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Abstract: Magnetic Resonance Imaging (MRI) offers strong soft tissue contrast but suffers from
long acquisition times and requires tedious annotation from radiologists. Traditionally, these chal-
lenges have been addressed separately with reconstruction and image analysis algorithms. To see
if performance could be improved by treating both as end-to-end, we hosted the K2S challenge, in
which challenge participants segmented knee bones and cartilage from 8× undersampled k-space.
We curated the 300-patient K2S dataset of multicoil raw k-space and radiologist quality-checked
segmentations. 87 teams registered for the challenge and there were 12 submissions, varying in
methodologies from serial reconstruction and segmentation to end-to-end networks to another that
eschewed a reconstruction algorithm altogether. Four teams produced strong submissions, with
the winner having a weighted Dice Similarity Coefficient of 0.910 ± 0.021 across knee bones and
cartilage. Interestingly, there was no correlation between reconstruction and segmentation metrics.
Further analysis showed the top four submissions were suitable for downstream biomarker analysis,
largely preserving cartilage thicknesses and key bone shape features with respect to ground truth.
K2S thus showed the value in considering reconstruction and image analysis as end-to-end tasks, as
this leaves room for optimization while more realistically reflecting the long-term use case of tools
being developed by the MR community.

Keywords: image reconstruction; segmentation; multi-task learning; magnetic resonance imaging;
musculoskeletal; deep learning; compressed sensing

1. Introduction

Magnetic Resonance Imaging (MRI) has emerged as one of the strongest medical
imaging modalities for clinical use, offering exquisite soft tissue contrast for visualizing
tissues such as ligaments, cartilage, and muscle [1,2]. Conventional MR sequences see the
weighting of images in accordance with intrinsic MR parameters such as T1 and T2 and
allow for suppression or saturation of signal from tissue types such as fat or fluid [3,4].
As such, MR images can be tailored for a given clinical context. Furthering this are recent
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developments of advanced sequences such as zero echo time (ZTE) and ultrashort echo
time (UTE), which allow for high-resolution imaging of additional tissues such as tendons
in musculoskeletal imaging [5–8]. MR has the added advantage of not exposing subjects to
ionizing radiation compared to alternatives such as radiographs and computed tomography
(CT). Despite these advantages, however, MR faces several challenges, including (1) long
acquisition times and (2) the requirement of time-consuming and laborious radiologist
annotation and interpretation of images to extract clinical meaning [9,10].

Fortunately, several tools have been developed to address these concerns. In the case
of long MR scan times, acquisitions can be accelerated by sampling fewer points in k-space,
the raw frequency-based domain in which MRI signals are obtained. This undersampling
induces aliasing artifacts in resulting images that can be removed by image reconstruction
algorithms. In recent years, considerable effort has been put into developing several
families of reconstruction approaches: (1) compressed sensing (CS) algorithms iteratively
reconstruct images by ensuring consistency with acquired k-space and imposing sparsity on
the reconstructed image in an alternate domain [11–14]; (2) parallel imaging (PI) algorithms
exploit the redundancy of using multiple coils to acquire the same imaging volume to
reduce acquisition times at the expense of signal-to-noise ratio (SNR) [15–17]; (3) deep
learning (DL) approaches use complex, nonlinear models to impute full-length acquisition
images from aliased images and/or undersampled k-space [18,19]. Other approaches
growing in popularity include magnetic resonance fingerprinting (MRF) and low-rank and
sparse modeling approaches [20–22]. On the other hand, a host of DL tools have emerged to
automate mundane MR image-processing tasks. For instance, the introduction of the U-Net
in 2015 seeded major advances in medical image segmentation from limited data, paving
the way for more complicated architectures that have been applied for accurate lumbar
spine and knee cartilage segmentation, among others [23–26]. Yet other DL applications
include automatic assessments of cartilage thickness, staging of anterior cruciate ligament
injury severity, diagnosis of lumbar spine anomalies, and analysis of bone shape [27–30].

This body of work unquestionably reflects substantial advances made by the MR
research community. But it is noteworthy that with extremely few exceptions, the challenges
of long acquisition times and image analysis have been treated as separate entities [31]. The
long-term vision, however, would be a software package that addresses these challenges
simultaneously, raising a niche for optimization. Namely, image analysis algorithms
are designed for full-length acquisition of MR image inputs, but there is no guarantee
and little investigation that they would perform similarly well on reconstructed images
from the accelerated acquisition. On the other hand, image reconstruction algorithms are
overwhelmingly optimized for metrics such as normalized root mean square error (nRMSE),
peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM), which correlate
to the perceptual quality of a reconstructed image [32–34]. In other words, reconstruction
algorithm image outputs are optimized for visually appealing images and radiologist
interpretation, but what if their outputs were instead intended as features for subsequent
image analysis pipeline input? Could the features required for accurate radiologist readings
with respect to ground truth differ from those required for DL image analysis pipeline
input to yield strong performance? More generally, if image reconstruction and annotation
are viewed as end-to-end rather than serial tasks, is it possible to attain stronger image
analysis performance?

To answer these questions, we hosted the K2S challenge at the 25th International
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
in Singapore. Previously, challenges and/or the releases of large datasets have spurred
major advances in the MR research community. The release of the Osteoarthritis Initiative
(OAI) and Multicenter Osteoarthritis Study (MOST) precipitated substantial advances in
understanding osteoarthritis, total knee replacement, and knee pain, among others [35–39].
On the other hand, the fastMRI challenge was crucial in (1) making image reconstruction
more accessible to the MR research community by releasing large datasets including raw
k-space, and (2) seeding major advances in reconstruction research such as popularizing
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unrolled DL architectures [40–42]. Our objective was to fill a similar niche in the end-
to-end reconstruction and image analysis space. As such, we curated the K2S dataset,
which consists of 300 patients that underwent 3D fat-suppressed knee scans, for each of
whom k-space data and radiologist-approved 6-compartment tissue segmentations were
released. The use of Fourier-transformed DICOM images as k-space would be problematic,
not maintaining consistency with the multicoil nature of most MR acquisitions and the
numerous post-processing steps to convert raw multicoil k-space into DICOM images,
while also likely overstating performance [43]; importantly, our released dataset thus was of
raw multicoil k-space data. Challenge participants were to train algorithms that segmented
knee bones and cartilage from 8× undersampled acquisitions. Winners were selected
using a weighted dice similarity coefficient (DSC) that assessed the accuracy of resulting
segmentations, but additional analyses were conducted to assess segmentation quality,
determine if strong image reconstruction was a prerequisite for strong segmentation, and
gage the suitability of submitted segmentations for biomarker analysis [44].

