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Abstract
An active area of investigation in the search for quantum advantage is quantum machine learning. Quantum machine
learning, and parameterized quantum circuits in a hybrid quantum-classical setup in particular, could bring advancements
in accuracy by utilizing the high dimensionality of the Hilbert space as feature space. But is the ability of a quantum
circuit to uniformly address the Hilbert space a good indicator of classification accuracy? In our work, we use methods
and quantifications from prior art to perform a numerical study in order to evaluate the level of correlation. We find a
moderate to strong correlation between the ability of the circuit to uniformly address the Hilbert space and the achieved
classification accuracy for circuits that entail a single embedding layer followed by 1 or 2 circuit designs. This is based on
our study encompassing 19 circuits in both 1- and 2-layer configurations, evaluated on 9 datasets of increasing difficulty. We
also evaluate the correlation between entangling capability and classification accuracy in a similar setup, and find a weak
correlation. Future work will focus on evaluating if this holds for different circuit designs.

Keywords Quantum neural networks · Parameterized quantum circuits · Expressibility · Quantum machine learning ·
Quantum computing · Entangling capability

1 Introduction

Quantum computing has seen a steady growth in interest
ever since the quantum supremacy experiment (Arute
et al. 2019). The search for quantum advantage, quantum
supremacy for practical applications, is an active area of
research (Bravyi et al. 2020). One potential domain of
applications is machine learning (Riste et al. 2017). Here,
quantum computing is said to potentially bring speedups
and improvements in accuracy. One line of reasoning to
assume an improvement in accuracy is as follows. A
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classical neural network takes the input data and maps it
into a higher dimensional feature space. Then, using a
combination of learnable linear transformations and static
non-linear transformations, it maps the data between various
higher dimensional feature spaces. This mapping is repeated
until the data points are positioned in such a way that a
hyperplane can separate data that belongs to different output
classes. Given that qubits, the smallest units of information
in a quantum computer, can span a larger space due to their
quantum mechanical properties, one would expect that with
the same resources, data could be mapped between higher
dimensional and larger feature spaces. This would allow a
more accurate separation of the data. Or, as a trade-off, one
would require fewer resources to address the same space and
maintain the same level of accuracy.

Recently, a framework compatible with shallow depth
circuits for noisy intermediate-scale quantum (Preskill
2018) systems has been developed, named the hybrid
quantum-classical framework. In this framework, the quan-
tum machine leverages parameterized quantum circuits
(PQCs) in order to make predictions and approximations,
while the classical machine is used to update the parameters
of the circuit (McClean et al. 2016). Example algorithms are
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the Variational Quantum Eigensolver (Peruzzo et al. 2014)
and the Quantum Approximate Optimisation Algorithm
(Farhi et al. 2014). Variational Quantum Circuits can also be
used for machine learning problems, and bear resemblance
to the structure of classical neural networks (Schuld et al.
2018).

Just as in classical neural networks, many circuit archi-
tectures exist. An active area of research focuses on deter-
mining the power and capabilities of these circuits (Coyle
et al. 2020; Sim et al. 2019; Schuld et al. 2020). Follow-
ing the previous line of reasoning of mapping data in larger
feature spaces, one way of quantifying the power of a PQC
is by quantifying the ability of a PQC to uniformly reach
the full Hilbert space (Sim et al. 2019). Our work investi-
gates these definitions by performing a numerical analysis
on the correlation between such descriptors and classifica-
tion accuracy in order to guide the choice and design of
PQCs, as well as provide insight into potential limitations.

The remainder of this paper is structured as follows. In
Section 2, we will describe our approach. Section 3 will
outline our experimental setup and design choices. Our
results are presented in Section 4 and discussed in Section
5. We will end this paper with the conclusion in Section 6.
Raw experimental data can be found in the Appendices.

2 Approach

We will use prior art for descriptors that quantify the
ability of a PQC to explore the Hilbert space. We will per-
form numerical simulations on various custom datasets of
increasing difficult to quantify classification performance
of these circuits. The dataset will be split in a train, valida-
tion, and test sets. The train set will be used for training the
PQC and the validation set for evaluating our hyperparam-
eter search. The final evaluation of our model with the best
hyperparameters is performed on the test set, which will
yield the data points that we will use in our search for corre-
lation. We will repeat the experiments on the validation set
to make sure the outcome is consistent. We will perform a
statistical analysis to evaluate a potential relation between
the descriptors and the classification accuracy of the various
circuits.

3 Evaluation

Variational Quantum Circuits applied for machine learning
problems bear a resemblance to classical neural networks
(NN), which is why they are also sometimes referred to
as quantum neural networks (QNNs) (Farhi and Neven
2018). They can be used for classification and regression
tasks in a supervised learning approach, or as generative

models in an unsupervised setup. We will solely focus on
supervised prediction. Both NNs and QNNs embed the data
into a higher dimensional representation using an input
layer. The input layer of a QNN is called an embedding
circuit. The hidden layers of a QNN are referred to as circuit
templates, which together constitute a PQC. The variables
in these layers, called weights in NNs and parameters
or variational angles in QNNs, are initialized along a
probability distribution before training starts. The most
notable difference between a NN and a QNN is in the
way the output is handled. A NN uses an output layer
to directly generate a distribution over the possible output
classes using only a single run. A QNN needs to be executed
several times, referred to as shots, before a histogram over
the output states can be generated, which still needs to be
mapped to the output classes. The predicted output class is
compared to the true output class, denoted as ypredicted and
ytrue, respectively, and the error is quantified by the loss
function. This quantification of the error is used to guide
the optimizer to adjust the parameters in an iterative process
until convergence in the loss is reached. The measure of
classification accuracy (Acc), or simply accuracy, is the
number of correctly classified samples over the total number
of samples. In the remainder of this section, we will first
discuss the descriptors of PQCs that we will investigate,
before going into more depth on the experimental setup that
we use to investigate the correlation between the descriptors
and the classification accuracy.

3.1 Descriptors of PQCs

Describing the performance of a PQC by the ability of
the circuit to uniformly address the Hilbert space has
been suggested by Sim et al. (2019). In their theoretical
approach, Sim et al. (2019) propose to quantify this by
comparing the true distribution of fidelities corresponding
to the PQC, to the distribution of fidelities from the
ensemble of Haar random states. In practice, they propose
to approximate the distribution of fidelities, the overlap
of states defined F = |〈ψθ |ψφ〉|2, of the PQC. They do
this by repeatedly sampling two sets of variational angles,
simulating their corresponding states, and taking the fidelity
of the two resulting states to build up a sample distribution
P̂PQC(F ; Θ). The ensemble of Haar random states can be
calculated analytically: PHaar = (N−1)(1−F)N−2, where
N is the dimension of the Hilbert space (Życzkowski and
Sommers 2005). The measure of expressibility (Expr) is
then calculated by taking the Kullback-Leibner divergence
(KL divergence) between the estimated fidelity distribution
and that of the Haar distributed ensemble:

Expr = DKL(P̂PQC(F ; Θ)‖PHaar (F )). (1)
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A smaller value for the KL divergence indicates a better
ability to explore the Hilbert space. This measure of expres-
sibility is observed on a logarithmic scale. This is where
we decided to deviate from the original definition, as we
will include these characteristics into the measure itself. In
our work, we will evaluate the negative logarithmic of the
KL divergence between the ensemble of Haar random states
and the estimated fidelity distribution of the PQC, so that
larger values for expressibility’ correspond to better ability
to explore the Hilbert space, and will be correlated on this
logarithmic scale. We will refer to this as expressibility’
(Expr’), distinguished by the ’ symbol:

Expr ′ = − log10(Dkl(P̂PQC(F ; Θ)‖PHaar (F ))). (2)

In the same paper, Sim et al. (2019) define a second
descriptor named entangling capability. This descriptor is
intended to capture the entangling capability of a circuit
which, based on prior art such as work by Schuld et al.
(2018) and Kandala et al. (2017), allows a PQC to capture
non-trivial correlations in the quantum data. Multiple ways
to compute this measure exist, but the Meyer-Wallach
entanglement measure (Meyer and Wallach 2002), denoted
Q, is chosen due to its scalability and ease of computation.
It is defined as

Q(|ψ〉) ≡ 4

n

n∑

j=1

D(ιj (0)|ψ〉, ιj (1)|ψ〉) (3)

Where ιj (b) represents a linear mapping for a system of n

qubits that acts on the computational basis with bj ∈ {0, 1}:

ιj (b)|b1 . . . bn〉 = δbbj
|b1 . . . b̂j . . . bn〉. (4)

Here, the symbol ˆdenotes the absence of a qubit. In prac-
tice, also this measure of the PQC needs to be approxima-
ted by sampling, so Sim et al. (2019) define the estimate of
entangling capability (Ent) of the PQC to be the following:

Ent = 1

|S|
∑

θi∈S

Q(|ψθi
〉), (5)

where S represents the set of sampled circuit parameter
vectors θ .

