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Learning neural network potentials from
experimental data via Differentiable Trajectory
Reweighting
Stephan Thaler 1✉ & Julija Zavadlav 1,2✉

In molecular dynamics (MD), neural network (NN) potentials trained bottom-up on quantum

mechanical data have seen tremendous success recently. Top-down approaches that learn

NN potentials directly from experimental data have received less attention, typically facing

numerical and computational challenges when backpropagating through MD simulations. We

present the Differentiable Trajectory Reweighting (DiffTRe) method, which bypasses differ-

entiation through the MD simulation for time-independent observables. Leveraging ther-

modynamic perturbation theory, we avoid exploding gradients and achieve around 2 orders of

magnitude speed-up in gradient computation for top-down learning. We show effectiveness

of DiffTRe in learning NN potentials for an atomistic model of diamond and a coarse-grained

model of water based on diverse experimental observables including thermodynamic,

structural and mechanical properties. Importantly, DiffTRe also generalizes bottom-up

structural coarse-graining methods such as iterative Boltzmann inversion to arbitrary

potentials. The presented method constitutes an important milestone towards enriching NN

potentials with experimental data, particularly when accurate bottom-up data is unavailable.
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Molecular modeling has become a cornerstone of many
disciplines, including computational chemistry, soft
matter physics, and material science. However, simu-

lation quality critically depends on the employed potential energy
model that defines particle interactions. There are two distinct
approaches for model parametrization1,2: Bottom-up approaches
aim at matching data from high-fidelity simulations, providing
labeled data of atomistic configurations with corresponding target
outputs. Labeled data allow straightforward differentiation for
gradient-based optimization, at the expense of inherently limiting
model accuracy to the quality imposed by the underlying data-
generating simulation. On the other hand, top-down approaches
optimize the potential energy model such that simulations match
experimental data. From experiments, however, labeled data on
the atomistic scale are not available. Experimental observables are
linked only indirectly to the potential model via an expensive
molecular mechanics simulation, complicating optimization.

A class of potentials with tremendous success in recent years
are neural network (NN) potentials due to their flexibility and
capacity of learning many-body interactions3,4. The vast majority
of NN potentials are trained via bottom-up methods5–16. The
objective is to match energies and/or forces from a data set, most
commonly generated via density functional theory (DFT) for
small molecules in vacuum17. Within the data set distribution,
state-of-the-art NN potentials have already reached the accuracy
limit imposed by DFT, with the test error in predicting potential
energy being around two orders of magnitude smaller than the
corresponding expected DFT accuracy11,18. In the limit of a
sufficiently large data set without a distribution shift19,20 with
respect to the application domain (potentially generated via active
learning approaches21), remaining deviations of predicted
observables from experiments are attributable to uncertainty in
DFT simulations11—in line with literature reporting DFT being
sensitive to employed functionals22. More precise computational
quantum mechanics models, e.g., the coupled cluster CCSD(T)
method, improve DFT accuracy at the expense of significantly
increased computational effort for data set generation23,24.
However, for larger systems such as macromolecules, quantum
mechanics computations will remain intractable in the foresee-
able future, preventing ab initio dataset generation altogether.
Thus, the main obstacle in bottom-up learning of NN potentials
is the currently limited availability of highly precise and suffi-
ciently broad data sets.

Top-down approaches circumvent the need for reliable data-
generating simulations. Leveraging experimental data in the
potential optimization process has contributed greatly to
the success of classical atomistic25,26 and coarse-grained27 (CG)
force fields1. Training difficulties have so far impeded a similar
approach for NN potentials: Only recent advances in automatic
differentiation (AD)28 software have enabled end-to-end differ-
entiation of molecular dynamics (MD) observables with respect
to potential energy parameters29,30, by applying AD through the
dynamics of a MD simulation29–32. This direct reverse-mode AD
approach saves all simulator operations on the forward pass to be
used during gradient computation on the backward pass, result-
ing in excessive memory usage. Thus, direct reverse-mode AD for
systems with more than hundred particles and a few hundred
time steps is typically intractable29–32. Numerical integration of
the adjoint equations33,34 represents a memory-efficient alter-
native that requires to save only those atomic configurations that
directly contribute to the loss. However, both approaches back-
propagate the gradient through the entire simulation, which
dominates computational effort and is prone to exploding gra-
dients, as stated by Ingraham et al.31 and shown below.