In short, the contributions of the K2S challenge and this paper are as follows:

• Reframing image reconstruction and annotation as end-to-end tasks for an eventual
clinical workflow rather than sequential steps.

• Curating a large dataset (n = 300) with 3D raw k-space data and tissue segmentations
to allow training of segmentation algorithms directly from undersampled k-space,
and whatever additional research objectives may emerge from having raw k-space
and segmentations in the same dataset.

• Investigating whether strong image reconstructions are a prerequisite for strong tissue
segmentations.

• Assessing if segmentation algorithms trained from 8× undersampled data are suitable
for biomarker analysis.

2. Materials and Methods
2.1. Challenge

K2S challenge participants were responsible for predicting 6-class knee tissue segmen-
tations (femur, tibia, patella, femoral cartilage, tibial cartilage, and patellar cartilage) from
8× undersampled k-space data. An overview of the steps involved in dataset curation, the
challenge objective, and the timeline can be viewed in Figure 1, with details on all steps
and evaluation criteria described below.

2.2. Dataset
2.2.1. Subject Eligibility and Sequence Information

Subjects at the UCSF Orthopedic Institute between 14 June 2021 and 21 June 2022
were scanned with an imaging protocol that included 3D fat-suppressed CUBE acquisitions
(n = 816). There were no exclusion criteria placed on patients for inclusion in the eventual
K2S dataset, and patients were scanned in accordance with all pertinent guidelines, in-
cluding approval from the UCSF Institutional Review Board (Human Research Protection
Program), obtaining informed consent from all study participants. The 3D fat-suppressed
CUBE sequence was selected for K2S, as 3D sequences have higher SNR compared to 2D
imaging, allowing for higher resolution acquisitions that can be reformatted into multiple
planes for subsequent research objectives. Scans were performed on a GE Discovery MR750
3T Scanner using an 18-channel knee transmit/receive coil. The full-length acquisition time
of the sequence was 4 min and 58 s. Complete acquisition parameters are listed in Table 1.
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Figure 1. Overview of steps involved in human-in-the-loop training of models to generate ground 
truth bone and cartilage segmentations, and the process for radiologist approval of final 300 
segmentations to be included in K2S dataset. The K2S challenge was for participants to segment 
knee bones and cartilage from 8× undersampled k-space, with the training set released on 15 April, 
the test set released on 6 July, and the submission deadline on 21 July. 

Figure 1. Overview of steps involved in human-in-the-loop training of models to generate ground
truth bone and cartilage segmentations, and the process for radiologist approval of final 300 segmen-
tations to be included in K2S dataset. The K2S challenge was for participants to segment knee bones
and cartilage from 8× undersampled k-space, with the training set released on 15 April, the test set
released on 6 July, and the submission deadline on 21 July.
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Table 1. Acquisition parameters for 3D fat-suppressed CUBE sequence used in K2S dataset, and for
this challenge.

MR Acquisition Information

Scanner: GE Discovery MR750 3T Scanner (GE Healthcare, Milwaukee, WI)
Gradient System Max Strength: 50 mT/m

Max Slew Rate: 200 mT/m/ms

Coil: 18-channel knee transmit/receive coil (Quality Electrodynamics (QED), Mayfield Village, OH)

TR/TE: 1002/29 ms FOV: 150 mm Slice Thickness: 0.6 mm (0.6 mm spacing
between slices)

Flip Angle: 90 SAR: 0.0939 Echo Train Length: 36

Frequency: 128 Bandwidth: 244 ARC [45]: 4 (R = 2 in ky, kz)

Acquisition Matrix:
256 × 256 × 200

Image Dimensions: 512 × 512 × 200
Resolution: 0.586 mm × 0.586 mm × 0.6 mm
Voxel Size: 0.293 mm × 0.293 mm × 0.6 mm

2.2.2. Extraction of ARC-Reconstructed Multicoil Raw k-Space Data

An in-house pipeline was developed replicating all post-processing steps done on
an MR scanner to go from raw k-space data to DICOM images viewed by clinicians for
diagnostic decisions. To the best of the authors’ knowledge, no centralized resource is
available describing all these steps, which can make it difficult for those interested in
reconstruction to familiarize themselves with the process before model development. The
authors thus saw value in describing these steps, shown schematically in Figure 2, with
examples of pipeline intermediates at several steps in Figure 3. Unless otherwise specified,
all post-processing steps were implemented using functions in GE Orchestra 1.10.
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Figure 2. k-Space and image space post-processing steps for the in-house pipeline to reconstruct
DICOM images from raw scanner data. Briefly, the steps in k-space are as follows: ARC reconstruction
(parallel imaging), Fermi filtration to remove Gibbs artifacts, and zero-padding to bring the image
to the intended output resolution. Image-space processing included coil combination, surface coil
intensity correction, and gradient coil inhomogeneity correction.
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Figure 3. Intermediate outputs within the post-processing pipeline going from raw k-space to DICOM
images. Each pane of the image reflects the output of the image after the step described by the pane
title.

