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Real‑time acoustic sensing 
and artificial intelligence for error 
prevention in orthopedic surgery
Matthias Seibold1,2*, Steven Maurer3, Armando Hoch3, Patrick Zingg3, Mazda Farshad3, 
Nassir Navab1 & Philipp Fürnstahl2,3

In this work, we developed and validated a computer method capable of robustly detecting drill 
breakthrough events and show the potential of deep learning‑based acoustic sensing for surgical error 
prevention. Bone drilling is an essential part of orthopedic surgery and has a high risk of injuring vital 
structures when over‑drilling into adjacent soft tissue. We acquired a dataset consisting of structure‑
borne audio recordings of drill breakthrough sequences with custom piezo contact microphones in an 
experimental setup using six human cadaveric hip specimens. In the following step, we developed a 
deep learning‑based method for the automated detection of drill breakthrough events in a fast and 
accurate fashion. We evaluated the proposed network regarding breakthrough detection sensitivity 
and latency. The best performing variant yields a sensitivity of 93.64± 2.42 % for drill breakthrough 
detection in a total execution time of 139.29ms . The validation and performance evaluation of 
our solution demonstrates promising results for surgical error prevention by automated acoustic‑
based drill breakthrough detection in a realistic experiment while being multiple times faster than 
a surgeon’s reaction time. Furthermore, our proposed method represents an important step for the 
translation of acoustic‑based breakthrough detection towards surgical use.

Surgical interventions are conducted by trained and experienced experts, however, human errors are inevitable. 
In the operating room, surgical errors can lead to significant and severe consequences for the patient, in the 
worst case to  death1. Prior studies showed that surgical factors account for more than 70% of intraoperative 
 complications2,3. For example in orthopedic surgery, iatrogenic femoral  arterial4 and  nerve5 injury are frequently 
happening complications caused by surgical errors. Detecting and preventing these incidents is crucial to improve 
the patient safety and the outcome of  surgery6.

There is a variety of causes for surgical errors and resulting iatrogenic injuries. They range from anatomical 
differences between patients and proximity of risk  structures7 or lack of surgical access and overview, for example 
in obese  patients8, to pathologically altered tissue substance, e.g. in patients with  osteoporosis9. Furthermore, 
the condition of the surgeon and the surgical staff plays an important role on the performance and therefore 
the outcome of the surgery, as lack of concentration and technical incapacity can lead to an increased risk of 
iatrogenic  injury10.

To assess the patient-specific risk of treatment complications in orthopedic surgery, commonly a pre-operative 
plan based on the patient anatomy and medical imaging data, such as radiographs, computed tomography (CT) 
or magnetic resonance imaging (MRI)11, is made. Furthermore, specialized imaging modalities, for example 
 angiography7 or  ultrasound12,13 are utilized to visualize anatomical risk structures such as nerves and arteries. 
Conventional navigation systems provide a way to transition pre-operative information into surgery by displaying 
it in relation to intraoperative information on an external  monitor14 or even actively guide the surgeon through 
robotic  assistance15, but prompt a need for additional optical tracking systems and time-consuming registration 
procedures which can introduce additional errors by registration  failures16. Learning-based systems have great 
potential to support the surgeon during the intervention and enable augmented decision making based on real-
time sensor data and additional learned  knowledge17–19. They can be employed for active error prevention by 
detecting surgical states and important or adverse events during surgery in an automated fashion.

A relevant target task for an error prevention system in surgery is drill breakthrough detection. Drill break-
through is defined by the drill perforating the bone and over-drilling beyond the far cortex into the adjacent soft 
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tissue. With the rise of machine learning methods, learning-based techniques also have been applied for the task 
of automated drill state and breakthrough detection using real-time sensor data and achieved promising results. 
Bone drilling is an essential part of orthopedic surgery and is conducted in about 95% of the interventions, for 
example to fixate bones with plates, external fixators and traction  equipment20. One of the most common ways of 
drilling in orthopedic procedures is to use free-hand power drills to manually pre-drill holes for bone screws. A 
 study21 investigated free-hand drilling with a total number of 153 participating surgeons and found the average 
penetration of the soft tissue beyond the far cortex to be 6.31 mm which implies a great risk, especially when 
nerves, vessels or other vital structures are situated in close proximity to the target anatomy. The most important 
factor to stop the hand-operated drill as soon as possible after a breakthrough is the human reaction time. Even 
though trained surgeons have comparatively fast reaction times, their mean response time was measured to be 
in the range of 313 to 358ms which additionally decreases with advancing  age22. A low-latency and robust detec-
tion system could enable a fast and automated stopping of the drill as soon as a breakthrough event is detected.

