
Technische Universität München
TUM School of Computation, Information and Technology

Deep Representation Learning for Object Perception
Based on Attention Mechanisms

Hu Cao

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology der Technis-
chen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Martin Bichler

Prüfer der Dissertation:

1. Prof. Dr.-Ing. habil. Alois C. Knoll

2. Prof. Dr. Guang Chen

Die Dissertation wurde am 12. 04. 2023 bei der Technischen Universität München eingereicht und durch
die TUM School of Computation, Information and Technology am 09. 11. 2023 angenommen.





Abstract

Deep representation learning has shown remarkable capability for learning feature represen-
tations from data. Recently, attention mechanisms have been introduced into deep represen-
tation learning to mimic the working principle of the human visual system. Attention-based
methods can adaptively adjust the weights based on the input features, allowing the model
to focus on object features while suppressing noisy features. For object perception, current
methods are required to achieve high accuracy, efficiency, and robustness. The high perfor-
mance of deep representation models heavily relies on a large model size and a large-scale
dataset. It is difficult to design a model that strikes a balance between accuracy and speed.

The goal of this thesis is to improve the performance of deep representation models by
using attention mechanisms in applications of object detection and grasp detection. With
effective network design, the proposed approach can achieve better performance with a small
increase in computational cost. First, channel attention and spatial attention are used to form
a simultaneous attention refinement module (SARM) for people detection; second, channel-
and pixel-based attention is applied to construct a multidimensional attention fusion network
(MDAFN) to fuse valuable semantic information for grasp detection; and finally, multimodal
learning with spatial attention is employed for vehicle detection and grasp detection based
on event cameras. Extensive experiments demonstrate the effectiveness of the proposed
methods.

All the implementations presented in this thesis have been peer-reviewed and published
in international conferences and journals, confirming the originality and reliability of the
work.
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Zusammenfassung

Tiefes Repräsentationslernen hat eine bemerkenswerte Fähigkeit zum Lernen von Merkmal-
srepräsentationen aus Daten gezeigt. Kürzlich wurden Aufmerksamkeitsmechanismen in
das Deep-Representation-Learning eingeführt, um das Funktionsprinzip des menschlichen
Sehsystems nachzuahmen. Aufmerksamkeitsbasierte Methoden können die Gewichte auf
der Grundlage der eingegebenen Merkmale adaptiv anpassen, so dass sich das Modell auf
die Objektmerkmale konzentrieren kann, während verrauschte Merkmale unterdrückt wer-
den. Für die Objektwahrnehmung müssen die aktuellen Methoden eine hohe Genauigkeit,
Effizienz und Robustheit aufweisen. Die hohe Leistung von Deep-Representation-Modellen
hängt stark von einer großen Modellgröße und einem großen Datensatz ab. Es ist schwierig,
ein Modell zu entwickeln, das ein Gleichgewicht zwischen Genauigkeit und Geschwindigkeit
herstellt.

Das Ziel dieser Arbeit ist es, die Leistung von Deep-Representation-Modellen durch die
Verwendung von Aufmerksamkeitsmechanismen in Anwendungen der Objekterkennung und
der Greiferkennung zu verbessern. Mit einem effektiven Netzwerkdesign kann der vorgeschla-
gene Ansatz eine bessere Leistung bei einem geringen Anstieg der Rechenkosten erreichen.
Erstens werden Kanalaufmerksamkeit und räumliche Aufmerksamkeit verwendet, um ein si-
multanes Aufmerksamkeitsverfeinerungsmodul (SARM) für die Personendetektion zu bilden;
zweitens wird kanal- und pixelbasierte Aufmerksamkeit verwendet, um ein multidimension-
ales Aufmerksamkeitsfusionsnetzwerk (MDAFN) zu konstruieren, um wertvolle semantische
Informationen für die Greiferfassung zu fusionieren; und schließlich wird multimodales Ler-
nen mit räumlicher Aufmerksamkeit für die Fahrzeugdetektion und die Greiferfassung auf
der Grundlage von Ereigniskameras eingesetzt. Ausführliche Experimente demonstrieren die
Effektivität der vorgeschlagenen Methoden.

Alle in dieser Arbeit vorgestellten Implementierungen wurden von Experten begutachtet
und in internationalen Konferenzen und Fachzeitschriften veröffentlicht, was die Originalität
und Zuverlässigkeit der Arbeit bestätigt.
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1
Introduction

1.1 Overview

Intelligent systems are expected to sense and interact with their surroundings autonomously.
Excellent object perception is a prerequisite to achieving this goal. As the cornerstone of
vision understanding, object perception form the basis for a wide range of applications such
as intelligent video surveillance [Cao+22c], robot vision [Cao+21a; Cao+22a], autonomous
driving [Cao+21b], and human-computer interaction [MCL20].

Recently, deep representation learning methods have shown an excellent ability to au-
tomatically learn feature representations from data. Deep representation learning-based
methods have made significant advances in popular visual recognition competition bench-
marks. Ever since the deep convolutional neural network, AlexNet [KSH17], achieved record-
breaking image classification accuracy in the Large Scale Visual Recognition Challenge (ILSVRC),
the research community has mainly used deep representation learning methods to solve ob-
ject perception problems. Currently, deep representation learning methods have achieved
great success in the fields of image classification [KSH17; He+16; HSS18], object detec-
tion [RF16; Lin+20; Ren+15], semantic segmentation [Xie+21; Cao+22d], and robotic
grasp detection [Cao+21a; Cao+22a].

Inspired by the fact that humans can effectively detect salient regions in complex scenes,
attention mechanisms are introduced into deep representation learning to mimic the human
visual system [Guo+22]. Attention mechanisms dynamically adjust the weights based on
the features of the input image. Based on such processing, the model focuses mainly on
the important areas of the image and suppresses the irrelevant parts. Researchers usually
apply attention mechanisms to deep representation models to improve their performance.
Attention-based models have the potential to become a more powerful and general architec-
ture for object perception.

The goal of this thesis is to improve the performance of deep representation models for
object perception using attention mechanisms. Extensive experiments are conducted to ana-
lyze the effectiveness of the proposed methods. The limitations of the proposed methods are
also pointed out with a critical eye. In addition, potential future directions for improvement
are discussed. This provides a deeper understanding of the new methods and helps us to
evaluate their effectiveness more fairly and accurately.

1
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Figure 1.1: The general architecture of object detection. Image selected from the DDD 17 dataset [Bin+17]

Grasp detection network
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Figure 1.2: The general architecture of 2D grasp detection. Image selected from the Cornel grasp
dataset [YMS11]

1.2 The Problem

The object perception problem represents the general problem of identifying or localizing
the objects in an image. In this thesis, I mainly focus on object detection and robotic grasp
detection.

1.2.1 Object Detection

As shown in Fig. 1.1, objects can be identified by using bounding boxes. Given an image,
object detection is involved in the simultaneous estimation of the class and location of object
instances.

1.2.2 Robotic Grasp Detection

In order to grasp an object, we need to obtain the direction vector between the parallel plate
gripper (PPG) and the object so that the robot can approach it. In this thesis, I consider the
direction normal to the surface of the workplace to be the direction vector, i.e., the gripper
moves strictly perpendicular to the workplace (2D). With these settings, robotic grasp pose
estimation can be considered as an detection task (robotic grasp detection). Compared to
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creating 3D point cloud data, the entire 2D grasping system can reduce the cost of storage
and calculation. As shown in Fig. 1.2, the grasp pose of a flat object can be regarded as a
grasp rectangle.

1.3 Main Challenges

Object perception algorithms are required to achieve high accuracy, efficiency, and robust-
ness. However, current methods hardly strike a balance between accuracy and speed. Ad-
ditionally, there are many imbalance problems that need to be addressed. In the following
sections, the challenges of object perception algorithms are described in detail.

1.3.1 Prediction Accuracy Challenges

Intra-class variations. Each object has many instances of objects with different colors, ma-
terials, shapes, and sizes. People, for example, are a very complex object with many different
postures, different types of clothing, and non-rigid deformations. Until now, accurate people
detection is still a challenging problem.

Imaging condition variations. Image conditions have a significant impact on the appear-
ance of an object in a natural environment. For instance, weather conditions, background,
indoor, and viewing distance can produce a variety of object appearances such as illumina-
tion, occlusion, blur, and scale. Of these, the recognition challenges of occluded objects and
small objects are particularly common.

Inter-class variations. The current category of objects owned by the world is in the order of
104−105. However, current object recognition algorithms are not able to handle such a large
number of object categories. Therefore, the recognition ability of current deep representation
models is not yet comparable to that of humans.

1.3.2 Efficiency Challenges

In order to enhance the capability of the model, the size of the deep representation network
becomes large, which leads to the demand for high computational power. However, mobile
devices have limited computing power and storage space, so it is critical to design a model
that directly balances efficiency and performance.

1.3.3 Imbalance Problems

Scale imbalance. In the field of object perception, the problem of scale imbalance usually
arises because object instances have various sizes. In particular, at the feature extraction level,
the methods using pyramid features should solve the problem of feature imbalance that exists
in them. As shown in Fig. 1.3, the features from the pyramid layer have different scales of
semantics. High-resolution features with shallow semantics are beneficial for detecting small
objects, and low-resolution features with deep semantics are beneficial for detecting large
objects. Both high-level and low-level features are complementary for object perception. It is
valuable to explore how these features can be integrated together to improve the performance
of object perception.
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Figure 1.3: Feature imbalance is presented in the feature pyramid network (FPN) architecture.

Modality imbalance. Multi-modal data, such as RGB+depth, RGB+LiDAR, RGB+thermal,
and RGB+events, is used to improve the performance of the object perception algorithms.
Compared to taking unimodal data as input, multimodal data can provide more useful in-
formation for object perception algorithms in complex scenes (e.g., low light, complex back-
grounds, adverse weather conditions, etc.). However, how to effectively fuse multi-modal
data still needs to be explored. The modality imbalance problem in multi-modal fusion has
a significant impact on the performance of the object perception algorithm. Misaligned and
inadequate integration of data from different modalities does not provide benefits but rather
degrades performance. It is essential to fully incorporate cross-modal complementarities to
improve performance.

1.4 Key Contributions

This thesis adopts deep representation learning with attention mechanisms to address the
challenge of object perception. Specifically, the thesis focuses on orientation-aware people
detection, robotic grasp detection, and multimodal learning for object perception (vehicle
detection and grasp detection) based on event cameras. With attention mechanisms, deep
representation learning models can suppress noise features and highlight important object
features, resulting in better performance.

The main contributions are concluded as follows:

• For intelligent surveillance, this thesis proposes an orientation-aware people detection
and counting method based on an overhead fisheye camera. Specifically, an orientation-
aware deep convolutional neural network with simultaneous attention refinement mod-
ule (SARM) is introduced for people detection in arbitrary directions. Based on the
attention mechanism, SARM can suppress the noise feature and highlight the object
feature to improve the context-focusing ability of the network on people in different
poses and orientations. Following the collection of detection results, an Internet of
Things (IoT) system based on Real Time Streaming Protocol (RTSP) is constructed to
output results to different devices.

• In the field of robot manipulation tasks, this thesis proposes an efficient grasp detection
network with n-channel images as inputs for robotic grasp. The proposed network is
a simple generative structure for grasp detection. Specifically, a Gaussian kernel-based
grasp representation is introduced to encode the training samples, embodying the max-
imum center that possesses the highest grasp confidence. A receptive field block (RFB)



1.5 Thesis Outline 5

is plugged into the bottleneck to improve the model’s feature discriminability. In ad-
dition, pixel-based and channel-based attention mechanisms are used to construct a
multi-dimensional attention fusion network (MDAFN) to fuse valuable semantic infor-
mation.

• A neuromorphic vision sensor (event camera) is introduced to the field of vehicle de-
tection and robotic grasp detection. The strengths of an event camera are that it can
provide high temporal resolution, high dynamic range, low power consumption, and no
motion blur. Frame-based data and event-based data are complementary. This thesis
employs multimodal learning for vehicle detection and robotic grasp detection based
on event cameras. The detailed contributions include: (a) This thesis introduces a
fully convolutional neural network with a feature attention gate component (FAGC)
for vehicle detection by combining frame-based and event-based vision. Both grayscale
features and event features are fed into the feature attention gate component (FAGC)
to generate the pixel-level attention feature coefficients to improve the feature discrim-
ination ability of the network. Moreover, this thesis explores the influence of different
fusion strategies on the detection capability of the network. (b) For robotic grasp de-
tection, this thesis constructs a neuromorphic vision-based robotic grasp dataset with
154 moving objects, named NeuroGrasp, which is the first RGB-Event multi-modality
grasp dataset (to the best of my knowledge). This dataset records both RGB frames
and the corresponding event streams, providing frame data with rich color and tex-
ture information and event streams with high temporal resolution and high dynamic
range. Based on the NeuroGrasp dataset, this thesis further develops a multi-modal
neural network with a specific Euler-Region-Regression sub-network (ERRN) to per-
form grasping object detection. Combining frame-based and event-based vision, the
proposed method achieves better performance than the method that only takes RGB
frames or event streams as input.

1.5 Thesis Outline

As shown in Fig. 1.4, this thesis is structured as follows:

• In Chapter 1, this part introduces the related background of object perception. Con-
cretly, the problem, challenges, and contributions are summarized.

• Chapter 2 illustrates the theoretical foundations and methods. It mainly includes deep
representation learning, attention mechanisms and evaluation metrics.

• After that, Chapters 3, 4, and 5 are applications of deep representation learning with
attention mechanisms. In particular, Chapter 3 introduces an orientation-aware deep
convolutional neural network with simultaneous attention refinement module (SARM)
for people detection.

This chapter is based on [Cao+22c], published at the 2022 IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems (MFI).

• Chapter 4 presents an efficient grasp detection network for robot manipulation.

This chapter is based on [Cao+21a] and [Cao+22a], published at the 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA) and IEEE/ASME Transactions on
Mechatronics (2022).
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Figure 1.4: The framework of this thesis.

• Chapter 5 shows multimodal learning for object perception (including vehicle detection
and grasp detection).

This chapter is based on [Che+20a], [Cao+21b], and [Cao+22b], published at the IEEE
Signal Processing Magazine (2020), IEEE Sensors Journal (2021), and IEEE Transactions
on Instrumentation and Measurement (2022).

• Chapter 6 summarizes the work completed during the thesis and discusses future di-
rections.



2
Theoretical Foundations and Methods

The purpose of this chapter is to present the theoretical foundations of deep repre-
sentation learning and attention mechanisms relevant to this thesis. In Section 2.1,
deep representation learning is reviewed, and attention mechanisms are illustrated
in Section 2.2. Finally, evaluation metrics are summarized in Section 2.3.

2.1 Deep Representation Learning

Deep representation learning has achieved great success in perception tasks, including image
classification, object detection, semantic segmentation, and grasp detection. Convolutional
neural networks (CNNs) are the most representative models, and this thesis focuses on the
use of CNNs to perform object detection and grasp detection.

2.1.1 Convolutional Neural Network

Convolutional neural network (CNN) is a popular feature extraction architecture that is com-
posed of three types of layers, including convolutional layers, pooling layers, and fully con-
nected layers. It uses spatially localized convolutional filtering to capture local features of
the input image. Basic visual features, such as lines, edges, and corners, are learned in the
first few layers, while more abstract features are learned in deeper layers. For an input image
matrix I , the correspondence activation map M is computed in the nth neuron of the CNN as
follows:

M[i, j] = σ(
2k+1
∑

x=−2k−1

2k+1
∑

y=−2k−1

W [x , y]I[i − x , j − y] + b) (2.1)

where, the image size is 2k + 1, W is the nth convolutional filter, and σ is the nonlinear
activation function. Generally, a max pooling layer follows each convolutional layer, in which
the local maximum is used to reduce the dimension of the matrix and prevent over-fitting.
Moreover, fully connected layers are usually added to learn the nonlinear combination of ex-
tracted features from previous layers. Over the decades, many variants of CNNs such as fully
convolutional neural network, and encoder-decoder network have emerged. These networks
have different structures from traditional CNNs, such as removing the full connection layer.
The performance of CNN has surpassed traditional machine learning methods in many vision
tasks, relying on successful training algorithms and large amounts of data.

7
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Figure 2.1: The performance of representative CNN frameworks in the ILSVRC competitions.

2.1.2 Object Representation

Good feature representation is a prerequisite for high performance object perception. Pre-
viously, researchers usually designed various descriptors as high-level feature representa-
tions, such as SIFT [Low99], HOG [DT05b] and Fisher Vector [PSM10]. However, all these
representation methods require specialized engineering experience and domain knowledge.
Instead, deep representation learning methods can learn powerful feature representations
directly from the raw data. Therefore, how to design a better network architecture is the key
issue. The following parts review the leading CNN frameworks and methods for improving
object representation.

CNN frameworks. The CNN frameworks are used as the backbone of the object percep-
tion networks. The most popular frameworks include AlexNet [KSH17], VGGNet [SZ14],
GoogLeNet [Sze+15], the Inception family of networks [IS15; Sze+16; Sze+17], ResNet [He+16],
DenseNet [Hua+17], and SENet [HSS18]. As shown in Fig. 2.1, CNN-based approaches have
achieved better image recognition performance than humans. The architecture of CNN is be-
coming increasingly complex: AlexNet has only 8 layers, VGGNet has 16, and ResNet and
DenseNet have even surpassed the 100-layer mark. As the depth of the network deepens,
the representation learning capability becomes more powerful. In addition, the Inception
module proposed in Inception series [IS15; Sze+16; Sze+17] demonstrates that the width
of the network can also be increased to improve representation learning. However, the re-
searchers found that the performance of the model decreased rather than improved as the
network continued to deepen. In order to solve the degradation problem of network deepen-
ing, ResNet proposes skipping connections to make it possible to learn hundreds of layers of
network models. In [Hua+17], the authors further introduce a dense connection to build the
DenseNets, leading to better performance. Moreover, the Squeeze and Excitation (SE) block
was developed based on the channel attention mechanism in SENets. This work achieves
excellent performance with minimal additional computational cost. More attention mecha-
nisms are illustrated in Section 2.2.
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Methods for improving object representation. The features from the last layer of the
CNN backbone are usually used as the final representation. High-level features have a large
receptive field and strong semantics, but the resolution is low and structural detail informa-
tion is lost. In comparison, low-level features have high resolution and rich details, but small
receptive fields and weak semantics. High-resolution features with shallow semantics are
beneficial for detecting small objects, and low-resolution features with deep semantics are
beneficial for detecting large objects. Nowadays, many methods have been proposed to im-
prove the representation of objects by exploring multi-scale features. They can be classified
into three categories as follows:

Predicting based on the combined multi-scale features. HyperNet [Kon+16] and ION [Bel+16]
combine multi-scale features from hierarchical layers as the final representation for predic-
tion. ION extracts ROI features using ROI pooling from hierarchical layers. Then, the predic-
tions are performed on the concatenated features. In Hypernet, deep, medium, and shallow
features are integrated to predict objectness and classification.

Predicting based on the hierarchical CNN layers. To capture objects of different sizes, recent
methods perform prediction at different CNN layers. In SSD [Liu+16], the authors deploy
default boxes of different scales to multiple CNN layers and then predict objects of a certain
scale at each layer. Based on the SSD, RFBNet [LHW18] further proposes the Receptive
Field Block (RFB) to improve the discriminability and robustness of features. RFB consists
of multiple branches with different kernels and convolution layers. RFBNet can effectively
improve performance by combining RFB and SSD architecture.

Combination of the above two methods. Features from different CNN layers are comple-
mentary. Feature Pyramid Network (FPN) [Lin+17], Path Aggregation Network (PAN) [Liu+18],
DSSD [Fu+17] and RetinaNet [Lin+20] were developed to exploit multi-scale features to
improve performance. As shown in Fig. 1.3, the architecture of FPN is a top-down network
with lateral connections. High-level semantic features and low-level semantic features are
combined by this top-down network with lateral processing. The fused features are used
for prediction at each layer. Based on the FPN, the authors of [Liu+18] proposed PANet by
adding an additional bottom-up path. FPN-like structures have been shown to be effective as
generic feature extractors in a variety of applications, including object detection [Lin+20],
instance segmentation [Liu+18], and grasp detection [Cao+21a; Cao+22a].

2.2 Attention Mechanisms

In this part, the general form of attention mechanisms and several representative works are
illustrated.

2.2.1 General Form

In [Guo+22], the formulation of the attention mechanism can be expressed as follows:

At tention= f (g(x), x) (2.2)

where x represents the input vector, g(x) denotes the attention function corresponding to
the process of attending to the discriminative regions, and f (g(x), x) means the computation
of using the attention g(x) on the input x .

With this definition, almost all existing attention mechanisms can be represented by this
formulation. For squeeze-and-excitation (SE) attention, f (g(x), x) can be written as follows:
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g(x) = Sigmoid(M LP(GAP(x)))

f (g(x), x) = g(x)x
(2.3)

In the following, various attention mechanisms will be illustrated.

2.2.2 Channel Attention

The feature maps extracted by deep neural networks with different channels usually repre-
sent different objects [Che+17]. Channel attention was first proposed in SENet [HSS18] for
adaptively calibrating each channel. This process can be considered as object selection: what
to pay attention to.

SENet. In SENet [HSS18], a squeeze-and-excitation (SE) block is developed to capture the
channel-wise relationships. The SE block consists of a squeeze module and an excitation
module. Specifically, global average pooling (GAP) is used as a squeeze module to collect
global information. The excitation module, composed of fully connected layers (W1, W2) and
non-linear layers (ReLU (δ) and sigmoid (σ)), is used to capture channel-wise relationships
(attention vector). Then, the input features (x) are scaled by multiplying the attention vector.
The SE block can be formulated as follows:

SE(x) = σ(W2δ(W1GAP(x)))

Y = SE(x)x
(2.4)

ECANet. Since fully-connected layers are used in SE blocks, the complexity of SENet is high.
To reduce the complexity of SENet, ECANet [Wan+20] introduced a lightweight excitation
module. The key module of ECANet is the efficient channel attention (ECA) block. The ECA
block can be formulated as follows:

ECA(x) = σ(Conv1D(GAP(x)))

Y = ECA(x)x
(2.5)

where Conv1D represents 1D convolution with a kernel size of k. The parameter k is adap-
tively determined by the channel dimension C . The computation can be expressed as follows:

k =ψ(C) =

�

�

�

�

log2(C)
γ

+
b
γ

�

�

�

�

odd
(2.6)

where γ and b denote hyperparameters. ||odd represents the odd function.

