predecessor:

where B is a large positive number. For the completion 
time C

ℴijk of operation O
ℴij on machine Mk must hold the 

following:

with the binary decision variable X
ℴijk as follows:

A machine can only be assigned to an operation, if it 
belongs to the eligible machine subset �

ℴij = �v(ℴ)j (see 
Eq. 4) expressed by the parameter �

ℴijk = �v(ℴ)jk:

(4)�
ℴij = �v(ℴ)j

(5)

Y
ℴij,ℴ

�
i
�
j
�
,k =

{
1, if O

ℴij immediately precedes Oℴ
�
i
�
j
� on Mk

0, Otherwise

(6)S
ℴ
�
i
�
j
�
k ≥ C

ℴijk −
(
1 − Y

ℴij,ℴ
�
i
�
j
�
k

)
⋅ B

(7)C
ℴijk ≥ S

ℴijk + p
ℴijk −

(
1 − X

ℴijk

)
⋅ B

(8)X
ℴijk =

{
1, if O

ℴij can be executed on Mk

0, otherwise

Fig. 2  Subsystem of production orders and jobs
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Accordingly, the following must hold:

indicating that the decision variable X
ℴijk can only be 1 , 

when �v(ℴ)jk equals to 1. Furthermore, the starting and end-
ing times of operation O

ℴij can be formulated as follows:

In accordance with A.5, the operations O
ℴij of job J

ℴi are 
subject to precedence constraints, an operation cannot start 
prior to the completion of its predecessor:

whereas 𝒫
ℴ(v)jj

� is a binary precedence parameter as follows:

The jobs operations are subject to transportation times 
ttransport and setup times tsetup:

A.11 The setup times between two product variants are 
sequence and product independent.

A.12 The time to transport a job between machines is 
taken into account and de-terministic. It has the same dura-
tion regardless of the origin and destination machine.

Transportation time applies when two consequent opera-
tions of a job are not processed on the same machine, 
expressed by the following variable:

The variable of setup time needed for operation O
ℴij is 

expressed as:

meaning that setup is required if O
ℴij immediately precedes 

O
ℴ
′
i
′
j
′ on machine Mk and the product orders ℴ and ℴ′ do not 

correspond to the same product variant. Thus, considering 
setup times, Eq. (6) can be extended as follows:

meaning that operation O
ℴ
′
i
′
j
′ cannot start on machine Mk 

prior to the completion of its predecessor and the completion 

(9)�v(o)jk =

{
1, if Ov(o)j can be executed on Mk

0, otherwise

(10)Xoijk = �v(o)jk

(11)S
ℴij ≥ S

ℴijk for ∀ k ∈ �

(12)C
ℴij ≥ C

ℴijk for ∀k ∈ �

(13)S
ℴij

� ≥ C
ℴij −

(
1 −𝒫

ℴ(v)jj
�

)
⋅ B

(14)

P
ℴ(v)jj

� =

{
1, if O

ℴ(v)j of product variant Pℴ(v) precedesOℴ(v)j
�

0, otherwise
.

(15)�tr,ℴij =

{
1, if X

ℴijk = 1 and X
ℴi(j−1)k ≠ 1

0, otherwise

(16)�stp,ℴ�
i
�
j
� =

{
1, if Yoij,ℴ�

i
�
j
�
,k = 1 and v(o) ≠ v(o

�

)

0, otherwise

(17)S
ℴi�j�k ≥ C

ℴijk + tsetupΔ�stp,ℴi�j� −
(
1 − Y

ℴij,ℴi�j�,k

)
⋅ B

of setup if needed. The transportation times can be consid-
ered in Eq. (15), resulting in the following constraint:

For production scheduling, the following objective func-
tions are selected: minimization of makespan Cmax , total 
tardiness Ttotal and the total penalty cost of the production 
schedule (PS), denoted as �PS.

whereas C
ℴi denotes the completion time of job J

ℴi:

Makespan is the most commonly used objective function 
within production scheduling and is directly related with 
the cost of a PS [26]. The minimization of Ttotal is selected 
with respect to the industrial applicability of the model. Any 
order that exceeds its due date is considered as lost oppor-
tunity associated with costs [9]. Thus, the model aims at 
minimizing the total tardiness

where T
ℴi denotes the tardiness of job J

ℴi:

Lastly, the model minimizes �PS . �PS is introduced to the 
model to minimize the transportation of jobs in the job shop 
as well as frequent setup actions. Each job transportation and 
setup action is associated with costs, denoted as costtransport 
and costsetup , respectively:

where �transport(Jℴi) and �transport(Jℴi) are model variables:

4.5.2  The maintenance planning problem

Maintenance planning problem is concerned with the plan-
ning of PdM actions based on health state of the machines in 
the flexible job shop. It is assumed that the flexible job shop 

(18)S
ℴij

� ≥ C
ℴij + ttransport ⋅ �tr,ℴij� −

(
1 −𝒫

ℴ(v)jj
�

)
⋅ B

(19)Cmax = maxC
ℴi for ∀ℴ, i

(20)C
ℴi ≥ C

ℴij for ∀j ∈ Ov(ℴ)

(21)Ttotal =

Q∑
ℴ=1

qℴ∑
i=1

T
ℴi

(22)T
ℴi = max

(
0,C

ℴi − d
ℴ

)

(23)
�PS =

Q∑
ℴ=1

qℴ∑
i=1

ov(ℴ)∑
j=1

costtransport ⋅ �transport
(
O

ℴij

)

+ costsetup ⋅ �transport
(
O

ℴij

)

(24)�transport
(
O

ℴij

)
=

{
1, if ttr,ℴij ≠ 0

0, otherwise

(25)�setup
(
O

ℴij

)
=

{
1, if tstp,ℴi�j� ≠ 0

0, otherwise
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in consideration is equipped with a PHM Module, which 
continuously collects sensory data and can deliver RULk 
predictions. In industrial practice, machines rarely deplete 
all RULk.

The present work adopts the concept of Remaining Main-
tenance Life, denoted as RMLk , proposed by Pan et al. [12]. 
Each machine Mk is associated with two HI values HIk,safe 
and HIk,fail , reached at tk,safe and tk,fail , respectively, see Fig. 3. 
Regarding maintenance planning, tk,fail represents the last 
timestep before a PdM action has to be planned on machine 
Mk . The time span between tk,safe and tk,fail represents the 
ideal time to plan maintenance. An earlier starting time tk,PdM 
of PdM than tk,safe means unnecessary maintenance costs. In 
order to integrate RMLk and RULk , we model maintenance 
costs CPdM (see Fig. 3):

whereas costPdM,fix is the fixed cost of maintenance and 
�PdM,adv is the advancement cost per timestep.