Drilling into a bone creates distinct vibrations resulting in the generation of acoustic signals which can be 
exploited for drill state and breakthrough analysis and have benefits over force/torque or current measurement 
approaches, such as easy integration and general applicability. Praamsma et al. showed in a study that experienced 
surgeons benefit from these audible sounds by utilizing them to support the drilling  process23. In this work, we 
used a custom piezo contact microphone to capture drill vibration signals in an experimental setup and propose 
a fast and robust deep-learning based drill breakthrough event detection method. The key contributions of our 
work are:

• We developed a custom high-sensitive piezo-based contact microphone prototype and impedance matching 
/ pre-amplification stage for capturing structure-borne drill vibration signals non-invasively from the skin 
surface.

• We propose a low-latency and robust deep learning-based drill breakthrough detection method based on a 
modified ResNet-18 architecture, handling imbalanced data through the application of the Focal Loss func-
tion.

• We trained and validated our method on a dataset captured in an experimental setup using 6 unprepared 
human cadaveric hips including soft tissue.

• The proposed method outperforms the results of prior studies (using artificial bone models or prepared 
animal bone specimens) in a realistic cadaveric experiment.

State‑of‑the‑art in acoustic‑based drill breakthrough and drill state detection. Acoustic signals 
have been analyzed in prior work in order to detect both, drill breakthrough (penetration from bone into soft 
tissue) and drill state (type of tissue being drilled), using synthetic and animal bone models. The following para-
graph gives an overview of the state-of-the-art in acoustic-based drill breakthrough and drill state detection and 
the transition from signal processing approaches to learning-based solutions in recent years.

One possible approach to implement automated drill state and breakthrough detection is based on force and 
torque measurements. Force/torque sensors offer reliable and accurate measurements of the force between drill 
bit and tissue and are therefore well suited for drill state and breakthrough  detection24–26. Recently, Torun et al. 
proposed a closed-loop method based on force sensor data to detect breakthrough events in an experimental 
setup operating on a sheep  femur27. As explained in their follow-up  work28, this approach has disadvantages 
for the application in real surgery, because they require physical modifications to the surgical device, in form of 
sensors attached to the drill which are costly and bulky. Another approach has been proposed to detect break-
through events in electric drills by measuring changes in the current flow through the  motor29, which is however 
not suited for all types of surgical drills, such as pneumatic drills.

Because bone tissue consists of substructures with different density (cortical bone, cancellous bone and 
bone marrow), the friction between drill bit and tissue results in force and torque  differences30 and therefore in 
distinct vibrations for different tissue types during bone drilling. Drill breakthrough events result in an abrupt 
vibration change when perforating from high density cortical bone into soft tissue surrounding the bone. These 
distinct vibrations can be measured as acoustic signals. Therefore, acoustic-based drill state and breakthrough 
detection have been proposed in the literature as a low-cost and easy-to-integrate alternative to force/torque-
based solutions.

Acoustic-based drill state detection has been introduced to classify different types of bone tissue during drill-
ing by analyzing audio signals recorded from the area of operation. The first approaches achieved this task using 
signal processing-based techniques. A power spectral density based classification system was introduced by Sun 
et al. and evaluated in an experimental setup with five porcine scapulae using an air-borne room  microphone31. 
Yu et al. proposed a sound-based solution for distinguishing between cortical and cancellous bone during surgi-
cal milling utilizing a wavelet package transform energy based state  identification32.

Furthermore, learning-based approaches have been proposed to classify drill vibration signals based on prior 
knowledge. Boesnach et al. developed a method to analyze drill sounds in spine surgery by applying neural 
networks, support vector machines (SVM) and Hidden Markov Models (HMM)33 to spectral density estimates. 
Zakeri et al. developed an experimental setup and learning-based classification method to distinguish between 
cortical and cancellous bone using six bovine tibiae by analyzing air-borne acoustic signals captured with a 
 microphone34. Their method is based on short-time Fourier transform (STFT) features in combination with a 
SVM classifier which achieved accuracies of up to 83%. In their follow-up research, they investigated different 
logistic regression, SVM, random forest (RF) and HMM classifiers and compared time and frequency features in 
regard to classification performance. The highest average accuracy of 84.3% could be achieved by using wavelet 
packet transform  features35. For the application in pedicle screw placement, a state recognition approach with 
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handcrafted features and a neural network classifier was proposed by Guan et al.36. They showed that the detection 
of different bone layers using acoustic emission signals is more accurate and precise compared to force/torque 
measurements in a bovine test specimen. The recognition rate was reported as 84.2%.