The quantification of both expressibility and entangling
capability for the circuits, as found and provided by Sim
et al. (2019), is shown in Table 5 in Appendix 1.

3.2 Datasets

Many datasets for the evaluation of classical machine learn-
ing algorithms exist (Goldbloom and Hamner 2020). How-
ever, classical machine learning is more advanced as a
field compared to quantum machine learning, and currently

capable of both processing data at larger scales and pre-
dicting more complex distributions. We have searched for
a set of problems of increasing and varying difficulty, but
not of a larger problem size, to cover a wider range of prob-
lems to benchmark against. We were unable to find any that
satisfied our needs, and therefore came up with a set of nine
datasets for the classifiers to fit, as shown in Fig. 1, labelled
numerically in the vertical direction and alphabetically in
the horizontal direction. Here, we included datasets where
the two classes are bordering one another (1a), require one
(1b) or more (1c) bends in a decision boundary, entrap one
another (2a, 2b, 2c), or fully encapsulate each other (3a, 3b,
3c). Each dataset contains a total of 1500 data points for
training, testing hyperparameters, and validation in a ratio
of 3 : 1 : 1. The ratio of data points labelled true versus data
points labelled false is 1 : 1, e.g., all datasets are balanced.
All data points are cleaned and normalized.

3.3 Embedding the data

Various ways to embed classical data into quantum circuits
have been proposed, such as Amplitude Encoding (Schuld
and Killoran 2019), Product Encoding (Stoudenmire and
Schwab 2016), or Squeezed Vacuum State Encoding
(Schuld and Killoran 2019). Important distinguishing
characteristics are time complexity, memory complexity,
and fit for prediction circuits, as some prediction algorithms
require data in a particular format. This part of the QNN is
also referred to as the state preparation circuit, embedding
circuit or the feature embedding circuit. However, the
existing circuits do not meet our requirements. We search
for an embedding that:

– Holds as little expressive power as possible, as we want
to observe the expressive power of the PQC

– Embeds the data equally in all computational bases,
to ensure circuit templates with initial gates acting on
particular basis have an equal chance of having an
observable effect

For this, we propose a novel embedding that we will refer
to as the minimally expressive embedding, denoted W(x)

in later calculations and shown in Fig. 2. To make sure
this embedding circuit holds as little expressive power as
possible, we embed the classical data into a quantum state
using a linear mapping into the range (0, 2π ] using the
parameter of a Rotational X gate. This can be visualized
for this single qubit as embedding data along a circle in
the Bloch sphere, as shown in Fig. 2b. We then use a
Rotational Y and Rotational Z gate to rotate the circle of
embedded data 45° both in the X-axis and Y-axis. The
result is an embedding that, when projected down on the
various computational basis, can address a similar range
in every computational basis, allowing no bias to favor
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Fig. 1 Datasets used to benchmark classification accuracy, labelled numerically in the vertical direction and alphabetically in the horizontal
direction

circuits that start with specific (Rotational) Pauli gates that
could be off-axis for other embeddings. This can be seen in
Fig. 2c and d.

We embed the 2-dimensional data in a replicative
fashion: data on the x-axis in Fig 1 is embedded in qubits 0
and 2, data on the y-axis is embedded in qubits 1 and 3. We
do this for two reasons:

– 2-Dimensional data can be easily visualized for a better
understanding of both the data and the fitted decision
boundary

– Input redundancy is suggested to provide an advantage
in classification accuracy (Vidal and Theis 2019)

Due to computational restrictions and available nodes for si-
mulation, we restricted the data redundancy to a factor of 2.

3.4 The parameterized quantum circuit

In this paper, we aim to explore the correlation between
our previously introduced descriptors and classification
accuracy for various circuits and layers. Every experiment
of ours follows the same design: a single embedding
circuit followed by 1 or 2 circuit templates. For the circuit
templates, denoted U(θ) when used later, we use the circuits
presented in Sim et al. (2019). In this work, they introduce
circuits with parameterized gates RX, RY , and RZ , as
defined in Nielsen and Chuang (2002). The exact layout of
the circuit templates can be consulted in Fig. 5 in Appendix
2 of our paper. All 19 circuits, except circuit 10, are used in
the hyperparameter selection runs. All 19 circuits are used
in the validation runs.
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Fig. 2 The various aspects of the minimally expressive embedding: a the embedding circuit; b the quantum state achieved when uniformly
sampling input data, viewed in 3d; c, d: the quantum state achieved when uniformly sampling input data, in 2d on y-z and in 2d on x-z

3.5 Measurement observable andmapping

The circuit needs to be measured repeatedly. The number of
times can be significantly less as previously thought (Sweke
et al. 2019). For our observable A, we use Pauli Z gates on
all four qubits. This results in a total of 16 possible states, of
which we map the first four and last four to output class −1
and the other to output class 1, in line with previous work
(Havlicek et al. 2018).

3.6 Loss function

Loss functions quantify the errors between the predicted
class of the sample and the actual class. This can be done in
several ways, which creates different loss landscapes. These
loss landscapes have different properties for different loss
functions, example properties being plateaus, local minima,
and global minima that do not align with the true minima.
In our work, we will evaluate the L1 loss and L2 loss.

The L1 loss can be seen as the most straightforward loss
function, taking the absolute value of the difference between
ytrue and ypred :

L1 =
samples∑

s=0

|ypreds − ytrues |. (6)

Here, ypred = 〈0|W †(x)U†(θ)AU(θ)W(x)|0〉, with W(x)

and U(θ) representing the embedding circuit and the circuit
template respectively, as previously defined. Furthermore,
ytrue is given as ground truth by the input dataset.

The L2 loss does not use the absolute value but instead
ensures positive outcomes through taking the square of the
difference, which is easier to differentiate. This square also
penalizes large errors harder than small errors, reducing the
chance of overfitting. The L2 loss is defined as follows:

L2 =
samples∑

s=0

(ypreds − ytrues )
2. (7)

For binary values of y, the L2 loss and the L1 loss are equal.
This is not the case for continuous values.

3.7 Optimizer

The task of the optimizer is to find updates to the parameters
based on the outcome of the loss function in such a way that,
after repeated runs, the loss is minimized. Many approaches
make use of the gradient, either analytically (Schuld et al.
2019) or approximately (Sweke et al. 2019). Alternative
approaches exist, such as genetic optimization strategies
(Mirjalili and Sardroudi 2012). Either way, a balance needs
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to be struck between making large enough jumps to get out
of local minima and plateaus, and making small enough
updates so that the jumps do not equal random walks in
the loss landscape. In our work, we evaluate the Adam
optimizer and the gradient descent optimizer, due to their
popularity in classical frameworks and their availability in
our implementation framework.

3.8 Implementation framework

We originally implemented our work in Qiskit (Abraham
2019), but switched to Pennylane (Bergholm et al. 2018)
due to the ease for our hyperparameter search.

3.9 Training setup

We will first perform a hyperparameter search on the loss
functions L1 and L2, as well as on the optimizers Adam
and gradient descent, all introduced previously in this
section. We compare their performance in terms of average
classification accuracy over the validation data of our nine
datasets. As we evaluate 2 loss functions and 2 optimi-
zers using 19 circuits in both 1- and 2-layer configurations
on 9 datasets, we have to train a total of 1368 quantum
circuits. We simulate these 1368 circuits classically
in our previously mentioned implementation framework,
Pennylane (Bergholm et al. 2018). We will report on the
difference in accuracy for different numbers of layers of
each circuit but as each layer configuration has its own value
for the descriptors, we will treat each layer configuration
as unique data points in our final analysis. The optimal
hyperparameters derived through the validation runs are
used as settings for the test runs during which we gather
our final accuracy values for all 19 circuits in both 1- and
2-layer configurations evaluated on 9 datasets each. As a
sanity check, we will repeat the final experiment three times,
requiring a total of 1026 additional simulations.

3.10 Defining correlation

In order to determine the correlation, various indicators
have been considered. We decided on the Pearson product-
moment correlation coefficient (Boddy and Laird Smith
2009), as the assumptions on the underlying data distri-
bution are the best fit. In our threats to validity, we will
make a brief note on linear versus polynomial fitting. We
will use the Pearson coefficient to determine the correlation
between expressibility and classification accuracy, as well
as between entangling capability and classification accu-
racy on the 342 data points, as described in the previous
section. We will use these coefficients to draw conclusions
on the level of correlation between the descriptors and the
classification accuracy.