The next assumptions integrate maintenance and produc-
tion scheduling:

A.13 A planned PdM action will be performed imme-
diately after the processing of a job operation is complete.

Thus, the binary decision variable Z
ℴijk is introduced to 

the model:

A. 14 At most one PdM action is scheduled per machine 
Mk

This can be mathematically formulated as follows:

(26)costPdM,k

�
tk,PdM

�
=

⎧⎪⎨⎪⎩

costPdM,fix + 𝛼PdM,adv ⋅
�
tk,safe − tk,PdM

�
,

costPdM,fix,

B,

if tk,PdM < tk,safe
if tk,safe ≤ tPdM ≤ tk,fail

if tk,PdM > tk,fail

(27)

Z
ℴijk =

{
1, if a PdM action is scheduled after O

ℴijk

0, otherwise

Thus, total cost of maintenance denoted as �MP is formu-
lated as �MP:

The PdM-IPS approach uses the PHM Module of Zhai 
et al. [4] to consider the machine degradation during IPSMP 
to supply RMLk and RULk predictions. Here, the model 
assumes operation-specific machine degradation, referred 
to as �vjk ∈ [0,1] . It corresponds to the amount of degra-
dation imposed on Mk during the processing of operation 

Ovjk for one timestep, if the machine would only produce 
this operation. The total amount of degradation imposed 
by the Ovjk is denoted as Δvjk . However, as opposed to the 
publications [13, 15, 17], the present work does not assume 
linear accumulation of the operation-specific machine deg-
radation. In order to model operation-specific degradation, 
we consider each timestep of an operation individually 
according to its degradation. This allows us to accurately 
predict the machine health in consideration of the active 
operation sequence. The model quantifies the effects of dif-
ferent processing steps during an operation Ovjk , referred to 
as operating regime OpReg . Each OpReg represents a differ-
ent load profile of the machine. OpRegt corresponds to the 
active OpReg in timestep t and is dependent on the active job 
operation Ovjk . OpRegs are identified by clustering available 
CM data, during the time an operation Ovjk is active, into K 
clusters. Thus, an operation Ovjk corresponds to an ordered 
set, i.e. sequence, of active operating regimes:

where it holds OpRegvjk,t ∈ [OpReg1,… ,OpRegK] and 
t ∈ pvjk . The total degradation Δvjk imposed by an operation 
Ovj on machine Mk is dependent on the sequence of operating 
regimes the operation comprises:

where OpRegSeqvj denotes the OpReg sequence of operation 
Ovj . Accordingly, the degradation of machine Mk imposed 
by a schedule, denoted as � , also depends on the sequence 
of OpRegs of that schedule:

(28)
Q∑

ℴ=1

qℴ∑
i=1

v(ℴ)∑
j=1

Z
ℴijk ≤ 1, ∀Mk ∈ �

(29)�MP = costPdM
(
tPdM

)
⋅

Q∑
ℴ=1

qℴ∑
i=1

v(ℴ)∑
j=1

n∑
k=1

Z
ℴijk

(30)
OpRegSeq

(
Ovjk

)
=

[
OpRegvjk,1, OpRegvjk,2, … ,OpRegvjk,pvjk

]

(31)�vjk = f
(
OpRegSeq

(
Ovj

))

Fig. 3  RML concept [12] and adapted PdM advancement cost model 
[27]
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In accordance with assumption A.2, setup and idle times 
do not change the degradation of the machine, as no OpReg 
is active.

The total degradation of machine Mk due to schedule � is 
formulated as follows:

where HIk,pred(�) represents the predicted level of 
HIk,pred ∈ [0,1] after the execution of schedule �.

The total degradation Δtotal of the machines should be 
minimal, so the frequency of maintenance actions and asso-
ciated cost can be minimized.

Furthermore, the critical machine degradation Δcritical , i.e. 
the maximum degradation of a single machine, is chosen as 
minimization criteria:

This facilitates the balanced use of resources. By using 
the machines to a similar extent, the PdM actions can be 
synchronized, which would result in time and cost savings 
in industrial practice [17].

4.5.3  The integrated problem

The IPSMP part of the PdM-IPS approach is formulated 
by combining the constraints of the partial problems out-
lined in previous sections. In consideration of the binary 
decision variable Z

ℴijk for maintenance planning, Eq. (17) 
is reformulated:

where tPdM denotes the duration of one PdM action. The 
calculation of Cmax of the integrated schedule requires a 
reformulation from Eq. (19):

to consider the case where a PdM action is scheduled after 
the last operation O

ℴioi
 of a job J

ℴi . All other constraints 
presented in previous sections remain unchanged for the 
integrated problem. Thus, the MIFJSSP comprises follow-
ing decision variables:

• Y
ℴij,ℴ

′
i
′
j
′
,k for operation sequencing (Eq. 9),

• X
ℴijk for machine assignment (Eq. 8), and

• Z
ℴijk for PdM scheduling (Eq. 28).

(32)Δk(�) = f (OpRegSeq(�))

(33)Δk(�) = HIk,pred(�) − HIk(t = 0)

(34)Δtotal =

n∑
k=1

Δk,

(35)minΔcritical = maxΔk ∀k ∈ M

(36)
S
ℴi

�
j
�
k
� ≥ C

ℴijk + tsetup ⋅ �strp,ℴ�
i
�
j
� + tPdM ⋅ Z

ℴijk −
(
1 − Y

ℴij,ℴi
�
j
�
,k

)
⋅ B

(37)Cmax = max
(
C
ℴi + tPdM ⋅ Z

ℴioik

)
∀ℴ, i, j, k,

and a total of six objective functions presented in the previ-
ous sections. The objective functions regarding the PS are 
as follows:

The maintenance plan (MP) has the following objective 
functions:

5  Two‑stage genetic algorithm (TSGA)

We propose a TSGA for the PdM integrated production 
scheduling of flexible job shops. The general procedure of 
the designed algorithm is shown in Fig. 4. The optimiza-
tion process refers to the simultaneous scheduling of job 
operations and PdM actions. The integrated scheduling is 
carried out by the TSGA based on the feedback provided 
by the PHM Module. As mentioned, the genetic algorithm 
is chosen due to its viability to solve IPSMP problems as 
the scientific literature points out. Specifically, its ability to 
solve the present multi-objective optimization problem in 
reasonable time is crucial for industrial applicability.