k-Space Post-Processing

Some sequences may leverage PI techniques (such as ARC or GeneRalized Auto-
calibrating Partial Parallel Acquisition (GRAPPA)) to acquire fewer lines within k-space,
instead exploiting already acquired data across multiple coils to mitigate aliasing arti-
facts at the expense of SNR [17,45]. This was the case for our sequence; consequently,
the first step in post-processing raw multicoil k-space data was applying ARC to impute
unacquired k-space lines. Subsequently, Fermi filtration was applied: given MR images
are often zero-padded in k-space, ringing artifacts can emerge from the sharp boundary
in k-space between nonzero and zero points [46]. A Fermi filter smooths this boundary,
reducing ringing artifacts at the expense of sharpness in the reconstructed image. A custom
Fermi filtration function was used, using the Fermi filtration radius and width parameters
extracted from raw sequence metadata. After Fermi filtration, k-space was zero-padded
to the intended image dimensions (in our case, from 256 × 256 × 200 to 512 × 512 × 200),
completing k-space post-processing. All k-space post-processing was on multicoil data.

Image Space Post-Processing

Post-processed k-space was 3D inverse Fourier transformed to image space for each of
the 18 coils and coil-combined to yield a single-coil image. The most basic means of coil
combination is root sum-of-squares, but GE provides another method based on Array coil
Spatial Sensitivity Encoding (ASSET), which leverages sensitivity maps in a PI-inspired
technique to do coil combination [47]. Magnitude images were then calculated, after which
GE’s Phased array Uniformity Enhancement (PURE) was used to perform surface coil
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intensity correction [48,49]. This was followed by GRADWARP, which warps images to
correct for inhomogeneities in gradient coils [50]. A final step in post-processing was
correcting image orientation and scaling pixel values, yielding DICOM images used by
clinicians for diagnostic purposes.

In the context of segmenting undersampled images, one complication emerges: in
GRADWARP, the MR image is warped such that it no longer corresponds to k-space. As
such, the post-processing pipeline intermediate prior to GRADWARP must be segmented,
or the GRADWARP function must be integrated into model training itself while segmenting
DICOM images. Due to the difficulties of implementing the latter (backpropagating through
GRADWARP would not be trivial), our solution was the former.

2.2.3. Ground Truth Segmentation Generation

Ground truth knee cartilage and bone segmentations were generated by separate DL
pipelines and post-processing techniques, each trained with a radiologist in the loop.

Cartilage Segmentation Pipeline

480 3D fat-suppressed CUBE sequences were acquired across three sites (UCSF, San
Francisco, CA, USA; Hospital for Special Surgery, New York, NY, USA; Mayo Clinic,
Rochester, MN, USA) with similar acquisition parameters to the 3D fat-suppressed CUBE
sequences ultimately used in K2S. These volumes were manually segmented by readers
trained by a senior radiologist with over 25 years of experience, split 400/80 into training
and validation, and used to train a 3D V-Net for multiclass cartilage segmentation [51,52].
This initial pipeline was inferred on 20 3D fat-suppressed CUBE sequences from the UCSF
Orthopedic Institute with K2S acquisition parameters, but on volumes acquired prior to
the eligibility window for K2S inclusion. The 20 inferred segmentations were manually
corrected and quality checked (QC) by an intern under radiologist supervision. 15 of the 20
cases were used to fine-tune the pipeline in a second training, seeing convergence reached
after 5 epochs, and the remaining 5 cases were used to select final model parameters.

After the second training, the V-Net was inferred on all 816 cases eligible for K2S.
The following post-processing steps were selected and applied under radiologist super-
vision: 3D morphological opening, 3D connected components analysis (preserving the
largest femoral and patellar and the 2 largest tibial cartilage components), and 2D sagittal
connected components analysis (preserving all connecting components larger than 150
pixels).

Bone Segmentation Pipeline

40 3D fat-suppressed CUBE sequences acquired at the UCSF Orthopedic Institute
prior to the eligibility window for K2S inclusion were manually segmented by a trained
reader for bone, tibia, and patella. These cases were used to train a baseline 3D U-Net
for a binary bone segmentation model. An additional 15 cases acquired using the K2S
acquisition parameters were also manually segmented by three radiologists with three
(J.L.), three (P.G.), and four (F.G.) years of experience. The trained baseline model was
inferred from these cases, which were used for model fine-tuning.

The fine-tuned U-Net was inferred on the 816 cases with the following post-processing
steps, applied under radiologist supervision: filling holes, morphological opening, and con-
nected components analysis (preserving all connecting components larger than 1000 voxels
and with centroids in central 50% of slices). Finally, the sizes of connected components
were used to extract bone labels (femur, tibia, and patella).

2.2.4. Selection of Cases for K2S Dataset

Of the 816 potential cases, the target was selecting 300, with the intent of maintaining
sufficient cases for training reconstruction and segmentation models, maintaining some
variety of anomalies in included cases, and ensuring a reasonable memory footprint given
computational constraints. Radiologists with three (J.L.) and four (F.G.) years of experience
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developed 5-point LIKERT scales to assess segmentation quality: (1) unusable; (2) poor,
with some mislabeling of bones or cartilage; (3) useable, with some major issues, but correct
labeling of bone or cartilage; (4) good, with some minor but acceptable issues; (5) (near)
human-like. Examples of cartilage segmentation LIKERT scores for the 5 classes are seen
in Figure 4, and for bone in Figure 5. Segmentation LIKERT scores were calculated for
bone and cartilage from videos of the segmentations that cycled through all sagittal slices.
Cases with acceptable segmentation quality for both cartilage and bone were selected as
the K2S dataset. Cartilage LIKERT scores for K2S were as follows: 5:14; 4:175; 3:110; 1:1.
Bone LIKERT scores were as follows: 5:112; 4:179; 3:9.
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Figure 4. 1–5 LIKERT cartilage segmentation scores overlaid on ground truth knee scans. In this
example, the LIKERT of 5 indicates human-like segmentation; the LIKERT of 4 shows a slight underes-
timation of patellar and tibial cartilage; the LIKERT of 3 is assigned due to minor underestimation of
patellar and tibial cartilage, with soft tissue detected as femoral cartilage; the LIKERT of 2 is assigned
due to missing mask areas for patellar and tibial cartilage, with femoral cartilage overestimation; the
LIKERT of 1 is missing a tibial cartilage mask.
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Figure 5. 1–5 LIKERT bone segmentation scores overlaid on ground truth knee scans. In this
example, the LIKERT of 5 indicates human-like segmentation; the LIKERT of 4 shows minor missing
components in the femoral bone; the LIKERT of 3 shows missing components of the patellar bone
mask; the LIKERT of 2 shows major missed regions within the tibial and patellar bone; the LIKERT of
1 has patella and tibia masks misassigned.