The task of drill breakthrough detection differs from the drill state classification problem, as short break-
through events have to be detected with high accuracy and as fast as possible. The aim is here to stop the drill 
after perforating the cortical bone to avoid damage to surrounding soft tissue. An automatic method to stop 
the drill when perforating a rat skull based on spectral density features and a SVM classifier was proposed by 
Pohl et al.37 for the application in fully automated animal surgery. In a recent work, Torun et al. proposed a drill 
breakthrough detection method based on parametric power spectral density estimation. By computing four 
frequency features and applying a neural network classifier they could reach a breakthrough detection accuracy 
of 92.37±1.09% in a 311.2ms time frame, using an artificial bone  model28 and acoustic signals captured with an 
air-borne microphone.

Drill breakthrough detection and state classification based on acoustic signals has been shown to be a prom-
ising approach to supervise the surgical drilling  process28,31,32,34–36. In prior work, studies have been conducted 
in an experimental setup using artificial bones or resected animal bone specimens and air-borne microphones 
attached to the drill or placed in close proximity to the area of operation. This is a limitation for the application 
in real surgery as the operating room is a noisy environment and the anatomy is not directly accessible because of 
surrounding soft tissue. To the best knowledge of the authors all previous studies implemented classical machine 
learning approaches, such as HMM, SVM or simple neural network classifiers. Recent advantages in deep learn-
ing methods for acoustic event classification have been shown to yield superior performances compared to 
classical  approaches38. These approaches typically employ higher dimensional feature representations, such as 
spectrograms, which enable the deep network to learn the optimal features itself during the training process. 
Furthermore, typical window lengths in acoustic breakthrough detection of 300ms , such as used  in28, achieved 
promising results and have been applied for robotic drilling applications, where the robot is programmed with a 
slow feeding rate. However, they are not sufficient for free-hand drilling supervision, as a surgeon can react just 
as fast as the automated  system22. To translate automated drill breakthrough detection into clinical use, adapta-
tions to the hardware and data acquisition setup, as well as the development of a robust and fast classification 
method are crucial. The main goal of this approach is preventing surgical errors in form of over-drilling into the 
adjacent soft tissue, therefore increasing the safety of intervention and reducing patient risk.

Cadaver experiments
In the following sections we will describe the experimental setup in detail, including recording hardware, conduc-
tion of the experiment and data preparation. Subsequently, the breakthrough detection method is introduced 
which is trained and validated on the dataset acquired in cadaver experiments.

Low‑cost contact microphone, impedance matching and amplification. Piezo-electric elements 
are made of crystalline material and produce small voltages when force or pressure is applied. This principle can, 
when amplified, be utilized to record vibrations as structure-borne sound from a surface by using piezo-electric 
elements as contact microphones. Structure-borne sounds have been shown to have great potential for analysis 
and information retrieval in medical  applications39. Due to the physical nature of piezo-electric elements, the 
output impedance of the contact microphone lies typically in the range of several M� . This results in an imped-
ance mismatch with microphone or line inputs of recorders or mixers, which usually have an input impedance in 
the range of a few k� . The mismatch results in high-pass filtering and poor transmission of signal energy in the 
low frequency region. Because we are interested in capturing also low-frequency components of the structure-
borne vibration signal for breakthrough detection, an impedance matching stage is necessary. Furthermore, a 
high common-mode rejection ratio (CMRR) is desired to minimize electromagnetic interference. We use a 48V 
phantom-powered impedance matching circuit designed by Alex Rice (circuit design available under: https:// 
www. zachp off. com/ resou rces/ alex- rice- piezo- pream plifi er/) and released under a Creative Commons Share-
Alike 3.0 license. This circuit combines impedance-matching with a shielded and balanced connection, which 
suits the needs of our application. As contact sensor, we utilize a standard piezo disk with a diameter of 27mm. 
The contact microphone, impedance matching stage and analog/digital conversion stage are modular and con-
nected through rugged XLR connector cables to allow different connection lengths for easy use.

