
Citation: Theiler, M.; Schneider, D.;

Endisch, C. Experimental

Investigation of State and Parameter

Estimation within Reconfigurable

Battery Systems. Batteries 2023, 9, 145.

https://doi.org/10.3390/

batteries9030145

Academic Editor: Seiji Kumagai

Received: 11 November 2022

Revised: 30 January 2023

Accepted: 14 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

Experimental Investigation of State and Parameter Estimation
within Reconfigurable Battery Systems
Michael Theiler 1,*, Dominik Schneider 1,2 and Christian Endisch 1

1 Research Group Electromobility and Learning Systems, Technische Hochschule Ingolstadt,
D-85049 Ingolstadt, Germany

2 School of Engineering & Design, Institute for Electrical Drive Systems and Power Electronics,
Technical University of Munich, D-80333 Munich, Germany

* Correspondence: michael.theiler@thi.de

Abstract: The battery system is one of the most-important, but also -critical components in the
electric power-train. The battery’s system states and parameters are commonly tracked by the battery
monitoring system. However, in reality, the accuracy of the state and parameter estimation may
suffer from insufficient excitation of the system. Since the current states and parameters serve as the
basis for many battery management system functions, this might lead to incorrect operation and
severe damage. Reconfigurable battery systems allow enhancing the system’s excitation by applying
a switching operation. In this contribution, the state and parameter estimation of a reconfigurable
battery module were simulated and tested experimentally. Thereby, a low-exciting and a high-
exciting drive cycle were compared. Furthermore, the switching patterns were applied to enhance the
excitation and, hence, improve the estimation of an extended Kalman filter. The cells were switched
via a pulse-width modulation signal, and the influence of frequency and duty cycle variation on
the estimation accuracy were investigated. Compared to the low-excitation input, a significant
improvement in the estimation of up to 46% for the state of charge and 78% for the internal resistance
were achieved. Hereby, low frequencies and duty cycles proved to be particularly advantageous.
Switching, however, has only a limited influence on an already highly excited system and may lead
to additional aging due to higher heat generation.

Keywords: battery model; Kalman filter; joint estimation; reconfigurable battery systems; state
estimation; parameter estimation

1. Introduction

With the ongoing change of the mobility sector from combustion engines to battery
electric vehicles (BEVs), the need for appropriate energy storage technologies has become
apparent. Lithium-ion battery systems have been proven to be a capable solution for this
task with respect to energy and power density, durability, and cost. However, permanent
monitoring of the battery cells is necessary to prevent cell defects and to avoid the viola-
tion of the operation limits. This involves lower and upper voltage limits and a defined
temperature range. Outside these boundaries, the battery’s degradation is accelerated and
serious defects may occur. Therefore, a battery monitoring system (BMS) is an essential
part of each lithium-ion storage system [1]. Furthermore, to predict the BEV’s remaining
range and lifetime, the determination of the state of charge (SOC) and state of health
(SOH) is of high interest from the costumer’s perspective. For that purpose, model-based
approaches such as the well-known Kalman filter are widely used in BMSs. These methods
combine measurement data of voltage and current with a priori model knowledge and
require low computational effort. Although, in recent years, many scientific publications
have dealt with the state and parameter estimation of lithium-ion batteries with Kalman
filters [2–5], commonly, their approaches have been validated using excitation profiles of
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high dynamics, e.g., hybrid pulse power characterization (HPPC) [6,7], dynamic stress tests
(DSTs) [8,9], or current profiles based on driving profiles such as the Urban Dynamometer
Driving Schedule (UDDS) [8,10,11]. However, in real-world operations of BEVs, the current
excitation is often of low dynamics, e.g., while charging over night or when driving with
constant velocity on a highway. These operation conditions are challenging for the state
and parameter estimation, bearing in mind that, for nonlinear systems, single states can
become unobservable, if the system’s input is small [12,13]. In [14], the input current of a
lithium-ion cell was superimposed by a pseudo-random binary sequence (PRBS), which
led to smaller estimation errors due to the additional excitation.

A promising evolutionary step of energy storage systems is reconfigurable battery
systems (RBSs), where the connection of single battery cells with each other is flexible
during operation [15,16]. For this purpose, the cells are equipped with power switches
that can disable or bypass single cells or strings. This enables functionalities such as
balancing [17], fault localization [18], or even a time-varying output voltage. Thus, the so-
called multi-level inverter arises [19].

