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Abstract
Johnson–Lindenstrauss embeddings are widely used to reduce the dimension and
thus the processing time of data. To reduce the total complexity, also fast algorithms
for applying these embeddings are necessary. To date, such fast algorithms are only
available either for a non-optimal embedding dimension or up to a certain threshold
on the number of data points. We address a variant of this problem where one aims to
simultaneously embed larger subsets of the data set. Our method follows an approach
by Nelson et al. (New constructions of RIP matrices with fast multiplication and
fewer rows. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1515-1528, 2014): a subsampled Hadamard transform maps
points into a space of lower, but not optimal dimension. Subsequently, a randommatrix
with independent entries projects to an optimal embedding dimension. For subsets
whose size scales at least polynomially in the ambient dimension, the complexity of
this method comes close to the number of operations just to read the data under mild
assumptions on the size of the data set that are considerably less restrictive than in
previous works. We also prove a lower bound showing that subsampled Hadamard
matrices alone cannot reach an optimal embedding dimension. Hence, the second
embedding cannot be omitted.
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1 Introduction

1.1 Johnson–Lindenstrauss embeddings and applications

Dimension reduction has played an increasingly significant role in data science in
recent years due to the increasing size and dimensionality of available data. So-called
Johnson–Lindenstrauss embeddings (JLEs) are of central importance in this context.
Such maps reduce the dimension of an arbitrary finite set of points while preserving
the pairwise distances up to a small deviation. JLEs were first introduced in [14] in the
context of Banach spaces. They continue to be intensively studied in bothmathematics
and computer science.

For reasons of practicability, most works focus on linear maps based on random
constructions, aiming to be independent of the data to be considered. In this spirit, we
work with the following definition of a Johnson–Lindenstrauss embedding (E can be
thought of as the set of pairwise distances).

Definition 1 (Johnson–LindenstraussEmbedding) Let A ∈ R
m×N be a randommatrix

where m < N , ε, η ∈ (0, 1) and p ∈ N. We say that A is a (p, ε, η)-JLE (Johnson–
Lindenstrauss embedding) if for any subset E ⊆ R

N with |E | = p

(1 − ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22 (1)

holds simultaneously for all x ∈ E with a probability of at least 1 − η.

The original work of Johnson and Lindenstrauss constructed (p, ε, η)-JLEs with
an embedding dimension of m ≥ Cηε

−2 log(p), which has recently been shown to be
order optimal under minimal assumptions [21]. Various subsequent works developed
simplified approaches for constructing JLEs. Notably, Achlioptas [1] considered a
matrix A ∈ R

m×N with independent entries A jk ∈ {±1} satisfying P(A jk = 1) =
P(A jk = −1) = 1

2 . In this case the normalized matrix 1√
m

A is a (p, ε, η)-JLE in
the above setting, again for order optimal embedding dimension. Dasgupta and Gupta
[9] showed the same for a matrix with independent normally distributed (Gaussian)
entries.

In many applications of Johnson–Lindenstrauss embeddings, even such simplified
constructions are of limited use due to the trade-off between the complexity benefit
for the original problem resulting from the dimension reduction and the additional
computations required to apply the JLE.

Ailon andChazelle [2] addressed this issue in connection to the approximate nearest
neighbor search problem (ANN), the problem of finding a point x̂ in a given finite set
E ⊆ R

N such that one has ‖x − x̂‖ ≤ (1 + ε)minv∈E ‖x − v‖ for a given x ∈ R
N .

Their algorithm uses a preprocessing step that transforms all p points in E using
a JLE. This step is known to have a high computational complexity, but as it can be
performed offline, it is not considered to be the main computational bottleneck. Rather
the focus of the analysis has been on the subsequent query steps, in which the JLE is
applied to new inputs x , reducing the dimension for the subsequent computations. For
this purpose, the authors design the so-called Fast Johnson–Lindenstrauss Transform
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(FJLT) whose application to x requires a particularly low computation time. It should
be noted, however, that if only one or very few query steps are to be performed,
the problem is likely to be feasible even without the FJLT—a challenging scenario of
interest will be to embed a larger number of points. In the query step, these are typically
significantly fewer than in the full data set; at the same time, for the preprocessing
step, also a fast embedding of the entire set may be of interest.

In other applications, what would correspond to the preprocessing step in [2] is the
central task of interest. That is, the data set to be embedded is given in full and the
goal is to efficiently compute the dimension reduction of the whole set at once.

For example, such a setup appears in various approaches for nonlinear dimen-
sion reduction such as Isomap [29], Locally Linear Embedding [25] or Laplacian
Eigenmaps [6]. These methods exploit that a high-dimensional data set lying near a
low-dimensional manifold can be locally approximated by linear spaces. Hence it is
of key importance to identify the data points close to a point of interest in the data
set, as the linear approximation will be valid only for those. Consequently, one only
works with points in the data set, no new points enter at a later stage, and it suffices
to apply the JLE simultaneously to the whole data set before searching for multiple
approximate nearest neighbors within its projection.

A simultaneous fast transformation of the entire data set is also a central goal for
various applications in randomized numerical linear algebra. The following lemma, for
example, introduces a randomized approach for approximate matrix multiplication by
multiplying matrices Â = (S A∗)∗ and B̂ = SB shrunk by a Johnson–Lindenstrauss
embedding S rather than computing the product of the full matrices.

Lemma 1 (Lemma 6 in [27]) Let A ∈ R
q×N , B ∈ R

N×p be matrices and S ∈ R
m×N

a (q + p, ε, η)-JLE. Then

P(‖AB − AS∗SB‖F ≤ ε‖A‖F‖B‖F ) ≥ 1 − η.

Again, the JLE is applied to the whole matrices A∗ and B and no additional data
points enter at a later stage.

The computation time required for this approximate product consists, on the one
hand, of the time O(qmp) for the reduced product and, on the other hand, of the
computational effort to calculate SB and S A∗, i.e. to apply the JLE to the entire data
set (the columns of B and the rows of A).

If the JLE used does not admit a fast transform and standard matrix multiplication
is applied, its computational cost can easily dominate the computation time for the
whole approximate product. Namely, assuming w.l.o.g. that q ≤ p, applying S to the
data set requires O(m Nq + m N p) = O(m N p) operations. If q ≤ N , this becomes
the dominant part of the computation, if q ≤ m, it even surpasses the complexity of
the original multiplication O(q N p).

With a fast Johnson–Lindenstrauss transform, this changes and the cost of the
multiplication in the embedding space will typically become dominant. Namely, if
applying the transform requires say O(N log N ) operations per data point, the total
cost for the JLE step isO(pN log N ), which will be less thanO(m N p) in basically all
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interesting cases. Thusminimizing the total computational cost boils down to choosing
the embedding dimension m as small as possible.