Table 1 Accuracy for various hyperparameter settings, averaged out
over the datasets

Opt.

Layers

1 2

Layers

Loss

Adam 72.6 76.7 L1

76.8 82.6 L2

Gradient 73.9 71.5 L1

descent 74.2 75.6 L2

Bold entries show the recommended option

3.11 Classical neural network

We will also evaluate our dataset using a classical
neural network for comparison and sanity checking. We
implemented both 1- and 2-layer versions, each having
16 weights per layer. The activation function used is the
Rectified Linear Unit (ReLU), and the system is optimized
using the Adam optimizer. All is implemented in Tensorflow
(Abadi 2015).

4 Results

The classification accuracy for the various hyperparameter
settings can be found in Appendix 4. In particular, the
results for the Adam optimizer with L1 loss can be found
in Table 9 and with L2 loss in Table 10. The results for the
gradient descent optimizer with L1 loss in Table 11 and with
L2 loss in Table 12. The average classification accuracy
across all datasets for the various hyperparameter settings,
as well as the number of layers, is summarized in Table 1.
Here, we see that the Adam optimizer combined with L2
loss achieves the best classification accuracy, regardless
of the number of layers. Treating each hyperparameter
separately using the factorial design (Bose 1947), as shown
in Table 2, reconfirmed these settings. The outcome of the
three validation runs using the L2 loss and Adam optimizer
can be found in Appendix 3, Table 7 for the 1-layer runs
and Table 8 for the 2-layer runs. We calculated the mean
absolute difference between each of the 342 data points of

Table 2 Factorial design to evaluate classification accuracy (Acc) with
regard to the dependent variables (DV)

DV Option Acc Option Acc

Loss L1 73.7 L2 77.3

Optimizer Adam 77.2 GD 73.8

Layers 1 74.4 2 76.7

Bold entry shows the highest accuracy
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every run, and found it to be 0.06 with a standard deviation
of 0.36. With this info, we expect the correlation not to
vary significantly between the runs, which is also what we
observe in Table 3, where we show the Pearson product-
moment correlation coefficients between the descriptors and
classification accuracy for each dataset individually, as well
as the mean and standard deviation. We added an extra row
where we exclude dataset 2a for reasons described in the
“Discussion” section. The relation between expressibility’
and classification accuracy for every dataset is plotted in
Fig. 3, and the relation between entangling capability and
classification accuracy is plotted in Fig. 4. The average
classification accuracy for the classical NN is shown in
Table 6 of Appendix 3.

5 Discussion

5.1 Limitations of the experiment

Before discussing the results of our experiment, we will
address the limiting factors to place our findings in the
correct perspective.

– Our experiment only includes specific quantum circuit
designs. In particular, the system always starts with an
embedding circuit, followed by 1 or 2 circuit templates,
with rotational gates, parameterized rotational gates,
and conditional rotational gates

– We handcrafted 9 different sets of data points of
increasing difficulty that we believe to be realistic and

representative problems for current-day quantum
machine learning algorithms. However, the sets only
contain classical data with 2 features. Data encapsulat-
ing more complex patterns, or higher dimensional data,
might yield different results

– The 2d data was embedded in a replicative manner
on 4 qubits with our proposed minimally expressive
embedding circuit. Different embeddings, additional
embeddings, or repetitive embeddings are not evalu-
ated. Neither were ancilla qubits.

Furthermore, different descriptors for expressibility and
entangling capability exist, as well as different descriptors
for the power of a PQC overall(Coyle et al. 2020; Sim et al.
2019; Schuld et al. 2020).

5.2 Correlation using the best hyperparameter
settings

For our experimental setup, we have found an average
Pearson correlation coefficient between expressibility’ and
classification accuracy of 0.64±0.16, as calculated from run
1 in Table 3. However, when looking at the plots in Fig. 3,
we see that dataset 2a contains 33 out of 38 data points close
to or at 100% accuracy. As these accuracies are capped out,
no meaningful correlation can be expected. For this reason,
we mark dataset 2a as faulty and exclude it from our eval-
uation. This brings us to a final mean Pearson correlation
coefficient between expressibility’ and classification accu-
racy of −0.70 ± 0.05. This indicates a strong correlation
(Dancey and Reidy 2007) between classification accuracy

Table 3 Pearson product-
moment correlation coefficient
between expressibility’ and
classification accuracy, as well
as between entangling
capability and classification
accuracy, for the various
datasets

Expr’ vs Acc Ent vs. Acc

Dataset Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

1a 0.575 0.570 0.571 0.467 0.463 0.466
1b 0.699 0.699 0.699 0.353 0.353 0.353
1c 0.675 0.678 0.676 0.419 0.421 0.420
2a 0.200 0.200 0.200 −0.257 −0.257 −0.258
2b 0.761 0.761 0.777 0.251 0.251 0.258
2c 0.700 0.707 0.694 0.339 0.343 0.336
3a 0.732 0.731 0.740 0.190 0.189 0.195
3b 0.693 0.686 0.693 0.231 0.226 0.231
3c 0.727 0.730 0.730 0.301 0.303 0.303

Mean 0.640 0.640 0.642 0.255 0.255 0.256
Stdev 0.163 0.164 0.165 0.199 0.199 0.199

Mean’ 0.695 0.695 0.697 0.319 0.319 0.320
Stdev’ 0.052 0.054 0.057 0.089 0.089 0.087

Mean and standard deviation are taken over all datasets; mean’ and standard deviation’ are taken over all
datasets but dataset 2a
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Fig. 3 Each plot contains 38 data points, collected by fitting 19 circuits in 1- and 2-layer configurations to the particular dataset, depicting the the
relation between classification accuracy on the horizontal axis and expressibility’ on the vertical axis

Fig. 4 Each plot contains 38 data points, collected by fitting 19 circuits in 1- and 2-layer configurations to the particular dataset, depicting the the
relation between classification accuracy on the horizontal axis and entangling capability on the vertical axis

Quantum Machine Intelligence (2021) 3: 9Page 8 of 199



and expressibility’. This is within expectations (Sim et al.
2019).

Using the same experimental setup, the mean Pearson
correlation coefficient between entangling capability and
classification accuracy across all datasets is 0.26 ± 0.20. As
this experiment suffers the same characteristics for dataset
2a, as observed in Fig. 4, we also decide to exclude dataset
2a for our evaluation of this coefficient. This brings the final
mean Pearson correlation coefficient between entangling
capability and classification accuracy at 0.32 ± 0.09. This
indicates a weak correlation (Dancey and Reidy 2007)
between classification accuracy and entangling capability.
This is not as expected by Sim et al. (2019), but in line with
recent findings that argue that an excess in entanglement
between the visible and hidden units in a quantum neural
network can hinder learning (Marrero et al. 2020).

5.3 Correlation using the best hyperparameter
settings

5.4 Correlation using the remaining
hyperparameters

As a sanity check on our strong results, we calculated the mean
Pearson correlation coefficient and its standard deviation
for the different hyperparameter settings on the validation
data, all with dataset 2a excluded. This is summarized in
Table 4. Here we see that for the Adam optimizer with
either L1 or L2, we maintain a value that can be classified
as a strong correlation. For gradient descent, the claim
would be weaker, being classified as a moderate to strong
correlation (Dancey and Reidy 2007). After examining
the data, we see that this is caused by the optimizer not
performing optimally. In particular, at least half of the
circuits on datasets 2c and 3c cannot fit any data, staying
around 50% accuracy, and the majority of the circuits
are stuck in a local minima around 80% for dataset 3b.
This is not surprising, as we saw in Table 2 that the
average classification accuracy while using the gradient

Table 4 Mean Pearson correlation coefficient for expressibility
and classification accuracy as a sanity check on the remaining
hyperparameters

Optimizer Loss Mean Stdev

Adam L1 0.63 0.13

Adam L2 0.70 0.08

GD L1 0.46 0.11

GD L2 0.56 0.13

descent optimizer is lower compared to using the Adam
optimizer.