Addressing the call for NN potentials trained on experimental
data1, we propose the Differentiable Trajectory Reweighting

(DiffTRe) method. DiffTRe offers end-to-end gradient compu-
tation and circumvents the need to differentiate through the
simulation by combining AD with previous work on MD
reweighting schemes35–38. For the common use case of time-
independent observables, DiffTRe avoids exploding gradients and
reduces the computational effort of gradient computations by
around two orders of magnitude compared to backpropagation
through the simulation. Memory requirements are comparable to
the adjoint method. We showcase the broad applicability of
DiffTRe on three numerical test cases: First, we provide insight
into the training process on a toy example of ideal gas particles
inside a double-well potential. Second, we train the state-of-the-
art graph neural network potential DimeNet++11,12 for an ato-
mistic model of the diamond from its experimental stiffness
tensor. Finally, we learn a DimeNet++model for CG water based
on pressure, as well as radial and angular distribution functions.
The last example shows how DiffTRe also generalizes bottom-up
structural coarse-graining methods such as the iterative Boltz-
mann inversion39 or inverse Monte Carlo40 to many-body cor-
relation functions and arbitrary potentials. DiffTRe allows to
enhance NN potentials with experimental data, which is parti-
cularly relevant for systems where bottom-up data are unavailable
or not sufficiently accurate.

Results
Differentiable Trajectory Reweighting. Top-down potential
optimization aims to match the K outputs of a molecular
mechanics simulation O to experimental observables ~O. There-
fore, the objective is to minimize a loss function L(θ), e.g., a
mean-squared error (MSE)

LðθÞ ¼ 1
K

∑
K

k¼1
hOkðUθÞi � ~Ok

� �2
; ð1Þ

where 〈〉 denotes the ensemble average, and 〈Ok(Uθ)〉 depends on
the potential energy Uθ parametrized by θ. We will focus on the
case where a MD simulation approximates 〈Ok(Uθ)〉—with
Monte Carlo41 being a usable alternative. With standard
assumptions on ergodicity and thermodynamic equilibrium, the
ensemble average 〈Ok(Uθ)〉 is approximated via a time average

hOkðUθÞi ’
1
N

∑
N

i¼1
OkðSi;UθÞ ; ð2Þ

where fSigNi¼1 is the trajectory of the system, i.e., a sequence of N
states consisting of particle positions and momenta. Due to the
small time step size necessary to maintain numerical stability in
MD simulations, states are highly correlated. Subsampling, i.e.,
only averaging over every 100th or 1000th state, reduces this
correlation in Eq. (2).

As the generated trajectory depends on θ, every update of θ
during training would require a re-computation of the entire
trajectory. However, by leveraging thermodynamic perturbation
theory42, it is possible to re-use decorrelated states obtained via a
reference potential θ̂. Specifically, the time average is reweighted
to account for the altered state probabilities pθ(Si) from the
perturbed potential θ35,36,42:

hOkðUθÞi ’ ∑
N

i¼1
wiOkðSi;UθÞ with wi ¼

pθðSiÞ=pθ̂ðSiÞ
∑N

j¼1 pθðSjÞ=pθ̂ðSjÞ
:

ð3Þ
Assuming a canonical ensemble, state probabilities follow the
Boltzmann distribution pθðSiÞ � e�βHðSiÞ, where H(Si) is the
Hamiltonian of the state (sum of potential and kinetic energy),
β= 1/(kBT), kB Boltzmann constant, T temperature. Inserting
pθ(Si) into Eq. (3) allows computing weights as a function of θ
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(the kinetic energy cancels)

wi ¼
e�βðUθðSiÞ�U θ̂ðSiÞÞ

∑N
i¼j e

�βðUθðSjÞ�U θ̂ðSjÞÞ
: ð4Þ

For the special case of θ ¼ θ̂, wi= 1/N, recovering Eq. (2). Note
that similar expressions to Eq. (4) could be derived for other
ensembles, e.g., the isothermal–isobaric ensemble, via respective
state probabilities pθ(Si). In practice, the reweighting ansatz is
only applicable given small potential energy differences. For large
differences between θ and θ̂, by contrast, few states dominate the
average. In this case, the effective sample size37

Neff � e�∑N
i¼1 wiln ðwiÞ ð5Þ

is reduced and the statistical error in 〈Ok(Uθ)〉 increases (Eq. (3)).
Reweighting can be exploited for two purposes that are linked

to speedups in the forward and backward pass, respectively: first,
reweighting reduces computational effort as decorrelated states
from previous trajectories can often be re-used37. Second, and
most importantly, reweighting establishes a direct functional
relation between 〈Ok(Uθ)〉 and θ. This relation via w provides an
alternative end-to-end differentiable path for computing the
gradient of the loss ∇θL: differentiating through the reweighting
scheme replaces the backward pass through the simulation.
Leveraging this alternative differentiation path, while managing
the effective sample size Neff, are the central ideas behind the
DiffTRe method.