Given that theFast Johnson–LindenstraussTransformbyAilon andChazelle [2] and
its extension byAilon and Liberty [3] yield order-optimal embedding dimensions, they
provide near-optimal solutions to these problems whenever the regime is admissible.

However, these works only apply to data sets of size p ≤ exp(Oε(N
1
3 )) or p ≤

exp(Oε(N
1
2−δ)) for some arbitrary δ > 0 (that will impact the constants appearing

in the embedding dimension), respectively. Here the notation Oε indicates that the
involved constants may depend on ε. Follow-up works without such restrictions (e.g.,
[4,19]) require additional logarithmic factors in the embedding dimension, which can
directly impact the total computational cost as, e.g., in the second example discussed.

To our knowledge, there were no approaches known before this work of applying
Johnson–Lindenstrauss embeddingswith an optimal embedding dimension to data sets

of size larger than exp(Oε(N
1
2 ))which admit a fast transform, neither for an individual

query step nor for transforming larger subsets or the full data set simultaneously.

1.2 Contributions of this work

The goal of this note is to provide such methods for the case of simultaneous embed-
dings of larger subsets of the data sets or the entire set. To do this, we consider a
class of matrices based on a composition of a dense matrix with random signs and a
randomly subsampled Hadamard transform. Such embeddings have been considered
in the literature before, for example in [23].

Our contribution is the following. We only assume that the number of points whose
norms need to be preserved by the JLE satisfies p = exp(Oε(N 1−δ)) for some δ > 0.
The construction of the matrix depends on this parameter p through the number of
rows which is �(ε−2 log(p)). Also, the JLE matrix is product of two matrices whose
size depends on p. Then we provide a method for simultaneously applying this map
to p′ points in time O(p′N logm) where p′ ≥ N d(δ) and the exponent d(δ) depends
only on δ. For example, these p′ points can be a subset of the total p points whose
norms are preserved by themap. Up to the logarithmic factor, the complexity is just the
number of operations required to read the data. The assumption on p is indeed mild;
it admits data sets of size close to p = exp(�ε(N )), for which the identity provides a
trivial order optimal embedding, so our result almost unrestricted for large p.

Note that this statement includes a fast transformation of the entire data set E , but
it is more general. In particular, with explicit bounds for d(δ) for certain choices of
δ, we obtain fast simultaneous embeddings of as few as N points and data sets of
admissible size significantly beyond state-of-the-art results.

With slight modifications this can also be made to work for embeddings into a
space equipped with the �1 instead of the �2 norm. We also provide a lower bound on
the possible embedding dimension of subsampled Hadamard transforms without the
composition with the dense matrix. This shows that they cannot provide an optimal
embedding dimension as desired in this paper.
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1.3 Outline

We start by reviewing the construction of the Fast Johnson–Lindenstrauss Transform
in Sect. 2.2. Section 2.3 discusses previous work on alternative fast Johnson–
Lindenstrauss embeddings with no restriction on p, but an embedding dimension that
is suboptimal by logarithmic factors. Section 3 then presents the composed embed-
ding used for the analysis and our main contribution, a method for fast (simultaneous)
transformations of large data sets without an essential restriction on p. The proof of
our main result regarding the complexity is presented in Sect. 4. In the subsequent
Sect. 5 we show that this method can be adapted for fast embeddings into spaces with
the �1 norm. In Sect. 6 we show the lower bound on the embedding dimension for
subsampled Hadamard matrices. Then we conclude with a discussion in Sect. 7.

2 Background and previous work

2.1 Notation and basic terms

We make use of the standard O notation, i.e., f (x) = O(g(x)) if f (x) ≤ Cg(x)

for a constant C > 0 and all x > x0 or 0 < x < x0 for fixed x0 depending on
whether the limit x → ∞ or x → 0 is considered, f (x) = �(g(x)) analogously for
f (x) ≥ Cg(x) and f (x) = �(g(x)) if both f (x) = O(g(x)) and f (x) = �(g(x))

at the same time. We write Oc for a parameter c if the corresponding x0 and C can
depend on c, analogously for �c and �c. Sometimes we also write f (x) � g(x)

instead of f (x) = O(g(x)).
We write f (x) = o(g(x)) for g(x) > 0 if lim f (x)

g(x)
= 0, with the limit depending

on the context.
We use the notion of subgaussian random variables X and two equivalent charac-

terizations:

– P(|X | > t) ≤ exp(1 − t2/K 2
1 )

– supp≥1 E[|X |p] ≤ K2

For the proof of equivalence andmore characterizations, see [30] for a summary. Every
subgaussian random variable satisfies both conditions with K1 and K2 that differ from
each other by at most a constant factor. We define the corresponding K1 to be the
subgaussian norm ‖X‖ψ2 .

We call a vector ξ ∈ {±1}N a Rademacher vector if it has independent entries and
each of them takes the value ±1 with a probability of 1

2 each.
We use H ∈ R

N×N with N = 2n a power of 2 for the Hadamard transformation

on R
N . This is defined as the n-times Kronecker Product of H1 := 1√

2

(
1 1
1 −1

)
with

itself, i.e. H = ⊗n
j=1 H1. H1 is the Fourier transform on the group Z2, thus we can

also regard H as the Fourier transform on the group Zn
2 by fixing a bjiection between

Zn
2 (the same as F

n
2) and [N ]. Then for u, v ∈ F

n
2, the corresponding entry of the

matrix is also given by Huv = (−1)〈u,v〉 where 〈·〉 denotes the inner product in F
n
2.
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The matrix H is unitary and all its entries have an absolute value of 1√
N
. Addition-

ally, there is a fast algorithm (Walsh-Hadamard transform) which can compute the
matrix vector product H x for any x ∈ R

N in time O(N log N ). For details about the
algorithm, see Sect. 7 of [3].

There are also other matrices in complex numbers which have these three properties
such as the discrete Fourier transform. The main results of this paper can also be
adapted to these matrices. However, we are going to use the Hadamard transform
since it ensures that our embedding stays real valued.

For counterexamples we are also going to use specific structural properties of the
Hadamard matrix. DenoteGn,r for the set of all r -dimensional subspaces of the vector
space F

n
2. For a subset V ⊆ F

n
2 we denote 1V ∈ R

N for the indicator vector corre-
sponding to V with the normalization ‖1V ‖2 = 1. We use the following fact about
subspaces: If V ∈ Gn,r , then

H1V = 1V ⊥ (2)

(see for example [7], Lemma II.1).
Intuitively, the 1V for V ∈ Gn,r can be thought of as certain vectors with

a regular pattern that get mapped to such structured vectors again by (2). For
example, considering F

3
2, the set V = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)} =

{0} × F
2
2 ∈ G3,2 is a 2-dimensional subspace and has the orthogonal complement

V ⊥ = {(0, 0, 0), (1, 0, 0)}. By interpreting the vectors in V as binary representations
of natural numbers (last entry for the lowest digit), we obtain the corresponding indices
0, 1, 2, 3 such that 1V = 1√

4
(1, 1, 1, 1, 0, 0, 0, 0)T is the corresponding normalized

indicator vector. Analogously, the elements in V ⊥ correspond to indices 0, 4 such that
1V ⊥ = 1√

2
(1, 0, 0, 0, 1, 0, 0, 0)T . And for the Hadamard matrix H ∈ R

8×8, equation
(2) states that here

H · 1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e. in this example, an indicator vector of the first 4 entries gets mapped to an indicator
vector of every 4-th entry.

