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Abstract

Lately, the self-attention mechanism has marked a new milestone in the field of automatic speech recognition (ASR).
Nevertheless, its performance is susceptible to environmental intrusions as the system predicts the next output
symbol depending on the full input sequence and the previous predictions. A popular solution for this problem is
adding an independent speech enhancement module as the front-end. Nonetheless, due to being trained separately
from the ASR module, the independent enhancement front-end falls into the sub-optimum easily. Besides, the
handcrafted loss function of the enhancement module tends to introduce unseen distortions, which even degrade
the ASR performance. Inspired by the extensive applications of the generative adversarial networks (GANs) in speech
enhancement and ASR tasks, we propose an adversarial joint training framework with the self-attention mechanism to
boost the noise robustness of the ASR system. Generally, it consists of a self-attention speech enhancement GAN and
a self-attention end-to-end ASR model. There are two advantages which are worth noting in this proposed
framework. One is that it benefits from the advancement of both self-attention mechanism and GANs, while the other
is that the discriminator of GAN plays the role of the global discriminant network in the stage of the adversarial joint
training, which guides the enhancement front-end to capture more compatible structures for the subsequent ASR
module and thereby offsets the limitation of the separate training and handcrafted loss functions. With the adversarial
joint optimization, the proposed framework is expected to learn more robust representations suitable for the ASR task.
We execute systematic experiments on the corpus AISHELL-1, and the experimental results show that on the artificial
noisy test set, the proposed framework achieves the relative improvements of 66% compared to the ASR model
trained by clean data solely, 35.1% compared to the speech enhancement and ASR scheme without joint training,
and 5.3% compared to multi-condition training.

Keywords: Self-attention mechanism, Generative adversarial networks, Speech enhancement, Robust speech
recognition

1 Introduction
In recent years, attention-based end-to-end neural net-
works, which subsume the acoustic and language models
into a single neural network, have triggered a revolution
in the field of automatic speech recognition (ASR) [1, 2]
and are challenging the dominance of hidden Markov
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model-based hybrid systems [3]. Furthermore, the self-
attention mechanism has made another breakthrough in
the innovation of the attention architecture, which con-
siders the whole sequence at once to model feature inter-
actions that are arbitrarily distant in time, leading to faster
convergence and state-of-the-art results in ASR [4–12].
The self-attention system predicts the next output symbol
conditioned on the full sequence of the previous pre-
dictions. Once a mistake occurs in one estimation step
due to noise interference, all the subsequent steps will be
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disturbed. As speech signals are inevitably interfered by
various background noises in the realistic environment, it
is crucial to improve the robustness of the self-attention
mechanism for practical application.
The mainstream solution to the noise robustness prob-

lem is adding an independent speech enhancement (SE)
module as the front-end of ASR. Speech enhancement
aims to transform the interfered speech to its original
clean version, which is achieved by various approaches,
i.e., statistical methods such as Wiener filter [13], time-
frequencymasking [14–16], signal approximation [17, 18],
and spectral mapping [19, 20]. No matter what approach
the speech enhancementmodel adopts to achieve the goal,
it is trained separately from the ASR model on different
loss functions (i.e., mean squared error [21]) and being
evaluated by different objective criteria (i.e., mean opin-
ion score (MOS) prediction of the intrusiveness of back-
ground noise [22], segmental SNR [23]). This mismatch
between the enhancement training and the final ASR task
leads to a sub-optimum easily [24]. Moreover, the hand-
crafted loss functions tend to generate over-smoothed
spectra or introduce unseen distortions, which sometimes
even degrade the downstream ASR performance [25].
To obtain the optimum and circumvent introducing

unnecessary distortion, the idea of a joint training frame-
work is proposed for robust speech recognition [25–28].
The fundamental concept of the joint training is concate-
nating the speech enhancement front-end and a down-
stream ASR model to build an entire neural network and
jointly adjust the parameters in each module. The goal
here is that the enhancement front-end tends to produce
enhanced features desired by the ASR component, and
the ASR module can guide the enhancement module to
a more discriminative direction. In this way, the joint
framework is optimized on the final ASR objectives, i.e.,
word/character error rate (W/CER).
Generative adversarial networks (GANs) aim at map-

ping samples x̂ from the distribution X̂ to samples x
from another distribution X . There are two components
within GANs. One is the generator (G), which performs
the mapping, and the other is the discriminator (D), which
guides the training of the generator. GANs have been
applied to various speech signal processing tasks, such as
speech enhancement [29, 30], robust speaker verification
[31], spoken language identification [32], speech emo-
tion recognition [33], data augmentation [34], and robust
speech recognition [35].
Inspired by the advancement of self-attention mecha-

nism and various applications of GAN in speech-related
tasks, we propose an adversarial joint training framework
with self-attention mechanism to boost the robustness
of the self-attention ASR systems, which consists of a
self-attention speech enhancement GAN (SA_SEGAN)
and a self-attention end-to-end ASR model (SA_ASR),

where we experiment with Transformer [36] and Con-
former [37]. The discriminant component of SA_SEGAN
is first utilized to distinguish the enhanced features from
the original clean features, instructing the enhancement
module to output the clean distribution. When it comes
to the stage of the joint training, the D component
acts as the global training guide, and it will shift the
direction for the G component to produce more con-
gruous features for the ASR task. As the global guide,
the discriminator is expected to remedy the limitation
of the separate training and handcrafted loss functions,
alleviate the distortion, and lead the speech enhance-
ment component to the global optimum. Meanwhile,
the enhancement module is supposed to capture more
underlying structural characteristics. With this global
guide, the whole framework is expected to learn more
robust representations compatible with the ASR task
automatically.
In summary, the main contributions of this paper are as

follows:

• We propose a self-attention-based jointly trained
adversarial framework targeting robust speech
recognition. To the best of our knowledge, this is the
first joint training scheme that benefits from the
advantages of both the self-attention mechanism and
adversarial training.

