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Introduction: Pneumonitis is a relevant side effect after radiotherapy (RT) and

immunotherapy with checkpoint inhibitors (ICIs). Since the effect is radiation

dose dependent, the risk increases for high fractional doses as applied for

stereotactic body radiation therapy (SBRT) and might even be enhanced for

the combination of SBRT with ICI therapy. Hence, patient individual pre-

treatment prediction of post-treatment pneumonitis (PTP) might be able to

support clinical decision making. Dosimetric factors, however, use limited

information and, thus, cannot exploit the full potential of pneumonitis prediction.

Methods:We investigated dosiomics and radiomics model based approaches for

PTP prediction after thoracic SBRT with and without ICI therapy. To overcome

potential influences of different fractionation schemes, we converted physical

doses to 2 Gy equivalent doses (EQD2) and compared both results. In total, four

single feature models (dosiomics, radiomics, dosimetric, clinical factors) were

tested and five combinations of those (dosimetric+clinical factors, dosiomics

+radiomics, dosiomics+dosimetric+clinical factors, radiomics+dosimetric

+clinical factors, radiomics+dosiomics+dosimetric+clinical factors). After

feature extraction, a feature reduction was performed using pearson

intercorrelation coefficient and the Boruta algorithm within 1000-fold

bootstrapping runs. Four different machine learning models and the

combination of those were trained and tested within 100 iterations of 5-fold

nested cross validation.

Results: Results were analysed using the area under the receiver operating

characteristic curve (AUC). We found the combination of dosiomics and radiomics

features to outperform all other models with AUCradiomics+dosiomics, D = 0.79
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(95% confidence interval 0.78-0.80) and AUCradiomics+dosiomics, EQD2 = 0.77 (0.76-

0.78) for physical dose and EQD2, respectively. ICI therapy did not impact the

prediction result (AUC ≤ 0.5). Clinical and dosimetric features for the total lung did

not improve the prediction outcome.

Conclusion: Our results suggest that combined dosiomics and radiomics

analysis can improve PTP prediction in patients treated with lung SBRT. We

conclude that pre-treatment prediction could support clinical decision making

on an individual patient basis with or without ICI therapy.
KEYWORDS

pneumonitis, SBRT (stereotactic body radiation therapy), radiomics, dosiomics, immune
checkpoint inhibition, model based prediction, lung cancer
1 Introduction

High precision stereotactic body radiation therapy (SBRT) is

common standard for treatment of early stage inoperable lung

cancer as well as for pulmonary oligo-metastases with excellent

local control and an acceptable toxicity profile (1–4). While

immunotherapy including checkpoint inhibitors (ICIs)

substantially improved the outcome for early lung cancer patients

with regard to local tumor control and overall survival (5), the

impact of combination with thoracic radiotherapy remains unclear

with regard to the development of side effects. PTP is a rather

frequent and dose limiting side effect of both, radiation and ICI

therapy. As the development of PTP is dose dependent, the risk

increases for high fractional doses as applied by SBRT (6). In

contrast to the majority of data in the literature, there is also

evidence of increased all grade pneumonitis rates (5, 7, 8) after

combined radioimmunotherapy with ICIs. This might be of

relevance for decision making with regard to further therapeutic

options on a patient individual basis.

The applied radiation dose is the most important factor for

radiation-dependent pneumonitis. Dose volume histograms

(DVHs), however, cannot account for the spatial distribution of

the dose and potential effects on the tissue. Thus, prediction of the

risk for the development of PTP relying on the spatial distribution

could gain clinical advantage for individual patient treatment. Apart

from conventional dosimetric approaches, sophisticated methods

such as machine learning gain more and more importance for

radiation oncology. In recent years, it has been shown that spatial

quantitative features assessing the image grey-level distribution

extracted from medical imaging data (radiomics) allow for

unprecedented predictions of clinical endpoints including patient

survival, disease progression, tumor characterization, tumor

response and tumor detection (9–17). Analysis using spatial

features of the dose distribution or image grey-level distributions,

referred to as dosiomics (18–22) or radiomics (23–25) and even the

combination of both (26, 27) have also been successfully

investigated for prediction of lung toxicity after thoracic

radiotherapy in previous studies.
02
The radiomics features based on pretreatment computed

tomography (CT) data showed improvement to predict high grade

radiation pneumonitis after definitive radiotherapy (23, 25) and after

SBRT (24). Several studies investigated lung toxicity prediction for

normofractionated radio(chemo)therapy (RCT). Liang et al.