5.5 Limitations of the descriptor

The original paper by Sim et al. (2019) contains 19
circuits with 1 to 5 layers. In their paper, they address
that expressibility values appear to saturate for all circuits,
albeit at different levels. The lowest value of expressibility
that they present is 0.0026, which in our measure
ofexpressibility’ corresponds to −log10(0.0026) = 2.59.
In our experiments, we tested 6 circuits that have a value
of expressibility’ higher than 2, meaning an expressibility
smaller than 0.01. The best average accuracy achieved by
any of our circuits is 97.7. Still, this includes a fitting of
only 92.3% for dataset 3b. In comparison, a classical neural
network containing 2 layers with 16 weights is able to
achieve an average classification accuracy of 99% without
any hyperparameter tuning, as shown in Table 6. When
looking at state-of-the-art neural network architectures, we
continue to see these patterns. Most quantum classifiers are
still being evaluated on small datasets such as ours (Schuld
and Killoran 2019; Havlicek et al. 2018), or datasets such
as the MNIST (Deng 2012). Classical machine learning
models on the other hand are being evaluated on larger
and more complex datasets, such as ImageNet (Deng et al.
2009). Although this may be purely due to the infancy of
the current systems, limiting the size of the input data, it
still appears that adding extra layers does not circumvent
the saturation. We believe a hint might lay in the following
reasoning: it is not only important for a classifier to be able
to uniformly address a large Hilbert space, but also requires
a repeated non-linear mapping between these spaces. As a
thought experiment, think of a circuit that embeds linearly
increasing classical data with a single rotational Pauli X
gate. In this scenario, one would not expect to be able to
find a separating plane between the two classes without
remapping the data. We believe that this is also the reason
why in classical neural networks, the data is repeatedly
mapped between feature spaces by repeated layers of linear
neurons and non-linear activation functions. We believe
that quantum circuits need to be designed and evaluated
in such a manner too. Recent research addresses this by
having alternating layers of embedding and trainable circuit
layers (Pérez-Salinas et al. 2020), thereby breaking linearity,
although Schuld et al. (2020) drive a point that classical
systems can achieve a similar effect with similar resources,
deeming the use of quantum for ML not necessary. The
investigation into the effect of the design on our descriptors
is marked as future work.
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5.6 Threats to validity

We are aware that different hyperparameters, differently
drawn values from our probability distribution initializating
the weights, and different datasets can yield different
results. We have aimed to account for this effect by
performing a hyperparameter search to find the best
hyperparameters for our main result, but still evaluate
for the remaining hyperparameters to confirm our results.
We also accounted for different values drawn from our
probabilitydistribution for initializations of the weights by
repeating our experiments three times on 9 different datasets
of increasing difficulty. For fitting our correlation indicator,
we consider st until 3rd-order polynomials, and did not
observe a noticeable difference.

6 Conclusion

In our work, we have found a a mean 0.7 ± 0.05 Pearson
product-moment correlation coefficient between classifica-
tion accuracy and expressibility’ yielding a strong correla-
tion (Dancey and Reidy 2007). This numerically derived
outcome is calculated using 342 data points. These data
points were generated using 19 circuits, in both 1- and 2-
layer configurations, evaluated on 9 custom datasets of in-
creasing difficulty. Similar investigation on the other hyper-
parameters yielded mean coefficients between 0.46 and
0.7, yielding a moderate to positive correlation (Dancey
and Reidy 2007). This combination leads us to conclude
that for our experiments, a moderate to strong correlation
between classification accuracy and expressibility’ exists.
Here, expressibility’ is based on the definition of express-
ibility proposed by Sim et al. (2019), and meant to cap-
ture the ability of a parameterized quantum circuit in a
hybrid quantum-classical framework to uniformly address
the Hilbert space. This is calculated by taking the negative
log of the Kullback–Leibler divergence between the ensem-
ble of Haar random states and the estimated fidelity distri-
bution of the PQC. This outcome is in line with expectations
by Sim et al. (2019).

Our experiment is limited to PQCs that follow a specific
pattern of concatenating an embedding layer with one or
more circuit templates. It is suggested that this circuit
setup is limiting the classification performance(Schuld et al.
2020). Further investigation into more elaborate designs that
break linearity after embedding is required, for example
by repeated alteration between embedding layers and
trainable layers (Schuld et al. 2020). Such designs would
potentially not be captured by the expressibility’ measure,
and further investigation into extending the measure is
required.

We have also investigated the correlation between en-
tangling capability of a circuit and its classification accu-
racy, where entangling capability was measured as the
Meyer-Wallach entanglement measure (Meyer and Wallach
2002). The outcome was a weak correlation, based on a
similar experimental setup that yielded a mean Pearson
product-moment correlation of 0.32 ± 0.09 (Dancey and
Reidy 2007). This is not as expected by Sim et al. (2019),
but in line with recent findings by Marrero et al. (2020).

Appendix 1: Expressibility and entangling
capability

Table 5 Expressibility, expressibility’, and entangling capability of the
circuits

Layer 1 Layer 2

Circuit Expr Expr’ Ent Expr Expr’ Ent

1 0.2995 0.52 0.0 0.1972 0.71 0.0

2 0.2875 0.54 0.81 0.0244 1.61 0.8

3 0.24 0.62 0.34 0.0847 1.07 0.49

4 0.1353 0.87 0.47 0.0291 1.54 0.59

5 0.0601 1.22 0.41 0.0087 2.06 0.69

6 0.0041 2.38 0.78 0.0036 2.44 0.86

7 0.0985 1.01 0.33 0.0386 1.41 0.52

8 0.0864 1.06 0.39 0.0255 1.59 0.56

9 0.678 0.17 1.0 0.4261 0.37 1.0

10 0.2284 0.64 0.54 0.1617 0.79 0.71

11 0.1325 0.88 0.73 0.0122 1.92 0.79

12 0.2003 0.7 0.65 0.0181 1.74 0.74

13 0.0516 1.29 0.61 0.0083 2.08 0.76

14 0.0144 1.84 0.66 0.0055 2.26 0.81

15 0.191 0.72 0.82 0.1185 0.93 0.86

16 0.2615 0.58 0.35 0.0885 1.05 0.5

17 0.1378 0.86 0.45 0.0327 1.49 0.58

18 0.2358 0.63 0.44 0.0602 1.22 0.62

19 0.0814 1.09 0.59 0.0096 2.02 0.72

Please see copyright notice

Notice regarding data in the “Expr” and “Ent” columns:

Copyright Wiley-VCH GmbH. Reproduced with permission.

Source: Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik.
“Expressibility and Entangling Capability of Parameterized Quantum
Circuits for Hybrid Quantum-Classical Algorithms.” Advanced
Quantum Technologies 2.12 (2019): 1900070. Page 9.
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Fig. 5 Circuit templates evaluated in this study. Gates as defined in
Nielsen and Chuang (2002). All Rotational Gates are parameterized.
Circuit diagrams were generated using qpic (KutinS 2016). Please
see copyright notice (Notice regarding choice of circuit templates
and visualizations of these circuits: Copyright Wiley-VCH GmbH.

Reproduced with permission. Source: Sukin Sim, Peter D. Johnson,
and Alán Aspuru-Guzik. “Expressibility and Entangling Capability of
Parameterized Quantum Circuits for Hybrid Quantum-Classical Algo-
rithms.” Advanced Quantum Technologies 2.12 (2019): 1900070. Page
8.)
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Appendix 3: Test results