We adopt a two-stage procedure comprising a single-
objective stage S1 and a multi-objective stage S2 . The single-
objective S1 represents a preliminary stage for generating a 
high-quality initial population for the S2 , aiming at enhanc-
ing the convergence speed of the multi-objective stage [28], 
which represents the main phase where both production 
scheduling and maintenance planning are jointly optimized.

5.1  Single‑objective Stage S1

S1 starts by randomly initializing a population and cloning 
it into two populations, referred to as PopulationS1(1) and 
PopulationS1(2) . Each chromosome corresponds to a can-
didate solution and represents a PS. These populations are 
evolved by two single-objective genetic algorithms with fit-
ness functions fS1(1) and fS1(2) , GA-S1(1) using the makespan 
criterion min Cmax and GA-S1(2) minimizing the total tardi-
ness, i.e. min Ttotal . The latest generations of these popula-
tions are then merged into a high-quality initial population 

(38)minCmax

(39)min Ttotal

(40)min �PS

(41)minΔtotal

(42)minΔcritical

(43)min �MP
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for S2 , referred to as PopulationS2 , comprising PopSizeS2 
chromosomes. Thus, it is ensured that the search process of 
S2 will start in promising regions of the genetic search space. 
In order to enhance population diversity and prevent prema-
ture convergence, 10% of PopSizeS2 are arbitrarily selected 
and replaced with randomly generated chromosomes.

5.2  Multi‑objective stage S2

The second stage aims at the multi-objective optimization 
of both production and maintenance using following fitness 
function:

where fPS and fMP refer to the fitness functions of the PS 
and MP, their corresponding weights wPS and wMP (with 
wPS + wMP = 1 ) and represent the input data of the TSGA.

The fitness function of the PS comprises the minimization 
of makespan C

max
 , total tardiness T

total
 and total cost of PS 

�
PS

 , which were formulated in Sect. 4.5.1. As these objec-
tives have different units, their simultaneous optimization 
using the weighted sum method is not possible. Thus, the 
scaling method proposed by [29] is adopted in order to con-
stitute a linear fitness function for the PS and MP:

(44)fS2 = wPS ⋅ fPS + wMP ⋅ fMP

Fig. 4  Flowchart of the 
proposed TSGA with a 
single-objective stage S1, b 
multi-objective stage S2 and 
c interface between the PHM 
module and GA-S2
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where C′

max
, T

′

total
 and � ′

PS
 are scaled fitness values. Here, 

each objective function value fitness of a chromosome, 
denoted as C , will be converted to a scaled value fitness′ as 
follows:

where MIN(G) and MAX(G) correspond to the fitness values 
of the fittest and least fit chromosomes within the chromo-
some’s generation Genz , respectively.

Hereby, each schedule comprises m job operation 
sequences, i.e. one for each machine Mk of the flexible job 
shop. The adopted PHM Module simulates each sequence 
regarding the following:

• current health state of the machine, expressed by HIk , and
• the production history, i.e. operation sequence previously 

executed on the machine.

Here, the latter is expressed in form of HIk history of the 
machine, denoted as ��k,history . Hence, assuming a TSGA 
population with PopSize  chromosomes, the algorithm 
requires m × PopSize predictive simulations per generation.

5.3  Interface to the PHM module

The application of the proposed approach enables the deci-
sion maker (scheduler) to consider the machines’ health 
states during production planning, and thus to simultane-
ously optimize the PP and MP. As visualized in Fig. 4c, 
the proposed TSGA and the PHM Module have an itera-
tive exchange of information during the entire optimization 
process.

Functionality and Architecture of the PHM Module 
The PHM Module simulates candidate production schedules, 
i.e. chromosomes, generated by the TSGA and forecasts the 
future HIk trajectory 

{
HIk(t), HIk(t + 1), …

}
 based on can-

didate schedules. It comprises two generative deep learn-
ing models, namely conditional variational autoencoders 
(CVAE) as modelled by Zhai et al. [4]:

• a health assessor model (HA-CVAE), used for deriving 
a health indicator (HI) of a machine, and

• a data simulator model (DS-CVAE), which generates 
realistic synthetic multivariate CM data that resemble 

(45)fPS = C
�

max
+ T

�

total
+ �

�

PS

(46)fMP = Δ
�

total
+ Δ

�

critical
+ �

�

MP

(47)fitness�(C) =

⎧
⎪⎨⎪⎩

fitness(C) −MIN
�
Genz

�

MAX
�
Genz

�
−MIN

�
Genz

� , if MAX
�
Genz

�
≠ MIN

�
Genz

�

0 , otherwise

those of the training data under the same OpReg and 
health state.

The operation-specific machine degradation evaluation of 
alternative schedules requires the joint deployment of these 
models. In order to consider the operation-specificity of the 
machine degradation process, the adopted PHM Module clus-
ters CM data into operation specific clusters, i.e. OpRegs . A 

sequence of OpReg is denoted as OpRegSeq and mirror the 
operations necessary to manufacture a product—in other 
words, candidate PSs can be translated to OpRegSeq which are 
then evaluated by the PHM Module to obtain changes in HIk . 
The main steps of the predictive simulation are summarized 
in the following, which occur recursively for each timestep t:

• The DS-CVAE uses the information of the active OpReg 
of the candidate production schedule (PS) by the TSGA 
and the health condition HIk(t) to generate synthetic sen-
sor observations.

• The sensor observations generated by the DS-CVAE are 
passed to the HA-CVAE for health assessment. Its output 
is the predicted HIk,pred(t + 1).

The described procedure is illustrated in Appendix Fig. 6.
Interface Between the TSGA and PHM Module The 

feedback regarding the health states of machines is consid-
ered by the TSGA within the fitness function fMP of the 
multi-objective stage S2 . As expressed in Eq.  (46), this 
function comprises the minimization of total degradation 
of machines Δ

total
 , critical machine degradation Δ

critical
 and 

the total cost of MP �
MP

 . Considering the Eqs. (29), (34) and 
(35) of these objectives, the following can be identified as 
the output data required by the PHM Module:

• predicted health indicator HIk,pred,
• predicted timestep tk,safe in which the health state will 

reach HIk,safe , and
• predicted timestep tk,fail in which the health state will 

reach HIk,fail.