2.2.5. Final K2S Dataset Characteristics

The K2S training dataset (n = 300) had the following demographic characteristics: age
of 44.3 ± 13.9 years, weight of 75.6 ± 14.9 kg, 160/140 male to female. The test dataset
followed the same described steps (n = 50): age of 44.5 ± 14.4 years, weight of 70.5 ±
16.6 kg, 26/24 male to female (all mean ± standard deviation).
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The training dataset included the following: multicoil ARC-reconstructed k-space and
multiclass segmentation for each patient (n = 300), 8× center-weighted Poisson undersam-
pling mask with a fully sampled central 5% square of k-space in ky-kz, and a file detailing
the quality of the segmentations and any radiologist notes associated with each patient.
The released test dataset was solely the 8× undersampled multicoil ARC-reconstructed
k-space.

2.3. Evaluation Process

Submissions were evaluated using a weighted sum of DSC. Namely, DSC was calcu-
lated in each of the 6 tissue compartments, and combined as follows into a weighted DSC
that assigned each compartment a weight inversely proportional to the size of the tissue
compartment:

Weighted DSC =
∑t

DSCt
nt

∑t
1
nt

(1)

In equation (1) [44], t refers to the tissue compartment, DSCt refers to the DSC within
that tissue compartment, and nt is the number of pixels in the ground truth segmentation
for tissue t.

2.4. Timeline

• 15 April 2022: Training dataset release
• 30 April 2022: Participant registration close
• 27 June 2022: Release of code used to evaluate submissions
• 6 July 2022: Test dataset release
• 21 July 2022: Submission deadline
• 28 July 2022: Invitation of top 4 teams for in-person presentations
• 18 September 2022: In-person workshop at MICCAI 2022, winners announced

All told, 87 teams registered for the K2S challenge from 19 countries, and 12 teams
made submissions for the challenge.

2.5. Overview of Top Submission Methodologies
2.5.1. K-nirsh (University of Tübingen, Tübingen, Germany)

K-nirsh’s submission involved two cascaded nnUNet architectures, a first for re-
construction and a second for segmentation [53]. Multicoil k-space was inverse Fourier
transformed and coil-combined using root sum-of-squares coil combination, yielding
coil-combined 8× undersampled images. An initial nnUNet was pretrained to predict
fully-sampled coil-combined images from 8× undersampled coil-combined inputs using
a mean square error (MSE) loss. A second nnUNet was pretrained to predict multiclass
cartilage and bone segmentations from a 2-channel input (8× undersampled coil-combined
image and fully sampled coil-combined image), using DSC segmentation loss. After pre-
training, these models were trained end-to-end, with the initial nnUNet regression output
replacing the fully sampled coil-combined image as input for the second segmentation
nnUNet. The model was fine-tuned for over 1000 epochs on NVIDIA V100 GPUs, using
only the segmentation loss and implementing a weight scheduler that linearly increased
small class weighting (cartilage). The weighted DSC loss used to evaluate the challenge
submission was used as a validation loss and the best model according to this metric was
chosen for the challenge submission. The output of the first nnUNet was considered the
reconstruction output of this pipeline, whereas the output of the second nnUNet was the
segmentation submission.
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2.5.2. UglyBarnacle (Skolkovo Institute of Science and Technology, Moscow, Russia)

UglyBarnacle’s submission differed from other top submission methodologies by lever-
aging CS as opposed to DL for reconstruction. An initial reconstruction pipeline accepted
as input the 18-channel, 256 × 256 × 200 8× undersampled k-space array, performing a CS
reconstruction with a combined L1-wavelet and total variation (TV) regularization function,
imposing 3 times the weight on TV as opposed to L1-wavelet. The CS reconstruction was
solved as an optimization problem: the goal was to find the undersampled part of the
k-space that minimized the target value function (weighted sum of L1-wavelet and TV of
volumetric image). The optimization problem was solved using the Adam optimization
algorithm over 50 iterations for each scan. Reconstructed images were fed to an architecture
similar to V-Net for tissue segmentation. The segmentation network was implemented in
3D, with the following feature map depths at V-Net stages: 16, 32, 64, 128, 256. Max-pooling
was used to compress the representation of feature maps in the encoder, and upsampling
to increase resolution in the decoder, with skip connections transferring information from
the encoder to corresponding parts of the decoder. The network output was fed through
two final convolutions (one with a feature map depth of 7 and the last with a depth of 1) to
yield predicted segmentations.

2.5.3. FastMRI-AI (University Medical Center Groningen, Groningen, The Netherlands)

As with K-nirsh, k-space was zero-padded to 512 × 512 along kx and ky, inverse
Fourier transformed, and root sum-of-squares combined, yielding coil-combined 8× un-
dersampled image space. Unlike other top submissions, FastMRI-AI did not implement a
reconstruction framework, choosing instead to directly segment the undersampled image;
the root sum-of-squares coil combined images were thus considered the reconstruction
outputs for this approach in subsequent analysis. A 3D U-Net featuring a squeeze and
excite attention layer was trained on 160 × 160 × 48 patches, selected with stride 51 × 51
× 16, yielding around 27 predictions per voxel [54]. Networks were trained with weighted
DSC loss, giving twice the weight to cartilage afforded to bone and background. Predic-
tions were post-processed with simulated extended image boundaries by mirror padding,
self-ensembling for overlapping sliding window prediction, and connected component
analysis for each class, removing objects that were less than 60% the size of the largest
object in the given class.