Table 6 Test results—classical
neural network Setup Performance

Layers 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

1 96% 100% 100% 92% 94% 82% 100% 98% 70% 92%

2 96% 100% 100% 100% 99% 98% 100% 99% 97% 99%

Table 7 Test results — Adam optimizer, L2 loss, 1 layer

Setup Performance

Run Circuit 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

1 1 71.5% 80.3% 66.9% 99.7% 76.0% 56.8% 74.1% 78.7% 67.7% 74.6%

1 2 94.7% 98.4% 86.9% 70.9% 64.5% 57.6% 93.3% 56.8% 56.0% 75.5%

1 3 70.7% 78.4% 69.1% 100.0% 70.1% 56.8% 78.1% 75.5% 65.9% 73.8%

1 4 94.9% 89.3% 82.7% 100.0% 88.8% 78.4% 95.2% 82.1% 80.5% 88.0%

1 5 94.4% 99.7% 90.7% 100.0% 100.0% 74.7% 96.8% 96.0% 86.9% 93.2%

1 6 96.5% 100.0% 100.0% 100.0% 99.2% 69.3% 97.3% 99.5% 93.3% 95.0%

1 7 94.4% 89.1% 82.1% 100.0% 72.5% 75.2% 91.2% 77.6% 62.7% 82.8%

1 8 94.4% 88.5% 91.5% 100.0% 73.9% 84.0% 92.8% 91.7% 61.9% 86.5%

1 9 88.3% 76.3% 71.7% 96.8% 67.2% 67.5% 78.1% 84.3% 53.9% 76.0%

1 10 74.9% 93.6% 74.7% 99.5% 71.2% 65.1% 85.6% 89.1% 79.7% 81.5%

1 11 87.2% 88.0% 68.0% 77.3% 85.3% 79.7% 77.9% 81.3% 79.2% 80.4%

1 12 72.5% 86.7% 66.7% 99.5% 71.5% 56.3% 92.5% 78.4% 60.3% 76.0%

1 13 92.0% 89.9% 93.3% 100.0% 84.0% 62.4% 85.3% 83.2% 61.6% 83.5%

1 14 93.9% 99.2% 91.2% 100.0% 82.4% 80.3% 97.3% 93.1% 88.3% 91.7%

1 15 84.3% 99.2% 90.7% 98.9% 89.9% 69.9% 79.2% 82.4% 87.2% 86.8%

1 16 68.5% 80.5% 65.9% 100.0% 75.2% 66.4% 74.1% 78.1% 64.8% 74.8%

1 17 93.1% 89.9% 82.1% 100.0% 72.5% 78.1% 91.5% 88.3% 89.3% 87.2%

1 18 74.9% 80.8% 50.7% 99.7% 72.5% 56.0% 78.7% 80.5% 62.7% 72.9%

1 19 94.9% 96.5% 78.7% 100.0% 75.7% 78.4% 91.7% 86.9% 62.7% 85.1%

2 1 71.5% 80.3% 66.9% 99.7% 76.0% 56.8% 74.1% 78.7% 67.7% 74.6%

2 2 94.7% 98.4% 86.9% 70.9% 64.5% 57.6% 93.3% 56.8% 56.0% 75.5%

2 3 70.7% 78.4% 69.1% 100.0% 70.1% 56.8% 78.1% 75.5% 65.9% 73.8%

2 4 94.9% 89.3% 82.7% 100.0% 88.8% 78.4% 95.2% 82.1% 80.5% 88.0%

2 5 94.4% 99.7% 90.7% 100.0% 100.0% 74.7% 96.8% 96.0% 86.9% 93.2%

2 6 96.5% 100.0% 100.0% 100.0% 99.2% 69.3% 97.3% 99.5% 93.3% 95.0%

2 7 94.4% 89.1% 82.1% 100.0% 72.5% 75.2% 91.2% 77.6% 62.7% 82.8%

2 8 94.4% 88.5% 91.5% 100.0% 73.9% 84.0% 92.8% 91.7% 61.9% 86.5%

2 9 88.3% 76.3% 71.7% 96.8% 67.2% 67.5% 78.1% 84.3% 53.9% 76.0%

2 10 74.9% 93.6% 74.7% 99.5% 71.2% 65.1% 85.6% 89.1% 79.7% 81.5%

2 11 87.2% 88.0% 68.0% 77.3% 85.3% 79.7% 77.9% 81.3% 79.2% 80.4%

2 12 72.5% 86.7% 66.7% 99.5% 71.5% 56.3% 92.5% 78.4% 60.3% 76.0%

2 13 92.0% 89.9% 93.3% 100.0% 84.0% 62.4% 85.3% 83.2% 61.6% 83.5%

2 14 93.9% 99.2% 91.2% 100.0% 82.4% 80.3% 97.3% 93.1% 88.3% 91.7%

2 15 84.3% 99.2% 90.7% 98.9% 89.9% 69.9% 79.2% 82.4% 87.2% 86.8%

2 16 68.5% 80.5% 65.9% 100.0% 75.2% 66.4% 74.1% 78.1% 64.8% 74.8%

2 17 93.1% 89.9% 82.1% 100.0% 72.5% 78.1% 91.5% 88.3% 89.3% 87.2%
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Table 7 (continued)

Setup Performance

Run Circuit 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

2 18 69.6% 80.8% 50.7% 99.7% 72.5% 56.0% 78.7% 80.5% 62.7% 72.4%

2 19 94.9% 96.5% 78.7% 100.0% 75.7% 78.4% 91.7% 86.9% 62.7% 85.1%

3 1 71.5% 80.3% 66.9% 99.7% 76.0% 56.8% 74.1% 78.7% 67.7% 74.6%

3 2 94.7% 98.4% 86.9% 70.9% 64.5% 57.6% 93.3% 56.8% 56.0% 75.5%

3 3 70.7% 78.4% 69.1% 100.0% 70.1% 56.8% 78.1% 75.5% 65.9% 73.8%

3 4 94.9% 89.3% 82.7% 100.0% 88.8% 78.4% 95.2% 82.1% 80.5% 88.0%

3 5 94.4% 99.7% 90.7% 100.0% 100.0% 74.7% 96.8% 96.0% 86.9% 93.2%

3 6 96.5% 100.0% 100.0% 100.0% 99.2% 69.3% 97.3% 99.5% 93.3% 95.0%

3 7 94.4% 89.1% 82.1% 100.0% 72.5% 75.2% 91.2% 77.6% 62.7% 82.8%

3 8 94.4% 88.5% 91.5% 100.0% 73.9% 84.0% 92.8% 91.7% 61.9% 86.5%

3 9 88.3% 76.3% 71.7% 96.8% 67.2% 67.5% 78.1% 84.3% 53.9% 76.0%

3 10 74.9% 93.6% 74.7% 99.5% 71.2% 65.1% 85.6% 89.1% 79.7% 81.5%

3 11 87.2% 88.0% 68.0% 77.3% 85.3% 79.7% 77.9% 81.3% 79.2% 80.4%

3 12 72.5% 86.7% 66.7% 99.5% 71.5% 56.3% 92.5% 78.4% 60.3% 76.0%

3 13 92.0% 89.9% 93.3% 100.0% 84.0% 62.4% 85.3% 83.2% 61.6% 83.5%

3 14 93.9% 99.2% 91.2% 100.0% 82.4% 80.3% 97.3% 93.1% 88.3% 91.7%

3 15 84.3% 99.2% 90.7% 98.9% 89.9% 69.9% 79.2% 82.4% 87.2% 86.8%

3 16 68.5% 80.5% 65.9% 100.0% 75.2% 66.4% 74.1% 78.1% 64.8% 74.8%

3 17 93.1% 89.9% 82.1% 100.0% 72.5% 78.1% 91.5% 88.3% 89.3% 87.2%

3 18 74.9% 80.8% 50.7% 99.7% 72.5% 56.0% 78.7% 80.5% 62.7% 72.9%

3 19 94.9% 96.5% 78.7% 100.0% 75.7% 78.4% 91.7% 86.9% 62.7% 85.1%

Table 8 Test results — Adam optimizer, L2 Loss, 2 layers

Setup Performance

Run Circuit 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

1 1 74.7% 84.3% 70.1% 100.0% 76.8% 53.6% 92.0% 80.3% 57.3% 76.6%

1 2 85.3% 86.1% 69.3% 87.5% 74.9% 80.5% 88.5% 77.3% 81.1% 81.2%

1 3 93.1% 86.9% 83.7% 100.0% 74.4% 54.7% 92.3% 83.7% 66.9% 81.7%

1 4 94.9% 96.5% 80.8% 100.0% 98.9% 90.9% 95.7% 91.2% 76.3% 91.7%

1 5 93.9% 100.0% 84.3% 100.0% 100.0% 99.5% 97.6% 99.2% 96.5% 96.8%

1 6 95.2% 99.5% 99.7% 100.0% 99.7% 98.1% 98.9% 96.0% 92.3% 97.7%

1 7 92.8% 99.7% 81.6% 100.0% 80.5% 95.5% 92.3% 86.1% 86.7% 90.6%

1 8 95.7% 99.7% 97.6% 100.0% 96.3% 83.5% 97.3% 97.9% 88.5% 95.2%

1 9 92.0% 81.3% 84.8% 98.7% 64.8% 57.9% 78.1% 79.5% 55.2% 76.9%

1 10 83.7% 95.7% 74.9% 100.0% 81.9% 69.6% 93.1% 85.6% 76.0% 84.5%

1 11 96.8% 99.2% 99.2% 99.7% 98.9% 80.0% 98.7% 95.5% 90.4% 95.4%

1 12 96.0% 100.0% 96.8% 99.7% 94.1% 70.9% 93.9% 95.2% 86.4% 92.6%

1 13 92.3% 100.0% 97.9% 100.0% 98.4% 96.0% 98.4% 94.4% 93.1% 96.7%

1 14 96.3% 100.0% 98.7% 100.0% 99.5% 92.3% 97.1% 97.1% 94.1% 97.2%

1 15 93.6% 99.7% 98.1% 100.0% 98.9% 89.3% 92.5% 96.3% 89.6% 95.3%

1 16 94.9% 99.2% 87.2% 100.0% 83.7% 58.7% 91.5% 80.3% 59.7% 83.9%

1 17 94.1% 99.7% 97.1% 100.0% 85.6% 84.0% 93.3% 78.9% 66.1% 88.8%

1 18 96.5% 93.1% 79.5% 100.0% 69.1% 72.8% 92.5% 85.3% 66.4% 83.9%

1 19 94.9% 99.7% 97.9% 100.0% 99.7% 96.8% 97.6% 96.5% 90.9% 97.1%
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Table 8 (continued)