• We conduct the local and global adversarial training
simultaneously, where the discriminant component
does not concentrate on the enhancement front-end
exclusively, but also plays the role of the global
training guide.

• The proposed framework yields remarkable results,
which achieves relative improvements up to 66%
compared to the ASR model trained by clean data
solely, 35.1% compared to the scheme without joint
training, and 5.3% compared to multi-condition
training.

2 Related work
GANs have been applied in speech enhancement tasks
without attention [29, 38, 39] and with attention [40, 41].
These works validate the functionality of GAN in the
enhancement task on diverse objective criteria; however,
they lack proofs of the effectiveness of their work for the
downstream ASR task.
GANs have also been employed to improve the robust-

ness of the ASR model [35, 42–44]. A potential limitation
lies in the weak matching and communication between
the integrated modules. For instance, speech enhance-
ment and speech recognition are often designed indepen-
dently, and the enhancement system is tuned according to
the metrics that are not straightly relative to the final ASR
performance.
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To address this concern, joint training is a promis-
ing approach. An early attempt was proposed in [45],
where a feature extraction front-end and a Gaussian mix-
ture model-hidden Markov model back-end are jointly
trained on maximum mutual information. Afterwards,
other interesting works are published in this field
[25, 26, 46–48]. Nevertheless, an effective integration
between the various systems has been difficult for many
years, mainly due to the different nature of the technolo-
gies involved at different steps. For example, in [25, 46],
the joint training is actually performed as a fine-tuning
procedure. To tackle this problem, this paper deploys the
discriminant component of GAN as a global guide, lead-
ing the enhancement module to match the downstream
ASR module.

3 Self-attention-based SE-ASR scheme
3.1 Overview
Figure 1 illustrates an overview of our proposed joint
training framework for robust end-to-end speech recog-
nition pictorially. The system consists of a self-attention
enhancement front-end and a self-attention ASR model.
Given the raw noisy speech input x̃ and the raw clean
input x∗, we illustrate the entire procedure of the joint
training pipeline in the following forms:

x̂ = Generator(x̃), (1)

f̂ = FBank(x̂), (2)

P(y|f̂ ) = SA_ASR(f̂ ), (3)

P(D|x̂, x∗) = Discriminator(x̂, x∗). (4)

Here, Generator(·) acts as a speech enhancement front-
end realized by the generator component of SA_SEGAN
[40], which transforms the noisy raw input x̃ to the
enhanced x̂. FBank(·) is a function for extracting the nor-
malized log FBank features f̂ from the enhancement out-
puts x̂. Subsequently, SA_ASR(·) is an ASR system based
on self-attention layers realized by the Transformer [36] or
Conformer [37] architecture. y is the outputs of the whole
scheme. Discriminator(·) is realized by the discrimina-
tor component of SA_SEGAN [40], which distinguishes
enhanced outputs from clean data.

3.2 Self-attention mechanism
Self-attention [49] relates the information over different
positions of the entire input sequence for computing the
attention distribution using scaled dot-product attention:

Attention(Q,K ,V ) = softmax
(
QKT√

dk

)
V . (5)

Q ∈ R
tq×dq , K ∈ R

tk×dk , and V ∈ R
tv×dv are three

inputs of the self-attention layer: queries, keys, and values,
where tq, tk , and tv are the element numbers in differ-
ent inputs while dq, dk , and dv denote the corresponding
element dimensions. The scalar 1√

dk
prevents the soft-

max function from falling into regions with tiny gradients.
One query’s output is computed as a weighted sum of the
values, where each weight of the value is computed by a
designated function of the query with the corresponding
key.

3.3 Self-attention speech enhancement GANs
3.3.1 Speech enhancement GANs (SEGAN)
Given a datasetX = {(x∗

1, x̃1), (x
∗
2, x̃2), · · · , (x∗

N , x̃N )} con-
sisting ofN pairs of raw signals: clean speech signal x∗ and
noisy speech signal x̃. Speech enhancement aims to find a
mapping fθ (x̃) : x̃ → x̂ to transform the raw noisy signal x̃
to the enhanced signal x̂. θ contains the parameters of the
enhancement network.
Conforming to GAN’s principle [50], the generator G

is for learning an effective mapping that can imitate the
real data distribution to generate novel samples related to
those of the training set. Hence, G acts as the enhance-
ment function. In contrast, the discriminator D plays the
role of a classifier which distinguishes the real sample,
coming from the dataset that G is imitating, from the
fake samples, made up by G. D guides θ towards the
distribution of clean speech signals. To sum up, SEGAN
designates the generator G for the enhancement mapping,
i.e., x̂ = G(x̃), while designates the discriminator D to
guide the training of G by classifying (x∗, x̃) as real and
(x̂, x̃) as fake. Eventually, G learns to produce enhanced
signals x̂ good enough to fool D such that D classifies (x̂, x̃)
as real.

