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Abstract— This paper proposes a Nonlinear Model-Predictive
Control (NMPC) method capable of finding and converging to
energy-efficient regular oscillations, which require no control
action to be sustained. The approach builds up on the recently
developed Eigenmanifold theory, which defines the sets of line-
shaped oscillations of a robot as an invariant two-dimensional
submanifold of its state space. By defining the control problem
as a nonlinear program (NLP), the controller is able to deal with
constraints in the state and control variables and be energy-
efficient not only in its final trajectory but also during the
convergence phase. An initial implementation of this approach
is proposed, analyzed, and tested in simulation.

I. INTRODUCTION

In the last three decades, numerous roboticists have de-
voted their effort to generating energy-efficient robot motion
[1], [2]. The developed approaches are especially useful to
render cyclic motions, like walking gaits and pick-and-place
trajectories. In most cases, mechanisms and control laws are
designed to make use of the shape of the gravitational or
elastic potential in order to achieve maneuvers requiring little
to no control effort to be sustained.

In that scope, recent works have extended the concept
of normal modes to nonlinearly-coupled mechanical systems
[3], [4]. In particular, [4] has demonstrated a way of finding
sets of invariant line-shaped oscillations, called eigenmodes
(see Fig. 1), which belong to a two-dimensional submanifold
of the state space: the eigenmanifold. The two properties
of eigenmodes, namely invariance and line shape, are of
paramount importance for robotic tasks like pick-and-place
and locomotion. The former guarantees that no energy injec-
tion is needed to sustain a gait, while the latter ensures the
oscillations happen between two static poses, which could be
for instance the grasping and releasing poses or the leg-lift
and ground-contact ones.

Once such regular oscillation modes are found, proper
controllers should be designed in order to drive mechanical
systems from their initial state onto the eigenmanifold. In
[5], a chart to the eigenmanifold is defined and the controller
acts along the directions normal to a desired eigenmode to
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Fig. 1: An eigenmode (red line) on the potential energy surface.

achieve convergence. Although the aforementioned seminal
works showed that energy injection is not required to remain
on the eigenmanifold, the bounds of the control action
needed to converge to them has thus far not been considered.
Therefore, such eigenmanifold-stabilization techniques might
fail to drive mechanical systems with limited actuation to
eigenmodes of arbitrary energy. An example thereof is the
DLR Suspended Aerial Manipulator (SAM) [6], which, for
safety and energy-efficiency reasons, hangs from a carrier
in a pendulum-like setup. There, the mounted propellers are
able to stabilize the system around its hanging point (see
[7]), but not to bring it to arbitrary poses in a static way.
On the other hand, proper control design may allow the
SAM to reach high-amplitude oscillations and subsequently
perform dynamic grasping or perching maneuvers despite its
actuation limitations.

In contrast to state-of-the-art eigenmanifold-stabilization
methods, Nonlinear Model Predictive Control (NMPC) [8] –
as an optimization-based framework – is able to deal with
constraints of different sorts in the control signal, including
propeller-thrust limitations (see [9]). In addition, some ver-
sions of NMPC (e. g., Economic NMPC [8, Sec. 7.10]) have
also achieved periodic orbit stabilization. However, there
is no guarantee that the achieved orbits will present the
aforementioned properties of eigenmodes, namely invariance
(or zero control) and line shape.

In light of that, we propose a novel NMPC framework,
which, endowed with knowledge from the eigenmanifold
theory, is able to converge to energy-efficient line-shaped



oscillatory trajectories on the eigenmanifolds. The proposed
approach can deal with actuation bounds while still being
able to converge to regular oscillations in an close-to-optimal
manner. Moreover, a heuristic version of the framework
which does not require previous computation of the eigen-
manifold is also introduced. Rather, an estimate of the
direction of the mode – given by its associated eigenvector –
is sufficient for the online search and convergence process.

The controller efficacy and performance – both with and
without previous knowledge of the eigenmode – are demon-
strated through its application to the simple but insightful
example of the torque-limited double pendulum. Simulation
results confirm that the controller is able to drive the system
to trajectories that are almost identical to the eigenmodes
found with [4], even when starting from significantly large
initial conditions.