Setup Performance

Run Circuit 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

2 1 74.7% 84.3% 70.1% 100.0% 76.8% 53.6% 92.0% 80.3% 57.3% 76.6%

2 2 85.3% 86.1% 69.3% 87.5% 74.9% 80.5% 88.5% 77.3% 81.1% 81.2%

2 3 93.1% 86.9% 83.7% 100.0% 74.4% 54.7% 92.3% 83.7% 66.9% 81.7%

2 4 94.9% 96.5% 80.8% 100.0% 98.9% 90.9% 95.7% 91.2% 76.3% 91.7%

2 5 93.9% 100.0% 84.3% 100.0% 100.0% 99.5% 97.6% 99.2% 96.5% 96.8%

2 6 95.2% 99.5% 99.7% 100.0% 99.7% 98.1% 98.9% 96.0% 92.3% 97.7%

2 7 92.8% 99.7% 81.6% 100.0% 80.5% 95.5% 92.3% 86.1% 86.7% 90.6%

2 8 95.7% 99.7% 97.6% 100.0% 96.3% 83.5% 97.3% 97.9% 88.5% 95.2%

2 9 92.0% 81.3% 84.8% 98.7% 64.8% 57.9% 78.1% 79.5% 55.2% 76.9%

2 10 83.7% 95.7% 74.9% 100.0% 81.9% 69.6% 93.1% 85.6% 76.0% 84.5%

2 11 96.8% 99.2% 99.2% 99.7% 98.9% 80.0% 98.7% 95.5% 90.4% 95.4%

2 12 96.0% 100.0% 96.8% 99.7% 94.1% 70.9% 93.9% 95.2% 86.4% 92.6%

2 13 92.3% 100.0% 97.9% 100.0% 98.4% 96.0% 98.4% 94.4% 93.1% 96.7%

2 14 95.5% 100.0% 100.0% 100.0% 99.5% 97.3% 96.8% 94.9% 96.3% 97.8%

2 15 93.6% 99.7% 98.1% 100.0% 98.9% 89.3% 92.5% 96.3% 89.6% 95.3%

2 16 94.9% 99.2% 87.2% 100.0% 83.7% 58.7% 91.5% 80.3% 59.7% 83.9%

2 17 94.1% 99.7% 97.1% 100.0% 85.6% 84.0% 93.3% 78.9% 66.1% 88.8%

2 18 96.5% 93.1% 79.5% 100.0% 69.1% 72.8% 92.5% 85.3% 66.4% 83.9%

2 19 94.9% 99.7% 97.9% 100.0% 99.7% 96.8% 97.6% 96.5% 90.9% 97.1%

3 1 74.7% 84.3% 70.1% 100.0% 76.8% 53.6% 92.0% 80.3% 57.3% 76.6%

3 2 85.3% 86.1% 69.3% 87.5% 74.9% 80.5% 88.5% 77.3% 81.1% 81.2%

3 3 93.1% 86.9% 83.7% 100.0% 74.4% 54.7% 92.3% 83.7% 66.9% 81.7%

3 4 94.9% 96.5% 80.8% 100.0% 98.9% 90.9% 95.7% 91.2% 76.3% 91.7%

3 5 93.9% 100.0% 84.3% 100.0% 100.0% 99.5% 97.6% 99.2% 96.5% 96.8%

3 6 95.2% 99.5% 99.7% 100.0% 99.7% 98.1% 98.9% 96.0% 92.3% 97.7%

3 7 92.8% 99.7% 81.6% 100.0% 80.5% 95.5% 92.3% 86.1% 86.7% 90.6%

3 8 95.7% 99.7% 97.6% 100.0% 96.3% 83.5% 97.3% 97.9% 88.5% 95.2%

3 9 92.0% 81.3% 84.8% 98.7% 64.8% 57.9% 78.1% 79.5% 55.2% 76.9%

3 10 83.7% 95.7% 74.9% 100.0% 81.9% 69.6% 93.1% 85.6% 76.0% 84.5%

3 11 96.8% 99.2% 99.2% 99.7% 98.9% 80.0% 98.7% 95.5% 90.4% 95.4%

3 12 96.0% 100.0% 96.8% 99.7% 94.1% 70.9% 93.9% 95.2% 86.4% 92.6%

3 13 92.3% 100.0% 97.9% 100.0% 98.4% 96.0% 98.4% 94.4% 93.1% 96.7%

3 14 94.1% 100.0% 98.4% 100.0% 99.2% 89.3% 99.2% 97.1% 92.8% 96.7%

3 15 93.6% 99.7% 98.1% 100.0% 98.9% 89.3% 92.5% 96.3% 89.6% 95.3%

3 16 94.9% 99.2% 87.2% 100.0% 83.7% 58.7% 91.5% 80.3% 59.7% 83.9%

3 17 94.1% 99.7% 97.1% 100.0% 85.6% 84.0% 93.3% 78.9% 66.1% 88.8%

3 19 94.9% 99.7% 97.9% 100.0% 99.7% 96.8% 97.6% 96.5% 90.9% 97.1%
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Appendix 4: Hyperparameter search results