In a previous work of the authors [13], the influence of the switching operation of
RBSs on the state and parameter estimation was investigated. The contribution showed
that applying a high dynamic switching pattern during periods of low current excitation
improved the estimation accuracy of both the states and parameters. Especially using a
pulse-width modulation (PWM) as the switching pattern has been assessed as a promising
approach. These findings have been validated by experiments of a battery system consisting
of three lithium-ion battery cells connected in parallel. However, the frequency of the
switching pattern and the duty cycle of the PWM were kept constant.

In our contribution, an RBS was excited by two different current profiles, whereby one
of them is of low dynamics. Switching patterns with varying frequencies and duty cycles
were applied to find the optimal parameters. Furthermore, the input current profiles and
their frequency spectrum were carefully analyzed without and with the switching operation
of the RBS, respectively. The approach was validated by simulations and experiments.
The goal of this work was to investigate the influence of the switching pattern’s characteris-
tics on the accuracy of state and parameter estimation. These experiments with varying
frequencies and pulse widths, respectively, were conducted for the first time to the best of
the authors’ knowledge. With a profound understanding of the relation between switching
operation and its influence on the state and parameter estimation, control strategies for
RBSs can be developed that account for system excitation properly.

An overall methodology is shown in Figure 1, and the work is structured as follows: In
Section 2, the used state and parameter estimation based on the Kalman filter is introduced.
The method was based on an equivalent circuit model of the battery cell, which was
parameterized by characterization tests. The used switching patterns are shown as well.
Section 3 deals with the input current profiles used and analyzes them in detail in terms of
their ability to excite the system. In Section 4, the applied simulations, the sensor model,
and the experimental setup are described, and the results are presented and discussed in
Section 5, before summarizing the major findings.
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Figure 1. Illustration of the methodology and reference to the respective sections in which the
individual blocks are dealt with.

2. Enhanced State and Parameter Estimation
2.1. Battery Model

Equivalent circuit models (ECMs) have proven to be an efficient solution to model the
electrical behavior of lithium-ion batteries. The dual-polarization model that was used in
this work is displayed in Figure 2. It consists of an SOC-dependent voltage source vOCV,
an ohmic resistance R0, and two resistor–capacitor (RC) elements, which are characterized
by the resistance R1/2 and capacitance C1/2. All resistances and capacitances, as well as
vOCV are SOC- and temperature-dependent. Additionally, the switch S ∈ {0, 1} allows
interrupting the current path through the battery.

R0

R1

C1

v1

R2

C2

v2

I

vOCV

S

v

Figure 2. ECM of the battery with two RC elements and a switch.

Based on vOCV and the polarization voltages of the RC elements v1/2, the cell’s terminal
voltage is

v = vOCV +v1 + v2. (1)

Considering the RC elements’ time constants τ1/2 = R1/2C1/2, their differential equa-
tion is given as

v̇1/2 = −v1/2

τ1/2
+

R1/2

τ1/2
· I. (2)

The SOC is obtained by Coulomb counting, i.e., by integrating the current according to

SOC(t) =
∫ t

t=0

η I(ν)
36Q

dν + SOC(t0), (3)

where Q is the capacity of the lithium-ion cell in Ah and η is the Coulombic efficiency,
which is assumed to be nearly equal to 1 for lithium-ion batteries. Please note that charg-
ing currents are defined as positive in this work, whereas discharging currents have a
negative sign.
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Based on the aforementioned equations, a single-input, single-output (SISO) sys-
tem in discrete state-space notation is given, whereas the state vector is defined as x =

[SOC, v1, v2]
T. The discrete input is uk = S · I(k ·∆t), and the measurement is yk = v(k ·∆t)

with the simulation step size ∆t.

xk+1 =

 1 0 0

0 e−
∆t
τ1 0

0 0 e−
∆t
τ2


︸ ︷︷ ︸

A

xk +


η∆t
36Q

R1(1− e−
∆t
τ1 )

R2(1− e−
∆t
τ2 )


︸ ︷︷ ︸

B

uk + qk (4)

yk =
[

vOCV(SOCk)
SOCk

1 1
]

︸ ︷︷ ︸
C

xk + R0︸︷︷︸
D

uk + rk (5)

Additionally, the system Equation (4) comprises a random noise qk ∈ Rn×1 of the
same order n as the state, and the measurement Equation (5) is superimposed by the
measurement noise rk. Both are assumed to be normal distributed with mean zero and
known variance. Please note that by updating the nonlinearity of vOCV(SOC) in the first
element of C for every iteration, the resulting system in state-space is linear with respect to
its state.