2.2.3 Spatial Attention

Unlike channel attention, spatial attention can be seen as an adaptive process of spatial region
selection: where to pay attention.
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Attention gate. The attention gate is proposed in Attention Unet [Okt+18] for focusing on
object regions while suppressing irrelevant regions. Specifically, additive attention is used
to obtain the gating coefficient. The input feature map x and the gating signal g are first
mapped to RF×H×W dimensional space, and then the mapped features are fused to generate
the spatial attention weight map S1×H×W . The whole computation can be written as follows:

AG(x) = σ(ϕ(δ(φx(x) +φg(g))))

Y = AG(x)x
(2.7)

where ϕ,φx and φg are transformation functions, which are usually implemented by using
convolutions.

2.2.4 Channel & Spatial Attention

Channel & spatial attention can adaptively select important objects and regions by comb-
ing the strengths of channel attention and spatial attention, thus determining what to pay
attention to and where to pay attention.

CBAM. To enhance the information at channel-level and spatial-level, the convolutional
block attention module (CBAM) is proposed in [Woo+18]. CBAM is composed of channel
attention and spatial attention in series. The channel attention can be expressed as follows:

F c
avg = GAPs(x)

F c
max = GM Ps(x)

Ac = σ(W2δ(W1F c
avg) +W2δ(W1F c

max))

Yc = Ac x

(2.8)

where GAPs and GM Ps are global average pooling and global max pooling in the spatial
dimension, respectively. The structure of the channel attention sub-module is similar to that
of the SE block. The spatial attention sub-module captures spatial relationships. Both channel
attention and spatial attention are complementary. The spatial attention is computed as
follows:

F s
avg = GAP c(x)

F s
max = GM P c(x)

As = σ(Conv([F s
avg ; F s

max]))

Ys = As x

(2.9)

where GAP c and GM P c are global average pooling and global max pooling in the channel
dimension, respectively. [] represents the concatenation operation over channels. The overall
process of CBAM can be summarized as follows:

xc = Yc(x)

Y = Ys(xc)
(2.10)
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BAM. Bottleneck attention module (BAM) [Par+18] is emerging at the same time as CBAM. Un-
like CBAM, the dilated convolution is used to enlarge the receptive field of the spatial atten-
tion submodule of BAM. Moreover, the channel attention submodule and the spatial attention
submodule of BAM are formed in a parallel manner. The process of BAM can be written as
follows:

Yc = BN(W2(W1GAP(x) + b1) + b2)

Ys = BN(Conv1×1
2 (DC3×3

2 (DC3×3
1 (Conv1×1

1 (x)))))

A= σ(Ex pand(Yc) + Ex pand(Ys))

Y = Ax + x

(2.11)

where Wi and bi are weights and bias of fully connected layers, respectively. BN indicates
batch normalizer and DC3×3

i represents a dilated convolution with a kernel size of 3× 3.

2.3 Evaluation Metrics

In this thesis, the average precision (AP) and the grasp rectangle metric are used to evaluate
the performance of object detection and grasp detection, respectively.

2.3.1 Average Precision (AP)

The common metric, AP, is used to evaluate the performance of the different object detectors.
The value of AP denotes the area under the Precision-Recall curve. Recall, Precision and IOU
(Intersection over Union) are expressed as the following:

Recal l =
t p

tp+ f n
,

Precision=
t p

tp+ f p

IOU =
detect ions ∩ ground t ruth
detect ions ∪ ground t ruth

=
t p

tp+ f p+ f n

(2.12)

where t p represents the true positive samples, meaning the correctly predicted vehicles. Sim-
ilarly, f p and f n denote the false positive samples and false negative samples, respectively.
After Recall, Precision, and IOU are calculated, the area under the Precision-Recall curve
(AP) can be used to summarize the performance of the detector. Different from traditional
AP, MS COCO [Lin+14] introduces APcoco by averaging over all object classes and multiple
IOU values from 0.5 to 0.95.

In particular, APcoco and AP at IOU = 0.5 [Eve+10] are used as evaluation metrics for
people detection and vehicle detection, respectively.

2.3.2 Grasp Rectangle

Similar to previous works [CXV18; KK17b; Cao+21a], the metric used to evaluate grasp
model is the grasp rectangle. Specifically, a predicted grasp is regarded as a correct grasp
when it meets the following two conditions:
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• Angle difference: the difference of orientation angle between the predicted grasp and
corresponding grasp label is less than 30◦ .

• Jaccard index: the Jaccard index of the predicted grasp and corresponding grasp label
is greater than 25%, which can be formulated as Eq. 2.13.

J(gp, gl) =
|gp ∩ gl |
|gp ∪ gl |

(2.13)

where gp and gl denote the predicted grasp rectangle and the area of the corresponding
grasp label, respectively. gp ∩ gt represents the intersection of the predicted grasp and the
corresponding grasp label. The union of predicted grasp and the corresponding grasp label
is represented as gp ∪ gt .





3
Orientation-aware People Detection

This chapter is about the application of spatial and channel attention in people de-
tection. The key idea is that a simultaneous attention refinement module (SARM) is
introduced for people detection in arbitrary directions. Based on SARM, the proposed
method can suppress the noise feature and highlight the object feature.

The contents of this chapter are based mainly on the paper "Orientation-aware People
Detection and Counting Method Based on Overhead Fisheye Camera," that is pub-
lished at the IEEE International Conference on Multisensor Fusion and Integration
for Intelligent Systems (MFI), 2022 [Cao+22c].

3.1 Background

People detection and counting are becoming increasingly critical tasks for intelligent build-
ings, which are currently based on wifi signal monitoring, door tripwires, and video cameras.
Systems combining video cameras and computer vision algorithms are particularly effective
for people detection and counting [EG09; NLO16]. Compared with standard cameras, fish-
eye cameras have a larger field of view (FOV) of 360◦, making them better suited for people
detection and counting tasks in the overhead view. The object detector based on deep learn-
ing [Che+19] and IoT technology [Lou+20] can provide the basic support for the people
detection and counting system.

The overhead view object detection and tracking have been well applied in the IoT sce-
nario[Ahm+20]. In [Ahm+20], the authors explored the application of deep learning mod-
els, FasterRCNN [Ren+15] and Mask-RCNN [He+20], in the overhead view multiple object
detection. For a standard image object detection task, many deep learning-based methods,
such as YOLO [RF16], SSD [Liu+16], and FasterRCNN [Ren+15], have achieved excellent
performance. However, these algorithms do not perform well in fisheye images with ra-
dial geometry and barrel distortion. To address this issue, several works, such as [THM19;
Li+19b; Dua+20], have been proposed to perform fisheye image people detection. In the
case of a non-standing pose, the method in [Li+19b] has better performance than [THM19],
but it runs slowly. Recently, the authors of [Dua+20] collected a challenging fisheye image
dataset and proposed a people detection algorithm with state-of-the-art performance under
normal lighting conditions. However, all of the methods mentioned above do not work well
in low-light scenarios[THM19; Li+19b; Dua+20].

In this work, I introduce an orientation-aware people detection and counting method
based on an overhead fisheye camera. Specifically, an end-to-end deep convolutional neural

15
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network is used to detect and count people in fisheye images captured by an overhead fish-
eye camera. Since the existing fisheye image detection methods do not work well in low-light
scenarios, a simultaneous attention refinement module (SARM) is developed to improve the
generalization ability of the neural network model under low-light conditions. SARM is com-
posed of two subnetworks: spatial attention and channel attention. To effectively improve the
context-focusing ability of the model, I simultaneously apply spatial and channel attention
mechanisms to the feature map in a one-step manner. Based on the attention mechanism,
the performance of the people detection and counting model in low-light conditions is signif-
icantly improved. After the people detection results are available, a datastream server based
on RTSP is constructed to send data to the client devices for further analysis. Concretely, my
main contribution can be summarized as follows:

• For intelligent infrastructure, an orientation-aware people detection and counting method
based on an overhead fisheye camera is presented.

• To improve the performance of the people detection and counting model, an SARM is
embedded in the backbone of the network to suppress the noise feature and highlight
the object feature.

• The results of the experiments on the three public fisheye image datasets demonstrate
that the proposed method achieves better performance, with particularly enhanced gen-
eralization under low-light conditions.

3.2 Related Work

In the early object detection methods, algorithms based on handcrafted features were widely
used. Histogram of oriented gradients (HOG) [DT05a] and aggregate channel features (ACF)
[Dol+14] are the most popular approaches for the standard camera people detection task.
Many works combined handcrafted features with classification methods to achieve better per-
formance for people detection. In recent years, deep learning-based methods have achieved
great progress [Che+20a; Cao+21b]. Two stage algorithms, such as [Ren+15; He+20],
achieve high detection accuracy, but have a slow running speed due to the high computational
cost. On the contrary, one-stage algorithms [RF16; Liu+16] achieve high real-time perfor-
mance, but the detection accuracy decreases. Recently, the methods [Dua+19; Tia+20]
based on anchor-free mechanism have been developed to balance detection accuracy and
running speed. However, all the above-mentioned methods were developed for standard
camera images. The authors of [Ahm+20; Ahm+18] use an overhead view standard camera
to do object detection and tracking tasks in IoT applications.

Presently, few works are developed for people detection based on the overhead fisheye
camera. [THM19] tries to do fisheye image people detection by training a convolutional neu-
ral network on a rotated version of the COCO dataset [Lin+14]. Another work proposed in
[Li+19b] achieves high detection accuracy on fisheye images. The disadvantage of [Li+19b]
is that its running speed is slow due to high computational complexity. In [Dua+20], a peo-
ple detection algorithm with state-of-the-art performance is proposed. The authors collect a
challenging fisheye image dataset and develop a periodic loss function for rotation bounding
box regression. However, the method does not perform well in low-light situations.
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Figure 3.1: Overview of the proposed IoT system architecture. The IoT system is composed of fisheye cameras,
an orientation-aware people detection and counting algorithm, a datastream server, and client devices. Adapted
from Fig. 1 in [Cao+22c] ©IEEE.

3.3 System Architecture

The proposed IOT system architecture consists mainly of four parts, including fisheye cam-
eras, an orientation-aware people detection and counting algorithm, a datastream server
based on RTSP, and client devices, as illustrated in Fig. 3.1. The fisheye cameras are mounted
in the overhead position of the monitored indoor spaces. In comparison with standard cam-
eras, fisheye cameras can provide a 360◦ field of view (FOV) and effectively reduce occlusion
between people. By collecting the fisheye images of the top view, it can obtain a variety of
human body poses and orientations, such as standing, walking, diagonal, and corner posi-
tions. The obtained fisheye image data is fed into an end-to-end deep convolutional neural
network to perform people detection and counting. The constantly updated people detection
and counting results are encoded and packaged by the datastream server. The packaged data
is then sent to the network flow. The entire sender is implemented in the Linux system on the
edge device. Client devices, such as smartphones, PCs, and tablets, can obtain data directly
from the network flow for decoding and further analysis.

3.4 Orientation-aware People Detection

In this section, I introduce an orientation-aware people detection and counting algorithm.
The overall structure of the proposed people detection model is presented in Fig. 3.2. The
proposed algorithm’s architecture is based on YOLO [RF16; RF18; Dua+20], which achieves
excellent performance on standard camera images. I developed the SARM resblock as the
backbone to extract rich context features to predict the bounding box with rotation angle,
which enables my algorithm to detect arbitrarily-oriented people and get better results on
fisheye images. Since I only detect people, my model needs a regression task of rotating
bounding boxes. After obtaining the results, an orientation-aware nonmaximum suppression
(NMS) algorithm is used to remove redundant detections and obtain the final number of
people counting.
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Figure 3.2: The overall structure of the orientation-aware people detection algorithm. Adapted from Fig. 2
in [Cao+22c] ©IEEE.

3.4.1 Basic Networks

The orientation-aware people detection network is composed of a backbone, multilevel pre-
diction based on feature fusion, and detection outputs. The network can be represented as
follows:

Ck = Fbackbone (I)

Pk = Ffusion (Ck)

Yk = Foutput (Pk) , k = 1,2, 3

(1)

where I is the input fisheye image, and {Ck}
3
k=1 is the extracted multilevel features. {Pk}

3
k=1

and {Yk}
3
k=1 denote the fused multiresolution features and prediction outputs respectively.

Fbackbone , Ffusion and Foutput denote the backbone function, multilevel feature fusion function,
and detection output function, respectively.

Backbone. The resolution of 608 × 608 fisheye images is fed into the backbone network
to extract deep features. CBL units and SARM resblocks constitute the backbone network.
Specifically, the CBL unit consists of a convolutional filter, batch normalization, and leaky
relu activation function. SARM resblock is composed of a CBL unit with a kernel size of 1×1,
a CBL unit with a kernel size of 3 × 3, and an SARM. Attention mechanisms are inspired
by the human visual system, which has been extensively studied in computer vision[HSS18;
Woo+18; Wan+18]. In this work, I develop an SARM to improve the discrimination ability
of the network. Similar to [Woo+18], SARM consists of spatial attention subnetwork and
channel attention subnetwork, as shown in Fig. 3.3. However, SARM uses fewer convolution
filters to reduce the number of parameters and simultaneously applies spatial and channel
attention enhancement on the feature map in a one-step manner. For the spatial attention
subnetwork, average pooling and maximum pooling are used to get representative features
and concatenate them into a convolutional filter with a kernel size of 5 × 5. In the channel
attention subnetwork, average pooling and a convolution filter with a kernel size of 1×1
are used to generate channel feature distributions. The outputs of the spatial and channel
attention subnetworks are fused by adding them together. After the sigmoid operation is
performed on the fused feature, it is multiplied by the original input to obtain the novel
feature weights. The combination of SARM and residual networks can extract more valuable
features to improve the detection performance of the network.

Multilevel prediction based on feature fusion. Since the high-resolution feature map of
shallow semantic context information is conducive to the detection of small objects, the low-
resolution feature map of deep semantic context information is conducive to the detection
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Figure 3.3: SARM work flow diagram. The top branch is the spatial attention subnetwork, and the bottom branch
is the channel attention subnetwork. Adapted from Fig. 3 in [Cao+22c] ©IEEE.

of large objects, I use multilevel prediction based on feature fusion to detect objects of dif-
ferent sizes. Specifically, {Pk}

3
k=1 are generated by the feature maps {Ck}

3
k=1 with top-down

pathway and lateral connections [Lin+17]. More robust object semantic information can be
obtained by combining the shallow and deep features. In this work, P1, P2, P3 are responsible
for detecting people of small, medium, and large sizes, respectively.

Detection outputs. The network outputs four coordinates, a rotation angle, and confidence
for each rotation bounding box, t x , t y , tw, th, tθ , tconf . For grid cell

�

cx , cy

�

and anchor box
with width wa and height ha. A rotation bounding box prediction can be formulated as
follows:

bx = σ (t x) + cx ,

by = σ
�

t y

�

+ cy ,

bw = waetw ,

bh = wheth ,

bθ = σ (tθ ) ∗ r −
r
2

,

bconf = σ (tconf )

(2)

where σ() and e denote the sigmoid activation function and exponential function, respec-
tively. r is the angle range of rotation bounding box, which is set to 2π in this work.

3.4.2 Loss Function

For given fisheye image datasets that contain people objects T = {T1 . . . Tn}, fisheye images
M = {M1 . . . Mn}, and corresponding ground truth G = {G1 . . . Gn}, I use a neural network
model to match the function F : M 7−→ Y . The prediction Y is obtained by applying a
deep learning-based training method to learn function F . The loss function is demployed to
optimize the minimum error between the network model and the ideal function F . In my
model, the loss function L is defined as follows:

L = lloc + langle + lconf (3)
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Algorithm 1 Orientation-aware nonmaximum suppression (ONMS)

Require:
IOU threshold (IOUth), detection outputs B = {b1, b2, . . . , bn}

Ensure:
Detection results S

1: S← {}
2: B← argsort B; m← argmax B
3: M← bm; S←S ∪M ; B← B - M
4: for bi in B do
5: compute RotationIOU(bi , S)
6: if RotationIOU(bi , S)≥ (IOUth) then
7: continue
8: end if
9: S← S ∪ bi

10: end for
11: return S

where, the total loss L is composed of localization loss lloc . angle regression loss langle and
object confidence loss lconf . Specifically, lloc , langle , lconf are formulated as follows:

lloc =
∑

t∈Y pos

�

BC E (σ (t x) , gx) + BC E
�

σ
�

t y

�

, g y

��

+
∑

t∈Y pos

�

(σ (tw)− gw)
2 + (σ (th)− gh)

2�

langle =
∑

t∈Y pos

f
�

mod
�

bθ − gθ −
π

2
,π
�

−
π

2

�

lconf =
∑

t∈Y pos

BC E (σ (tconf ) , 1)

(4)

where Y pos denotes the positive samples from predictions. gx , g y , gw, gh are the corresponding
transformed ground truth. bθ is computed in Eq.2, and gθ is the corresponding angle ground
truth. BC E represents binary cross-entropy function, f is any symmetric function, such as
L1, L2 norm, and mod denotes the modulo operation. Using periodic loss function langle
[Dua+20], ambiguity issues can be solved in the rotation angle regression process.

3.4.3 Orientation-aware Nonmaximum Suppression

For the people counting and inference processes, an orientation-aware nonmaximum sup-
pression (ONMS) method is used to remove duplicate detection outputs and get more ac-
curate people counting results. First, the detection output is removed when the confidence
score is lower than the confidence threshold, which can improve the quality of the detec-
tion outputs. The remaining detection proposals are then computed by orientation-aware
nonmaximum suppression (ONMS) to remove the overlap proposals. The detailed steps are
presented in Algorithm I. In ONMS, when the value of the rotation IOU of the detection pro-
posal is greater than the IOU threshold (IOUth), it is removed, thus ensuring that each person
has only one corresponding detection bounding box. Finally, the number of people counting
is equal to the total number of bounding boxes in each image.
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Table 3.1: Summary of the public fisheye image datasets. Adapted from Table I in [Cao+22c] ©IEEE.

Datasets Videos Objects Images Resolutions FPS

MW-R 19 6 8752 1065-1488 15
HABBOF 4 5 5837 2048 30
CEPDOF 8 13 25504 1080-2048 1-10

3.5 Experiments

To validate the effectiveness of the algorithm, I performed experiments on three public fish-
eye image datasets. Furthermore, I discuss the impact of the design of different attention
mechanisms on network performance as well as the shortcomings of the network.

3.5.1 Dataset

For orientation-aware fisheye image detection, the available dataset is insufficient. Recently,
Mirror Worlds (MW) datset1, Human-Aligned Bounding Boxes from Overhead Fisheye Cam-
eras (HABBOF) dataset [Li+19b] and Challenging Events for Person Detection from Over-
head Fisheye Images (CEPDOF) dataset [Dua+20] 14) were collected, whose details are
summarized in Table.3.1.

MW-R Dataset. Mirror Worlds (MW) is a multi-object, multi-camera tracking dataset that
was built for an infrastructure research project funded by the National Science Foundation
(NSF) at Virginia Tech. Since the dataset is not labeled with rotated bounding boxes, the
authors of [Dua+20] manually annotated a subset of the MW dataset with rotated bounding
boxes named MW-R.

HABBOF Dataset. The HABBOF dataset contains four videos with a resolution of 2048x2048.
The videos were recorded using a fisheye camera in challenging scenes such as occlusion and
brightness changes. All fisheye images in HABBOF are labeled with a rotated bounding box.

CEPDOF Dataset. CEPDOF is a large fisheye image dataset created in [Dua+20]. More
challenging scenes, such as varied people poses, crowded rooms, and low light, were recorded
in the CEPDOF dataset, which will further facilitate the development of robust algorithms.

3.5.2 Implementation Details

The people detection and counting algorithm is implemented based on Python 3.7 and Py-
torch 1.3 with CudNN 7.5 and Cuda-10.0 packages, and the datastream server is completed
based on the libraries of live5552 and x2643. The people detection model is pretrained on
an Nvidia GTX 2080 Ti GPU with 11GB of memory. During training, I use data augmentation
methods such as random rotation, scaling, flipping, and color enhancement to improve the
generalization ability of the model. Furthermore, stochastic gradient descent (SGD) with pa-
rameters of a learning rate of 0.0001, momentum of 0.9, and weight decay of 0.0005 is used

1http://www2.icat.vt.edu/mirrorworlds/challenge/index.html
2http://www.live555.com/
3https://www.videolan.org/developers/x264.html
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Figure 3.4: Detection results on MW-R (a–e), HABBOF (f–j), and CEPDOF (k–o). Adapted from Fig. 4
in [Cao+22c] ©IEEE.

Table 3.2: Comparison results of detection accuracy (%) of different methods on MW-R, HABBOF, and CEPDOF
dataset. Adapted from Table II in [Cao+22c] ©IEEE.

Methods MW-R HABBOF CEPDOF FPS

Tamura[THM19] 78.2 87.3 61.0 6.8
Li[Li+19b] 88.4 87.7 73.9 0.3

Duan[Dua+20] 96.6 97.3 82.4 7.0

This work 97.1 97.8 83.6 6.5

for network optimization. Due to the limitation of computing resources, the batch size is set
to 4 in this work with the fisheye images with a resolution of 608 × 608 as the input.

3.5.3 Comparisons under Three Fisheye Image Datasets

Following the previous works [THM19; Li+19b; Dua+20], cross-validation is used to evalu-
ate the performance of the model on the fisheye image datasets. The experiment results on
three public fisheye image datasets indicate that my method outperforms other algorithms
presented in Table. 3.2. The neural network model based on SARM that takes the image res-
olution of 608 × 608 as input achieves better performance on MW-R, HABBOF and CEPDOF
with detection accuracy of 97.1%, 97.8% and 83.6% respectively. In Fig. 3.4, the selected
detection results from three datasets, MW-R (a–e), HABBOF (f–j), and CEPDOF (k–o), are
presented.
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Table 3.3: The detection performance of different methods on individual sub-datasets in CEPDOF. Adapted from
Table III in [Cao+22c] ©IEEE.

Scenarios Sequence Method AP(%) Precision Recall

Normal light

Lunch Meeting 1
Duan 96.7 0.95 0.92

This work 96.8 0.96 0.95

Lunch Meeting 2
Duan 95.7 0.93 0.87

This work 92.2 0.95 0.91

Lunch Meeting 3
Duan 91.3 0.91 0.79

This work 91.9 0.92 0.82

Edge cases
Duan 89.2 0.97 0.79

This work 89.4 0.98 0.82

High activity
Duan 93.2 0.97 0.88

This work 93.2 0.97 0.90

Low light IRill
Duan 88.6 0.93 0.71

This work 90.0 0.96 0.77

All-off
Duan 52.8 0.85 0.43

Extremely low light
This work 58.9 0.86 0.50

IRfilter
Duan 51.4 0.88 0.35

This work 56.3 0.92 0.42

3.5.4 Performance under Different Illuminations

The current fisheye image detection methods based on deep learning have achieved high
detection accuracy under normal lighting conditions, but the accuracy has been significantly
reduced in low-light scenarios.[Li+19b; Dua+20]. I compare my model with the state-of-
the-art method [Dua+20] under the conditions of various brightness changes. Specifically,
the challenging CEPDOF dataset, composed of 8 sequences, is used as a benchmark to explore
the impact of illumination. I explored three main light conditions, namely normal light, low
light (overhead lights off, with IR illumination) and extremely low light (overhead lights off,
no IR illumination) presented in Table. 3.3.