The workflow of the DiffTRe algorithm consists of the
following steps: first, an initial reference trajectory is generated
from the canonical ensemble, e.g., via a stochastic or deterministic
thermostat, from an initial state Sinit and reference potential θ̂
(Fig. 1a). Initial equilibration states are disregarded and the
following states are subsampled yielding decorrelated states
fSigNi¼1. Together with their reference potential energies
fU θ̂ðSiÞgNi¼1, these states are saved for re-use during reweighting.
In the next step, the reweighting scheme is employed to compute
∇θL with respect to current parameters θ, where initially θ ¼ θ̂.
An optimizer subsequently uses ∇θL to improve θ. This
procedure of reweighting, gradient computation and updating is

repeated as long as the statistical error from reweighting is
acceptably small, i.e., Neff is larger than a predefined �Neff . As soon
as Neff < �Neff , a new reference trajectory needs to be sampled
using the current θ as the new θ̂. At least one θ update per
reference trajectory is ensured because initially Neff=N. Using
the last generated state SN as Sinit for the next trajectory
counteracts overfitting to a specific initial configuration. In
addition, pθ̂ðSinitÞ is reasonably high when assuming small update
steps, reducing necessary equilibration time for trajectory
generation. Saving only fSigNi¼1 and fU θ̂ðSiÞgNi¼1 from the
simulation entails low-memory requirements similar to the
adjoint method. DiffTRe assumes that deviations in predicted
observables are attributable to an inaccurate potential Uθ rather
than a statistical sampling error. Accordingly, N and the
subsampling ratio n need to be chosen to yield a sufficiently
small statistical error. Optimal values for N and n depend on the
specific system, target observables, and the thermodynamic-state
point.

Computation of ∇θL via reverse-mode AD through the
reweighting scheme comprises a forward pass starting with
computation of the potential Uθ(Si) and weight wi for each Si (Eq.
(4); Fig. 1a). Afterward, reweighted observables 〈Ok(Uθ)〉 (Eq. (3))
and the resulting loss L(θ) (Eq. (1)) are calculated. The
corresponding backward pass starts at L(θ) and stops at
parameters θ in the potential energy computation Uθ(Si). The
differentiation path defined by the reweighting ansatz is therefore
independent of the trajectory generation.

Evaluation of Uθ(Si) (Fig. 1b) involves computing the pairwise
distance matrix D from atom positions of Si, that are fed into a
learnable potential Umodel

θ and a prior potential Uprior. Both
potential components are combined by adding the predicted
potential energies

UθðSiÞ ¼ Umodel
θ ðDÞ þ UpriorðDÞ: ð6Þ

In subsequent examples of diamond and CG water, Umodel
θ is a

graph neural network operating iteratively on the atomic graph
defined by D. Uprior is a constant potential approximating a
priori-known properties of the system, such as the Pauli exclusion
principle (e.g., Eq. (12)). Augmenting NN potentials with a prior

Fig. 1 Differentiable Trajectory Reweighting (DiffTRe). a Based on an initial state Sinit and reference potential parameters θ̂, a reference trajectory is
generated, of which only subsampled states are retained (blue diamonds), while the majority of visited states are discarded (gray diamonds). For each
retained state Si (represented by a generic molecular system), the potential energy Uθ(Si) and weight wi are computed under the current potential
parameters θ. wi allow computation of reweighted observables 〈Ok(Uθ)〉, the loss L(θ), its gradient ∇θL and subsequently, updating θ via the optimizer. The
updating procedure is repeated until the effective sample size Neff < �Neff, at which point a new reference trajectory needs to be generated starting from the
last sampled state SN. b Computation of Uθ(Si) from the pairwise distance matrix D, which is fed into the learnable potential Umodel

θ (e.g., a graph neural
network—GNN) and Uprior (e.g., a pairwise repulsive potential).
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is common in the bottom-up coarse-graining literature8,10 to
provide qualitatively correct behavior in regions of the potential
energy surface (PES) not contained in the dataset, but reachable
by the CG model. By contrast, DiffTRe does not rely on pre-
computed data sets. Rather, the prior serves to control the data
(trajectory) generation in the beginning of the optimization. In
addition, Uprior reformulates the problem from learning Umodel

θ
directly to learning the difference between Uprior and the optimal
potential given the data10. A well-chosen Uprior therefore
represents a physics-informed initialization accelerating training
convergence. Suitable Uprior can often be found in the literature:
Classical force fields such as AMBER25 and MARTINI27 define
reasonable interactions for bio-molecules and variants of the
Embedded Atom Model43 (EAM) provide potentials for metals
and alloys. Note that Uprior is not a prior in the Bayesian sense
providing a pervasive bias on learnable parameters in the small
data regime. If Uprior is in contradiction with the data, Umodel

θ will
correct for Uprior as a result of the optimization. In the next
section, we further illustrate for a toy problem the interplay
between prior, gradients and the learning process in DiffTRe, and
provide a comparison to direct reverse-mode AD through the
simulation.