II. GEOMETRIC MECHANICS AND EIGENMODES

Recent development in the field of oscillatory normal
modes has achieved a generalization of linear modes to non-
linear, elastically [3] and inertially-coupled [4] mechanical
systems. In particular, by finding invariant line-shaped curves
in the state-space, called eigenmodes, the framework pre-
sented in [4] is able to realize sustained regular oscillations
in otherwise chaotic systems (e. g., robots). In that scope,
this section aims at presenting important aspects of [4], upon
which the EigenMPC approach is built.

A. Definitions

Definition 1 (Forced simple mechanical system): A
forced simple mechanical system [10] is a tuple
(TQ,G,V,F), where TQ is the tangent-bundle manifold
containing all possible trajectories of the system, G
is the Riemannian metric induced by the system’s
inertia, V : Q → R+ ∪ {0} is a potential function, and
F : R×TQ → T∗Q is the function of control and external
wrenches, where T∗Q is the cotangent bundle.

The trajectories of such systems, γ(t) ∈Q, follow the so-
called forced geodesic equation:

G
∇γ̇(t)γ̇(t) =−gradV(γ(t))+G♯ (F(t,γ(t), γ̇(t))) , (1)

where G♯ is the sharp map, which transforms a force into an
acceleration according to the G metric. In local coordinates
(x, ẋ)∈Rn×Rn of the manifold TQ, locally representing its
generalized position and velocity, Eq. 1 translates into the
well-known manipulator equation

ẍ = M(x)−1
(
−C(x, ẋ)ẋ− ∂V (x)

∂x
+F(t,x, ẋ)

)
, (2)

where F(t,x, ẋ) are the control and external forces, and
∂V (x)/∂x are forces induced by the potential V, which are
usually either elastic and/or gravitational forces.

Definition 2 (Energy): Given a forced mechanical system
with F≡ 0 we locally define its energy as

E(x, ẋ) =
1
2

ẋ⊤M(x)ẋ+V (x) , (3)

such that there exists a stable equilibrium point (xeq,0) ∈
Rn ×Rn which is a minimum for E(x, ẋ).

Definition 3 (Linear modes): Let ẏ = Ay be the linearized
version of (2) around a stable equilibrium (x, ẋ) = (xeq,0),
F = 0 with y =

[
x⊤ ẋ⊤

]⊤ ∈ R2n. Then, there exists n two-
dimensional invariant subspaces ES ≃ R2n, with structure

ES = span((c,0), (0,c)) , (4)

where c ∈ Rn are unit vectors in the local chart of Q. Such
spaces are called eigenspaces. Moreover, oscillations along
the directions c are called linear modes.

Definition 4 (Forced geodesic flow): Let ΦS
t0,t f

(q,vq) be
the maximal integral curve of a forced simple mechanical
system starting at (q,vq) ∈ TQ at time t0 and ending at
time t f . The projection πQ ◦ΦS

t0,t f
(q,vq) of the integral curve

onto Q is called the forced geodesic flow. In other words,
the forced geodesic flow is the path in q the system travels
starting at (q,vq) at t = t0 and ending at t = t f when F≡ 0.

Definition 5 (Eigenmodes and eigenmanifold): Let

γM(q0, t)≜ Φ
S
0,t(q0,0) , q0 ∈Q, t ∈ R , (5)

be curves in TQ such that:
(i) ∃T ∈ R+, s.t γM(q0, t) = γM(q0, t + kT ), ∀k ∈ Z, and

(ii) the map O : πQ ◦ γM(q0, t) → [0,1] exists and is a
diffeomorphism.

Then, γM are called the eigenmodes of (TQ,G,V,F) and
the manifold that collects all γM from the same family is
called the eigenmanifold, denoted M.

In other words, M is an invariant two-dimensional man-
ifold corresponding to the line-shaped periodic trajectories
(eigenmodes) of (TQ,G,V,F) when F≡ 0.

Finally, as shown in [4], it is possible to find local charts
X : R2 → Rn and Ẋ : R2 → Rn with coordinates (xm, ẋm) ∈
R2 such that X(xm, ẋm) = x and Ẋ(xm, ẋm) = ẋ for (x, ẋ) ∈
M. Moreover, for linear systems, (xm, ẋm) = (c⊤x,c⊤ẋ), and
(c⊤X ,c⊤Ẋ) is the identity function.