3.3.2 Self-attention speech enhancement GANs (SA_SEGAN)
SA_SEGAN [40] is SEGAN with the adoption of the self-
attention layer adapted from non-local attention [51, 52].
Given the feature map F ∈ R

L×C output by the 1-dim con-
volutional layer, where L is the time dimension, C is the
number of channels, the querymatrixQ, the keymatrixK ,
and the value matrix V are obtained via transformations:

Q = FWQ,K = FWK ,V = FWV , (6)

whereWQ ∈ R
C× C

b ,WK ∈ R
C× C

b , andWV ∈ R
C× C

b rep-
resent the learnt weight matrices of the 1×1 convolutional
layer of C

b filters. Furthermore, Phan et al. [40] introduce
two factors, b and p, for memory efficiency. b reduces the
channel dimension, while p reduces the number of keys
and values by a max pooling layer with filter width and
stride size of p. Therefore, the dimension of the matrices
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Fig. 1 Overview of the SE_ASR joint training framework

are Q ∈ R
L× C

b , K ∈ R
L
p× C

b , and V ∈ R
L
p× C

b . The attention
map A and the attentive output O are then computed as:

A = softmax(QKT ), A ∈ R
L× L

p , (7)

O = (AV )WO, WO ∈ R
C
b ×C . (8)

Each element aij ∈ A indicates the extent to which the
model attends to the jth column vj of V when producing
the ith output oi ofO.With the weightmatrixWO realized
by a 1 ×1 convolution layer of C filters, the shape of O is
restored to the original shape L × C.
In the end, SA_SEGAN contains a shortcut connec-

tion to facilitate information propagation, and a learnable
parameter β is employed to balance the weight between
the output O and the input feature map F as:

F ′ = βO + F . (9)

We illustrate the diagram of a simplified self-attention
layer with L = 9, C = 6, p = 3, and b = 2 in Fig. 2.

3.3.3 Network architecture
The architectures of the generator G and the discrimina-
tor D are depicted in Fig. 3a, b. The G component makes
use of an encoder-decoder architecture with fully convo-
lutional layers [53]. The generator’s encoder comprises 11
1-dim stridden convolutional layers with a common filter
width of 31 and a stride length of 2, followed by para-
metric rectified linear units (PReLUs) [54]. The encoder

receives a 1-s segment of the raw signal sampled at 16
kHz, approximately 16,384 samples as the input. To com-
pensate for the smaller and smaller convolutional output,
the number of filters increases along the encoder’s depth
{16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 1024} , resulting
in output size of the feature map {8192 × 16, 4096 ×
32, 2048 × 32, 1024 × 64, 512 × 64, 256 × 128, 128 ×
128, 64 × 256, 32 × 256, 16 × 512, 8 × 1024}. At the 11th
layer of the encoder, the encoding vector c ∈ R

8×1024

is stacked with the noise sample z ∈ R
8×1024, sam-

pled from the distribution N (0, I), and presented to the
decoder.
The decoder component mirrors the encoder architec-

ture with the same number of filters and the filter width
to reverse the encoding process through deconvolutions.
The same as the encoder, each deconvolutional layer is
again followed by a PReLUs. The skip connections are
deployed to connect the encoding layer with its corre-
sponding decoding layer to allow the information flow
between the encoding stage and the decoding stage.
The discriminator is constructed of a similar architec-

ture to the encoder component of the generator. However,
it receives the two-channel input and utilize virtual batch-
norm [55] before LeakyReLU [56] activation with α = 0.3.
Moreover, the D network is topped up with a 1 × 1 con-
volutional layer to reduce the dimension of the output of
the last convolutional layer from 8 × 1024 to 8 for the
subsequent classification task with the softmax layer.
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Fig. 2 Illustration of the application of self-attention mechanism in speech enhancement GANs with L = 9, C = 6, p = 3, and b = 2

The self-attention layer illustrated in Section 3.3.2 cou-
ples with the (de)convolutional layer of both the gen-
erator and the discriminator. Figure 3a, b demonstrate
an example of the self-attention layer coupling with the
lth (de)convolutional layer. As we can see, if we add
the self-attention layer to the lth convolutional layer of
the encoder, the mirror lth deconvolutional layer of the
decoder and the lth layer in the discriminator also cou-
ples a self-attention layer. Theoretically, the self-attention
layer can be placed in any number, even all, of the
(de)convolutional layers.

3.4 FBank extraction network
We extract the normalized log FBank features f̂ as the
input of the subsequent ASR model, which is computed
from the enhanced signals x̂:

f̂ = FBank(x̂) = Norm(log(Mel(STFT(x̂)))), (10)

where STFT(·) is the operation of short-time Fourier
transform (STFT), Mel(·) is the operation of Mel matrix
multiplication, and Norm(·) is for normalizing the mean
and variance to 0 and 1, separately. Consequently, the
FBank feature extraction layer is differentiable.

3.5 Transformer
3.5.1 Multi-head attentionmechanism
Multi-head attention mechanism [49], as the terminology
implies, contains more than one self-attention module.
As the core module of the Transformer [36], it leverages
different attending representations jointly. Before per-
forming each attention, three linear projections transform
the queries, keys, and values to more discriminated rep-
resentations, respectively. Afterwards, each dot-product
attention is calculated independently, and their outputs
are concatenated and fed into another linear projection to
obtain the final dmodel-dimensional outputs:

MultiHead(Q,K ,V )

= Concat(head1, head2, · · · , headh)WOUT , (11)

where

headi = Attention(QWQ
i ,KW

K
i ,VWV

i ). (12)

h refers to the head numbers, and Q, K , V have the same
dimensions of dmodel. Four projection matrices WQ

i ∈
R
dmodel×dq , WK

i ∈ R
dmodel×dk , WV

i ∈ R
dmodel×dv , and

WOUT ∈ R
hdv×dmodel . Additionally, dq = dk = dv =

dmodel/h.
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Fig. 3 Illustration of the SA_SEGAN architecture. a The generator
component. b The discriminator component [40]

3.5.2 Positional encoding
One obvious limitation of the Transformer model is that
the output is invariant to the input order permutation, i.e.,
the Transformer does not model the order of the input
sequence. Vaswani et al. [49] solve this problem by inject-
ing information about absolute positions into the input
sequence via sinusoid positional embeddings:

PE(pos,i) =
{
sin(pos/10000i/dmodel)) if i is even
cos(pos/10000i/dmodel)) if i is odd ,

(13)

where pos refers to the position, and i is the dimension.
The sinusoidal function allows the model to extrapolate
from long sequence lengths.