Double-well toy example. We consider ideal gas particles at a
temperature kBT= 1 trapped inside a one-dimensional double-
well potential (Fig. 2a) parametrized by

UðxÞ ¼ kBT � 2500ðx � 0:5Þ6 � 10ðx � 0:55Þ2� �
: ð7Þ

The goal is to learn θ such that UθðxÞ ¼ Umodel
θ ðxÞ þ UpriorðxÞ

matches U(x). We select a cubic spline as Umodel
θ , which acts as a

flexible approximator for twice continuously differentiable func-
tions. The cubic spline is parametrized via the potential energy

values of 50 control points fxj;Ujg50j¼1
evenly distributed over

x∈ [0, 1]. Analogous to NN potentials in subsequent problems,
we randomly initialize Uj � N ð0; 0:012kBTÞ. Initializing Uj= 0
leads to largely identical results in this toy problem. The har-
monic single-well potential Uprior(x)= λ(x − 0.5)2, with scale
λ= 75, encodes the prior knowledge that particles cannot escape
the double-well. We choose the normalized density profile ρ(x)/ρ0
of ideal gas particles as the target observable. The resulting loss
function is

L ¼ 1
K

∑
K

k¼1

hρðxkÞi
ρ0

� ~ρðxkÞ
ρ0

� �2

; ð8Þ

where ρ(x) is discretized via K bins. 〈ρ(xk)〉 are approximated
based on N= 10,000 states after skipping 1000 states for equili-
bration, where a state is retained every 100 time steps. We
minimize Eq. (8) via an Adam44 optimizer with learning rate
decay. For additional DiffTRe and simulation parameters, see
Supplementary Method 1.1.

Initially, ρ/ρ0 resulting from Uprior(x) deviates strongly from
the target double-well density (Fig. 2b). The loss curve illustrates
successful optimization over 200 update steps (Fig. 2c). The wall-
clock time per parameter update Δt clearly shows two distinct
levels: at the start of the optimization, update steps are rather
large, significantly reducing Neff. Hence a new reference trajectory
generation is triggered with each update (average Δt ≈ 39.2 s).
Over the course of the simulation, updates of Umodel

θ ðxÞ become
smaller and reference trajectories are occasionally re-used
(average Δt ≈ 2.76 s). After optimization, the target density is
matched well. The learned potential energy function Uθ(x)
recovers the data-generating potential U(x) (Supplementary
Fig. 1a); thus, other thermodynamic and kinetic observables will
match reference values closely. However, this conclusion does not

Fig. 2 Double-well toy example. a Sketch of the double-well and prior potential with corresponding example states of ideal gas particles (green circles).
The learned potential results in a normalized density ρ/ρ0 (over the normalized position x/X) that matches the target closely (b). Successful learning is
reflected in the loss curve L, where a significant reduction in wall-clock time per parameter update Δt towards the end of the optimization is achieved
through re-using previously generated trajectories (c). Gradients computed via DiffTRe have constant magnitudes while gradients obtained from direct
reverse-mode automatic differentiation through the simulation suffer from exploding gradients for longer trajectories (d).
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apply in realistic applications, where learned potentials are in
general not unique2 due to the limited number of target
observables that can be considered in practice.

The effect of Uprior on the training process is twofold: First, by
encoding prior knowledge, it simplifies convergence, as Umodel

θ ðxÞ
only needs to adapt the single-well prior instead of learning large
energy barriers from scratch. Second, Uprior also impacts the
information content of the gradient by controlling the generation
of trajectories in the beginning of the optimization (Eq. (15)). The
local support of the cubic spline allows analyzing this relation
empirically (Supplementary Fig. 2): The gradient is nonzero only
in regions of the PES that are included in the reference trajectory.
Hence, other regions of the PES are not optimized despite
delivering a nonzero contribution to the loss. A well-chosen prior
potential should therefore yield trajectories that are as close as
possible to trajectories sampled from the true potential. However,
satisfactory learning results can be obtained for a sensible range of
prior scales (Supplementary Fig. 3).

We study the robustness of our results by varying the random
seed that controls the initialization of the spline as well as the
initial particle positions and velocities. Results from the variation
study in Supplementary Fig. 4 demonstrate that the predicted
ρ(x)/ρ0 is robust to the random initialization. The corresponding
Uθ(x) exhibits some variance at the left well boundary, mirroring
difficult training in this region due to vanishing gradients for
vanishing predicted densities (Supplementary Fig. 2) and minor
influence of the exact wall position on the resulting density profile
(Supplementary Fig. 4a).

For comparison, we have implemented gradient computation
via direct reverse-mode AD through the simulation. This
approach clearly suffers from the exploding gradients problem
(Fig. 2d): The gradient magnitude increases exponentially as a
function of the simulation length. Without additional modifica-
tions (e.g., as implemented by Ingraham et al.31), these gradients
are impractical for longer trajectories. By contrast, gradients
computed via DiffTRe show constant magnitudes irrespective of
the simulation length.

