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Abstract
Some basics of a theory of unbounded Wiener–Hopf operators (WH) are developed.
The alternative is shown that the domain of a WH is either zero or dense. The sym-
bols for non-trivial WH are determined explicitly by an integrability property. WH
are characterized by shift invariance. We study in detail WH with rational symbols
showing that they are densely defined, closed and have finite dimensional kernels
and deficiency spaces. The latter spaces as well as the domains, ranges, spectral and
Fredholm points are explicitly determined. Another topic concerns semiboundedWH.
There is a canonical representation of a semiboundedWHusing a product of a closable
operator and its adjoint. The Friedrichs extension is obtained replacing the operator by
its closure. The polar decomposition gives rise to a Hilbert space isomorphism relating
a semiboundedWH to a singular integral operator of Hilbert transformation type. This
remarkable relationship, which allows to transfer results and methods reciprocally, is
new also in the thoroughly studied case of bounded WH.
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1 Introduction

There is an increasing interest in unbounded Toeplitz and Toeplitz-like operators
(see 2.2), which will concern also the related Wiener–Hopf operators (WH). So far,
results on WH Wκ with unbounded symbol κ are scarce and probably in the literature
there exists no introduction to this subject. So Sect. 2 deals with preliminaries and
basics regarding unbounded WH. In particular we are concerned with conditions on
the symbol κ ensuring that the domain of Wκ is either the whole space or dense or
trivial, and prove that dom Wκ is either trivial or dense. The symbols with non-trivial
WH, which are called proper, are determined by a useful integrability property. A
classical result on the eigenvalues of a WH is shown to remain valid in the unbounded
case. It implies that non-trivial symmetric WH have no eigenvalues. A further result
characterizes WH by their invariance under unilateral shifts. In Sect. 3 WHwith ratio-
nal symbols are studied. They constitute a welcome source of densely defined closed
operators with finite index. An explicit description of the domains, ranges, kernels,
deficiency spaces, spectral and Fredholm points is given. The remainder of this arti-
cle deals in Sects. 4 and 5 with densely defined semibounded WH. A semibounded
operator Wκ can be expressed by a product of a closable operator A and its adjoint.
Replacing A by its closure one obtains quite naturally a self-adjoint extension W̃κ . It
is proven to coincide with the Friedrichs extension. Inverting the order of the factors
one obtains a singular integral operator Lφ of Hilbert transformation type. For the
operators of that type to be non-trivial there is a necessary condition analogous to that
for WH. The self-adjoint extensions L̃φ and W̃κ are isometric, which follows from the
polar decomposition of A. Actually W̃κ is Hilbert space isomorphic to the reduction
of L̃φ on ker(L̃φ)⊥, and the spectral representations of L̃φ and W̃κ can be achieved
in an explicit manner from each other. It is worth noting that this relationship is new
also for bounded WH thus contributing to the well-developed theory of the latter. To
conclude, this method is illustrated by a non-trivial example diagonalizing Lalescu’s
operator and the isometrically related singular integral operator. In [24, Sect. 3.3] the
spectral representations of W1[−1,1] and the finite Hilbert transformation are related to
each other by this method.

Notations LetF denote the Fourier transformation on L2(R). For measurable E ⊂ R

introduce the projection PE : L2(R)→ L2(E), (PE f )(x) := f (x), i.e., PE f = f |E .
(For convenience define L2(E) = {0}, PE = 0 if E = ∅.) Its adjoint P∗E : L2(E)→
L2(R) is the injection (P∗E f )(x) = f (x) for x ∈ E and = 0 otherwise. Note

PE P∗E = IL2(E), P∗E PE = M(1E )

with M(1E ) the multiplication by the indicator function 1E for E . Put R+ :=]0,∞[
and P+ := PR+ . Analogously define P−.—We call E proper if neither E nor the
complement R \ E is a null set.

Throughout let κ : R → C denote a measurable function and M(κ) the multi-
plication operator by κ in L2(R) with dense domain { f ∈ L2(R) : κ f ∈ L2(R)}.
Recall that M(κ) is normal satisfying M(κ)∗ = M(κ) and M(κ)M(κ) = M(|κ|2).
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Moreover, M(κ) is self-adjoint if and only if κ is almost real, and M(κ) is nonnegative
if and only if κ ≥ 0 a.e.

Definition 1.1 The operator in L2(R+)

Wκ := P+FM(κ)F−1P∗+

is called theWiener–Hopf operator (WH)with symbol κ . Occasionally wewrite W (κ)

instead of Wκ . Clearly, Wκ = Wκ ′ if κ = κ ′ a.e. Often we shall refer to this tacitly.
The symbol κ is called proper if dom Wκ �= {0}.
The theory of WH with bounded symbol is well developed. We content ourselves to
refer here to the book [1, Chapter 9] and to mention the origins [2]. Obviously in case
of a bounded symbol the operators Wκ are bounded with dom Wκ = L2(R+) and
adjoint W ∗κ = Wκ . Wκ is the convolution on the real half line with kernel k, i.e.,

(Wκ g)(x) =
∫ ∞
0

k(x − y)g(x) d y

if κ ∈ L∞ ∩ L2 and k := (2π)−1/2Fκ , or if κ = ∫
ei(·)y k(y) d y for k ∈ L1(R).

For the case of integrable kernel there is the rather exhaustive theory by M. G. Krein
[3]. Generally, the tempered distribution k := (2π)−1/2Fκ , where κ ∈ L∞(R) is
considered as a regular tempered distribution, satisfies FM(κ)F−1u = k�u for every
Schwartz function u in the distributional sense (e.g. [4, Theorem IX.4]). For instance
the kernel for W− sgn is the tempered distribution k(x) = − 1

x or that for W− tanh equals

k(x) = (
2 i sinh(πx/2)

)−1. In the literature the generalizations of WH stay mostly
within the realm of bounded operators. One deals with the traces (compressions) of
bounded bijective operators in a Banach space on a closed subspace [5]. The results
concern the solvability of the associated Wiener–Hopf equations.

2 UnboundedWiener–Hopf Operators

As put it by [6] results on unbounded WH are practically inexistent. Indeed they are
scarce. See [7, 1.3] for some notes. An important result is due to M. Rosenblum [8],
[9], obtained for Toeplitz operators and hence valid for the Hilbert space isomorphic
WH Wκ (see 2.2). So in the case that the symbol κ is real bounded below not almost
constant and (1 + x2)−1κ is integrable, [9] furnishes the spectral representation of
the extension W̃κ , which is shown to be the Friedrichs extension 4.3, 4.4 and which
by [9] is absolutely continuous. —There are investigations on unbounded general
WH dealing with conditions for their invertibility [10]. —In [6] real bounded below
Wiener–Hopf quadratic forms from distributional kernels k are considered, and it
is shown that such a form determines a WH if and only if the form is closable or,
equivalently, if and only if

√
2πk is the Fourier transform of a locally integrable

bounded below function κ with integrable (1 + x2)−nκ for some n ∈ N. Clearly κ

is the symbol and dom Wκ ⊃ C∞c (R+) holds. See further [7]. —Furthermore, the
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methods applied for the study of unbounded analytic Toeplitz operators [11] can also
produce results on unbounded WH, see 2.10, 4.2, 4.3(c). One deals with M+(κ) (2.2),
which is canonically Hilbert space isomorphic to Wκ . The former is the trace on the
Hardy space H+ of the multiplication operator by κ . Rather recently, as indicated to
us by the reviewer, in [12] one finds a detailed study of the kernel of M+(κ).

Preliminaries

Starting the preliminary remarks and anticipating briefly some results on WH, note
first that dom Wκ = dom M(κ)F−1P∗+. So κ is proper if and only if κh is square-
integrable for someHardy function 2.1 h ∈ ran(F−1P∗+). Clearly dom Wκ ⊂ dom Wκ ′
if |κ ′| ≤ |κ|. Moreover, dom Wκ = dom Wκ = dom W|κ| = dom W (1 + |κ|). Note
〈g′, Wκ g〉 = 〈Wκ g′, g〉 for g, g′ ∈ dom Wκ . Hence, if Wκ is densely defined then
Wκ ⊂ W ∗κ , whence Wκ is closable and dom Wκ ⊂ dom W ∗κ holds. But unbounded
WH may and may not be closed 3.2, 3.5.

If the symbol κ is unbounded, then dom Wκ �= L2(R+) 2.3. The alternative holds
that either dom Wκ is trivial or dom Wκ is dense. In other words, as shown in 2.10,
if κ is proper, then Wκ is densely defined. In 2.6 and 2.8 explicit characterizations of
proper symbols are given. There is also the useful criterion in 2.4 for κ to be proper.
So proper symbols may have polynomial growth and countably many singularities
with integrable logarithm like as exp |x |α ,−1 < α < 0. It is easy to give examples of
non-proper symbols 2.9.

If Wκ is densely defined then Wκ is symmetric, i.e., Wκ ⊂ W ∗κ , if and only if κ

is almost real 2.14. If Wκ is densely defined symmetric, then Wκ is bounded below
if and only if κ is essentially bounded below 2.15. Recall that the numerical range
{〈g, Wκ g〉 : g ∈ dom Wκ , ||g|| = 1} of Wκ is convex. (Indeed, the numerical range
of every operator in Hilbert space is convex [13].) It is determined in 2.15, 2.16.

Densely defined symmetricWH, which are not a multiple of I , have no eigenvalues
2.11. As alreadymentioned, if Wκ is bounded below not amultiple of I with integrable
(1 + x2)−1κ , it follows from [9] that the Friedrichs extension W̃κ 4.4 of Wκ is even
absolutely continuous. Section 4 is concerned with the general case of densely defined
symmetric semibounded WH and their Friedrichs extensions.

If κ is proper real and even (i.e. κ(−x) = κ(x)) then Wκ is densely defined sym-
metric and has a self-adjoint extension. This holds true since L2(R+) → L2(R+),
g �→ g is a conjugation, which leaves dom Wκ invariant and satisfies Wκ g = Wκ g
(see [4, Theorem X.3]). If κ is odd instead of even then in general Wκ has no self-
adjoint extension. Examples are furnished by real rational symbols as e.g. κ(x) = x .
In 3.4 an explicit description of the deficiency spaces of Wκ for real rational κ are
given yielding further examples of densely defined symmetric WH with self-adjoint
extensions.

Hardy spaces 2.1 Recall the Hardy spaces H± := ran(F−1P∗±). Obviously L2(R) =
H+ ⊥© H− and h ∈ H+⇔ h ∈ H− aswell as h ∈ H+⇔ ȟ ∈ H−with ȟ(x) := h(−x).
We tacitly refer to the well-known Paley–Wiener Theorem characterizing the Fourier
transforms of L2-functions vanishing on a half-axis, see e.g. [14, Theorem 95]. In
particular h ∈ H+ if and only if there is a φ holomorphic on the upper half-plane such
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that its partial maps φy(x) := φ(x+ i y) for y > 0 satisfy φy ∈ L2(R), {‖φy‖: y > 0}
bounded, and φy → h for y → 0 in the mean and pointwise a.e. Actually φ converges
to h non-tangentially a.e., and ‖φy ‖↑‖h‖ for y ↓ 0 (see e.g. [15, III 3.3, II 2.6]).
Moreover, every h ∈ H±\{0} vanishes only on a null set. Indeed, according to a Luzin-
PrivalovTheorem [16, IV2.5] ameromorphic function on the upper or lower half-plane
which takes non-tangential boundary value zero on a set of positive Lebesgue measure
is zero. The former property is also an immediate consequence of the following result
on the modulus of a Hardy function. Let f ∈ L2(R) \ {0}:

T here ish ∈ H+satis f ying|h| = | f |i f and only i f
ln | f |
1+ x2

∈ L1(R) (2.1)

One proves (2.1) using the outer function with prescribed modulus on the torus ( [17,
Chap.3, Def. 1.1 and Prop. 3.2]) and the Hilbert space isomorphism � in 2.2. Recall
also [18, Theorem XII ] that ln |h| /(1+ x2) ∈ L1 if h ∈ H+.