2.5.4. NYU-Knee AI (New York University Grossman School of Medicine, New York, USA)

NYU-Knee AI trained multiple components individually: a Variational Network (VN)
for image reconstruction, followed by an ensemble of 2D U-Nets to predict tissue segmen-
tations [55–59]. For reconstruction, eSPIRIT was used to calculate coil sensitivity maps
for undersampled and ground truth data using the central 24 × 24 region in k-space [60].
Zero-filled k-space was then fed through a VN for K = 10 iterations, at each iteration
using calculated coil sensitivity maps and acquired k-space to ensure data consistency
with intermediate reconstructed images, while also feeding iteration outputs through a
convolutional, ReLU, and transpose convolutional layer to encourage recovery of details
lost from undersampling. The VN was trained with an MSE loss function between the
256 × 256 ground truth and the reconstructed coil-combined images for 200 epochs. VN
outputs were fed to 2D U-Nets, predicting 256 × 256 segmentations that were upsampled
and convolved to the intended 512 × 512 output resolution. Multiple networks were
trained with either focal loss, cross-entropy loss, or a hybrid of both for 300 epochs; an
internal validation set was used to choose the best-performing network for each of the 6
tissue classes, ultimately using 3 focal loss networks and 1 weighted cross entropy loss
network in the final submission.
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2.6. Further Analysis of Submissions
2.6.1. Intermediate Pipeline Reconstruction Performance

The objective of the challenge was segmenting bones and cartilage, and no part of the
evaluation criteria nor any communication between organizers and challenge participants
prior to submissions discussed a requirement for reconstruction submissions. However,
at some level, each of the top-performing pipelines fed some image (either directly under-
sampled for FastMRI-AI, or after reconstruction for the other 3 top submissions) through
a segmentation pipeline. As such, it was instructive to see how reconstruction metrics of
images fed to segmentation pipelines compared to segmentation metrics. Challenge orga-
nizers thus requested the top four teams provide intermediate reconstruction outputs for
the test set. Using these images, standard reconstruction metrics were calculated: nRMSE,
PSNR, and SSIM.

2.6.2. Comparison of Reconstruction and Segmentation Performance

In addition to the visual comparison of reconstructions and segmentations, Pearson’s
r was calculated between weighted DSC and nRMSE, PSNR, and SSIM for each of the top 4
teams [61]. Given the wide variety of approaches used by the teams, these experiments
investigated a correlation between reconstruction and segmentation performance.

2.6.3. Biomarker Analysis: Cartilage Thickness

Previously developed tools were used to calculate cartilage thicknesses for ground
truth and submissions [27]. Briefly, Euclidean distance transforms on each cartilage com-
partment of each patient were used to generate skeletonizations. The skeletonizations were
sampled and distances from skeletonized points to cartilage surfaces were calculated for
each compartment and each patient. Skeleton-to-surface distances were averaged across
a cartilage compartment for a given patient to obtain mean cartilage thickness measure-
ments, which were then compared between ground truth and each of the submissions in
Bland-Altman and correlation plots. Pearson correlation coefficients were calculated for
each submission to assess the correlation of submitted cartilage thicknesses to ground truth,
as a proxy for assessing the suitability of submissions for biomarker analysis.

To visualize cartilage thickness maps, voxel-based segmentations were converted into
triangulated meshes using a Marching Cubes algorithm, and cartilage thickness maps
were projected onto bones for select cases [39]. Maps were then compared for a qualitative
assessment of regions best and most poorly preserved by sample submissions.

2.6.4. Biomarker Analysis: Bone Shape

To analyze the bone shape, previously developed tools again were applied [30]. Trian-
gulated meshes of each bone of the ground truth segmentations were generated using a
Marching Cubes algorithm, after which Euclidean coordinates of each point in the mesh
were flattened into a 1D vector for each test set case. Principal component analysis (PCA)
was used to reduce the dimensionality of these vectors, preserving the top 5 PCs, which
constituted bone shape features. Statistical parameterization was used to extract the mean
and standard deviation of each PC. For visualization purposes, mean +3 standard devia-
tions (s.d.) and mean −3 s.d. bone shapes were generated for each PC, with qualitative
interpretations of the features varying most with each PC being described (i.e., volume).
Segmentations of each submission were similarly transformed into 1D Euclidean coordinate
vectors and projected into the PC space generated from the ground truth. Correlations
between submissions and ground truth along these shape features were calculated for each.
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3. Results

12 submissions were received for the K2S, for which weighted DSC was calculated
across the test set as described in Equation (1). The top four submissions by weighted DSC
were analyzed further, with results discussed below.

3.1. Segmentation Metrics

Segmentation results are shown in Table 2, stratified by tissue compartment but
also showing the weighted DSC that determined challenge winners. K-nirsh delivered
strong segmentation performance in each tissue compartment, closely rivaling ground
truth, and interestingly did so from intermediate reconstruction outputs exhibiting poor
reconstruction metrics. FastMRI-AI also yielded high-quality segmentations despite not
implementing any reconstruction framework. Overarchingly, segmentation performance
for all four pipelines was strong, given that severely aliased images served as model
input. To differentiate between the top two submissions, which showed similar weighted
DSC, a paired t-test was run to assess for significant difference in performance: K-nirsh
performance indeed was significantly better than UglyBarnacle, even after adjusting for
Bonferroni correction (n = 50, α = 0.05).

Table 2. Segmentation performance across test set (n = 50) for each of the top 4 pipelines, stratified by
tissue compartment. Results are presented mean ± 1 s.d. K-nirsh showed the strongest results in
each tissue compartment and overall, and is shown in bold.