This equation (2) will be the key idea to the lower bounds in Section 6.
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2.2 Optimal fast Johnson–Lindenstrauss embeddings

The Fast Johnson–Lindenstrauss Transformation (FJLT) by Ailon and Chazelle [2]
consists of a fast Hadamard transform combined with a sparse projection. More pre-
cisely, the embedding A = P H Dξ ∈ R

m×N is defined as follows:

– P ∈ R
m×N is a sparse projection with independent entries Pjk = b jk g jk where

all b jk and g jk are independent and P(b jk = 1) = q, P(b jk = 0) = 1 − q and

g jk ∼ N (0, (mq)−1) for a q = min
{
�

(
(log p)2

N

)
, 1

}
.

– H ∈ R
N×N is a full Hadamard matrix.

– Dξ ∈ R
N×N is a diagonal matrix corresponding to a Rademacher vector ξ ∈

{1,−1}N .

Lemma 1 in [2] states that this random matrix is a (p, ε, 2
3 )-JLE for m =

�(ε−2 log p). Since the transformation by H can be computed in time O(N log N )

(using the Walsh-Hadamard transform described e.g. in [3]) and P is sparse with a
high probability, it is also shown that the entire transformation needs

O
(

N log N + min{Nε−2 log p, ε−2(log p)3}
)

(3)

operations with a probability of at least 2
3 . This is of order O(N log N ) provided

log p = Oε(N
1
3 ). Furthermore, the embedding dimension exhibits optimal scaling in

N , p and ε [21].
A further improvement of this approach is achieved by Ailon and Liberty in [3]

where the bound for the fast transformation is raised from log p = Oε(N
1
3 ) to log p =

Oε(N
1
2−δ) for any fixed δ > 0. The computation time is also lowered toO(N logm).

2.3 Unrestricted fast Johnson–Lindenstrauss embeddings

A different approach for the construction of Johnson–Lindenstrauss matrices was
introduced by Ailon and Liberty in [4]. Compared to the aforementioned result, this
construction does not have a significant restriction on the number p of points in
E for a fast transformation. However, its embedding dimension has an additional
polylogarithmic factor in N as well as a suboptimal dependence on ε. The dependence
on ε is improved by Krahmer and Ward in [19], making the construction optimal up
to logarithmic factors in N .

Both constructions are based on the restricted isometry property (RIP) of the embed-
ding matrix, that is, approximate norm preservation of vectors with many vanishing
entries.

Definition 2 (Restricted Isometry Property (RIP)) Amatrix
 ∈ R
m×N has the (k, δ)-

RIP (restricted isometry property) if one has

(1 − δ)‖x‖22 ≤ ‖
x‖22 ≤ (1 + δ)‖x‖22
for all k-sparse x ∈ R

N , i.e. for all x ∈ R
N that have at most k non-zero entries.
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The following theorem of [19] shows that RIP matrices can be made to Johnson–
Lindenstrauss transforms by randomizing their column signs.

Theorem 1 (Theorem 3.1 from [19]) Let ε, η ∈ (0, 1) and E ⊆ R
N with |E | = p <

∞. Assume that 
 ∈ R
m×N has the (k, δ)-RIP for k ≥ 40 log 4p

η
and δ ≤ ε

4 . Let

ξ ∈ {1,−1}N be a Rademacher vector.
Then 
Dξ is a (p, ε, η)-Johnson–Lindenstrauss embedding.

Using an argument based onGelfandwidths, one can show that for sufficiently small
δ, for a (k, δ)-RIP matrix in R

m×N , one must have m = �(k log( N
s )) (see Chapter 10

in [10]). Thus Theorem 1 can only yield the Johnson–Lindenstrauss property for an
embedding dimension of at least m = �(ε−2 log(p) log( N

s )) while the optimal one
is independent of N .

Theorem 1 can be applied to the transform RH Dξ with a Rademacher vector
ξ ∈ R

N , a Hadamard matrix H ∈ R
N×N and a random projection (subsampling)

R ∈ R
m×N selecting m entries uniformly with replacement and rescaling by

√
N
m .

As RH ∈ R
m×N is shown to have the (k, δ)-RIP with high probability for m =

�(δ−2k(log N )4) in [26], this construction requires an embedding dimension of m =
�(ε−2 log( p

η
)(log N )4) which is optimal up to a factor of (log N )4. At the same time,

the construction admits a fast computation of the matrix vector product even for large
values of p: Using the fast Walsh-Hadamard transform, one can always achieve a
computation time of O(N logm) per data point.

Similar results can also be obtained for subsampled random convolutions instead
of subsampled Hadamard transform [18,24].

Improved embedding dimensions can be obtained using new RIP bounds for par-
tial Hadamard matrices (more generally, subsampled unitary matrices with entries
bounded by O( 1√

N
)) that have been shown in [11]. Namely, it is shown that m =

�(δ−2(log 1
δ
)2k(log k

δ
)2 log(N )) implies the (k, δ)-RIP with probability arbitrarily

close to 1 for sufficiently large N . Thus, for k ≤ N and a fixed δ, m = �(k(log N )3)

is sufficient. So for a fixed ε, this implies that the JLE construction introduced
above needs an embedding dimension of m = �(log(p)(log N )3), improving the
previous result by a factor of log N . However, for reasons of simplicity of presen-
tation due to the simpler dependence on ε, we continue to work with the bound

m = �(ε−2 log
(

p
η

)
(log N )4) and leave the possible refinement to the reader.

2.4 Rectangular matrix multiplication

We denote by ME ∈ R
N×p the matrix with the vectors in E as columns. Then

simultaneously applying a transform A ∈ R
m×N to all vectors in E corresponds to

computing the matrix product AME .
Thus the question of computing the simultaneous embedding closely connects to the

topic of fast algorithms formatrixmultiplication,which, startingwith the seminalwork
of Strassen [28], developed into a core area of complexity theory (see, for example,
Chapter 15 of [8] for an overview).Given thatwe are interested in dimension reduction,
algorithms for the fast multiplication of rectangular matrices will be of particular



Optimal fast Johnson–Lindenstrauss... Page 9 of 23 3

relevance to this paper. When one of the two matrices is square and the other has many
more columns, an asymptotically optimal family of algorithms has been provided by
Lotti and Romani [22].More precisely, their result can be summarized in the following
proposition.

