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Abstract 

The structure formation and development of organoids is a highly promising area of 
research with the potential to change the way we think about stem cell differentiation or 
tissue regeneration. Organoid growth is driven by complex underlying structure formation 
processes. The detailed analysis of these processes was hindered for many years, due to 
limitations of conventional data analysis algorithms. The development of more 
sophisticated machine learning methods such as deep learning allows to obtain new 
insights in the development of these complex organoid morphologies. This information 
can be used by a deep artificial neural network to make predictions of the future 
morphology of individual organoids. Machine learning algorithms for future frame 
prediction such as recurrent neural networks (RNNs) or generative adversarial networks 
(GANs) have proven to provide reliable results in predicting future images. The analysis of 
cell biology images however requires even more sophisticated tools due to limitations in 
the cultivation and microscopy image acquisition of organoids.


In this thesis, machine learning - especially deep learning - is used to predict the future 
morphology of organoids. The machine learning method is able to analyze the overall 
growth process of an organoid image dataset and use this information to predict the 
future morphology of individual organoids. The model was trained on biological and 
simulated image sequence data of different structural complexity. The results indicate that 
this technique is able to reliably predict and generate realistic images of future organoids. 
Short-term as well as long-term future predictions demonstrate an accurate 
representation of the structure formation in organoids. 

This thesis demonstrates the potential of future frame prediction in organoid research and 
enables a variety of applications to analyze complex physiological mechanisms in 
organoids that can eventually help to improve the individualized treatment of diseases.


In summary, this thesis sets a framework for further analysis of structure formation 
processes in live-cell imaging applications and organoid research. It highlights the 
significance of using deep learning methods for analysis of complex growth processes, 
where conventional algorithms are limited and sufficient amount of image data is 
provided. 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Introduction

1. Introduction 

Machine learning has become one of the most promising and cutting-edge technologies 
in recent years. With applications such as search engines, the lately published chatbot 
ChatGPT51, or the prediction of protein structures with AlphaFold38, machine learning is 
an integral part of today’s modern life. In recent years, the use of machine learning - 
especially deep learning - has become more widespread, driving the development of a 
wide variety of research and real-world applications. In situations where a high amount of 
data can be generated or is already available, deep learning methods provide a reliable 
solution to find patterns within these data and derive new insights from this information. 
Complex scientific questions such as the folding of protein structures seemed to be 
impossible to solve for many years. Machine learning methods however have proven to 
provide predictions with high accuracy for those challenges38. 

This technical improvement opens up the possibility to tackle further fundamental 
questions in research. Especially in the area of recently established organoids which is 
one of the most promising research fields in cell biology. Organoids are miniaturized 
cellular structures that can be derived from embryonic or adult stem cells, but also cancer 
cells. By studying organoids, scientists can increase their understanding of organ and 
tissue development, the rise and progress of diseases, and which approaches and drugs 
may be effective in treating these diseases. Organoid research can lead to the 
development of personalized treatments based on the patient's own cells, an improved 
understanding of many diseases, as well as a fundamental understanding of tissue 
development.

Organoids are grown from cells which are cultured in a three-dimensional extracellular 
matrix with optimized growth conditions. After several days, these cells and cell clusters 
eventually form organoids. The morphological structure of these organoids is highly 
individual. Figure 1.1 illustrates samples of microscopy images of pancreatic ductal 
adenocarcinoma (PDAC) organoids. Even though the duration of cultivation after seeding 
the PDAC cells is identical, the organoids show highly individual morphologies. These 
individual structures are based on an underlying structure formation process. The 
structure formation however is dependent on multiple factors. These can be either from 
biological nature or environmental driven. To understand how organoids are growing and 
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which mechanisms lead to their complex structural morphology is an integral part for 
future organoid research.


In this thesis, machine learning is used to analyze the growth patterns of organoids that 
promotes the formation of its morphological complexity and to use this information to 
predict the future structure of an organoid at a given time point. This approach will open 
the way for many applications in future organoid research. 

The prediction can for instance be used as a digital control for experiments with 
organoids. If a drug for example affects the growth behavior of an organoid, the prediction 
will show the future organoid without the intervention of the drug treatment. 


In live-cell imaging applications where a lot of time series data is generated, the use of 
deep learning models for future frame prediction is highly promising. Due to the technical 
improvement of microscopes, the capabilities of image resolution and image throughput 
massively increased. Compared to typical real world applications, such as autonomous 
driving, microscopy images in cell biology are limited in some aspects. The limitations are 
both on the technical side and the biological side, such as restrictions in the frame rate, 
colorization of images, duration of imaging or the cultivation of organoids itself. For real 
world scenarios, a variety of future frame prediction algorithms was successfully  tested 
already52. The objective of this thesis is to investigate the capabilities and limitations of 
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Figure 1.1: Microscopy images of pancreatic ductal adenocarcinoma organoids. All 
organoids are imaged five days after seeding and culturing the tumor cells, while developing highly 
individual structures. The underlying growth process of organoids is complex and depends on 
multiple biological and environmental factors.
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future frame prediction with deep learning algorithms to predict the future morphology of 
individual organoids.  


The first experimental part of this thesis focuses on a self-supervised learning algorithm 
for automatic segmentation of cell nuclei. As manual labelling is often a very time-
consuming and tedious task, a self-supervised approach for automatic cell / cell-nuclei 
labelling can provide a solution for this challenge. To understand growth patterns of cells, 
it is important to register and track individual cells. This requires precise cell or cell nuclei 
segmentation. While the challenge of cell / cell nuclei segmentation in 2D is widely solved, 
it still remains some hurdles dealing with different input / training data. The training data is 
individual to the experiment and can for example differ in magnification due to the 
microscope objective, or the type of imaging such as bright-field or fluorescence imaging. 
As many labeled training datasets of cells / cell nuclei are publicly available, it still does 
not cover the entire variance represented by cell culture experiments. The experiment 
shows the possibilities, challenges and limitation of a self-supervised approach for 
automated labelling of cell nuclei. Parts of this experiment have been published 
previously25.