To measure the speed-up over direct reverse-mode AD
empirically, we simulate the realistic case of an expensive
potential by substituting the numerically inexpensive spline with
a fully connected neural network with two hidden layers and 100
neurons each. We measure speedups of sg= 486 for gradient
computations and s= 3.7 as overall speed-up per update when a
new reference trajectory is sampled. However, these values are
rather sensitive to the exact computational and simulation setup.
Memory overflow in the direct AD method constrained trajectory
lengths to ten retained states and a single state for equilibration (a
total of 1100 time steps). Measuring speed-up for one of the real-
world problems below would be desirable, but is prevented by the
memory requirements of direct AD.

The measured speed-up values are in line with theoretical
considerations: While direct AD backpropagates through the
whole trajectory generation, DiffTRe only differentiates through
the potential energy computation of decorrelated states fSigNi¼1
(Fig. 1). From this algorithmic difference, we expect speed-up
values that depend on the subsampling ratio n, the number of
skipped states during equilibration Nequilib and the cost multiple
of backward passes with respect to forward passes G (details in
Supplementary Method 2)

sg � Gn 1þ Nequilib=N
� �

; s � Gþ 1 : ð9Þ

For this toy example setup, the rule-of-thumb estimates in Eq. (9)
yield sg= 330 and s= 4, agreeing with the measured values. In the
next sections, we showcase the effectiveness of DiffTRe in real-
world, top-down learning of NN potentials.

Atomistic model of diamond. To demonstrate the applicability of
DiffTRe to solids on the atomistic scale, we learn a DimeNet++12

potential for diamond from its experimental elastic stiffness tensor
C. Due to symmetries in the diamond cubic crystal, C only consists
of three distinct stiffness moduli ~C11 ¼ 1079 GPa, ~C12 ¼ 124 GPa
and ~C44 ¼ 578 GPa45 (in Voigt notation). In addition, we assume
the crystal to be in a stress-free state σ= 0 for vanishing infinite-
simal strain ϵ= 0. These experimental data define the loss

L ¼ γσ
9

∑
i¼3;j¼3

i¼1;j¼1
σ2ij þ

γC
3

ðC11 � ~C11Þ
2 þ ðC12 � ~C12Þ

2 þ ðC44 � ~C44Þ
2

� �
;

ð10Þ
where loss weights γσ and γC counteract the effect of different
orders of magnitude of observables. To demonstrate learning, we
select the original Stillinger–Weber potential46 parametrized for
silicon as Uprior. We have adjusted the length and energy scales to
σSW= 0.14 nm and ϵSW= 200 kJ/mol, reflecting the smaller size of
carbon atoms. We found learning to be somewhat sensitive to
Uprior in this example because weak prior choices can lead to
unstable MD simulations. Simulations are run with a cubic box of
size L ≈ 1.784 nm containing 1000 carbon atoms (Fig. 3a) to match
the experimental density (ρ= 3512 kg/m3)45 exactly. The tem-
perature in the experiment (T= 298.15 K45) determines the
simulation temperature. Each trajectory generation starts with
10 ps of equilibration followed by 60 ps of production, where a
decorrelated state is saved every 25 fs. We found these trajectories
to yield observables with acceptably small statistical noise. The
stress tensor σ is computed via Eq. (13) and the stiffness tensor C
via the stress fluctuation method (Eq. (14)). Further details are
summarized in Supplementary Method 4.

Figure 3 visualizes convergence of the stress (b) and stiffness
components (c). Given that the model is only trained on rather
short trajectories, we test the trained model on a trajectory of
10 ns length to ensure that the model neither overfitted to initial
conditions nor drifts away from the targets. The resulting stress
and stiffness values σ1= 0.29 GPa, σ4= 0.005 GPa, C11= 1070
GPa, C12= 114 GPa, and C44= 560 GPa are in good agreement
with respective targets. These results could be improved by
increasing the trajectory length, which reduces statistical
sampling errors. The corresponding inverse stress–strain relation
is given by the compliance tensor S=C−1, which can be
constructed from by Young’s modulus E= 1047 GPa, shear
modulus G= 560 GPa, and Poisson’s ratio ν= 0.097. The
training loss curve and wall-clock time per update Δt are
displayed in Supplementary Fig. 5a.

Computing the stress–strain curve (Supplementary Fig. 5b)
from the trained model in the linear regime (ϵi < 0.005) verifies
that computing C via Eq. (14) yields the same result as explicitly
straining the box and measuring stresses. In addition, this
demonstrates that the DimeNet++ potential generalizes from the
training box (ϵ= 0) to boxes under small strain. We also strained
the box beyond the linear regime, creating a distribution
shift19,20, to test generalization to unobserved state points.
The predicted stress–strain curve in Fig. 3d shows good
agreement with DFT data47 for medium-sized natural strains
e1 ¼ log ð1þ ϵ1Þ< 0:02. For large strains, the deviation quickly
increases, including an early fracture. These incorrect predictions
of the learned potential are due to limited extrapolation capacities
of NN potentials: states under large strain are never encountered
during training, leading to large uncertainty in predicted forces.
Incorporating additional observables linked to states of large
strain into the optimization, such as the point of maximum stress,
should improve predictions.