I use the resolution of 608×608 as the input. Using AP (average precision), precision,
recall, and F-measure as evaluation metrics, both [Dua+20] and my method achieve excellent
performance under normal lighting conditions. However, in the low-light scene, my method
achieves the accuracy improvement of 6.1% and 5.9% on All-off and IRfilter respectively,
indicating that my method can alleviate the problem that the detection ability of the model
decreases under low light.

3.5.5 Ablation Study

In order to improve the discrimination ability of the model, a simultaneous attention refine-
ment module (SARM) is embedded into the backbone network. Based on the attention mech-
anism, the generalization ability of the network under low-light conditions is significantly
improved. In Table. 3.4, I further explored the influence of different attention methods on
the performance of fisheye image detection. Experimental results on CEPDOF demonstrate
that SE block [HSS18] and CBAM [Woo+18], which perform well in the standard camera
tasks, do not work well in the fisheye image dataset, but SARM achieves the best accuracy.
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Table 3.4: The impact of different attention methods on detection performance. Adapted from Table IV
in [Cao+22c] ©IEEE.

Datasets + SE block + CBAM + SARM

Lunch Meeting1
Lunch Meeting2
Lunch Meeting3
Edge cases
High activity
All-off
IRfilter
IRill

95.5
90.2
86.1
87.2
92.6
53.0
49.7
86.1

93.1
88.9
83.2
85.0
91.1
52.6
46.4
69.5

96.8
92.2
91.9
89.4
93.2
58.9
56.3
90.0

Average Accuracy (%) 80.1 76.2 83.6

Figure 3.5: Failed detection cases: only one person was detected due to severe occlusion between two people
in (a). The clothes on the chair were wrongly detected as people (b, e) and missed detection under low light
conditions (d). Three people on the projector screen were mistakenly detected as real people in (c). Two detection
boxes appeared for the same person in (f). Adapted from Fig. 5 in [Cao+22c] ©IEEE.

3.5.6 Failure Cases Analysis

Although my method achieves high accuracy, there are still some problems to be solved, such
as occlusion, low light, and false detection. Some typical cases are presented in Fig. 3.5.
However, all of these problems can be alleviated by increasing the diversity of datasets.
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3.6 Summary

In this work, I propose an orientation-aware people detection and counting system based on
IoT technology and an overhead fisheye camera. First, an orientation-aware deep convolu-
tional neural network is developed for arbitrarily oriented people detection and counting. In
order to effectively improve the context-focusing ability of the model, a simultaneous atten-
tion refinement module (SARM) is embedded in the backbone of the network to extract more
discriminative features. Based on attention mechanisms, the performance of the people de-
tection and counting model under low-light conditions is significantly improved. The model
takes the image resolution of 608×608 as input to achieve detection accuracy of 97.1%,
97.8% and 83.6% on MW-R, HABBOF, and CEPDOF, respectively. Finally, after obtaining
the detection results, a datastream server is constructed to send data to the different client
devices for further analysis. By combining deep learning algorithms and IoT technology, the
capabilities of intelligent infrastructures can be improved effectively.





4
Robotic Grasp Detection

This chapter is about the application of spatial and channel attention in grasp detec-
tion. The key idea is that a multi-dimensional attention fusion network (MDAFN) is
introduced to fuse valuable semantic information.

The contents of this chapter are based mainly on the papers "Residual Squeeze-and-
Excitation Network with Multi-scale Spatial Pyramid Module for Fast Robotic Grasp-
ing Detection," that is published at the IEEE International Conference on Robotics and
Automation (ICRA), 2021 [Cao+21a] and "Efficient Grasp Detection Network with
Gaussian-based Grasp Representation for Robotic Manipulation" that is published at
the IEEE/ASME Transactions on Mechatronics, 2022 [Cao+22a].

4.1 Background

Intelligent robots are crucial in human-robot cooperation, robot assembly, and robot weld-
ing [DWL21]. The robots need an effective automated manipulation system to complete the
task of picking and placing [Liu+20; WG21]. However, grasping is a straightforward action
for humans but challenging for robots because it involves perception, planning, and execu-
tion. Grasp detection is a crucial procedure for robots to perform grasp and manipulation
tasks in the real world. Therefore, it is necessary to develop a robust perception algorithm to
improve the performance of the robotic grasp.

Early grasp detection algorithms were mainly based on search algorithms. Unfortunately,
these algorithms are inefficient in complex real-world scenarios [PBK14]. Recently, deep
learning-based approaches have achieved excellent results in robotic grasp detection [LLS15;
Che+20e; Li+20a; KK17b]. A five-dimensional grasp configuration is proposed to represent
a grasp rectangle based on two-dimensional space projected into three-dimensional space
to guide the robot to grasp [LLS15]. Due to the simplification of the grasp object dimen-
sion, the deep convolutional neural network can learn to extract more suitable features for
specific tasks than hand-engineered features by taking 2-D images as inputs. According to
the literature, training neural networks to predict grasp with the highest probability score
from multiple grasp candidates is the best grasping result [RA15; ATH19; KK17b]. Currently,
excellent general object detection models have been introduced in the grasp detection task,
such as one-stage and two-stage deep learning methods [RF16; Liu+16; Ren+15]. Simi-
larly, the idea of Faster RCNN is to perform robotic grasp detection by taking RGB-D images
as inputs [CXV18]. While in [Wu+19] and [PSC18a], achieving excellent grasp detection ac-
curacy is based on single-stage object detection methods, YOLO [RF16], and SSD [Liu+16].

27



28 Chapter 4 Robotic Grasp Detection

However, these methods are challenging to balance in terms of accuracy and inference speed
due to their complex network structures. The authors in [Zho+18; Son+20] improved the
performance of grasp detection by employing an oriented anchor box mechanism to match
the grasp rectangles. These methods have improved the detection accuracy, but the compu-
tational loads are still too large to be suitable for real-time applications.

A new grasp representation was proposed to solve these problems using the method of
sampling grasp candidate rectangles and applying convolutional neural networks to regress
grasp points directly [MCL20]. This approach simplifies the definition of grasp representa-
tion and achieves high real-time performance based on a lightweight architecture. Inspired
by [MCL20], the authors of [Wan+19a; Wan20] use the key idea of algorithms in vision seg-
mentation tasks to predict robotic grasp poses from extracted pixel-wise features. Recently,
the residual structure was introduced into the generated neural network model [KK17b],
achieving better grasp detection accuracy on the common grasp datasets. However, the short-
coming is the failure to highlight the importance of the largest grasp probability at the center
point.

This work uses a 2-D Gaussian kernel to encode training samples to emphasize the highest
grasp confidence score at the center point position. Based on Gaussian-based grasp represen-
tation, I developed a lightweight generative architecture for robotic grasp pose estimation.
Referring to the human visual system’s receptive field structure, the combination of residual
and receptive field blocks (RFBs) in the bottleneck layer can enhance the feature’s discrim-
inability and robustness. Furthermore, low-level features and deep features in the decoder
are fused to reduce the information loss caused in the sampling process. Specifically, a multi-
dimensional attention network composed of pixel and channel attention networks is used
to suppress redundant features and highlight significant object features in the fusion pro-
cess. Experimental results demonstrate that the proposed algorithm achieves excellent per-
formance in balancing accuracy and inference speed. The main contributions are summarized
as follows:

• I propose a Gaussian-based grasp representation, reflecting the maximum grasp score
at the center point location.

• I developed an efficient generative architecture for robotic grasp detection.

• A receptive field block is embedded in the network’s bottleneck to enhance its feature
discriminability and robustness. A multi-dimensional attention fusion network has been
developed to suppress redundant features and improve object features in the fusion
process.

• Experimental results demonstrate that the proposed method performs well on the pub-
lic Cornell [YMS11], Jacquard [DDC18], and extended OCID [AF21] grasp datasets.

4.2 Related Work

For 2D planar robotic grasping where the grasp is constrained in one direction, the methods
can be divided into oriented rectangle-based grasp representation methods and contact point-
based grasp representation methods. The comparison of the two grasp representations is
presented in Fig. 4.1. I will review the relevant works below.
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Figure 4.1: A comparison between the methods of oriented rectangle-based grasp representation and the meth-
ods of contact point-based grasp representation. The top branch is the workflow of the model using the oriented
rectangle as grasp representation, and the bottom branch is the workflow of the model using the contact point
grasp representation. Adapted from Fig. 1 in [Cao+21a] ©IEEE.

4.2.1 Methods of Oriented Rectangle-based Grasp Representation

The goal of grasping detection is to find the appropriate grasp pose for the robot through
the grasping object’s visual information to provide reliable perception information for the
subsequent planning and control processes and achieve a successful grasp. Grasp is a widely
studied topic in the field of robotics, and the approaches used can be summarized as ana-
lytic methods and empirical methods. The analytical methods use mathematical and phys-
ical models in geometry, motion, and dynamics to carry out the calculations for grasp-
ing [DWL21]. Its theoretical foundation is solid, but the deficiency lies in the fact that the
model between the robot manipulator and the grasping object in the real 3-dimensional
world is complex. It is difficult to realize the model with high precision. In contrast, em-
pirical methods do not strictly rely on real-world modeling methods, and some works utilize
data information from known objects to build models to predict the grasping pose of new
objects [Ina+19; Gar+19; Zha+19a]. A new grasp representation is proposed in [YMS11],
where a simplified five-dimensional oriented rectangle grasp representation is used to re-
place the seven-dimensional grasp pose consisting of 3D location, 3D orientation, and the
opening and closing distance of the plate gripper. Based on the oriented rectangles grasp
configuration, the deep learning approaches can be successfully applied to the grasping de-
tection task, which mainly includes classification-based methods, regression-based methods,
and detection-based methods [DWL21].

Classification-based methods. A first deep learning-based robotic grasping detection method
is presented in [LLS15], the authors achieve excellent results by using a two-step cascaded
structure with two deep networks. In [PG16], grasping proposals are estimated by sampling
grasping locations and adjacent image patches. The grasp orientation is predicted by dividing
the angle into 18 discrete angles. Since the grasp dataset is scant, a large simulation database
called Dex-Net 2.0 is built in [Mah+17]. On the basis of Dex-Net 2.0, a Grasp-Quality Covolu-
tional Neural Network (GQ-CNN) is developed to classify the potential grasps. Although the
network is trained on synthetic data, the proposed method still works well in the real world.
Moreover, a classification-based robotic grasping detection method with a spatial transformer
network (STN) is proposed in [PC18]. The results of evaluating the Cornell grasping dataset
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indicate that their multi-stage STN algorithm performs well. The grasping detection method
based on classification is a more direct and reasonable method, many aspects of which are
worth further study.

Regression-based methods. Regression-based methods are used to directly predict the
grasp parameters of location and orientation by training a model. A first regression-based
single shot grasping detection approach is proposed in [RA15], in which the authors use
AlexNet to extract features and achieve real-time performance by removing the process of
searching for potential grasps. Combing RGB and depth data, a multi-modal fusion method
is introduced in [Zha+17]. With the fusion of RGB and depth features, the proposed method
directly regresses the grasp parameters and improves the grasp detection accuracy on the Cor-
nell grasping dataset. Similar to [Zha+17], the authors of [KK17b] use ResNet as backbone
to integrate RGB and depth information and further improves the performance of grasping
detection. In addition, a grasping detection method based on ROI (region of interest) is
proposed in [Zha+19a]. In this work, the authors regress grasp pose on ROI features and
achieve better performance in an object-overlapping challenge scene. The regression-based
method is effective, but its disadvantage is that it is more difficult to learn the mean value of
the ground truth.

Detection-based methods. Many detection-based methods refer to some key ideas from
object detection, such as the anchor box. Based on the prior knowledge of these anchor
boxes, the regression problem of grasping parameters is simplified. In [Guo+17], vision and
tactile sensing are fused to build a hybrid architecture for robotic grasping. The authors
use an anchor box to do axis alignment, and grasp orientation is predicted by considering
grasp angle estimation as a classification problem. The grasp angle estimation method used
in [Guo+17] is extended by [CXV18]. By transforming the angel estimation problem into a
classification problem, the method of [CXV18] achieves high grasping detection accuracy on
the Cornell dataset based on FasterRCNN [Ren+15]. Different from the horizontal anchor
box used in object detection, the authors of [Zho+18] specially design an oriented anchor
box mechanism for grasping task and improve the performance of model by combing end-
to-end fully convolutional neural network. Morever, [DDC18] further extends the method
of [Zho+18] and proposes a deep neural network architecture that performs better on the
Jacquard dataset.

4.2.2 Methods of Contact Point-based Grasp Representation

The grasping representation based on an oriented rectangle is widely used in robotic grasping
detection tasks. In terms of the real plate grasping task, the gripper does not need so much
information to perform the grasping action. A new simplified contact point-based grasping
representation is introduced in [MCL20], which consists of grasp quality, center point, ori-
ented angle, and grasp width. Based on this grasping representation, GGCNN and GGCNN2
are developed to predict the grasping pose, and their methods achieve excellent performance
in both detection accuracy and inference speed. Referring to [MCL20], the grasping de-
tection performance is improved by a fully convolutional neural network with a pixel-wise
approach in [Wan+19a]. Both [MCL20] and [Wan+19a] take depth data as input, a genera-
tive residual convolutional neural network is proposed in [KK17b] to generate grasps, which
take n-channel images as input. Recently, the authors of [Wan20] take some ideas from im-
age segmentation to perform three-finger robotic grasping detection. Similar to [Wan20], an
orientation attentive grasp synthesis (ORANGE) framework is developed in [Gka+20], which
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Figure 4.2: Gaussian-based grasp representation: The 2-D Gaussian kernel is applied to the grasp quality map
to highlight the maximum grasp quality of its central point position. (a) the schematic diagram of grasp quality
weight distribution after 2-D Gaussian function deployment, and (b) the schematic diagram of grasp representation.
Adapted from Fig. 1 in [Cao+22a] ©IEEE.

achieves better results on the Jacquard dataset based on the GGCNN and Unet models. In this
paper, based on the contact point-based grasp representation, I further develop a lightweight
generative architecture for robotic grasping detection that performs well in inference speed
and accuracy on two public datasets, Cornell and Jacquard.

4.3 Robotic Grasp System

This part gives an overview of the robotic grasp system settings and illustrates the principles
of Gaussian-based grasp representation.

4.3.1 System Setting

A robotic grasp system consists of a robot arm, perception sensors, grasping objects, and
workspace. To complete the grasping task successfully, the subsystem of planning and control
is involved along with the grasping pose of objects. In grasp detection, I consider limiting
the manipulator to the normal direction of the workspace to become a goal for perception in
2D space. Most graspable objects are flat through these settings by placing them reasonably
on the workbench. As opposed to building 3D point cloud data, the whole grasp system can
reduce the cost of storage and calculation and improve its operational capacity. The grasp
pose of flat objects can be treated as a rectangle. Since the size of each plate gripper is fixed,
I use a simplified grasp representation to perform grasp pose estimation.

4.3.2 Gaussian-based Grasp Representation

The grasp detection model should take RGB or depth images as inputs to generate grasp
candidates for subsequent manipulation tasks. Works from literature built their grasp detec-
tion model for grasp pose prediction based on 5-D grasp representation [Guo+17; CXV18;
Zho+18].
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g = {x , y,θ , w, h} (4.1)

where the center point is denoted as (x , y). θ is the grasp angle and (w, h) is the weight
and height of the grasp rectangle, respectively. The five-dimensional grasp representation
is borrowed from conventional object detection, but is not perfectly suited for robotic grasp
detection. The simplified grasp representation introduced in [MCL20] for fast robotic grasp
detection can be formulated as in Eq. 4.2:

g = {p,ϕ, w, q} (4.2)

where p is the position of the center point expressed in Cartesian coordinates as p= (x , y, z).
The ϕ and w denote the grasp angle and grasp width, respectively. And q is a scale factor for
measuring the grasp quality. Furthermore, the new grasp representation in two-dimensional
space is represented in Eq. 4.3:

ĝ = {p̂, ϕ̂, ŵ, q̂} (4.3)

where p̂ is the center point in the image coordinates denoted as p̂ = (u, v). ϕ̂ represents
the grasp angle in the camera frame. ŵ and q̂ denote the grasp width and the grasp quality,
respectively. After obtaining the grasp system calibration results, matrix operations transform
the grasp pose ĝ into world coordinates g, as shown in Eq. 4.4.

g = TRC(TCI( ĝ)) (4.4)

where TRC is the transformation matrix from camera frames to world frames and TCI is the
transformation matrix from two-dimensional image space to camera frames. The grasp map
in image space is denoted in Eq. 4.5:

G= {Φ, W,Q} ∈ R3×W×H (4.5)

where the pixels of grasp maps, Φ, W,Q, are filled with the corresponding values of ϕ̂, ŵ, q̂.
The central location can be found by searching the pixel coordinate with the maximum grasp
quality ĝ∗ = maxQ̂ Ĝ. The authors in [MCL20] filled a rectangular area around the center
with 1, indicating the highest grasp quality and other pixels as 0. The training model learns
the maximum grasp quality of the center. Because all pixels in the rectangular area have the
best grasping quality, it leads to a limitation that the importance of the center point is not
highlighted, resulting in ambiguity in the model. In this work, I use a 2-D Gaussian kernel
to regularize the grasp representation to indicate where the object center might exist, as
shown in Fig. 4.2. The novel Gaussian-based grasp representation is represented as gk. The
corresponding Gaussian-based grasp map is defined as the Eq. 4.6:

GK = {Φ, W,QK} ∈ R3×W×H

where,

QK = K(x , y) = exp(−
(x − x0)2

2σ2
x
−
(y − y0)2

2σ2
y
)

where,

σx = Tx ,σy = Ty

(4.6)

In Eq. 4.6, the generated grasp quality map is decided by the center point location (x0, y0),
the parameter σx and σy , and the corresponding scale factor Tx and Ty . In this method, the
peak of the Gaussian distribution is the center coordinate of the grasp rectangle. This work
discusses the detailed effects of parameter settings in the Section 5.2.4.
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Figure 4.3: The architecture of my generative grasping detection model. I and Conv denote the input data and
convolution filter, respectively. The proposed method consists of the down-sampling block, the bottleneck layer, the
multi-dimensional attention fusion network (MDAFN), and the up-sampling block. Adapted from Fig. 2 in [Cao+22a]
©IEEE.

4.4 Method

In this section, I introduce a lightweight generative architecture for robotic grasp detection.
Fig. 5.12 presents the overall structure of my grasp detection model. The input data is down-
sampled into feature maps with smaller sizes, more channels, and richer semantic informa-
tion. Resnet [He+16] and the multi-scale RFB are combined in the bottleneck to extract
more discriminability and robustness features. Furthermore, a MDAFN consisting of pixel-
based and channel-based attention subnetworks is used to fuse shallow and deep semantic
features. The proposed model suppresses redundant features and enhances the object fea-
tures during the fusion process based on the attention mechanism. Finally, based on the
extracted features, four task-specific sub-networks are added to predict grasp quality, angle
(in the form of sin(2θ ) and cos(2θ )), and width, respectively. A detailed illustration of each
component of the proposed grasp network is depicted in the following subsections.

4.4.1 Basic Network Architecture

The proposed generative grasp architecture comprises of the down-sampling block, bottle-
neck layer, multi-dimensional attention fusion network, and up-sampling block, as shown in
Fig. 5.12. The down-sampling block consists of a convolutional layer with a kernel size of
3×3 and a maximum pooling layer with a kernel size of 2×2, which can be represented as
Eq. 4.7.

xd = fmaxpool( f
n

conv( f
n−1

conv (. . . f 0
conv(I) . . .))) (4.7)

In this work, I use two down-sampling blocks and two convolutional layers in the down-
sampling process. The first down-sampling block comprises four convolutional layers (n
= 3) and one maximum pooling layer. The second down-sampling layer comprises two
convolutional layers (n = 1) and one maximum pooling layer. After the downsampled data
passes through two convolutional layers, it is fed into a bottleneck layer consisting of three
residual blocks (k = 2) and one receptive field block (RFB) to extract features. Since RFB
comprises various scale convolutional filters, it is possible to acquire richer image details.
More illustrations of RFB are presented in Section 4.4.2. The output of the bottleneck can be
formulated as Eq. 4.8.

xb = fRFBM( f
k

res( f
k−1

res (. . . f 0
res( f

1
conv( f

0
conv(xd))) . . .))) (4.8)



34 Chapter 4 Robotic Grasp Detection

Figure 4.4: Multi-scale receptive field block. The RFB consists of multi-branch convolutional layers with different
kernels corresponding to the receptive fields of various sizes. Adapted from Fig. 3 in [Cao+22a] ©IEEE.

The output xb of the bottleneck is fed into a MDAFN and upsampling block. The MDAFN
composed of pixel attention and channel attention subnetworks can suppress the noise fea-
tures and enhance the valuable features during the fusion of shallow features and deep fea-
tures. The detailed illustration of the MDAFN is presented in Section 4.4.3. In the upsampling
block, the pixshuffle layer [Shi+16] increases feature resolution with the scale factor set to
2. In this work, the number of MDAFN and upsampling blocks is two, and the output is
represented as Eq. 4.9.

xu = f 1
pixshuffle( f

1
MDAFN( f

0
pixshuffle( f

0
MDAFN(xb)))) (4.9)

The final layer consists of four convolutional filters with a kernel size of 3×3. The corre-
sponding outputs can be expressed as Eq. 4.10.

gq =max
q
( f 0

conv(xu)),

gcos(2θ ) =max
q
( f 1

conv(xu)),

gsin(2θ ) =max
q
( f 2

conv(xu)),

gw =max
q
( f 3

conv(xu)).

(4.10)

where the center point is located by searching the pixel coordinate with the highest grasp
quality gq. gw denotes the grasp width, and the grasp angle is calculated by gangle = arctan(

gsin(2θ )
gcos(2θ )

)/2.