2.2. Cell characterization

Characterization tests were conducted to parameterize the presented ECM with respect
to the lithium-ion battery cells used in our experiments. Furthermore, the determined cell
parameters served as reference values in order to access the performance of the parameter
estimator. The used lithium-ion cell of Type INR18650-25R is a commercial 18650 cell from
the manufacturer Samsung. The important specifications of this cell type according to the
data sheet and [20] are summarized in Table 1.

Table 1. Specification of the used lithium-ion cell.

Manufacturer Samsung

Type INR18650-25R
Format 18650

Chemistry NCA/graphite
Charge cut-off voltage 4.2 V

Discharge cut-off voltage 2.5 V
Maximum constant charge current 4 A

Maximum constant discharge current 20 A
Nominal voltage 3.6 V

Nominal capacity @ 0.2 C 2.5 Ah
Energy density 216 Wh/kg
Power density 1.7 kW/kg

The characterization tests were performed with an Arbin LBT 5 V/60 A battery tester,
and the battery cells were placed in a KB 115 Binder temperature chamber at 25± 2 ◦C.
Therefore, the temperature dependence of the ECM parameter were neglected in the
following, but vOCV, R0, R1, and R2 were still SOC-dependent values. Furthermore, we
modeled the RC elements’ time constants to be constant with τ1 = 1 s and τ2 = 20 s. These
values are defined based on previous characterization work and are in good agreement
with [21] over a wide SOC range. Each of the three cells that were used in the later
experiments was characterized individually. All of the tests were initiated with constant
current/constant voltage (CCCV) charging with a current rate of 1 C until the upper voltage
limit of 4.2 V was reached. The constant voltage phase terminated for a current rate less than
C/10. To determine the SOC-dependent open-circuit voltage, an incremental open-circuit
voltage (OCV) test was applied, with 5% SOC steps in the charge and discharge direction,
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respectively. The rest time between the charge/discharge steps was always set to 30 min.
The vOCV was determined by averaging the voltages of the charge and discharge curve to
compensate for hysteresis effects. Dynamic pulse current tests were applied at 10 different
SOC stages to identify the respective resistances R0, R1, and R2. The excitation consisted
of 2 pulses in the charge and discharge direction each with an amplitude of 2 C and a
duration of 1 s and 10 s, respectively (see Figure 3). With the MATLAB function fminsearch,
the root-mean-squared error (RMSE) between the measured and modeled terminal voltage
was minimized with respect to the unknown model parameters. The results for the three
used cells are displayed in Figure 4 over the entire SOC range. For all parameters, a clear
SOC-dependent behavior was visible, and only a slight deviation in internal resistance
was evident among the cells. Validation tests revealed an RMSE of the modeled terminal
voltage of 6 mV. The determined model parameters were used in the simulations, as well as
in the experiments, where they served as reference values.

0 10 20 30 40 50 60

t [s]

!5

0

5

I
[A

]
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4.2

v
[V

]

Figure 3. Illustration of the 1 s and 20 s pulse test used to characterize all resistances in the ECM.
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Figure 4. Cell characterization results for the (a) OCV, (b) R0, (c) R1, and (d) R2 over the entire
SOC range.
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2.3. Kalman Filtering

Online state and parameter estimation was realized by the well-known extended
Kalman filter (EKF). Given the discrete state-space Equations (4) and (5), the state vector
was augmented by a random walk model for the estimation of the parameters R0, R1, and
R2, which resulted in the following nonlinear equation of the augmented system.[

xk+1
wk+1

]
=

[
f (xk, wk, uk)

wk

]
+ qk (6)

yk = h(xk, wk, uk) + rk (7)

Hereby, the assumptions holds that the process noise q is Gaussian noise with zero
mean and known covariance matrix Q. Similarly, the measurement noise is normally
distributed with an expectation of zero and the variance R. Furthermore, the process and
measurement noise are uncorrelated among other. Because the augmented system of (6)
and (7) is nonlinear, the EKF was applied. For this, the system and measurement equation,
respectively, were linearized at each time step using Taylor series. The EKF equations are
displayed in Algorithm 1. We used Joseph’s form for updating the covariance matrix P̂,
because we achieved better numerical stability this way. Furthermore, at the end of each
iteration of the Kalman filter, the covariances between the states that were not physically
linked were discarded. These involved the SOC and R0, whose temporal evolution was not
linked to the RC elements or to and among each other, and the RC elements, which were
independent of each other. Hence, (8) was applied. The improved stability of this approach
was investigated by [13,22].