In the second part of this thesis, the segmentation problem of complex cellular structures 
such as organoids is addressed. Organoids cultured in an extracellular matrix such as 
collagen form highly individual and complex structures. To analyze and parametrize 
organoids, a segmentation mask is highly beneficial. The challenge of the experiment was 
to automatically segment organoids in microscopy images to make them applicable for 
further analysis with deep neural networks or conventional analysis algorithms. A data 
processing pipeline for accurate organoid segmentation of 3D image projections was 
implemented. 


The third part of this thesis focuses on the prediction of the morphology of organoids with 
deep learning algorithms. The goal of this experiment is to predict the morphological 
structure of an organoid from a specific time point to a later developmental period, such 
as 24 hours or 48 hours in the future. The results of the first two mentioned experiments 
enable the implementation of a future frame prediction network to do such tasks. The 
prediction of organoids not only helps to better understand the complex underlying 
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structure formation processes in organoids, but also provides a basis for future 
applications in organoid research. The prediction can for example be used as a digital 
control when a drug is tested on organoids. The effect of the drug on the morphology of 
an organoid is hard to quantify. With a prediction of the future state of the organoid, it is 
possible to analyze the effect of the drug on the morphology of the organoid.  

4



Theoretical Background

2. Theoretical background 

2.1. Machine learning 

Machine learning methods are widely used in a variety of data analysis methods. Since 
the ImageNet Competition in 2012, machine learning methods - especially deep neural 
networks - have shown high performance in the challenge of image classification41. Deep 
learning methods for image analysis gained massive improvements since then. 


2.1.1. Machine learning methods 

Machine learning algorithms are traditionally categorized into three different types of 
machine learning methods. Supervised learning, unsupervised learning and reinforcement 
learning. Each of these methods is used in a different context.


Supervised learning: A characteristic of supervised learning is the availability of 
annotated training data. The goal of the machine learning model is to identify and learn a 
relationship between unlabeled input data and labeled output data. Based on training of 
the annotated dataset, unseen test data can be classified21. 

Unsupervised learning: Unsupervised machine learning models are used in cases where 
the model is not provided with annotated data. In this case the machine learning model is 
trained on a dataset in order to find patterns and structure within the data29. Examples of 
unsupervised learning include methods such as k-means clustering, principal component 
analysis (PCA) or the use of auto-encoder neural networks80.


Reinforcement learning: Reinforcement learning is a type of machine learning model 
which focuses on learnings in sequential decision making problems where feedback is 
limited81. The model uses a feedback-loop to update its understanding of the 
environment and to improve future decisions. Reinforcement learning is used in 
applications such as robotics or natural language processing.
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Figure 2.1 illustrates the different types of machine learning algorithms. Besides this 
three-fold categorization, there are other types of machine learning methods used for 
specific applications. Commonly used methods are semi-supervised and self-supervised 
learning.


Semi-supervised learning: Semi-supervised learning is a type of machine learning that 
combines supervised and unsupervised learning. The model is trained on a dataset that 
contains a small set of labeled data in combination with a larger set of unlabeled data.


Self-supervised learning: In Self-supervised learning, a model is trained to learn from 
input data with no given data labels. In comparison to unsupervised learning, the model is 
not able to cluster data in the dataset. Instead, the method is often used in applications 
where parts of data is missing. 
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Fig. 2.1: Types of machine learning algorithms2,3. Traditional classification of machine learning 
algorithms with a) supervised learning: the model is trained on a labeled dataset. For each output, a 
correct input is provided. b) unsupervised learning: the model is trained on unlabeled data. It finds 
patterns within the data by itself. c) reinforcement learning: the model learns to make decisions by 
interactions with its environment and updates its understanding by an integrated feedback loop.
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2.1.2. Artificial neural networks 

Artificial neural networks are algorithms which are inspired by biological neural networks 
of the animal’s brains. Machine learning models are a subset of artificial intelligence, with 
the objective to learn from data without being explicitly programmed. Machine learning 
includes various types of models for individual applications, such as decision trees30, 
support-vector machines47, or Bayesian networks7. A central type of machine learning 
model are artificial neural networks (ANNs)3. Figure 2.2 illustrates the architecture of an 
artificial neural network.




ANNs consists of several layers. An input layer, an output layer and one or several (deep 
neural network) hidden layers. These layers contain multiple interconnected artificial 
neurons. The connections between neurons are represented by weights, which have an 
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Fig. 2.2: Schematic of an artificial neural network2. The feedforward neural network consists of 
an input layer, an output layer and two hidden layers (deep neural network). Each layer contains 
several interconnected neurons. Each neuron in the ANN receives input from other neurons of 
previous layers. The neurons perform a computation on that input, and produce an output that is 
passed on to neurons in the next layer.
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associated value with it. The neurons are able to process and transmit information 
between neurons of consecutive layers.


A mathematical operation on that input is performed which includes multiplication of the 
neuron information with the weight value, summation of these output information and the 
the addition of a bias value for each neuron. The values of the weights can be updated by 
training the network. A demonstration of an artificial neural network is shown in figure 2.3.


A common type of ANN is a feedforward neural network (FNN), where information is 
passed through the network in one direction, from the input to the output layer.  A fully 
connected FNN is also referred to as multilayer perceptron (MLP)33. FNNs utilize a 
technique called backpropagation, which is widely used for training artificial neural 
networks44,61. By adjusting the weights and biases of each neuron between the output 
layer and the input layer, the error between input data and predicted output can be 
corrected. It enables the ANN to automatically improve its performance with each training 
cycle. 
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Fig. 2.3: Representation of an artificial neuron in a neural network83. A neuron receives the 
inputs x1, x2 and x3 which are multiplied by weights w1, w2 and w3. Multiplications of inputs and 
weights are summed up. An activation function is applied to the weighted sum. A bias unit b is 
added, which leads to an output y.
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Another type of neural networks are recurrent neural networks46 (RNNs) where the 
information flow happens in cycles. RNNs are often used to analyze sequential data like 
text, speech or time-series.