4.4.2 Multi-scale Receptive Field Block

In neuroscience, researchers have discovered a particular function in the human visible cortex
that regulates the size of the visible receptive area [BJ15; Che+20a]. This mechanism can
help to emphasize the importance of the area near the center. For robotic grasping tasks,
multi-scale receptive fields can enhance the neural network’s deep features. I hope to enhance
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Figure 4.5: Multi-dimensional attention fusion network (MDAFN). The top branch is the pixel-level attention sub-
network, and the bottom is the channel-level attention subnetwork. Adapted from Fig. 4 in [Cao+22a] ©IEEE.

the model’s receptive field to improve its feature extraction capability for multi-grasp objects.
In this work, I introduce a multi-scale RFB [LHW18] to assemble the bottleneck layer to
improve the model’s receptive field capability. The RFB comprises multi-branch convolutional
layers with different kernels corresponding to the receptive fields of various sizes. The dilated
convolution layer controls the eccentricity, and the features extracted by the branches of the
different receptive fields are recombined to form the final representation, as shown in Fig 4.4.
In each branch, the convolutional layer follows a dilated convolutional layer. The kernel sizes
are a combination of (1×1, 3×3, 7×1, 1×7). The features extracted from the four branches
are concatenated and then added to the input data to obtain the final multi-scale feature
output.

4.4.3 Multi-dimensional Attention Fusion Network

When humans look at an image, not much attention is paid to everything; instead, more focus
is paid to what is interesting. In computer vision, attention mechanisms with few parameters,
fast speed, and excellent effects have been developed [Wan+18; HSS18; Woo+18; Jen+20;
Cao+21b]. The motivation for MDAFN is to effectively perceive grasping objects against a
complex background. This attention mechanism can suppress the noise features and highlight
the object features. As shown in Fig. 4.5, the shallow and deep features are concatenated
together. The concatenated features are fed into MDAFN to perform representation learning
at pixel-level and channel-level. The feature map F passes through a 3×3 convolution layer
in the pixel attention subnetwork to generate an attention map by a convolution operation.
The attention map is computed with a sigmoid to obtain the corresponding pixel-wise weight
score. SENet [HSS18] is then used as the channel attention subnetwork, which accepts
1×1×C features through global average pooling. It then uses two feedforward layers and the
corresponding activation function Relu to build the correlation between channels and finally
outputs the weight score of the feature channel through the sigmoid operation. Both pixel-
wise and channel-wise weight maps are multiplied with the feature map F to obtain a novel
output with reduced noise and enhanced object information.
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4.4.4 Loss Function

The neural network model can be considered as a method to approximate the complex func-
tion F : I 7−→ Ĝ for input images I = {I1...In} and corresponding grasp labels L = {L1...Ln}. F
is the proposed grasp model and I is the input image. Ĝ denotes the grasp prediction. Specifi-
cally, the model is trained on the dataset to learn the grasp detection function F by optimizing
minimum errors between grasp predictions Ĝ and the corresponding labels L. This task is a
regression problem, so the Smooth L1 loss is deployed as the loss function to optimize my
model. The loss function Lr is formulated as Eq. 4.11:

Lr(Ĝ, L) =
N
∑

i

∑

m∈{q,cos 2θ ,sin2θ ,w}

SmoothL1(Ĝ
m
i − Lm

i ) (4.11)

where SmoothL1 is defined as:

SmoothL1(x) =

¨

(σx)2/2, i f |x |< 1;

|x | − 0.5/σ2, otherwise.

where N represents the count of grasp candidates, the grasp angle is defined as the form of
(cos(2θ ), sin(2θ )). And q, w denote the grasp quality and grasp width, respectively. σ is the
hyperparameter in the SmoothL1 function, which controls the smooth area.

4.5 Dataset Analysis

Since deep learning has become popular, large public datasets, such as ImageNet [Den+09],
COCO [Lin+14], KITTI [GLU12], etc., have been driving the progress of algorithms. How-
ever, in the field of robotic grasping detection, the number of available grasping datasets
is insufficient. Dexnet, Cornell, Jacquard, and OCID are famous common grasping datasets
that serve as a platform to compare the performance of the state-of-the-art grasping detection
algorithms. In Tab. 4.1, it presents a summary of the different grasping datasets.

4.5.1 Dexnet Grasping Dataset

The Dexterity Network (Dex-Net) is a research project established by the UC Berkeley Au-
tomation Lab that provides code, a dataset, and algorithms for grasping tasks. At present,
the project has released four versions of the dataset, namely Dex-Net 1.0, Dex-Net 2.0, Dex-
Net 3.0, and Dex-Net 4.0. Dex-Net 1.0 is a synthetic dataset with over 10,000 unique 3D
object models and 2.5 million corresponding grasp labels. Based on Dex-Net 1.0, thousands
of 3D objects with arbitrary poses are used to generate more than 6.7 million point clouds
and grasps, which constitute the Dex-Net 2.0 dataset. Dex-Net 3.0 is built to study the grasp
using suction-based end effectors. Recently, an extension of previous versions, Dex-Net 4.0,
has been developed, which can perform training for parallel-jaw and suction grippers. Since
the Dex-Net dataset includes only synthetic point cloud data and no RGB information about
the grasped objects, the experimentation in this work is mainly carried out on the Cornell,
Jacquard, and extended OCID grasping datasets.
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Figure 4.6: Qualitative images from the Cornell grasping dataset.

4.5.2 Cornell Grasping Dataset

The Cornell dataset, which is widely used as a benchmark evaluation platform, was collected
in the real world with the RGB-D camera. Some example images are shown in Fig 4.6. The
dataset is composed of 885 images with a resolution of 640×480 pixels of 240 different ob-
jects with positive grasps (5110) and negative grasps (2909). RGB images and corresponding
point cloud data of each object in various poses are provided. However, the scale of the Cor-
nell dataset is too small for training my convolutional neural network model. In this work, I
use online data augmentation methods, including random cropping, zooms, and rotation, to
extend the dataset and avoid overfitting during training.

4.5.3 Jacquard Grasping Dataset

Jacquard is a large grasping dataset created through simulation based on CAD models. Be-
cause no manual collection and annotation is required, the Jacquard dataset is larger than
the Cornell dataset, containing 50k images of 11k objects and over 1 million grasp labels. In
Fig. 4.7, it presents some images from the Jacquard datset. Furthermore, the dataset also
provides a standard simulation environment to perform simulated grasp trials (SGTs) under
a consistent conditions for different algorithms. In this work, I use SGTs as a benchmark
to fairly compare the performance of various algorithms in the robot arm grasp. Since the
Jacquard dataset is large enough, I do not apply any data augmentation methods to it.

4.5.4 OCID Grasping Dataset

OC I Dgrasp is an extension dataset of the OCID dataset [Suc+19]. The original OCID dataset
was collected to evaluate semantic segmentation methods; it contains RGB-D data with seg-
mentation labels. The authors of [AF21] manually annotated the ARID10 and ARID20 sub-
sets of the original OCID dataset with grasp labels. And each object’s class information is
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Figure 4.7: Qualitative images from the Jacquard grasping dataset.

Table 4.1: Description of the public Grasping Datasets. Adapted from Table I in [Cao+21a] ©IEEE.

Dataset Modality Objects Images Grasps

Dexnet Depth 1500 6.7M 6.7M
Cornell RGB-D 240 885 8019

Jacquard RGB-D 11K 54K 1.1M
OC I Dgrasp RGB-D 31 1763 75K

added to the OC I Dgrasp dataset. OC I Dgrasp consists of 31 object classes. Specifically, it con-
sists of 1763 images with 11.4K segmentation masks and 75K grasp labels. In Fig. 4.8, several
selected images are shown.

4.6 Experiments

To verify the generalization capability of the proposed lightweight generative model, I con-
ducted experiments on three public grasp datasets, Cornell [YMS11], Jacquard [DDC18], and
extended OCID [Suc+19; AF21]. Experimental results indicate that the proposed algorithm
has high inference speed while achieving high grasp detection accuracy. In addition, I further
explore the impact of different network designs on algorithm performance and discuss the
shortcomings of the proposed method.



4.6 Experiments 39

Figure 4.8: Qualitative images from the OC I Dgrasp grasping dataset.

4.6.1 Implementation Details

Data Preprocessing. The experiments for this work were performed on the Cornell [YMS11],
Jacquard [DDC18], and extended OCID [AF21] grasp datasets. Due to the small data size of
Cornell and OCID, online data augmentation is conducted to train the network. Specifically,
random crops, zooms, and rotations are used to improve the diversity of the Cornell and
OCID grasp datasets. Meanwhile, the Jacquard dataset has sufficient data and the network
is trained directly without any data augmentation. In addition, the data labels are encoded
for training. A 2D Gaussian kernel is used to encode each ground-truth positive grasp so that
the corresponding region satisfies the Gaussian distribution, where the peak of the Gaussian
distribution is the coordinate of the center point. I also use sin(2θ ) and cos(2θ ) to encode
the grasp angle, where θ ∈ [−π2 , π2 ]. The resulting corresponding values range from -1 to 1.
Using this method, ambiguity can be avoided in the angle learning process, which is benefi-
cial to the convergence of the network. Similarly, the grasp width is scaled to a range of 0–1
during the training.

Training Configuration. The grasp network is achieved using Pytorch 1.7.0 with Cudnn-
7.5 and Cuda-10.0 packages. During the training period, the model is trained end-to-end on
an Nvidia RTX2080Ti GPU with 11GB of memory.

4.6.2 Experiments on the Cornell Grasp Dataset.

The images of the Cornell dataset are resized to 224×224 to feed into the network. Follow-
ing [MCL20], an image-wise split method is used to test my network, where the images of
the dataset are randomly divided and the images of each object in the training set and test
set are different. The average of the 5-fold cross-validation is used as the final results.

Training schedule. The famous Adam optimizer [KB15] is used to optimize the network
for backpropagation during the training process. The initial learning rate is defined as 0.001
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Table 4.2: Evaluation Results (%) of Different Methods on the Cornell Dataset. Runtime results for the methods
†are referred to in [Wan+19a], the runtime results for the methods ‡are referred to in [KK17b], and the runtime
results for the methods * are tested by ourselves. Adapted from Table I in [Cao+22a] ©IEEE.

Author Method Input Modality Input Size Accuracy(%) Time (ms)

Jiang‡ [YMS11] Fast Search RGB-D 227 × 227 60.5 5000
Lenz† [LLS15] SAE RGB-D 227 × 227 73.9 1350
Chu† [CXV18] FasterRcnn RGD 227 × 227 96.0 120

Zhang† [Zha+17] Multimodal Fusion RGB-D 224 × 224 88.9 117
Zhou‡ [Zho+18] FCGN RGB 320 × 320 97.7 117
Redmon† [RA15] AlexNet, MultiGrasp RGB-D 224 × 224 88.0 76
Kumra‡ [KK17b] ResNet-50 RGB-D 224 × 224 89.2 103
Kumra* [KK17b] GR-ConvNet RGB-D 300 × 300 97.7 7
Asif† [ATH18b] GraspNet RGB-D 224 × 224 90.6 24

Morrison* [MCL20] GGCNN D 300 × 300 73.0 4
Wang† [Wan+19a] GPWRG D 400 × 400 94.4 8

This work Efficient Grasp
D

224 × 224
94.6 6

RGB 95.3 6
RGB-D 97.8 6

and the batch size is set as 8. The network is trained for a total of 50 epochs to get the final
training weights.

Results. The comparison of the grasp detection accuracy of my model and other methods
on the Cornell dataset [YMS11] is presented in Table 4.2. Since the grasping scene in the
Cornell dataset is simple (single object grasping scene), the proposed grasp detection model
achieves high detection accuracy of 97.8% with an inference time of 6ms. The model main-
tains better accuracy and running speed performance than other state-of-the-art algorithms.
By changing the mode of input data, the generated grasp detection architecture achieves
excellent performance with the input of depth data. The results demonstrate that the combi-
nation of depth data and RGB data with rich color and texture information enables the model
to have a more robust generalization ability to unseen objects. Fig. 4.9 shows the plot of the
grasp detection results of some objects for display. Only the grasp prediction with the highest
quality score is selected as the final output, and the top-1 grasp is visualized in the last row.
The first three rows are the grasp quality, angle, and width maps. It can be seen that the
proposed algorithm provides reliable grasp candidates for objects with different shapes and
poses.

4.6.3 Experiments on the Jacquard Grasp Dataset.

The images of the Jacquard dataset are resized to 300×300 to feed into the network. I use
an image-wise split to test my network, where 90% of the data is used as a training set, and
the remaining data is used as a test set.

Training schedule. Similar to training the network on the Cornell dataset, I train the model
end-to-end on the Jacquard dataset with a learning rate of 0.001 and a batch size of 8.
Adam [KB15] is used as the default optimizer. Since the data size of the Jacquard dataset
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Figure 4.9: The detection results of the grasp network on the Cornell dataset. The first three rows are the grasp
quality, angle, and width maps. And the last row is the best grasp output for several objects. Adapted from Fig. 5
in [Cao+22a] ©IEEE.

Table 4.3: Evaluation Results (%) of Different Methods on the Jacquard Dataset. The runtime results for the
methods * are tested by ourselves. Adapted from Table II in [Cao+22a] ©IEEE.

Author Method Accuracy(%) Time(ms)

Depierre [DDC18] Jacquard 74.2 -
Morrison* [MCL20] GG-CNN2 84.0 4

Kumra* [KK17b] GR-ConvNet 94.6 7

This work
Efficient Grasp-D 95.6 6

Efficient Grasp-RGB 91.6 6
Efficient Grasp-RGB-D 93.6 6

is larger than the Cornell dataset, the network is trained for a total of 150 epochs to get the
final training weights.

Results. Similarly, the network is trained on the Jacquard dataset [DDC18] to perform
grasp pose estimation. The results are summarized in Table 4.3. Taking depth data as input,
the proposed approach obtains excellent performance with a detection accuracy of 95.6%,
which exceeds the existing methods and reaches the best result on the Jacquard dataset.
The experimental results in Table 4.2 and Table 4.3 demonstrate that my algorithm achieves
excellent performance on the Cornell grasp dataset and outperforms other methods on the
Jacquard grasp dataset. Detection examples are displayed in Fig. 4.10. Specifically, grasp
quality, angle, width, and the best detection results are presented in the figure.
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Figure 4.10: The detection results of the grasp network on the Jacquard dataset. The first three rows are the
grasp quality, angle, and width maps. And, the last row is the best grasp output for several objects. Adapted from
Fig. 6 in [Cao+22a] ©IEEE.

4.6.4 Experiments on the OCID Grasp Dataset.

The images of the extended OCID dataset are resized to 224×224 to pass through the net-
work. The image-wise method is used to split the dataset. Specifically, 1411 selected images
are divided into training set and 352 selected images are used as test set. I report the average
of the 5-fold cross-validation as the final results.

Training schedule. The network is trained end-to-end on the extended OCID dataset with
a learning rate of 0.001 and a batch size of 8. Adam [KB15] is used as the default optimizer,
and the network is trained for a total of 400 epochs to get the final training weights.

Results. To verify the effectiveness of the proposed method on the complexity scenes, I test
my method on the extended OCID [AF21] grasp dataset. The experimental results are shown
in Table 4.4. The grasp detection accuracy of my method is better than contact point-based
methods [MCL20; KK17b] and the running speed of my method is faster than detection-based
method [AF21]. My method provides an excellent balance between accuracy and speed.

Objects in clutter. To validate the generalization ability of the proposed method in the
cluttered scene, the model trained on the Cornell dataset is used to test it in a more realistic
multi-object environment. The detection results are the first two rows presented in Fig. 4.11.
The model is trained on a single object dataset but can still predict the grasp pose of multiple
objects. Moreover, the last two rows presented in Fig. 4.11 are the test results of my model
trained on the extended OCID dataset. The results show that the proposed method can
simultaneously output grasp poses of various objects in complex scenarios.
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Figure 4.11: Multiple grasped object detection results The first column is the grasp outputs of corresponding RGB
images for several objects. The last three columns are the maps for grasp quality, angle, and width. Adapted from
Fig. 7 in [Cao+22a] ©IEEE.

Table 4.4: Evaluation Results (%) of Different Methods on the extended OCID Dataset. The runtime results for
the methods * are tested by ourselves. Adapted from Table III in [Cao+22a] ©IEEE.

Author Method Accuracy(%) Time(ms)

Stefan* [AF21] Det_Seg 89.0 22
Morrison* [MCL20] GG-CNN2 63.4 4

Kumra* [KK17b] GR-ConvNet 74.1 7

This work
Efficient Grasp-D 72.7 6

Efficient Grasp-RGB 74.7 6
Efficient Grasp-RGB-D 76.4 6

4.6.5 Ablation Study

Influence of the different components. To further explore the impact of different com-
ponents on grasp pose learning, I trained my models with varying network settings on the
Cornell dataset [YMS11] with RGB-D data as input. The experimental results are summa-
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Figure 4.12: The grasp detection accuracy when using different scale factors of the Gaussian kernel. Adapted
from Fig. 8 in [Cao+22a] ©IEEE.

Table 4.5: The impact of different network settings on detection performance. Adapted from Table IV in [Cao+22a]
©IEEE.

+ GGR ✓ ✓ ✓ ✓
+ RFB ✓ ✓ ✓ ✓

+ MDAFN ✓ ✓ ✓ ✓

Acurracy (%) 94.4 95.5 95.5 96.6 95.5 96.6 97.8

rized in Table 4.5. It can be obtained from the detection accuracy evaluation results in the
Table 4.5 that Gaussian-based grasp representation (GGR), receptive field block (RFB), and
multi-dimensional attention fusion network (MDAFN) can all bring performance improve-
ment to the network, and all components combined can get the best grasp detection perfor-
mance.

Effect of the scale factor. I also discuss the impact of different scale factor settings (T) on
the model, as shown in Fig. 4.12. In this work, the scale factors Tx and Ty mentioned in
Section 4.3.2 are set to T x = T y = T with values ranging from {8, 16,32, 64,128}. When
T = 32, the model training on the Cornell dataset reaches the best detection accuracy of
97.8. During the experiment, it is found that the different densities of the annotation for a
particular dataset should be set to the size of the corresponding scale factor value, which can
slow the instability of the network learning caused by labels’ overlap.

Comparison of network efficiency. In Table 4.6, parameters, FLOPs, and the model’s infer-
ence time (GPU and CPU) are used as efficiency evaluation metrics. To improve the real-time
performance of the grasp algorithm, I developed a lightweight generative grasp detection
architecture that achieves better detection accuracy and faster running speed. The experi-
mental results show that the proposed method achieves excellent efficiency when executed



4.6 Experiments 45

Table 4.6: Efficiency comparison of different methods (Approx).The results for the methods †are referred to
in [MCL20]. The results for the methods * are tested by ourselves. Adapted from Table V in [Cao+22a] ©IEEE.

Methods Params FLOPs Time (GPU) Time (CPU)

Levine† [Lev+18] 1M - 0.2-0.5s -
Morrison* [MCL20] 70.6 k 1.0G 4ms 57ms

Kumra* [KK17b] 1.9M 10.9G 7ms 473ms

This work 1.2M 5.7G 6ms 86ms

Figure 4.13: Visualization of feature heatmaps. Adapted from Fig. 9 in [Cao+22a] ©IEEE.

Figure 4.14: Failed detection cases with single and multiple objects. Adapted from Fig. 10 in [Cao+22a] ©IEEE.

on both GPU and CPU hardware.

Feature visualization. To help better understand the effectiveness of the proposed grasp
model, I visualized the heatmaps of the feature maps, as shown in Fig. 4.13. The first row
is the original images selected from the extended OCID dataset, and the second row is the
corresponding heatmap visualization results of the feature maps. As can be seen from the
figure, my grasp model can effectively focus on the object while suppressing unimportant
background information.

Failure cases discussion. The experimental results show that the proposed method achieved
excellent detection performance but still had some cases of detection failure, as shown in
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Figure 4.15: The process of physical grasp experiments. (a) Grasp detection output; (b) The robot approaches
the object; (c) The robot grasps the object; and (d) The robot completes the successful grasp. Adapted from Fig.
11 in [Cao+22a] ©IEEE.

Table 4.7: The experimental results for the different grasp scenes. Adapted from Table VI in [Cao+22a] ©IEEE.

Scenes Successes Total Grasps Grasp Success Rate(%)

Single object 94 100 94.0
Multiple object 142 156 91.0
Occluded object 114 128 89.1
Cluttered object 122 142 85.9

Fig. 4.14. The model does not work well for objects with complex shapes. Furthermore, in
the clutter scenes, smaller objects among multiple objects are often missed by the model, and
the detection quality of the model for large boxes is relatively insufficient. However, these
shortcomings can be alleviated by adding more challenging data to the training set.

Verification on Real Robot. To evaluate the efficiency of the proposed model, a Universal
Robot 5 (UR5) attached to a Robotic Gripper 2F-85 is chosen as my experimental instrument.
The Universal Robot 5 offers a real-time data exchange interface with an update rate of 8ms,
making it possible to achieve the real-time properties. I deploy the robotic library [RG17]
as my primary platform to communicate with the robot. Furthermore, to build a compact
system, the OPC-UA mechanism is integrated into the robotic library so that the camera can
publish the images to the component, which can further utilize this information for object
detection. Together with the OPC-UA, the robotic library shares a similar structure as ROS1,
but much faster, since ROS1 lacks real-time properties. The whole experimental process is
illustrated in Fig. 4.15.

I use the Intel Realsense camera to perceive the environment. The output of the Re-
alsense camera will be fed to the proposed network, which can generate a bunch of grasp
configurations, and a final grasp configuration will be selected based on my predefined cri-
teria (the grasp candidate with the highest grasp quality score is selected as the final grasp
configuration.) The coordinate transformation is necessary to apply the grasp configuration
described in the image coordinate. After the transformation, the grasp configuration in the
world coordinate is specified.

As a consequence, the robotic arm joints can be calculated using the analytical inverse
kinematic approach. Therefore, a trajectory in joint space can be generated using the trajec-
tory planning block from the robotic library. The novel objects are evaluated, with different
and complex shapes. I summarize the results of single object grasp scene in Table 4.7 and
indicate the effectiveness of my method with the 94% grasp success rate. To further test the
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performance of my method on more complex scenes, I performed real robot experiments on
three multiple object grasp scenes: a multiple object scene, an occluded object scene, and a
cluttered object scene. The robot attempts multiple grasps until all objects are grasped, and
then grasped objects are removed. As shown in Table 4.7, my method has a grasping success
rate of 91.0%, 89.1%, and 85.9% on the multiple object scene, occluded object scene, and
cluttered object scene, respectively.

4.7 Summary

In this paper, I introduced a Gaussian-based grasp representation (GGR) to highlight the
maximum grasp quality at the center position. Based on GGR, a lightweight generative archi-
tecture with a RFB and a MDAFN was developed for grasp pose estimation. Experiments on
three common datasets, the Cornell [YMS11], Jacquard [DDC18], and extended OCID[AF21]
datasets, demonstrate that the proposed method achieves a fast running speed of 6ms while
having an excellent grasp detection accuracy of 97.8%, 95.6%, and 76.4%. In the physical
grasp experiment, the proposed method achieves good performance with the application of
the UR5 robot arm and robotic gripper.