P̂∗k :=



1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 · P̂
∗
k (8)

Algorithm 1 Extended Kalman filter.

Initialization:
x̂0 = E

{
x0|0

}
P̂0 = E

{
(x̂0|0 − x0)(x̂0|0 − x0)

T
}

Prediction:
Â = ∂ f (x,u)

∂x

∣∣
x=x̂k−1|k−1,u=uk−1

x̂k|k−1 = f (x̂k−1|k−1, uk−1)

P̂k|k−1 = ÂP̂k−1|k−1 ÂT + ∆tQ

Update:
Ĉ = ∂h(x,u)

∂x

∣∣
x=x̂k|k−1,u=uk

K = P̂k|k−1ĈT(ĈP̂k|k−1ĈT + R)−1

x̂k|k = x̂k|k−1 + K(yk − h(x̂k|k−1, uk))

P̂k|k = (I − KĈ)P̂k|k−1(I − KĈ)T + KRKT

2.4. Switching

In this work, not a single cell, but a battery module consisting of three cells in parallel
was investigated, whereas each cell was equipped with a switch S, as illustrated in Figure 2.
The switches disconnect the corresponding cell from the module, and only the two other
cells remain connected to the current load. The three switches are controlled by a PWM
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signal shifted by 120◦ to each other with the frequency fPWM and the duty cycle DPWM.
To ensure a safe operation within the cell current limits, the duty cycle of the PWM signal
must be greater than 66.7%, such that at least two cells are turned on at all times. Otherwise,
one single cell would carry the whole current load. By sequential switching of the cells
connected in parallel, they are charged and discharged nearly equally. An example of the
PWM switching pattern is shown in Figure 5a for three parallel cells. The switch state
“on” stands for a closed switch in which the cell is connected, whereas “off” means that
the cell is disconnected. In Figure 5b, the current of Cell 1 I1 corresponding to a constant
total current is illustrated. When the switch of Cell 1 (blue in Figure 5a) is open, the cell
current decreases down to 0 A, as highlighted in blue. If one of the other two cells is
decoupled from the system, the current of Cell 1 increases by a factor 1.5, as highlighted
in red (Cell 2 is disconnected) and green (Cell 3 is disconnected). According to the chosen
fPWM and DPWM, the switching manipulates the input current of the cell and, thus, changes
the system’s excitation. The time duration toff for a disconnected cell can be calculated with
the following equation:

toff = (100%− DPWM)
1

fPWM
. (9)

0 5 10 15 20

t [s]

o,

on

S
w
it
ch

st
at

e Cell 1
Cell 2
Cell 3

(a) (b)

Figure 5. Illustration of (a) the switching pattern and (b) switching current.

3. Input Signal Analysis

In this work, two different current profiles, each with a duration of 1800 s, were
investigated. The first one was a profile based on a highway drive, shown in Figure 6a. It
contains at the beginning an acceleration phase with a maximum current of −20 A. This is
followed by a constant speed drive with a current between −4.6 A and −4.7 A. Therefore,
the profile has a substantial dynamics only at the beginning. The second profile shown in
Figure 6b is a Worldwide Harmonized Light-Duty Vehicles Test Procedure (WLTP), which
includes currents between +3.3 A and −7.2 A. Furthermore, it contains phases, where the
battery cell is discharged, charged, and at rest, respectively. Please note that the illustrated
currents correspond to a single cell and not to the whole module.

Spectrograms were used to visualize and compare the excitation of the highway profile
and the WLTP over time in the frequency space. As already mentioned, the two signals
differed significantly in their dynamics, which is also visible in the corresponding frequency
analysis. The spectrogram belonging to the highway profile is shown in Figure 6c. Due to
its low dynamics, this profile excites the system weakly. Only in the acceleration phase, the
corresponding spectrogram shows a good excitation. Afterwards, no frequencies above
0.1 Hz are excited. The spectrogram shown in Figure 6d corresponds to the WLTP, which
has more dynamics and, hence, excites higher frequencies. However, in rest phases with a
current of 0 A, an excitation is naturally not visible. In Figure 6e,f, the switching strategy
is exemplarily applied with DPWM of 80% and fPWM of 1.06 Hz. This led to an additional
excitation at the switching frequency and at its corresponding harmonic waves. Hereby,
the excitation decreased with rising harmonic wave. Furthermore, Figure 6f shows that
switching at higher currents caused a stronger excitation at the corresponding frequencies
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than at lower currents. Since the currents were relatively low at the beginning of the
WLTP cycle, switching had a small effect here. If the switching frequency was very low,
the switched-off time became very high. This can even cut out the excitation completely
over a certain period of time.