B. Energy as similarity function

Due to the periodicity of γM(q0, t), we may define an
equivalence relation to drop its dependency on t, calling
it γM(q0), i.e., disregarding the number of periods of a
trajectory and focusing only on its image in the state space
as a set. It is also easy to conclude that due to the absence
of energy injecting or dissipating forces F, every point in
γM(q0) belongs to the same level set of the energy function
(3), which is uniquely defined by the energy of the point
(q0,0) ∈ TQ.

In addition, [4] defines a relationship of continuity be-
tween points (q0,0) ∈ TQ including (qeq,0) whose forced
geodesic flow generates the eigenmodes, called the generator
set R. This means that, in an arbitrarily small neighborhood
of every point in R, there are other points with different
energy levels, which also belong to R and, consequently,
to an eigenmode of the mechanical system. Through this
continuity relationship, the closer a point (q0,0)∈R is to the
equilibrium (qeq,0), the more the eigenmode associated with



it will resemble one of the straight modes of the linearized
version of the system. Thus, we can define the energy of
an eigenmode γM(q0) as its degree of similarity with an
eigenvector. This property will be used in Section IV-B to
endow the EigenMPC framework with online eigenmode-
search capabilities. The idea is to penalize the distance to
the eigenvector for low energies and gradually relax the
penalization as energy increases.

III. NONLINEAR MODEL PREDICTIVE CONTROL

Nonlinear Model-Predictive Control (NMPC) is an
optimization-based controller which acts as described below
(see [8, Algorithm 3.1]).

Algorithm 1 (NMPC): At each sample tn ∈ [t0, .., tN−1],
where N is the length of the prediction horizon, follow the
steps:

1) Measure the state zn ≜ z(tn) ∈Z .
2) Set z0 := zn and solve

min
uk

JN ≜
N−1

∑
k=0

ℓ(zu(tk,z0),u(tk)) (6a)

s.t.0 = zk+1 −φk(zk,uk), k = 0,1, . . . ,N −1, (6b)
rk ≤ rk(zk,uk)≤ rk, k = 0,1, . . . ,N −1, , (6c)

where uk ≜ u(tk) is the control variable and zk ≜
zu(tk,z0) is the open-loop predicted state when uk is
applied. Moreover, ℓ and JN are called the running and
the finite-horizon cost functions, respectively, φk(zk,uk)
is a one-step state-transition function and (6c) defines
lower and upper bounds to a function r(zk,uk) of the
state and control variables.

3) Denote u∗ as the optimal solution and use u∗(t0) as the
control action for the next sampling period.

IV. THE EIGENMPC FRAMEWORK

Based on the eigenmanifold theory and NMPC, we
propose a framework that allows constrained mechani-
cal systems to be energy efficient in both converging to
and sustaining regular oscillations with different levels of
a priori knowledge. We call this framework EigenMPC:
Eigenmanifold-Inspired Model Predictive Control.

The action of EigenMPC is twofold: (a) converging to a
pre-computed eigenmode; (b) finding an approximation of
the eigenmode and converging to it. Hereafter, we call (a)
the curved version and (b) the straight version.

A. Curved EigenMPC

In case the eigenmodes have been pre-computed (e.g., with
[4]), the curved version of EigenMPC is able to stabilize
the system to it in a close-to-optimal manner while taking
possible constraints into account. The controller is defined
as follows:

Definition 6 (Curved EigenMPC): Let the chart defined
by X(xm) and Ẋ(xm, ẋm) yield an approximation of a desired
eigenmode in M, with c(xm) being the unit-norm tangent
vector of X(xm) at xm. We define the curved version of

EigenMPC as the NMPC algorithm with the following
running cost:

ℓ(z,F) = z⊤Wzz+F⊤WF F , (7)

z =

 Ere f −E
c⊥(xm)(x−X(xm))

c⊥(xm)
(
ẋ− Ẋ(xm, ẋm)

)
 , (8)

where c⊥(xm)(x−X(xm)) and c⊥(xm)
(
ẋ− Ẋ(xm, ẋm)

)
are a

measure of the distance of x and ẋ to the eigenmode along
the normal of its tangent vector, given by the multiplication
with c⊥(xm)≜ I−c(xm)c(xm)

⊤. Moreover, the matrices Wz =
diag(wE , wx, wx, wẋ, wẋ) ∈ R2n+1 and WF ∈ Rn are positive
definite.
To show that the proposed method is able to locally drive the
system (2) to the desired eigenmode, we start by noting that
(7) is a proper cost function for the desired eigenmode, i.e,
ℓ= 0 when the system moves on the eigenmanifold and ℓ> 0
otherwise. Moreover, we highlight that the control problem
at stake is that of a convergence to a set, where z = 0, rather
than a trajectory-tracking problem.