Proposition 1 There exists an increasing function f : [1,∞) → [2,∞) such that for
each real-valued exponent s ≥ 1, the multiplication of an n × n and an n × �ns�
matrix can be computed in time O(n f (s)) and f (s) − s is decreasing and converges
to 1 for s → ∞.

That is, in the limit, the number of operations will just be what is required to read
the two matrices.

3 Main result

Unless otherwise noted, in all theorems we assume that ε ∈ (0, 1) and η ∈ (0, 1
2 ) are

arbitrary and that m < N .
A helpful and already known observation for creating Johnson–Lindenstrauss

embeddings with good embedding dimension and fast multiplication is that the com-
position of two JLEs is again a JLE. We include a proof for completeness.

Lemma 2 Let A ∈ R
m×n, B ∈ R

n×N be independent random matrices that are both(
p, ε

3 ,
η
4

)
-JLEs. Then AB ∈ R

m×N is a (p, ε, η)-JLE.

Proof Let E ⊆ SN−1 with |E | = p. The probability that the norms in B E are distorted
by more than 1 ± ε

3 compared to E is ≤ η
4 .

For each fixed value of B that satisfies this norm preservation, the probability that

a norm in A(B E) is distorted outside of the range
[(
1 − ε

3

)2
,
(
1 + ε

3

)2] is less than
η
4 .

By a union bound, with a probability of at least 1− η all norms in AB E lie within[(
1 − ε

3

)2
,
(
1 + ε

3

)2] ⊆ [1 − ε, 1 + ε] as ε < 1. ��

This lemma can be used to combine the advantages of fast JLEs with non-optimal
embedding dimension (as in Theorem 1) and dense random matrices with optimal
embedding dimension similar to those of Achlioptas [1]. A set of p vectors in R

N is
first mapped into a space of non-optimal, but reduced dimension using a fast Johnson–
Lindenstrauss transform and then a dense matrix maps the vectors from this space of
reduced dimension to a space of optimal embedding dimension. Note that this leads
to a smaller dense matrix and thus a faster computation compared to a JLE consisting
of only a dense matrix.

We apply this procedure to the fast transform from [19] and the dense ±1 matrix
from [1], obtaining a JLE of optimal embedding dimension. The usage of this con-
struction has already been suggested for example in [23], see footnote 2.

Corollary 1 Consider the following matrices.
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• G ∈
{
± 1√

m

}m×n
where the entries G jk are independent with

P

(
G jk = 1√

m

)
= P

(
G jk = − 1√

m

)
= 1

2
.

• R ∈ R
n×N is a random projection that selects n of the N entries of a vector

uniformly at random with replacement and rescales by
√

N
n .

• H ∈ R
N×N is a full Hadamard matrix.

• Dξ ∈ R
N×N where ξ ∈ {1,−1}N is a Rademacher vector.

Let G, R and ξ be independent. If m ≥ c1ε−2 log p
η

and n ≥ c2ε−2 log( p
η
)(log N )4

for suitable absolute constants c1 and c2, then G RH Dξ ∈ R
m×N is a (p, ε, η)-JLE.

Note that the resulting construction is very similar to the one introduced in [2].
Namely, similarly to the matrix P in the construction of [2] (cf. Sect. 2.2 above),
the matrix P̃ = G R has many zero entries and independent random entries in all
other locations. The main difference is that in this construction the non-zero entries
are concentrated in just a few columns while in [2], their locations are random. As
captured by the following main theorem, this fact leads to a significant speed up when
simultaneously projecting large enough point sets, as the structure allows for the use
of fast matrix multiplication.

Theorem 2 Consider E ⊆ R
N of size p = exp(Oε(N 1−δ)) for an arbitrary δ > 0 and

a failure probability η ∈ (p−c, 1
2 ) for constant c. Then for ε ∈ (0, 1) and embedding

dimensions m = �(ε−2 log p
η
) and n = �(m(log N )4), the transformation A =

G RH Dξ introduced in Corollary 1 is a (p, ε, η)-JLE for the set E.
There is an exponent d(δ) depending only on δ such that the following holds. For

any finite set E ′ ⊆ R
N with p′ = |E ′| ≥ N d(δ) or p′ = p, A can be applied

simultaneously to all points in E ′ in time Oδ(p′N logm).

The dependence of the exponent d(δ) on δ is not explicitly stated in this theorem.
This is caused by Proposition 1 (and the source [22]) not stating a bound on the
convergence speed. However, certain estimates for specific values of the function f
in Proposition 1 have been made before and we use those to get explicit estimates for
d(δ) in Sect. 4.3. This will lead to the following subsequent theorem summarizing two
particularly interesting cases.

Theorem 3 Consider the setup of Theorem 2.

– If p = exp(Oε(N
3
4 )) and p′ ≥ N, then A can be applied to all points in E ′ in

time O(p′N logm).
– If p′ ≥ N 4, then the transformation of E ′ can be computed in O(p′N 1.2) for any

p such that m ≤ N (that is, no further constraints are required on the size of p).
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4 Complexity analysis–Proof of Theorem 2

4.1 Simultaneous transformation of data points

The main novelty in our approach is the use of Proposition 1 in the last step of the
embedding which is a (smaller) dense matrix G. The proposition will be applied to

provide a speedup for embedding dimensions m ≥ N
1
2− δ

4 . The complementary case

m ≤ N
1
2− δ

4 will be discussed in Sect. 4.2, hence for the remainder of this section we
will assume that m ≥ N

1
2− δ

4 .
To prove Theorem 2, we have to cover the cases p′ ≥ N d(δ) and p′ = p < N d(δ).

Consider the first case now. Recall that by assumption p = exp(Oε(N 1−δ)), more
precisely we assume that p ≤ exp(c′ε2N 1−δ) for a constant c′ chosen to ensure that
m ≤ N 1−δ .

To analyze the complexity, we note that computing the product consists of the
following three steps. Recall that ME ′ ∈ R

N×p′
is the matrix whose columns are all

the vectors in the finite set E ′.

– Compute M1 := Dξ ME ′ by multiplying the diagonal matrix Dξ by each column
of ME ′ . This requires O(p′N ) operations.

– Compute M2 := RH M1 by applying the trimmed Walsh-Hadamard transform to
all columns of M1 in O(p′N logm) operations.

– Compute M3 := G M2 where G ∈ R
m×n and M2 ∈ R

n×p′
. Choose α = log p′

logm ,
yielding p′ = mα . Split G and M2 up into blocks

G = (
G1 . . . Gr

)
M2 =

⎛
⎜⎝

V1
...