0 450 900 1350 1800

t [s]

!20

!10

0

I 1
[A

]

(a)
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]
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1
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(f)

Figure 6. Illustration of the (a) highway profile, (b) WLTP cycle, the corresponding spectrograms in
(c,d), and the spectrogram with a switching frequency of 1.06 Hz and an 80% duty cycle in (e,f).

4. Implementation
4.1. Simulation

In the simulation study, frequencies between 3 mHz and 0.8 Hz with duty cycles of
70%, 80%, and 90% were considered and compared to the passive case. Passive describes an
estimation without any switching operation, which corresponds to a conventional battery
system without reconfigurability. The current and voltage were modeled with a zero
mean Gaussian random noise with the standard deviation of σI = 10 mA and σv = 5 mV,
respectively, which led to a measurement noise covariance of R = σ2

v = 2.5 · 10−4 V.
The initial state covariance matrix was initialized as a diagonal matrix with

P̂0|0 = diag
{

0.0081 10−4 4 · 10−4 5.3 · 10−6 7.7 · 10−8 2.2 · 10−6} (10)
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such that the standard deviation was approximately 10% of the corresponding true initial
state or parameter value. Since the polarization voltage was initially zero, a standard
deviation of 10 mV and 20 mV, respectively, was assumed. For all combinations of switching
frequencies and duty cycles, 30 Monte Carlo runs were conducted. In each run, the state
vector x̂0|0 was reinitialized randomly such that it had a Gaussian distribution with the
true values x0 as the mean and the covariance P̂0|0 as suggested in [23]. Furthermore,
the current and the voltage noise were random in each run. The process noise was chosen
from a previous work [24], where a traceable offline optimization procedure was used to
avoid an arbitrary initialization via the trial-and-error principle, leading to the following
parametrization:

Q = diag
{

10−7.8 10−8.9 10−9.2 10−6.8 10−8.8 10−7.7}. (11)

The tuning procedure was based on a multi-objective genetic algorithm, which consid-
ers the estimation error and the filter consistency [24]. Please note that the process noise
optimization was conducted for a signal without any switching operations.

4.2. Experimental Section

To validate the findings experimentally, the lithium-ion cells characterized in Section 2.2
were soldered onto an adapter board, which was fixed to a switching board with a screw
connection (see Figure 7a). The switching board had several sensors including two voltage
sensors, to measure the cell voltage, as well as the switched output voltage, and a current
sensor to measure the cell current. The cell plus pole and the switched plus pole were
connected with a MOSFET, which corresponds to the switch S in Figure 2. The parallel
connection was realized with the help of copper bus bars. They connected the switchable
plus poles and the minus poles of the three cells. A PC communicated via the CAN bus
with the switching boards to control the switches and acquire the measured data. The load
current was applied to the three parallel cells via an Arbin LBT 5 V/60 A battery test bench,
which also monitored the module voltage, the module current, and the temperature of the
cells to ensure a safe operation. All experiments were conducted within a temperature
chamber to keep the ambient temperature constant at 25± 2 ◦C. For both profiles introduced
in Section 3, several PWM switching patterns with different frequencies and duty cycles
were performed, however, fewer combinations than in the simulation study. The test matrix
in Table 2 shows the characteristics of the applied switching patterns for both profiles.

Table 2. Test matrix for the highway profile (×) and the WLTP (◦).

fPWM

DPWM 70% 80% 90%

400 mHz ×◦ × ×◦
318 mHz ×◦ ×
212 mHz ×◦ ×◦ ×◦
106 mHz ×◦ ×
53 mHz ×◦ × ×◦

In order to obtain comparable results, each test had a specific structure. At the
beginning, the cells were fully charged with CCCV. After a 30 min rest period, they were
discharged with 0.2 C to a starting SOC of approximately 90%. After another 45 min pause,
the selected current profile was applied for 1800 s and may be interrupted earlier if the
discharge cut-off voltage of 2.5 V was reached.
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(D)
(B) (A)(C)

(E)
(F)

(a)

(A)

(B)

(C)

(D)

(G)

(G)

(H)

(b)
Figure 7. Experimental setup shown from (a) the side and (b) the top. (A) is the cell plus pole,
(B) the switchable cell plus pole, (C) the minus pole, (D) the switching board with sensors and
switches, (E) the adapter board, and (F) the lithium-ion cell. The cell is soldered on the adapter board.
The current is applied via (G) the connection cable to the Arbin test system, and the communication
takes place via (H) a CAN bus connection.