In correspondence, the PHM Module requires the follow-
ing input data:

• current health state expressed by HIk,
• job operation sequence of the machine in form of 

OpRegSeqk , and
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• the health indicator history HIk,history up to the time of 
prediction, i.e. the current timestep.

The TSGA and PHM Module interact through a defined 
interface realized by the function simulate_schedules , of 
which the pseudo-code is shown in Appendix Algorithm 3. 
Each chromosome corresponds to m simulations, i.e. the 
number of machines in the flexible job shop. When all pre-
dictive simulations for every machine are completed, TSGA 
calculates the total degradation of machines Δ

total
 , critical 

machine degradation Δ
critical

 and the total cost of MP �
MP

 of 
the chromosome.

5.4  Genetic Operators

Chromosome Encoding Chromosomes correspond to can-
didate solutions to the MIFJSSP, i.e. production schedules 
with PdM actions. The proposed TSGA adopts a chromo-
some representation with three segments as visualized in 
Appendix Figs. 7, 8 and 9. Each segment is a vector con-
sisting of integers and corresponds to a subproblem of the 
MIFJSSP (see Sect. 4.1) as follows:

• operation sequencing segment OS,
• machine assignment segment MA,
• maintenance planning segment MP.

OS and MA are adopted from [30, 31] and [32]. To include 
the maintenance planning subproblem, this representation 
is extended by MP . Each segment uses an operation-based 
encoding and comprises N genes, where N is the total num-
ber of job operations. By choosing and applying suitable 
genetic operators for each segment, the creation of infeasible 
chromosomes during iterations are avoided and no repair 
mechanism is needed.

Crossover operators The precedence operation crosso-
ver (POX), job-based crossover (JBX), and 2-point crossover 
(2PX) adopted from Li & Gao [30] are applied in the TSGA. 
For the OS segment, the TSGA employs either the POX or 
JBX operator, where one is selected randomly. The MA and 
MP segments are executed by the 2PX operator. In S2 , the 
TSGA chooses randomly whether to crossover the OS and 
MA segments or the MP . In other words, at each iteration of 
the TSGA, either the production plan (represented by the OS 
and MA segments) or the maintenance plan (represented by 
the MP segment) is altered in order the generate offsprings 
for the next generation. The described crossover procedure 
in the multi-objective stage S2 is summarized as pseudo-
code in Appendix Algorithm 1.

Mutation operators Mutation operators are applied to 
the new generation Genz generated by the crossover pro-
cedure. In each new TSGA generation, a chromosome is 
selected randomly. The proposed TSGA uses swapping, 

neighborhood and flip mutation operators with mutation rate 
pm [30], as well as binary flip mutation operator designed 
by the present work for the MP segment. The OS segment 
is executed by the swapping and neighborhood mutation 
operators. The general procedure adopted for the mutation of 
generations is analog to the crossover process. Thus, either 
the OS and MA segments are mutated with a probability 
of pm.

Fitness evaluation and selection operators Selection 
operators are responsible for choosing the parent chromo-
somes from a generation, denoted as Genz , that will produce 
the offspring chromosomes for the next generation Genz+1 . 
Thus, the result of the selection process is a set of chromo-
somes, referred to as the parental population, for the crosso-
ver process. The proposed TSGA adopts the selection pro-
cedure of Li and Gao [30] using the elitist and tournament 
selection operator.

The described selection procedure is summarized as 
pseudo-code in Appendix Algorithm  2. The combined 
application of the elitist and tournament selection operators 
allows the TSGA to make a trade-off between exploration 
and exploitation of the genetic search space. In order to pre-
vent the loss of the best-found solutions between genera-
tions, an external archive is employed based on publications 
[33, 34]. For a population with PopSize chromosomes, the 
archive contains archiveRate * PopSize of the best chromo-
somes found by the entire TSGA generations. In each TSGA 
iteration, the chromosomes stored in the archive are added to 
the population of the most recent generation Genz.

Chromosome decoding By decoding, the chromosome 
is translated to the PdM integrated schedule. We adopt the 
priority-based decoding and reordering by [31]. The decod-
ing process is carried out by scanning the OS segment of the 
chromosome from left to right, with the machine-assignment 
information for each operation provided by MA . Finally, the 
MP segment specifies whether the operation is followed by 
a PdM action. The main steps of the decoding process are 
summarized in Appendix Algorithm 4.

Termination The termination of both stages S1 and S2 
use the following criteria:

• the convergence of the optimization process, i.e. the 
allowed maximum of generations with stagnation of the 
fitness value, and

• the allowed maximum number of generations, denoted 
as maxGenS1 and maxGenS2.

Note that due to the stochastic nature of the health 
predictions in fS2 , the fitness of S2 will not converge in a 
monotonic decreasing manner. Thus, the termination cri-
teria will be based on the average total cost of production 
schedule and maintenance plan, makespan and tardiness  
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�PS + �MP + Ttotal + Cmax for the 10 fittest chromosomes in 
each generation.

6  Computational results

In this section, the results of computational experiments of 
the TSGA are presented. The objectives of the computa-
tional experiments are as follows:

• check the plausibility of the implemented code, i.e. deter-
mine whether the implemented algorithms are capable of 
generating feasible solutions for FJSSP instances,

• investigate the performance of the different components 
of the proposed algorithm,

• calibrate the hyperparameters of the implemented algo-
rithm, and

• investigate the convergence of the search process.

One of the common challenges in the field of PdM inte-
grated scheduling is that there are no benchmark data avail-
able for the testing of proposed algorithms [15]. Thus, for 
the following experiments in this section, a commonly used 
FJSSP benchmark dataset by Brandimarte [35] was adopted. 
The used test instance (“Mk01”) belongs to a 10 × 15 FJSSP 
with 10 machines and 15 jobs. The test instance comprises 
a total of 55 operations and is aimed at makespan mini-
mization. Thus, for the following experiments in this sec-
tion, a simple single-stage structure of the proposed GA 
is considered, which corresponds to the GA-S1(1) with 
fS1(1) = min Cmax of the TSGA.