compared dosiomics prediction of radiation pneumonitis after

primary thoracic radiotherapy with dosimetric and normal tissue

control possibility (NTCP)models and found dosiomics to surpass all

other methods (20). In a similar approach, Bourbonne et al. also

found dosiomics models to outperform clinical and dosimetric

models for prediction of lung toxicity (18). Additionally,

combination of radiomics and dosiomics models could even

improve the prediction of radiation pneumonitis (26) and for

SBRT, other studies support these findings. Jiang et al., additionally

revealed improved prediction by machine learning models using

dosiomics for different anatomical regions of interest (27), however

only for normofractionated radiation schemes. Adachi et al. also

tested dosiomics against dosimetric models and against a hybrid

model of both resulting in best prediction of radiation pneumonitis

achieved with the dosiomics model (19).

These studies investigated PTP prediction after normofractionated

R(C)T or SBRT using radiomics and dosiomics combined or dosiomics,

respectively. In addition to the above summarized findings, with this

study, we aim to find the potential value for the occurrence of PTP after

thoracic SBRT using the combination of radiomics and dosiomics

analysis of 3D dose distributions and CT data. Additionally, we

investigate the potential impact of combined radioimmunotherapy

with ICIs.
2 Methods

2.1 Clinical factors

A total of 110 cases of primary lung cancer or pulmonary

metastases received SBRT between 2010 and 2021. All patients

provided written informed consent before enrollment. Dose and

fractionation schemes varied with fraction doses ranging between
frontiersin.org
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5 Gy and 15 Gy. Patient data involving patient age, sex, karnofsky

performance index (KPI), tumor location and size, previous

chemotherapy and ICI therapy within 50 days around SBRT.

The occurrence of post-treatment pneumonitis (PTP) of all

grades according to the Common Terminology Criteria for

Adverse Events version 5.0 (28) was detected in follow-up CT

scans and from corresponding clinical findings (e.g. dyspnea,

cough, pain) during follow-up visits monitored in the patient

files. An overview of the patient data is provided in Figure 1.
2.2 CT and dose data

Radiotherapy planning CTs, 3D dose distributions, lung and

treatment volume segmentations as well as dose volume histogram

(DVH) data were selected from the radiotherapy treatment planning

system Eclipse (Varian, Paolo Alto). Patients received a 4D-CT prior

to radiotherapy. A gross tumor volume (GTV) was delineated on ten

phase CTs. Subsequently, an internal target volume was generated

which encompasses the GTV across all ten 4D-CT phases. An

additional margin of up to 5 mm was added to the internal target

volume resulting in the planning target volume (PTV).

Dosimetric data for the total lung included mean dose, the

volume receiving at least 5 Gy (V5) and V10, V15, V20, V30, V40,

V50, accordingly (29). Required post processing of the

segmentation data was performed using the open source platform

3D Slicer (30) and the Radiation Therapy toolkit (31). To take the

impact of different fractionation schemes into account, physical

dose distributions as extracted from Eclipse were converted into 2

Gy fractions equivalent doses (EQD2) on a voxel basis using an in-

house developed Matlab tool (32) according to equation (1) where

D is the sum dose over all fractions, d is the fraction dose, and a
b is

equal to 3 for lung tissue. Dose outside the lung was not considered.