Cartilage Bone Full

Team Femoral Tibial Patellar Femur Tibia Patella Weighted DSC

K-nirsh 0.904 ± 0.014 0.899 ± 0.015 0.910 ± 0.034 0.989 ± 0.002 0.985 ± 0.004 0.966 ± 0.012 0.910 ± 0.021

UglyBarnacle 0.895 ± 0.016 0.890 ± 0.017 0.903 ± 0.032 0.984 ± 0.004 0.980 ± 0.004 0.961 ± 0.015 0.903 ± 0.021

FastMRI-AI 0.845 ± 0.124 0.862 ± 0.126 0.843 ± 0.124 0.964 ± 0.078 0.952 ± 0.138 0.834 ± 0.306 0.849 ± 0.123

NYU-Knee AI 0.798 ± 0.029 0.756 ± 0.04 0.796 ± 0.043 0.980 ± 0.004 0.975 ± 0.005 0.939 ± 0.014 0.795 ± 0.030

3.2. Reconstruction Metrics

Example sagittal slices of intermediate pipeline reconstruction outputs are shown
in Figure 6, with corresponding reconstruction metrics. NYU-Knee AI and particularly
UglyBarnacle produced intermediate reconstruction outputs with strong fidelity to ground
truth, recovering fine details lost to aliasing. On the other hand, K-nirsh yielded an image
with more distinct tissue boundaries, but with noise and pixel intensity distributions that
clearly differed from the ground truth. Complete metrics of reconstruction performance
are shown in Table 3.

Table 3. Standard reconstruction metrics for intermediate pipeline outputs from all top submissions
across the released test set (n = 50). Results are presented mean ± 1 s.d. The top pipeline by each of
these metrics was UglyBarnacle, shown in bold.

Team nRMSE PSNR SSIM

K-nirsh 31.2 ± 4.26 19.7 ± 0.68 0.217 ± 0.059

UglyBarnacle 2.07 ± 0.25 31.5 ± 0.87 0.693 ± 0.043

FastMRI-AI 3.05 ± 0.68 29.8 ± 0.99 0.681 ± 0.061

NYU-Knee AI 2.18 ± 0.33 31.3 ± 0.87 0.672 ± 0.029
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Figure 6. Intermediate pipeline reconstruction outputs for each of the top 4 submissions in an example
sagittal slice, as well as ground truth, with reconstruction metrics displayed for the volume including
the visualized slice. For this volume, UglyBarnacle delivers the highest quality reconstruction,
followed closely by NYU-Knee AI, recovering sharpness and many fine details lost to aliasing
during 8× Poisson undersampling. K-nirsh delivers an intermediate reconstruction that was poor
by standard reconstruction metrics, but perceptually, made boundaries between tissues much more
distinct and perhaps easier to segment. This is likely due to K-nirsh fine-tuning the reconstruction
and segmentation networks in an end-to-end manner, unlike other top submissions.

3.3. Comparison of Reconstruction and Segmentation Performance

Example slices of predicted segmentations, overlaid on intermediate reconstruction
outputs, are shown for all four teams alongside ground truth in Figure 7. For each re-
construction metric, and for each of the top 4 performing pipelines, weighted DSC was
plotted against the reconstruction metric in Figure 8, with Pearson’s correlation coefficients
being calculated for each pair. The highest correlation coefficient in this study was between
nRMSE and weighted DSC for the NYU-Knee AI submission, at 0.284, with all other corre-
lation coefficients being substantially lower. This indicates that, at the absolute best, there
was a weak correlation between segmentation and reconstruction metrics, and in most
cases, there was a negligible or even slightly negative correlation between the two.
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Figure 7. Sagittal slice segmentations overlaid on intermediate pipeline reconstructions, with re-
construction and segmentation metrics for the volume including the slice displayed. Background
anatomy slices were thus blurrier for some teams than for others, as different teams had different
quality intermediate pipeline reconstruction outputs. In this example, segmentation quality was
strong for all top submissions, with only some overestimation of cartilage thickness from the NYU-
Knee AI pipeline being apparent. K-nirsh maintains a slight edge over UglyBarnacle in reconstruction
metrics for this volume.