Vr

⎞
⎟⎠

for r = � n
m � such that G1, . . . , Gr ∈ R

m×m and Vj ∈ R
m×p′

for j ∈ [r ]. If nec-
essary, pad the matrices with zero rows and columns such that the corresponding
submatrices have the same size. Since n ≥ m, this only changes the numbers of
rows or columns by at most a constant factor.
Each of the r block multiplications required to compute this product is a multi-
plication of an m × m matrix by an m × mα matrix and thus requires O(m f (α))

operations with f as in Proposition 1. In the end, we needO(p′mr) operations to
sum up the values for all entries of the result. In total, the number of operations is

O(rm f (α) + p′mr) = O(p′nm f (α)−α−1 + p′n) = O(p′nm f (α)−α−1),

where in the last equality we used that by Proposition 1 f (α) − α ≥ 1.

Combining the runtime complexity of the three steps yields

O(p′N log(m) + p′nm f (α)−α−1) = O
(

p′N log(m) + p′m f (α)−α(log N )4
)

. (4)
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Proposition 1 guarantees the existence of a β = β(δ) such that 1
f (β)−β

> 1 − δ

and we obtain that

α = log p′

logm
≥ d(δ) log N

(1 − δ) log N
= d(δ)

1 − δ
.

Hence, for sufficiently large d(δ), one has that α ≥ β, i.e.,

( f (α) − α)(1 − δ) < 1 (5)

Substituting this into (4), using that m = O(N 1−δ) yields a complexity of

Oδ(p′N logm + p′N ) = Oδ(p′N logm).

Now consider the case that m ≥ N
1
2− δ

4 but p′ = p < N d(δ). Using these inequal-

ities together with m = O
(
ε−2 log p

η

)
= O(ε−2 log p) (the last equality follows

from η > p−c), we obtain that ε = O
(

(d(δ) log N )
1
2

N
1
4− δ

8

)
. This case can be excluded by

imposing the stronger condition that p = exp(O(ε4N 1−δ)), which still is of the form
p = exp(Oε(N 1−δ)). Namely, the two conditions for ε and p would imply that

log p = O
(

(d(δ) log N )2

N 1− δ
2

N 1−δ

)
= O((d(δ) log N )2N−δ/2),

i.e., p is bounded by a constant ≤ p0(δ). By definition of theO notation however, it is
sufficient to show the complexity bound only for p > p0(δ). This proves the theorem

for the case of embedding dimensions m ≥ N
1
2− δ

4 .

Remark 1 Note that for small data sets of size p ≤ N d(δ) and ε = O
(

(d(δ) log N )
1
2

N
1
4− δ

8

)

(the second case in the previous consideration), the increased exponent of ε in our
condition for p creates a gap between the applicability range of our result and the
regime where the identity operator can be applied. Namely, our proof only applies to

cases with embedding dimension at most m = Oδ(log(N ) · N
1
2− δ

4 ), while the identity
cannot be used below m = N . To circumvent this, one can apply the construction
of Ailon and Chazelle [2] to avoid this gap (as resulting from (3), the complexity is
O(pN log N + pε−2(log p)3) which is Oδ(pN (log N )2) in this case).

4.2 Transformation of small data sets

For m ≤ N
1
2− δ

4 (the case still missing in the previous section), we will just apply
the embedding individually to each point in E . As noted in [23], the map defined in
Corollary 1 is indeed a fast transform requiring

O(N log(m) + m2(log N )4) (6)
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operations to be applied to a single data point using standard matrix multiplication.

Assuming again p = exp(O(ε2N
1
2− δ

2 )), (6) is bounded by Oδ(N log(m)) which
yields a total complexity of Oδ(p′N logm), completing the proof of Theorem 2.

Remark 2 As noted in [23], if p = exp(O(ε2Nr )) for 1
2 ≤ r ≤ 1, (6) becomes

O(N 2r (log N )4). This is still linear up to logarithmic factors when r = 1
2 and close

to linear for r slightly larger than 1
2 . Thus, one obtains a fast transform also in these

cases, in contrast to [3] whose bound does not apply in either of these cases.

4.3 The Exponent d(ı)—Proof of Theorem 3

While Theorem 2 applies for arbitrary subsets of size p′ bounded below by a poly-
nomial in N , the exponent d(δ) remains unspecified since Proposition 1 (i.e., [22])
does not quantify the convergence speed of f (s) − s. For certain values of δ explicit
bounds for d(δ) can be derived from estimates for f (s) available in the literature, such
as those derived in [12] and subsequently improved in [17].

More precisely, Theorem 5 in [17] adapted to the setup of Theorem 1 states that

f (s) ≤ min
2≤k∈Z

0≤m2,β,β ′∈R

1

log(km1)
log(max{N1, N2, N3}) (7)

where

N1 = g(m1 + (β + β ′)m2)g((1 + s)m1)g(m2),

N2 = g(m1 + (1 + β ′)m2)g(2m1)g(βm2),

N3 = g(m1 + (1 + β)m2)g((1 + s)m1)g(β ′m2),

m1 = k + 2 − (1 + β + β ′)m2

2 + s
> 0,

g(x) = xx for x > 0 and g(0) = 1.

Some specific bounds for f (s) resulting from specific choices for k, m2, β, β ′ in (7)
are given in Table 1. To infer admissible values for d(δ), we recall that it is sufficient
to satisfy the inequality (5) or equivalently

f (
d(δ)

1 − δ
) − d(δ)

1 − δ
− 1 <

1

1/δ − 1
.

and check it for the values given in Table 1.
E.g., for δ = 1

4 , by Table 1 it is sufficient to have s = d(δ)
1−δ

= 1.333 since f (s) −
s − 1 < 1

3 . Solving for d(δ) we obtain that d
( 1
4

) = s
(
1 − 1

4

) = 0.99 · · · < 1 is
admissible. Analogously we obtain that the following values are admissble.

– d
( 1
4

) = 0.99 . . .

– d
( 1
5

) = 3
(
1 − 1

5

) = 2.4
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Table 1 Certain values substituted into the upper bound in (7)

s k m2 β β ′ f (s) − s − 1 ≤ · · ·
1.333 6 0.1794 0.3307 1 0.3330

2 7 0.2545 0.0303 1 0.2699

3 7 0.3046 0.0284 1 0.2204

4 8 0.3326 0.0147 1 0.1915

15 21 0.4114 2.3734 × 10−4 1 0.1094

– d
( 1
6

) = 4
(
1 − 1

6

) = 3.33 . . .

– d
( 1
10

) = 15
(
1 − 1

10

) = 13.5

So the exponent d(δ) in the required lower bound on the number of points to be
transformed at the same time stays reasonably small. In particular, requiring only

p′ ≥ N already guarantees a fast transformation up to log p = Oε(N
3
4 ), clearly

surpassing the previous N
1
2 bound. This proves the first part of Theorem 3.

To show the second statement of Theorem 3, we observe that the bound (4) for
the complexity holds independently of the upper bound on log p which can lead to
upper bounds on the complexity which are close to linear in N . From the assumption
p′ ≥ N 4 ≥ m4 we deduce that α ≥ 4 and hence by Table 1, f (α)−α ≤ 1.1915. Thus
one obtains a runtime complexity of O(p′N log N + p′m1.1915(log N )4), which is
bounded byO(p′N 1.2); this holds for any size p of the entire data set. This completes
the proof of Theorem 3.