EQD2 = D
d + a

b

2 + a
b

" #
(1)
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2.3 Feature extraction

From each volume of interest (total lung minus GTV, ipsilateral

lung minus GTV, PTV + 2cm isotropic margin) 104 radiomics and

dosiomics features were extracted from the planning CT and 3D

dose distributions using the open-source library Pyradiomics in

Python (see Supplemental Table 1 for a list of all features) leading to

312 features, respectively (33). 3D dose maps were treated as images

with Gy values as grey-levels. Feature reduction was performed

within 1000-fold bootstrapping using pearson intercorrelation

coefficient with a cut-off value of 0.7 (arbitrarily chosen to allow

sufficient input features for all feature sets) and the Boruta

algorithm as previously described (34). In brief, the Boruta

algorithm iteratively removes features that appear unimportant

for the prediction of the PTP in comparison to synthetic random

features (35). The features were ranked according to the frequency

of selection overall bootstrap runs. The final feature set was defined

as the top-ranking features. The final feature number per model was

defined as the median feature number selected over all bootstrap

runs. For combined models, the preselected features from each

group were used as input for the same procedure.
2.4 Machine learning models

The entire process flow is depicted in Figure 2. Three single

predictive models (radiomics, dosiomics, clinical factors) and five

combined models (dosiomics + radiomics, DVH + clinical factors,

radiomics + DVH + clinical data, dosiomics + DVH + clinical

data, all) were investigated for the physical dose and EQD2 dose

distributions. Different machine learning models with in-built

feature reduction including random forest (rf), logistic elastic

net regression (glmnet), support vector machine (svmRadial),

and logitBoost were trained and tested using 100 iterations of 5-

fold nested cross validation in R according to Deist et al. (36).

This led to training/test splits of 88:22 and 70:18 in the outer and
FIGURE 1

Patient data groups. Patient mean age and standard deviations are provided. Prescription doses are given in mean values and standard deviations of
equivalent uniform doses for an a/b of 10 Gy (EQD210). The number of patients who received prior chemotherapy (CTx) is provided.
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inner folds, respectively. Due to class imbalance, Synthetic

Minority Oversampling Technique (SMOTE) resampling was

applied based on the R DMwR package (37) introducing data

augmentation of the minority class via generation of synthetic

samples using a k-nearest neighbor approach and undersampling

of the majority class. Due to the small event number, a k-value of

3 was chosen for the k-nearest neighbor procedure. The ratio of

oversampling and undersampling was empirically optimized

leading to “perc.over” and “perc.under” equaling to the default

value of 200%. For comparison, all machine learning models were

also calculated without any weighting or SMOTE resampling (see

Supplemental Table 3). Hyperparameter optimization was

performed within the inner folds using grid search (see

Supplemental Table 4 for Hyperparameter Space). Single feature

models (e.g. ICI) were modeled using logistic regression. The

entire process flow is depicted in Figure 2. Model performance

was analysed using the area under the receiver operating

characteristic curve (AUC) on the test sets of the outer folds.
Frontiers in Oncology 04
Data is presented as mean values and confidence intervals with a

confidence level of 95%. For comparison of different classifiers

used, AUC values were calculated for each dataset and repetition

and were ranked by ordering between numbers ranging from 1 to

4 for the four different single predictive models. Data is presented

in box and scatterplots as ranked AUC values with each point

representing the result of one outer validation fold.
3 Results

3.1 Comparison of classifiers

Comparison of different classifiers revealed rf to perform best

for all models tested resulting in a mean AUC rank value of 1.08 and

1.20 for physical dose and EQD2 analysis. Figure 3 shows the

ranked AUC values for all applied classifiers. Based on these

findings, for the following analyzes, we chose rf.
FIGURE 2

Process flow. Clinical, Computed Tomography (CT) and 3D dose volume and dose volume histogram (DVH) data is used for feature extraction. PTP
prediction is performed testing different classifiers such as random forest (rf), logistic elastic net regression (glmnet), support vector machine
(svmRadial), and logitBoost and 5-fold nested cross validation approach and Synthetic Minority Oversampling. Four single models and five combined
models are analyzed.
FIGURE 3

Ranked mean AUC values for all classifiers and models tested. Subscripted D and EQD2 refer to physical dose and EQD2, respectively.
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3.2 Clinical factors