Deep neural networks (DNNs) are specific machine learning models which are composed 
of multiple layers of artificial neurons. Deep neural networks have been particularly 
successful in tasks such as image recognition or natural language processing8,15,59.


2.1.3. Convolutional neural networks 

Convolutional neural networks (CNNs) are a subclass of ANNs. CNNs are mostly applied 
to analyze images. They utilize a process called convolution, which involves sliding a 
small matrix of weights (called a kernel or filter) over the input data and computing a dot 
product at each position49 (fig. 2.4). The information is then condensed in a pooling 
process, which reduces the dimensionality of the convoluted image. An activation 
function such as a rectified linear unit (ReLU) is applied on the resulting sum. The 
activation function acts as a filter to produce the final output value for that position in the 
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Fig. 2.4: Network architecture of a convolutional neural network2. The network uses several 
convolution and pooling layers to extract features from input images. In the fully connected layers 
(Fc), every input neuron is connected to every output neuron. The output is forwarded to an 
activation function of the CNN.
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feature map57. For each position in the image, the same process is repeated, defined by 
the size of the filter. Due to this process, features or patterns from the input image can be 
extracted. In early training cycles, these features are often edges or textures, which 
develop more complex structures after multiple training cycles. These features can be 
used for tasks such as classification or segmentation. Figure 2.5 shows a schematic of a 
convolution process. A 3x3 kernel is used to extract essential information from an input 
image to an output image. To avoid a decrease of the overall pixel size of the image, 
padding of one and a stride of one is used. 


When using CNNs, padding is a frequently used technique in order to maintain spatial 
resolution when applying a convolutional filter on an image. Padding inserts an additional 
row pixels around the image to encounter the reduction of spatial resolution due to a 
convolution. The output feature map has the same size as the input image, when padding 
is used. A shrinking of the image and losing information on the border of the image is 
therefore prevented.
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Fig. 2.5: Schematic of the convolution process in a convolutional neural network24. A filter / 
kernel is used to scan over an input image with a padding of 1. Each pixel value is multiplied by the 
values of the kernel and summed for all positions. The convolution results in an extraction of image 
features.
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Stride refers to the step size which is used when applying a convolutional filter to an 
image. When the stride is increase, the output feature map is decreased and vice versa. 
Stride is often used to reduce the computational cost of the CNN.


Another way to reduce the size of a the output feature map is the use of pooling layers in 
CNNs. After a convolution, pooling is applied to extract relevant information or patterns 
from the images in the training dataset. Common types of pooling are max pooling, min 
pooling or average pooling. Max pooling selects the maximum value from a set of input 
values, while minimum pooling selects the smallest pixel value. Pooling layers not only 
reduce the spatial resolution of the input image but also make the network more robust to 
small transitions of objects in the input data and are able to prevent overfitting in the 
training process. Figure 2.6 shows the schematic of a max pooling layer with a stride of 

two in a convolutional neural network. Pooling leads to a decrease in the spatial 
dimension of the input image, while reducing the computational cost of processing the 
output image. After a repeating number of convolution and pooling layers, the extracted 

11

144 25 3 89

59 110 77 25

78 198 44 29

2 19 14 58

2x2 Max Pool

144 89

198 58

Fig. 2.6: Schematic of max pooling in a convolutional neural network30. Maximum values 
from the input feature map are collected within a certain field of view. Values are passed to the 
output feature map. The most important information of the input feature map is contained in the 
output feature map. Pooling reduces the spacial dimension of the output layer in a CNN.
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features are fed into a fully connected layer. A loss function is applied to the output of the 
fully connected layer. 


A common challenge in machine learning is overfitting. Overfitting  occurs when the 
machine learning model is representing the data in a too high level of detail. The resulting 
model is not able to make predictions on unseen data, because the level of detail learned 
from the training data is exaggerated. An overfitted model produces low accuracy results 
for data points that are not covered in the training dataset. An underfitted model on the 
other hand is not complex enough to recognize the patterns in the dataset. It usually has 
a high bias towards one output value because the network considers the variations of the 
input data as noise and generates similar outputs regardless of the given input72.

Figure 2.7 shows an example of underfitting and overfitting85 in data. In the case of 
underfitting on the on hand, the representation of the fit curve does not represent the 
appropriate level of detail of the dataset. Overfitting on the other hand leads to a fit curve 

where details in the training set are represented on a very high level. This leads to the 
effect, that it does not generalize well to a new unseen dataset. It is therefore important 
that the level of detail which is represented by the model is balanced. 
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Underfitting Overfitting Balanced

Fig. 2.7: Fitting of data when using machine learning models2. The separation line represents 
how well the trained model fits the dataset. An underfitted model does not capture essential details 
of the dataset. An overfitted model represents the dataset to a very high level of detail. Overall 
trends are not captured anymore. In the balanced model, the fit shows an ideal representation of the 
dataset.
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There are several possible options to prevent overfitting. These include using a simpler 
model with fewer parameters, using methods such as dropout, regularization and early 
stopping, or using a large dataset with high diversity to make the training process more 
efficient.

A validation dataset in addition to a training and a test set is important to monitor the 
performance of the machine learning model. By using a validation set, hyperparameters 
such as the kernel size, padding, stride, or the number of filters of the model can be 
adjusted accordingly to prevent overfitting.  To evaluate the ability of the deep learning 
algorithm to model the dataset, a loss function is used. Underfitting and overfitting can be 
identified by the associated loss curve after training the model. 