Let M+(κ) denote the trace of M(κ) on H+, i.e.

M+(κ) = PH+M(κ)P∗H+ (2.2)

with PH+ : L2(R) → H+ the orthogonal projection. Note that PH+F−1P∗+ :
L2(R+)→ H+ is a Hilbert space isomorphism with its inverse P+F P∗H+ , by which
Wκ is Hilbert space isomorphic to M+(κ). Often it is convenient to deal with M+(κ)

in place of Wκ . Note that M+(κ) extends the multiplication operator in H+

M(κ, H+)h := κ h with dom M(κ, H+) = {h ∈ H+ : κh ∈ H+}

The latter is Hilbert space isomorphic to its counterpart the so-called analytic Toeplitz
operator with symbol ω := κ ◦ C−1, see 2.2. M+(κ) and M(κ, H+) coincide for
rational symbols κ holomorphic in the upper half-plane 3.1(c), or more general, if κ

is the nontangential limit of an outer function on the upper half-plane. Indeed, in this
case ln |κ|

1+x2
is integrable, whence κ is proper by 2.8 since ln |1 + |κ|| ≤ ln 2 + ln |κ|,

and [12, 3.3] applies. We do not put forward this topic.
Finally H∞+ is the set of all measurable bounded α : R → C such that there is a

bounded holomorphic A on the upper half-plane with the partial maps Ay → α for
y → 0 pointwise a.e. Actually A converges to α non-tangentially a.e. (see e.g. [15,
III 3.3, II 2.6]). Clearly, H∞+ H+ ⊂ H+.

Remark on Toeplitz operators 2.2 Let the torus T be endowed with the normalized
Lebesguemeasure. TheHardy space H2(T) is the subspace of L2(T)with orthonormal
basis en(w) := wn , n ∈ N0. Given a measurable ω : T→ C then, quite analogous to
(2.2), the Toeplitz operator Tω with symbol ω is defined by

Tω := PH2(T)M(ω) P∗H2(T)
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Let � : H2(T) → H+, (�u)(x) := i√
π(x+i)u

(
C(x)

)
be the Hilbert space isomor-

phism based on the Cayley transformation C(x) := x−i
x+i . One has

Tω = �−1M+(ω ◦ C) � (2.3)

Obviously by this well-known relationship (see e.g. [1, 9.5(e)], [24, 3.3.2 (13)]) results
and methods regarding Toeplitz operators may be transferred for the study of WH and
vice versa. For unbounded Toeplitz and Toeplitz-like operators see: [8], [9] for a
spectral theory of Toeplitz operators with bounded below integrable symbols, [7] for
closable quadratic forms for semiboundedToeplitz operators, [11] for analytic Toeplitz
operators, [19] for Toeplitz-like operators with rational symbols.

Results

As to 2.3 one recalls that in general an everywhere defined linear operator in a Hilbert
space need not be bounded.

Proposition 2.3 dom Wκ = L2(R+)⇒ κ is bounded⇒ dom Wκ = L2(R+) and Wκ

is bounded.

Proof The second implication is obvious. As to the first one, assume that κ is not
bounded. Then there exists f ∈ L2(R) with κ f /∈ L2(R). Write f = h+ + h− with
h± ∈ H±. As dom M+(κ) = H+ one has κh+ ∈ L2(R), and hence κh− /∈ L2(R).
Similarly, κ f /∈ L2(R), f = h− + h+ with h∓ ∈ H±, and κh− ∈ L2(R). This
contradicts κh− /∈ L2(R). ��

There follows a first result on the domain of a WH which applies for instance to
rational symbols.

Lemma 2.4 If κ qs ∈ L2(R), where q is a polynomial and s is the inverse Fourier
transform of a Schwartz function with support in [0,∞[, then qs ∈ dom Wκ and κ is
proper. —Suppose that κ qs ∈ L2(R) for a polynomial q with only real zeros and for
every Schwartz function s. Then dom Wκ ⊃ {q(i d

d x )φ : φ ∈ C∞c (R+)}.
Proof As to the first claim note that s is a Schwartz function in H+, whence qs ∈ H+
by 3.1(c).

Now let D denote the differential operator i d
d x and let u be any Schwartz function

with support in R+. Then q(D)u is still such a function, and F−1u, F−1(q(D)u
) =

qF−1u are Schwartz functions in H+. Hence it remains to show that {q(D)φ : φ ∈ D}
is dense in L2(R+), where D denotes the space of test functions C∞c (R+). Assume
g ∈ L2(R+) with g ⊥ q(D)φ, i.e.,

∫
R+ g q(D)φ d x = 0. The claim is g = 0.

Indeed, regarding g as a regular distribution in D′, one has g
(
q(D)φ

) =
q(−D)g (φ) = 0 for all test functions φ, whence q(−D)g = 0. Thus g is a solution of
the differential equation q(−D)F = 0 for F ∈ D′. As known all its solutions are regu-
lar. Hence g ∈ T , where T denotes the space of linear combinations of functions onR+
of the kind x → xk ei λx , k ∈ N0 and λ ∈ R. Then G ∈ T for G(x) := ∫ x

0 |g(t)|2 d t .



Unbounded Wiener–Hopf and Isomorphic Singular… Page 7 of 29 63

One has G(x) →‖g‖2< ∞ for x → ∞. Write G = ∑n
k=0 xk Ak with Ak a linear

combination of periodic functions ei λx . Then An(x) → 0 for x → ∞. Since An is
almost periodic this implies An = 0. The result follows. ��

The following invariance H∞+ dom M+(κ) ⊂ dom M+(κ) is essential for the den-
sity of dom Wκ in 2.10.

Lemma 2.5 (a) Wα(dom Wκ) ⊂ dom Wκ ∀ α ∈ H∞+ , equivalently αh ∈ dom M+(κ)

∀ α ∈ H∞+ , h ∈ dom M+(κ).
(b) ∀ α ∈ H∞+ one has (1) Wκ Wα = Wακ and (2) W ∗α Wκ ⊂ Wακ .
(c) For b ≥ 0 let Sb : L2(R) → L2(R) be the unilateral translation Sbg(x) :=

g(x − b) if x > b and := 0 otherwise. One has the translational invariance
Wκ = S∗b Wκ Sb.

Proof (a) Let h ∈ dom M+(κ). The claim is M+(α)h ∈ dom M+(κ). Now
M+(α)h = αh since obviously αh ∈ H+. Moreover καh ∈ L2(R), whence
the claim.

(b) For (1) note h ∈ dom
(
M+(κ)M+(α)

) ⇔ h ∈ H+, PH+(αh) ∈ dom M+(κ).
Since αh ∈ H+, the latter is equivalent to αh ∈ dom M+(κ) ⇔ καh ∈
L2(R) ⇔ h ∈ dom M+(ακ). —As to (2), M∗+(α) = M+(α), dom M+(κ) =
dom

(
M∗+(α)M+(κ)

)
, and P∗H+ PH+ = I − P∗H− PH− for PH− := I − PH+ .

So for h ∈ dom M+(κ) one has M∗+(α)M+(κ)h = M+(α)PH+(κh) =
PH+M(α)P∗H+ PH+(κh) = PH+(ακh)− PH+

(
αP∗H− PH−(κh)

) = M+(ακ)h − 0,
since αP∗H− PH−(κh) ∈ H−.

(c) Check Sb = W (ei b(·)), dom W (e− i b(·) κ) = dom Wκ and apply the foregoing
results. ��
We turn to characterizations of proper symbols κ , as in particular by the condition

of the integrability of ln(1+ |κ|)/(1+ x2) in 2.8.

Proposition 2.6 Let p ∈]0,∞]. Let j denote a real-valued function such that j
1+x2

is
integrable. Then

κ proper ⇔ κ e j ∈ L p(R) for some j

Proof Here we prove the case p = 2 and the implication⇐ for p = ∞ and p = 1.
The remainder is shown in the proof of 2.7.

κ being proper there is h ∈ dom M+(κ)\ {0}. Then κh ∈ L2(R), whence κ eln |h| ∈
L2(R). By (2.1), ln |h|/(1+ x2) is integrable. For the converse implication put j ′ :=
1{ j≤0} j − |x |1/2. Then j ′/(1 + x2) is integrable, e j ′ is square-integrable. By (2.1)
there is h ∈ H+ with |h| = e j ′ . Moreover, κ e j ′ is square-integrable since j ′ ≤ j . So
h ∈ dom M+(κ) \ {0}, whence κ is proper. —Next turn to ⇐ for p = ∞. For j ′ from
above |κ| e j ′ ≤ |κ| e j e−|x |1/2 is square-integrable. Hence κ is proper by the case p = 2
just shown. —Now consider ⇐ for p = 1. Due to the assumption |κ| e j (1 + x2)−1
is integrable, whence j ′(1 + x2)−1 is integrable for j ′ := ln(1 + |κ| e j ). Therefore
(1+ |κ| e j ) e− j ′ = 1 implying |κ| e j− j ′ ≤ 1, whence the result by ⇐ for p = ∞. ��
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Lemma 2.7 κ is proper if and only if κ2 is proper. More generally, let r > 0 and let
κ1, κ2 be two symbols satisfying |κ1| = |κ2|r . Then κ1 is proper if and only if κ2 is
proper. Finally, if κ1 and κ2 are proper symbols then so are κ1κ2 and κ1 + κ2.

Proof Let κ2 be proper. Then 1+|κ|2 is proper and |κ| ≤ 1+|κ|2, whence κ is proper.
—Now let κ be proper. Then by 2.6 (p = 2), κ e j ∈ L2(R) for some real-valued j
with integrable j/(1+ x2). Since κ ′ := |κ|2 e2 j is integrable, κ ′ is proper by 2.6 (⇐
for p = 1). Then 2.6 (p = 2) yields κ ′ e j ′ ∈ L2(R) for some real-valued j ′ with
integrable j ′/(1+ x2). Hence |κ|2 e2 j+ j ′ ∈ L2(R), whence the claim by 2.6 (p = 2).

The general case is easily reduced to the claim that, for r > 1 and κ ≥ 0, κ is
proper if and only if κr is proper. So let κ be proper. Let n ∈ N satisfy r ≤ 2n . By the
foregoing result κ2n

is proper. Then 1+ κ2n
is proper and κr ≤ 1+ κ2n

. Hence κr is
proper. Conversely, if κr is proper, then 1 + κr is proper and κ ≤ 1 + κr , whence κ

is proper.
Now we complete the proof of 2.6. Consider first the case p ∈]0,∞[. Let κ e j ∈

L p(R) for some j . Then |κ|p/2 e
p
2 j ∈ L2(R). Hence |κ|p/2 is proper by 2.6 (p = 2).