3.5.3 Feed-forward network
The feed-forward network (FFN) is another core mod-
ule of the Transformer [36]. It is composed of two linear
transformations with a ReLU activation in between. The
dimensionality of the input and output is dmodel, and the
inner layer has the dimensionality dff . Specifically,

FFN(x) = max(0, xW 1 + b1)W 2 + b2, (14)

where the weights W 1 ∈ R
dmodel×dff , W 2 ∈ R

dff ×dmodel

and the biases b1 ∈ R
dff , b2 ∈ R

dmodel . The linear
transformations are the same across different positions.

3.5.4 Network architecture
The detailed model architecture of the ASR-Transformer
is as follows.
The encoder is shown in Fig. 4a. The input embedding

is for extracting expressive representations of dimension
dmodel. Thereafter, to enable the model to attend on the
auxiliary position information, the dmodel-dim positional
encoding (Section 3.5.2) is added to the input encoding.
Then, the sum of the encoded outputs is fed into a stack
of Ne encoder blocks, each of which has two sub-blocks:
one is the multi-head attention (Section 3.5.1), receiving
queries, keys, and values from the previous block, and the
other is the feed-forward networks (Section 3.5.3). In the
meanwhile, layer normalization and residual connection
are introduced to each sub-block for effective training.
Thus, the pipeline of the sub-block is:

x + SubBlock(LayerNorm(x)). (15)

The decoder is shown in Fig. 4b. The output-embedding
converts the character sequence to dimension dmodel.
Added with the positional encoding, the sum of them
is fed into a stack of Nd decoder blocks, which con-
sists of three sub-blocks: The first is a masked multi-
head attention, which ensures that the predictions for
position j depends only on the known outputs at posi-
tions less than j. The second is a multi-head atten-
tion whose keys and values come from the encoder
outputs while queries come from the previous sub-
block outputs. The third is also feed-forward networks.
Similar to the encoder, layer normalization and resid-
ual connection are also employed to each sub-block
of the decoder. Eventually, the output probabilities are
acquired by a linear projection and a subsequent softmax
function.

3.6 Conformer
Conformer [37] is a state-of-the-art ASR encoder archi-
tecture. Different from the Transformer block (as
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Fig. 4Model architecture of the Transformer. a Encoder. b Decoder [36]

described in Section 3.5), it is equipped with a convolution
layer to increase the local information modeling capabil-
ity of the Transformer encoder model [49] and a pair of
FFN modules sandwiching the multi-head self-attention
module and the integrated convolution module. The Con-
former model consists of a Conformer encoder proposed
in [37] and a Transformer decoder [36]. The encoder first
processes the input with a convolution subsampling layer
and then with Conformer blocks, as illustrated in Fig. 5i.
The Conformer block (Fig. 5ii) consists of a multi-head
self-attention module (MHSA), a convolution module,
sandwiched by a pair of macron-feedforwardmodule [57].
The layer normalization is applied before each module,
and the dropout is followed by a residual connection after-
wards (pre-norm) [58, 59]. Mathematically, let xi be the
input to the ith Conformer block, the output yi of this
block is:

x′
i = xi + 1

2
FFN(xi), (16)

x′′
i = x′

i + MHSA(x′
i), (17)

x′′′
i = x′′

i + Conv(x′′
i ), (18)

yi = LayerNorm
(
x′′′
i + 1

2
FFN(x′′′

i )

)
. (19)

FFN(·), MHSA(·), Conv(·), and LayerNorm(·) denote
the macron-feedforward module, the multi-head self-
attention module, the convolution module, and the layer
normalization module, respectively. The multi-head self-
attention module is the same as in Section 3.5.1 and
is demonstrated in Fig. 5ii-b. Sections 3.6.1 and 3.6.2
introduce the convolution module and the macron-
feedforward module, respectively.
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Fig. 5 Illustration of the Conformer encoder model architecture. i Conformer encoder architecture. ii Conformer block architecture. ii-a Convolution
module of the Conformer block. ii-bMulti-headed self-attention module of Conformer block. ii-c Feed forward module of Conformer block

3.6.1 Convolutionmodule
Figure 5ii-a demonstrates the details of the convolution
module. The convolution module starts with a 1-dim
pointwise convolution layer and a gated linear units (GLU)
activation [60]. The 1-dim pointwise convolution layer
doubles the input channels, and the GLU activation splits
the input along the channel dimension and executes an
element-wise product. What follows are a 1-dim depth-
wise convolution layer, a batch normalization layer, a
Swish activation, and another 1-dim pointwise convolu-
tion layer. As mentioned before, the layer normalization is
applied before each module, and the dropout is followed
by a residual connection afterwards (pre-norm).

3.6.2 Macron-feedforwardmodule
Unlike the FFN module in Transformer encoder [36],
which comprises two linear transformations with a ReLU
activation in between (Eq. 14), Conformer encoder [37]
introduces another FFN module and substitutes the
ReLU activation with the Swish activation. Furthermore,
inspired by Macaron-Net [57], this pair of FFN mod-
ules are following a half-step scheme and sandwiching the
MHSA and the convolution modules. The detail of the
FFN is illustrated in Fig. 5ii-c.