To reduce the noise of the contact microphone and influence of electromagnetic fields, we electromagnetically 
shielded the entire circuit from piezo-element to the analog/digital converter and connected it to the system’s 
ground. Furthermore, before shielding, the piezo disk was covered in epoxy resin (WEICON GmbH & Co. KG, 
Münster, Germany) to make it rugged and avoid noise introduced by moving cables. Every cable connection 
(from piezo-element to impedance matching stage and from impedance matching stage to audio interface) is 
designed as balanced line to remove any electrical interference during signal transmission. This results in a highly 
sensitive and low-noise contact microphone which can be attached to the skin of patients to capture structure-
borne signals. For amplification and analog/digital conversion we use the PreSonus Studio 68 (PreSonus Audio 
Electronics, Inc., Baton Rouge, LA, USA) audio interface and the Audio Stream Input/Output (ASIO) low-latency 
driver. The microphone amplifiers have a frequency response of 20 Hz–20 kHz with a tolerance of ±0.15 dB.

Another advantage of our setup is its modular design, which allows the contact microphone to be used as 
a disposable surgical instrument. All components of the contact microphone are low-cost ( < 10 USD) and 
therefore suited for single-use. The whole hardware setup can be built with an associated cost of about 300 USD. 
Figure 1 provides an overview of the recording chain which was used in the experiments described in the fol-
lowing section.

https://www.zachpoff.com/resources/alex-rice-piezo-preamplifier/
https://www.zachpoff.com/resources/alex-rice-piezo-preamplifier/
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Cadaver study design and data acquisition. To build an experimental setup which is as realistic and 
close to a clinical scenario as possible, we used three fresh frozen and unresected human cadaveric hip speci-
mens to generate a dataset for training and validating the proposed network. An ethical approval for all ex-vivo 
experiments (Kantonale Ethikkommission Zurich, protocol number: 2020-01913), as well as informed consent 
from all subjects involved in this study and/or their legal guardians has been obtained. The experiments were 
conducted by a trained physician according to relevant guidelines and regulations. None of the cadavers used 
in our experiment had a record of previously assessed osteoporosis. The specimens were thawed, prepared, and 
incision in the lower extremities were made to access the area of operation at the proximal femur until the upper 
shaft of the anterior femur. For the surgical approach we used a direct transmuscular access for optimal presen-
tation of the femur. The incisions were executed by intersecting the midline of the musculus quadriceps longi-
tudinally with a scalpel and detaching it anteriorly from the surface of the femur. We then attached two contact 
microphones to the specimen’s skin surface using kinesiology tape. As illustrated in Fig. 2, one microphone was 
attached about 2 cm next to the incision to minimize the distance that the acoustic waves propagate from source 
to microphone through the soft tissue, referred to as diaphysis position. The medical expert placed the second 
microphone on the skin where the greater trochanter is located. This placement was chosen because acoustic 
waves propagate well through bony tissue, a principle which has already been applied for bone quality assess-
ment of long  bones40, and the bone structure is easily identifiable for consistent placement in a clinical scenario. 

Figure 1.  The recording chain consisting of (a) a shielded piezo contact microphone, (b) an impedance 
matching stage, and (c) an analog/digital conversion and amplification stage which allows to capture recordings 
from four sensors in parallel.

Figure 2.  The experimental setup with a human cadaveric hip specimen. Two microphones are attached to the 
specimen’s skin surface with kinesiology tape to permit synchronously recording in parallel. The contact sensors 
are placed (a) at the trochanter major and (b) next to the incision, in diaphysis position.
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The effects of different sensor placement on drill breakthrough detection accuracy have been evaluated in this 
study as well and are presented in the section “Comparison of microphone positioning”.

We utilized a Colibri II battery powered drill (DePuy Synthes, Raynham, MA, USA) which is a standard power 
tool used in orthopedic surgery and a drill bit with a diameter of 3.2mm to drill holes into the femur. To create 
as realistic acoustic conditions as possible and to stabilize the drill on the periosteum, a tissue guard was used as 
seen in the Fig. 2. The drill bit was then placed in a right angle on the exposed periosteum of the anterior surface 
of the proximal femur and drilled in a continuous clockwise rotation. To be able to separate the recordings and 
assign them to the respective class, we recorded the breakthrough sequence from drilling through the second 
cortical layer of the femur until breaking through into the adjacent soft tissue. For each cadaver, we recorded 
data from both the left and right hip resulting in a total number of six individual bones. Overall, we captured 
audio recordings from 136 individual drill holes and respective breakthrough events in the experimental setup 
illustrated in Fig. 2. On average, about 22 holes were drilled in each femur, which corresponds to a realistic 
clinical scenario, as big Locking Compression Plates (LCP) plates with 20 and more holes exist for large bones.