The foregoing result applies, whence κ is proper. The converse follows quite similarly.
—Now let p = ∞ and let κ be proper. As just shown, κe j is integrable for some real-
valued j with integrable j(1+ x2)−1. Then |κ| e j ′′ ≤ 1 for j ′′ := j − ln(1+ |κ| e j )

as shown in the proof of 2.6 (⇐ for p = 1).
Finally, let κ1, κ2 be proper. Apply 2.6 for p = ∞. So |κi | ≤ e ji , i = 1, 2. Then

|κ1κ2| ≤ e j1+ j2 . Assume without restriction ji ≥ 0, i = 1, 2. Then |κ1 + κ2| ≤
2 e j1+ j2 . ��
Theorem 2.8 κ is proper if and only if ln(1+|κ|)

1+x2
is integrable.

Proof Let κ be proper. Then 1+|κ| is proper, and by 2.6 (p = ∞) one has 1+|κ| ≤ e j

for some real-valued j with integrable j
1+x2

. Then ln(1+|κ|) ≤ j , whence the claim.

Conversely let j
1+x2

be integrable for j := ln(1 + |κ|). Then 1 + |κ| = e j , whence

|κ| ≤ e j and κ is proper by 2.6 (p = ∞). ��
Corollary 2.9 κ is not proper if |κ(x)| increases not less than exponentially for x →∞
or x → −∞, i.e., if there are positive constants a, δ, λ such that |κ(x)| ≥ δ eλ|x | for
x ≥ a or x ≤ −a.

Proof ln(1 + |κ(x)|) ≥ ln |κ(x)| ≥ ln(δ) + λ|x | for all x ≥ a or x ≤ −a. Hence
ln(1+ |κ|)/(1+ x2) is not integrable. Apply 2.8. ��

Now the alternative is shown that a WH is either trivial or densely defined.

Theorem 2.10 If κ proper, then dom Wκ is dense. More precisely, if h ∈ dom M+(κ)\
{0}, then there is h′ ∈ H+ with |h| = |h′| such that H∞+ 1

x+ih
′ is dense and contained

in dom M+(κ).

Proof Let h ∈ dom M+(κ) \ {0}. Then κh ∈ L2(R), whence κ e j ∈ L2(R) for
j := ln |h|. By (2.1), j/(1+ x2) is integrable.
Recall 2.2. Put c := C−1. Check that j ◦ c ≥ 0 is integrable on the torus T. Hence

U (w) := exp
( 1
2π

∫ 2π
0

ei t +w
ei t −w

j ◦ c(ei t ) d t
)
is an outer function on the disc D (see e.g.
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[17, Chapter 3]). So U converges non-tangentially a.e. to a function u on T satisfying
|u| = e j◦c ∈ L2(T), whenceU ∈ H2(D). Therefore, as known (see e.g. [21, Sect. 3]),
U H∞(D) is dense in H2(D). This implies that u H∞(T) is dense in H2(T).

Put h′ := u ◦ C . Note |h′| = e j = |h|. The above result is transferred to H+
by � in 2.2. Accordingly, 1

x+ih
′ ∈ H+ and 1

x+ih
′H∞+ is dense in H+. The latter

is contained in dom M+(κ) by 2.5 (a), since κ 1
x+ih

′ is square-integrable and hence
1

x+ih
′ ∈ dom M+(κ). Finally h′ ∈ H+ by 3.1(c). ��

Two results on the eigenvalues of WH follow. The proof of 2.11 uses an alternative
argument with respect to [22, 2.8] for the case of bounded κ .

Theorem 2.11 Let κ be not almost constant. If λ ∈ C is an eigenvalue of Wκ , then
λ is not an eigenvalue of Wκ . If κ is almost real, then Wκ has no eigenvalues and in
particular Wκ is injective.

Proof Keep 2.1 in mind. Since Wκ − λI = W (κ − λ1R) assume without restriction
λ = 0. Suppose Wκu = 0, Wκv = 0. Set h+ := F−1P∗+u. Then h+ ∈ H+ and

h− := κh+ ∈ H−. Set k− := F−1P∗+v. Then k− ∈ H− and κk− ∈ H−, whence
k+ := κk− ∈ H+.

Note that j := h−k− = κh+k− = h+k+. Hence there is a holomorphic χ :
C \ R → C such that its partial maps satisfy χy ∈ L1(R), K := sup{||χy ||1 :
y �= 0} < ∞, χy → j pointwise a.e. and ‖ χy − j ‖1→ 0 for y → 0. By a
standard argument (see also [23, Theorem II]) χ extends to an entire function still
called χ with χ |R = j a.e. Fix z ∈ C, |z| > 1. We use the representation πχ(z) =∫
D

χ(z+w) d2 w. Thenπ |χ(z)| ≤ ∫ 1
−1

∫∞
−∞ |χ

(
x+u+i(y+v)

)| d u d v ≤ 2K so that
χ is constant equal to 0, whence h−k− = 0, h+k+ = 0. ( [22, 2.8] obtains this result
using alternatively [14, Theorem 76], by which (2π)1/2FL1(h±k±) = Fh±�Fk±.
Accordingly, Fh−�Fk− = Fh+�Fk+ = 0, since Fh−, Fk− vanish on [0,∞[ and
Fh+, Fk+ vanish on ] −∞, 0].) The cases k− = 0 or h+ = 0 are trivial. Otherwise
h+ �= 0 and κh+ = h− = 0, whence κ = 0 a.e.

Now let κ be real, let λ ∈ C, and let g ∈ dom Wκ satisfy Wκ g = λg. Then
λ 〈g, g〉 = 〈g, Wκ g〉 = 〈Wκ g, g〉 = λ 〈g, g〉. Hence g = 0, since otherwise λ ∈ R

would contradict the foregoing result. ��
Proposition 2.12 Let Wκ be not a multiple of I . If λ ∈ C is an eigenvalue of Wκ , then
κ �= λ a.e.

Proof Put E := κ−1({λ}). R \ E is not a null set. Let h ∈ dom M+(κ) \ {0} satisfy
M+(κ)h = λh. Then M+(κ ′)h = 0 for κ ′ := κ − λ. Hence h− := κ ′h ∈ H−. If
E were not a null set, then h− = 0 as vanishing on E , whence h vanishes on R \ E
implying the contradiction h = 0. ��
The following result from [12, 3.2] obviously is stronger than 2.12: Let λ be an
eigenvalue of Wκ �= λI . Then ln |κ−λ|

1+x2
is integrable. The converse still does not hold

as the case of real-valued symbols shows by 2.11.
By 2.13 the symbol of a WH is uniquely determined.
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Lemma 2.13 Let Wκ1 and Wκ2 coincide on a dense set of L2(R+). Then κ1 = κ2 a.e.
In particular, if κ is proper and Wκ ⊂ 0, then κ = 0 a.e. and Wκ = 0.

Proof Put β := κ1 − κ2. Then Wβ |D = 0 for some dense D ⊂ L2(R+). Let k ∈
dom W ∗β . Then for all g ∈ D one has 0 = 〈k, Wβ g〉 = 〈W ∗β k, g〉, whence W ∗β k = 0.
Since Wβ ⊂ W ∗β , it follows Wβ |D = 0. So β is almost constant by 2.11, whence
β = 0 a.e. ��

We turn to symmetric WH.

Corollary 2.14 Let Wκ be densely defined. Then Wκ is symmetric if and only if κ is
almost real.

Proof Let Wκ ⊂ W ∗κ . Since generally Wκ ⊂ W ∗κ and dom Wκ = dom Wκ , it follows
Wκ = Wκ , whence κ = κ a.e. by 2.13. The converse is obvious. ��

Hence due to 2.11 densely defined symmetric WH have no eigenvalues. —Now the
numerical range of densely defined semibounded WH is determined.

Theorem 2.15 Let Wκ be densely defined symmetric. Then Wκ is bounded below if and
only if κ is real essentially bounded below, and the maximal lower bound of Wκ equals
the maximal essential lower bound of κ . If Wκ is bounded below and not bounded,
then the numerical range {〈g, Wκ g〉 : g ∈ dom Wκ , ||g|| = 1} equals ]α,∞[ with α

the maximal lower bound.

Proof By 2.14 let κ be real. First suppose that κ is bounded belowwith maximal lower
bound a. Put κ ′ := κ − a ≥ 0. Then for all h ∈ dom M+(κ ′) = dom M+(κ) one has
〈h, M+(κ ′)h〉 = ∫

κ ′|h|2 d x ≥ 0, whence 〈h, M+(κ)h〉 ≥ a ‖h‖2. So a is a lower
bound for M+(κ).

Now let M+(κ) be bounded below with maximal lower bound α. Put κ ′ := κ −
α. Then 〈h, M+(κ ′)h〉 ≥ 0 ∀ h ∈ dom M+(κ ′). We show that B := {x ∈ R :
κ ′(x) < 0} is a null set. Assume the contrary. Let h0 ∈ dom M+(κ ′) \ {0}. Then
c := ∫

B κ ′|h0|2 d x < 0, since h0 does not vanish on a set of positive measure.
Put A := R \ B and let λ ∈]0, 1[. Then f := λ1A|h0| + 1B |h0| ≤ |h0|. Hence
f ∈ L2(R)\{0}, | ln f | ≤ | ln |h0| |, and ln f /(1+x2) is integrable by (2.1). Therefore
by (2.1) there is h ∈ H+ with |h| = | f |. Note that h ∈ dom M+(κ ′), since |κ ′h|2 ≤
|κ ′h0|2 is integrable. Hence the contradiction 0 ≤ 〈h, M+(κ ′)h〉 = ∫

κ ′|h|2 d x =
λ2

∫
A κ ′|h0|2 d x + c < 0 follows for λ sufficiently small. Therefore B is a null set,

whence κ ′ ≥ 0 a.e. and α is an essential lower bound of κ . —This proves a = α.
Since M+(κ) is not bounded above by assumption, the numerical range R of M+(κ)

is not bounded above. As R is convex one infers ]α,∞[⊂ R ⊂ [α,∞[. It remains to
show α /∈ R or, equivalently, that 〈h, M+(κ ′)h〉 = 0 implies h = 0, where κ ′ ≥ 0 is
not almost zero. Indeed, 0 = 〈h, M+(κ ′)h〉 = ∫

κ ′|h|2 d x⇒ h vanishes on a non-null
set⇒ h = 0. ��
For bounded WH, 2.15 implies the following well-known result.

Corollary 2.16 Let Wκ be bounded symmetric and not a multiple of I . Then the numer-
ical range equals ]a, b[ with a and b the minimum and maximum, respectively, of the
essential range of κ .
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Concluding this section we deal with the unilateral translation invariance of WH.
We are inspired by [6, Sect. 2.3)] which treats the bounded case 2.18. Observe the
easily verifiable relation

T ∗b P∗+Wκ P+Tb = M(1]−b,∞[)FM(κ)F−1M(1]−b,∞[) (2.4)

where Tb, b ∈ R denotes the unitary one-parameter group of translations Tb f (x) :=
f (x − b) on L2(R). It shows again the invariance 2.5(c)

Wκ = S∗b Wκ Sb (2.5)

under the unilateral translations Sb, b ≥ 0, since Sb = P+Tb P∗+. Recall Sb =
W (ei b(·)). Moreover it implies that T ∗b P∗+Wκ P+Tb f converges as b → ∞ if
f ∈ T ∗a P∗+(dom Wκ) for some a ≥ 0, yielding the limit FM(κ)F−1 f . In partic-
ular {‖Wκ Sbg‖: b ≥ 0} is bounded for every g ∈ dom Wκ . If Wκ is densely defined
then also {‖W ∗κ Sbg‖: b ≥ 0} is bounded as W ∗κ |dom Wκ = Wκ .

Theorem 2.17 Let A be a densely defined operator in L2(R+) satisfying

A ⊂ S∗b ASb ∀ b ≥ 0 (2.6)

If dom A ⊂ dom A∗ and {‖ASbg‖: b ≥ 0} and {‖A∗Sbg‖: b ≥ 0} are bounded for
every g ∈ dom A then there is a WH Wκ extending A.