5 Embeddings from �2 to �1

Unlike the standard case for Johnson–Lindenstrauss embeddings with Euclidean norm
considered in this work until here, it can also be interesting to consider embeddings
from �2 to �1. To study these, weworkwith the following definitionwhich is analogous
to Definition 1.

Definition 3 (Johnson–Lindenstrauss Embedding for �2 → �1) Let A ∈ R
m×N be a

random matrix, where m < N , ε, η ∈ (0, 1) and p ∈ N. We say that A is a (p, ε, η)-
JLE (Johnson–Lindenstrauss embedding) for �2 → �1 if for any subset E ⊆ R

N with
|E | = p

(1 − ε)‖x‖2 ≤ ‖Ax‖1 ≤ (1 + ε)‖x‖2 (8)

holds simultaneously for all x ∈ E with a probability of at least 1 − η.

Random matrices have already been used for embeddings into an �1 space by
Johnson and Schechtman [15]. Ailon and Chazelle [2] also studied an embedding of
this type to give an improved algorithm for the approximate nearest neighbor search
problem. Their �1 approach is a version of the FJLTdescribed in Sect. 2.2 that only uses
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a different scaling and a different probability parameter q. The resulting complexity
for the transformation of a single point is

O(N log N + min{ε−2N log p, ε−3(log p)2}).

This implies that a fast transformation of p′ points in time O(p′N log N ) is only
possible if log p = Oε(N 1/2). The samebound also applies to the subsequent improve-
ment by Ailon and Liberty [3].

Without this restriction of log p = Oε(N 1/2), the best method available in the
literature for embedding p′ points from �N

2 to �m
1 in time O(p′N 1+o(1)) is given by

[13] although this result applies to a significantly more general scenario of embedding
the entire space �N

2 into �m
1 . However, that result requires an embedding dimension

m = �(N 1+o(1)) which is far from being optimal for the problem of embedding just
finitely many points.

To extend our approach to embeddings into �1, we recall that Gaussian matrices
also yield �2 → �1 JLEs. This well known fact arises for example as a special case in
[20]. We include a proof for completeness.

Theorem 4 Let G ∈ R
m×N be a random matrix with G jk ∼ N (0, 1) and m =

�
(
ε−2 log

(
p
η

))
then

√
π
2

1
m G is a (p, ε, η)-JLE for �2 → �1.

Proof Let A :=
√

π
2

1
m G. Fix E ⊆ R

N and x ∈ E . Then for r = 1, . . . , m, (Ax)r ∼
N (0,

π‖x‖22
2m2 ).

This means E[|(Ax)r |] = ‖x‖2
m and Xr := |(Ax)r | − E[|(Ax)r |] is subgaussian

with norm ‖Xr‖ψ2 � ‖(Ax)r‖ψ2 �
√

π
2

‖x‖2
m .

By rotation invariance of subgaussian variables (see Lemma 5.9 in [30]), we obtain∥∥∑m
r=1 Xr

∥∥2
ψ2

�
∑m

r=1 ‖Xr‖2ψ2
�

∑m
r=1

π‖x‖22
2m2 = π

2m ‖x‖22.
Then

P (|‖Ax‖1 − ‖x‖2| > ε‖x‖2) = P

(∣∣∣∣∣
m∑

r=1

Xr

∣∣∣∣∣ > ε‖x‖2
)

≤ exp(1 − Cmε2)

for a constant C > 0.
Using a union bound over all x ∈ E , we get

P (∃x ∈ E : |‖Ax‖1 − ‖x‖2| > ε‖x‖2) ≤ p exp(1 − Cmε2) = exp(1 − Cmε2 + log(p)).

This bound is smaller than η for m > 1
C ε−2

(
1 + log

(
p
η

))
. ��

Using this construction, the results of this paper can be generalized. Lemma 2 in
the same way also holds for the composition of an �2 → �2 and an �2 → �1 JLE
with slightly different constants. Corollary 1 can be adjusted to the �1 norm too. Note
that this only holds if we replace the matrix G in Corollary 1 by the matrix given in
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Theorem 4 which has Gaussian entries instead of ±1 entries. Otherwise the equality
E‖Ax‖1 = ‖x‖2 for the expectation would not hold. Since Theorem 2 is not affected
by this, it also holds in the �1 case which enables the fast transformation of the entire
data set or a subset of polynomial size. This is the main advantage of this method
compared to the results given by Ailon, Chazelle [2] and by Ailon, Liberty [3].

6 Lower bounds for subsampled hadamardmatrices

Asshown in theprevious sections, the constructionG RH Dξ fromCorollary 1provides
JLEs into �2 and �1 with state-of-the-art embedding dimensions m and up to a certain
number of embedded points, this is also a fast pointwise embedding. For very large
data sets, however, the application of the dense matrix G prevents the complexity from
staying below the desired threshold.

Thus, a natural question is whether this last embedding step is required or whether
the matrix construction RH Dξ without the dense G already yields JLEs for compa-
rable joint embedding dimensions m.

In the following two sections, we provide negative answers to this question, both,
for embeddings into �2 and into �1.

6.1 A lower bound for embeddings into �2

We will prove a lower bound on the possible embedding dimension necessary for
RH Dξ to be a JLE into �2, showing in particular that it has to depend on the ambient
dimension N . Our approach is based on [7] which provides a lower bound on the
embedding dimensions for the restricted isometry property of Hadamard matrices. We
will adapt this counterexample to the setting of Johnson–Lindenstrauss embeddings.

To this end, we use the properties of the Hadamard transform H ∈ R
N×N and its

interpretation as the Fourier transform on F
n
2 mentioned in Sect. 2.1. We can identify

the row and column indices of H with Fn
2 .

Let now s = 2r be a power of two. Let Q be the random multiset of row indices (in
Fn
2 ) that the subsampling matrix R selects. For an r -dimensional subspace V of F

n
2,

we consider the indicator variable XV := 1{Q∩V ⊥=∅} which indicates that there is no
element (of F

n
2) contained in both, Q and V ⊥ (note that Q does not have to contain 0,

so the intersection can be empty). The proof in [7] considers

X :=
∑

V ∈Gn,r

XV

where Gn,r is the set of all r -dimensional subspaces of F
n
2.