After capturing, the recordings were manually cut, labelled and separated into two subsets 
C := {cortical, breakthrough} , where ci denotes the respective class. We thoroughly identified each breakthrough 
sequence in the audio recordings by repeated acoustic and visual inspection in the respective spectrogram. In this 
context, the class c1 , cortical, contains samples of drilling cortical bone and the class c2 , breakthrough, contains 
samples of drill breakthrough events. All recordings processed within the digital audio workstation software 
REAPER. The samples were rendered without further application of software gain or processing. The record-
ings were captured with a sample rate of 44.1kHz and a bit depth of 24 bit. With a buffer size of 128 samples, 
the ASIO driver latency was measured as 6.8ms . In this configuration, up to four contact microphones can be 
recorded synchronously in parallel.

Breakthrough detection method
Pre‑processing, feature extraction, data augmentation. Spectrogram features are the dominant 
representation in deep learning for audio signal  processing38. They have been shown to yield superior classifi-
cation performances and achieve promising results in combination with convolutional neural network-based 
architectures for  speech42, audio event  detection43, and medical  applications44. Log-mel spectrograms, a widely-
used spectrogram variant, are two-dimensional matrices with time windows as columns, mel-bins (frequency) 
as rows, and amplitude as scalar values contained in the matrix. Because of their grid-like regular structure, they 
are well suited to be processed using CNN classifiers. To compute log-mel spectrograms, the discrete signal was 
first segmented with a rectangular sliding window into short frames x : [0 : L− 1] := {0, 1, . . . , L− 1} → R 
of length L with 75% overlap. Short-Time Fourier Transformation (STFT) for each framed clip was computed 
using:

Equation (2) denotes the Hann window function of length N, used for Eq. (1) to avoid spectral leakage45. The 
sliding window was shifted across the signal, using a step size specified by the parameter H, in samples. The 
resulting matrix X is a STFT spectrogram and contains the kth Fourier coefficient for the mth time frame.

To evaluate the performance of the proposed system in regard to the window length used for spectrogram 
generation, we implemented different hop lengths H = {64, 32, 16} for the window lengths evaluated in this 
paper, L = {4410, 2205, 1102} , respectively, to keep the final spectrogram dimensions constant. The result was 
converted to a power spectrogram representation by squaring the amplitude and subsequently mapped to a 
logarithmic decibel scale by computing:

For transferring the matrix to the Mel scale, the result was filtered in the spectral domain with a triangular 
shaped Mel filter bank. The triangular filters are spaced evenly on the Mel scale which can be calculated from 
frequency with Eq. (4).

The log-mel spectrogram representation provides sparse, high resolution features for audio  sources46. A 
total number of 256 Mel filter bands were applied to combine the Fast Fourier Transform (FFT) bins into Mel-
frequency bins. All spectrograms were normalized by Xnorm,mel = (Xmel − µ)/σ , where ( µ ) is mean and ( σ ) is 
the standard deviation computed over the entire training data.

Because the length of the breakthrough events is in the range of 100 to 250ms and much shorter compared to 
non-breakthrough sequences in our dataset, the number of spectrograms computed for the non-breakthrough 
class is more than an order of magnitude larger. This results in a highly unbalanced dataset. To balance the 
dataset, we use a data augmentation strategy and apply it to the underrepresented class by varying the gain 
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( −5dB, 5dB ), as well as applying time stretching (0.5, 0.7, 1.2, 1.5 times play rate) and pitch shifting ( −3 , −1 , +1 , 
+3 semitones) to the breakthrough event training samples.

A high-level overview of the pre-processing pipepline is illustrated in Fig. 3 in the left part of the Figure. All 
spectrograms were computed using the python library librosa 0.7.247, are of size 256x69x1 and serve as input for 
the convolutional neural network architecture which is described in detail in the following paragraph.

Deep learning model and training. The deep residual network (ResNet)  architecture41 has been shown 
to perform exceptionally well on spectrogram-based audio classification  tasks48. Because our aim is to develop a 
low-latency and reactive system we chose to implement a 18-layer ResNet variant which enables fast  inference49. 
We found empirically to achieve the best results with a slightly modified architecture, stacking a global aver-
age pooling  layer50, a dropout layer with a dropout rate of 0.5, a fully connected (FC) layer with 1024 neurons, 
another dropout and an output FC layer on top of ResNet-18’s final batch normalization layer. By introducing 
additional dropout layers for regularization, we reduce the model’s tendency towards overfitting. The final model 
has a total number of 11,715,393 parameters and its architecture is illustrated in Fig. 3.