Proof (i) For a ≥ 0 put Da := T ∗a P∗+(dom A) and D := ⋃
a≥0 Da . Then D is a

dense translation invariant subspace of L2(R).
Indeed, let f ∈ L2(R) and ε > 0. Since fa := 1]−a,∞[ f → f for a → ∞ in
the mean, one has ‖ f − fa‖≤ ε/2 for some a ≥ 0. As Ta fa = P∗+P+Ta f , there
is g ∈ dom A with ‖P+Ta fa− g‖≤ ε/2. Hence ‖ fa− T ∗a P∗+g‖≤ ε/2. It follows
that D is dense.
Note that Sb(dom A) ⊂ dom A for b ≥ 0 due to A ⊂ S∗b ASb. Then Da ⊂ Db

for a ≤ b. Indeed, put c := b − a ≥ 0. Then check T ∗a P∗+ = T ∗b P∗+Sc, whence
Da = T ∗b P∗+Sc(dom A) ⊂ T ∗b P∗+(dom A) = Db. It follows that D is a subspace
of L2(R).
For the translation invariance of D it suffices to show T ∗c P∗+g ∈ D for c ∈ R,
g ∈ dom A. If c ≥ 0 this is obvious. Let c < 0. Then T ∗c P∗+g = T−c P∗+g =
P∗+P+T−c P∗+g = P∗+S−cg ∈ D as S−cg ∈ dom A.

(ii) Let f ∈ D. Then f = T ∗a P∗+g for some a ≥ 0, g ∈ dom A, whence fb :=
T ∗b P∗+AP+Tb f = T ∗b P∗+ASb−ag is well-defined for all b ≥ a. We are going to
show that limb→∞ fb exists.
Let c ≥ b ≥ a: ‖ fc − fb ‖2=‖ fc ‖2 + ‖ fb ‖2 −〈 fc, fb〉 −
〈 fb, fc〉, with || fc||2 = ||AP+Tc f ||2, ‖ fb ‖2=‖ AP+Tb f ‖2, 〈 fc, fb〉 =
〈S∗c−b AP+Tc−bTb f , AP+Tb f 〉 = 〈S∗c−b AP+Tc−b(P∗+P+Tb f ), AP+Tb f 〉 =
〈S∗c−b ASc−b P+Tb f , AP+Tb f 〉, which equals ||AP+Tb f ||2 by (2.6) since
P+Tb f ∈ dom A. So ‖ fc − fb‖2=‖AP+Tc f ‖2 − ‖AP+Tb f ‖2. This implies



63 Page 12 of 29 D. P. L. Castrigiano

that b �→‖AP+Tb f ‖2 is increasing. Being bounded by the assumption it follows
‖ fc − fb‖2→ 0 for b, c→∞ so that limb→∞ fb exists.

(iii) Thus C1 f := limb→∞ fb defines an operator C1 on D. Since one has
T ∗c C1Tc f = limb→∞ T ∗c T ∗b P∗+AP+TbTc f = limb→∞ T ∗c+b P∗+AP+Tc+b f =
limb′→∞ T ∗b′ P

∗+AP+Tb′ f = C1 f , it is translation invariant.
(iv) Also C2 f := limb→∞ T ∗b P∗+A∗P+Tb f exists for f ∈ D thus defining an oper-

ator C2 on D. This result follows replacing A in (ii) by A# := A∗|dom A. It
remains to verify A# ⊂ S∗b A#Sb, b ≥ 0. Indeed, for g, g′ ∈ dom A one
has 〈g, S∗b A#Sbg′〉 = 〈Sbg, A∗Sbg′〉 = 〈ASbg, Sbg′〉 since Sbg ∈ dom A ⊂
dom A = dom A∗∗. So 〈g, S∗b A#Sbg′〉 = 〈S∗b ASbg, g′〉 = 〈Ag, g′〉 = 〈g, A#g′〉
by (2.6) and g, g′ ∈ dom A. This implies S∗b A#Sbg′ = A#g′, whence the claim.

(v) Obviously C2 ⊂ C∗1 . Hence C∗1 is densely defined and the closure C := C1
exists. Clearly translation invariance C = T ∗b CTb holds. Equivalently F−1CF
commutes with M(ei b(·)) = F−1TbF for all b ∈ R. Thus F−1CF = M(κ)

for some measurable function κ . Hence P+C P∗+ = Wκ . Finally, for g ∈ dom A
one has P∗+g ∈ D, Wκ g = P+C1P∗+g = limb→∞ P+T ∗b P∗+AP+Tb P∗+g =
limb→∞ S∗b ASbg = limb→∞ Ag = Ag. ��

Corollary 2.18 Let A be a bounded operator on L2(R+). Then A is a WH if and only
if

A = S∗b ASb ∀ b ≥ 0

Proof It remains to observe that A ⊂ Wκ by 2.17 implies A = Wκ . ��

For 2.18 see also [6, (2.10)], where the existence of limb→∞ T ∗b P∗+AP+Tb f (see (ii)
of the proof of 2.17) is not proven.

3 Rational Symbols

WH for rational symbols κ = P
Q

∣∣
R
with polynomials P �= 0, Q �= 0 permit some

more general analysis. By 2.4 they are densely defined. In 3.2 we show that they are
closed and we determine their domains, ranges, and kernels and deficiency spaces,
which are finite dimensional, and their spectral and Fredholm points. In particular, in
the symmetric case, i.e., for a real rational symbol the deficiency spaces and indices
are explicitly available 3.4.

Recall that a densely defined closed operator between Banach spaces with finite
dimensional kernel and cokernel is called a Fredholm operator if its range is closed
(cf. [25]).

Mostlywewill omit |R indicating the restriction onR. A polynomial with a negative
degree is the null function. For convenience we will deal with M+(κ) (2.2) in place
of Wκ . We are indebted to the reviewer for a significantly simplified proof of (b) and
(c) of the following lemma 3.1.
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Lemma 3.1 Let P �= 0 and Q �= 0 be polynomials.

(a) Let P and Q have no common zeros. Then P
Q ∈ H+ (∈ H−) if and only if

deg P < deg Q and all zeros of Q are in the lower (upper) half-plane.
(b) Let h ∈ H+ \ {0} such that P

Q h ∈ H−. Then there is a polynomial R with deg R <

min{deg P, deg Q} such that all zeros of P in the closed upper half-plane as well
as all zeros of Q in the closed lower half-plane are zeros of R with at least the
same multiplicities and such that h = R

P . Conversely, it is obvious that h+ := R
P

and h− := R
Q satisfy h± ∈ H± and P

Q h+ = h−.

(c) Let Q have no zeros in the upper half-plane. If h ∈ H+ and P
Q h ∈ L2(R), then

P
Q h ∈ H+.

(d) Let P and Q have no common zeros. Suppose that h ∈ H+ and P
Q h ∈ H+. Then

h/Q ∈ H+.

Proof (a) The result is known and we omit the proof.
(b) Put n := max{deg P, deg Q}, k := P

Q h, α := (x+ i)−n P , β := (x− i)−n Q. Then
αh ∈ H+ and βk ∈ H−, since α ∈ H∞+ , β ∈ H∞− , and

(
x + i

x − i

)n

αh = βk

Hence αh ∈ ker M+
(
( x+i

x−i )
n
)
, whence αh = (x + i)−n R for some polynomial R

with deg R < n by [22, Theorem 3.1]. Therefore h = R/P and k = R/Q. Now,
h ∈ H+ implies by (a) that deg R < deg P and all zeros of P in the closed upper
half-plane are zeros of R with at least the samemultiplicities. The analogous result
regarding Q follows from k ∈ H−.

(c) For g := P
Q h ∈ L2(R) write g = g+ + g− with g+ ∈ H+, g− ∈ H−. Then, using

n, α, β from the proof of (b) and γ := (x + i)−n Q, it follows

(
x + i

x − i

)n

(αh − γ g+) = βg−

whence analogously Ph − Qg+ = Qg− = R for some polynomial R. Then
g− = R/Q implies R = 0 by (a), since Q has no zeros in the upper half-plane by
assumption.

(d) Assume first that Q has no real zeros. Let φ andψ be the holomorphic functions on
the upper half-plane related to h and P

Q h, respectively. Then P
Q φ is meromorphic

on the upper half-plane and converges non-tangentially to P
Q h a.e. Sinceψ does the

same, according to [16, IV 2.5],ψ = P
Q φ holds. Hence φ/Q is holomorphic on the

upper half-planewith (φ/Q)y → h/Q for 0 < y → 0 a.e. Let 0 < δ < c such that
C := [−c, c]× i[δ, c] is a neighborhood of the zeros of Q in the upper half-plane.
Then |1/Q| is bounded by some constant L on {z : Im z ≥ 0} \ C , and |φ/Q| is
bounded onC by some M . Recall that ‖φy‖22 is bounded for y > 0 by some K . Then∫ |(φ/Q)(x + i y)|2 d x ≤ L2

∫ |φ(x + i y)|2 d x + ∫ c
−c M2 d x ≤ L2K + 2cM2
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for all y > 0. Finally, for 0 < y < δ,
∫ |(φ/Q)(x + i y) − (h/Q)(x)|2 d x ≤

L2
∫ |ψ(x + i y)− h)(x)|2 d x → 0 for y → 0, whence h/Q ∈ H+.

Now we turn to the general case. Note h/Q ∈ L2(R), cf. (v). Write Q = q Q0,
where q has only real zeros and Q0 has no real zeros. Let qε(z) := q(z + i ε)
for ε > 0 and put Qε := qε Q0. Note |q(z)/qε(z)| < 1 on the upper half-plane.
Therefore P

Qε
h = q

qε

P
Q h ∈ H+, where Qε has no real zeros. Moreover, for ε > 0

small enough, P and Qε have no common zeros. Hence the foregoing result
applies so that h/Qε ∈ H+. Now h/Qε = q

qε
h/Q → h/Q for ε → 0 in the mean

implying h/Q ∈ H+. ��
Let κ = P

Q be a rational function, where the polynomials P and Q have no common
zeros. Then let q be the polynomial, the zeros of which are the real zeros of Q with
the same multiplicities. Put ς := max{deg q, deg P − deg Q + deg q}. Moreover
put P = P< P≥, where the zeros of P<(P>) and P≥ are exactly the zeros of P in the
lower(upper) half-plane and in the closed upper half-plane, respectively. P̃ denotes the
polynomial whose coefficients are the complex conjugates of P . Analogous notations
concern Q.

Theorem 3.2 Let κ = P
Q be a rational function, where the polynomials P and Q have

no common zeros. Then M+(κ) is densely defined and closed and

(a) dom M+(κ) = q
(x+i)ς H+ and ran M+(κ) = PH+

( P
Q> Q<(x+i)ς H+

)
(b) ker M+(κ) =

{
(Q≤/P<)r : r polynomial with deg r < min{deg P< −

deg Q≤, deg Q> − deg P≥}
}

(c)
(
ran M+(κ)

)⊥ = {
(Q̃</P̃<)r : r polynomial with deg r < deg P> − deg Q>

}
(d) the following statements are equivalent:

(1) M+(κ) is a Fredholm Operator
(2) ran M+(κ) closed
(3) deg Q ≤ deg P and P without real zeros
(4) 0 /∈ κ(R)

Proof For the closeness of M+(κ)write P
Q in the form P

Q = P0
Q0
+ p

q with polynomials
P0, Q0, p, q such that Q = Q0q, Q0 has no real zeros, q has only real zeros, deg P0 <

deg Q0, and p and q have no common zeros and satisfy ς = max{deg p, deg q}.
Since κ0 := P0

Q0

∣∣
R
is bounded, M+(κ0) is bounded. It follows M+(κ) = M+(κ0)+

M+(
p
q ) and it remains to show that M+(

p
q ) is closed. Let hn ∈ dom M+(

p
q ) such that

(hn) converges to some h ∈ H+ and
(
M+(

p
q )hn

)
converges to some k ∈ H+. By

3.1(c), p
q hn ∈ H+. Hence one has hn → h and p

q hn → k in L2(R). Since M(
p
q ) is

closed, h ∈ dom M+(κ) and k = M+(
p
q )h follows.