Figure 2.8 illustrates different types of learning curves of a neural network. The learning 
rate is a hyperparameter of a neural network that affects the training loss of a dataset. 
The learning rate defines how quickly the neural network updates new patters learned 
from the dataset. Small learning rates require more training cycles, with an increase in 
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Fig. 2.8: Comparison of loss curves in machine learning4,72. a) The learning rate at which the 
model updates information, affects the loss of model. A low training loss can be obtained by an 
adequate selection of the learning rate. b) Validation and training loss curve for a dataset trained with 
a neural network. The model represents the dataset where the validation is minimal. Overfitting 
occurs when the validation loss increases. The model starts to represent noise in the dataset. At 
early training cycles the model is underfitting the training data. The model is unable to relate input 
data to output data.
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computational cost. Larger learning rates require less training epochs, often with a 
decrease in the accuracy of the model. In order to validate if the model of a neural 
network represents a dataset, the information of the training loss is not sufficient. 
Dependent on the number of training cycles, the representation of the dataset changes. A 
low number of training cycles often results in a model that is underfitting the training data. 
The model is not able to obtain the relation between input and output data. The model is 
overfitting the training data when the model performs well on training data but poorly on 
the validation dataset. The level of detail obtained from the dataset is too high, leading to 
an increase in the validation loss error compared to the training loss error. The model 
represents the dataset well, when the validation loss is minimized. Early stopping is a 
method that is often implemented in machine learning models to automatically stop the 
training process when the validation loss is starting to increase. 


2.1.4. Future frame prediction 

Future frame prediction is a task in which an algorithm - often a machine learning model - 
is trained to predict the next frame(s) in the sequence of image data or a video42,52,87. 
Several deep learning algorithms have been proposed for this task. They include 
convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative 
models (GANs) or flow-based models, which are a combination of CNNs and RNNs. The 
choice of algorithms is dependent on the specific task of prediction and the availability of 
computational resources. 


Recurrent neural network: A recurrent neural network (RNN) is a certain type of artificial 
neural network used for processing and understanding sequential data, such as time 
series. Traditional deep neural networks such as feed forward neural networks process 
data where the inputs and outputs of the network are independent of each other. RNNs 
on the other hand are able to process prior information within the sequence (fig. 2.9). This 
allows some kind of “memory” within the network which enables to process “already 
known” information in order to influence the input and output of the network.  
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Generative adversarial neural network: A generative adversarial network (GAN) is a 
certain type of artificial neural network used to generate images20. These images are new 
data that is similar to the training dataset. A GAN therefore is able to generate variations 
of the input dataset. 

Figure 2.10 illustrates the working principle of a GAN. A GAN typically consists of two 
networks, a generator network and a discriminator network. Both networks are trained in 
a process called adversarial training. The aim of the generator network is to generate 
realistic images. The discriminator network receives both generated and real images and 
its task is to determine which of both images generated by the generator network, and 
which is the real image. Both networks are trained simultaneously and are competing 
against each other20.

The decision of the discriminator influences the loss of the discriminator and generator. 
The weights of both models are independently improved by back-propagation. This 
process continues until the generator generates data that is indistinguishable for the 
discriminator from real data.
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Fig. 2.9: Schematic of a recurrent neural network69. Information flow from neurons in the input 
layer via neurons in the hidden layer to neurons in the output layer. Neurons in the hidden layer are 
able to interact with the environment. Due to this feedback loop, future decision can be affected.
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2.2. Cell biology 

2.2.1. Structure formation processes 

Structure development in cell biology refers to the process through which cells and cell 
tissues self-assemble into distinct morphologies. The cultivation, manipulation and 
observation of cells and cell tissues is performed on 2D substrates or in a three-
dimensional extracellular matrix (ECM)13. This reduced complexity of the system in vivo 
allows an in-depth study of the physical, biological and biochemical aspects that drive the 
structure formation process in organoids and cells. 
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Fig. 2.10: Schematic of a generative adversarial network27. The model consists of two 
networks. A generator network and a discriminator network. The generator network generates an 
image from random noise. The discriminator tries to distinguish the generated image from a real 
input image. The discriminator sends a feedback to the generator based on its decision. Due to the 
feedback loop, the generator is able to generate more realistic images. At some point the 
discriminator is not able to distinguish generated images from real images.
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Single cell migration in 2D refers to the process by which cells propagate on a flat surface 
of a tissue or a culture dish. The migration is driven by a polarized expression of the actin 
network in the direction of migration73. Thin filopodia-like protrusions or lamellipodia form 
on the leading edge of the cells, depending on the cell type and the properties of the 
substrate. Complex signaling cascades involving various proteins such as CDC42, PIP3, 
or RAC14 enhance this polarization. The cells form focal adhesions at the cell-substrate 
boundary82 to increase adhesion to the substrate and to transmit regulatory signals and 
mechanical forces between the cells. When cells migrate, the adhesion at the back 
weakens, causing the cells to separate from the substrate and protrude forward. Cells 
exert traction forces during this phase in the opposing direction of cell movement on the 
substrate. This force application only affects the front of the migrating cell, while the force 
that was previously applied to the back of the cell is released32. During the force 
developed by actomyosin contractions and by cell-substrate adhesion via focal 
adhesions, cells detect the stiffness of the substrate. Based on this durotaxis, cells move 
in the direction with higher stiffness13.