If X �= 0, then there is a V ∈ Gn,r satisfying Q∩V ⊥ = ∅. Recall that by (2), it holds
that H1V = 1V ⊥ . This implies that RH1V = R1V ⊥ = 0 since R only selects the
entries indexed by Q which does not contain any element of V ⊥ and those are the only
non-zero elements of 1V ⊥ . This shows that X �= 0 implies ∃V ∈ Gn,r : RH1V = 0.
Since these are random events, we obtain
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P
(
�V ∈ Gn,r : RH1V = 0

) ≤ P(X = 0), (9)

noting that X ≥ 0 almost surely.
In contrast to our way of selecting the subsampled entries Q, their result works with

a random subset of indices Q̃ := { j ∈ [N ]|δ j = 1} based on independent random
selectors δ j that are 1 with probability m

N and 0 otherwise. Together with rescaling by

factor
√

N
m , we denote this subsampling as R̃. Note that in contrast to the matrix R

used in the previous sections, the number of rows of R̃ might not exactly be m.
Upper bounding P(X = 0) from above leads to the following main result.

Theorem 5 (Theorem III.1 in [7]) Let N, s and R̃ be as above.
Assume min(r , n − r) ≥ 12 log2 n. Then there is a positive constant C > 0 such

that if m ≤ Cs log(s) log( N
s ), then with a probability of 1− o(1) (for N → ∞), there

is a subspace V ∈ Gn,r which satisfies R̃H1V = 0.

However, with slight modifications, this result can also be used for the subsampling
matrix R instead of R̃, as stated by the following theorem.

Theorem 6 Assume s ≥ 2. The statement of Theorem 5 also holds if we replace the
subsampling with random selectors R̃ by subsampling with replacement R as used in
Corollary 1.

Proof To prove this theorem, we follow the steps of Theorem III.1 in [7] and adapt
them to the case of sampling with replacement.

The key idea in [7] used to prove Theorem 5 is applying the secondmoment method
(see e.g. [16], Sect. 21.1) to X . Since our goal is to show that
P

(
�V ∈ Gn,r : RH1V = 0

) = o(1), by (9), it is enough to show P(X = 0) = o(1).
Applying the second moment method, we obtain

P(X = 0) ≤ Var X

(EX)2
=

∑n−r
d=d0

∑
U ,V :dim(U⊥∩V ⊥)=d Cov(XU , XV )

|Gn,r |2(EXV0)
2

= 1

|Gn,r |2
n−r∑

d=d0

∑
U ,V :dim(U⊥∩V ⊥)=d

[
E(XU XV )

(EXU )2
− 1

]
(10)

where d0 := max(n − 2r , 0) is the minimum dimension of U⊥ ∩ V ⊥ and V0 ∈ Gn,r

is arbitrary. For the last equality, we used that EXV is the same for all V .
The bounds on the first and second moments can be adapted to subsampling with

replacement as used in R.
For any V ∈ Gn,r , V ⊥ has N

s elements and thus each subsampled index is not in
V ⊥ with probability 1 − 1

s and

EXV =
(
1 − 1

s

)m

.



3 Page 18 of 23 S. Bamberger, F. Krahmer

For any pair of subspaces U , V ∈ G
n,r with dim(U⊥ ∩ V ⊥) = d we obtain

E(XU XV ) = P(U⊥ ∩ Q = ∅ ∧ V ⊥ ∩ Q = ∅) =
(
1 − 2

s
+ 2d

N

)m

.

Combining these expressions yields with s ≥ 2,

E(XU XV )

(EXU )2
=

⎛
⎝1 − 2

s + 1
s2

+ 2d

N − 1
s2

(1 − 1
s )2

⎞
⎠

m

=
⎛
⎝1 +

2d

N − 1
s2

(1 − 1
s )2

⎞
⎠

m

=
(
1 +

(
s

s − 1

)2 (
2d

N
− 1

s2

))m

≤
(
1 + 4 · 2

d

N

)m

≤ exp

(
2d · 4m

N

)
.

(11)

Substituting (11) into (10) leads to

P(X = 0) ≤
n−r∑

d=d0

T (n, r , d)

|Gn,r |2
(
exp(2d · 4m

N
) − 1

)
(12)

where T (n, r , d) is the number of pairs U , V ∈ Gn,r such that dim(U⊥ ∩ V ⊥) = d.
This is the same bound found in [7] with m

N replaced by 4m
N . Thus the proof of [7]

that P(X = 0) = o(1) carries over to the subsampling matrix R.
For completeness, we repeat the main steps of the remaining part of the proof in

[7] here.
The sum in (12) can be split up into two parts (by the assumption max(r , n − r) ≥

12 log2 n, we can always make sure that n − r − 3 log2(n) ≥ max(n − 2r , 0) = d0).

�n−r−3 log2(n)�∑
d=d0

T (n, r , d)

|Gn,r |2
(
exp(2d · 4m

N
) − 1

)

+
n−r∑

d=�n−r−3 log2(n)�+1

T (n, r , d)

|Gn,r |2
(
exp(2d · 4m

N
) − 1

)

=: (I ) + (I I ).

For the first part, note that d ≤ n − r − 3 log2(n) combined with the assumption
that m ≤ Cs log(s) log( N

s ) = C̃s log2(s) log2(
N
s ) yields

2d · 4m

N
≤ N

sn3 · 4C̃s log2(s) log2(
N
s )

N
= 4C̃ log2(s) log2(

N
s )

n3 ≤ 4C̃

n
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This implies exp(2d · 4m
N ) − 1 ≤ 8C̃

n for large enough n since exp(x) − 1 ≤ 2x for
any 0 ≤ x ≤ 1, such that that we obtain

(I ) ≤
�n−r−3 log2(n)�∑

d=d0

T (n, r , d)

|Gn,r |2
8C̃

n
≤

8C̃

n

∑r
d=0 T (n, r , d)

|Gn,r |2 ≤ 8C̃

n
= o(1)

For the second part (I I ), we cite the following result from [7].

Lemma 3 (Claim III.3 from [7]) For d ≥ n − r − 3 log2(n),

T (n, r , d)

|Gn,r |2 ≤ exp

(
− log(2)

2
r(n − r)

)
.

The number of terms in (II) is ≤ 3 log2(n) + 1 ≤ 4 log2(n) for large enough n. So
with this result, we can bound

(I I ) ≤ 4 log2(n)2− 1
2 r(n−r) exp(

4m

N
· 2n−r )

and from the assumption onm, we obtain 4m
N ·2n−r ≤ 4C̃s log2(s) log2(

N
s )N

Ns = 4C̃r(n−r)

such that

(I I ) ≤ 4 log2(n)2( 4C̃
log(2) − 1

2 )r(n−r) ≤
4 log2(n)2− 1

4 r(n−r) ≤
4 log2(n)2−36(log2 n)2 = o(1)

follows by choosing C̃ ≤ log(2)
16 and the assumption that min(r , n − r) ≥ 12 log2 n.

So altogether, with (9), (12), and the bounds on (I) and (II), we obtain

P
(
�V ∈ Gn,r : RH1V = 0

) ≤ P(X = 0) ≤ (I ) + (I I ) = o(1),

which concludes the proof that Theorem 5 can be adapted to subsamplingwith replace-
ment. ��

Nowwecanuse thisTheorem6 toprove a lower bound for the embeddingdimension
of these matrices as Johnson–Lindenstrauss embeddings.