Based on the measurement data, the state and parameter estimation was performed.
Hereby, as in the simulation study, 30 Monte Carlo runs were conducted, and the sensor
modulation, as well as the Kalman filter were initialized in the same way with the same
values. In each Monte Carlo run, the state vector x̂0|0 was reinitialized, and the voltage and
current noise was random. The process noise for the experimental case was also taken from
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the literature [24], optimized with a multi-objective optimization procedure based on the
genetic algorithm:

Q = diag
{

10−7.7 10−7.7 10−6.5 10−7.2 10−8.6 10−8.1}. (12)

Please note that, also in the experimental case, the states and parameters were deter-
mined through the described model using the measured current. The states and parameters
are in reality not measurable.

5. Results and Discussion

To evaluate the estimation results for each state and parameter x, the RMSE was
calculated according to Equation (13), where K is the total number of time steps k.

RMSE =

√√√√ 1
K

K

∑
k=1

(x̂k − xk)2 (13)

The RMSE was used because it considers stationary errors, as well as noise to the same
extent as an error measure. Afterwards, the average over all Monte Carlo runs and over
the three parallel cells was computed. Subsequently, the error was normalized with respect
to the case without any switching operations. The resulting normalized RMSE error is
denoted in the following as the nRMSE. An nRMSE less than one indicates an improvement
due to the switching actions, whereas a value greater than one indicates a deterioration of
the estimated result compared to the case without switching operations. Please note that
we do not show the time course of the estimation algorithm in this paper. Examples of the
estimation algorithm during switching operations can be found in Schneider et al. [13].
Moreover, in our study, the Kalman filter converged in all simulations and experiments.

5.1. Simulation

The simulation results are presented in Figure 8 for all estimated states and parameters
for both profiles. The x-axis depicts the switching frequency logarithmically, and the y-axis
displays the nRMSE. All states and parameters showed a strong dependency regarding
both the frequency and the duty cycle. In the case of the highway profile, the estimation
errors of the quantities related to the two RC elements (v1, R1, v2, R2) lowered with
decreasing frequency and rose again for very low frequencies. Minima, at which the error
became smallest, were formed depending on the duty cycle. At smaller duty cycles, the
corresponding characteristic frequency became higher. The turn-off times for the minima
toff according to Equation (9) for the first RC element were similar for all duty cycles,
lying between 1.4 s and 1.9 s, and were close to τ1. toff for the second RC element was
significantly greater and was approximately 18.9 s; however, here, there was no minimum
for a duty cycle of 70% visible. Hence, the observed minimums corresponded to the fixed
time constants τ1 and τ2. With a switch-off time similar to the respective time constant,
the corresponding RC element can provide an optimal step response. For a too high toff,
the RC element went into saturation and was not further excited. By contrast, if the switch-
off time was too short, the RC element was not sufficiently excited and the polarization
voltage could not settle. It is notable that switching at too high frequencies can also lead to
a significant deterioration compared to the estimate without switching. The SOC error is,
due to (1), in a direct relationship with the error of the polarization voltages and, therefore,
exhibited similar behavior. The estimation error of the internal resistance R0 increased
significantly with decreasing frequency. This is explainable by the circumstance that an
ohmic resistance became visible via a current jump and the resulting voltage difference.
With increasing frequency, the number of these occurring current jumps caused by the
switching operations increased. This effect saturated approximately at 0.2 Hz. Furthermore,
it can be generally stated that a lower duty cycle improved the estimation results for all
states and parameters. A possible explanation is that a PWM signal with a duty cycle close
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to 50% (here: 70%) excited the harmonics of the base frequency more uniformly than a high
or low duty cycle (here: 90%).

(a)

(b)

Figure 8. Simulative results for (a) the highway profile and (b) the WLTP, whereas all RMSE values are
normalized with respect to the passive case. The results are shown for three different duty cycles (70%,
80%, and 90%) and for frequencies between 0.005 Hz and 0.8 Hz. The x-axis is scaled logarithmically.