5
Multimodal Learning for Object Perception Based
on Event Camera

This chapter is about applications of multimodal learning with spatial attention for
object perception (vehicle detection and grasp detection) based on event cameras.

The contents of this chapter are based mainly on the papers "Event-based neuro-
morphic vision for autonomous driving: a paradigm shift for bio-inspired visual
sensing and perception," that is published at the IEEE Signal Processing Magazine,
2020 [Che+20a], "Fusion-based Feature Attention Gate Component for Vehicle De-
tection based on Event Camera," that is published at the IEEE Sensors Journal,
2021 [Cao+21b], and "NeuroGrasp: Multi-modal Neural Network with Euler Re-
gion Regression for Neuromorphic Vision-based Grasp Pose Estimation" that is pub-
lished at the IEEE Transactions on Instrumentation and Measurement, 2022 [Cao+22b].

5.1 Event Camera

Small insects such as bees outperform the most advanced artificial vision systems such as
high-quality cameras nowadays in routine functions, including real-time sensing and pro-
cessing, low-latency motion control, and so on. More importantly, such biological neural
systems can well perform tasks with little energy consumption. In fact, biological neural
systems usually consist of a large number of relatively simple elements. They operate on
a massively parallel principle, which is different from the most common type of vision sen-
sor, such as CMOS cameras. Thus, some researchers and engineers have tried to mimic the
working principles of the biological visual systems and come up with a new artificial visual
system.

Recently, the developments of material technologies, lithographic processes, very large
scale integration (VLSI) design techniques, neuroscience, and neuromorphic technologies
have enabled the novel conception and fabrication of bio-inspired visual sensors and pro-
cessors. These new sensors and processors provide different methods to sense and perceive
the world. The event-based neuromorphic vision sensor is a bio-inspired vision sensor that
mimics the biological retina at both the system and element levels; it represents a paradigm
shift in the acquisition, processing, and modeling of visual information. The Dynamic Vision
Sensor (DVS) proposed by the group led by Tobi Delbruck is the first practicable event-based
neuromorphic vision sensor based on biological principles [LPD08]. DVS captures the per-
pixel brightness changes (called events) asynchronously instead of measuring the absolute

49
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brightness of all pixels at a constant rate, resulting in promising properties compared to
standard frame-based cameras, such as low power consumption and low latency (in the or-
der of microsecond), high dynamic range (120 dB), and high temporal resolution [Liu+19].
Thus, an alternative visual sensing and perception system for autonomous robots is provided
in challenging scenarios that state-of-the-art standard frame-based cameras cannot well per-
form, such as high-speed scenes of autonomous highway driving, low-latency motion control,
and low power consumption of the robot onboard system [Maq+18; Zhu+18a].

Frame-based vision sensors acquire the visual data as a sequence of snapshots recorded
at discrete timestamps; therefore, the visual information is compressed and quantized at
a pre-defined frame rate. Consequently, a problem (under-sampling) that is often known
from the domain of signal processing arises due to the timescale of motions in the observed
scenes and the frame rate of the recording camera. Things occurring between the adjacent
frames would get lost. Generally, the advanced algorithms with multiple-sensor fusion are
usually developed to compensate for single-sensor shortcomings in demanding applications
such as highly piloted driving systems with low-latency motion control and visual feedback
loops. Rather than solving this problem from an algorithm perspective, it is better to explore
alternative methods from a novel sensing perspective, such as an event-based neuromorphic
vision sensor, resulting in great value for promoting subsequent tasks to become more robust,
accurate, and complementary together with the advanced algorithm development.

As bio-inspired and emerging sensors, event-based neuromorphic vision sensors have a
different working principle compared to the standard frame-based cameras, which leads
to promising properties such as low energy consumption, low latency, high dynamic range
(HDR), and high temporal resolution. It poses a paradigm shift for sensing and perceiving
the environment by capturing local pixel-level light intensity changes and producing asyn-
chronous event streams.

5.1.1 Biological Retina

The retina of vertebrates, such as humans, is a highly developed multilayer neural system
consisting of light-sensitive cells that contain millions of photoreceptors. It is the location
where visual information is acquired and preprocessed. As shown in Fig. 5.1, the retina has
three primary layers, including the photoreceptor layer, the outer plexiform layer, and the
inner plexiform layer.

The photoreceptor layer consists of light-sensitive cells that convert incoming light into
electrical signals and drive the horizontal cells and bipolar cells in the outer plexiform layer.
There are two major types of bipolar cells, that is, the ON-bipolar cells and the OFF-bipolar
cells. The ON and OFF bipolar cells are responsible for coding the bright and dark spatio-
temporal contrast changes, respectively. If the illumination increases, the firing rate of the
ON-bipolar cell increases, while the OFF-bipolar cell no longer generates spikes. This, in
turn, increases the firing rate of OFF-bipolar cells in the case of illumination decreasing (such
as getting darker). In the absence of a light stimulus, both cells generate a few random
spikes. This phenomenon is achieved by comparing the photoreceptor signals with the spatio-
temporal values, which are determined by the mean value of the horizontal cells, resulting
in the facilitation of the connection between photoreceptors and bipolar cells laterally. In the
outer plexiform layer, the ON- and OFF-bipolar cells synapse onto the amacrine cells, and ON-
and OFF-ganglion cells are in the inner plexiform layer. The amacrine cells mediate signal
transmission between bipolar cells and ganglion cells. The ganglion cells carry information
along different parallel pathways in the retina, which is conveyed to the visual cortex. Thus,
the retina is responsible for converting spatial-temporal illumination changes into pulses,
which are transmitted to the visual cortex via the optical nerve.
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Figure 5.1: Three-layer model of a human retina (bottom-left) and corresponding dynamic vision sensor pixel
circuitry (top-left). On the top-right, typical pixel circuit signals are depicted. The bottom-right image shows the
accumulated events from a Dynamic Vision Sensor. The accumulated event map has ON (illumination increased)
and OFF (illumination decreased) events drawn as white and black dots, respectively. Adapted from Fig. 2
in [Che+20a] ©IEEE.

5.1.2 Silicon Retina

The silicon retinas are visual sensors that model the biological retina and follow neurobiology
principles. Pioneers of silicon retinas are Mahowald and Mead, who introduced their silicon
VLSI retina in 1991 [MM91]. This kind of sensor is equipped with adaptable photoreceptors
and a chip with a 2D hexagonal grid of pixels. It replicates parts of different cell types in
biological retinas, including the photoreceptors, bipolar cells, and horizontal cells. Therefore,
this kind of sensor represents merely the photoreceptor layer and the outer plexiform layer.
Later, Zaghloul and Boahen built the Parvo-Magno retina, which is superior to the silicon
VLSI retina by modeling five retinal layers.

Despite the promising structure, many of the early silicon retinas originated from the bi-
ological sciences community and were mainly used to demonstrate neurobiological models
and theories without considering the real-world applications. Recently, an increasing amount
of effort from Tobi Delbruck’s team has been put into the development of a practicable sili-
con retina (the Dynamic Vision Sensor, or DVS) based on biological principles [LPD08]. In
Fig. 5.1, the three-layer model of a human retina (bottom-left) and corresponding Dynamic
Vision Sensor pixel circuitry (top-left) are presented. On the top-right, typical pixel circuit
signals are displayed. The upper trace represents a voltage waveform at node vlog that tracks
photocurrent through the photoreceptor layer circuit. The outer plexiform layer circuit re-
sponds with spike events (vdi f f ) of different polarities to positive and negative changes of
the photocurrent. Spikes are transported to the next processing stage by the inner plexiform
layer circuit. A large number of log-intensity changes are encoded in the events. The bottom-
right image illustrates the accumulated events, including ON events (illumination increased)
and OFF events (illumination decreased), that are drawn as white and black dots.Today’s
representatives of silicon retinas are mainly the pioneers Tobi Delbruck and Christoph Posch,
representing a compromise between biological and technical aspects. In their development,
one prominent challenge posed is usually regarded as a wiring problem, indicating that each
pixel of the silicon retina needs its own cable, which is impossible for chip wiring. A key
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Figure 5.2: The AER communication protocol: (a) Three neurons on the sending chip generate spikes. (b) The
spikes are interpreted as binary events. A binary address is generated by the address encoder (AE). This address
is transmitted to the receiver chip by the bus line. (c) The binary address is decoded to the binary event by
the address decoder (AD). (d) Spikes are emitted on the corresponding neurons of the receiver chip, where the
positions of the neurons are determined by the address decoder. Adapted from Fig. 3 in [Che+20a] ©IEEE.

technique for the solution, named Address Event Representation (AER), was originally from
the Caltech group of Carver Mead; it is used as an event-controlled and asynchronous point-
to-point communication protocol for prototypes of the silicon retina.

As illustrated in Fig. 5.2, the basic functionality of AER is implemented by an address
encoder, an address decoder, and a digital bus. All neurons and pixels could transmit the
time-coded information on the same line because the digital bus implements a multiplex
strategy. The address encoder of the sending chip generates a unique binary address for
each neuron or pixel in the event of a change. The bus transmits the address at high speed
to the receiver chip. Then, the address decoder determines the position and generates a
spike on the receiver neuron. Event streams are employed in AER to communicate among
chips. An event is a tuple (x , y, t, p): x and y are pixel addresses; t is the timestamp; and
p represents the polarity. The polarity indicates an increase and decrease in the lighting
intensity, corresponding to ON and OFF events, respectively.

My work mainly focuses on the first practically usable silicon retina, the Dynamic Vision
Sensor (DVS)1, which follows the natural, frame-free, and event-driven approach that trig-
gers a plethora of research in event-based neuromorphic vision and robot. The DVS pixel
models a simplified three-layer biological retina by mimicking the information flow of the
photoreceptor-bipolar-ganglion cells (see Fig. 5.1). Pixels operate independently and attach
special importance to the temporal development of the local lighting intensity. The DVS pixel
would automatically trigger an event (either an ON event or an OFF event) when the relative
change in intensity exceeded the threshold. Therefore, the working principle of the DVS is
fundamentally different from that of the frame-based camera. There are three key proper-
ties of biological vision that are kept in this silicon retina, including the relative illumination
change, the sparse event data, and the separate output channels (ON/OFF). The major con-
sequence of the DVS is that the acquisition of visual information is no longer controlled by
any form of external timing signals such as frame clocks or shutters, while the pixel itself
controls its own visual information individually and autonomously.

1A recent approach by Tobi Delbruck is the so-called dynamic and active pixel vision sensor (DAVIS) that
combines dynamic and static visual information into a single pixel.
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5.1.3 Advantages of Event Cameras

Due to their fundamentally different working principle and mimicking of the biological retina,
the event-based neuromorphic vision sensors have several advantages over standard frame-
based cameras.

Energy Friendly. Since an event-based neuromorphic vision sensor transmits only events
and autonomously filters redundant data, power is only used to process active pixels (e.g.,
the events triggered by illumination changes). Particularly, energy-friendly sensors are more
important than advanced algorithms for the onboard computers and devices in autonomous
vehicles.

Low Latency. There is no need for the global exposure of the frame because each pixel
works independently. Ideally, the minimal latency is 10 µs. The low-latency control of the
autonomous vehicle is highly dependent on the perception systems. A low-latency perception
system such as an object detection system based on an event-based neuromorphic vision
sensor would save lots of time to avoid obstacles for the control systems.

High Dynamic Range. The event-based neuromorphic vision sensor, such as DVS, has a
high dynamic range (120 dB), which far exceeds that of the frame-based cameras (60 dB).
Event-based neuromorphic vision sensors such as the DVS can simultaneously adapt to very
dark and bright stimuli, ensuring a highly robust perception system even in a light-changing
scene such as an autonomous vehicle driving through a tunnel.

Microsecond Resolution. It is fast to capture brightness changes in analog circuitry. With
a 1 MHz clock, events can be detected and timestamped with microsecond resolution. Con-
sidering the fast response requirement of the controller in autonomous vehicles in emergency
driving scenes, this property is quite useful in autonomous driving.

No Motion Blur. In the high-speed driving scenario, the motion blur problem occurs when
the motion of the moving objects is beyond the sampling frequency of the frame-based cam-
era; this may cause the failure of the perception system. An event-based neurmorphic vision
sensor that can capture dynamic motion precisely with no motion blur is of great value to the
autonomous driving community.

5.1.4 Event Noise Processing

The preprocessing of the raw data is essential for extracting meaningful information for sen-
sor system. Event-based neuromorphic vision sensor not only captures the change in the
light intensity caused by moving objects, it also generates some noise activities due to the
movements of background objects and the sensor noise such as temporal noise and junction
leakage currents [Liu+15; PBO18; KK17a]. As shown in Fig. 5.3, the event-noise processing
technique is responsible for excluding the event noises from the event stream. Two commonly
used methods in the literature, namely the spatial-temporal correlation filter and the motion
consistency filter, are illustrated as follows.
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Figure 5.3: Event noise processing: the green dashed box shows the spatial-temporal correlation filter; the orange
one is the motion consistency filter. Adapted from Fig. 4 in [Che+20a] ©IEEE.

Spatial-temporal correlation filter. For a newly incoming event ei = (x i , yi , t i , pi), the
spatial-temporal filter searches the most recent neighborhood event around the current pixel
location (x i , yi) within a distance D. The incoming event would be regarded as a nonnoise
event if the time difference meets:

t i − tn < dt (5.1)

where t i is the timestamp of the event; tn is the timestamp of the most recent neighborhood
event; and dt is the predefined threshold. The search for the most recent event checks eight
neighborhood pixels around (x i , yi), as shown in Fig. 5.3. It lacks temporal correlation with
events in their spatial neighborhood because the event-noise occurs randomly. Hence, the
spatial-temporal correlation filter can effectively filter out event noise.

Motion consistency filter. In Fig. 5.3, the principle of the motion consistency filter [Wan+19b]
is depicted. The blue dot denotes an incoming event caused by the object motion and the
black dot represents an event-noise. In the spatial-temporal domain, a newly incoming event
should be consistent with the previous events (represented by red dots) caused by the same
moving object. In a local region, the incoming event can be modeled as a consistent “moving
plane" M . In this way, the velocity (vx , vy) can be used to assess the motion consistency, and
the event-noise can be removed because the previous events (the red dots, signal) and the
black dot are not on the same plane. Concretely, the motion consistency plane for each active
event ei can be formulated as

ax i + b yi + c t i + d = 0 (5.2)

where (a, b, c, d) ∈ R4 defines the plane M ; (x i , yi) is the coordinate of event ei; and t i is
the timestamp of event ei. The event noise processing is an essential step to extract useful
information from unwanted noise data for bio-inspired visual sensing and perception tasks
of autonomous driving; it can promote the accuracy and speed of subsequent algorithms.
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Table 5.1: The comparison of different event data representations of spatial-temporal encoding. H and W repre-
sent the image height and width dimensions, respectively; B denotes the number of temporal bins. The polarity
channel is 2 if the encoding method considers the polarities of events, otherwise is 1. Adapted from Table I
in [Che+20a] ©IEEE.

Representation Dimensions Polarity Channel Intensity Weakness

Surface of Active Events (SAE) H×W 2 timestamp of the most recent event without temporal history
Leaky-Integrate and Fire (LIF) H×W 1 event spikes without polarity information
Voxel Grid B× H×W 1 sum event polarities without polarity information
Event Spike Tensor (EST) B× H×W 2 sample event point-set into the grid without the least amount of information

Figure 5.4: The process of converting asynchronous event data into an event-frame. An event-frame consists
of two histograms from the positive events and negative events respectively. Adapted from Fig. 5 in [Che+20a]
©IEEE.

5.1.5 Event Representations

As an emerging sensing modality, event-based neuromorphic vision sensors only transmit
local pixel-level changes caused by movement or a change in light intensity in a scene. The
output data are sparse and asynchronous event streams that cannot be processed directly by
standard vision pipelines such as CNN-based architecture. Therefore, encoding methods are
utilized to convert asynchronous events into synchronous image- or grid-like representations
for subsequent tasks such as object detection and tracking. According to whether or not
the methods contain temporal information in the converted representations, we introduce
two state-of-the-art encoding methods: spatial encoding and spatial-temporal encoding
methods.

Spatial encoding. The spatial encoding methods convert event streams into event-frames
by storing event data at pixel location (x i , yi) with either fixed-time interval (e.g., 30ms,
constant time frame) or fixed number of events (e.g., 500 events, constant count frame).
For an event-frame, the value of the pixel is usually represented by the polarity of the last
event (the positive event is 1 and the negative event is -1) or the statistical characteristics
(such as the event count in a fixed-time interval, event count frame) of the events in the
fixed interval. Assuming that ei(x i , yi , t i , pi)i∈[1,N] represents event stream, typical approaches
based on spatial encoding can be defined as follow:

Constant time frames:

F t
j = card(ei|T · ( j − 1)≤ t i ≤ T · j) (5.3)

where F t
j represents the jth frame of time interval T ; card() is the cardinality of a set; ei is

the ith event of the event stream.
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Constant count frames:

F e
j = card(ei|E · ( j − 1)≤ i ≤ E · j) (5.4)

The constant count frame is defined similarly to constant time frame. F e
j is the jth frame

that contains E events.
Event count frames:

Hist+(x , y) =
∑

pi=+1,t i∈T

δ(x − x i , y − yi) (5.5)

Two separate histograms for positive and negative events are generated in a fixed-time
interval T . Hist+(x , y) denotes the histogram for positive events, where δ is the Kronecker
delta function. The same goes for the negative-events histogram, which is represented by
Hist− with pi = −1. The final representation of the events in the fixed-time interval T is an
event-frame, which consists of two histograms Hist+ and Hist−, as shown in Fig. 5.4. Since
the principle of the spatial encoding method is to project the events onto the spatial plane
(x − y plane), it loses the temporal information of all of the events.

Spatial-temporal encoding. The microsecond temporal resolution of the event stream pro-
vides a highly precise recording and description of the scene dynamics, which is valuable in
many perception tasks such as high-speed moving object detection (e.g., vehicles). Spatial-
temporal encoding methods combine spatial and temporal information of the events and
convert events into a compact representation. A comparison of spatial-temporal encoding
methods is presented in Table. 5.1. A detailed description of these methods is displayed as
follows.

Surface of active events: The surface of active events (SAE) uses timestamp values instead
of intensity values to represent the pixel values. For each incoming event ei:

SAE : t i 7−→ P(x i , yi) (5.6)

where t i is the timestamp of the most recent event at each pixel, the pixel value P at (x i , yi)
is directly determined by the occurrence time of the events. The disadvantage of SAE method
is that it completely ignores the information of previous events happening at (x i , yi) and only
uses the timestamp of the most recent event.

Leaky integrate-and-fire: Leaky integrate-and-fire (LIF) is an artificial neuron inspired by
biological perception principles and computation primitives. A neuron receives input spikes
(events) generated from a DVS, which modifies its membrane potential. If the membrane
potential exceeds a pre-defined threshold, a spike stimulus will be sent to the output. The
LIF neuron can be modeled as

τ
dV
d t
= −(V (t)− Vreset) + RI(t) (5.7)

where, V (t) is the membrane potential, which is a function across time; I(t) is the total
synaptic current; R is the membrane resistance; and τ is the membrane time constant. The
neuron fires (produces a output spike) when the membrane potential reaches the threshold
voltage (Vth) and then resets to reset voltage (Vreset). As shown in Fig. 5.5, the spatial-
temporal events are encoded by LIF neuron, in which each event updates membrane potential
of the neuron and the final converted representation is composed of the output spikes.

Voxel grid: Voxel Grid is a novel event representation aiming to improve the resolution
of event stream in the temporal domain. Given a set of N events (x i , yi , t i , pi)i∈[1,N], B bins
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Figure 5.5: LIF representation: Asynchronous spatial-temporal events are converted into event data representa-
tion by LIF neurons. Adapted from Fig. 6 in [Che+20a] ©IEEE.

Figure 5.6: An illustration of converting asynchronous event data into Grid-based representation with fixed ker-
nel [Jad+15] and learnable kernel [Geh+19]. Adapted from Fig. 7 in [Che+20a] ©IEEE.

are used to split the time dimension; then, the timestamps of events are scaled to the range
of [0, B − 1]. The event voxel grid is defined as

t̂ = (B − 1)(t i − t1)/(tN − t1) (5.8)

V (x , y, t) =
N
∑

i

pik(x − x i)k(y − yi)k(t − t̂) (5.9)

k(z) = max(0,1− |z|) (5.10)

where k(z) is the trilinear voting kernel which is equivalent to the definition in [Jad+15].
As shown in Fig. 5.6, events are converted into voxel grid representation with the fixed
kernel. This representation retains the distribution of the events across the spatial-temporal
dimensions.

Event spike tensor: Event spike tensor (EST) is an end-to-end learned representation [Geh+19].
In a given time interval T , EST can be formed by sampling the convolved signal,

S±[x , y, t]=
∑

ei∈p±

f±(x i , yi , t i)kc(x−x i , y− yi , t− t i) (5.11)

where f±(x i , yi , t i) is a measurement assigned to each event to represent the corresponding
intensity value at the pixel location. kc is the kernel convolution function to derive mean-
ingful signal from event stream. Generally, both measurement and kernel are hand-crafted
functions in previous works, as illustrated in Fig. 5.6. Particularly, the EST deploys a multi-
layer perception (MLP) replacing the hand-crafted kernel function in Eq. 5.11 to fit the data
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Figure 5.7: The framework of the fully convolutional neural network with a feature attention gate component
(FAGC) for vehicle detection. Adapted from graph abstract in [Cao+21b] ©IEEE.

with the purpose of finding the best function for event streams. Simultaneously, the mea-
surement function is chosen from a set of fixed functions. Examples of such function are the
event polarity f± = ±1; the event count f± = 1; the timestamp f± = t ; and the normalized
timestamp f± =

t−t0
T .

5.2 Fusion-Based Feature Attention Gate Component for Vehicle Detec-
tion

In the field of autonomous vehicles, various heterogeneous sensors, such as LiDAR, radar,
cameras, etc., are combined to improve the vehicle’s ability to sense accurately and robustly.
Multi-modal perception and learning has been demonstrated to be an effective method for
assisting vehicles in comprehending the nature of complex environments. The event cam-
era is a bio-inspired vision sensor that captures dynamic changes in the scene and filters out
redundant information with high temporal resolution and high dynamic range. These char-
acteristics of the event camera make it have a certain application potential in the field of
autonomous vehicles. In this paper, I introduce a fully convolutional neural network with
a feature attention gate component (FAGC) for vehicle detection by combining frame-based
and event-based vision. The overall framework is shown in Fig. 5.7. Both grayscale features
and event features are fed into the feature attention gate component (FAGC) to generate the
pixel-level attention feature coefficients to improve the feature discrimination ability of the
network. Moreover, I explore the influence of different fusion strategies on the detection
capability of the network. Experimental results demonstrate that my fusion method achieves
the best detection accuracy and exceeds the accuracy of the method that only takes a single-
mode signal as input.
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(a) (b)

Figure 5.8: Comparison of the output between a standard frame-based camera and an event camera [Che+20c].
(a) The frame-based camera captures images at a fixed frame rate. (b) The event camera emits events caused by
the moving objects asynchronously. Adapted from Fig. 1 in [Cao+21b] ©IEEE.