(a) dom M+(κ) is dense by 2.4. Arguing as above it remains to show dom M+(
p
q ) =

q
(x+i)ς H+. Let h ∈ H+. Then, by 3.1(c), q

(x+i)ς h ∈ H+ and p
q

q
(x+i)ς h ∈ H+ imply-

ing q
(x+i)ς H+ ⊂ dom M+(

p
q ). For the converse inclusion argue g ∈ dom M+(

p
q )
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⇒ g ∈ H+, p
q g ∈ L2⇒ h := p

q g ∈ H+ by 3.1(c). Hence g = q
p h, whence 1

p h ∈
H+ by 3.1(d). Sinceς = max{deg p, deg q} one infers k := (x+i)ς

p h ∈ L2, whence

k ∈ H+ applying 3.1(c) to 1
p h ∈ H+. This shows g = q

(x+i)ς k ∈ q
(x+i)ς H+. —

Now the claim about ran M+(κ) is obvious.
(b) Check: h0 ∈ ker M+(κ) ⇔ h0 ∈ dom M+(κ), M+(κ)h0 = 0 ⇔ h0 ∈ H+,

κh0 ∈ L2(R), and κh0 ∈ H−. According to 3.1(b) this means h0 = R/P , where
R is a polynomial with deg R < min{deg P, deg Q} and R = P≥Q≤r , whence
the claim.

(c) Using (a) one has h0 ∈
(
ran M+(κ)

)⊥ ⇔ 0 = 〈h0,
P

Q> Q<(x+i)ς h〉 =
〈 P̃
(Q>)∼ (Q<)∼ (x−i)ς h0, h〉 ∀ h ∈ H+ ⇔ P̃

(Q>)∼ (Q<)∼ (x−i)ς h0 ∈ H−. By 3.1(b) this
means h0 = R/P̃ , where R is a polynomial such that deg R < min{deg P̃, deg Q̃−
deg q + ς} = deg P and R = P̃≥(Q>)∼ r = P̃≥ Q̃<r , whence the claim.

(d) By the forgoing results (1)⇔(2) holds. Moreover (3)⇔(4) is quite obvious. So we
turn to (2)⇔(3).

Show first (3)⇒(2). Put R := P
(Q>)∼Q<(x+i)ς . Since by the assumptions nominator

and denominator of R have equal degree and have no real zeros, R and 1
R are bounded

on R. Hence M(R) is a homeomorphism on L2(R), whence RH+ is closed. Since
(Q>)∼ = Q̃< it follows by 3.1(c) that RH+ ⊂ H+. Hence RH+ = ran M+(κ ′) for
κ ′ := P

Q′ with Q′ := Q̃<Q<q, whence dim(RH+)⊥ < ∞ by (c). So it suffices to

show that RH+ ⊂ ran M+(κ). By 3.1(c), Q>

Q̃<
H+ ⊂ H+. So by (a), ran M+(κ) ⊃

PH+
( P

Q> Q<(x+i)ς
Q>

(Q>)∼ H+
) = PH+(RH+) = RH+.

Now turn to (2)⇒(3). Consider first the case deg P < deg Q. Put R := Q>Q<(x+
i)ς . Note deg R = deg Q and ran M+(κ) = PH+

( P
R H+

)
by (a). By 3.1(c) and since

M( R>

R̃<
) is unitary on L2(R), R>

R̃<
H+ is a closed subspace of H+. By (c) one has( R>

R̃<
H+

)⊥ = { r
R̃<
: deg r < deg R>

}
and hence

P

R
H+ =

{ Pr

R R̃<

: deg r < deg R>

}
+ P

R< R̃<

H+

Applying (c) for κ = P
R< R̃<

and κ = P>

P̃<

check
( P

R< R̃<

H+
)⊥ = ( P>

P̃<

H+
)⊥ = { r

P̃<

:
deg r < deg P>

}
. Hence P

R< R̃<

H+ is dense in P>

P̃<

H+, which is closed in H+. Note

that PH+
{ Pr

R R̃<

: deg r < deg R>

} ⊂ V := { B
R< R̃<

: deg B < deg R
}
.

Now assume that PH+
( P

R H+
)
is closed. Then the above considerations imply that

P>

P̃<
H+ ⊂ V + P

R< R̃<
H+. Thus given h0 ∈ H+ there is h ∈ H+ and some polynomial

B with deg B < deg R such that h = R< R̃<

P< P̃<
h0 + B

P . Hence |h| ≥
∣∣∣∣∣ R< R̃<

P< P̃<

∣∣|h0| −
∣∣ B

P

∣∣∣∣∣
with m := deg R − deg P< − deg P> ≥ 1 and l := deg B − deg P ≤ m − 1. Choose
h0 ∈ H+ satisfying |h0| = (1 + |x |)−3/4. (h0 exists by (2.1) since square-integrable
and ln(1 + |x |) ≤ √2|x |.) Because of m − 3

4 − l > 0 the right side tends to∞ like
|x |m−3/4 for |x | → ∞ contradicting h ∈ L2(R).
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To complete the proof of the implication (2)⇒(3) it remains to treat the case that
deg P ≥ deg Q and P has a real zero. Proceeding as in the forgoing case, here one
has deg R = deg P . Hence, assuming that PH+

( P
R H+

)
is closed, one has m ≥ 1 and

l ≤ −1 and the same contradiction follows. ��

From 3.2 one immediately obtains

Corollary 3.3 For λ ∈ C put Pλ := P + λQ. Then referring to M+(κ), λ is

• a Fredholm point (i.e. M+(κ) − λI is a Fredholm operator) iff λ /∈ κ(R); if λ

is a Fredholm point, then dim ker(M+(κ) − λI ) = max{0, deg Q> − deg Pλ
>},

dim ran(M+(κ)− λI )⊥ = max{0, deg Pλ
> − deg Q>}, and further ind(M+(κ)−

λI ) = deg Q> − deg Pλ
>

• a regular value (i.e. M+(κ) − λI is continuously invertible) iff λ /∈ κ(R) and
deg Q> ≤ deg Pλ

>

• in the resolvent set iff λ /∈ κ(R) and deg Q> = deg Pλ
>

• a spectral value iff λ ∈ κ(R) or deg Q> �= deg Pλ
>

• in the point spectrum iff deg Q≤ < deg Pλ
< and deg Pλ≥ < deg Q>

• in the continuous spectrum (i.e. M+(κ) − λI is injective with dense not closed
range) iff λ ∈ κ(R), deg Pλ

> ≤ deg Q> and either deg Pλ
< ≤ deg Q≤ or deg Q> ≤

deg Pλ≥
• in the residual spectrum (i.e. M+(κ) − λI is injective with not dense range) iff
deg Q> < deg Pλ

>

The characterization of the Fredholm points of M+(κ) and the fact that at a Fredholm
point either the kernel or the deficiency space is trivial, are familiar fromKrein’s theory
[3] for the case of integrable kernel. λ �→ deg Pλ

> is locally non-decreasing due to
the continuity of the roots of a polynomial on its coefficients [26]. On C \ κ(R) it is
even locally constant, since there Pλ

> = Pλ≥. Hence, besides ind(M+(κ) − λI ), also
dim ker(M+(κ) − λI ) and dim ran(M+(κ) − λI )⊥ are constant on the components
of C \ κ(R).

Theorem 3.4 Let κ be a real rational function. Let p, q be real polynomials without
common zeros such that κ = p

q and put

p − i q = Q+Q−

where the zeros of the polynomials Q+ and Q− are all in the upper and lower half-

plane, respectively. Then M+(κ) is closed symmetric with dom M+(κ) = q ′
(x+i)ς H+.

By definition the zeros of q ′ are the real zeros of q and ς := max{deg q ′, deg p −
deg q + deg q ′}. The deficiency indices are

n± := dim ran
(
M+(κ)∓ i I

)⊥ = deg Q± − deg q<
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and the deficiency spaces are

ran
(

M+(κ)− i I
)⊥ = { q<

Q̃+
r : r polynomial with deg r < deg Q+ − deg q<}

ran
(

M+(κ)+ i I
)⊥ = { q<

Q−
r : r polynomial with deg r < deg Q− − deg q<}

Proof For dom M+(κ) see 3.2(a). Adopting the notation of 3.2 one has M+(κ)− i I =
M+

( P
Q

)
with P := p − i q and Q = q. Obviously P and Q have no common

zeros. In view of 3.2(c) note Q̃< = q<, P̃< = Q̃+, deg P> = deg Q+, deg Q> =
deg q> = deg q<. Hence the formula for ran

(
M+(κ) − i I

)⊥ holds, which implies
n+ = max{0, deg Q+−deg q<}. It remains to show deg q< ≤ deg Q+. The assertions
about the deficiency space for − i follow similarly.

Let mt denote the number of zeros in the upper half-plane of p − i tq for t > 0.
p − i tq has no real zeros. So by the continuity of the roots of a polynomial, mt is
locally constant and hence constant = deg Q+. Obviously mt is also the number of
zeros in the upper half-plane of 1

t p − i q. Then by the same continuity the zeros of q
in the upper half-plane stay there for all t large enough, whence mt ≥ deg q>. This
yields the result. ��
Wκ for κ in 3.4 has unequal deficiency indices and hence no self-adjoint extension if
max{deg p, deg q} is odd.Thedeficiency indices (n+, n−)ofW (xl), l ∈ Z, are (

|l|
2 ,
|l|
2 )

if l is even and (
|l+1|
2 ,

|l−1|
2 ) otherwise. Other interesting examples are W

( x2+1
x

)
and

W
( x2−1

x

)
with deficiency indices (1, 1) and (2, 0), respectively. Compare the later

with W
( x2−1

x−2
)
having deficiency indices (1, 1). —This section is concluded by a

much needed

Example 3.5 There are WH, even essentially self-adjoint semibounded ones, which
are not closed, as for instance W|x | (or W1/|x |).

As to the proof, by 3.2(a), dom M+(|x |) = 1
x+i H+ and hence R± := ran(M+(|x |)∓

i I ) = |x |∓ i
x+i H+. It suffices to show that R+ is dense and �= H+.