To handle the problem of imbalanced data, we apply the Focal Loss51 as loss function for training. For imbal-
anced datasets, standard crossentropy is inefficient, as most samples fed to the network are classified with large 
confidence and therefore contribute no useful learning signal. The Focal Loss influences the network to focus on 
the underrepresented class which in our case corresponds to the breakthrough events that are crucial to detect 
with high accuracy for our particular application. The Focal Loss function is defined as:

The factors γ and αt are introduced as focusing and balancing parameter, respectively. In our implementation 
we use the by Lin et al. empirically determined optimal values αt = 0.25 and γ = 251. The variable pt is defined 
for convenience, where p corresponds to the estimated probability for the class with label y = 1 . We trained the 
model end-to-end on the spectrogram features explained in the section “Pre-processing, feature extraction, data 
augmentation” using the Adam optimizer and reduced the learning rate when stagnating loss was observed over 
three epochs by a factor of 10.

Model, training and inference were implemented using the open-source deep learning library TensorFlow 
2.2 and run on a NVIDIA GeForce RTX 2080 SUPER GPU. All results presented in the following sections have 
been evaluated using 5-fold cross-validation.

Results
We split the evaluation section into three parts. First, we present the best performing variant of the proposed 
detection method and analyze the influence of design decisions on our detection pipeline. Afterwards, we com-
pare the two microphone positions described in the section “Cadaver experiments” by analyzing the performance 
using synchronously acquired audio data. Subsequently, we evaluate different sliding window lengths L to assess 
the trade-off between detection latency and accuracy.

(5)FL(pt) = −αt(1− pt)
γ log(pt), where pt =

{

p if y = 1

1− p otherwise

waveform

spectrogram

rectangular 
sliding windows
+ normalization
+ augmentation

a b c d

Global
Average
Pooling

Dropout
0.5

1024

FC

FC
512

256x69x1

ResNet-18

4x2x512

Dropout
0.5

Figure 3.  A breakthrough sequence with a total length of about 1 s , taken from the dataset acquired during the 
cadaver experiments. The raw waveform was split into frames by applying a rectangular sliding window and 
mel spectrogram features were computed. For better illustration, the spectrograms in this Figure are plotted 
using a colormap, however, the features used in the implementation of this work are two-dimensional only. 
Furthermore, the window length is chosen arbitrarily for better visualization and is not representative for the 
windows which have been evaluated in this work and are much shorter. Frames (a) to (c) correspond to the non-
breakthrough class, in frame (d) the breakthrough event is present and visible in the spectrogram. The features 
were normalized and augmented which is described in detail in the section “Pre-processing, feature extraction, 
data augmentation”. A modified ResNet-1841 architecture, which is introduced in the section “Deep learning 
model and training”, was implemented to classify breakthrough events from spectrogram features. The output 
dimensions of each pipeline stage are given in red color.
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Detection accuracy and performance. Figure 4 shows the confusion matrix for the best performing 
variant of our proposed algorithm, evaluated on the independent test set with a 100ms rectangular sliding win-
dow and for the data recorded in greater trochanter position. We measured a mean overall accuracy of 97.29% 
in the training and 91.90% in the test phase. The recall (sensitivity) of correctly detecting breakthrough events, 
which is the main performance measure for our application, is measured as 93.64± 2.42%.

Compared to the original ResNet-18  implementation41, we implemented several modifications which resulted 
in a performance gain. First, we modified the ResNet-18 architecture by including additional dropout and dense 
(FC) layers as described in the section “Deep learning model and training”. Through these modifications, we 
could boost the performance of the classification pipeline by about 3.5% for breakthrough recall. By implement-
ing the Focal Loss as described in the section “Deep learning model and training” instead of the standard cros-
sentropy loss, we could furthermore increase the model’s sensitivity for breakthrough event detection by 11.2%.

Comparison of microphone positioning. We synchronously captured all recordings with two micro-
phones in different positions as described in the section “Cadaver experiments”. One microphone was positioned 
directly above the greater trochanter to exploit the bone conductivity of acoustic waves. The second microphone 
was placed next to the incision (diaphysis position) to minimize the distance that the sound waves propagate 
through the soft tissue. The experimental setup and microphone positions are illustrated in Fig. 2. We treat the 
data acquired from the individual microphones as independent datasets to compare the microphone positions 
in regard to the resulting detection accuracy using a rectangular sliding window length of L = 4410 samples 
(100ms).