A summary of the clinical parameters collected and the patient

groups is given in Table 1 and Figure 1. Most tumors occurred in

the right upper lung (30 (27.3%)). A total of 10% of patients

received additional ICI therapy. Five patients received primary

lung cancer treatment, however, all in a metastasized stage, and

six were treated due to metastases. Most of the patients (95%) did

not receive previous chemotherapy. Pneumonitis occurred in 24

(21.8%) of all patients, 12.5% (3) of them received additional ICI

therapy and 87.5% (21) did not receive additional ICI therapy.
Frontiers in Oncology 05
3.3 Feature extraction

All features used for feature extraction are listed in Supplement

Table 1. The reduced extracted features for all models tested are

provided in Supplement Table 2. There was no correlation between

ICI and the selected features within the model combining all

features. In total, four clinical features were extracted and

ranked as follows: tumor size, patient age, tumor location and

patient sex. From dosimetric parameters, only V50 and V5 were

selected for physical dose and EQD2 features, respectively.

Combining both models resulted just in the combination of all

single feature models.

Across all model analyzes, 17 to 33 features were found. The

most relevant features are listed in Table 2.
3.4 Prediction model performance

3.4.1 Single feature models
For both, physical dose and EQD2, dosiomics models predicted

PTP better than random with AUCdosiomics, EQD2 = 0.68 (0.67-0.70)

and AUCdosiomics,D = 0.70 (0.68-0.71), respectively. The radiomics

model achieved the highest predictive value (AUCradiomics,D = 0.73

(0.72-0.74)). Other classifiers resulted in worse predictive results

depicted in Figure 4. DVH parameters achieved PTP prediction

yielding no better than random (AUC = 0.43 (0.42-0.46)). Clinical

data and ICI therapy status was not predictive for the development

of PTP, independent from the applied classifier (AUC = 0.45 (0.44-

0.47) and AUC = 0.46 (0.42-0.44)), respectively.

3.4.2 Combined feature models
For the combination of radiomics and dosiomics, PTP was

predicted better than random with AUCradiomics+dosiomics, D = 0.79

(0.78-0.80) and AUCradiomics+dosiomics, EQD2 = 0.77 (0.76-0.78) for

both, physical dose and EQD2, respectively. Combination with

other models including ICI therapy and clinical data did not

improve the prediction model. Results are depicted in Figure 5.
4 Discussion

Our results indicate that additional ICI therapy has no impact

on the prediction of PTP after thoracic SBRT. PTP prediction can

be improved by combining radiomics and dosiomics features. This

combination outperformed radiomics-only and dosiomics-only

models as well as DVH and clinical parameters and can improve

prediction of PTP after thoracic SBRT.

In our work, the dosiomics feature model surpassed all clinical

and DVH models with an AUC of 0.70 and 0.68 for physical dose

and EQD2. These results are well in line with findings in the current

literature. For example, in the study of Liang et al. dosiomics

analysis with an AUC of 0.78 also resulted in favorable results

when compared to dosimetric and NTCP factors (20). Importantly,

in our study, prediction of PTP after thoracic SBRT could even be

improved when dosiomics features were combined with radiomics
TABLE 1 Clinical factors.

Characteristic Value Value [%]

Age

Mean ± SD 72 ± 10.48

Range 33-90

Sex

Male 69 62.7

Female 41 37.3

KPI

Mean ± SD 95 ± 5.90

Range 80-100

Tumor size

Mean ± SD 61162.1 cc ± 75582 cc

Range 4601.3 cc-524554 cc

Location

RUL 30 27.3

RML 2 1.8

RLL 25 22.7

LUL 36 32.7

LLL 11 10.0

RC 3 2.7

LC 3 2.7

SBRT+ICI

Yes 11 10.0

No 99 90.0

Prior CTx

Yes 5 4.5

No 105 95.5

Pneumonitis

Yes 24 21.8

No 85 77.3
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features, which has not been previously shown for patients receiving

lung SBRT. Two other works studying patients receiving lung RCT

showed combined radiomics and dosiomics models to

outperformed single feature class models with an AUC of 0.68

and 0.88 for radiomics and dosiomics combination models,

respectively (26, 38). Jiang et al. found the combination of

radiomics, dosimetrics, age and tumor T stage to result in a

further increased AUC of 0.94.