4 Adversarial joint training
GANs aim at mapping samples x̂ from the distribution X̂
to samples x∗ from another distribution X ∗. The gener-
ator G is tasked to learn an effective mapping that can
imitate the real data distribution to generate novel sam-
ples from the manifold defined in the X , by means of
an adversarial training exerted by the discriminator D.
During back-propagation, D classifies real samples from

the fake samples more accurately; in return, G updates its
parameters towards the real data manifold, till the mixed
Nash equilibria are reached [50]. The GAN training pro-
cess can be formulated as a minimax game between G and
D, with the objective:

min
G

max
D

L(D,G) =Ex∗∼pdata(x∗)[ logD(x∗)]+
Ex̂∼px̂(x̂)[ log(1 − D(G((x̂))))] .

(20)

In our proposed robust end-to-end speech recogni-
tion scheme, the discriminant network first acts as the
local guide for the enhancement module, where D shifts
the training of G towards the distribution of clean data;
thereafter, it is deployed as the global guide for the
whole scheme, where D instructs G to output pertinent
enhanced data for the subsequent ASR task.
We first train the enhancement module, which contains

both the generator and the discriminator. To solve the
problem of vanishing gradients caused by sigmoid cross-
entropy loss for training, the least-squares GAN (LSGAN)
with binary coding (1 for real, 0 for fake) is utilized instead
of the cross-entropy loss. Consequently, the loss function
of the discriminator component changes to

min
D

L(D) =1
2
Ex∗,x̃∼pdata(x∗,x̃)[D(x∗, x̃) − 1]2 +

1
2
Ez∼pz(z),x̃∼pdata(x̃)[D(G(z, x̃), x̃)]2 ,

(21)

where z is a latent variable. To minimize the distance
between its generations and the clean examples, it is ben-
eficial to add a secondary component to the loss of G.
Inspired by the effectiveness of L1 norm in the image
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manipulation domain [61, 62], we deploy it in G compo-
nent to gain more fine-grained and realistic results. The
magnitude of the L1 norm is controlled by a new hyper-
parameter λ. Hence, the loss function of the generator
component becomes:

min
G

L(G) =1
2
Ez∼pz(z),x̃∼pdata(x̃)[D(G(z, x̃), x̃) − 1]2

+ λ
∥∥G(z, x̃) − x∗∥∥

1 .
(22)

In the joint training, the enhancement module is ini-
tialized from the trained G component, while the global
discriminant module is initialized from the trained D
component. The training of the ASR component is based
on the cross entropy criterion, namely:

Lasr = −lnP(y∗|f ) = −
∑
n

lnP(y∗
n|f , y∗

1:n−1), (23)

where y∗ is the ground truth of a whole sequence of out-
put labels, and y∗

1:n−1 is the ground truth from output step
1 to n − 1. In the proposed framework, the parameters of
all procedures, enhancement, feature extraction, ASR, and
the discriminant network, are updated by stochastic gra-
dient descent calculated by the loss function of the whole
scheme. It is composed of three losses: Lasr , Lenh, and
Lgan, which correspond to Eqs. 23, 22, and 21, i.e.:

L = Lasr + κLenh + γLgan, (24)

where κ and γ are two hyper-parameters weighting the
magnitude of the enhancement loss and adversarial loss,
respectively. Notably, the scheme targets the recognition
performance, and the loss function of the discriminant
network adapts the enhancement module implicitly. As a
result, the discriminant network guides the enhancement
module to serve the subsequent ASR task more properly.
Accordingly, the unnecessary speech distortion caused by
the enhancement process is alleviated.

5 Experimental setups
We systematically evaluate the robustness of the adver-
sarial joint training framework, and ablation tests are
conducted to validate the effects of (i) the enhancement
front-end on the ASR task, (ii) the joint training on the
whole scheme, and (iii) the GAN on the joint training.

5.1 Corpus
All experiments are executed on the open source Man-
darin speech corpus, AISHELL-1 [63]. This corpus is
178-h-long, and its utterances contain 11 domains, e.g.,
smart home, autonomous driving, industrial production.
A total of 400 speakers from different accent areas in
China participate in the recording. The corpus is divided
into training, development, and test sets. The training
dataset contains 120,098 utterances from 340 speakers,

the development dataset contains 14,326 utterances from
40 speakers, and the test dataset contains 7176 utterances
from 20 speakers.
For the noisy data, we contaminate clean utterances in

AISHELL-1 with 9 sorts of intrusions from the NOISEX-
92 dataset [64] artificially as noisy utterances. We create
noisy training, development, and test sets in the same
manner. Note that besides the “matched” noisy test set,
which is contaminated by the same intrusions as the
training dataset, we also corrupt the test set with the
rest 5 sorts of intrusions in the NOISEX-92 dataset as
“unmatched” test materials. Table 1 exhibits the sorts the
intrusions mixed in “match” and “unmatch” cases. All
utterances are mixed with the intrusions at SNRs ran-
domly sampled between [0 dB, 20 dB]. To sum up, we have
two sorts of datasets for training:

• Clean: clean utterances from the training dataset of
AISHELL-1

• Match: contaminated clean utterances (training
dataset) with “matched” noises of Table 1

For test datasets, we have the following:

• Clean: clean utterances from the test dataset of
AISHELL-1

• Match: contaminated clean utterances of the test set
with the same intrusions (“matched” noises of
Table 1) as “matched” training set