In comparison to the results for the data recorded in greater trochanter position and illustrated in Fig. 4, it can 
be observed in Fig. 5 that positioning the microphone in diaphysis position yields inferior detection performance. 
The recall for detecting breakthrough events is lowered by roughly 3% to 90.61± 1.77%.

0.06±
0.024

0.10±
0.021

0.90±
0.021

0.94±
0.024

Figure 4.  The normalized confusion matrix for a rectangular sliding window size of length L = 4410 samples 
which corresponds to a time frame of 100ms , recorded in the greater trochanter position.

0.91±
0.018

0.09±
0.018

0.11±
0.013

0.89±
0.013

Figure 5.  The normalized confusion matrix for a rectangular sliding window size of length L = 4410 samples 
which corresponds to a time frame of 100ms , recorded in the diaphysis position.
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For evaluating the influence of the window length L in the following section, we focus on the dataset recorded 
by the microphone in the greater trochanter position.

Comparison of window lengths. The length L of the rectangular sliding window determines the detec-
tion latency. With decreasing window length, the system is able to provide a detection result faster, as the audio 
chunk has to be acquired before it can be fed into the classification pipeline. However, the smaller the audio 
frame, the less information can be used by the network for feature extraction. We evaluated three window 
lengths, 100ms , 50ms and 25ms to gain insights about the performance of the proposed pipeline in comparison 
to the latency. We did not evaluate larger window lengths, as the shortest samples of breakthrough events are 
only a few ms longer than 100ms.

To investigate the influence of shorter window lengths, we systematically reduced the window length and 
evaluated the detection performance which is illustrated in Table 1. By lowering the frame length, the sensitivity 
for breakthrough detection and for classification of non-breakthrough samples is reduced. In general, it can be 
observed that the model’s performance decreases with shorter window lengths.

In Table 2, we show the measured execution time for each part of the proposed pipeline and the total execu-
tion time for one pass for a sample through the pipeline, given for different window lengths. All presented 
results have been averaged over 100 passes through the pipeline. Because we keep the spectrogram dimensions 
constant, spectrogram generation and ResNet-18 inference show very similar measured duration. We compare 
the above presented results to the average surgeon reaction time as measured in a previous study by Boom-Saad 
et al.22 in Fig. 6.

Discussion
Automated drill breakthrough detection is a promising approach for reducing the risk of surgical errors and 
iatrogenic injuries during the drilling process. To the best knowledge of the authors, our proposed method out-
performs the results of all previous published work, for example Torun et al., who used 300ms windows combined 
with handcrafted frequency features and achieved a detection sensitivity of 92.37± 1.09 % for breakthrough 
detection in a simplified experimental setup based on a single artificial bone  model28. Our best performing 
algorithm variant achieves a breakthrough detection sensitivity of 93.64± 2.42 % using a 100ms window. We 

Table 1.  Comparison of window length.

Window length (ms) Sensitivity breaktrough % Sensitivity cortical %

25 84.38± 2.69 75.58± 2.55

50 88.49± 3.88 82.52± 1.84

100 93.64± 2.42 90.16± 2.09

Table 2.  Pipeline execution times.

Pipeline stage Execution (ms) Execution (ms) Execution (ms)

ASIO driver latency 6.8 6.8 6.8

Window length 25 50 100

Spectrogram generation 7.01 6.92 6.98

ResNet-18 inference 25.03 25.02 25.51

Total execution time 63.84 88.74 139.29

surgeon
reaction

time

Time [ms]

Figure 6.  Pipeline execution speed and detection performance in comparison with surgeon reaction time, 
which has been measured to be in the range of 313 to 358ms and degrading with advancing  age22. The execution 
times 63.84ms , 88.74ms and 139.29ms correspond to window lengths of 25ms , 50ms and 100ms , respectively, as 
explained in the section “Comparison of window lengths”.
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showed that our method performs well, even when reducing window lengths down to 25ms . We are not only 
using much shorter window lengths, but also transferred breakthrough detection to pre-clinical experiments 
using human cadavers with soft tissues to mimic a realistic surgical intervention.