To test the trained DimeNet++ potential on held-out
observables, we compute the phonon density of states (PDOS).
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The predicted PDOS deviates from the experiment48, analogous
to a Stillinger–Weber potential optimized for diamond49

(Supplementary Fig. 5c). The evolution of the predicted PDOS
over the course of the optimization is shown in Supplementary
Fig. 5d. Deviations of held-out observables are expected given that
top-down approaches allow learning potentials that are consistent
with target experimental observables but lack theoretical
convergence guarantees of bottom-up schemes (in the limit of a
sufficiently large data set and a sufficiently expressive model)2. In
principle, we expect sufficiently expressive top-down models to
converge to the true potential in the limit of an infinite number of
matched target observables. In practice, however, many different
potentials can reproduce a sparse set of considered target
observables, rendering the learned potential non-unique2. In this
particular example, we show that many different potentials can
reproduce the target stress and stiffness, but predict different
PDOSs: While predicted stress and stiffness values are robust to
random initialization of NN weights and initial particle velocities
within the statistical sampling error, the corresponding predicted
PDOSs vary to a great extent (Supplementary Fig. 6). Incorporat-
ing additional observables more closely connected to
phonon properties into the loss function could improve the
predicted PDOS.

Coarse-grained water model. Finally, we learn a DimeNet++
potential for CG water. Water is a common benchmark problem
due to its relevance in bio-physics simulations and its pro-
nounced 3-body interactions, which are challenging for classical
potentials50. We select a CG-mapping, where each CG particle is
centered at the oxygen atom of the corresponding atomistic
water molecule (Fig. 4a). This allows using experimental
oxygen–oxygen radial (RDF) and angular distribution functions
(ADF) as target observables. Given that the reference

experiment51 was carried out at ambient conditions
(T= 296.15 K), we can additionally target a pressure ~p ¼ 1 bar.
Hence, we minimize

L ¼ 1
G

∑
G

g¼1
ðRDFðdg Þ � ~RDFðdg ÞÞ

2 þ 1
M

∑
M

m¼1
ðADFðαmÞ � ~ADFðαmÞÞ

2 þ γpðp� ~pÞ2:

ð11Þ
As the prior potential, we select the repulsive term of the
Lennard–Jones potential

UpriorðdÞ ¼ ϵR
σR
d

� �12
: ð12Þ

Drawing inspiration from atomistic water models, we have cho-
sen the length scale of the SPC52 water model as σR= 0.3165 nm
as well as a reduced energy scale of ϵR= 1 kJ/mol to counteract
the missing Lennard–Jones attraction term in Eq. (12). We build
a cubic box of length 3 nm with 901 CG particles, implying a
density of ρ= 998.28 g/l, to match the experimental water density
of ρ= 997.87 g/l at 1 bar. Trajectory generation consists of 10 ps
of equilibration and 60 ps of subsequent production, where a
decorrelated state is saved every 0.1 ps. For additional details, see
Supplementary Method 2.3.

Figure 4b–d displays properties predicted by the final trained
model during a 10 ns production run: DiffTRe is able to train a
DimeNet++ potential that simultaneously matches experimental
oxygen RDF, ADF, and pressure to the line thickness. The
evolution of predicted RDFs and ADFs as well as the loss and
wall-clock times per update are displayed in Supplementary
Fig. 7a–c. The learning process is robust to weak choices of Uprior:
DiffTRe is able to converge to the same prediction quality as with
the reference prior even if σR is misestimated by ±0.1 nm
(approximately ±30%) compared to the classical SPC water model
(Supplementary Fig. 8a, b). This represents a large variation given

Fig. 3 Atomistic model of the diamond. The simulation box consists of five diamond unit cells in each direction, whose primary crystallographic directions
[1, 0, 0], [0, 1, 0] and [0, 0, 1] are aligned with the x, y, and z axes of the simulation box (a). Stress σi (b) and stiffness values Cij (c) converge to their
respective targets during the optimization. These results are robust to long simulation runs of 10 ns (marked with crosses). The stress–strain curve over
normal natural strains e1 agrees with density functional theory (DFT) data47 for medium-sized strains (e1 <= 0.02), but deviates for large strains due to
limited extrapolation capabilities of neural network potentials (d).
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that within common atomistic water models, σR varies by
<0.5%53.