3.4. Biomarker Analysis: Cartilage Thickness

Example femoral cartilage thickness maps projected onto the femur are shown in
Figure 9, with corresponding femoral cartilage segmentation DSCs. These results elucidate
added complexity: while FastMRI-AI and NYU-Knee AI lagged K-nirsh and UglyBarnacle
in weighted DSC, they did a better job preserving certain thick and thin cartilage regions.
Qualitatively, however, these maps show K-nirsh, UglyBarnacle, and FastMRI-AI perform
especially well in reconstructing cartilage thicknesses; Bland-Altman plots in Figure 10
confirm these results, showing cartilage thicknesses across all three compartments were
predicted with minimal bias and strong fidelity to ground truth by these three teams.
Interestingly, bias in retaining femoral cartilage thicknesses decreased with larger ground
truth cartilage thicknesses, regardless of submission. More granularly, while fastMRI-AI
slightly overestimated patellar cartilage thicknesses, they also reflected the least bias in
maintaining femoral cartilage thickness, showing some discordance between weighted DSC
and downstream biomarker analysis. Contrarily, thicknesses were overestimated by NYU-
Knee AI, particularly in tibiofemoral regions. In comparing the top two challenge finishers,
K-nirsh and UglyBarnacle, biases in predicted cartilage thicknesses were slightly lower
for UglyBarnacle in femoral and tibial cartilage, and slightly higher in patellar cartilage
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(UglyBarnacle: femoral: 0.088 ± 0.07, tibial: 0.036 ± 0.09, patellar: 0.114 ± 0.13; K-nirsh:
femoral: 0.096 ± 0.08, tibial: 0.049 ± 0.09, patellar: 0.097 ± 0.11; all in units of mm, mean ±
1 s.d.). However, paired t-tests showed none of these differences were significant even after
Bonferroni correction (n = 50, α = 0.05).
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Figure 8. Reconstruction metrics (nRMSE, PSNR, SSIM) plotted against weighted DSC for each of the
top four submissions, with each point denoting a subject in the test set (n = 50). Pearson’s correlation
coefficient was calculated for each pair and is displayed on the chart, indicating that at absolute best,
there was a weak correlation between segmentation and reconstruction metrics, and that in most
cases, there was no or even negative correlation.
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Figure 9. Femoral cartilage thickness maps projected onto voxel-based femoral bone shapes for each
of the top 4 teams, as well as ground truth. While all submissions exhibit a degree of smoothness
that is not reflected in the ground truth, the top three especially were strong in preserving cartilage
thicknesses (K-nirsh, UglyBarnacle, FastMRI-AI), with NYU-Knee AI slightly overestimating cartilage
thicknesses but still preserving key features in some regions.
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Figure 10. Bland-Altman and correlation plots between predicted and ground truth cartilage thick-
nesses for each of the top 4 submissions, across each of the 3 cartilage compartments. The mean and
standard deviations for these plots were calculated using the data points from K-nirsh, UglyBarnacle,
and FastMRI-AI, given the thickness overestimations seen from NYU-Knee AI. The top three submis-
sions saw minimal bias and strong fidelity to ground truth, while NYU-Knee AI appeared to slightly
overestimate particularly tibial and femoral cartilage thicknesses. That said, correlation plots showed
strong correlations between predicted and ground truth thicknesses for K-nirsh, UglyBarnacle, and
NYU-Knee AI. FastMRI-AI visually appeared to have strong correlation as well, but an outlier case
appears to have severely degraded the correlation coefficient. All told, these results collectively are
quite promising that submissions are suitable for some downstream biomarker analysis.

Correlation plots in Figure 10 showed K-nirsh, UglyBarnacle, and NYU-Knee AI
yielded high Pearson correlation coefficients with respect to ground truth, indicating high-
quality segmentations. Interestingly, UglyBarnacle showed a slightly higher correlation
to ground truth cartilage thickness in tibiofemoral cartilage than K-nirsh, despite lower
DSCs in both tissues. Visually, FastMRI-AI also appeared to show a strong correlation
between predicted and ground truth cartilage thickness, although poor prediction in one
case appeared to severely degrade the correlation coefficient.
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3.5. Biomarker Analysis: Bone Shape

Statistical shape modeling identified 5 femoral shape features most contributing to
variation within the test set, as illustrated in Figure 11: femoral volume, medial wall incline
slope, condylar posterior protrusion, intercondylar notch width, and width-to-height ratio.
Similar features were identified for the patella and tibia, and the correlation between
submitted bone shapes and ground truth was calculated for the top PCs (and thus, top
shape features) for each submission. Those correlation coefficients are shown in Figure 12:
while each of the top four submissions performed best in at least one of the 15 shape
features across the 3 bones, generally K-nirsh had the strongest performance among the
teams in the femur, while NYU-Knee AI did best within the tibia and patella. Correlations
for all teams were moderate to strong for many of the shape features.
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Figure 11. Femoral bone shape features, visualized after statistical parametrization, with qualitative
descriptions of shape features. Similar features were also generated for the tibia and patella by the
same procedure: extracting Euclidean points of bone surfaces, converting them into 1D vectors, using
PCA to compress the resulting matrix into a 5-dimensional one, and visualizing each of the PCs.
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Figure 12. Correlations along femoral, tibial, and patellar bone shape features between submissions
and ground truth. For many of the bone shape features, correlations were moderate to strong,
indicating another means in which submitted segmentations from 8× undersampled images at times
were suitable for downstream biomarker analysis. K-nirsh and NYU-Knee AI appeared to have
strong correlations most consistently between predicted and ground truth bone shapes among the
top 4 submissions.

4. Discussion

In this work, we describe the K2S challenge, which aims to reframe image reconstruc-
tion and image analysis as end-to-end rather than serial tasks, opening room for optimiza-
tion. We curated the K2S dataset of 300 patients that had undergone 3D fat-suppressed
knee MRI acquisitions, each with 3D raw k-space and bone and cartilage segmentations,
challenging participants to segment the tissues directly from 8× undersampled k-space.
A variety of solutions were submitted for the challenge. Some, like NYU-Knee AI and
UglyBarnacle, spent considerable time optimizing reconstruction networks, leveraging VN
and CS frameworks to attain high-quality reconstructions that served as inputs for standard
segmentation networks. Interestingly, FastMRI-AI did not pursue a reconstruction network
at all, choosing exclusively to optimize the segmentation network and develop unique
postprocessing techniques, attaining very competitive results. K-nirsh, on the other hand,
pretrained separate reconstruction and segmentation networks, performing end-to-end
optimization of both for weighted DSC. The end-to-end optimization made this the only ap-
proach that implicitly optimized reconstruction outputs for segmentation inputs, possibly
playing a role in their top finish within the challenge. All told, however, all top submissions
produced high-quality segmentations in knee cartilage and bone, maintaining accuracy
with respect to ground truth despite working originally from 8× undersampled multicoil
k-space.