For the hyperparameter optimization, a full-factorial 
experimental design with four levels was used, see Appendix 
Table 8. Based on these experiments, the setting in Table 2 
is chosen for the application of the proposed TSGA in the 
following sections:

Note that the reported computational study of hyperpa-
rameters was conducted using the GA-S1(1) in the single-
objective stage S1 of the proposed TSGA. However, all GAs 
of the TSGA are implemented using the same chromosome 
representation and genetic operators. Furthermore, the cho-
sen test instance of Brandimarte [35] exhibits a problem size 
which is representative of the case studies in the following 
chapters. Hence, the results of these computational experi-
ments can be transferred to the TSGA. In order to improve 
the usability of the approach, a graphical user interface 
(GUI) was developed. Job shop data, as well as parameters 
for cost and time and TSGA hyperparameters can be easily 
set. In Fig. 5, the GUI shows an exemplary PdM integrated 
production schedule with corresponding costs.

Next, a simulated dataset and a real industrial dataset are 
applied to investigate the general applicability of the algo-
rithm. For the sake of brevity, we will focus on reporting 

respective optimization metrics and the associated total 
cost of the schedule and not visualize every schedule, since 
the visualizations do not offer any more information than 
already displayed in Fig. 5.

6.1  Case 1: Partial MIFJSSP with simulated dataset

In order to assess the applicability of the developed algo-
rithm, an exemplary PdM-IPS instance is studied in this 
section. Here, a partial flexible job shop is considered using 
the NASA’s simulated C-MAPSS dataset [36]. Note that 
this dataset comprises run to failure CM data of jet engines 
and not manufacturing data. Therefore, virtual products and 
operations, as well as corresponding machines that mirror 
the jet engine’s degradation behavior are generated.

Dataset description Case 1 adopts the C-MAPSS 
FD002 sub-dataset. The dataset was clustered into a total 
of 6 OpRegs: 

{
OpReg1,… , OpReg6

}
 . Accordingly, the 

OpRegSeq of an operation may comprise several operating 
regimes, i.e. consists of several sub-operations with differ-
ent degrading effects on the machines. At each time step, 
the sensor observation was mapped to the currently active 
OpReg . The HA-CVAE and DS-CVAE models were trained 
and supplied by [4]. The results presented in this section are 
obtained by integrating the trained models into the devel-
oped TSGA.

Case description The OpRegs identified for the 
C-MAPSS are used by the present work to generate virtual 
products and operations. An exemplary middle-sized PdM-
IPS instance was created considering a partial flexible job 
shop:

Machine Data. The partial flexible job shop comprises 5 
multifunctional machines. It is assumed that the machines 
are identical, and thus have the same HIk,safe and HIk,fail val-
ues. However, they show different levels of machine health 
HIk(t = 0) at the time of planning, i.e. are degraded to 
varying degrees, see Appendix Table 9. The PHM Module 
requires the historical records of operational conditions up 
to the time of prediction. Thus, five time series with varying 
machine degradation rates were selected from the training 
dataset used for the CVAE models. The selected time series 
correspond to the HIk,history of machines.

Product Data The product portfolio � of the problem 
instance comprises 5 product variants Pv , corresponding 

Table 2  TSGA hyperparameter setting for case studies

Maxi-
mum gen-
eration 
MaxGen

Maximum 
stagnation

Popula-
tion size 
PopSize

Crosso-
ver rate 
pc

Mutation 
rate pm

Reproduc-
tion rate 
(elitism)pr

S1: 300 , 
S2: 100

0.1 ∗ MaxGen300 0.90 0.20 0.05
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to a total of 16 operations Ovj . A detailed overview of the 
processing times pvj and eligible machine sets �vj of these 
operations is given in Appendix Table 10.

Product Order Data The problem comprises 8 produc-
tion orders PO

ℴ
 , corresponding to 20 jobs J

ℴi with a total 
of 61 job operations J

ℴi . The product variants Pv , due dates 
d
ℴ
 and quantities q

ℴ
 of these production orders are given in 

Appendix Table 11.
Cost and Time Parameters The cost and time parameters 

of PdM actions, setup actions between product variants and 
transportation of jobs are given in Appendix Table 12.

Application of the TSGA The hyperparameters of S1 
are given in Table 2. For S2 , the number of iterations was 
set to MaxGenS2 = 100 . The production plan and main-
tenance plans are weighted with same importance, i.e. 
wPP = wMP = 0.5 . The algorithm was run on a macOS sys-
tem with 2.4 GHz Intel Core i5 processor and 8 GB RAM.

As described in Sect. 5.1, S1 evolves two populations 
in parallel, namely PopulationS1(1) and PopulationS1(2) . 
For the MIFJSSP instance studied in this case, the evolv-
ing process of both populations were terminated due to the 
convergence criterion after 110.48 seconds. In particular, the 
GA-S1(1) terminated after 191 generations with a makespan 
Cmax = 191 , whereas GA-S1(2) terminated after 94 generation 
and was able to minimize the total tardiness to Ttotal = 0.

The most recent generations of PopulationS1(1) 
and PopulationS1(2) were merged by the TSGA to a 
high-quality initial population PopulationS2 , which 
evolved for MaxGenS2 = 100 iterations in 567.0  s. The 

fittest chromosome represents the PdM integrated schedule 
selected by the TSGA with Cmax=230, Ttotal=22, �PP=1480 
and �MP=1600.

The total cost of the selected schedule corresponds to 
3080€, composed of setup costs (1150€), transportation 
costs (330€) and cost of maintenance (1600€). (see Appen-
dix Table 12 for cost positions). As shown in Table 3, each 
of these PdM actions were scheduled with a starting time 
tk,PdM between tk,safe and tk,fail , thus constituting no advance-
ment costs. Table 3 also shows the predicted health condi-
tions of machines at time thorizon , i.e. after the execution of 
the schedule. The critical machine degradation Δmax imposed 
by the integrated schedule is printed in bold and belongs to 
machine M2.

The predictions indicate that the machines M1 and M4 
do not reach their failure states. M1 reaches its HI1,safe value 
and was accordingly scheduled by the TSGA to be main-
tained after the completion of its job operations. Although 
M2 exhibits the lowest HIk (i.e. worst health condition), the 
PHM Module predicts that M5 will reach its HI5,safe before 
M2 reaches HI2,safe . However, the time period between t5,safe 
and t5,fail is longer than it is for M2 . Furthermore, M4 is 
expected to degrade the least. It can be concluded that the 
PHM Module is able to assess and predict operation-spe-
cific machine degradation based on the assigned operations. 
Using this predictive information, the TSGA schedules the 
necessary PdM actions so that (1) the machines do not reach 
their failure states at time tk,fail and (2) the multi-objective 
fS2 of the schedule is minimized. The analysis shows that the 

Fig. 5  Exemplary visualization of a PdM integrated production schedule
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scheduling results of the implemented TSGA are effective 
and reasonable.