5.2.1 Background

For autonomous vehicles, a reliable perception system can provide the state and pose of the
objects. Vehicle detection plays an important role in the field of autonomous driving. For
autonomous vehicles, it is equipped with various sensors, such as cameras, lidar, and radar,
to sense the environment. By combining a variety of heterogeneous sensors, autonomous
vehicles can sense obstacles and avoid accidents [Urm+08; Che+20a; Che+21a; Che+21b].
The frame-based camera acquires the visual data as a sequence of frames at a fixed fre-
quency. Currently, thanks to the breakthrough in deep learning technology, frame-based
object detection methods such as SSD [Liu+16], YOLO [RF16], and FasterRCNN [Ren+15]
have achieved excellent performance. However, frame-based cameras still suffer from the
challenges of overexposure and motion blur in high light and fast motion [Gal+20]. In this
work, I try to introduce an event camera for vehicle detection tasks. The pixel-level changes
caused by motion and brightness changes are captured by event cameras. Different from a
frame-based camera, the event camera outputs high temporal resolution and high dynamic
range (120 dB) event streams [Liu+19; Che+20b]. The comparison of the output between
a frame-based camera and an event camera is presented in Fig. 5.8.

Some research into the application potential of event cameras has been proposed. In [Zhu+18b],
the authors use event camera to predict optical flow by using the data from the MVSEC [Zhu+18a]
dataset collected by themselves. The first event-based semantic segmentation is introduced
in [AM19]. A Xception-based convolutional neural network (CNN) is trained on the Ev-Seg
dataset to learn segmentation from events. The researchers also applied the event camera to
perform the end-to-end steering angle prediction [Maq+18]. Recently, neuromorphic vision
based safe driving system is built in [Che+20c; Che+20d]. In [Che+20c], the driver drowsi-
ness detection is completed through facial motion analysis using an event camera. And a
new database and baseline evaluation method are proposed in [Che+20d]. For event-based
object detection, several works, such as [Che18; Che+19; Jia+19], have been done for vehi-
cle or pedestrian detection. However, these methods focus on how to improve the detection
accuracy of event-based detectors. Since the event streams lack appearance features such
as texture and color information, it is difficult to achieve high object detection accuracy by
using only the event streams as input. Now, there is still a lack of research on how to fuse
frame-based and event-based multi-modal features. Hence, it is necessary to study the fusion
of event information and other input signals.

In this work, I introduce a fusion-based feature attention gate component (FAGC) for
vehicle detection based on event cameras. To take advantage of grayscale frames with texture
features and events with high dynamic range, both grayscale frames and event streams are
fed into the network to fuse together and complement each other. Based on this mechanism,
the experimental results on the labeled DDD17 dataset [Bin+17; Li+19a] indicate that the
detection accuracy of the vehicle detection network with FGAC is significantly improved,
which is better than the method that only takes grayscale frames as input or only takes event
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streams as input. My detailed contributions are as follows:

• A vehicle detection method based on event cameras is introduced for autonomous ve-
hicle perception.

• I develop a feature attention gate component (FAGC) to fuse grayscale-based features
and event-based features to improve the performance of the vehicle detector. The im-
pact of different fusion strategies and event representations is discussed.

• The experimental results on the labeled DDD17 dataset show that the detection accu-
racy of vehicle detectors can be significantly improved by combining frame-based vision
and event-based vision.

5.2.2 Related Work

Methods of Frame-based Object Detection. Early frame-based object detection methods
are based on handcrafted features such as the histogram of oriented gradients (HOG) [DT05a]
and aggregate channel features (ACF) [Dol+14]. However, with the rise of deep learning, a
large number of object detection algorithms based on deep learning have emerged. Current
deep learning-based object detection algorithms are mainly divided into one-stage [RF16;
Lin+20; Liu+16; Dua+19; Tia+20] and two-stage detectors [Ren+15; He+20], which
have been applied in many fields [Li+20b; Lin+17; Li+20a]. For two-stage detectors,
Faster-RCNN [Ren+15] and Mask-RCNN [He+20] achieve high detection accuracy based
on the region proposal network (RPN). Compared with two-stage methods, the one-stage
detectors achieve a better balance between accuracy and speed, such as YOLO [RF16],
SSD [Liu+16] and Retinanet [Lin+20]. However, YOLO [RF16], SSD [Liu+16] and Reti-
naNet [Lin+20] are all anchor-based object detectors. Recently, anchor-free methods have
been developed rapidly and achieved excellent performance, such as Centernet [Dua+19]
and FCOS [Tia+20]. Compared with the frame-based object detection method, the event-
based method is still in its preliminary stage.

Methods of Event-based Object Detection. For event-based vision, several works attempt
to apply the event camera in various fields, such as intelligent transportation system [Che+18]
and robotic grasping [Li+20a]. Compared with frame-based object detection, a small amount
of research has been done on event-based object detection [Che18; Jia+19; Che+19; Zan+19;
Li+19a; HDL20; Per+20]. More event-based-related works can be found in [Che+20a;
Gal+20]. In [Che18], the authors use grayscale frames to pass through the state-of-the-art
object detector to generate the pseudo-labels that are used for training the detector model,
taking the events as input. And, a joint detection framework is introduced in [Li+19a] to
combine the frame-based and event-based vision for autonomous driving. Different from
focusing on vehicle detection under ego-motion in the work [Che18; Li+19a], the study
in [Jia+19] concentrates on pedestrian detection in the field of intelligent transportation
systems. The fusion method based on confidence maps is proposed in [Jia+19] to improve
pedestrian detection accuracy. Moreover, in order to take full advantage of the event infor-
mation, multi-cue event information fusion is being developed in [Che+19] for pedestrian
detection. Recently, [Zan+19] and [HDL20] attempted to use an RGB-based detector to im-
prove the performance of the event-based detector. And, the event-based detection method
and a high-resolution large-scale dataset are introduced in [Per+20]. The results of the ex-
periment demonstrate the effectiveness of their method.
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Figure 5.9: Event representation: the spatial-temporal events are processed by the encoding method to generate
the event frame. Adapted from Fig. 2 in [Cao+21b] ©IEEE.

5.2.3 Method

Event Representation. The event camera is a bio-inspired vision sensor, also known as a
neuromorphic vision sensor or a dynamic vision sensor, that works in ways that mimic the
perception paradigm of the biological retina [Che+20a]. Conventional frame-based cameras
output a series of frames at a fixed frequency. In contrast to frame-based cameras, event
cameras produce data in microseconds and asynchronously, as illustrated in Fig. 5.8. An
event is triggered only if the brightness change at the same pixel position exceeds a certain
threshold. A sparse spatial-temporal event stream can be mathematically represented as:

E = {ei}i∈[1,N] , ei = [x i , yi , t i , pi]
T (5.12)

where, N represents the number of ei contained in the event stream E. (x , y) is the coordi-
nates of the triggered pixel position. t and p denote the corresponding triggering timestamp
and event polarity, respectively. And, p ∈ {+1,−1} represents the brightness change, +1
denotes increase and −1 denotes decrease.

In this work, the Dynamic and Active Pixel Vision Sensor (DAVIS) is used for sensing
objects. DAVIS consists of a grayscale frame-based camera and an event camera, so that
it can simultaneously output grayscale images and event streams. To take full advantage
of the grayscale frames with texture features and event data with a high dynamic range,
I combine the two data streams to improve the accuracy of vehicle detection. Since the
asynchronous event stream cannot be directly processed by a convolutional neural network,
I use the frequency-based [Che18; Che+19] encoding method to preprocess it into event
frames before feeding it into the network. The frequency-based encoding method can be
formulated as follows:

P(n) = 255 · 2 · (
1

1+ e−n
− 0.5) (5.13)

where, n represents the total number of the triggered events (positive or negative) at location
(x , y), and P(n) denotes the corresponding transformed pixel value. As presented in Fig. 5.9,
the triggered spatial-temporal events are processed by a frequency-based encoding method
to generate the event frame. Specifically, each pixel value in the event frame is obtained by
using Eq. 5.13 to calculate the events generated within 20ms.
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(a) (b)

Figure 5.10: Comparison of fusion strategies between soft fusion and hard fusion. (a) Soft fusion, (b) Hard fusion.
Adapted from Fig. 3 in [Cao+21b] ©IEEE.

Fusion Strategy. In this work, I explore the impact of different fusion strategies on the
detection accuracy of the network. In Fig. 5.10, two fusion strategies are presented: soft
fusion (Fig. 5.10a) and hard fusion (Fig. 5.10b). Instead of merging grayscale frames and
events directly, I let the network learn which features need to be fused. Therefore, both the
grayscale frames and the event frames are fed into the C1 block to automatically learning to
extract features, Fgra y and Fevent . C1 block consists of a convolutional filter with kernel size
of 7× 7 and a max pooling layer with kernel size of 3× 3.

Hard fusion. For hard fusion, it denotes the element-wise sum of extracted feature maps,
which can be defined as follows:

Fhard = fadd(Fgra y , Fevent) (5.14)

where fadd represents the function of element-wise addition.
Soft fusion. For soft fusion, it represents feature fusion by using learned parameters. In

particular, both Fgra y and Fevent are concatenated together, then, the convolutional filter with
kernel size of 1 × 1 is applied to learn the weight parameters for feature fusion and unify
dimension. The process can be expressed as follows:

Fso f t = fconcat(Fgra y , Fevent)⊗ conv1×1 (5.15)

where fconcat and ⊗ denote concatenate and convolution operations, respectively. Different
from hard fusion and soft fusion, the feature attention gate component (FAGC) combines hard
fusion and attention mechanisms to fuse grayscale-based features and event-based features
so as to significantly improve the vehicle detection accuracy.

Feature attention gate component (FAGC). Attention mechanism has been applied in com-
puter vision and worked very well, such as [HSS18; Jen+20; Okt+18; Woo+18; Wan+18].
In this work, the extracted grayscale-based features Fgra y and event-based features Fevent are
fed into the feature attention gate component (FAGC) to extract valuable features. The block
diagram of the feature attention gate component (FAGC) is presented in Fig. 5.11. Both the
grayscale-based features and the event-based features pass through a convolutional filter with
kernel size of 3×3 and a ReLU activation function to get transformed contextual information.
Then, the transformed features are fused by element-wise addition:

F f use = fadd((Fgra y , Fevent)⊗ conv3×3) (5.16)
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Figure 5.11: Feature attention gate component (FAGC): Both grayscale-based features and event-based features
are fed into FAGC to generate the pixel-level attention coefficients. Adapted from Fig. 4 in [Cao+21b] ©IEEE.

Figure 5.12: The architecture of my vehicle detection network. The network consists of ResNet [He+16], the fea-
ture attention gate component (FAGC), the feature pyramid network (FPN), and detection head subnets. Adapted
from Fig. 5 in [Cao+21b] ©IEEE.

Furthermore, in order to identify salient feature regions and suppress unrelated back-
ground regions, event-based features are used as gate signals, and 5x5 convolution followed
by a sigmoid activation function is used to generate pixel-level attention coefficients from the
fused features. The output of the feature attention gate component (FAGC) is the element-
wise multiplication of the input grayscale-based features and the pixel-level attention coeffi-
cients:

Foutput = σ(F f use ⊗ conv5×5) · Fgra y (5.17)

Based on this mechanism, the object features will be enhanced to further improve the
detection accuracy of the network. The impact of different fusion methods will be discussed
in detail in section 5.2.4.

Network Architecture. The vehicle detection framework used in this work is built on the
basis of [Lin+20], as shown in Fig. 5.12. The image size of 532 × 400 grayscale frames
and event frames is fed into Resnet [He+16] to extract meaningful features. Both event-
based features and grayscale-based features are fused by the feature attention gate compo-
nent (FAGC). The fused features are collected to pass through the feature pyramid network
(FPN) [Lin+17] to obtain deep features for detecting vehicles of different scales. The vehi-
cle detection network is composed of ResNet, the feature attention gate component (FAGC),
feature pyramid network (FPN), and detection head subnets. It can be formulated as follows:
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Lk
c = fResnet(xgra y , xevent)

F k = fFAGC(L
k
c )

Pn = fF PN (F
k)

Y n = fHead(P
n)

(5.18)

where xgra y and xevent represent the grayscale frame input and event frame input, respec-

tively.
�

Lk
c

	4
k=1,c∈[gra y,event] denotes the extracted grayscale-based features and event-based

features. {Fk}
4
k=1 is the fused features generated by feature attention gate component (FAGC).

{Pn}
5
n=1, and {Yn}

5
n=1 denote the fused multi-resolution features and prediction outputs, re-

spectively. And, the functions of the feature attention gate component (FAGC), Resnet, fea-
ture pyramid network (FPN), and detection head subnets are represented by fFAGC , fResnet ,
fF PN , and fHead .

Resnet. In this work, I use Resnet-50 [He+16] as the backbone network. Resnet-50 is
composed of four layers, represented as

�

L1, L2, L3, L4

	

, where the feature map resolution is
continuously down-sampled from the L1 to the L4 layer and the feature resolution remains
the same in each layer. The feature attention gate component (FAGC) mentioned above is
inserted between two layers. By combining the residual learning and feature attention gate
component (FAGC), the more strong semantic and valuable features can be extracted.

Feature pyramid network (FPN). Similar to the previous works [Lin+20; Lin+17], feature
pyramid network (FPN) is used to fuse the features generated from {Ck}

4
k=1 to improve the

detection robustness of vehicles of different sizes. The outputs {Pn}
4
n=1 are produced by top-

down pathway and lateral connections. And, the last level feature map P5 is produced by
applying a 3×3 convolutional layer with stride 2 on the P4. Multi-level feature maps {Pn}

5
n=1

will be fed into the detection head subnets for prediction.
Detection head subnets. After processing by the feature pyramid network (FPN), two sepa-

rate subnets are applied for classification and box regression. Refer to [Lin+20], each subnet
consists of four 3× 3 convolutional layers with 256 filters. For classification subnet, followed
by a 3× 3 convolutional layers with KA filters, followed by sigmoid activations, it outputs KA
binary predictions. For box regression subnet, followed by a 3× 3 convolutional layers with
4A filters, it outputs 4A offset predictions. A is set as 9 in this work. Specific offset parameters
of the bounding box can be represented as follows:

t
′

x =
(x
′
− xa)
wa

,

t
′

y =
(y
′
− ya)
ha

,

t
′

w = log(
w
′

wa
),

t
′

h = log(
h
′

ha
),

(5.19)

where x , y, w, h represent the center coordinates, width, and height of the bounding box,
respectively. Variables t

′
, x
′
, xa denote the prediction regression offsets, predicted bounding

box and anchor box, respectively.
Loss function. The loss function of my vehicle detection network consists of a classification

and regression loss function. The total loss function L can be represented as follows:
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(a) (b)

Figure 5.13: Comparison of grayscale frame and event frame. (a) grayscale frame; (b) event frame. Adapted from
Fig. 6 in [Cao+21b] ©IEEE.
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where N denotes the number of anchors. Specifically, focal loss lcls and giou loss lreg are
used in this work. The hyper-parameter λ1 and λ2 control the trade-off of classification and
regression losses. λ1=λ2=1 are used in my experiments.

5.2.4 Experiments

The experiments of my vehicle detection network are performed on the labeled DDD17
dataset [Bin+17; Li+19a]. The results indicate that the fusion-based feature attention gate
component (FAGC) can improve the detection accuracy of the vehicle detector. And I also
discuss the influence of different fusion strategies and event representations on the detection
performance of the network.

Dataset. In order to verify the effectiveness of my fusion method, the experiments are con-
ducted on the DDD17 dataset. DDD17 [Bin+17] uses DAVIS to record both grayscale frames
and event streams. The comparison of grayscale frame and the corresponding event frame is
presented in Fig. 5.13. The dataset is collected from highway and city scenes from Switzer-
land to Germany. Since DDD17 is established for end-to-end learning, it does not contain
the labels for object detection, while the authors of [Li+19a] manually labeled the vehicles
of the dataset based on the original raw data. The detailed description is summarized in
Tab. 5.2. On account of the fact that my model requires both event-based and frame-based
data, and DDD17 is a challenging data set, I use the labeled DDD17 as the benchmark to
compare the performance of the different fusion strategies on vehicle detection. The labeled
DDD17 dataset contains 3154 frames. I used 2241 frames as the training set and 913 frames
as the test set. In order to train more robust models, data augmentation methods such as
flipping and color enhancement are used to increase the diversity of data samples.

Implementation Details. In the training period, I train the vehicle detection network end-
to-end for 30 epochs on a Nvidia Tesla V100 GPU with 32GB memory. I define the initial
learning rate as 0.01. Weight decay and momentum are set to 0.0001 and 0.9, respectively.
The network is implemented using PyTorch 1.7.0 with CudNN 7.5 and CudA 10.0 packages.
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Table 5.2: Detailed description of the recorded data in the labeled DDD17 dataset. Adapted from Table I
in [Cao+21b] ©IEEE.

Recorded data Condition Length (s) Type

1487339175 day 347 test
1487417411 day 2096 test
1487419513 day 1976 train
1487424147 day 3040 train
1487430438 day 3135 train
1487433587 night-fall 2335 train
1487593224 day 524 test
1487594667 day 2985 train
1487597945 night-fall 50 test
1487598202 day 1882 train
1487600962 day 2143 test
1487608147 night-fall 1208 train
1487609463 night-fall 101 test
1487781509 night-fall 127 test

Table 5.3: The detection results of different event representations on the labeled DDD17 dataset. Adapted from
Table II in [Cao+21b] ©IEEE.

Methods Input Modality AP(%) FPS

LIF Events 13.9 14
SAE Events 51.1 14

Frequency Events 52.3 14

Quantitative Analysis. Effect of event representation. The vehicle detection network can
take different image-like event representations as input. I compare the performance of three
more representative event encoding methods, Frequency [Che18], LIF ((Leaky Integrate-
and-Fire) [Bur06] and SAE (Surface of Active Events) [MBS17]. The results from the labeled
DDD17 dataset are presented in Tab. 5.3. Compared with the other two encoding meth-
ods, frequency-based event representation achieves the best performance with an accuracy
of 52.3%. Therefore, I use frequency as event preprocessing method in the subsequent exper-
iments.

Impact of different fusion strategies. I explore the impact of MTC (Merged-Three-Channel) [Che+19],
hard fusion, soft fusion, and FAGC. MTC is a channel-level fusion strategy. In this work, the
three channels of MTC frames are consists of [F requenc y, SAE, LI F]. The Retinanet based on
resnet-50 with the grayscale frames and frequency-based event representation as input are
the baselines. Specifically, I use the pre-trained weight of Resenet-50 on ImageNet to initial-
ize the model parameters and train the vehicle detector with MTC, hard fusion, soft fusion,
and FAGC, respectively, on the labeled DDD17 dataset. The experiment results are given in
Tab. 5.4. As can be seen from the Tab. 5.4, the network gets 79.6% vehicle detection accuracy
by taking grayscale frames as input. In order to enable the event streams to be processed by
CNN, the frequency-based [Che18] encoding method is used to regularize the events into
event frames. Using only event data as input, the network achieves a detection accuracy of
52.3%. Compared with a grayscale-based vehicle detector, the accuracy of an event-based
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Table 5.4: The detection results of different fusion strategies on the labeled DDD17 dataset. Adapted from Table
III in [Cao+21b] ©IEEE.

Methods Input Modality AP(%) FPS

Baseline Events 52.3 14
Baseline Grayscale 79.6 14

MTC Events 47.8 14
Hard fusion Events & Grayscale 77.2 12
Soft fusion Events & Grayscale 79.4 12

FAGC Events & Grayscale 81.6 8

Table 5.5: The detection results of different methods on the labeled DDD17 dataset. Adapted from Table IV
in [Cao+21b] ©IEEE.

Methods Input Modality AP(%) FPS

FasterRCNN [Ren+15] Grayscale 80.2 3
SSD [Liu+16] Grayscale 73.1 12
Yolo [RF16] Grayscale 70.2 15

Retinanet [Lin+20] Grayscale 79.6 14

FAGC Events & Grayscale 81.6 8

vehicle detector is significantly lower than that of a grayscale-based one because of the lack
of appearance information such as texture in the event data. However, due to the advan-
tages of high dynamic range and high temporal resolution of event data, it can alleviate the
motion blur of grayscale frames under high illumination and high speed motion. Therefore,
the feature attention gate component (FAGC) is developed to fuse event data with grayscale
frames. The test results indicate that the performance of the vehicle detection network based
on MTC, hard fusion, and soft fusion has basically not improved. However, based on FAGC,
the network achieves the best detection accuracy of 81.6%, which outperforms the method
that only takes grayscale frames or events as input.

Comparison with grayscale-based detectors. I compare the proposed model with several se-
lected frame-based object detectors [Ren+15; Liu+16; RF16; Lin+20]. All experiments are
conducted on the labeled DDD17 dataset, and the tested results are summarized in Tab. 5.5.
Specifically, the results of [Ren+15; Liu+16; RF16] are referred from [Li+19a]. Compared
with one-stage object detectors [Liu+16; RF16; Lin+20], the vehicle detection network with
FAGC achieves a significant improvement in detection accuracy, while the running speed
is reduced. Moreover, FAGC also has better performance over the two-stage object detec-
tor [Ren+15], which demonstrates the effectiveness of the proposed method.

Qualitative Analysis. The selected detection results are visualized in Fig. 5.14. The detec-
tion results for grayscale, events, and FAGC are presented in the first, second, and third rows,
respectively.

Normal detections. It can be seen from Fig. 5.14 that the vehicle detection results of
the first two columns demonstrate that the detection performance of the detector based on
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Figure 5.14: The selected detection results of the vehicle detection model on the labeled DDD17 dataset. The
first, second, and third rows display the detection results of grayscale, events, and FAGC, respectively. Adapted
from Fig. 7 in [Cao+21b] ©IEEE.

Figure 5.15: Failed detection cases: the first two cases are false detection results based on grayscale frames, and
the last two cases are false detection results based on event frames. Adapted from Fig. 8 in [Cao+21b] ©IEEE.