• Unmatch: contaminated clean utterances of the test
set with different intrusions (“unmatched” noises of
Table 1) from “matched” training set

5.2 Baseline
For the comparison purpose, we take the work from [28]
as the baseline model.
In [28], the mask-based enhancement network is

deployed as the front-end. It estimates a masking func-
tion to multiply the frequency domain feature of the noisy
speech to form an estimate of the clean speech. For the
ASR task, Liu et al. employ the ESPnet model [65]. It
consists of an encoder network that maps the input fea-
ture sequence into a higher-level representation. Then,
a location-based attention layer integrates the represen-
tation into a context vector with the attention weight
vector. In the end, the decoder predicts the next output
conditioned on the full sequence of previous predictions.
Besides, there is an extra discriminant network, whose
loss is weighted in the loss function of the whole scheme
to optimize the joint training.
Importantly, the baseline model does not contain any

self-attention layer. Furthermore, the discriminant work
in the baseline model is an extra auxiliary module, which
does not participate in the enhancement training directly.
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Table 1 The demonstration of categories of intrusions utilized in
“match” and “unmatch” cases

Intrusion Description

Match

White noise Analog noise generator

Factory floor noise 1 Plate-cutting and electrical welding

Cockpit noise 1 Buccaneer jet traveling at 190 knots

Cockpit noise 3 F-16

Engine room noise Destroyer

Military vehicle noise Leopard 1 vehicle

Machine gun noise Gun

Vehicle interior noise Volvo 340

HF channel noise HF radio channel

Unmatch

Pink noise Analog noise generator

Factory floor noise 2 Car production hall

Cockpit noise 2 Buccaneer jet traveling at 450 knots

Operations room background noise Destroyer

Military vehicle noise M109

By contrast, our work benefit from self-attention mech-
anism and the discriminant module exits innately, which
is a component of the enhancement front-end. It acts as
the local guide for the enhancement training, leading the
enhancement network to output towards the distribution
of the clean samples. Simultaneously, it also plays the role
of the global guide, instructing the enhancement module
and the ASR module better matched.

5.3 Configurations
5.3.1 Baseline
For the enhancement front-end, the input is the 257-dim
logarithmic STFT features, and all input vectors are nor-
malized to have the zero mean and the unit variance. The
network is composed of 3-layer long short-term memory
(LSTM) with 128 nodes, followed by a linear layer with
the sigmoid activation function. The network outputs the
masking estimate, whose size is equal to the input size,
multiplying by the STFT feature of the noisy speech to
estimate the clean speech.
For the ASR network, the input is the 80-dim normal-

ized log FBank features transformed from the enhanced
STFT features. The encoder is composed of 4-layer
bidirectional LSTM (BLSTM) with 320 cells, while the
decoder is composed of 1-layer unidirectional LSTMwith
320 cells. After each BLSTM layer, a linear projection
layer with 320 nodes is used to combine the forward and
backward LSTM outputs. The location-based attention
mechanism comprises 10 centered convolution filters of

width 100. Besides, We also adopt a joint connection-
ist temporal classification (CTC)-attention multitask loss
function [66] with the CTC loss weight as 0.1.
The discriminant network consists of a 4-layer convo-

lution network, each of which is followed by the ReLU
activation function [67].
For decoding, we use a beam search algorithm with

the beam size 12. CTC rescores the hypotheses with 0.1
weight [66]. Besides, an external recurrent neural network
(RNN) language model is also adopted with 0.2 weight
during decoding.

5.3.2 The proposed joint training scheme
SA_SEGAN The SA_SEGAN is trained for 86 epochs
with RMSprop [68] and a learning rate of 0.0002. The
batch size is 50. During training, we extract 1-s chunks of
raw waveforms (L = 16, 384 samples) with a 50% overlap.
During the test, we slide the window without overlapping
through the whole duration of our test utterances and
concatenate the outputs at the end of the stream. Dur-
ing both training and test, we employ a high-frequency
preemphasis filter with a coefficient of 0.95 to all inputs.
For the self-attention layer in SA_SEGAN, we use b = 8
and p = 4 for memory reduction. Phan et al. [40] sug-
gest that the placement of the self-attention layer does not
show a clear difference on the performance, which indi-
cates that applying the self-attention to the higher-level
(de)convolutional layer is expected to be as good as to a
lower layer. Compromising between the computation time
and memory requirement and the performance, we place
the self-attention layer in the 10th layer (l=10).

FBank extraction network The FBank feature extrac-
tion network is a linear layer to transform the raw outputs
from the upstream SA_SEGAN to the downstream ASR
procedure. We extract 80-dim filterbanks with the win-
dow size of 25 ms and the window shift of 10 ms, extended
with the temporal first- and second-order differences.
Thereafter, we do the logarithmic calculation and global
mean and variance normalization according to Eq. 10.

Transformer For training the Transformer, we adopt
Adam optimizer [69] with β1 = 0.9, β2 = 0.98, ε = 10−9,
and vary the learning rate over the course of training
according to the formula:

lr = k′ · d−0.5
model · min(n−0.5, n × warmup−1.5

n ), (25)

where n denotes the step number. k′ is a tunable scalar,
which is set to be 10 initially and is declined to 1 when the
model converges. The learning rate increases linearly dur-
ing the fist warmupn = 25, 000 steps, and afterwards, it
decreases proportionally to the inverse square root of the
step number. We apply the residual dropout to each sub-
block before adding the residual information, while the
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attention dropout is performed on the softmax activations
in each attention. Both of these aforementioned dropouts
are set to be 0.1. Additionally, we guide the system to be
more attentive on closer positions by punishing the atten-
tion weights of more distant position pairs. Similar to
the baseline model, we also adopt a joint CTC-attention
multi-task loss function [66], with the CTC loss weight as
0.3. In the decoding, we set the beam size to 12 and length
penalty α = 1.0 [70]. Besides, we also integrate an exter-
nal RNN language model with 0.3 weight. The training
procedure is stopped after 30 epochs.