The total performance of our model with a maximum AUC of

0.79 for the combined radiomics/dosiomics model is well in line
Frontiers in Oncology 06
with other studies on PTP prediction (20, 24, 26). A few studies,

however, achieved larger predictive AUC values above 0.90.

Several reasons may explain this fact: 1) The majority of other

studies tested prediction of grade ≥ 2 pneumonitis, whereas we

tested prediction of all grades of pneumonitis. The reason for this

choice of data inclusion was triggered by unknown potential

interfering effects associated with the combination of SBRT with

immunotherapy that should not be overseen at this stage. Hence,

we considered any detectable lung damage or symptom associated

with pneumonitis worthwhile to include in our data set. 2) We
TABLE 2 Features ranked in the order of frequency they have been selected after feature reduction for all models tested.

Model Number of reduced features Ranked features

Radiomics 21 PTV_original_shape_Sphericity

Total_Lung_original_glcm_Idn

Ispilateral_Lung_original_glcm_InverseVariance

DosiomicsD 17 PTV_original_shape_Sphericity

Total_Lung_original_shape_Flatness

PTV_original_glcm_Idmn

DosiomicsEQD2 17 PTV_original_shape_Sphericity

Total_Lung_original_shape_Flatness

PTV_original_glcm_Idmn

Radiomics + DosiomicsD 28 PTV_original_shape_Sphericity

PTV_original_glszm_SmallAreaLowGrayLevelEmphasis

Ipsilateral_Lung_original_glcm_InverseVariance

Radiomics + DosiomicsEQD2 28 PTV_original_shape_Sphericity

PTV_original_glcm_Idmn

Ispilateral_Lung_original_glcm_InverseVariance

Radiomics + Clinical Factors + DVH 27 PTV_original_shape_Sphericity

Total_Lung_original_glcm_Idn

Ispilateral_Lung_original_glcm_InverseVariance

DosiomicsD + Clinical factors + DVH 22 PTV_original_shape_Sphericity

Total_Lung_original_shape_Flatness

Total_Lung_original_shape_Elongation

DosiomicsEQD2 + Clinical factors + DVH 22 PTV_original_shape_Sphericity

Total_Lung_original_shape_Flatness

Total_Lung_original_shape_Elongation

Radiomics +DosiomicsD + Clinical factors + DVH 33 PTV_original_shape_Sphericity

PTV_original_glszm_SmallAreaLowGrayLevelEmphasis

Ispilateral_Lung_original_glcm_InverseVariance

Radiomics +DosiomicsDEQD2 + Clinical factors + DVH 33 PTV_original_shape_Sphericity

PTV_original_glcm_Idmn

Ispilateral_Lung_original_glcm_InverseVariance
Subscripted EQD2 refers to the equivalent dose in 2 Gy fractions and D to the physical dose.
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applied a sophisticated nested cross validation approach

separating the validation cohorts for hyperparameter

optimization from the actual testing cohort. By iterating the

process 100 times, statistical robustness was achieved. This

procedure reduces the risk of overly optimistic results that may

derive from small test sets or simple cross validation approaches

(18, 19, 27).

The DVH features extracted were expected to be comparable

with commonly known dosimetric risk factors for radiation

pneumonitis such as mean lung dose, the lung volume receiving a

dose of 10 Gy and 20 Gy, V10 and V20, respectively. Palma et al.

found V20 to be predictive for grade ≥ 2 radiation pneumonitis after

radiochemotherapy (39). Tsujino et al. found V20 and Fay et al. V30

and mean lung dose to be most predictive for symptomatic

radiation pneumonitis after radiotherapy (40, 41). However, in

our study only V50 and V5 were selected by feature extraction

and did not predict PTP better than random (AUC< 0.5) in contrast

to previous works (18, 19, 24). Different from other studies, we

included all grades of pneumonitis into our analysis which could

lead to differing dosimetric parameters or even missing correlation

of common dosimetric parameters and the development of PTP. In

our study, the highest grade of PTP observed was grade 2 in three

patient cases and out of these one received additional ICI therapy.
Frontiers in Oncology 07
Due to the retrospective character of this investigation, the

probability of misgrading increases. Our SBRT fractionation

schemes cover a rather large range including single doses with a

minimum of 5 Gy and lower total doses addressed to treat

metastatic disease less likely to cause PTP.