Theorem 7 There are absolute constants C, c > 0 such that for every η ∈ (0, 1), there
exists N (η) such that the following holds. Let N = 2n ≥ N (η) be a power of two and
R ∈ R

m×N the matrix representing independent random sampling with replacement.
Let p ≥ p0 be a sufficiently large integer and assume it satisfies (log2 N )c ≤ log2 p ≤

N
(log2 N )c . If m ≤ C(log p)(log log p)(log N

log p ), then RH Dξ is not a (p, ε, η) − J L E
for any 0 < ε < 1.
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Proof For sufficiently large p we can assume that r := �log2 log2 p − 1� ∈
(1, 1

2

√
log2 p). Define s := 2r and

E := {D
ξ̂
1V |V ∈ Gn,r , ξ̂ ∈ {+1,−1}N }.

Every vector in E is s-sparse, so there are only 2s different sign patterns corresponding
to each V . In addition, the number of subspaces is |Gn,r | ≤ 2r(n−r) (see [7]). Together
this gives

|E | ≤ 2s |Gn,r | ≤ 2s2r(n−r) ≤ 2
1
2 log2 p2nr ≤ 2

1
2 log2(p)+log2(N ) 12

√
log2 p ≤ p,

using that log2(N ) ≤ √
log2 p by assumption.

To check the assumptions of Theorem 6, note that r ≥ log2 log2 p − 2 ≥
log2(n

c) − 2 ≥ 12 log2(n) for sufficiently large c and N (η). Furthermore, n − r ≥
n − log2 log2 p + 1 ≥ n − log2

(
N

(log2 N )c

)
+ 1 = n − n + c log2 n + 1 ≥ 12 log2 n.

By the definitionof s,weobtain 1
4 log2(p) ≤ s ≤ 1

2 log2(p) and thus the assumption
form is equivalent tom ≤ C ′(log p)(log s)(log N

s ) for a suitable constantC ′. Together
with this upper bound on m and N ≥ N (η), Theorem 6 now implies that with a
probability of at least 1−η (with respect to the randomness in R) there exists a subspace
V ∈ Gn,r such that RH1V = 0. For any value of the Rademacher vector ξ , we have
x := Dξ1V ∈ E and RH Dξ x = RH1V = 0.Thismeans that |‖RH Dξ x‖22−‖x‖22| <

ε‖x‖22 cannot hold for any ε < 1. ��

Remark 3 Note that the factor (log log p)(log N
log p ) can take values of orders of

magnitude between log N and (log N )2. Indeed, for the lower bound observe that
log log p ≥ 2 and log N − log log p ≥ 2, so one obtains (log log p)(log N

log p ) ≥
(log log p) + (log N

log p ) = log N . The upper bound follows as log p = O(N ). The
maximal order is in fact achieved for log p � Nα where α is an arbitrary constant in
(0, 1).

6.2 An impossibility result for embeddings into �1

When considering a subsampled Hadamard matrix to be a JLE into �1, we obtain a
much stronger impossibility result than the one just stated for �2. In fact, such matrices
cannot, in general, lead to a JLE into �1 for any embedding dimension. To see this,
recall that the Hadamard matrix can be interpreted as the Fourier transform on F

n
2.

Consider dimensions N = 2n and s = 2r < N that are powers of 2. Take a subspace
V ⊂ F

n
2 of dimension r and x (1) := 1V . By (2), H x (1) = 1V ⊥ . Similarly observe that

for x (2) := 1{0}, one has that H x (2) = 1F
n
2
.

Now let R ∈ R
m×N be a random subsampling matrix in analogy to Corollary 1.

Noting that H x (1) has N
s entries of value

√
s
N while H x (2) has N entries of value 1√

N
,

we obtain that E‖RH x (1)‖1 =
√

N
m m

√
s
N

1
s =

√
m
s and E‖RH x (2)‖1 =

√
N
m m 1√

N
=
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√
m. So although ‖x (1)‖2 = ‖x (2)‖2 = 1, there cannot be a scaling factor γ > 0 sucht

that ‖γ RH x (1)‖1 and ‖γ RH x (2)‖1 are concentrated around 1 at the same time.
Also randomized column signs cannot avoid this problem. To see that, consider

the set E := {D
ξ̂
x (1)|ξ̂ ∈ {±1}N } ∪ {±x (2)} which has 2s + 2 elements which all

have an �2 norm of 1. Then the image γ RH Dξ E will always contain γ RH x (1) and
γ RH x (2), and by the previous paragraph, the norms of the vectors in γ RH Dξ E cannot
concentrate around 1. Thus γ RH Dξ cannot be a JLE for E even for an embedding
dimension m as large as N . By Theorem 4, in contrast, there are �2 → �1 JLEs of size
m × N for E already if m � ε−2s which can be chosen to be much smaller than N .
That is, subsampled Hadamard matrices with random column signs are intrinsically
suboptimal as �2 → �1 JLEs.

7 Discussion

In this note, we considered a family of Johnson–Lindenstrauss embeddings with order
optimal embedding dimension for all possible choices of the parameters N , p and
ε. We showed that it allows for a fast simultaneous embedding of p′ points in time
O(p′N logm), provided that p = exp(Oε(N 1−δ)) for some δ > 0 and that p′ is large
enough, i.e., p′ = p or p′ ≥ N d(δ). This improves upon the previously least restricted
fast Johnson–Lindenstrauss transform by Ailon and Liberty [3], which required that

p = exp(Oε(N
1
2−δ)). Our construction incorporates algorithms for fastmultiplication

of dense matrices.
One may of course ask whether the Hadamard transformation step in our con-

struction is necessary or whether such matrix multiplication algorithms could also be
applied directly for a full Bernoulli matrix (as studied, for example, by Achlioptas
[1]). This, however, does not seem to be the case. Namely, the analogous analysis to
our proof above yields for the number of operations the bound of

�(p′Nm f (α)−α−1).

So if m = �(Nr ), i.e. p = exp(�ε(Nr )) for any r > 0, we obtain a complexity
of �(p′N 1+t ) for a t > 0 which is always larger than �(p′N log N ). Of course this
argument only yields that this particular approach fails, but as the number of entries
of ME ′ , one of the matrices to be multiplied, is N p′, which is more or less the total
complexity bound that we seek, we see very little leverage room for improvements.

Independent from that, it remains a very interesting question to find Johnson–
Lindenstrauss embeddings with optimal embedding dimension that allow for a fast
query step, i.e., a fast application to a point not part of the given data set. Beyond its
use for the approximate nearest neighbor search outlined above, such a result would
also yield improvements in other application areas such as the construction of fast
transforms with the restricted isometry property as in [5].

As we found, a subsampled Hadamard matrix with randomized columns signs
as considered in [19] cannot achieve this optimal embedding dimension, so a more
involved construction will be necessary.
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