Conformer The model hyper-parameters of the Con-
former areNe=12,Nd=6,H=4, dk=256, and dff =2048. The
convolution subsampling layer possesses a 2-layer convo-
lutional neural network (CNN) with 256 channels, stride
with 2, and kernel size with 3. The kernel size of the con-
volution module is 31. We apply dropout in each residual
unit of the Conformer with the weight 0.1. The same as the
Transformer, we train the network with Adam optimizer
[69] with β1 = 0.9, β2 = 0.98, and ε = 10−9 and a Trans-
former learning rate schedule [49] with 10,000 warm-up
steps. The learning rate is peaked at 0.05/

√
d, where d is

the model dimension in the Conformer encoder. Note that
we do not apply speed perturbation [71] or SpecAugment
[72] for the data augmentation to exclude extra tricks
that could cause performance improvements. The training
procedure is stopped after 30 epochs.

6 Results
We use character error rate (CER) to quantify the sys-
tem performance in all experiments. We report CER of
the AISHELL-1 test set on three conditions: “clean” refers
to the original clean test dataset of the corpus, “match"
denotes the noisy test dataset contaminated by “matched”
sorts of intrusions in Table 1, and “unmatch" means
the noisy test set corrupted by the rest of “unmatched”
sorts of intrusions in Table 1. To validate the efficacy
of the enhancement front-end, we also introduce multi-
condition training (MCT), a popular training strategy
for robust speech recognition, for comparison. Different
from the training data generation of the speech enhance-
ment front-end, the training data of MCT contains 10%
clean utterances, which are chosen randomly from the
training set of AISHELL-1. Except for the 10% partition,
the remaining 90% of the training data is generated in
the same manner as that of the enhancement front-end,
namely being corrupted by the “matched” intrusions from
Table 1 at an SNR in the range [0 dB, 20 dB].
Firstly, we train the ASR network with the original

clean utterance and multi-condition training strategy. The
results are shown in Table 2.
Ranking these three models from the aspect of ASR per-

formance, the first is Conformer, then Transformer, and

Table 2 CER [%] results of the ASR system trained by clean data
and multi-condition training (MCT) without the enhancement

ASR Training
CER [%]

Clean Match Unmatch

Baseline
Clean 14.0 60.0 61.6

MCT 14.6 20.8 27.3

Transformer
Clean 8.0 35.6 37.1

MCT 7.8 13.1 16.2

Conformer
Clean 6.5 32.6 31.7

MCT 6.9 12.1 13.7

the last is the baseline model, consistent with observa-
tions in [36, 37]. However, their performance deteriorates
rapidly in the noisy test set, demonstrating the necessity
of the robustness investigation. TheMCT training consid-
erately improves the system’s robustness. Its performance
on the “matched” test set outperforms the clean training
by 63.2% and 62.9% relative, in cases of Transformer and
Conformer model respectively, while on the “unmatched”
dataset, it outperforms the clean training by 56.3% and
56.8% relatively, in cases of Transformer and Conformer
model, respectively.
Secondly, we train SA_SEGAN with the training data

contaminated by “matched” intrusions in Table 1 to
enhance the noisy speech. Then, the enhanced features
are used for the downstream ASR task. Importantly, the
ASR models are taken over from the same well-trained
model as in Table 2, which means that the enhance-
ment front-end and the ASR back-end are trained sep-
arately by different objectives. As exhibited in Table 3,
the enhancementmodule tremendously improves the per-
formance of the ASR component, which is trained by
the clean data merely. Compared to Table 2, it outper-
forms all of the three ASR modules (baseline, Trans-
former, Conformer) without the enhancement front-end.
The improvement achieved in the “matched” dataset is
more remarkable than that achieved on the “unmatched”
test set. For instance, it outperforms the Conformer with-
out the enhancement module by 46.0% in the “matched”
test set while 9.1% in the “unmatched” test set. This dif-
ference is due to the fact that the SA_SEGAN is trained
with the “matched” intrusions and can enhance the data
contaminated by the same intrusions better during the
test. All these improvements confirm the efficacy of the
enhancement module for improving the robustness of the
ASR system. Nevertheless, improving the robustness of
the framework in unseen noisy environments still remains
to be a challenge. Additionally, the speech enhancement
module deteriorates the performance of the ASR_MCT
network, which stays in accordance with the observa-
tions in [35] and [73]. Donahue et al. [35] and Narayanan
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Table 3 The impacts of the enhancement front-end on the ASR
systems trained by clean data and multi-condition training (MCT).
The results are in CER [%]

ASR Training
CER [%]

Clean Match Unmatch

Baseline
Clean 13.9 25.8 53.8

MCT 14.9 23.5 34.3

Transformer
Clean 8.1 19.1 33.7

MCT 7.9 14.9 20.7

Conformer
Clean 6.5 17.6 28.8

MCT 7.0 14.2 17.9

and Wang [73] hypothesize that the enhancement front-
endmight be introducing hitherto-unseen distortions that
compromise performance. Furthermore, we believe that
this latent distortion is derived from the independent
training of the enhancement module, demonstrating the
necessity of the joint training strategy.
To remedy the deterioration of the performance of the