Addition of clinical factors did not improve the prediction of

pneumonitis. Likewise, Krafft et al. observed clinical characteristics

to not improve the prediction model for high grade pneumonitis

after definitive radiotherapy with conventional fractionation (23).

We converted doses to 2 Gy equivalent doses in order to

compare different fractionation schemes applied and compared

prediction outcome for dosiomics models based on physical dose

and biological dosiomics features. As expected, results were

comparable with a mean AUC of 0.7 and 0.68 for single

dosiomics features analysis using physical dose and EQDs,

respectively. This is well in line with findings in the literature

(42). However, EQD2 could not further improve the prediction

leading to the conclusion that conversion into EQD2 might be

unnecessary for PTP prediction.

Development of machine learning models in a dataset of 110

patients is a challenging task, especially when considering the

observed imbalance of the predicted outcome. To be able to test

our medical hypothesis with regard to the comparison of the
FIGURE 5

Area under the receiver operating characteristic curves (AUCs) heat maps as prediction substitute for PTP for physical Dose and EQD2 using random
forest classifier and logistic regression for single feature models.
FIGURE 4

Box and Scatterplots showing area under the receiver operating characteristic curves (AUCs) rank values (lower being better) for different classifiers
used over all datasets and repetitions for physical (a) and EQD2 dosiomics analysis (b).
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predictive values of different feature sets, we decided for several

technical steps to allow for optimal training and testing the

limitations and reduce the risk of overfitting: 1) we compared

multiple machine learning algorithms to determine the algorithm

best suited to learn from the small dataset; 2) we applied a cross

validation approach with 5 folds to ensure a minimum of samples

in the patients subgroups; 3) we applied SMOTE to decrease the

influence of the imbalanced outcome variable; 4) we applied

multiple feature reduction steps to reduce the feature space to

the most predictive features per feature set; 5) no assumption of

the optimal number of features was made beforehand; 6) we

applied a nested-cross validation approach allowing for repeated

testing on unseen data, completely independent of the data used

for hyperparameter optimization. Finally, our models achieved

good predictive performances in the range of multiple previous

works as discussed above. Comparison of the results calculated

without any weighting or SMOTE resampling did not change the

presented result. Thus, the choice of data augmentation did not

alter the relevant comparison of the analyzed models. Importantly,

all prediction models were trained and tested simultaneously using

the same technical principles and patient subsets down to the

internal cross validation folds, guaranteeing optimal

comparability. As consequence, the limitations of the model

development were the same for all models – allowing for a fair

comparison of the predictive value of the underlying feature sets.

Obvious limitations of this study are the retrospective character

of data collection. Prospective data could improve the data quality

with regard to PTP definition. Patients in this study receiving ICI

therapy where all in a metastasized tumor stage. Clearly, this could

lead to an imbalance between the SBRT only and the SBRT plus ICI

group with slightly enhanced PTP rates (27.3% vs. 21.2%) in the

combined therapy group. Additionally, there is a lack of patients

included in the ICI group resulting a paucity of PTP events. Very

few patients were diagnosed with pneumonitis grade ≥ 2, which

could limit the clinical relevance of the prediction results. In our

study, we decided to include all grade pneumonitis. One reason for

this choice was to account for unknown effects occurring during

combined radioimmunotherapy, and another reason was the

uncertainty of grading coming along with retrospective data

collection. Further, we did not apply external test data. External

validation, however, is necessary to demonstrate reproducibility of

models which is planned in future.
5 Conclusions

We demonstrated the potential of combining radiomics and

dosiomics features to improve the prediction of PTP after thoracic

SBRT. Clinical factors and dosimetric features did not further

improve the prediction in this study. Additional immunotherapy

with ICIs did not impact the prediction of PTP after

thoracic SBRT.

These results could contribute to the prevention of pneumonitis

by improvement of clinical decision making prior to thoracic SBRT

with and without immunotherapy with ICIs.
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