Cell-cell adhesion, which describes the coupling of neighboring cells, leads to collective 
cell migration in a confluent cell layer. Specific studies of collective cell migration and 
wound healing assays have previously been conducted60. These studies demonstrate a 
simplified wound healing process by monitoring the closure of a gap between two 
opposing epithelial cell layers (fig. 2.11). During the collective growth, all cells contribute 
to the overall migration of the cell layer. The individual cell traction forces of all cells add 
up as a result of the internal cellular coupling along their neighbors. This leads to an 
internal stress within the cell layer perpendicular to the substrate. The resulting internal 
stress depends on the height and width of the cell sheet. The directed cell migration and 
the coupling of the cells induce an internal stress within the epithelial sheet. With 
increasing distance, this stress within the cell layer continuously increases. The individual 
traction forces stay constant within the area. Even when the cell layer is confluent, after 
closing the gap between both layers, the cells are further migrating. The velocity of the 
cell movement decreases with an increase of the cell density and cell-substrate as well as 
cell-cell adhesion. The cells then undergo a jamming transition which leads to a stopping 
of the cell migration28,54,13. 
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Compared to 2D cell culture, in 3D assays, cells are cultivated within a natural spatial 
confinement, such as collagen or matrigel, which is defined by the extracellular matrix 
(ECM). The migration of cells occurs through a dense network of collagen fibers, with 
various adhesion sites and different mechanical and biochemical properties. The 
movement of cells in a 3D environment occurs through mesenchymal, amoeboid and 
lobopodial migration84 (fig. 2.12). Mesenchymal migration in particular demonstrates a 
strong cell-ECM adhesion via focal adhesions. During the invasion of the ECM, the cells 
are remodeling the ECM. Lamellipodia are generated due to actin polymerization at the 
leading edge. During this process, the fibers in the ECM get aligned in the direction of 
migration. During amoeboid cell migration, the adhesion between cells and the ECM is 
reduced. This leads to a round cellular morphology. The migration of the cells occurs 
through a squeezing of the cells through the pores of the ECM. The trajectory of the cells 
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Fig. 2.11: Cell migration on a 2D substrate60. a) An unperturbed and confluent monolayer of 
(epithelial) cells. b) A mechanical scratch creates a gap and free space between cells. The edge 
cells may be injured (orange asterisks). c) The cell sheets move inwards to close the gap. Red 
arrows indicate displacement vectors for individual cells at one time point. d) Higher magnification 
of the area in c). A front cell automatically has polarity, a front (red) surface adjoining the free 
space and cell layer. e) Side view of cells moving inwards to fill the gap, with free surface 
extension of the front cell in red.
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is therefore defined by the ECM. Lobopodial migration combines two modes of migration. 
The cells show a strong adhesion to the ECM, while the cell body is deformed due to 
internal asymmetric pressure originated from the nucleus position in combination with 
myosin-II contractility in the cell55. Three-dimensional cell migration is furthermore 
spatially defined by the structure, stiffness or composition of the surrounding ECM84,13.


2.2.2. Organoids 

Within the last decade, 3D cell culture assays have significantly improved to replicate 
organ growth in an artificial environment outside of the normal biological context (in 
vitro)19. By the cultivation of patient- or animal-derived cells, embryonic stem cells or 
pluripotent stem cells in 3D matrices enabled the creation of organ-like cell clusters13. 
Through this process, cells self-organize into multicellular organoids which represent a 
simplified but realistic morphology of the real organ in vivo. Organoid models that 
replicate the brain, lung, pancreas, mammary gland, and many more have been 
developed during the past years18. Since organoids originate from patient- or animal-
derived cells or tissue fragments, they have the potential to offer a patient-specific 
medication6. Organoids for instance can be utilized as model systems to create a drug 
medication that is patient-specific or to replace diseased tissue through regenerative 
medicine64,13. As an essential basis, the organoid assays and the respective 
developmental processes need to be fully analyzed and understood. In the following, the 
pancreatic ductal adenocarcinoma (PDAC) cells and organoids will be in focus.


19

Fig. 2.12: Mesenchymal and amoeboid cell migration84. The mesenchymal cell aligns along the 
ECM fibers while at the same time creating a tunnel of proteolytically digested ECM. The amoeboid 
cell does not align along the ECM fibers but instead propagates by protruding through pores in the 
ECM.
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The complexity of the structure formation process can be partly described by the 
appearance of different growth phases in organoids58. In fact, the branched organoid 
morphogenesis shows up four distinct developmental phases (fig. 2.13). An onset phase, 
where the cell proliferation from an initial single cell is exponential and evenly distributed 
in all dimensions in space. In the consecutive extension phase, the motion of the cells is 
mostly directed from the core towards the tips of the branches of the organoid. The third 
phase, also referred as “thickening phase“, is characterized by a contractile motion which 
results in a thickening of the branch tips into buds. Towards the end of this thickening 
phase, a fourth growth phase is observed, which is characterized by a lumen-formation in 
the branches of the organoid58. 


The occurrence of these growth patterns is observed in most PDAC organoids but the 
duration of these phases it is not synchronous between individual organoids. This leads 
to the appearance of organoid samples with highly individual structures, even if the 
seeding process and culturing duration of two samples are identical. This complexity in 
addition with multiple more subtle biological and environmental factors in the structure 
formation of organoids is a cause of the highly individual morphology.  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Fig. 2.13: Developmental phases of PDAC organoids58. Development phases are denoted by 
color bars which follow the color code - blue: onset phase, orange: extension phase, green: 
thickening phase, pink: lumen formation phase. All organoids are grown in collagen. Cellular motion 
patterns are observed with live confocal imaging for each development phase (n = 66 organoids). 
Cell nuclei are stained with SiRDNA (white). Scale bars: 100 µm. From left to right: Day 4 sum 
projection, and Day 7, Day 10, Day 13 maximum projections. 
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3. Methodology 

3.1. Cell culture and live-cell imaging 

To obtain microscopy image data, cells were seeded and cultured for several days until a 
cell layer or cell tissue is formed. Compared to cells growing in a flat two-dimensional 
layer, organoids are usually grown in a three-dimensional matrix like collagen or matrigel. 
The culturing process is more complex and prone to complications in comparison to 2D 
cell culture methods. This leads to a bottleneck in the throughput of samples in organoid 
cell culture. At the same time, machine learning and especially deep learning models, 
require a high amount of data to understand underlying features within the dataset. To 
encounter this problem, a pipeline was introduced which covers the process from initial 
cell seeding and culturing of the cells to consecutive live-cell imaging methods. This 
increases the total amount of cell and organoid samples for generating biological image 
data. 