To test the learned potential on held-out observables, we
compute the tetrahedral order parameter q54 and the self-
diffusion coefficient D. q ≈ 0.569 matches the experimental value
of ~q ¼ 0:576 closely. This is expected as q considers the structure
of four nearest neighbor particles, which is closely related to the
ADF. The learned CG water model predicts a larger self-diffusion
coefficient than were experimentally measured (D= 10.91 μm2/
ms vs. ~D ¼ 2:2 μm2=ms)55. With the same simulation setup, a
single-site tabulated potential parametrized via iterative Boltz-
mann inversion39 with pressure correction39,56 predicts
D= 14.15 μm2/ms. These results are in line with the literature:
Due to smoother PESs, CG models exhibit accelerated dynamical
processes compared to atomistic models2. For CG water models
specifically, diffusion coefficients decrease with increasing
number of interaction sites57. In this context, the decreasing
diffusion coefficients over the course of the optimization
(Supplementary Fig. 7d) could indicate that Uθ acts effectively
as a single-site model in the beginning, while learning 3-body
interactions during the optimization casts Uθ more similar to
multisite CG models. Obtained results are robust to random
initialization of NN weights and initial particle velocities, both for
predicted target (Supplementary Fig. 8c, d) and held-out
observables (D= 10.93 ± 0.20 μm2/ms).

The accuracy of predicted 2 and 3-body interactions (Fig. 4c,
d) showcases the potency of graph neural network potentials in
top-down molecular modeling: capturing 3-body interactions is
essential for modeling water given that pair potentials trained via
force matching fail to reproduce both RDF and ADF of the
underlying high-fidelity model50. Other top-down CG water
models with simple functional form tend to deviate from the

experimental RDF58,59. Deviations from experimental structural
properties, albeit smaller in size, also arise in DFT
simulations22,60, limiting the accuracy of bottom-up trained
NN potentials8.

Discussion
In this work, we demonstrate numerically efficient learning of NN
potentials from experimental data. The main advantages of our
proposed DiffTRe method are its flexibility and simplicity: Diff-
TRe is applicable to solid and fluid materials, coarse-grained and
atomistic models, thermodynamic, structural and mechanical
properties, as well as potentials of arbitrary functional form. To
apply DiffTRe, practitioners only need to set up a MD simulation
with corresponding observables and a loss function, while gra-
dients are computed conveniently in an end-to-end fashion via
AD. The demonstrated speedups and limited memory require-
ments promote application to larger systems.

Without further adaptations, DiffTRe can also be applied as a
bottom-up model parametrization scheme. In this case, a high-
fidelity simulation, rather than an experiment, provides target
observables. For CG models, DiffTRe generalizes structural
coarse-graining schemes such as iterative Boltzmann inversion39

or Inverse Monte Carlo40. DiffTRe overcomes the main limita-
tions of these approaches: First, structural coarse-graining is no
longer restricted to one-dimensional potentials, and matching
many-body correlation functions (e.g., ADFs) is therefore feasible.
Second, the user can integrate additional observables into the
optimization without relying on hand-crafted iterative update
rules, for instance for pressure-matching39,56. This is particularly
useful if an observable needs to be matched precisely (e.g., pres-
sure in certain multiscale simulations61). Matching many-body

Fig. 4 Coarse-grained model of water. Coarse-grained particles representing water molecules are visualized as blue balls in the simulation box (a). The
pressure p converges quickly toward its target of 1 bar during optimization and the subsequent 10 ns simulation (black cross; p≈ 12.9 bar) verifies the result
(b). Over a 10 ns simulation, the learned potential reconstructs the experimental radial distribution function (RDF) and angular distribution function (ADF)
well (c, d).
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correlation functions will likely allow structural bottom-up
coarse-graining to take on significance within the new para-
digm of many-body CG potentials8–10.

For the practical application of DiffTRe, a few limitations need
to be considered. The reweighting scheme renders DiffTRe
invariant to the sequence of states in the trajectory. Hence,
dynamical properties cannot be employed as target observables.
In addition, the NN potential test cases considered in this work
required a reasonably chosen prior potential. Lastly, two distinct
sources of overfitting when learning from experimental data for a
single system need to be accounted for1: To avoid overfitting to a
specific initial state, DiffTRe uses a different initial state for each
reference trajectory. Moreover, increasing the system size and
trajectory length ensures representative reference trajectories.
Irrespective of overfitting, generalization to different systems,
observables, and thermodynamic-state points remains to be
addressed, for instance via training on multi-systemic experi-
mental data sets. To this end, an in-depth assessment of out-of-
sample properties of top-down learned NN potentials is required.

From a machine learning (ML) perspective, DiffTRe belongs to
the class of end-to-end differentiable physics approaches62–64.
These approaches are similar to reinforcement learning in that
the target outcome of a process (here a MD simulation) repre-
sents the data. A key difference is the availability of gradients
through the process, allowing for efficient training. Differentiable
physics approaches, increasingly popular in control
applications34,65–67, enable direct training of the ML model via
the physics simulator, advancing the ongoing synthesis of ML and
physics-based methods.

Finally, the combination of bottom-up and top-down
approaches for learning NN potentials, i.e., considering infor-
mation from both the quantum and macroscopic scale, represents
an exciting avenue for future research. For top-down approaches,
pre-training NN potentials on bottom-up data sets can serve as a
sensible extrapolation for the PES in areas unconstrained by the
experimental data. In DiffTRe, a pre-trained model could also
circumvent the need for a prior potential. Bottom-up trained NN
potentials, on the other hand, can be enriched with experimental
data, which enables targeted refinement of the potential. This is
particularly helpful for systems in which DFT accuracy is insuf-
ficient or the generation of a quantum mechanical data set is
computationally intractable.