6.2  Case 2: Total MIFJSSP with industrial CM data

Dataset Description For the following case, a real indus-
trial dataset from an automotive manufacturing company is 
applied. Note that due to confidentiality, raw data and met-
rics associated with efficiency and costs cannot be shown. 
The dataset belongs to a machine park with five multifunc-
tional machines and comprises CM data collected from 140 
sensors covering a time period of 9 months. The signifi-
cant differences in the real industrial dataset compared to 
C-MAPSS are as follows:

• During the preprocessing step, a total of K = 32 OpRegs 
were defined. 15 of these belong to the manufacturing 
of a product, i.e. operating conditions during which the 
machine experiences degradation.

• Compared to C-MAPSS, the OpRegs are defined high-
level (workpiece ID). Thus, OpRegSeq of each product 
comprises a single operating regime.

Case Description
Machine Data The flexible job shop comprises three 

identical multifunctional machines with different health 
conditions as listed in Appendix Table 13.

Product Data The product portfolio � of the studied 
problem instance comprises 10 product variants Pv . As men-
tioned above, each OpReg corresponds to a product variant. 
Thus, each product has one operation Ov1 with a OpRegSeq 
consisting of a single OpReg . The processing times pvj are 
listed in Appendix Table 14. The eligible machine sets �vj 
are omitted as a total flexible job shop is studied, i.e. each 
operation can be produced on any machine.

Product Order Data The problem comprises a total of 
50 jobs J

ℴi that belong to 12 production orders PO
ℴ
 . The 

product variants Pv , due dates d
ℴ
 and quantities q

ℴ
 of these 

production orders are given in Appendix Table 15.
Cost and Time Parameters. The problem uses the same 

cost and time parameters of Case 1 given in Appendix 
Table 12.

Application of the TSGA

The hyperparameters of the TSGA are configured as in 
the previous Case 1. The algorithms were run on a Windows 
system with 3.3 GHz Intel Xeon processor and 64 GB RAM.

The single-objective stage S1 was terminated after 
416.11 seconds. The GA-S1(1) terminated after 145 gen-
erations due to the convergence with a makespan value of 
Cmax = 526 . The GA-S1(2) terminated after 99 generations 
with a total tardiness of Ttotal = 0 . To showcase the effec-
tiveness of the archive, a simulation run without archive 
was conducted. Without archive, GA-S1(1) converged after 
236 with Cmax = 575 , while GA-S1(2) terminated after 
142 generations with Ttotal = 0 . This clearly shows that the 
archive approach ensures better results while requiring less 
computation.

Table 4 shows the results of the PdM integrated schedule 
selected by the TSGA after S2 for the PdM-IPS instance 
under study. The algorithm terminated after 1998.1 s. The 
table gives an overview of the machines’ health conditions 
as predicted by the PHM Module and the starting times tk,PdM 
of the PdM actions as scheduled by the TSGA. The critical 
machine degradation Δmax imposed by the integrated sched-
ule is printed in bold.

With a predicted machine degradation Δ1 = 0.1577 , 
machine M1 is expected to experience the highest degra-
dation imposed by the selected schedule. Another finding 
is that the predicted machine degradations are significantly 
lower than in Case 1, although the problem size is bigger 
(i.e. the prediction horizon is longer). This may be expli-
cated by the fact that the OpRegs in the industrial dataset 
have been defined on product level, leading to a generaliza-
tion of degradation processes and reduced accuracy of the 
operation-specific machine predictions.

7  Conclusion and outlook

Conclusion
This publication presented the PdM-IPS approach in 

order to realize integrated production and maintenance 
planning using operation-specific predictions from a PHM 
Module. After review of related literature, five main require-
ments for value-adding IPSMP in industrial application were 
identified:

Table 3  Predicted health 
conditions of machines in the 
selected schedule in Case 1

Mk Δk HIk(t = 0) HIk,pred
(
thorizon

)
tk,safe tk,fail tk,PdM

M1 0.3481 0.7912 0.4431 163 – 170

M2 0.5036 0.6579 0.1543 58 86 66

M3 0.3551 0.7144 0.3593 80 118 90

M4 0.1095 0.8777 0.7682 – – –
M5 0.3926 0.7174 0.3248 37 118 85
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R1: Consideration of a JSSP or FJSSP in order to be 
applicable for different shop floor layouts and not being 
limited to single machine setups,

R2: consideration of the machine condition for mainte-
nance planning,

R3: operation-specific modeling of machine degradation,
R4: consideration of the non-linearity, i.e. the operation 

sequence-dependency, of the machine degradation process, 
and

R5: use of real industrial data for the assessment and pre-
diction of machine condition.

To fulfill these requirements, the presented PdM-IPS 
approach models the production scheduling part after the 
FJSSP, while the maintenance planning is based on non-
linear accumulation of degradation. The mathematical 
model was formulated and solved using a two-stage genetic 
algorithm. Two case studies using both artificial and real 
industrial data showcased that the approach is applicable to 
different scenarios. Furthermore, results indicate that fea-
sible production and maintenance integrated schedules can 
be retrieved. Given its nature, the genetic algorithm cannot 
guarantee a global optimum. However, results indicate that 
the fitness function significantly improves over generations 
and does not converge prematurely and thus, (local) optima 
concerning production and maintenance objectives are 
found. Following statements concerning the requirements 
can be made:

R1: The exemplary applications of the TSGA in Sect. 6 
confirmed that the proposed algorithm is able to generate 
production plans for both partial and total flexible job shops.

R2: By adopting a three-segment chromosome, each 
corresponding to a subproblem of the IPSMP, the TSGA 
is able to simultaneously optimize both production and 
maintenance. Thus, the starting times of job operations and 
PdM actions are jointly scheduled with regard to the overall 
performance.

R3 + R4: These requirements have been met by the pro-
posed PdM-IPS approach through the integration of the 
unsupervised deep learning PHM Module developed by [4]. 
As described, this model was adopted by the present work 
in order to obtain operation-specific predictions regarding 
machine deterioration. Each job operation to be scheduled by 
the developed TSGA corresponds to a sequence of OpRegs , 
that in turn is evaluated by the PHM Module according to 
its operation-specific degradation. The deep learning model 

learns the representation of data and accumulates degrada-
tion non-linearly.