ASR_MCT, we retrain the network with the enhanced
features. Assuming that the network may also bene-
fit from the knowledge of the noisy features, we also
experimented with ingesting both enhanced and noisy
features. The results are displayed in Table 4. Either
the Transformer_MCT model or the Conformer_MCT
model is initialized from the existing well-trained MCT
checkpoints respectively, setting the additional param-
eters to zero to ensure the fair training start. As pre-
sented in Table 4, the retraining with the enhanced
features improves the performance in both “matched”
and “unmatched” cases, and the retraining with both
enhanced and noisy features improves the performance
slightly further.
Lastly, we jointly train the whole scheme with and with-

out adversarial training according to Eq. 24. In the frame-
work, the enhancement front-end is initialized from the
generator (G component) of SA_SEGAN, the ASR back-
end is initialized from the ASR_MCT checkpoint (without

Table 4 CER [%] results of the SE_ASR system retraining with and
without noisy features

ASR Retraining
CER [%]

Clean Match Unmatch

Transformer_MCT

No 7.8 13.1 16.2

Enhanced 7.8 12.9 15.8

Enhanced + noisy 7.8 12.9 15.6

Conformer_MCT

No 6.9 12.1 13.7

Enhanced 6.7 12.0 13.5

Enhanced + noisy 6.7 11.8 13.3

retraining), and the adversarial module is initialized from
the discriminator (D component) of SA_SEGAN. When
the adversarial module participates in the training, we set
the magnitude of the loss function by κ=6.0 and γ=0;
by contrast, when it participates in the training, we set
κ=6.0 and γ=3.0. The results are presented in Table 5.
Compared to Table 2, the joint training mitigates the dis-
tortion problem existing in the MCT strategy. Addition-
ally, the participance of the adversarial training improves
the performance further and exceeds the performance
of retraining with both enhanced and noisy features in
either Transformer or Conformer case. Taking Conformer
for example, compared to Conformer trained with clean
data merely, the adversarial joint training yields 63.8%
relative and 59.0% relative improvements on “matched"
and “unmatched" datasets, respectively; meanwhile, the
adversarial joint training outperforms the MCT strat-
egy by 2.5% relative and 5.2% relative on “matched" and
“unmatched" datasets, separately. These results indicate
the efficacy of the adversarial joint training in improving
the robustness of the end-to-end ASR scheme.

7 Discussion
To analyze the difference between these enhancement
modules that are trained independently, jointly without
GANs, and jointly with GANs, we quantify their perfor-
mance on the following five objective criteria (the higher
the better):

• SSNR: segmental SNR [23] (in the range of [0 ,+∞))
• CBAK: MOS prediction of the intrusiveness of

background noises [22] (in the range of [1 , 5])
• CSIG: MOS prediction of the signal distortion

attending only to the speech signal [22] (in the range
of [1 , 5])

• COVL: MOS prediction of the overall effect [22] (in
the range of [1 , 5])

• PESQ: perceptual evaluation of speech quality, using
the wide-band version recommended in ITU-T
P.862.2 [74] (in the range of [− 0.5 , 4.5])

All criteria are computed based on the implementation
in [75], available at the publisher website1. We quantify
the performance of the enhancement front-end that is
trained independently, trained jointly with and without
GANs in cases of baseline, Transformer, and Conformer
schemes. As exhibited in Figs. 6, 7, and 8, the joint training
slightly degrades the enhancement module’s performance
on SSNR, CBAK, COVL, CSIG, and PESQ generally.
These results suggest that these objective criteria can-
not indicate the suitability of the enhanced data for ASR
task, which verifies that it is hard for independent training
to lead the enhancement module to the global optimum.

1https://www.crcpress.com/downloads/K14513/K14513_CD_Files.zip

https://www.crcpress.com/downloads/K14513/K14513_CD_Files.zip
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Table 5 The impacts of the joint training with and without GAN on SA-ASR pipeline. The results are in CER [%]

SE ASR joint training with GANs
CER[%]

Clean Match Unmatch

SA_SEGAN

Baseline
No 12.8 18.7 25.3

Yes 12.8 18.7 24.8

Transformer
No 7.0 12.4 15.6

Yes 7.2 12.4 15.5

Conformer
No 6.8 11.9 13.3

Yes 6.9 11.8 13.0

Fig. 6 The performance comparison of the enhancement model trained independently and the enhancement models trained jointly with the
baseline ASR model without and with GAN

Fig. 7 The performance comparison of the enhancement model trained independently and the enhancement models trained jointly with
Transformer ASR model without and with GAN
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Fig. 8 The performance comparison of the enhancement model trained independently and the enhancement models trained jointly with
Conformer ASR model without and with GAN

Another phenomenon which is worth noting is that the
discrepancies on CBAK and SSNR suggests that there are
conflicts between erasing the noise contamination and
averting the speech distortion. Therefore, an equilibrium
between these two goals should be sought. The exper-
imental results in Section 6 validate the efficacy of the
adversarial joint training with a global discriminant guide
for reaching the equilibrium point.

8 Conclusion
In this paper, we propose an adversarial joint training
framework with the self-attention mechanism to boost
the noise robustness of the end-to-end ASR system. The
jointly compositional scheme consists of an enhance-
ment front-end, a recognition back-end, and the discrim-
inant network. A highlight of this proposed framework
is the discriminant component first acts as the guide of
the enhancement front-end training; afterwards, it par-
ticipates in the adversarial joint training as the global
instructor, which leads the enhancement front-end to out-
put appropriate enhanced features for the downstream
ASR task. Experimental results validate the efficacy of
the proposed adversarial joint training strategy. The next
work plan is to investigate different framework archi-
tectures and training strategies for further improved
performance.
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