Low-latency detection is crucial to stop the drill as fast as possible when a breakthrough event is observed. 
The total latency of the best performing variant of our algorithm amounts to 139.29ms . However, by reducing 
the window length we still achieve sensitivities of 88.49± 3.88 % in 88.74ms and 84.38± 2.69 % in 63.84ms for 
breakthrough detection. The larger the observed window, the more temporal context is provided to the model 
as basis for feature extraction and classification. As the performance of our solution still reaches fairly high clas-
sification accuracies with short window length, the trade-off between accuracy and latency has to be chosen for 
the particular application. The detection speed of our pipeline clearly outperforms the human reaction time and 
has therefore great potential to increase the safety during drilling in surgery .

Using easy-to-integrate contact microphones, we acquired structure-borne audio signals during drilling 
execution directly from the skin surface with very little noise disturbances. Acquiring a dataset in a realistic 
scenario such as cadaveric experiments has the advantage of capturing realistic characteristics of structure-borne 
acoustic signal dampening through soft tissue which is not possible to simulate with artificial bone models or 
prepared bones. Concerning the positioning of the contact microphones, our results show that the sounds cap-
tured in greater trochanter position yield better classification performance, compared to placing the microphone 
close to the incision in the diaphysis position. By exploiting the bone conductivity of acoustic waves and at the 
same time providing a reproducible positioning of the microphone, the greater trochanter position is optimal 
for the task of drill breakthrough detecting with contact sensors in hip surgery.

We believe that the deep-learning based analysis of structure-borne acoustic signals is a promising approach 
to supervise the surgical drilling process and that the proposed solution paves the path for deployment and 
testing the approach in real surgery. However, to translate the proposed system into clinical use in the operat-
ing room, the following limitations of the presented study have to be overcome. A clinical study is necessary to 
evaluate the reliability and robustness of the solution in-vivo. Furthermore, the performance of the algorithm 
could potentially be further improved by increasing the size of the dataset to expand the model’s capability for 
generalization, including multiple surgeons and different anatomies. The proposed hardware setup, illustrated 
in detail in Fig. 1, is modular, low-cost and the contact microphones can be replaced easily. However, the the 
sterilizability of the electrically shielded contact sensor (part a in Fig. 1) has to be investigated and validated. 
We did not measure the frequency transmission characteristics of the deployed circuitry explicitly, however the 
presented configuration enables high quality and low-noise audio recordings and increased bandwidth of the 
piezo element through impedance matching. Even though we thoroughly labelled each breakthrough sequence 
in the audio recordings by repeated acoustic (with professional studio-grade headphones) and visual inspection 
in the respective spectrogram (with high resolution in time), small uncertainties in the ground truth labelling 
process cannot be ruled out.

Currently, our system is running on a development computer, using high-end and high power hardware. 
To transfer the developed solution to an embedded solution, strategies such as model quantization can be 
employed to decrease the model size and resource  requirements52. In addition, it is crucial to stop the drill as 
soon as a breakthrough event is detected to reliably increase the safety of surgical procedures by automated drill 
breakthrough detection. To this end, a stopping mechanism or circuitry has to be integrated into the drill which 
should be able to stop the drill with as minimal additional latency as possible.

Conclusion
In this paper, we present a deep-learning based approach for automated drill breakthrough detection in orthope-
dic interventions using acoustic emission signals. We developed a hardware setup employing piezo-based contact 
microphones to capture vibration signals non-invasively from the skin surface. The proposed experimental setup 
was utilized to capture a dataset of drill vibration signals from six human cadaveric hips.

Our classification pipeline reaches a sensitivity of 93.64± 2.42 % on the task of drill breakthrough detection, in 
a total execution time of 139.29ms . Faster versions of our solution yield a sensitivity of 88.49± 3.88 % in 88.74ms 
and 84.38± 2.69 % in 63.84ms execution time. We show, that the proposed system is able to detect breakthrough 
events with high accuracy while being multiple times faster than the reaction time of trained surgeons. In addi-
tion, we evaluated different positioning of the contact sensors and observed that best results can be obtained 
by exploiting the conductivity of acoustic waves through bone tissue and placing the microphone as close as 
possible to subcutaneous bony structures.

The proposed solution has great potential to be used as a system for error prevention in surgery by preventing 
a damage to soft tissue and vital adjacent structures during bone drilling. Because drilling is an essential part in 
the vast majority of orthopedic interventions, the proposed system could have a great impact on patient safety and 
surgery outcome. Our exemplary application shows that acoustic sensing offers a very accurate, easy-to-integrate 
and low-cost approach to prevent errors in surgery which can be easily transferred to other surgical applications.
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