In sequence, we use the controller defined in [5] as
a baseline and note that its inertia-shaping characteristic
removes the need for inertia-weighting in the Lyapunov
function. Therefore, for that controller, asymptotic stability
can be asserted by using a Lyapunov function with constant
diagonal weights like V (z) = z⊤Wzz, which is exactly the first
term in (7).

Now, we denote ℓPD and VPD(z) = z⊤Wzz the running cost
and its state-related part when the control action from [5],
denoted FPD, is applied. We note that asymptotic stability of
VPD implies that for some functions α1,α2 ∈K∞,

α1 (VPD(z0))≤VPD(z)≤ α2 (VPD(z0)) , (9)

for a connected set of initial conditions z0 ∈ Z0 ⊆ Z con-
taining the origin.

In addition, by using the fact that X , Ẋ and Ere f parameter-
ize an eigenmode, which by Def. 5 requires no control force
to be sustained, we get that z → 0 implies FPD → 0, which
together with (9) implies (local) asymptotic controllability of
the system with the small control property (see [8, Def. 4.2]),
which states that for each z ∈Z0 there exists F (in this case
FPD) and β ∈KL such that

ℓ(z,F)≤ β (VPD(z0),n)) . (10)

Now, we define

ℓ∗(z)≜ inf
F∈Rn

ℓ(z,F) . (11)

From the fact that ℓ∗(z)≤ ℓ(z,F), from its quadratic nature
and from the small control property (10), we get

α3 (VPD(z))≤ ℓ∗(z)≤ α4 (VPD(z)) . (12)

If in addition, there exists a β ∈KL0, which is linear in its
first argument and summable (see [8, Ass. 6.4]), such that,
for each z ∈Z0 and for some F ,

ℓ(z,F)≤ β (ℓ∗(z),n) . (13)
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Fig. 2: Final trajectory of an EigenMPC-controlled double pendu-
lum for different values of α . As α increases, the final trajectory
moves from a straight line along the linear mode (dotted line) to a
curved one near the actual eigenmode (dashed line).

Then, from the principle of relaxed dynamic programming,
we use the result from [8, Th. 6.21] to state that the nominal
NMPC closed-loop system with dynamics as (2) and NMPC-
feedback is asymptotically stable on Z0 provided N is
sufficiently large.

Although hard to verify in practice, the assumption on
the linearity of β seems reasonable for systems like (2),
which are feedback linearizable. Further evidence on the
convergence capabilities of the approach will be presented
in Section V.

Note that by using the controller from [5] as a baseline,
the stability analysis is confined to the region of the state-
space Z0 where the that controller is also stable. However, by
noting that an infinite-horizon NMPC would find the optimal
solution in terms of (6a) and (7) and that the suboptimality
number α ∈ (0.1] of NMPC (see [8, Th. 4.11]) increases with
the size of its horizon, we argue that for sufficiently large N,
the region of attraction of EigenMPC should be even larger
than that of the controller from [5] and its solution closer to
the optimal one.

Moreover, while constraints were not directly accounted
for in the analysis, their effect is the following: for bounds
on the control action, a connected set ZU ⊆ Z0 around
the eigenmanifold will be attractive, given the zero effort
needed to sustain an eigenmode and the continuity of the
state space. On the other hand, in case the state is constrained
with unconstrained control, a set Z̄ ⊆Z0 will be attractive
given that the eigenmode itself lies inside the viable set.
Finally, in case both state and control are constrained, a set
of viable initial states Z̄U ⊆Z0 can be attractive. However,
there might be cases where the control action is not strong
enough to drive the system to an eigenmode without exiting
the set of viable states. In this case, the NMPC problem is
called inviable (see [8, Ass. 3.3]).

B. Straight EigenMPC

While the curved version of EigenMPC has well-defined
stability properties, one might benefit from a more heuristic
controller, which does not require the pre-computation of
the eigenmanifold. This version, called straight EigenMPC
is designed as to require only the direction of its associated
eigenvector as a priori information.