Table 9 Hyperparameter search results — Adam optimizer, L1 loss

Setup Performance

Layers Circuit 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

1 1 63.2% 82.1% 74.7% 96.8% 71.2% 54.7% 71.7% 81.1% 51.2% 71.9%

1 2 92.5% 77.9% 70.1% 48.8% 53.9% 52.8% 79.2% 46.4% 49.9% 63.5%

1 3 76.0% 77.6% 73.1% 98.4% 72.8% 54.9% 72.3% 77.9% 57.6% 73.4%

1 4 93.6% 90.7% 81.3% 51.7% 83.5% 84.0% 86.9% 77.9% 76.0% 80.6%

1 5 90.7% 95.7% 93.9% 90.7% 82.4% 49.3% 94.4% 89.9% 77.1% 84.9%

1 6 87.2% 91.5% 89.6% 97.9% 91.7% 93.6% 93.3% 86.1% 86.1% 90.8%

1 7 88.5% 86.9% 79.5% 99.7% 66.7% 59.5% 83.2% 79.5% 80.3% 80.4%

1 8 93.3% 92.0% 88.5% 98.4% 87.5% 76.8% 82.4% 82.7% 71.2% 85.9%

1 9 78.4% 62.1% 85.6% 86.1% 71.2% 57.1% 74.4% 81.9% 56.3% 72.6%

1 11 69.1% 78.7% 53.9% 80.0% 83.7% 73.9% 83.5% 80.5% 76.0% 75.5%

1 12 77.1% 87.7% 63.7% 91.5% 82.4% 56.8% 67.2% 83.5% 46.7% 72.9%

1 13 93.6% 91.2% 84.3% 97.9% 84.5% 73.3% 86.7% 81.1% 78.1% 85.6%

1 14 89.6% 97.6% 89.3% 92.8% 94.1% 73.9% 89.6% 90.7% 77.3% 88.3%

1 15 87.2% 90.7% 79.5% 84.8% 77.3% 63.2% 84.0% 88.0% 81.9% 81.8%

1 16 62.7% 82.1% 66.4% 100.0% 72.3% 55.7% 74.4% 77.6% 48.8% 71.1%

1 17 94.4% 76.3% 83.7% 95.7% 79.7% 63.5% 85.9% 82.7% 79.5% 82.4%

1 18 73.9% 82.4% 61.6% 97.9% 70.9% 61.1% 81.3% 84.0% 48.8% 73.5%

1 19 74.9% 90.4% 83.5% 99.7% 70.1% 64.8% 89.6% 83.7% 63.7% 80.1%

2 1 63.5% 70.1% 62.9% 94.4% 72.3% 57.1% 84.0% 80.8% 50.7% 70.6%

2 2 64.5% 89.6% 82.7% 87.2% 86.4% 80.8% 80.5% 77.3% 71.7% 80.1%

2 3 90.7% 76.3% 85.6% 87.7% 84.5% 49.9% 79.7% 80.8% 72.5% 78.6%

2 4 88.3% 91.2% 93.1% 89.9% 85.3% 70.4% 87.5% 88.8% 66.1% 84.5%

2 5 93.6% 93.9% 88.3% 93.9% 89.3% 93.6% 90.1% 90.7% 84.0% 90.8%

2 6 92.8% 90.4% 89.3% 99.7% 98.1% 85.6% 90.7% 88.8% 80.8% 90.7%

2 7 90.1% 90.7% 89.3% 94.9% 72.0% 64.8% 90.4% 84.8% 78.1% 83.9%

2 8 93.6% 97.6% 85.6% 99.2% 88.3% 68.8% 88.5% 84.8% 79.2% 87.3%

2 9 85.3% 61.3% 86.4% 93.3% 72.8% 67.7% 85.1% 72.0% 66.4% 76.7%

2 11 87.7% 93.6% 86.1% 95.7% 89.6% 83.7% 85.6% 85.9% 88.0% 88.4%

2 12 89.6% 93.3% 84.3% 97.3% 82.1% 82.4% 88.0% 75.5% 78.4% 85.7%

2 13 86.1% 98.9% 87.2% 99.7% 91.5% 89.1% 91.7% 73.1% 82.1% 88.8%

2 14 92.0% 85.1% 92.3% 100.0% 92.3% 81.1% 86.9% 88.8% 86.4% 89.4%

2 15 79.7% 92.0% 93.9% 97.6% 84.3% 80.5% 83.7% 82.7% 76.8% 85.7%

2 16 85.1% 73.6% 82.7% 97.3% 85.1% 71.7% 86.1% 78.9% 58.9% 79.9%

2 17 93.6% 93.3% 80.8% 98.4% 88.8% 74.1% 92.5% 92.8% 64.8% 86.6%

2 18 91.2% 88.8% 86.9% 99.5% 87.5% 56.8% 85.1% 82.7% 73.3% 83.5%

2 19 89.6% 96.0% 89.3% 98.4% 92.8% 83.7% 88.5% 92.0% 83.2% 90.4%
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Table 10 Hyperparameter search results — Adam optimizer, L2 loss

Setup Performance

Layers Circuit 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

1 1 74.7% 77.3% 65.1% 100.0% 75.2% 55.2% 76.3% 76.0% 66.4% 74.0%

1 2 95.5% 99.2% 83.5% 72.0% 57.6% 59.2% 92.5% 57.1% 65.6% 75.8%

1 3 68.8% 80.0% 51.2% 100.0% 71.7% 57.1% 90.9% 80.5% 64.8% 73.9%

1 4 95.5% 91.7% 85.1% 100.0% 74.7% 70.1% 88.0% 89.1% 64.0% 84.2%

1 5 96.0% 99.2% 93.3% 100.0% 87.2% 88.0% 98.4% 89.3% 89.1% 93.4%

1 6 96.0% 100.0% 97.1% 100.0% 100.0% 78.9% 97.9% 97.1% 97.1% 96.0%

1 7 96.8% 85.9% 82.4% 100.0% 70.4% 68.8% 94.1% 80.5% 65.6% 82.7%

1 8 96.5% 97.6% 82.7% 99.7% 71.5% 82.9% 93.6% 87.5% 65.6% 86.4%

1 9 86.4% 80.3% 90.4% 97.1% 64.3% 55.2% 78.9% 83.5% 54.9% 76.8%

1 11 82.7% 82.4% 57.6% 93.6% 83.5% 84.5% 94.1% 81.6% 80.3% 82.3%

1 12 78.4% 81.9% 70.7% 100.0% 80.0% 57.1% 92.3% 80.0% 59.5% 77.7%

1 13 95.2% 85.1% 92.3% 100.0% 81.6% 62.9% 94.4% 80.5% 69.1% 84.6%

1 14 95.2% 100.0% 93.1% 100.0% 98.9% 77.1% 93.3% 85.3% 91.7% 92.7%

1 15 72.5% 86.1% 93.9% 100.0% 68.3% 65.9% 87.7% 91.5% 78.7% 82.7%

1 16 70.9% 78.1% 63.7% 100.0% 70.1% 53.3% 78.9% 81.1% 67.2% 73.7%

1 17 93.3% 98.4% 95.7% 100.0% 84.5% 86.1% 83.2% 83.7% 70.1% 88.4%

1 18 69.6% 74.9% 54.4% 100.0% 73.6% 61.1% 77.3% 81.9% 56.5% 72.1%

1 19 95.7% 86.9% 78.1% 100.0% 85.1% 56.5% 89.9% 86.7% 62.4% 82.4%

2 1 83.7% 83.2% 68.3% 100.0% 69.3% 57.1% 78.1% 80.5% 65.1% 76.1%

2 2 89.3% 91.2% 98.7% 80.0% 85.1% 82.9% 88.8% 82.9% 65.3% 84.9%

2 3 96.8% 90.1% 82.9% 100.0% 73.3% 70.4% 93.6% 86.7% 72.8% 85.2%

2 4 93.9% 98.4% 81.9% 100.0% 95.5% 94.4% 95.2% 83.5% 63.7% 89.6%

2 5 96.0% 99.7% 98.9% 100.0% 100.0% 89.9% 98.1% 98.1% 93.9% 97.2%

2 6 96.3% 100.0% 98.1% 100.0% 100.0% 94.1% 98.9% 97.3% 93.1% 97.5%

2 7 96.0% 99.2% 92.3% 100.0% 98.7% 84.5% 94.1% 85.6% 94.7% 93.9%

2 8 96.5% 92.8% 89.9% 100.0% 99.5% 84.5% 95.2% 87.5% 87.5% 92.6%

2 9 88.0% 88.5% 91.2% 97.1% 72.3% 77.1% 81.9% 80.3% 67.5% 82.6%

2 11 95.5% 100.0% 99.5% 100.0% 88.3% 74.1% 98.1% 96.5% 88.8% 93.4%

2 12 94.1% 98.1% 80.5% 100.0% 94.9% 69.6% 97.1% 96.3% 87.5% 90.9%

2 13 95.7% 100.0% 99.5% 100.0% 98.7% 93.9% 96.5% 94.9% 94.1% 97.0%

2 14 95.7% 100.0% 98.1% 99.7% 100.0% 92.3% 96.8% 95.7% 93.1% 96.8%

2 15 94.7% 97.9% 98.1% 100.0% 98.9% 73.1% 97.3% 96.0% 87.2% 93.7%

2 16 95.5% 89.6% 81.3% 100.0% 73.1% 56.0% 84.8% 87.7% 61.3% 81.0%

2 17 95.2% 99.2% 81.3% 99.2% 73.6% 77.1% 94.4% 93.6% 90.7% 89.4%

2 18 94.4% 94.4% 83.5% 100.0% 86.4% 54.7% 90.9% 85.9% 71.5% 84.6%

2 19 95.2% 100.0% 95.5% 100.0% 99.5% 85.1% 97.3% 90.9% 87.5% 94.5%
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Table 11 Hyperparameter search results — Gradient Decent optimizer, L1 loss