3.1.1. Cell culture 

The cells used for the experiments in this thesis are Madin-Darby Canine Kidney (MDCK) 
epithelial cells and pancreatic ductal adenocarcinoma (PDAC) cells from the 9591 mouse 
cell line provided by the research group of Prof. Dr. Med. Dieter Saur at Klinikum rechts 
der Isar. For cell cultivation, Dulbecco’s Modified Eagle’s Medium Mixture F-12 (DMEM 
F-12) by Sigma was used for MDCK cells. Dulbecco’s Modified Eagle’s Medium - high 
glucose was used for PDAC cells and organoids. The medium was supplemented with 
10% fetal bovine serum (FBS) and 1% Penicillin / Streptomycin (Pen-Strep). Cells were 
passaged every 2-3 days to ensure sufficient nutrient supply for the cells. Depending on 
the experiment, samples were cultured in 2-well plates by Ibidi or 24-well plates by 
Sarstedt AG & Co. KG. For 3D experiments, PDAC cells were cultured in Collagen Type I 
of rat tail by Corning with a concentration of 1.3 mg/ml
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The cells for the experiments demonstrated in this thesis were cultivated inside an 
HERAcell 150i incubator by Thermo Scientific. The temperature was kept constant at 
37°C, the CO2 level was set to 5%.


3.1.2. Live-cell imaging 

Images for the experiments were captured with the Thunder Imager Live Cell & 3D Assay 
inverted DMi8 microscope by Leica. Datasets were acquired with a N PLAN 5x (0.12 NA) 
dry objective and a HC PL FLUOTAR L 20x (0.40 NA) dry objective, depending on the 
experiment. The microscope was used with the LAS X Life Science 3.7.6. software. An 
additional incubation chamber (Tokai Hit STX Stage Top Incubator) was used in 
combination with the microscope to maintain culture conditions of the cell culture 
incubator. Temperature was therefore maintained at 37 °C, with a humidity of 80% and a 
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Fig. 3.1: 2D and 3D image acquisition. a) Example of a 2D image acquisition pipeline. For two-
dimensional cell growth, PDAC cells are seeded in a 2 well plate. The wells are imaged by live-cell 
microscopy. The stitched microscopy image contains multiple subsample of image sequences. b) 
Example of a 3D image acquisition pipeline. PDAC organoids are grown in a 24-well plate. The 
positions of each organoid is registered in the microscopy software. Each measurement contains an 
organoid within a cubic imaging volume. Additionally time-series data of each organoid is acquired.
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CO2 level of 5%. Live-cell imaging was applied to all types of cells, varying in parameters 
specific to the individual experiment.

Figure 3.1 shows an imaging pipeline of biological samples. For the experiments in this 
thesis, 2-well plates were used for 2D image acquisition of PDAC sells. 24-well plates 
were used for 3D image acquisition of PDAC organoids. The imaging pipeline enables a 
high throughput of biological microscopy data. 


3.2. Datasets 

For the experiments in this thesis, several image datasets were generated. The datasets 
can be divided into 4 categories. Figure 3.2 shows a sample overview of the different 
classes of datasets. One dataset containing a cell layer of MDCK cells (2D) with 
fluorescent labeled nuclei. The second dataset includes time-series data of a PDAC cell 
layer (2D). The third dataset contains time-series data in combination with volumetric 
images of PDAC organoids. In the fourth class, two datasets of time-series image data of 
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a) b) c) d)

Fig. 3.2: Sample images of time-series datasets. a) MDCK cell nuclei dataset. The dataset 
contains microscopy data of fluorescent labeled MDCK cell nuclei. b) PDAC cell dataset (2D). The 
dataset contains brightfield microscopy images of a PDAC cell layer. c) PDAC organoid dataset (3D).  
The dataset contains brightfield images of multiple individual PDAC organoids. d) Organoid 
simulation dataset. The dataset contains simulation data of the structure formation of organoids. 
Corresponding segmentation masks are provided for all images in the microscopy image datasets. 
The image datasets differ in the amount of total images. Scale bars are not contained in the image 
dataset. Scale bars: a) 120 µm, b) 350 µm, c) 500 µm.
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computationally simulated organoids are included. The data of that class only contains 
image masks of simulated organoids. The two simulation datasets differ in their growth 
patters. One dataset contains data of simulated organoids with an exponential growth 
including branch elongation, branch thickening as well as creation of new branches. The 
other datasets contain simulated organoids where growth happens in three different 
growth phases. The first phase simulates exponential branch elongation, where branching 
events are increased, and branch thickening is limited. The second phase simulates linear 
growth where branch elongation, new branching events and branch thickening is 
inhibited. The third phase simulates inverse exponential growth, where branch elongation 
and branching events are inhibited while branch thickening is promoted. This leads to 
characteristic growth patterns contained in the image sequences of both simulation 
datasets.

 

Datasets 1-3 contain microscopy images. Raw microscopy image data are provided in 
the Leica Image File Format (LIF). All data were pre-processed to make them available to 
the individual deep learning networks. 