The online-searching capabilities of EigenMPC are built
on the fact that the smaller the energy of an eigenmode of
a nonlinear system – assuming E(qeq,0) = 0 –, the more
it resembles an eigenvector of its linearized counterpart.
Therefore, we define the straight EigenMPC program as
follows:

Definition 7 (Straight EigenMPC): Let ES be an
eigenspace of a linearized version of (2) with c as its
direction vector (see (4)). Then, NMPC with the following
running cost is expected to locally drive the system to a
neighborhood of the eigenmode associated with ES with a
desired energy level Ere f :

ℓ(z,F) = z⊤Wzz+F⊤WF F , (14)

z =


Ere f −Ek

c⊥ (x− xeq) (1− tanh(αE))
c⊥ẋ(1− tanh(αE))
F (tanh(αE)+β )

 , (15)

where α and β are scalar tuning factors.
The chosen cost function can be interpreted in natural

language as: “Reach a desired energy level while finding a
trade-off between remaining close enough to the linear mode
and finding the paths that minimize the control action.”

Apart from the fixed weights, a gain α is added, which can
be understood as an exploration factor. By using tanh(αE),
we ensure a smooth transition between two different behav-
iors, namely converging to the linear mode and minimizing
the control action. The transition occurs as energy increases,
at a rate defined by α . With higher α , the controller gets
an exploratory behavior, searching for trajectories with min-
imum power; whereas with lower α , the controller behaves in
a conservative way, remaining closer to the linear mode. An
example of the controller behavior for different α is shown in
Fig. 2. It can be noted that, with α = 0 the system converges
to the linear mode (dotted line), whereas for increasing α

values, the final trajectory approaches the actual eigenmode
(dashed line). Moreover, since tanh(0) = 0, the factor β

has been added to the control-torque objective in order to
ensure that the control action is not excessively high for low
energies.

A significant advantage of the straight EigenMPC over its
curved counterpart is that it does not require previous offline
computation of the modes. Nevertheless, since the minimum
cost ℓ is not exactly on the manifold, but a result of the
choice of α , we can only guarantee that the controller drives
the system to a neighborhood of an eigenmode (see Fig. 2).

V. EXAMPLE: THE TORQUE-LIMITED DOUBLE PENDULUM

In order to validate the EigenMPC approach, we apply
it to the double pendulum with point masses at the tip of
each link, whose inertia matrix M(x) in local coordinates
x =

[
θ1 θ2

]⊤ is[
m1l2

1 +m2(l1 + l2)2 −2m2l1l2
(
1− cos(θ2)

)
∗

m2
(
l2
2 + l1l2 cos(θ2)

)
m2l2

2

]
, (16)
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Fig. 3: Oscillations discovered by EigenMPC (in orange) vs. actual
eigenmodes (in blue).

and its gravitational potential is V (x) =V ∗(x)−V ∗(0), where

V ∗(x) =−m1gl1 cos(θ1)−m2g
(
l1 cos(θ1)+ l2 cos(θ1 +θ2)

)
,

(17)
with (x, ẋ)= 0 being a stable equilibrium configuration where
the pendulum is stretched downwards. In addition, for the
purpose of this work, its joint torques are limited to ±1Nm.

As mentioned in [4], the pendulum has two families of
eigenmodes evolving from the eigenvectors: the in-phase
mode and the anti-phase one. In the next section, both
eigenvectors will be used as a priori knowledge to find their
respective family of eigenmodes.

A. Simulation setup
For the evaluation of the EigenMPC framework, a pendu-

lum with both masses equal to 1kg and both link lengths
equal to 1m was used. Furthermore, MATMPC [11] was
applied to solve the NMPC program.

The EigenMPC gains were tuned once for the best perfor-
mance and used in all simulations. The chosen gains were
wx = 50, wẋ = 2500 and wF = 225 for both versions, wE = 25
for the curved version, and wE = 5 for the straight version
with α = β = 0.1. The shooting interval for all simulations
was 25ms and the prediction horizon was N = 80 shooting
steps. Among all experiments, the worst average computation
time was 5.3ms when run on a computer equipped with an
Intel 3.70GHz Xeon E5-1620 v2 CPU (x8) and 8GB RAM.