Beyond strong DSC metrics, predicted segmentations from all top submissions pro-
duced cartilage thickness maps that either maintained minimal bias or strong correlation
to ground truth cartilage thicknesses. Statistical shape modeling generated five features
that captured the most variance in bone shape for each of the patella, tibia, and femur.
Each of the top submissions was most correlated to ground truth along at least one of the
features, with moderate to good correlations seen in many, while K-nirsh and NYU-Knee
AI generally showed the best performance in retaining bone shape. As such, for both bone
and cartilage, all top submissions yielded cartilage and bone segmentations that to varying
degrees were suitable for subsequent biomarker analysis. An added observation was that
downstream biomarker performance did not always correspond with segmentation metrics:
for instance, NYU-Knee AI delivered among the best correlations between predicted and



Bioengineering 2023, 10, 267 20 of 24

ground truth bone shape features despite obtaining the poorest weighted DSC among
the top 4 submissions, with segmentations that often appeared slightly dilated compared
to ground truth but preserved shape. Likewise, UglyBarnacle slightly outperformed K-
nirsh in correlations between tibiofemoral cartilage thicknesses and ground truth despite
slightly poorer weighted DSCs, but its slightly reduced bias was not statistically significant.
This accentuates the complexity of segmentation as an image analysis task: there is no
all-encompassing, perfect metric to quantify segmentation quality.

A noteworthy finding from this challenge was that strong reconstruction performance
was not a prerequisite for strong segmentation performance. K-nirsh had by far the poor-
est metrics of the submitted pipeline reconstruction intermediates, poorer even than the
root sum-of-squares coil-combined 8× undersampled images that FastMRI-AI used as
pipeline inputs. Despite this, K-nirsh yielded the strongest segmentation performance;
visual inspection of K-nirsh reconstructions reveals sharp images that enhance contrast
at boundaries between different tissues such as cartilage/bone boundaries, yielding an
image that is perhaps easier to segment than ground truth. This demonstrates that ideal
features for radiologist interpretation of an MR image can differ from those optimal for
processing by an image analysis algorithm. That FastMRI-AI showed competitive segmen-
tation performance despite directly segmenting undersampled images is a testament to this.
Furthering this, was there essentially no correlation between reconstruction and segmenta-
tion metrics for any of the top submissions on a per-patient basis. There is therefore room
for optimizing image analysis algorithms when trained end-to-end with reconstruction
algorithms instead of training separate algorithms and inferring serially. It is important to
note that segmentation performance from undersampled k-space depends not only on the
segmentation algorithm but also on the undersampling pattern, which was fixed in this
challenge. More complicated joint optimization of segmentation and undersampling can
further improve end-to-end MRI reconstruction and image analysis outcomes [62,63].

Apart from the specific challenge, the curation and release of the K2S dataset marks
an important initiative that can seed advances in both reconstruction and image analysis
algorithm development. To our knowledge, this is the largest released dataset that pairs
raw k-space data with tissue segmentations (n = 300 patients, each with an 18-coil, 200-slice
k-space). While a dataset of this size is more than sufficient for training most reconstruction
algorithms, image annotation algorithms generally require considerably larger datasets to
sufficiently represent rare anomaly classes. Our hope is that the release of this dataset can
allow research groups to investigate objectives such as ROI-specific image reconstruction,
end-to-end reconstruction and segmentation, and more generally end-to-end reconstruction
and image analysis tasks.

This challenge had some limitations. First off, the k-space provided to challenge
participants had undergone R = 4 ARC, and thus does not reflect the full-length acquisition
k-space that would ordinarily be undersampled. Given that the full 3D fat-suppressed
CUBE sequence without ARC would require nearly 20 min for acquisition, this compromise
was made to make curate a larger dataset suitable for algorithm development. Additionally,
while substantial work was done by challenge organizers and radiologists (J.L. and F.G.)
in inspecting segmentation quality, bone and cartilage segmentations ultimately were
model generated, and were not the gold-standard manual annotations that are desired
for training models. It is therefore more accurate to describe the challenge objective as
achieving on 8× undersampled data the same segmentation performance seen on fully
sampled data, albeit the latter was carefully monitored and quality checked by radiologists.
This tradeoff was taken to obtain a substantially larger dataset than would have been
possible if exclusively using manual segmentations. We would expect these findings to
hold on a dataset with purely manual segmentations but confirming so would require
inferring trained models on such a dataset. Furthermore, this challenge provided a fixed
undersampling pattern: a center-weighted Poisson pattern with a fully-sampled center. This
undersampling pattern was selected such that potential challenge solutions would not be
biased towards or against a given reconstruction backbone (i.e., compressed sensing, deep
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learning), but there conceivably would be room for further optimization of segmentations
with respect to the undersampling pattern. Additionally, since all submissions were
trained and tested on a fixed undersampling pattern, the robustness of solutions to other
R = 8 undersampling patterns was not assessed and is an important research objective
for the reconstruction community to pursue. Lastly, there is no perfect solution to the
gradient inhomogeneity correction step (GRADWARP) in the standard processing pipeline
of raw scanner data. Once applied, correspondence between k-space and image space is
lost, meaning ordinary DICOM image segmentations would not match k-space. In the
K2S dataset, segmentations were provided on images prior to GRADWARP application,
meaning that gradient coil inhomogeneities manifested themselves into segmentations. Due
to the difficulty in backpropagating through GRADWARP, this was viewed as the easier
choice for pipeline development, with the understanding that resulting segmentations
could be processed by GRADWARP to perform necessary corrections. Nonetheless, this
is an unavoidable limitation that must be discussed at greater length for this and other
datasets that may be released pairing k-space and tissue segmentations.

In conclusion, the K2S challenge curated a landmark dataset, tasking participants with
segmenting bone and cartilage from 8× undersampled knee MRI images. Through it, the
top four teams produced submissions that yielded high-quality segmentations, showing
highly varied methodologies and very strong performance that was suitable for down-
stream biomarker analysis in cartilage thickness and bone shape assessments. Through the
submissions of two teams with unconventional approaches—K-nirsh and FastMRI-AI—we
clearly see that features required for radiologist annotation differ from those required for
DL model input, there is room for image analysis pipeline optimization when trained
end-to-end with reconstruction, and strong reconstruction is not a prerequisite for strong
segmentation. These findings can motivate similar efforts for end-to-end optimization
of image analysis and reconstruction tasks, not only for segmentation, but for anomaly
detection, prognosis prediction, bone shape assessment, and others.
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