Methods
Differentiable histogram binning. To obtain an informative gradient ∂L∂θ, predicted
observables need to be continuously differentiable. However, many common
observables in MD, including density and structural correlation functions, are
computed by discrete histogram binning. To obtain a differentiable observable, the
(discrete) Dirac function used in binning can be approximated by a narrow
Gaussian probability density function (PDF)34. Similarly, we smooth the non-
differentiable cutoff in the definition of ADFs via a Gaussian cumulative dis-
tribution function (CDF) centered at the cutoff (details on differentiable density,
RDF, and ADF in Supplementary Method 3).

Stress–strain relations. Computing the virial stress tensor σV for many-body
potentials, e.g., NN potentials, under periodic boundary conditions requires special
attention. This is due to the fact that most commonly used formulas are only valid
for non-periodic boundary conditions or pairwise potentials68. Therefore, we resort
to the formulation proposed by Chen et al.69, which is well suited for vectorized
computations in NN potentials.

σV ¼ 1
Ω

� ∑
Np

k¼1
mkvk � vk � FTRþ ∂U

∂h

� �T

h

" #
; ð13Þ

where Np is the number of particles,⊗ represents the dyadic or outer product, mk

and vk are mass and thermal excitation velocity of particle k, R and F are (Np × 3)
matrices containing all particle positions and corresponding forces, h is the (3 × 3)
lattice tensor spanning the simulation box, and Ω ¼ detðhÞ is the box volume.

Due to the equivalence of the ensemble-averaged virial stress tensor 〈σV〉 and
the Cauchy stress tensor σ70, we can compute the elastic stiffness tensor from MD

simulations and compare it to continuum mechanical experimental data (details in
Supplementary Method 5). In the canonical ensemble, the isothermal elastic
stiffness tensor C can be calculated at constant strain ϵ via the stress fluctuation
method71:

Cijkl ¼
∂hσVij i
∂ϵkl

¼ hCB
ijkli �Ωβ hσBijσBkli � hσBijihσBkli

� �
þ Np

Ωβ
δikδjl þ δilδjk

� �
; ð14Þ

with the Born contribution to the stress tensor σBij ¼ 1
Ω

∂U
∂ϵij
, the Born contribution to

the stiffness tensor CB
ijkl ¼ 1

Ω
∂2U

∂ϵij∂ϵkl
and Kronecker delta δij. Eq. (14) integrates well

into DiffTRe by reweighting individual ensemble average terms (Eq. (3)) and
combining the reweighted averages afterwards. Implementing the stress fluctuation
method in differentiable MD simulations is straightforward: AD circumvents
manual derivation of strain-derivatives, which is non-trivial for many-body
potentials72.

Statistical mechanics foundations. Thermodynamic fluctuation formulas allow
to compute the gradient ∂L

∂θ from ensemble averages73–75. Specifically, considering a
MSE loss for a single observable O(Uθ) in the canonical ensemble73,

∂L
∂θ

¼ 2ðhOðUθÞi � ~OÞ ∂OðUθÞ
∂θ

� 	
� β OðUθÞ

∂Uθ

∂θ

� 	
� hOðUθÞi

∂Uθ

∂θ

� 	� �
 �
:

ð15Þ
It can be seen that the AD routine in DiffTRe estimates ∂L

∂θ by approximating
ensemble averages in Eq. (15) via reweighting averages (Derivation in Supple-
mentary Method 5). End-to-end differentiation through the reweighting scheme
simplifies optimization by combining obtained gradients from multiple obser-
vables. This is particularly convenient for observables that are not merely averages
of instantaneous quantities, e.g., the stiffness tensor C (Eq. (14)).

DimeNet++. We employ a custom implementation of DimeNet++11,12 that fully
integrates into Jax MD29. Our implementation takes advantage of neighbor lists for
efficient computation of the sparse atomic graph. We select the same NN hyper-
parameters as in the original publication12 except for the embedding sizes, which
we reduced by factor 4. This modification allowed for a significant speed-up while
retaining sufficient capacity for the problems considered in this work. For dia-
mond, we have reduced the cutoff to 0.2 nm yielding an atomic graph, where each
carbon atom is connected to its four covalently bonded neighbors. A compre-
hensive list of employed DimeNet++ hyperparameters is provided in Supple-
mentary Method 6.

Data availability
Simulation setups and trained DimeNet++ models have been deposited in https://
github.com/tummfm/difftre. The data generated in this study are provided in the paper
or in the Supplementary information file.

Code availability
The code for DiffTRe and its application to the three test cases is available at https://
github.com/tummfm/difftre76.
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