The latter is easily inferred. Assume the contrary. Then there is h ∈ H+ satisfying
|x |−i
x+i h = 1

x+i . Hence h = 1
|x |−i ∈ H+ and h = ȟ ∈ H−, whence the contradiction

h = 0.
As to the former claim, let h± ∈ R⊥± . Then 〈h±,

|x |∓ i
x+i h〉 = 0 for all h ∈ H+,

whence k± := |x |± i
x−i h± ∈ H−. Let φ± be holomorphic on the upper half-plane with

φ±,y → h± for 0 < y → 0 pointwise a.e. and in the mean (cf. 2.1). Similarly let ψ±
be holomorphic in the lower half-plane with ψ±,y → k± for 0 > y → 0. Consider
φ := (z + i)φ−φ+ and ψ := (z − i)ψ−ψ+ holomorphic on the upper and lower half-
plane, respectively. Check that φy for 0 < y → 0 and ψy for 0 > y → 0 converge
pointwise a.e. and in L1

loc to f := (x + i)h−h+. By [23, Theorem II] there is an entire
function χ extending φ and ψ . Let χ± be equal to φ± and ψ± on the upper and lower
half-plane, respectively. Let z = x + i y, |z| > 1. Then π |χ(z)| ≤ ∫

|w|≤1 |χ(z +
w)| d2 w ≤ (|z| + 2)

( ∫
|w|≤1 |χ+(z + w)|2 d2 w

∫
|w|≤1 |χ−(z + w)|2 d2 w

)1/2. Now
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∫
|w|≤1 |χ±(z + w)|2 d2 w ≤ ∫ 1

−1
∫∞
−∞ |χ±

(
u + i(y + v)

)|2 d u d v ≤ ∫ 1
−1 C d v = 2C

for some finite constant C . Hence |χ(z)| ≤ C ′|z| ∀ |z| > 1. So χ is a polynomial
a + bz. For y > 0, x �→ φ−,y(x)φ+,y(x) = a+bz

z+i is integrable on R. This implies
a = b = 0 and hence χ = 0. Therefore either h+ = 0 or h− = 0. This means that
one and hence both deficiency spaces are {0}. So R+ is dense.

4 SemiboundedWiener–Hopf operators

In 4.3, 4.4 a densely defined semibounded WH Wκ is expressed in a canonical way
by the product of a closable operator and its adjoint. Replacing the operator by its
closure one obtains a self-adjoint extension W̃κ of Wκ , which is semibounded by the
same bound. The bound is not an eigenvalue of the extension. W̃κ is shown to be the
Friedrichs extension of Wκ . We start with a preparatory lemma. The condition γ �= 0
not a.e. means that γ−1({0}) is not a null set.
Lemma 4.1 Let γ : R → C be measurable. Put E := γ−1(C \ {0}) and let A :=
P+FM(γ )P∗E . Then A is densely defined and A∗ = PE M(γ )F−1P∗+ holds, and
dom A∗ = dom Wγ is either {0} or dense. If γ is not almost zero, then A∗ is injective.
If γ �= 0 not a.e., then A is injective. If γ �= 0 a.e., then ker A = { f ∈ L2(R) :
γ f ∈ H−}, which equals {0} if and only if 1

γ
is not proper. Finally ker A∗A = ker A,

W (|γ |2) = AA∗, and

γ proper ⇔ dom W (|γ |2) �= {0} ⇔ dom A∗ �= {0} ⇔ A closable (�)

Proof Note M(γ )P∗E = P∗E M(γ |E ) and PE M(γ ) = M(γ |E )PE with M(γ |E ) the
multiplication operator in L2(E). Hence A = P+F P∗E M(γ |E ) is densely defined, and
A∗ = PE M(γ )F−1P∗+ by [27, 13.2(2)]. Note that dom A∗ = dom M(γ )F−1P∗+ =
dom Wγ , whence the claim on dom A∗ by 2.10.

First let E be proper. Then A∗g = M(γ |E )
(
PEF−1P∗+g

) = 0 implies
PEF−1P∗+g = 0, whence g = 0. Similarly, Ak = P+F

(
P∗E M(γ |E )k

) = 0
means that f− := P∗E M(γ |E )k ∈ H− and vanishes on R \ E , whence f− = 0
and hence k = 0. —Now assume at once E = R. Then A∗ = M(γ )F−1P∗+ is
injective as M(γ ) is injective. Furthermore, f ∈ ker A ⇔ f , γ f ∈ L2(R) with
P+F(γ f ) = 0 ⇔ f ∈ L2(R), γ f ∈ H− ⇔ f ∈ L2(R), f ∈ 1

γ
H+, and recall that

1
γ
is proper⇔ 1

γ
h ∈ L2(R) for some h ∈ H+ \ {0}.

ker A∗A = ker A is obvious since either γ = 0 a.e. or A∗ is injective.
M(γ )P∗E PE M(γ ) = M(γ )M(1E )M(γ ) = M(|γ |2), whence AA∗ = W (|γ |2).

Turn to the final claim (�). Recall that dom A∗ = dom Wγ is either trivial or dense.
So the last equivalence is standard and the remaining equivalences hold by 2.7. ��

In view of 4.1(�) recall the results on the domain of aWH in Sect. 2. If A is closable
it need not be closed, even if AA∗ is closed.

(
Indeed, Wx2 = AA∗ is closed and

�= W̃x2 = AA∗ by 3.4, 4.3.
)
Recall that ran A∗ is not dense if A is not injective. A is

not injective for γ �= 0 a.e. if for instance q
γ
F−1s ∈ L2(R) with q a polynomial and s
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a Schwartz function with support in ]−∞, 0]. (Indeed, qF−1s is a Schwartz function
in H−, whence q

γ
F−1s ∈ ker A.) Recall that A is injective if and only if γ �= 0 not

a.e. or γ �= 0 a.e. and 1
γ
not proper.

Lemma 4.2 Let γ be proper. Suppose that γ �= 0 not a.e. or that γ �= 0 a.e. and 1
γ

is

not proper. Then A is closable and A is injective.

Proof A is closable by 4.1(�). According to 2.6 (p = ∞) one has |γ | e j ≤ 1 for some
j . Put j ′ := 1{ j≤0} j−|x |1/2. Then |γ | e j ′ ≤ 1, and e j ′ and |γ | e j ′ are square integrable.
By (2.1) there is h ∈ H+ with |h| = e j ′ . Hence h ∈ dom M+(γ ) \ {0}. Then h D ⊂
dom M+(γ ) for D := 1

x+i H∞+ . D is dense in H+ since D = �(H∞(T)) (see 2.2).

—Now let f ∈ ker A = (ran A∗)⊥. For d ∈ D one has 0 = 〈 f , PE M(γ )P∗H+(hd)〉 =
〈P∗E f , γ hd〉 = 〈γ h P∗E f , d〉, whence γ h P∗E f ∈ H−. If γ �= 0 not a.e., then it follows
γ h P∗E f = 0, whence f = 0. If γ �= 0 a.e., then h f = 1

γ
h′ for some h′ ∈ H+.

Assume f �= 0. Then h′ �= 0 and |γ |−1||h′| is integrable. Hence |γ |−1 is proper by
(2.1) and 2.6 (p = 1), which however is excluded by the premise. ��
The foregoing lemma is needed only in Sect. 5. The main result of this section follows.

Theorem 4.3 Let κ ≥ 0. Put E := κ−1(R \ {0}) and A := P+FM(
√

κ)P∗E . Then
Wκ = AA∗. —Now let κ be proper not almost zero. Put W̃κ := AA∗. Then

(a) Wκ is densely defined symmetric nonnegative and W̃κ is an injective nonnegative
self-adjoint extension of Wκ .

(b) dom Wκ is a core of A∗ and dom A∗ ∩ ran(I +Wκ)⊥ = {0} holds.
(c) W̃κ is the Friedrichs extension of Wκ .

Proof (a) Apply 4.1 for γ := √κ . Accordingly, Wκ = AA∗ and, if κ is proper, Wκ is
densely defined and symmetric nonnegative by 2.14, 2.15, and A∗ is densely defined.
Then A = A∗∗ and by [27, 13.13(a)] AA∗ is self-adjoint. Clearly AA∗ is nonnegative.
Check that AA∗ is injective as A∗ is injective by 4.1 for κ not almost zero.

(b), (c) According to [4, Theorem X.23], W̃κ is the Friedrichs extension only if
dom W̃κ ⊂ HWκ ,where HWκ is the completion of dom Wκ with respect to the sesquilin-
ear form 〈g, g′〉Wκ := 〈g, g′〉 + 〈g, Wκ g′〉.

Endow dom A∗with the inner product 〈g, g′〉A∗ := 〈g, g′〉+〈A∗g, A∗g′〉, bywhich
dom A∗ becomes a Hilbert space K since A∗ is closed. Then the subspace dom AA∗
is dense in K since dom AA∗ is a core for A∗, see [27, 13.13(b)]. One easily checks
that HWκ is the closure of dom Wκ in K. Therefore dom AA∗ ⊂ HWκ if and only if
HWκ = K, which means that dom Wκ is a core of A∗. A short computation shows also
that HWκ = K is equivalent to dom A∗ ∩ ran(I +Wκ)⊥ = {0}.

Hence it remains to show dom A∗ ∩ ran(I + Wκ)⊥ = {0}. Explicitly this means
that h0 = 0 if

h0 ∈ H+,
√

κh0 ∈ L2(R), 〈h0, (1+ κ)h〉 = 0 ∀ h ∈ H+ with κh ∈ L2(R) (�)

To this end a sequence (αn)n in H∞+ will be constructed with |αn| = e jn a.e.,
where jn(x) := 0 if 1 + κ(x) < n and jn(x) := − 1

2 ln
(
1 + κ(x)

)
otherwise, and
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satisfying αnk → 1 pointwise a.e. for some subsequence (nk). Provided (αn)n set
hn := αnh0. Then hn ∈ H+ and almost everywhere

(
1 + κ(x)

)|hn(x)| is less than
n|h0(x)| if 1 + κ(x) ≤ n and equals

√
1+ κ(x)|h0(x)| otherwise, which proves

(1 + κ)hn ∈ L2(R). Moreover
√
1+ κ|hn| ≤

√
1+ κ|h0| since |αn| ≤ 1 and√

1+ κhnk →
√
1+ κh0 pointwise a.e., whence

√
1+ κhnk →

√
1+ κh0 in L2(R)

bydominated convergence.Thus (�) holds forh = hnk ,whence0 = 〈h0, (1+κ)hnk 〉 =
〈√1+ κh0,

√
1+ κhnk 〉 → 〈√1+ κh0,

√
1+ κh0〉 = ||

√
1+ κh0||2 implying

h0 = 0.
We turn to the construction of (αn)n . By 2.8, ln(1+κ)

1+x2
and hence all jn

1+x2
are inte-

grable. For convenience we pass from R to the torus T by means of the Cayley
transformation C (see 2.2). So let j̃n := jn ◦ C−1, which is integrable on T. Put

Fn(w) := 1

2π

∫ 2π

0

ei t +w

ei t −w
j̃n(ei t ) d t

for w ∈ D. Then exp ◦Fn is an outer function. Let α̃n denote its non-tangential limit
a.e. on T. It satisfies |α̃n| = e j̃n a.e. Hence α̃n ∈ H∞(T). It remains to show the
existence of a subsequence (nk) satisfying α̃nk → 1 a.e. The formula T f (z) :=
limr↑1 1

2π

∫ 2π
0

ei t +r z
ei t −r z

f (ei t ) d t , z ∈ T defines a bounded operator on L1(T) into

weak-L1(T), whence |{z ∈ T : |T f | > δ}| ≤ C ‖ f ‖1 /δ for all δ > 0 and
f ∈ L1(T). Therefore, if fn → 0 in L1(T), then T fn → 0 in probability, which
implies T fnk → 0 a.e. for some subsequence (nk). This applies to ( j̃n)n yielding
α̃nk = exp ◦T j̃nk → 1 a.e. ��
For κ ≥ 0 and Wκ densely defined recall that the deficiency subspace ran(I + Wκ)⊥
of Wκ at −1 is trivial if and only if Wκ is essentially self-adjoint.