In the case of the WLTP, the spread was significantly higher, as low- or high-excitation
phases of the original excitation profile were cut out occasionally depending on the instant
of time, when the switching action occurred. This effect increased for lower frequencies
and lower duty cycles. As for the highway profile, a small duty cycle was advantageous
in most cases. The estimation errors of the SOC, v2, and R2 also decreased for lower
frequencies, as expected for the second RC element due to its high time constant. The first
RC element, on the other hand, behaved exactly the opposite way. At frequencies of
0.05 Hz and higher, the switching operation can further improve the WLTP dynamics and
estimation results. However, in the case of low frequencies, the switching action can cut
out high-excited phases of the WLTP and, therefore, reduce the excitation of the first RC
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element. The internal resistance was the only parameter where switching with frequencies
lower than 50 mHz can lead to a disadvantage compared to the passive case.

Table 3 lists the best nRMSE results for each state and parameter for both profiles
under all investigated frequencies and duty cycles. As can be seen, the improvements due
to switching for all quantities were usually higher when using the highway profile. This
was particularly evident when looking at the SOC and the internal resistance estimation.
As mentioned in Section 3, the WLTP is already highly dynamic, and therefore, switching
did not increase the excitation as much as when the highway profile was applied.

Table 3. Minimal nRMSE achieved for the WLTP and the highway profile for each estimated state
and parameter in the simulation study.

Quantity SOC v1 v2 R0 R1 R2

WLTP 0.90 0.50 0.89 0.64 0.57 0.55
Highway 0.21 0.51 0.56 0.04 0.48 0.55

5.2. Experimental Results

The experimental results for the state and parameter estimation are shown in Figure 9a
for the highway profile as the nRMSE. For the SOC and R0, a better estimation can be
achieved for almost all combinations of fPWM and DPWM. For the quantities of the two
RC elements, small frequencies and a high duty cycle led to a worse estimation accuracy
compared to the passive case. This was especially the case for the first RC element, where
switching led always to poorer results. For SOC and R0, great improvements were possible
of up to 46% or 78%, respectively. In most cases, small frequencies and a duty cycle of 70%
were the favorable choice. In general, the dependencies had a similar trend to the simulated
results, except for the internal resistance, since also low frequencies were able to improve
the estimation further.

For the WLTP, the experimental results are shown in Figure 9b. The SOC showed
neither any significant improvements, nor a high fluctuation and, furthermore, no clear
trend. The internal resistance showed a great improvement of up to 49%. The estimation of
polarization voltage and the resistance of the first RC element had similar trends, and the
error decreased with the frequency lowering from 0.4 Hz to 0.2 Hz. Further decreasing of
the frequency seemed to have only a small effect. These results fit to the simulated highway
case, but this was the opposite case of the simulated WLTP results. The estimation for the
second RC element did not show any dependency regarding the duty cycle, but decreased
also with lower frequencies. However, compared to the passive case, there was almost no
improvement achievable.

In Table 4, the best nRMSE values of the experimental are listed. For the SOC, R0, v2,
and R2, significantly greater improvements were possible using the highway profile. On
the contrary, the switching operation was more beneficial for v1 and R1 using the WLTP.
In summary, it still can be said that switching had a greater influence on the estimation with
the highway profile than with the WLTP, which is consistent with previous results [25].
But this trend was different for the state and parameter estimation. Furthermore, the
EKF trusts the individual parameters and states with dependence on the process noise
covariance matrix Q. Therefore, re-parameterizing the EKF might lead to different results
with other dependencies. This is why the optimal combination of fPWM and DPWM should
be designed for the relevant states and parameters at hand and be adjusted when the
Q matrix is changed. Since the SOC and the R0 are usually of high importance, a good
estimate should be obtained here in particular.
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(a)

(b)

Figure 9. Experimental results for (a) the highway profile and (b) the WLTP, whereas all RMSE
values are normalized with respect to the passive case. The results are shown for three different
duty cycles (70%, 80%, and 90%) and for frequencies between 0.005 Hz and 0.4 Hz. The x-axis is
scaled logarithmically.

Table 4. Minimal nRMSE achieved for the WLTP and the highway profile for each estimated state
and parameter in the experimental study.