Table 5.6: Evaluation on day and night-fall condition. Adapted from Table V in [Cao+21b] ©IEEE.

Methods Input Modality Day Night-fall All

Frequency Events 49.4 67.1 52.3
Retinanet-Gray Grayscale 77.9 87 79.6

FAGC Events & Grayscale 80.5 86.2 81.6

grayscale is stronger than that based on event under the normal light condition. And the
detection accuracy is similar between the grayscale-based vehicle detector and the fusion-
based (FAGC) vehicle detector.

Overexposure detections. In Fig. 5.14, the vehicle detection results in the third column
show that the grayscale-based detector is weaker than the event-based detector under high
illumination conditions. Moreover, the vehicle detection results in the last column indicate
that the FAGC-based fusion method can achieve better performance when the detector’s de-
tection performance is not good, either grayscale-based or event-based.

Evaluation on day and night-fall condition. In order to further explore the effectiveness of
vehicle detectors, Frequency-based, grayscale-based (Retinanet-Gray) and FAGC-based vehi-
cle detectors are tested respectively on day, night-fall, and all (day and night-fall) conditions.
The test results are summarized in the Tab. 5.6. Both event-based and grayscale-based de-
tectors achieve stable detection performance under day and night-fall conditions. And, the
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proposed FAGC-based detector can achieve more robust generalized ability through fusion
of events and grayscale frames. The main reason for this result is that the high temporal
resolution and high dynamic range of events can alleviate the challenge of grayscale frames
due to overexposure, low light and high speed motion.

Failure cases analysis. Some failed detection cases are displayed in the Fig. 5.15. For
grayscale-based vehicle detectors, the model incorrectly detects traffic signs as vehicles and
performs poorly under high light conditions. Although the event data filtered most of the
background, a large number of events were generated by some roadside obstacles in the
process of perceiving the environment, leading to incorrect detection results output by the
model. In addition, when passing a scene such as a bridge, a large number of events will
be generated by the outline of the bridge, resulting in little information about the vehicle.
Compared with traditional vision, event-based vision research is still in the preliminary stage,
so further development of this technology is needed to make it mature gradually.

5.2.5 Summary

In this work, I introduce a fully convolutional neural network with a feature attention gate
component (FAGC) to perform vehicle detection. Both grayscale frames and event streams
are fused together to improve the detection accuracy of the network. To better fuse frame-
based and event-based vision, hard fusion and soft fusion are discussed. Based on hard
fusion and an attention mechanism, FAGC is developed to combine the grayscale frames
with texture and events with a high dynamic range to improve the discrimination ability
of the model. By integrating the FAGC into the model, the vehicle detector achieves better
performance compared with the method that only takes grayscale frames or events as input.
The experimental results on the labeled DDD17 dataset indicate that the proposed fusion
method is effective. Compared with traditional frame-based vision, the dataset of event
cameras is scarce. In the following work, I will collect a multimodal dataset to promote
research on the fusion of the event signal and other modal information. Since event-based
research is still in its infancy, I will try to explore the application of event cameras in more
fields, such as object tracking, segmentation, etc.

5.3 Multimodal Neural Network for Robotic Grasp Detection

Grasping object detection is a crucial procedure in robotic manipulation. Most of the current
robot grasp manipulation systems are built on frame-based cameras, like RGB-D cameras.
However, the traditional frame-based grasping object detection methods have encountered
challenges in scenarios such as low dynamic range and low power consumption. In this work,
a neuromorphic vision sensor (DAVIS) is introduced to the field of robotic grasp. DAVIS is
an event-based, bio-inspired vision sensor that records asynchronous streams of local pixel-
level light intensity changes, called events. The strengths of DAVIS are that it can provide
high temporal resolution, high dynamic range, low power consumption, and no motion blur.
I constructed a neuromorphic vision-based robotic grasp dataset with 154 moving objects,
named NeuroGrasp, which is the first RGB-Event multi-modality grasp dataset (to the best of
my knowledge). This dataset records both RGB frames and the corresponding event streams,
providing frame data with rich color and texture information and event streams with high
temporal resolution and high dynamic range. Based on the NeuroGrasp dataset, I further
develop a multi-modal neural network with a specific Euler-Region-Regression sub-network
(ERRN) to perform grasping object detection. Combining frame-based and event-based vi-
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Figure 5.16: Samples from the NeuroGrasp dataset: a list of the selected RGB images and the corresponding
event frames. Adapted from Fig. 1 in [Cao+22b] ©IEEE.

sion, the proposed method achieves better performance than the method that only takes RGB
frames or event streams as input on the NeuroGrasp dataset.

5.3.1 Background

Grasping object detection plays an important role in robotic manipulation. The emergence
of advanced sensors, such as Microsoft Kinect, has enriched robot perception systems. In
recent years, deep learning-based methods have been widely applied in robotic manipula-
tion [LLS15; Liu+21; Che+20f; Bag+20; Pay+05]. The success of deep learning has driven
approaches that leverage large volumes of training data to perform complex tasks [Liu+21;
Che+21a]. However, grasp datasets collected in the physical environment are relatively
scarce. Dexnet [Mah+17] has explored the use of simulated data in grasping object detection
to alleviate this problem. Another challenge is maintaining a balance between computational
cost and the power available within embedded robot systems. Current state-of-the-art robotic
grasp manipulation systems [KK17b; CXV18; Cao+21a] usually leverage frame-driven RGB-
D cameras as the perception sensors. The traditional frame-driven cameras capture environ-
mental information by generating a series of discrete frames at a fixed frequency, providing
rich color and texture information. However, frame-based cameras suffer the challenges
of high computing time and storage consumption [Gal+20]. In this paper, I build a dy-
namic sensing pipeline using a neuromorphic vision sensor, Dynamic and Active-Pixel Vision
Sensor (DAVIS-346). DAVIS is a camera model that consists of a dynamic vision sensor (an
event-based sensor) synchronized with an RGB frame-based sensor. DAVIS can synchronously
record RGB data and the corresponding event streams. Specifically, it only transmits the local
pixel-level changes caused by the change in lighting intensity within a scene at the time they



5.3 Multimodal Neural Network for Robotic Grasp Detection 71

occur, like a bio-inspired retina [Che+20a]. Concretely, the change in light intensity is very
effective for detecting moving objects. Fig. 5.16 presents a comparison between conventional
images and the corresponding event frames. Events are timestamped with the precision of
around a microsecond. A single event is defined as the tuple {t, x , y, p}, where t is the time-
stamp of the event, x , y are the pixel coordinates of the event in 2D space, and p = ±1 is
the polarity of the event which is the sign of the brightness change. Compared to frame-
based cameras, the neuromorphic vision sensors have properties that are complementary to
RGB sensors, including very high temporal resolution, high dynamic range (120 dB), and low
power consumption [Che+22]. In my previous work [Li+20a], I introduced an event-based
grasping dataset (E-Grasping) for robotic grasping object detection. However, the E-Grasping
dataset only records event streams and contains fewer grasp objects. In this work, I use DAVIS
as a perception sensor to construct a more challenging dataset in a practical environment.
This dataset includes both RGB data and the corresponding event streams.

Early works on robotic grasp mainly relied on template matching to perform grasping
object detection. In unstructured environments where objects vary in shape and appearance,
template-matching algorithms cannot work effectively. Taking 2D images instead of the 3D
model as input is more convenient for predicting grasp pose [LLS15; JMS11a]. Based on
2D images, many researchers have applied deep convolutional neural networks to robotic
grasping object detection and achieved great success. In [LLS15], a sliding window detection
framework is used for 2D robotic grasping object detection. Specifically, image sequences
are fed into a convolutional neural network to extract features, and the candidate with the
highest output confidence score of all grasp candidates is chosen as the final prediction re-
sult. The disadvantage of this method is its high computational cost. To speed up these
algorithms, end-to-end methods are developed [CXV18; Zha+19b; ATH18a; Cao+22a]).
Concurrently, the authors take RGB or RGB-D images as input to perform regression or clas-
sification on grasp rectangles and achieve significant improvements on the Cornell Grasping
Dataset [JMS11b]. Compared to conventional frame-based grasping, neuromorphic vision-
based grasping is still in its infancy.

For event-based robotic grasping object detection, it faces two main problems: a lack of
data and effective algorithms. To cope with these challenges, I collected a manually labeled
multi-modality (RGB-Event) robotic grasping dataset, NeuroGrasp dataset, and developed
a multi-modal neural network to explore how to fuse the valuable feature context of RGB
frames and events to improve performance. Specifically, with the use of the frequency-based
encoding method [Che+19], events generated from DAVIS can be fed into convolutional
neural networks for subsequent grasp pose prediction. To take advantage of DAVIS, I use
convolutional filters to fuse the valuable feature context of events with RGB images to im-
prove the prediction performance. Furthermore, an Euler-Region-Regression sub-network
(ERRN) is introduced to predict the orientation of grasped objects by adding an imaginary
and a real fraction to the regression network. This strategy builds a closed mathematical
space to avoid singularities that may occur in single-angle estimation [Sim+18]. Experimen-
tal results show that the proposed method achieves better performance than the method that
only takes a single-mode signal as input.

My main contributions can be summarized as follows:

• I collect an RGB-Event multi-modality grasp dataset named NeuroGrasp from a real-
world experiment environment, which will promote the research on neuromorphic vi-
sion sensors for robotic grasping object detection.

• I develop a novel multi-modal neural network to fuse the valuable feature context
of RGB images and events to improve performance. An Euler-Region-Regression sub-
Network (ERRN) is also introduced for more accurate pose estimation.
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• Extensive experiments on the E-Grasping and NeuroGrasp datasets demonstrate that the
proposed method outperforms the method that only takes RGB frames or event streams
as input.

5.3.2 Related Work

Datasets. At present, Cornell grasp dataset [JMS11b] and Dex-Net dataset [Mah+17] are
collected for analyzing grasp quality with parallel plate gripper (PPG). The Cornell Grasp
dataset recorded with an RGB-D camera consists of 885 images of 280 different objects. It
is widely used by researchers and greatly contributes to the robotic grasp research field. The
grasp dataset demonstrates 8019 labeled grasp rectangles, including several good grasp posi-
tions (5110) and bad grasp positions (2909) for each view of an object. The point cloud data
and background image of each image are also provided. The Dex-Net dataset is collected by
the UC Berkeley Automation Lab [Mah+17]. Dex-Net provides synthetic point clouds and
grasp annotations based on 3D objects and has been extended to three versions: Dex-Net
1.0, Dex-Net 2.0, and Dex-Net 3.0. Dex-Net 1.0 includes over 10,000 different 3D object
models and contains about 2.5 million grasp labels, and Dex-Net 2.0 is a dataset of more
than 6.7 million synthetic point clouds and corresponding labels. Since Dex-Net 3.0 is built
for studying suction grasp, I do not describe it in detail in this paper. Moreover, a simulated
dataset, named the Jacquard Dataset [DDC18], is created from CAD models through simula-
tion. In this dataset, more than 50k images of 11k objects are collected, and 1 million unique
grasp rectangles are labeled. However, these datasets are all focused on RGB-D data. In
my early work [Li+20a], I constructed an event stream-based grasping dataset (E-Grasping)
using an event-based dynamic active vision sensor (DAVIS). By using an SMP filter to track
LED markers, all objects are labeled automatically. The disadvantage of this dataset is that it
only records the event streams for grasping objects. In this work, I build a more challenging
multi-modality grasp dataset with more grasp objects.

Frame-based grasping object detection. Research on robotic grasp pose estimation has
made important advances over the last 20 years. Early works [LLS15; SDN08] trained grasp
detectors based on the sliding window, which is very time-consuming. In [JLD16; Dou20],
the authors reduced inference time by learning their methods on a discrete set of grasp can-
didates. However, these approaches ignore some potential. Other methods, like [KK17b;
Guo+17] used end-to-end CNN-based algorithms to regress a single grasp for an input im-
age, but these approaches tend to estimate the average grasp pose of objects. In [CXV18], a
grasp region proposal network is incorporated for grasp pose estimation based on the Faster
RCNN [Ren+15]. Furthermore, the authors of [Zha+19b] proposed a single-stage real-time
grasp network with the orientation anchor box mechanism, which achieves outstanding per-
formance in both speed and accuracy. For object overlapping scenes, an ROI-based method
is developed in [Zha+19a]. The experimental results showed that their algorithm can ef-
fectively deal with objects overlapping in scenes. Since the ground truths in the grasp pose
are not exhaustive, [CHM19] introduced a grasp path to generate mapped grasp for con-
volutional multi-grasp prediction, which improved grasp accuracy in real-world scenarios.
In [PSC18b], the authors presented a highly accurate and real-time grasp detection system
with a rotation ensemble module (REM). Some ideas of this network design are inspired by
YOLO9000 [RF16]. Another works [Wan+19a; Cao+21a; Cao+22a] deployed the neural
network to generate grasps with high-resolution images. Their model solves the problem of
pixel-wise robotic grasp pose estimation. Moreover, [ATH18a] and [Wu+19] used the fusion
method to perform grasp prediction and achieved better performance. However, while the
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above methods usually take RGB or RGB-D images as input to perform regression or classifi-
cation on grasp rectangles, I will explore the potential application of robotics by focusing on
neuromorphic vision sensors (DAVIS 346).

Event-based grasping object detection. Recently, the development of event-based neuro-
morphic vision technology has provided an alternative sensing scheme for many vision fields.
Some attempts have been made in the field of object detection [Che+19; Cao+21b]. For
robotic grasp, a method including perception, reasoning, and control is proposed to solve
the problem of picking and placing in mobile robots [Mir+18]. Based on an embedded Dy-
namic Vision Sensor (DVS), this method can pick up the object and move it to its correct
position. In [Mut+20], the authors proposed a dynamic vision-based finger system for slip
detection and suppression. This fingering system can detect objects better under illumina-
tion and vibration with a threshold algorithm. For vision-based measurement applications, a
dynamic vision-based approach for tactile sensing is introduced in [Bag+20]. Furthermore,
the authors of [Li+20a] constructed an event-based dataset and developed an event-based
deep neural network to predict grasp pose. However, compared to the conventional frame-
based vision, neuromorphic vision is still in its infancy and generally offers a lower spatial
resolution.

In this work, I introduce a multi-modal neural network to perform robotic grasp pose
estimation, which combines frame-based vision and event-based vision. I evaluate my model
on two dynamic robotic grasping datasets, E-Grasping and NeuroGrasp. Experimental results
demonstrate that my model is capable of predicting exactly grasping rectangular shapes.

5.3.3 Neuromorphic Grasping System

Neuromorphic vision sensor. A neuromorphic vision sensor (event camera) is a bio-inspired
sensor that mimics the working principle of biological neurons found in the visual cortex of
mammals [Che+20a]. Traditional frame-based vision cameras sense the environment by
producing a series of frames that sample the light intensity at discrete time intervals. Neu-
romorphic vision sensors record asynchronous event streams of the change in light intensity
of a given pixel. It allows the sensor to measure the per-pixel changes caused by motion in
a scene at the time of occurrence. A stream of sparse spatial-temporal events can be rep-
resented by ei(x i , yi , t i , pi)i∈[1,N], which means that an event is triggered at pixel location
li = (x i , yi) when the intensity change at a pixel occurs, i.e,

∆L(li , t i) = L(li , t i)− L(li , t i −∆t i) (5.21)

where L(·) is the brightness log function and ∆t i is the time interval between the current
event and the last event at the same pixel. Specifically, the temporal contrast threshold ±T
(T > 0) is set for the intensity change to be reached,

∆L(li , t i) = pi T (5.22)

where p ∈ {+1,−1} is the polarity of event, that represents the brightness change. p = +1
denotes the increase in brightness intensity and −1 denotes the decrease. As an emerging
bio-inspired vision sensor, event-based neuromorphic vision sensors have several promising
properties: low energy consumption, low latency, high dynamic range, and high temporal
resolution. In this work, I will explore the potential of neuromorphic vision sensors in the
field of robotic grasp pose estimation.
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Figure 5.17: The 5-D grasp configuration. (a) Grasp configuration is presented in RGB images; (b) Grasp config-
uration is presented in the corresponding event frames. Adapted from Fig. 3 in [Cao+22b] ©IEEE.

System setting. A neuromorphic vision sensor (DAVIS 346) collects the event data through
the lighting intensity changing, so the object needs to maintain movement within the field
of view. The DAVIS 346 sensor is attached to the gripper of a robot arm (hand-eye system)
to simulate the real trajectory during grasping. The parallel plate gripper (PPG) is widely
mounted on the end of the robot arm, and my grasping dataset is built following the Cornell
grasping dataset [JMS11b]. At first, I only consider flat objects as grasping objects. Moreover,
most grasping objects can be considered flat objects when they are placed on the table in the
proper direction. Compared with building a 3D grasping point cloud, this approach can
reduce the cost of storage and calculation. The grasping information of flat objects with a
PPG can be demonstrated as a rectangle. The width of the rectangles represents the distance
between gripper plates, the height represents the range of compatible grasping, and the
center is placed at a particular point on the table, which represents the grasping point. In
addition, the rectangle must be rotated to a particular angle to increase the capability of
grasping. This rectangle only provides the pose of PPG when it contacts the table and tries to
grasp the object.

Problem definition. Given RGB images and event streams of different objects, the grasp
pose estimation algorithm needs to learn how to find a successful grasp configuration G for
each object. As described in [LLS15], a five-dimensional grasp representation can be mapped
into the seven-dimensional configuration for robotic grasp execution on a real scene. In this
work, I take RGB images and events generated by a neuromorphic vision sensor (DAVIS 346)
as input to predict the five-dimensional grasp configuration of a robot with a parallel-plate
gripper. As shown in Fig. 5.17, the grasp pose can be formulated as follows:

G = {x , y, w, h,θ}T (5.23)

where (x , y) is the grasp rectangle’s central coordination, w is the maximum distance
between parallel plates, h is the height of the robot’s parallel plates, and theta is the grasp
rectangle’s angle with respect to the horizontal axis.

5.3.4 Robotic Grasp Detection

In this part, I present a multi-modal neural network architecture for grasping object detection.
The overall framework of this method is shown in Fig. 5.18. The method consists of two
branches: one branch extracts feature representations from RGB images, and another focuses
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Figure 5.18: Multi-modal neural network architecture. The network includes two branches: one that extracts
feature representations from RGB images, and another that focuses on extracting feature representations from
event streams. The extracted features are fused and fed into the architecture formed by the Feature Pyramid
Network (FPN) on top of a feedforward ResNet to generate multi-scale features. The outputs of the network are
composed of the orientation angle, object classification, and corresponding grasp poses. Adapted from Fig. 4
in [Cao+22b] ©IEEE.

on extracting feature representations from event streams. The extracted features are fused
and fed into the subsequent network. Furthermore, three task-specific subnetworks are added
to perform grasp angle estimation, object classification, and bounding box regression on the
feature outputs, respectively. I will describe the details of each component of the grasping
network.

Event representation. Event streams generated by the neuromorphic vision sensor are
sparse and asynchronous, which cannot be processed by the traditional computer vision
method, such as CNN-based algorithms [Che+20a]. Therefore, I use a frequency-based en-
coding method to pre-process event sequences into an output matrix for the CNN to extract
deep features.

Given that many more events would occur near an object’s edges because the edges of
the moving object tend to be the edges of the illumination in the image, I utilize the event
frequency as the spike coding to strengthen the profile of the object. At the same time, noise
caused by the sensor can be significantly filtered out due to its low occurrence frequency
at a particular pixel within a given time interval [Che+19]. Concretely, I count the spike
occurrence at each pixel (x , y), based on this, I calculate the spike coding value using the
following activation function:

σ(n) = 255 · 2 · (
1

1+ e−n
− 0.5) (5.24)

where n represents the total number of spikes (positive or negative) that occurred at pixel
(x , y) within a given interval and si gma(n) represents the spike coding value of this pixel in
the event sequences.

Multi-modal fusion. After the event streams are processed by the frequency-based encod-
ing method, I use a 7x7 convolution layer and a 3x3 max-pool layer to transfer the matrix
of event sequences into unified scale feature maps. As shown in Fig 5.18, the features from
event-based and RGB-based networks are fused to generate new feature maps. Since neuro-
morphic vision sensors can capture dynamic features of the object with high time resolution,
combining event streams and RGB data can enhance the spatial-temporal context around
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Figure 5.19: Grasp orientation angle regression. The complex angle represented by an imaginary and real fraction
is used to predict the oriented grasp pose. Adapted from Fig. 5 in [Cao+22b] ©IEEE.

grasped objects, thus improving the detection performance. After that, I use ResNet as a
feature extractor to learn deep feature representation for grasp pose estimation. The basic
building block of ResNet is the residual block, which is designed to incorporate a skip con-
nection with conventional CNN. Referring to [Lin+20], the "feature pyramid network" (FPN)
is also utilized to get multi-scale features with a top-down pathway and lateral connections. I
build a pyramid with C = 256 channels on each level from P3 to P7. To obtain a proper grasp
pose, a 2-vector of grasp angle regression targets, a length K one-hot vector of classification
targets, where K denotes the number of grasp object classes, and a 4-vector of box regression
targets are assigned to each anchor. An imaginary and real fraction are directly embedded
into the network to estimate the grasp angle. The grasping rectangle with an additional
complex angle ar g(|r|eiθ ) is defined as follows:

t x =
(xg − xa)

wa
,

t y =
(yg − ya)

ha
,

tw = log(
wg

wa
),

th = log(
hg

ha
),

tθ = ar g(|r|eiθ ) = arctan2(t Im, tRe)

(5.25)

where (x, y) are the center coordinates of the grasping rectangle. The width and height are
denoted by w and h, respectively. The orientation angle theta is represented by an imaginary
parameter t I m and a real fraction parameter tRe. Variables xg , xa, and t x are for the ground-
truth box, anchor box, and regression offsets between the anchor box and the ground-truth
box, respectively.

Euler-region-regression subNet. The Euler-region-regression subnet is responsible for pre-
dicting the orientation angle of each grasping object. A fully convolutional network (FCN)
is applied to each feature pyramid level. FCN is made up of four 3x3 convolution layers
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with 256 filters each, followed by a 3x3 convolution layer with 2A filters (A = 9).Using
arctan2(t I m, tRe), the orientation angle can be calculated from the regression parameters
t I m and tRe. As shown in Fig. 5.19, instead of directly predicting the angle θ , I estimate
the grasp pose of the object by adding an imaginary and a real fraction to the Euler-region-
regression subnet. This strategy builds a closed mathematical space, resulting in a better
generalization ability for the model.