Semibounded symbol 4.4 Let κ be real semibounded. Then there are α > 0 and
η ∈ {1,−1} such that κ ′ := α1 + ηκ ≥ 0. Clearly Wκ ′ = α I + ηWκ . Let Wκ be
densely defined. Then so is Wκ ′ , and according to 4.3 there is the injective nonnegative
self-adjoint extension W̃κ ′ of Wκ ′ . So

W̃κ := −ηα I + ηW̃κ ′ (4.1)

is a semibounded self-adjoint extension of Wκ with bound −ηα, which is not an
eigenvalue of W̃κ . It is the Friedrichs extension of Wκ .

5 Isomorphic Singular Integral Operators

This section is concerned with the symmetric singular integral operator in L2(E) for
proper E or E = R

(
Lφ f

)
(x) := 1

2
φ(x) f (x)+ 1

2π i

∫
E

√
φ(x)
√

φ(y)

y − x
f (y) d y (5.1)



Unbounded Wiener–Hopf and Isomorphic Singular… Page 21 of 29 63

(in the sense of the principal value at x) where φ : E → R is measurable positive. Lφ

will turn out to be closely related to Wκ , where κ extends φ on R by zero.
Lφ is rather general. Indeed, it belongs to the studied class of singular integral

operators in L2(E) of Hilbert transformation type

(L(a, b) f
)
(x) := a(x) f (x)+ 1

iπ

∫
E

b(x)b(y)(y − x)−1 f (y) d y (5.2)

where a, b are measurable functions on E with a real and b �= 0 a.e. There is the
obvious unitary equivalence

U L(a, b) U−1 = Lφ + M(α) (5.3)

for φ = 2|b|2 and α = a − |b|2, where U is the multiplication operator by b/|b| and
M(α) the multiplication operator by α in L2(E). So we are concerned with the case
a = |b|2.

The operator L(a, b) for bounded b and bounded below a is treated by Rosenblum
in [28]. It is shown to be self-adjoint on dom L(a, b) = dom M(a), and its diag-
onalization is achieved. See also [29] and the literature cited in [28,29]. The really
unbounded case however is there when b is unbounded. [30] is concerned with this
case replacing L(a, b) by the limit of truncated L(an, bn) which are bounded. Our
analysis of Lφ will show 5.3 that L(a, b) ⊂ M(α) if the extension of b onR by zero is
not proper. Hence for L(a, b) in (5.2) being not trivial it is necessary that the extension
of b is proper. In this case Lφ in (5.3) has a self-adjoint extension 5.5.

The Hilbert transformation H on L2(R) is defined by the singular integral

H f (x) = 1

iπ

∫ ∞
−∞

f (y)

y − x
d y (5.4)

Recall its representation

H = F−1M(sgn)F = −FM(sgn)F−1 (5.5)

on L2(R) with sgn the signum function on R (see e.g. [14, Theorems 91,95] or [22,
Lemma 1.35] or [15, Chapter II 4.3], and for more details [31, Teorema 1.1.1]). Let
us introduce

HE := PE H P∗E (5.6)

the trace on L2(E) of the Hilbert transformation H . Its spectrum is determined in
[32]. For E = [a, b], −∞ ≤ a < b ≤ ∞, HE is called finite and semi-finite
Hilbert transformation if E is bounded and semi-bounded, respectively. Its spectral
representation is achieved in [33].
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5.1 Isometry relating L̃� to W̃�

In what follows we use the polar decomposition C = S|C | of a closed densely defined
operator C from a Hilbert space H into another H′ (see e.g. [4, VIII.9]). |C | denotes
the square root of the self-adjoint nonnegative operatorC∗C inH. One has dom |C | =
dom C and dom C∗C is a core for C . S is a partial isometry fromH intoH′. Its initial
space (ker S)⊥ equals ranC∗ = ran |C | = ran |C |2. Similarly, its final space ran S
equals ranC = ran |C∗| = ran |C∗|2. The partial isometry S∗ satisfies (ker S∗)⊥ =
ran S and ran S∗ = (ker S)⊥. Note the important relation

CC∗ = SC∗C S∗ (5.7)

which means that the reductions of CC∗ and C∗C on the orthogonal complements
of their respective null spaces are Hilbert space isomorphic by the restriction of the
partial isometry S to its initial state (ker S)⊥ and its final state ran S.

Throughout this section κ ≥ 0 and φ > 0 are related to each other by

φ = κ|E for E = κ−1(R+)

Lemma 5.1 Let κ ≥ 0, A = P+FM(
√

κ)P∗E , A∗ = PE M(
√

κ)F−1P∗+. Then

(a) Wκ = AA∗
(b) Lφ = 1

2 M(φ)+ 1
2 M(
√

φ)HE M(
√

φ) = PE M(
√

κ)P∗H+ PH+M(
√

κ)P∗E = A∗A

Now suppose that κ is proper. Let A = T |A| be the polar decomposition of A. Then
the partial isometry T : L2(E) → L2(R+) is surjective, its adjoint T ∗ is injective,
and

(c) W̃κ := AA∗ is a self-adjoint extension of Wκ .
(d) L̃φ := A∗A is a self-adjoint extension of Lφ .

(e) ker L̃φ = ker A,
(
ker T )⊥ = (

ker L̃φ

)⊥ = ran A∗.

Proof (a) See 4.3. (b) Check A∗A = PE M(
√

κ)F−1P∗+P+FM(
√

κ)P∗E =
PE M(

√
κ)P∗H+ PH+M(

√
κ)P∗E = PE M(

√
κ) 12 (I + H)M(

√
κ)P∗E by (5.5). So

A∗A = Lφ as PE M(
√

κ) = M(
√

φ)PE , M(
√

κ)P∗E = P∗E M(
√

φ). Recall (5.6). —
(c) and (d) are obvious.—Finally, T is surjective as ran T = ( ran A )− = (ker A∗)⊥ =
L2(R+) by 4.1, and (e) follows directly from polar decomposition. ��
As a first result we note that Lφ in (5.1) can be trivial:

Corollary 5.2 Let κ ≥ 0 be not proper. Then Lφ ⊂ 0. Moreover, dom Lφ = {0} if and
only if either κ �= 0 not a.e. or otherwise 1

κ
is not proper. If κ �= 0 a.e. and 1

κ
is proper,

then dom Lφ = 1√
φ

H− ∩ L2(R).

Proof dom A∗ = {0} by 4.1(�), whence Lφ ⊂ 0 and dom Lφ = ker A because of
5.1(b), 4.1. Recall 2.7 by which 1/κ is not proper if and only if 1/

√
κ is not proper.

The remainder is shown in 4.1. ��



Unbounded Wiener–Hopf and Isomorphic Singular… Page 23 of 29 63

For example κ = ex is positive and, by 2.9, κ and 1/κ are not proper. Hence dom Lex =
{0}.

Now 5.2 and (5.3) imply that for L(a, b) in (5.2) being not trivial it is necessary
that the extension of b on R by zero be proper:

Theorem 5.3 Let the extension of b on R by zero be not proper. Then L(a, b) ⊂
M(a − |b|2) with

(a) dom L(a, b) = {
f ∈ L2(R) : |b| f ∈ H−, (a − |b|2) f ∈ L2(R)

}
if E = R

(b) dom L(a, b) = {0} if and only if E is proper, or E = R and 1
b is not proper, or

E = R and 1
b is proper and a−|b|2

b is not proper.

Corollary 5.4 Let E = R and suppose that 1
φ

is bounded.. Then Lφ is densely defined
and

dom Lφ = {h + k√
φ
: h ∈ H+,

√
φh ∈ L2(R), k ∈ H−}, Lφ

(h + k√
φ

) = √
φh (�)

with ker Lφ = 1√
φ

H− and (ker Lφ)⊥ = {√φh ∈ L2(R) : h ∈ H+}. —If φ is proper,

then ker L̃φ = ker Lφ �= L2(R). If φ is not proper, then Lφ = 0.

Proof Note κ = φ, Lφ = M(
√

φ)P∗H+ PH+M(
√

φ) by 5.1(b). So (�) is easily verified

and ker Lφ = 1√
φ

H− follows. Check f ∈ L2(R), f ⊥ 1√
φ

H− ⇔ f ∈ L2(R),

0 = 〈 f , 1√
φ

k〉 = 〈 1√
φ

f , k〉 ∀ k ∈ H− ⇔ f ∈ L2(R), 1√
φ

f ∈ H+, proving the claim

on (ker Lφ)⊥.
Note D := dom A∗ = {h ∈ H+ : √φh ∈ L2(R)}, whence ran A∗ = {√φh ∈

L2(R) : h ∈ H+} which equals (ker Lφ)⊥.
Now let φ be proper. Then D is dense by 4.1 and ran A∗ �= {0}. Hence by 5.1(e)

on has ker L̃φ = (ran A∗)⊥ = ker Lφ �= L2(R). Moreover, dom Lφ is dense, since
f ∈ (dom Lφ)⊥ ⇒ 0 = 〈 f , (h + k)/

√
φ〉 = 〈 f /

√
φ, (h + k)〉 ∀ h ∈ D, k ∈ H− ⇒

f /
√

φ ∈ H+, 〈 f /
√

φ, h〉 ∀ h ∈ D ⇒ f /
√

φ = 0 ⇒ f = 0. —If φ is not proper
then D = {0} by 4.1, whence dom Lφ = 1√

φ
H−. The latter equals ker Lφ . Finally,

(ker Lφ)⊥ = {√φh ∈ L2(R) : h ∈ H+} = {0} since D = {0}. ��
For example, Le|x | ⊂ 0 with dense dom Le|x | = e−|x |/2 H−. The main outcome of this
section is the following:

Theorem 5.5 Let κ ≥ 0 be proper. Then

L̃φ = T ∗ W̃κ T (5.8)

Let L̃ ′φ and T ′ denote the reduction of L̃φ and the restriction of T on the orthog-

onal complement of the null space of L̃φ , respectively. Then T ′ is a Hilbert space
isomorphism onto L2(R+) satisfying L̃ ′φ = T ′−1 W̃κ T ′.

Proof (5.8) holds by polar decomposition A = T |A| (cf. (5.7)). By 5.1 T is surjective.
So T ′ is a Hilbert space isomorphism by 5.1(e). Recall (5.8). ��



63 Page 24 of 29 D. P. L. Castrigiano

Of course one has W̃κ = T L̃φT ∗ as well. It allows to study W̃κ starting from L̃φ .
For the still remarkable bounded case see (5.9). By 4.4 it is easy to extend 5.5 to
semibounded symbols.

Corollary 5.6 Let κ
1+x2

be integrable. Then L̃ ′φ is absolutely continuous.

Proof Recall that T̃κ◦γ and hence W̃κ (see 2.2) is absolutely continuous by [9]. Apply
5.5. ��
The special case of 5.6 that φ is bounded is treated in [28, Sect. 3] and [29, Theorem].
—We remind that for L̃φ being injective it is necessary that E is proper or that 1/κ is
not proper.