Setup Performance

Layers Circuit 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

1 1 71.7% 78.1% 48.3% 100.0% 73.6% 48.0% 75.7% 79.2% 50.1% 69.4%

1 2 95.5% 93.6% 85.1% 50.9% 60.0% 49.6% 76.8% 52.8% 46.1% 67.8%

1 3 73.6% 81.3% 52.5% 100.0% 71.5% 54.1% 78.9% 78.4% 49.3% 71.1%

1 4 86.9% 93.1% 69.6% 96.5% 70.1% 53.6% 80.8% 78.7% 48.5% 75.3%

1 5 93.3% 89.1% 76.5% 98.4% 74.4% 54.1% 78.4% 78.4% 45.9% 76.5%

1 6 93.3% 94.9% 88.5% 100.0% 79.2% 68.3% 85.9% 80.0% 64.0% 83.8%

1 7 85.9% 82.1% 74.4% 100.0% 70.4% 56.5% 79.2% 78.7% 52.8% 75.6%

1 8 88.5% 81.9% 73.3% 99.7% 74.4% 60.0% 78.9% 79.5% 52.3% 76.5%

1 9 88.8% 80.3% 75.7% 88.0% 69.3% 52.5% 76.0% 82.1% 52.5% 73.9%

1 11 50.4% 89.3% 53.9% 82.9% 76.8% 72.3% 76.5% 78.9% 75.7% 73.0%

1 12 67.7% 86.1% 58.4% 100.0% 78.9% 50.1% 79.5% 67.2% 49.6% 70.8%

1 13 86.1% 85.3% 73.3% 100.0% 69.6% 56.5% 79.7% 79.5% 55.2% 76.1%

1 14 88.8% 87.5% 82.9% 91.5% 78.7% 48.8% 78.4% 79.7% 47.5% 76.0%

1 15 79.5% 85.1% 88.8% 79.2% 68.3% 63.5% 89.1% 73.9% 48.8% 75.1%

1 16 72.5% 79.2% 47.7% 100.0% 73.6% 48.5% 75.7% 79.5% 50.1% 69.7%

1 17 81.3% 89.1% 69.9% 97.3% 74.9% 54.7% 79.2% 78.1% 50.7% 75.0%

1 18 73.6% 78.9% 52.5% 100.0% 71.5% 52.5% 78.9% 78.7% 49.3% 70.7%

1 19 85.3% 89.1% 75.7% 98.9% 74.1% 56.8% 78.7% 79.2% 54.1% 76.9%

2 1 73.3% 82.4% 50.9% 100.0% 74.7% 47.5% 75.2% 79.2% 50.4% 70.4%

2 2 81.9% 89.9% 95.7% 54.4% 78.1% 47.7% 68.3% 77.6% 79.2% 74.8%

2 3 88.5% 85.3% 65.9% 99.5% 72.0% 53.6% 78.9% 78.4% 55.7% 75.3%

2 4 91.5% 97.3% 75.2% 96.3% 71.5% 56.8% 79.5% 78.7% 48.5% 77.2%

2 5 94.7% 85.6% 83.2% 99.7% 81.3% 59.5% 81.6% 78.9% 49.9% 79.4%

2 6 92.0% 97.1% 82.1% 100.0% 83.5% 74.9% 88.5% 86.7% 58.9% 84.9%

2 7 93.6% 82.1% 81.3% 96.3% 69.1% 45.6% 78.9% 79.2% 51.7% 75.3%

2 8 91.7% 79.5% 88.3% 94.4% 76.5% 63.5% 78.9% 77.1% 48.8% 77.6%

2 9 87.5% 78.7% 70.4% 83.2% 69.9% 64.0% 66.1% 79.5% 44.0% 71.5%

2 11 76.8% 98.1% 89.1% 89.9% 88.5% 76.5% 80.3% 88.8% 74.1% 84.7%

2 12 88.3% 89.6% 84.8% 98.4% 84.3% 53.6% 86.9% 81.6% 58.7% 80.7%

2 13 92.8% 88.5% 78.1% 99.7% 75.7% 55.7% 83.7% 78.9% 51.5% 78.3%

2 14 92.8% 86.7% 89.1% 100.0% 76.0% 62.1% 81.3% 79.7% 53.1% 80.1%

2 15 88.8% 81.3% 89.3% 87.5% 84.5% 79.5% 85.3% 74.4% 53.3% 80.4%

2 16 76.5% 83.7% 74.7% 100.0% 76.0% 51.7% 75.7% 79.5% 53.6% 74.6%

2 17 92.8% 82.1% 82.9% 92.3% 74.7% 62.4% 74.9% 79.5% 52.5% 77.1%

2 18 93.1% 83.7% 76.5% 98.7% 69.1% 51.5% 78.4% 78.4% 55.5% 76.1%

2 19 90.9% 92.3% 85.3% 97.1% 74.1% 50.1% 80.3% 77.9% 51.2% 77.7%
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Table 12 Hyperparameter search results — Gradient Decent optimizer, L2 loss

Setup Performance

Layers Circuit 1a 1b 1c 2a 2b 2c 3a 3b 3c Avg.

1 1 69.1% 80.5% 50.9% 100.0% 74.9% 51.7% 74.4% 78.4% 52.0% 70.2%

1 2 94.1% 97.9% 80.0% 56.0% 60.0% 50.7% 75.5% 59.2% 48.0% 69.0%

1 3 71.7% 78.4% 51.2% 100.0% 69.6% 54.4% 79.5% 78.4% 51.2% 70.5%

1 4 94.7% 96.3% 78.7% 100.0% 74.1% 70.7% 91.2% 78.7% 61.1% 82.8%

1 5 96.0% 96.8% 90.7% 99.7% 88.3% 60.8% 96.0% 82.1% 62.9% 85.9%

1 6 95.2% 98.1% 88.5% 100.0% 99.2% 70.7% 93.9% 83.7% 76.8% 89.6%

1 7 95.5% 85.1% 79.7% 100.0% 70.9% 61.9% 78.9% 78.9% 53.9% 78.3%

1 8 89.6% 96.5% 82.1% 100.0% 77.3% 55.7% 83.2% 79.5% 53.3% 79.7%

1 9 89.3% 61.1% 78.9% 99.7% 64.5% 62.7% 80.0% 79.5% 51.7% 74.2%

1 11 55.2% 93.6% 77.1% 92.3% 81.3% 81.9% 79.7% 70.4% 70.7% 78.0%

1 12 74.1% 85.9% 66.7% 100.0% 78.4% 60.3% 78.9% 78.4% 48.8% 74.6%

1 13 96.3% 83.7% 80.5% 100.0% 73.1% 54.9% 85.9% 77.9% 52.3% 78.3%

1 14 93.6% 88.5% 97.9% 99.7% 77.3% 55.5% 80.0% 79.5% 55.2% 80.8%

1 15 81.1% 80.3% 91.5% 84.5% 92.3% 62.9% 91.5% 90.9% 54.7% 81.1%

1 16 69.1% 80.5% 51.2% 100.0% 74.9% 49.1% 74.4% 78.4% 50.4% 69.8%

1 17 92.5% 90.9% 80.8% 99.5% 79.2% 64.5% 80.8% 79.5% 55.7% 80.4%

1 18 71.7% 78.7% 51.2% 100.0% 69.6% 57.1% 79.5% 78.4% 51.2% 70.8%

1 19 94.7% 96.8% 86.1% 100.0% 74.9% 56.3% 79.7% 78.9% 59.5% 80.8%

2 1 75.5% 83.7% 47.2% 100.0% 76.0% 50.7% 74.4% 80.3% 51.7% 71.1%

2 2 85.6% 91.2% 97.9% 88.5% 87.2% 81.1% 67.5% 74.1% 81.6% 83.9%

2 3 93.6% 86.9% 80.5% 100.0% 70.9% 62.4% 80.8% 78.9% 63.7% 79.8%

2 4 96.0% 99.5% 84.3% 99.7% 71.2% 55.7% 87.2% 78.1% 59.5% 81.2%

2 5 96.0% 99.7% 97.1% 100.0% 96.0% 81.1% 95.5% 92.8% 78.4% 92.9%

2 6 94.9% 98.9% 97.3% 100.0% 99.7% 81.3% 96.8% 82.9% 86.4% 93.2%

2 7 96.0% 91.5% 81.1% 98.9% 72.3% 61.3% 92.8% 79.2% 53.1% 80.7%

2 8 93.9% 86.1% 88.0% 100.0% 75.7% 69.3% 93.3% 78.9% 61.9% 83.0%

2 9 86.4% 81.6% 79.2% 84.5% 74.1% 62.7% 77.6% 78.7% 55.5% 75.6%

2 11 93.1% 97.6% 98.7% 99.5% 92.3% 61.1% 96.8% 94.9% 83.5% 90.8%

2 12 97.1% 96.3% 84.8% 99.7% 79.7% 53.9% 91.2% 92.5% 61.9% 84.1%

2 13 95.5% 91.7% 81.1% 99.7% 76.5% 65.6% 92.8% 76.3% 64.8% 82.7%

2 14 95.5% 97.9% 97.9% 100.0% 76.5% 57.3% 95.5% 80.0% 83.5% 87.1%

2 15 90.9% 98.4% 84.3% 99.2% 89.6% 79.2% 88.3% 81.1% 72.5% 87.1%

2 16 93.6% 86.4% 70.1% 100.0% 75.2% 49.3% 75.5% 80.8% 54.4% 76.1%

2 17 94.4% 97.9% 92.0% 100.0% 78.7% 57.3% 83.5% 80.3% 60.0% 82.7%

2 18 96.5% 86.1% 80.3% 100.0% 70.7% 55.7% 80.0% 79.2% 64.3% 79.2%

2 19 92.5% 88.3% 88.5% 100.0% 74.9% 69.3% 89.3% 78.1% 59.7% 82.3%
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