Class and box subNet. In parallel with the Euler-region-regression subnet, two small FCNs
are attached to each pyramid level for classification and bounding box regression, respec-
tively. The structure of the two subnets is identical to that of the Euler-region-regression
subnet, except that the classification subnet predicts KA and the box regression subnet pre-
dicts 4A. The probability of grasping objects for each of the A anchors and K object classes is
inferred in the classification subnet by finally passing sigmoid activations. Furthermore, the
box regression subnet produces 4 outputs to regress the offsets between the anchor and the
ground truth box.

Loss function. The multi-task loss function of my grasp pose estimation network is defined
as follows:

L = Lcls + Lreg + Leuler (5.26)

The loss function L consists of three parts, in which Lcls represents classification loss, Lreg
denotes box regression loss, and Leuler is the Euler region regression loss. I refer to the design
of the optimization loss functions Lcls and Lreg in [Lin+20] to improve the network’s robust-
ness. Furthermore, I extend the concepts of Lreg by including an Euler region regression part
Leuler to make use of closed complex number space. The specific formulations are as follows:

Lcls =
λ1

N

N
∑

i=1

lcls(pi , t i)

Lreg =
λ2

N

N
∑

i=1

t
′

i

∑

j∈{x ,y,w,h}

lreg(v
′

i j , vi j)

Leuler =
λ3

N

N
∑

i=1

t
′

i

∑

k∈{Im,Re}

lreg(θ
′

ik,θik)

(5.27)

Where lcls is the focal loss, lreg represents smooth L1 loss. In addition, N is the number
of anchors, pi is computed by the sigmoid function to represent the probability distribution
of various classes, and t i is the corresponding label of the category. v

′

i j and vi j denote the
predicted offset vector and the corresponding vector of ground-truth, respectively. For the
Euler region regression loss, I assume that the difference between the predicted complex
number and ground truth is always located on the unit circle with |r| = 1. Specifically, the
orientation angle θ is regressed by the form of an imaginary Im and real fraction Re. The
λ1,λ2, and λ3 are hyper-parameters for controlling the trade-off of different losses.

5.3.5 Dynamic Robotic Grasping Dataset

For robotic grasping object detection, the number of available grasping datasets is limited.
The most famous common RGB-D grasping datasets are Cornell, Dexnet, and Jacquard, which
are used to compare state-of-the-art algorithms. To facilitate the application of event-based
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Figure 5.20: Grasp annotations: six grasping objects with different poses and views are selected for display. The
first column contains RGB images, and the remaining columns contain labeled "grasping object" event data in
various poses. Adapted from Fig. 6 in [Cao+22b] ©IEEE.

neuromorphic vision sensors in robotics, an automatically annotated event-based grasping
dataset (E-Grasping) is proposed in my previous work [Li+20a]. However, compared with
traditional vision, event-based research is still in its infancy. In this work, I present a man-
ually labeled dynamic robotic grasping dataset named NeuroGrasp. Compared with the E-
Grasping dataset proposed in [Li+20a], NeuroGrasp is the first event-based multi-modality
dataset for grasp pose estimation. The dataset can be found at https://github.com/HuCaoFighting/DVS-
GraspingDataSet.

Dataset recording. The dataset is collected using a neuromorphic vision sensor (DAVIS
346) with a 346×260-pixel resolution. The DAVIS 346, also known as a dynamic vision sensor
or event-based camera, is a camera model consisting of a dynamic vision sensor synchronized
with an RGB frame-based sensor. I use DAVIS346 to capture 154 grasp objects by recording
event-based and RGB frame-based streams separately. The entire dataset is about 4620.42 s
in length and contains 14141.7M events, making the dataset more diverse and challenging.

Dataset annotation. After manual filtering of unusable data, the NeuroGrasp dataset con-
tains 8753 RGB images and corresponding event streams of 154 different objects with vari-
ous scales, orientations, and locations. Each image is manually labeled with multiple ground
truth grasp rectangles corresponding to possible grasp configurations, as shown in Fig. 5.20.
However, the annotations are comprehensive and representative examples of good grasp can-
didates and do not cover all potential grasps. The rating score is affected by the density of
each object’s label. The standard file format in my benchmark is presented in Table 5.7. The
dataset contains original binary data, raw event data, RGB images, timestamp files for each
frame of RGB images, and labels. I also built a multi-object grasping dataset for testing the
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Table 5.7: The introduction of a standard file format in my NeuroGrasp dataset. Adapted from Table I in [Cao+22b]
©IEEE.

File name Description Format

original data (.aedat) original data raw binary data

events (.txt) One event per line (timestamp, x, y, p)

RGB images (.png) RGB frame-based data PNG images

timestamp file for RGB frames (.txt) One timecode per line (frameNumber, timestamp)

labels (.txt) One ground-truth measurement per line (x1, y1, x2, y2, x3, y3, x4, y4)

Table 5.8: Summary of the public grasping datasets. Adapted from Table II in [Cao+22b] ©IEEE.

Dataset Modality Objects Images

Cornell RGB-D 240 885

Dexnet Depth 1500 6.7M

Jacquard RGB-D 11K 54K

E-Grasping Event Stream 91 18.2k

NeuroGrasp RGB+Event Stream 154 8753

generalization ability of my algorithm on a more realistic and cluttered scene. In a multi-
object grasping dataset, a single image has 3–5 different objects with various orientations or
poses.

Dataset analysis. In Table 5.8, I summarize the public datasets and my NeuroGrasp dataset.
The most common grasping dataset is Cornell, which is collected in a real-world environment.
The DexNet and Jacquard datasets are larger than Cornell’s. However, both the DexNet and
Jacquard datasets are generated by simulation, so large amounts of synthetic data and labels
can be produced. The E-Grasping dataset is my previous work [Li+20a], which is labeled by
tracking led markers. Since the size of the E-Grasping dataset is small, I extend the version
of the event-based grasping dataset named NeuroGrasp, which is comprised of 8753 images
with a resolution of 346×260 pixels of 154 different novel real objects. In the NeuroGrasp
dataset, both RGB images and corresponding event streams are recorded, which is conducive
to facilitating event-based robotic grasping research.

5.3.6 Experiments and Analysis

I present experimental results of the proposed multi-modal neural network on the E-Grasping
dataset [Li+20a] and NeuroGrasp dataset.

Implementation details. In my experiment setup, the DAVIS 346 is attached to the end of
the robot arm to ensure relative motion between the grasping object and the sensing sensor.
The motion speed is controlled under 10 − 50mm/s. The experimental dataset is randomly
divided into training data and test data in a ratio of 8:2. In the training period, I train the
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Table 5.9: The accuracy (%) of different methods on E-Grasping dataset proposed in [Li+20a]. Adapted from
Table III in [Cao+22b] ©IEEE.

Method Light Condition Input Accuracy(%)

[Li+20a]
Light

Event Streams
97.8

Dark 96.2

This work
Light

Event Streams
98.9

Dark 96.7

Figure 5.21: The prediction results of the proposed grasping network. The first row is the ground truth. The
second row is the top-1 grasp output for several objects. The third row is the multi-grasp result (best viewed in
color). Adapted from Fig. 7 in [Cao+22b] ©IEEE.

grasping network end-to-end for 30 epochs on two Nvidia GTX 2080 Ti GPUs with 22GB
memory. I define the initial learning rate as 0.0005. Weight decay and momentum are set to
0.0001 and 0.9, respectively. The network is implemented using Tensorflow with Cudnn-7.5
and Cuda-10.0 packages.

Results. I explore the performance of the proposed multi-modal neural network with dif-
ferent input data and analyze the experimental results of different grasping object detection
algorithms. The grasping performance are summarized in Table 5.9 and Table 5.10.

Experimental results on E-Grasping dataset. To facilitate comparison with [Li+20a], I
train my model with the event streams as an input on the E-Grasping dataset. Compared
with [Li+20a], the proposed grasping object detection method achieves better performance
with an accuracy of 98.9%. For different lighting conditions, the proposed model can adapt
well to the changes in brightness. Furthermore, both the proposed model and [Li+20a] have
better performance in brighter conditions.

Experimental results on NeuroGrasp dataset. I compare my model with event-based
method [Li+20a] and frame-based method [CXV18] on the NeuroGrasp dataset. Since DAVIS346
can simultaneously output two separate event streams and RGB images, I developed a multi-
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Figure 5.22: The prediction results in multiple grasping objects. The first row is the RGB images. The second row
shows the grasp outputs of corresponding event streams for several objects (best viewed in color). Adapted from
Fig. 8 in [Cao+22b] ©IEEE.

Table 5.10: The accuracy (%) of different methods on NeuroGrasp dataset. Adapted from Table IV in [Cao+22b]
©IEEE.

Method Input Backbone Accuracy(%)

[Li+20a] Event Streams Vgg-16 41.2
[CXV18] RGB Frames ResNet-50 52.7

This work
Event Streams

ResNet-50
53.2

RGB Frames 76.5
Event + RGB 80.6

modal neural network to fuse the valuable feature context of event streams and RGB images.
Experimental results demonstrate that the proposed multi-modal method has a better gener-
alization ability and achieves the best performance with an accuracy of 80.6%.

In Fig. 5.21, the grasping object detection results are presented. The ground-truth grasp-
ing rectangles are in the first row, the top-1 prediction results are visualized in the second
row, and the multi-grasp results are depicted in the third row. In the multi-grasp case, my
grasping detection model can predict grasping poses from the features of different objects.
The predicted results of these objects demonstrate that my grasping object detection method
can predict grasp configuration effectively.

Single-modal vs multi-modal. In Table 5.10, grasp prediction results with different input
data are presented. For each input, I use ResNet-50 as the backbone to explore the impact
of input modality on algorithm performance. Due to the lack of rich appearance features
such as color and texture, the grasping detection accuracy based on event streams is lower
than that of RGB frames. However, event streams can provide valuable information with
high temporal resolution and high dynamic range, which are complementary to RGB signals.
In this work, I use a convolutional neural network to learn to fuse information from RGB
frames and event streams. By combining the RGB frames and event streams, the prediction
accuracy is improved by about 4%. The proposed fusion method outperforms the method
that only takes RGB frames or event streams as input. In order to validate the generalization
ability of my method, the model trained on the NeuroGrasp dataset is used to test in multi-
grasp and multi-object environments. The prediction results are presented in Fig. 5.21 and
Fig. 5.22. The model is trained on a single object dataset, but can still predict the grasp pose
of multiple objects and multi-grasp with various orientations. The results demonstrate the
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Table 5.11: The accuracy (%) of different backbones on NeuroGrasp dataset. Adapted from Table V in [Cao+22b]
©IEEE.

Method Input Backbone Accuracy(%)

This work

Event Streams
ResNet-50 53.2
ResNet-101 54.8

RGB Frames
ResNet-50 76.5
ResNet-101 83.0

Event + RGB
ResNet-50 80.6
ResNet-101 83.8

Table 5.12: The network parameter comparison of different methods. Adapted from Table VI in [Cao+22b] ©IEEE.

Model Parameter size (Approx.) Accuracy(%) Speed(fps)

Single Input 113.95 million 76.5 15
Fusion Input 113.98 million 80.6 13

excellent generalization ability and robustness of the proposed method.
Effect of dataset. I train my grasping object detection algorithm on both the E-Grasping

dataset and NeuroGrasp dataset. Because the annotation method and quantity of label data
in the two datasets are different, this will affect the prediction accuracy. For the E-Grasping
dataset, the same method achieves a higher precision on E-Grasping dataset than on the
NeuroGrasp dataset as the size of the labeled ground-truth box is larger and the number of
grasping objects is fewer. NeuroGrasp dataset is more challenging.

Effect of model scale. In Table 5.11, I discuss the effect of network deepening on model
performance. It can be seen from the Table 5.11 that the performance of the model com-
bined with ResNet-101 is better than that combined with ResNet-50. Furthermore, the pro-
posed fusion method improves the prediction accuracy by about 4% on ResNet-50 but less on
ResNet-101. The reasons for this issue can be summarized as follows: (1) Since the method
used in this paper is early fusion (feature-level fusion at the early layers of the network), the
early fused features become more abstracted as the network deepens, thus leading to less
effective results. (2) The high detection accuracy achieved by the grasping model on ResNet-
101 makes it difficult to further improve the performance. However, while the performance
of the large model (ResNet-101) is higher, the model complexity is also higher. Therefore,
the performance improvement of multi-modal fusion based on ResNet-50 is more promising
for application.

Complexity analysis. The comparison of the network parameters between the method with
single-modal input and the proposed algorithm is listed in Table 5.12. With the addition of
0.03M parameters, the proposed fusion method improves the prediction accuracy by about
4% and achieves a running speed of 13 f ps. My fusion method has a good balance between
accuracy and speed.

Ablation study. I provide an ablation study to discuss the impact of the Euler-region-
regression subnet (ERRN), objects in clutter, and failure case analysis. All the results are
based on the ResNet-50 backbone and trained on the NeuroGrasp dataset.
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Table 5.13: The impact of ERRN subNet on the performance (%) on NeuroGrasp dataset. Adapted from Table VII
in [Cao+22b] ©IEEE.

Input Model Accuracy(%)

Event Streams
Without ERRN 52.9

With ERRN 53.2

RGB Frames
Without ERRN 73.3

With ERRN 76.5

Event Streams + RGB Frames
Without ERRN 78.2

With ERRN 80.6

Figure 5.23: Failed detection cases. The first row is detection failure cases of a single grasped object; the second
row is detection failure cases of objects in clutter (best viewed in color). Adapted from Fig. 9 in [Cao+22b] ©IEEE.

Effect of Euler-region-regression subNet. To explore the effect of the Euler-region-regression
subnet (ERRN) for grasp pose learning, I use ResNet-50 as the backbone to train my model
with and without ERRN on the NeuroGrasp dataset. The performances are presented in
Table. 5.13. Experimental results illustrate that the prediction accuracy can be improved by
about 3% in the best case (RGB input), which demonstrates the effectiveness of the proposed
ERRN subnetwork.

Objects in clutter. For validating the generalization ability of my method, I use a ResNet-
50-based model to test on a more realistic and cluttered scene, where a single view has 2–5
different objects with various orientations or poses. The test results are shown in Fig. 5.22.
In complex scenarios, the proposed method can predict the grasp pose of multiple objects
simultaneously and has a good generalization ability.

Failure cases analysis. Some failed prediction cases are selected to be shown in Fig. 5.23.
It can be seen that the shadow of the grasping object also produces events and affects the
prediction results. Some grasping objects with dense events may cause the model to fail to
recognize their contour shapes, which leads to the failure of grasping prediction. At the same
time, objects that fail to generate enough events can also not be predicted very well.
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Discussion. Compared to traditional frame-based cameras, event-based neuromorphic vi-
sion sensors have several advantages.

Energy-friendly & Low latency. Event-based neuromorphic vision sensors consume less
energy and have a lower latency because they only process triggered events and do not
require global exposure of the frame. Such properties make it more suitable for real-time
applications.

High temporal resolution. For event-based neuromorphic vision sensors, changes can be
captured and time-stamped to the microsecond. This property meets the fast response re-
quirements of the controller in robotics.

High dynamic range (HDR). The event-based neuromorphic vision sensors have an HDR
(120dB), which outperforms the frame-based cameras (60dB). Under a light-changing scene,
event-based sensors would perform better.

Capturing grasping object’s edges. The event-based neuromorphic vision sensor can filter
out redundant information and capture the grasping object’s shapes and edges. The object’s
shapes and edges are beneficial for grasping and are complementary to frame-based sensors.

5.3.7 Summary

In this paper, I construct a dynamic robotic grasping dataset named NeuroGrasp. To the
best of my knowledge, it is the first event-based multi-modality robotic grasping dataset.
Based on this dataset, I introduce a multi-modal deep neural network for grasping object
detection with a combination of frame-based vision and event-based vision. Furthermore,
an Euler-Region-Regression sub-network (ERRN) is proposed to obtain more accurate orien-
tation angle estimation. The proposed multi-modal method is evaluated on the E-Grasping
and NeuroGrasp datasets. The experimental results indicate that the proposed method has
better performance and generalization ability. I demonstrate that a neuromorphic sensor will
improve both the versatility and the precision of robotic grasping object detection.
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Conclusions and Future Directions

6.1 Conclusions

This thesis focuses on deep representation learning with attention mechanisms for object
perception, including object detection and grasp detection. Concretely, channel attention,
spatial attention, and channel & spatial attention are used to improve the representation
capability of convolutional neural networks. The proposed methods have achieved excellent
performance in applications such as people detection, vehicle detection, and robotic grasp
detection.

In summary, the following tasks are explored:

Chapter 3. An orientation-aware people detection and counting method based on overhead
fisheye cameras is developed. Specifically, the channel and spatial attention are used in
this task. A simultaneous attention refinement module (SARM) is introduced to suppress
the noise feature and highlight the object feature to improve the context-focusing ability on
people in different poses and orientations. Following the collection of detection results, an
Internet of Things (IoT) system based on Real Time Streaming Protocol (RTSP) is constructed
to output results to different devices. Experiments on three common fisheye image datasets
show that under low light conditions, the proposed method has high generalization ability
and outperforms the state-of-the-art methods.

Chapter 4. An efficient grasp detection network with n-channel images as inputs is pro-
posed for robotic grasp. The proposed network is a simple generative structure for grasp de-
tection. In particular, a Gaussian kernel-based grasp representation is introduced to encode
the training samples, embodying the maximum center that possesses the highest grasp con-
fidence. A receptive field block (RFB) is plugged into the bottleneck to improve the model’s
feature discriminability. Furthermore, pixel-based and channel-based attention mechanisms
are used to construct a multi-dimensional attention fusion network (MDAFN) to fuse valu-
able semantic information. The proposed method is evaluated on the Cornell, Jacquard, and
extended OCID grasp datasets. The experimental results show that the proposed method
achieves excellent balancing accuracy and running speed. The network gets a running speed
of 6ms, achieving better performance on the Cornell, Jacquard, and extended OCID grasp
datasets with 97.8%, 95.6%, and 76.4% accuracy, respectively. Subsequently, an excellent
grasp success rate in a physical environment is obtained using the UR5 robot arm.

85
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Chapter 5. Event camera is a bi-inspired vision sensor that captures dynamic changes and
filters out redundant information. Compared with standard cameras, event cameras provide
event streams with high temporal resolution, high dynamic range, and low power consump-
tion. However, standard cameras output frames with color and texture information. There-
fore, event-based data and frame-based data are complementary. In this chapter, the working
principle of event cameras is first introduced. Then, multimodal learning methods are devel-
oped for vehicle detection and robotic grasp detection. Experimental results show that the
proposed methods achieve excellent performance over current methods.

6.2 Future Directions

Challenges and future directions closely related to object perception are pointed out in nu-
merous opportunities, as described below.

Sensor fusion for object perception. Different kinds of sensors are complementary. For
example, the event camera contains no color information, which is provided by a frame-
based camera. The distance and speed information can be provided by LiDAR and radar. It
remains to be seen whether the event camera output can be used to trigger frame captures
from other sensors. If it is, the event camera and other sensors can operate together with
a mix of conventional machine vision, bio-inspired, and event-based neuromorphic vision-
based approaches. Therefore, some of the limitations of a traditional sensor-based perception
system may be overcome.

Active vsion system for object perception. In robotics, the ability to directly fuse per-
ception with its motoric ability is often referred to as "active perception". It is found that
perception and action are often kept in separate spaces; this is a consequence of the state-
of-the-art sensors equipped with the robotics being frame-based. The sensing and perception
only exist in a discrete moment, while the motion is a continuous entity. A new method
of encoding perceptions and actions could be meaningful to the active perception system of
robotics. Moreover, this would create new opportunities for real-time navigation and obsta-
cle avoidance if the visual perception could be bound with the system’s dynamic to enable
dynamic environment perception.

Large-scale benchmark for object perception. It is well known that standardized bench-
marks promote the rapid development of deep representation learning. For example, the
growing popularity of deep neural networks in intelligent vehicles and large-scale bench-
marks such as KITTI, Cityscale, and ImageNet is interconnected and mutually reinforcing.
There is an emerging need for high-quality benchmarks in the field of object perception.

Model robustness for object perception. Model robustness is crucial for object-perception
systems. Occlusions, which occur when objects are partially hidden from view, pose a sig-
nificant hurdle for current systems. Investigating innovative approaches to improve the de-
tection and recognition of partially obscured objects can substantially enhance the practical-
ity of these systems in everyday situations. Furthermore, variations in lighting conditions
remain a persistent issue, affecting the accuracy of object perception. Researchers should
explore techniques that adaptively adjust to diverse lighting scenarios, ensuring consistent
performance across different environments. Additionally, the threat of adversarial attacks
underscores the need for developing defenses that fortify object perception systems against
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intentional manipulations designed to mislead or compromise their functionality. Striking a
balance between system complexity and computational efficiency is pivotal to implementing
these advancements in real-world applications, ensuring the reliability and effectiveness of
object perception systems across a spectrum of challenging scenarios.

Foundation models for open-world object perception. Open vocabulary object percep-
tion, dealing with a wide variety of objects without predefined categories, requires a combi-
nation of foundational models and vision-language models. Foundational models, like con-
volutional neural networks (CNNs), need to learn adaptable features and hierarchical repre-
sentations for diverse objects. Vision-language models, such as transformer-based architec-
tures, aid in understanding and describing objects by generating semantic embeddings and
incorporating contextual reasoning. Systems should support dynamic adaptation through in-
cremental learning and transfer learning to handle new objects over time. Integrating visual
and linguistic modalities through fusion techniques ensures a comprehensive understanding
of novel objects.

From simulated data to real-world object perception. Labeling the data is always a chal-
lenging problem. Additionally, there is no standard format for the annotations. From one
perspective, developing an easy-to-use tool for recording and labeling data would make a
significant contribution to the community. Particularly, the corresponding event streams, in-
tensity frames, and depth information could be generated by a simulator based on the work-
ing principle of the sensor. Simultaneously, the basic facts of all recording data, including the
trajectory of the sensor, the label of the object, and even the optical flow, are also generated
without the need for annotation. With photorealistic virtual scenes and realistic sensor mod-
els, the future development of visual sensing and perception systems will be accelerated by
prototyping on simulated data with transfer learning methods.

Limitations. Event-based neuromorphic vision is an emerging technique in the era of ma-
ture sensor hardware for object perception. Compared with LiDAR, radar and cameras are
unfair because event-based sensors are not at the same maturity level as others. There are no
appearance features such as color and texture because the event-based neuromorphic vision
sensor only transmits local pixel-level changes, making it perform poorly in some applica-
tions with high requirements for appearance features. Although researchers have used the
method of image reconstruction to reconstruct image frames from event streams, the quality
of the reconstructed image frames is still not comparable to the output data produced by
RGB cameras. The application of an event-based neuromorphic vision sensor is limited in
some scenarios where energy, latency, and dynamic range are not important, especially in
high-resolution complex scenarios.
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