The numerical evaluation of the proposed approach is
divided into two stages. The first aims at comparing the final
trajectories found by the straight version with the eigenmodes
computed by the framework presented in [4]. The second
analyzes the convergence capabilities and particularities of
both versions of EigenMPC. A supplementary video is
available at https://doi.org/10.4121/19196765.

B. Eigenmode-finding capabilities
In order to assess the similarity between the trajectories

the straight version of EigenMPC converges to and the actual
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Fig. 4: Straight EigenMPC, Ere f = 14J, saturated controls.

modes, for each of the modes (in-phase and anti-phase)
two energy levels were given as reference. The first was
Ere f ≈ 2J, the second was Ere f ≈ 16J for the in-phase mode
and Ere f ≈ 12J for the anti-phase one, which was the highest
value for which a line-shaped anti-phase mode could be
found by the straight version.

The results are depicted in Fig. 3. The proposed approach
performs well in finding both more straight modes, like the
anti-phase ones, and more curved ones, most notably the one
in Fig. 3b. The most apparent mismatch is in the curvature
of the path shown in Fig. 3a, which is slightly more straight
than the actual eigenmode. This happens because, for lower
energies EigenMPC tends to converge to paths that look more
like the original eigenvector.

Despite not having a formal asymptotic stability proof and
being able to converge to a neighborhood of the eigenmodes
only, the straight EigenMPC produces final results similar
to those from the algorithm presented in [4]. Therefore, it
serves as an alternative eigenmode-search routine in practical
applications.

C. Eigenmode stabilization for constrained systems
After showing that the proposed framework is capable

of finding an approximation of the actual eigenmodes, this
section aims at assessing its convergence properties in two
different scenarios.

1) Nominal case: Initially, both versions of EigenMPC
were applied in order to reach an in-phase eigenmode with
Ere f = 14J, starting from the neighborhood of the equilib-
rium. While for the straight case, the in-phase eigenvector of
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Fig. 5: Curved EigenMPC, Ere f = 14J, saturated controls.

the linearized system was used, for the curved one, a ninth-
order polynomial was used to define X , Ẋ and c based on
the eigenmode found using [4].

The results are shown in Figs. 4 and 5. Figs. 4a and 5a
show the joint-space path (θ1×θ2) taken by the system until
reaching its final trajectory, shown in orange. As expected,
for the straight version, the system takes an increasingly
curved path as the energy grows. On the other hand, the
curved version takes a path whose curvature is similar to the
eigenmode. Nevertheless, both versions reach similar final
trajectories. It can also be noted that, although the final
magnitude of the control action for both controllers is near
zero, as expected, the curved version reaches even lower
final torques since a chart to the actual eigenmode is used
in the cost function. Moreover, due to the initially low cost
on the control action, the straight version initially applies
higher torques, which reduce as energy builds up. On the
other hand, the curved version, having a constant cost on the
control action, takes longer to leave the low-energy region.
However, both controllers take about the same time to reach
the desired energy.

2) Large initial conditions: Subsequently, aiming at as-
sessing a possible weakness of the straight version, i.e., low
stiffness (weak position-error feedback) for high energies, we
simulated the system starting from larger initial conditions,
namely θ = (−1.1, 1.1) rad. The results are shown in Fig. 6.
As expected, due to its constantly high stiffness, the curved
EigenMPC recovers quicker than its straight counter part.
The straight version, on the other hand, due to its low
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Fig. 6: Convergence from large initial conditions.

stiffness at high energies, caused by the term 1− tanh(αE),
takes longer to converge, but still reaches the final mode.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a novel NMPC-based framework,
which is capable of finding and converging to sustained
nonlinear oscillations in the neighborhood of the eigenmodes
or asymptotically converging to an eigenmode in case a pre-
computed parametrization is available. Moreover, it guaran-
tees energy efficiency not only in the final trajectory as [5],
but also in the convergence phase, due to the suboptimality
characteristic it inherits from the NMPC framework. The
limitation of the framework lies in the fact that no guarantee
of global convergence to a desired mode can be given;
however, it has been shown to recover well from significantly
large initial conditions. Future work will involve applying
EigenMPC to more complex systems, like the DLR SAM,
using more realistic propeller constraints, as in [9].
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