R5: The modelling of the IPSMP based on a MIFJSSP 
ensures high applicability to different production layouts 
and is thus industrial viable. The applied PHM Module is 
able to handle industrial-scale CM data. The application of 
the TSGA enables the timely generation of schedules while 
at the same time requiring reasonable computation time. 
Finally, the two use cases presented in Sect. 6 showcase 
that the approach indeed can be applied to an industrial set-
ting. Results indicate that the TSGA converges and critical 
machine conditions and potential failures can be avoided 
through scheduling PdM actions.

To conclude, by considering the future machine condition 
before the execution of a production schedule, the imple-
mented approach enables the decision maker to avoid fail-
ures due to machine degradation. Job operations and PdM 
actions are jointly optimized regarding overall cost of the 
manufacturing system, resulting in improved planning and 
cost efficiency. It is noteworthy, however, that the benefits 
of PdM-IPS depend on the shop floor layout of the manu-
facturing company. In a flexible job shop layout, i.e. where 
jobs can be freely routed, the benefits are the biggest due 
to the inherent flexibility of the system to schedule jobs on 
less degraded machines. In traditional flow shops where the 
routing of jobs is limited, PdM-IPS can still optimally sched-
ule maintenance and production, but has less room to con-
trol future degradation on machines. Together with recent 
developments of “Industrie 4.0” that enables the so called 
matrix production with flexible production cells [37], which 
represent a flexible job shop, the relevance of PdM-IPS will 
further increase.

Outlook
Further research can and should be conducted on the basis 

of this publication. Specifically, three major fields should be 
investigated upon.

Handling of uncertainties. In this work, we consider 
deterministic times (e.g., deterministic processing and main-
tenance times, new job arrivals, etc.). By considering uncer-
tainties, i.e. non-deterministic times, robustness measures of 
the generated predictive schedules can be improved. Robust 
and stable schedules may help to decrease the costs due to 
unexpected events. Moreover, this would represent the first 
step toward dynamic flexible job shop scheduling.

Determining HI thresholds for maintenance. This publi-
cation assumed the thresholds for HIk,safe and HIk,fail based 

Table 4  Predicted health 
conditions of machines in the 
selected schedule in Case 2

Mk Δk HIk(t = 0) HIk,pred
(
thorizon

)
tk,safe tk,fail tk,PdM

M1 0.1577 0.8963 0.7386 242 321 255

M2 0.0704 0.8503 0.7799 218 − 260

M3 0.1495 0.8406 0.6911 101 205 122
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on observation of degradation trends and expert knowledge. 
Future works should focus on an automated approach to 
derive these thresholds based on data and study its effect 
and sensitivity on subsequent scheduling approaches.

Development of a methodological approach for the evalu-
ation and validation of PdM frameworks. One of the major 
challenges in the field of data-driven PdM is the lack of 
methodologies that enable the systematic evaluation of the 
operational and monetary performance of a proposed PdM 
approach. Future research needs to investigate which KPIs 
are suitable for this purpose, allowing the benefits prom-
ised by a PdM approach to be quantified. This is especially 
important for post-prognostic decision support approaches 
like the presented PdM-IPS.

8  Appendix

The appendix consists of Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, Figures 6, 7, 8, 9 and Algorithms 1, 2, 3, 4.

8.1  Notations and variables

Table 5  Notations and variables of the subsystem "Machine"

Symbol Designation

HIk Health index of machine 
Mk, HIk ∈ [0, 1.0]

k Index of machines
m ∈ ℤ

+ Number of machines Mk in the 
problem instance,|�| = m

� =
{
Mk ∶ k ∈ {1,… ,m}

}
Set of m ∈ ℤ

+ machines Mk

Mk Machine
RULk Remaining useful life of machine 

Mk in [timesteps]

Table 6  Notations and variables 
of the subsystem "Products and 
Operations"

Symbol Designation

j Running index of operations comprised by a product variant
�vj ⊆ � Eligible machine set (unordered) of operation Ovj

� = ∪v∈{1,…,P}�v Set of all operations of the problem instance
ov ∈ ℤ

+ Number of operations of product  v , ||�v
|| = ov

�v =
{
Ovj ∶ j ∈

{
1, , ov

}}
Ordered set of operations of product variant Pv

Ovj j-th operation of product v
pvjk Unit processing time of operation Ovj on machine Mk in [timesteps]
� Product portfolio
Pv Product
v ∈ � Index of product variants
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8.2  Algorithms

Table 7  Notations and variables 
of the subsystem "Production 
Orders and Jobs"

Symbol Designation

C
ℴi Completion time of job J

ℴi in [timestep]
C
ℴij Completion time of job operation O

ℴij in [timestep]
d
ℴ

Due date of ��
ℴ

d
ℴi Due date of jobs J

ℴi ∈ ��
ℴ

i Running index of the jobs comprised by a production order
� = ∪

ℴ∈{1,…,Q}��ℴ
Unordered set of all jobs of the problem instance

J
ℴi job Belonging to ��

ℴ

n ∈ ℤ
+ Total number of jobs J

ℴi in the problem instance, |� | = n

N ∈ ℤ
+ Total number of job operations in the problem instance

� Set of all job operations of the problem instance
ov(ℴ) ∈ ℤ

+ Number of job operations comprised by job J
ℴi , 

J
ℴi,

||Oℴi
|| = |||Ov(ℴ)

||| = ov(ℴ)

O
ℴi =

{
O

ℴi ∶ j ∈
{
1,… , ov(ℴ)

}}
Ordered set of operations of job J

ℴi

Oij j-th operation of job J
ℴi

p
ℴijk unit Processing time of operation O

ℴij on machine Mk

��
ℴ

Production order, i.e. set of q
ℴ
 jobs

Q Total number of ��
ℴ
 in the problem instance

q
ℴ

Production quantity requested by ��
ℴ

S
ℴij Starting time of operation O

ℴij in [timestep]
v(ℴ) ∈ � Product variant requested by PO

ℴ
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Note that S1 adopts the same procedure, except the random 
choice on line 7 is always True , i.e. lines 11 and 12 are never 
visited. For implementation, [38] was adopted.
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8.3  Predicting Future Operation‑specific Health 
Indicator

Training Two CVAEs are trained to predict the future health 
indicator given a production schedule. The Data Simulator 
(DS) is trained on all historical CM data of a run to failure, 
i.e. from the maintenance action until the failure. The Health 
Assessor (HA) is trained on “healthy” data only, i.e. the first 
20% of data of the run to failure.