Corollary 5.7 Let κ ≥ 0 be proper. Suppose that E is proper or 1/κ is not proper. Then
L̃φ is injective and T : L2(E)→ L2(R+) is a Hilbert space isomorphism with

L̃φ = T−1W̃κ T

Proof A is injective by 4.2. Hence {0} = ker L̃φ = ker T and T is an isomorphism.
Apply 5.5. ��
So it is worth noting that L̃φ is absolutely continuous, if κ

1+x2
is integrable and if E is

proper or 1/κ is not proper.
Let κ be bounded. Then Lφ , Wκ are bounded, L̃φ = Lφ , W̃κ = Wκ , and

Lφ = T ∗ Wκ T , Wκ = T Lφ T ∗ (5.9)

Moreover, if E is proper or 1/κ is not proper, then even L ′φ = Lφ by 5.7, whence

Lφ = T−1Wκ T . An example for the latter case is Le−|x | , which is injective. Generally,
if κ > 0 does not decrease too rapidly (so that 1/κ is proper) the kernel of Lκ

is not trivial. For an instructive example see Sect. 5.2. The trivial example here is
κ = 1R. Note that W (1R) = IL2(R+) and L1R is the orthogonal projection on H+, and
T ′ : H+ → L2(R+), T ′h := P+Fh. Examples for proper E are the isomorphic pairs
W (1E ) " 1

2 (I + HE ) with HE in (5.6), which we like to write as

HE = T−1 W21E−1 T (5.10)

The caseof thefiniteHilbert transformation H[−1,1] is studied indetail in [24, Sect. 3.3],
[24, (3.20)].

In conclusion we remark on the spectral representations of W̃κ and L̃φ in 5.5.
By the spectral theorem in the multiplication operator version, W̃κ is Hilbert space
isomorphic to the multiplication operator M(ϕ) on L2

μ(R) for some Borel-measurable
positive ϕ : R → R and finite Borel measure μ. Let V : L2

μ(R) → L2(R+) be an
isomorphism satisfying

W̃κ = V M(ϕ) V−1 (5.11)
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The spectral measure for W̃κ is given by EW̃κ
(�) = V M(1ϕ−1(�))V−1 formeasurable

� ⊂ R.

Corollary 5.8 Suppose (5.11). Then W0 := A∗V M( 1√
ϕ
) with A∗ in 5.1 is closable,

its closure W is the Hilbert space isometry T ∗V with ran W = (
ker L̃φ

)⊥
, by which

L̃φ = W M(ϕ)W ∗.

Proof By (5.11) and 5.1(a), W0 = A∗V M( 1√
ϕ
)V−1V = A∗W̃κ

−1/2
V =

A∗|A∗|−1V = T ∗|dom(|A∗|−1)V . For the last equality recall A∗ = T ∗|A∗|. Further
note that dom(|A∗|−1) = ran(|A∗|) is dense as |A∗| = W̃κ

1/2
is self-adjoint injective.

Since T ∗ is bounded, W0 is closable and its closure W equals T ∗V . The remainder is
obvious. ��

5.2 Example: Lalescu’s Operator

Supposing κ > 0, κ ∈ L2, and kernel k ∈ L1, in [34] a spectral theory of Wκ

is proposed by a reduction to a previously developed theory for singular integral
operators. Its application in [34] to Lalescu’s operator Wλ with symbol

λ(x) := 2

1+ x2
(5.12)

however does not produce the right normalization (5.14) of the generalized eigen-
functions (5.13). In establishing (5.14) we get also the result 5.10 on orthogonal
polynomials.

The diagonalization of Lalescu’s operator Wλ is achieved in Sect. 5.2.1 and that of
the associated singular integral operator Lλ is derived in Sect. 5.2.2. The generalized
eigenfunctions (5.18) of the latter are no longer regular distributions.

5.2.1 Spectral Representation ofW�

Clearly, the spectrum of Wλ lies in [0, 2]. The integral kernel for Wλ is e−|x |. The
obvious ansatz a eαx +b eβx for u(x), x > 0 in s u(x) − ∫∞

0 e−|x−y| u(y) d y = 0
yields for every s ∈]0, 2[ the generalized eigenfunction (cf. [2])

qs(x) = n(s)
(
(τ − i) ei τ x +(τ + i) e− i τ x

)
, τ := (2

s
− 1

)1/2 (5.13)

The claim is that there is the unique positive normalization constant

n(s) = (4πsτ)−1/2 (5.14)

such that q(s, x) := qs(x) is the kernel for a Hilbert space isomorphism

V : L2(0, 2)→ L2(R+), V h = l. i.m.

∫ ↑2
↓0

q(s, ·)h(s) d s (5.15)
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Indeed, the assertion follows immediately from the following Lemma 5.9 as V = U∗�
holds for the Hilbert space isomorphism

� : L2(0, 2)→ L2(R+), �h (y) := 2
√

y

1+ y2
h
( 2

1+ y2

)
(5.16)

due to the change of variable γ (y) := 2
1+y2

.

Lemma 5.9 Ug(x) := l. i.m.
∫ ↑∞
↓0 u(x, y)g(y) d y with

u(x, y) = (2π)−1/2(1+ x2)−1/2
(
(x − i) ei xy +(x + i) e− i xy )

is unitary on L2(R+).

Proof Using the generating function lq(x) = (1 − q)−1 exp
(− 1

2
1+q
1−q x

)
, |q| < 1

of the Laguerre functions ln , n ≥ 0 one finds λn(x) := Uln(x) =
√

2
π
(1 +

x2)−1/2
(

x+i
1+2 i x γ (x)n + x−i

1−2 i x γ (x)−n
)
with γ (x) := −1+2 i x

1+2 i x . Note that
∫∞
−∞(1 +

x2)−1
( x+i
1+2 i x

)2
γ (x)k d x = 0 for k ∈ Z, since the integral is a parametrization of the

complex integration of i
4
3z−i
3−z zk along the unit circle. Using this it follows easily that

λn , n = 0, 1, 2, . . . are orthonormal in L2(R+). It remains to show the completeness
of (λn)n .

Let ϕ ∈]0, π [ satisfy ei ϕ = γ (x), x > 0. Put ξ := cosϕ. Then λn(x) =√
18(1−ξ)(1−ξ2)

π(5−3ξ)

( sin(n+1)ϕ
sin ϕ

− 1
3
sin nϕ
sin ϕ

) =
√

18(1−ξ)(1−ξ2)
π(5−3ξ)

(
Un(ξ)− 1

3Un−1(ξ)
)
, whereUn

denotes the Chebyshev polynomial of the second kind of degree n for n = 0, 1, 2, . . .
andU−1 := 0 [35, 10.11(2)]. Therefore theHilbert space isomorphism� : L2(R+)→
L2(−1, 1) due to the change of variable γ (ξ) := 1

2

√
1+ξ
1−ξ

, γ ′(ξ) = 1
2

√
1−ξ
1+ξ

(1− ξ)−2

maps λn onto �λn(ξ) =
√

9
π(5−3ξ)

(1 − ξ2)1/4Qn(ξ), where Qn := Un − 1
3Un−1 is

a polynomial of degree n for n = 0, 1, 2, . . . Thus 5.10 is shown, which implies the
assertion. ��
Corollary 5.10 Let Qn := Un − 1

3Un−1 , n = 0, 1, 2, . . . with Un the Chebyshev
polynomial of the second kind of degree n and U−1 := 0. Then (Qn)n≥0 is a sequence
of orthonormal polynomials on [−1, 1] with respect to the weight function ξ �→
9
π

√
1−ξ2

(5−3ξ)
. It obeys the recurrence Qn+1 = 2ξ Qn−Qn−1 for Q0 = 1, Q1(ξ) = 2ξ− 1

3 .

Theorem 5.11 The spectral representation Wλ = V M(id[0,2])V−1 holds.

Proof First note |q(s, x)| ≤ (
s(2−s)

)−1/2. Let h ∈ L2(0, 2)with support in [δ, 2−δ]
for some 0 < δ < 1. Then

(
V M(id[0,2])h

)
(x) = ∫ 2−δ

δ
q(s, x)s h(s) d s. Substitute

s q(s, x) = ∫∞
0 e−|x−y| q(s, y) d y. The integrations can be interchanged by Fubini’s

theorem yielding
∫∞
0 e−|x−y|

( ∫ 2−δ

δ
q(s, y)h(s) d s

)
d y = ∫∞

0 e−|x−y| V h(y) d y =
WλV h(y). This implies the result. ��
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5.2.2 Spectral Representation of L�

Let us first establish the kernel of Lλ. By 5.1(e) the latter equals that of A =
P+FM(

√
λ), whence ker(Lλ) = { f ∈ L2(R) : √λ f ∈ H−} by 4.1. Put

u(x) := x+i√
1+x2

, x ∈ R. Note that the multiplication operator M(u) is unitary. It
follows that

ker(Lλ) = M(u)H−, ker(Lλ)
⊥ = M(u)H+ (5.17)

Indeed, as to the less trivial implication let f ∈ ker(Lλ). Then h := √λ f ∈ H−,
whence (x − i)h ∈ L2(R). Therefore k := 2−1/2(x − i)h ∈ H− using 3.1(c), and
f = uk follows.
Hence the reduction L ′λ of Lλ on the orthogonal complement of its kernel is

self-adjoint bounded on M(u)H+ with spectrum [0, 2]. The following computa-
tions are valid in a distributional sense. So generalized eigenfunctions Qs for Lλ

are given by A∗qs = M(
√

λ)F−1P∗+qs since Lλ A∗qs = A∗A A∗qs = s A∗qs . Recall∫∞
−∞ 1]0,∞[ ei xy d y = i

x + πδ(x) =: �(x), see e.g. [36, Table of Fourier Transforms
1.23]. So one yields the not regular distributions on R

Qs(x) = n(s)√
s

√
2

1+ x2
1√
2π

(
(τ − i)�(x + τ)+ (τ + i)�(x − τ)

)
(5.18)

The claim is that n(s)√
s
is the unique positive normalization constant such that Q(s, x) :=

Qs(x) is the kernel for an isometry W on L2(0, 2) in L2(R) satisfying

W h =
∫ 2

0
Q(s, ·)h(s) d s (5.19)

for test functions h. The additional factor 1√
s
regarding the normalization constant

of Qs corresponds to the factor 1√
ϕ
for W0 in 5.8 and is suggested heuristically by

〈A∗qs, A∗qs〉 = 〈qs, AA∗qs〉 = s〈qs, qs〉. For the proof recall the isomorphism �

(5.16) and the Hilbert transformation H (5.5). For g : R+ → C let goe denote the odd
extension goe(x) = −g(−x) for x ≤ 0 of g.

Theorem 5.12 The integral operator (5.19) determines a Hilbert space isometry W :
L2(0, 2)→ L2(R) with ran W = M(u)H+. It satisfies W h = M(u) 1

2

(
I +H

)
(�h)oe

for h ∈ L2(0, 2) and yields the representation

Lλ = W M(id[0,2])W ∗

Proof By the change of variable t = 2/(1 + s2) for the integration in (5.19) one
obtains

√
1+ x2 W h(x) = 1

2π

∫∞
0

(
(t − i)�(x + t)+ (t + i)�(x − t)

)
�h(t) d t . The

integral is easily done yielding (�) W h = M(u) 1
2

(
I + H

)
(�h)oe for test functions h.

Check 〈H f , f 〉 = 0 if f ∈ L2(R) is odd. Therefore ‖W h‖2= || 12
(
I +H

)
(�h)oe||2 =
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〈 12
(
I + H

)
(�h)oe, (�h)oe〉 = 1

2 ‖ (�h)oe ‖2=‖h ‖2. So W is an isometry, and (�)
extends to all h ∈ L2(0, 2). Obviously W h ∈ M(u)H+. Moreover, if k ∈ H+ then
k = 1

2

(
I + H

)
(k − ǩ) as ǩ ∈ H−. Since k − ǩ is odd, this implies ran W = M(u)H+.

The spectral representation of Lλ follows from W M(id[0,2])h = LλW h for test
functions h. The latter is shown along the lines of the proof of 5.11. We omit the
technicalities. ��
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