Quantity SOC v1 v2 R0 R1 R2

WLTP 0.99 0.37 1.13 0.51 0.32 0.98
Highway 0.54 1.17 0.38 0.22 1.10 0.36

The simulation and experimental results showed good achievements. However,
by lowering the duty cycle, the duration increased, where only two cells were connected
to the load. As illustrated in Figure 5b, the cell current increased one and a half times
during this period, which might lead to additional heating and aging of the cells. Therefore,
the root mean square (RMS) of the cell current is calculated as the measure for the cell
heating and as an important aging factor in Table 5, as suggested by [26]. It became obvious
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that the current RMS for both profiles rose significantly by up to 20% as the duty cycle
decreased. Hence, switching might increase the cell temperature and lead to a higher
aging degradation rate. To reduce the current RMS, switching strategies can be applied
to limit switching to periods with low currents or low excitation in a frequency domain,
e.g., using the Goertzel algorithm [13,25]. Furthermore, in the work of Ngaleu et al. [27], the
influence of switching at 50 Hz and 10 kHz on aging was investigated using the same cell
type as in this paper. No increased aging was observed here, but the pulsed charging might
have a positive effect on the resistance of the solid–electrolyte interphase. In summary,
the authors of [27] concluded that the aging of high-power cells is not significantly affected
by switching operations.

Table 5. Mean current RMS for different duty cycles with a switching frequency of 212 mHz.

DPWM Passive 90% 80% 70%

WLTP 1.859 A 1.989 A 2.114 A 2.237 A
Highway 4.864 A 5.200 A 5.533 A 5.852 A

6. Conclusions

In this paper, the impact of switching operations within a reconfigurable battery system
on the joint estimation of lithium-ion cell states and parameters was investigated. For this
purpose, simulations and experiments were carried out with a low-excitation highway
profile, on the one hand, and with a rather highly excited WLTP signal as the input, on the
other. The battery system under investigation contained three parallel cells with switches
for decoupling individual cells. The switches were controlled via a PWM signal, whereas
in this contribution, the dependency of the estimation results regarding the frequency
and duty cycle was investigated. The results showed significant improvements with
respect to the estimation accuracy for the highway profile when enhancing the excitation by
switching, whereas for the WLTP, the improvements were rather small. The experimental
study showed good results, especially for small duty cycles and frequencies compared
to the EKF estimation results without switching operations. However, an increase of
the estimation error for individual states or parameters must be accepted. Furthermore,
switching lead to RMS current values that might accelerate the degradation mechanism,
especially for low duty cycles. Therefore, the combination of duty cycle and frequency must
consider the trade-off between the importance of the estimation results for the individual
states and parameters, on the one hand, and the possible increased aging, on the other hand.
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Abbreviations

BEV Battery electric vehicle
BMS Battery management system
CCCV Constant current/constant voltage
DST Dynamic stress test
ECM Equivalent circuit model
EKF Extended Kalman filter
HPPC Hybrid pulse power characterization
nRMSE Normalized root-mean-squared error
OCV Open-circuit voltage
PRBS Pseudo-random binary sequence
PWM Pulse-width modulation
RBS Reconfigurable battery system
RC Resistor–capacitor
RMS Root mean square
RMSE Root-mean-squared error
SISO Single-input, single-output
SOC State of charge
SOH State of health
UDDS Urban Dynamometer Driving Schedule
WLTP Worldwide Harmonized Light-Duty Vehicles Test Procedure
Nomenclature
A State-space system matrix
B State-space input matrix
C1/2 Capacity of the RC elements (F)
C State-space output matrix
D State-space feed-through scalar
DPWM Duty cycle of the PWM signal (%)
f Nonlinear system function
fPWM Frequency of the PWM signal (Hz)
h Nonlinear measurement function
I Cell current (A)
I Identity matrix
k Time step
K Number of time steps
K Kalman gain
P State covariance matrix
q Process noise
Q Process noise covariance matrix
r Measurement noise
R Measurement noise covariance
R0 Internal resistance (Ω)
R1/2 Resistance of the RC elements (Ω)
S Switch
SOC State of charge (%)
to f f Time the cell is disconnected (s)
u State-space input
v Terminal voltage (V)
v1/2 Voltage of the RC elements (V)
vOCV Open circuit voltage (V)
w State-space parameter vector
x State-space state vector
y State-space measurement
∆t Step size (s)
η Coulombic efficiency
σI Standard deviation of the current (A)
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σv Standard deviation of the voltage (V)
τ1/2 Time constant of the RC elements (s)
R Real numbers
E{·} Expectation
diag{·} Diagonal matrix
·T Transpose
·̂ Estimation
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