3.2.1. MDCK cell nuclei dataset 

The dataset contains a 2D image sequence of fluorescently labeled nuclei of MDCK cells. 
The cells were stained with SiR-Hoechst, a far-red DNA stain43. Cells were incubated with 
Verapamil to improve fluorescence signal. Videos were acquired with a 20x (0.4 NA) air 
objective, a frame rate of 10 minutes and a total capture time of 15 hours. The training 
dataset consists of a total of 5 images containing 6409 nuclei. The test image contains a 
total of 792 nuclei. All nuclei were annotated manually in order to provide ground truth 
data. The training and test images were captured at different positions on the same 
sample. 16-Bit images with a 1:1 aspect ratio and a pixel size of 2048 x 2048 are used. 
Figure 3.3 shows a sample of the time series image data. Over time, the cell layer is 
growing to cell confluence. Growth of the cell tissue occurs due to cell divisions and 
movements of the cells. Cell division often shows an increased fluorescent signal.
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3.2.2. PDAC cell dataset (2D) 

The dataset contains time-series image data of PDAC cells. The area of 2-well plates by 
Ibidi was imaged hourly. Images were acquired with a 5x (0.12 NA) air objective, a frame 
rate of 1 hour and a total capture time of 72 hours. Figure 3.4 shows sequential image 
data of PDAC cell growth. Over time, the cell layer grows to a confluent cell layer. 
Additional to the brightfield microscopy images, segmentation masks of the cell layer 
were generated by a python script.
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Fig. 3.3: Time series data of Madin-Darby Canine Kidney (MDCK) cells. The data contains 
microscopy images of fluorescently labeled nuclei of MDCK cell growth. The dataset covers the 
growth process and movement of cells up to confluence of the cell layer.

Fig. 3.4: Time series data of pancreatic ductal adenocarcinoma (PDAC) cells. The data 
contains brightfield microscopy images of PDAC cells.
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3.2.3. PDAC organoid dataset (3D projection) 

Dataset No. 3 contains time-series and volumetric image data of PDAC organoids. The 
dataset is split into 80% training and 20% test sets. Both datasets contain time series 
image data comprising 72 hours of live-cell imaging. The time interval of imaging is one 
hour. Cells were imaged by wide-field microscopy (Leica THUNDER Imager). For both 
datasets, a 5x (0.12 NA) air objective (Leica) was used. Images were captured with a 1:1 
aspect ratio and a pixel depth of 8-bit to ensure high-throughput measurement of multiple 
positions with a time interval of one hour between the frames of the time series data. 
Measurements were conducted in a controlled environment at 37 °C, 5% CO2 and 100% 
humidity, using an incubation system for live-cell imaging by TOKAI.

Figure 3.5 illustrates the sequential image data of one single organoid. The structural 
development of the organoid is captured over a time-frame of ~72 hours. The 2D images 
show 3D minimum projections of a volume containing the whole organoid in collagen. The 
distance between image slices in z-direction is ~15 µm. Brightfield microscopy images as 
well as segmentation masks are contained in the dataset. The segmentation of the 
organoids was performed manually due to the complexity of certain organoid structures.
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Fig. 3.5: Time series data of pancreatic ductal adenocarcinoma (PDAC) organoids. The data 
contains brightfield microscopy images of PDAC organoid growth.
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3.2.4. Organoid simulation datasets 

To avoid limitations in the training dataset size of a neural network, simulation data is 
used. The script to generate simulation data of organoid growth is based on the work 
provided by Edouard Hannezo58. The dataset contains time series data of structural 
growth. The idea of the dataset is to mimic the simplified structure formation processes in 
real organoids. Figure 3.6 shows a sequence of the simulated structure formation process 
with exponential growth. The simulation data includes elongation processes of branches, 
formation of new branches as well as thickening of branches. The rate or speed at which 
these events occur are adjustable, leading to individual growth formation processes. The 
growth formation process is randomized for individual organoids. This leads to different 
structures for individual organoids, each containing the same underlying growth pattern.  


To improve the analysis of the underlying growth processes, two datasets with different 
structure formation patterns are generated.  

The first of both datasets contains simulation data of organoid development with a single 
growth pattern. The second dataset contains simulation data with three growth patters by 
containing the same number of images in an image sequence. The second dataset is thus 
containing a more complex structure formation process. 
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Fig. 3.6: Growth stages of simulated organoids. Four time points of the development stage of a 
simulated organoid image dataset. The image sequence of each simulated organoid contains a total 
of 70 time points. 
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In order to train both networks with simulation data, image sequences of 1000 organoids 
are generated. Figure 3.7 shows a comparison of the image sequence of both simulation 
dataset. While the first dataset demonstrates exponential growth over the whole time 
sequence, the second dataset contains three different growth phases. 

Phase 1 represents exponential growth including branch elongation, branching events 
while thickening is inhibited.

Phase 2 shows a linear growth with a slow rate of branch elongation, while branching 
events and branch thickening are minimized. 

Phase 3 demonstrates inverse exponential growth, where branch thickening is promoted 
while new branching events and branch elongations are inhibited.


Each sequence in the training and validation set covers the structure formation process of 
a simulated organoid by 70 frames. Thus, the whole dataset contains a total of 70,000 
images.  The test dataset includes the same amount of simulated organoids in 70 frames 
plus an additional 20 frames, resulting in a total of 90 frames. The 20 additional frames 
allow a more detailed analysis of far future predictions with the neural network. The 
training dataset only contains data between time points t0 - t10, representing a total of 70 
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Phase I Phase II Phase III

Fig. 3.7: Comparison of simulation test datasets. Image sequence data of simulated organoids 
is shown for 14 time points. Between every time point 6 frames are acquired. The test set contains a 
total of 90 images. a) Simulation data of exponential organoid growth. b) Simulation data of organoid 
growth with 3 different growth phases. Phase 1 shows exponential growth. Phase 2 shows linear 
growth at a small rate of structural change. Phase 3 represents an inverse exponential growth 
pattern.  
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frames per sequence. Each image is generated in a resolution of 512x512 pixels with a 
pixel depth of 8-bit.


3.3. Data processing 

To be able to use the acquired datasets with deep neural networks, it is necessary to 
process the image data to meet the requirements of each individual network. Due to the 
amount of image data in each dataset, the processing has to be automated to provide a 
high quality of training, validation and test data in a reasonable amount of time. Image 
processing in cellular biophysics is typically performed with specific software such as 
Imaris, Aivia or FIJI / imageJ. These software tools are typically set up with powerful 
analysis and automation tools. For specific datasets, analysis methods and automation 
tasks these software tools are limited. Most of the image data processing was therefore 
set up and automated by python scripts, avoiding the possibilities of errors due to human 
interaction in this process.  