Application Both DS and HA are jointly applied. The 
decoder part of the DS-CVAE is used as a generative model 
to create simulated sensor signals (i.e. CM data) conditioned 
on a given future production sequence. This simulated data 
is in turn assessed by the HA-CVAE to derive an operation-
specific HI prediction given a future production schedule 
(see Fig. 6).

Fig. 6  Health assessment and prediction procedure as outlined by [4]
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8.4  GA Encoding

Encoding of the �� segment The OS segment of the chro-
mosome adopts a permutation-based representation as visu-
alized in Fig. 7.

The operation sequencing decision variables Y
ℴij,ℴ

′
i
′
j
′
,k are 

implicitly expressed in this segment and are to be decided 
by the decoding algorithm. By scanning through the OS seg-
ment from left to right, the j-th appearance of an index refers 
to the j-th operation O

ℴij of the job J
ℴi , to which the index 

belongs. The main advantage of this representation is that 
each chromosome represents a feasible schedule [31]. Fur-
thermore, the precedence constraints between operations are 
not explicitly expressed in the chromosomes. The decoding 
algorithm tracks the number of appearances of an index in 
the OS segment and determines the corresponding job opera-
tion for each gene.

Encoding of the �� segment The MA segment con-
tains information concerning the machine assignments of 
job operations. It adopts a partitioned permutation of job 
indices as visualized in Fig. 8.

Encoding of the �� segment The MP segment con-
tains information regarding the PdM actions and adopts the 

binary encoding proposed by [7] for maintenance planning 
(see Fig. 9). An allele of 1 means that a PdM action sched-
uled after the completion of the job operation, directly cor-
responding to the to the decision variable Z

ℴijk.

8.5  Selected Hyperparameters

The selected values of these hyperparameters are those often 
encountered in the reviewed literature and are listed in the 
following Table 8.

11 possible combinations of the shown levels of each 
hyperparameter were tested. Each setting was run five times 
by the algorithm. The computations have been performed on 
a macOS High Sierra [Version 10.13.6] operating system 
with 2.4 GHz Intel Core i5 processor and 8 GB RAM. The 
behavior of the algorithm in each run was recorded with 
regard to the following performance measures:

Fig. 7  Encoding of the OS seg-
ment of chromosomes 1 1 2 1 2 2 1 3 1 0 0 0 1 0 1 0 0 01 1 2 1 2 2 1 3 1 0 0 0 1 0 1 0 0 01 1 3 1 2 3 3 1 2

1 1 3 1 2 3 3 1 2

111 112 311 113 211 312 313 114 212

Fig. 8  Encoding of the MA seg-
ment of chromosomes 0 0 0 1 0 1 0 0 01 1 3 1 2 3 3 1 21 1 3 1 2 3 3 1 2 0 0 0 1 0 1 0 0 01 1 2 1 2 2 1 3 1

11 21 31

111 112 113 114 211 212 311 312 313

1 1 2 1 2 2 1 3 1 211 = 1, 3

211 is assigned to 3

Fig. 9  Encoding of the MP seg-
ment of chromosomes

Table 8  GA hyperparameter levels

Hyperparameter Level 1 Level 2 Level 3 Level 4

MaxGen 100 200 300 400

PopSize 100 200 300 400

pc 0.75 0.80 0.85 0.90

pm 0.05 0.10 0.15 0.20

pr 0.005 0.01 0.05 0.10



86 Production Engineering (2022) 16:65–88

1 3

• obtained objective function value, i.e. the makespan in 
timesteps and

• the computational run time in seconds.

8.6  Machine and Product Data for Case 1 & 2

The cost and time parameters used in case 1 are listed in the 
following. Note that the same parameters were also used for 
case 2 (see Table 12).

Case 2: Total FJSSP with a real industrial dataset
Detailed data of the PdM-FJSSP instance studied in Case 

2 (see Sect. 6.2) are given below. Note that the indices opera-
tions and processing durations are separated by a comma, 
as some comprise two digits in this case (see Table 13, 14 
and 15).

Table 9  Machine data for Case 1

Mk HIk(t = 0) HIk,fail HIk,safe

M1 0.7912 0.45 0.55

M2 0.6579 0.45 0.55

M3 0.7144 0.45 0.55

M4 0.8777 0.45 0.55

M5 0.7174 0.45 0.55

Table 10  Product data in Case 1 Product variant Pv Operation Ovj Processing time pvj Eligible Machine Set �vj

P1 O11 p11 = 10 �11 =
{
M1,M4 ,M5

}
O12 p12 = 8 �12 =

{
M1, M2, M3

}
O13 p13 = 10 �13 =

{
M1, M2, M3

}
O14 p14 = 4 �14 =

{
M1, M3

}
P2 O21 p21 = 8 �21 =

{
M1, M2, M3,M4,M5

}
O22 p22 = 10 �22 =

{
M1, M2, M3,M4,M5

}
O23 p23 = 6 �23 =

{
M1, M3,M4

}
P3 O31 p31 = 7 �31 =

{
M1,M2, M3

}
O32 p32 = 9 �32 =

{
M1,M5

}
O33 p33 = 10 �33 =

{
M1, M2, M3

}
P4 O41 p41 = 9 �41 =

{
M1, ,M4,M5

}
O42 p42 = 10 �42 =

{
M1, M2, M3

}
O43 p43 = 9 �43 =

{
M1, M2, M3

}
P5 O51 p51 = 11 �51 =

{
M1, M2, M3,M4,M5

}
O52 p52 = 9 �52 =

{
M1, M2, M3

}
O53 p53 = 10 �53 =

{
M1,M5

}

Table 11  Product order data in 
Case 1

PO
ℴ

v(ℴ) q
ℴ

d
ℴ

PO1 P1 2 100

PO2 P2 4 150

PO3 P1 2 200

PO4 P3 2 240

PO5 P4 1 240

PO6 P5 2 280

PO7 P3 3 320

PO8 P2 4 400

Table 12  Cost and time parameters in Case 1 and 2

Cost component Time parameter 
[timesteps/action]

Cost parameter [€/action]

PdM action tPdM = 60 costPdM,fix = 400

costPdM,adv = 50

Setup tsetup = 15 costsetup = 50

Transportation ttransport = 10 costtransport = 10

Table 13  Machine data for 
Case 2

Mk HIk(t = 0) HIk,safe HIk,fail

M1 0.8963 0.80 0.75

M2 0.8503 0.80 0.75

M3 0.8406 0.80 0.75
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