3.3.1. Self-supervised learning 

The first experiment of this thesis focuses on a self-supervised learning algorithm for 
nuclei segmentation.25 Self-supervised in this context refers to the process, that an 
algorithm is automatically detecting cell nuclei in microscopy images and segmenting 
these. The automatically annotated nuclei can then be used as an additional input for the 
training dataset and improve the segmentation performance by retraining the deep neural 
network. This enables a self-improving system that allows a high data throughput in 
comparison to manual data labelling, which is limited to smaller datasets due to the sheer 
workload. Raw microscopy images in most cases do not offer high quality data for 
machine learning approaches. A quality standard for the image dataset is therefore 
important to guarantee reliable results from a neural network which is trained on these 
data. To provide high quality of training, test and validation data to a neural network, the 
image processing, beginning from raw microscopy data, has to be done carefully. For 
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automation of the segmentation process, a neural network together with traditional image 
processing methods are used.

The input training data of the algorithm consists of microscopy images of fluorescent 
labeled MDCK cell nuclei, together with segmentation masks of the cell nuclei. To 
automate the segmentation process of the nuclei, several image processing steps are 
required. These are illustrated in figure 3.8. The automated data labelling process is 
compared to a manual annotation approach. While manual data annotation requires only 
simple pre-processing of raw microscopy images, automated labelling uses several image 
processing algorithms to achieve the same goal. The output of images and segmentation 
masks can be directly used as an input of training data for the neural network. The 
combination of the automated annotation together with a segmentation neural network 
allows a self-supervised learning approach.


The following section demonstrates the image processing steps for automated labelling 
of cell nuclei. 
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Fig. 3.8: Process of automated and manual nuclei annotation for segmentation with a 
neural network25. a) Automated data annotation considers image pre-processing, binary 
thresholding, watershed-segmentation, filtering and post-processing to provide a training dataset for 
nuclei segmentation with a neural network. b) Manual data annotation is applied on raw image data 
(after pre-processing) in order to provide a training dataset of images and annotation masks.
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Pre-processing: The processing step includes pixel value conversions, resizing or 

cropping of the microscopy images11,62,74 to unify the unstructured dataset. This enables 
the image dataset to meet the training and testing requirements of the neural network.


Otsu’s method: Automatic thresholding of binary images is done with the thresholding 
method by Nobuyuki Otsu et. al53. The algorithm provides an automated thresholding, 
based on the image histogram, to separate two object classes in microscopy datasets - 
specifically fluorescent labeled nuclei from its background11,74. The algorithm determines 
the threshold value that minimizes the weighted sum of variances of these two classes:


Watershed segmentation: To separate the image into foreground (cell nuclei) and 
background, watershed segmentation is applied9,10. It is a widely used segmentation 
algorithm which is able to add a label to each individual object of the microscopy 
image11,35,45,53,74,75. These objects include single nuclei, overlapping or touching nuclei, 
nuclei clusters, nuclei during cell division, as well as image artifacts such as weak 
fluorescence signal or other artifacts from imaging or culturing cells.


Pixel area filtering: To identify objects in the segmentation mask, which are other than 
single nuclei, the pixel area distribution of all objects in the dataset is assessed. The 
median pixel area of all segmented objects is selected. This results in a dominant object 
class (cell nuclei) and several outliers objects, such as touching nuclei, overlapping nuclei 
or image artifacts. A positive and negative threshold is applied in order to exclude objects 
larger (e.g. cell clusters) or smaller (e.g. cell debris particles, image artifacts) than 50% of 
the median pixel area75. As a result, outliers which are most certainly other than nuclei are 
filtered in the dataset. This results in a filtered dataset of images and annotation masks 
containing primarily single nuclei with a mean error of including non-single nuclei objects 
(false positives, false negatives) lower than 1%. Compared to the ground truth dataset, 
the new image dataset contains a total number ratio of 68% of the objects or nuclei.


(1)
σ2

w(t) = W0(t)σ2
0(t) + W1(t)σ2

1(t)
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Post-processing: The thresholded nuclei segmentation masks are subsequently 
separated into a foreground (cells) and a background. To improve the performance of the 
segmentation network48, random noise is added to the background of the images before 
training with a neural network11,17,74. 


3.3.2. Automated segmentation 

Accurate segmentation of organoids in microscopy image is a non-trivial task. 
Segmentation with a neural network requires several processing steps of the input image 
data to prepare a training, test and validation dataset for deep learning applications. 


Classification: To use microscopy image data with a deep neural network, high quality of 
input data has to be insured. While a certain amount of variance within the training data is 
beneficial to the overall output, there are limitations. Objects in the image data which 
obviously do not represent the dataset such as artifacts while imaging or from cell culture 
can degrade the overall quality of the dataset. Classification can therefore be used in 
terms of a quality control for the dataset of the segmentation network. The inception v3 
network68 is used maintain the quality of a training set of microscopy images for further 
processing. 


Image registration: Due to minimal vibrations during microscope, there is a drift of the 
organoids in respect to the field of view of the microscopy. The effect appears with any 
biological sample during microscopy. Organoids are furthermore cultured in a 3D collagen 
matrix. The collagen is not attached to the well plate. It therefore results in floating gel, 
which increases this problem of a drift of the object in respect to the microcopy field of 
view. The result is a subtle but constant translation and rotation of the organoid within the 
field of view of the image sequence. To encounter this problem, the image registration 
algorithm StackReg70 is used. Depending on the complexity of the drifting object, 
transversal or rotational movements can be corrected. In most cases, the rigid body 
transformation leads to the desired results. Rigid body transformation is calculated by
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where  is mapped to the output vector , and  refers to the amount of translation.  


Projection in z-direction: Projection allows the visualization of a 3D dataset in two 
dimension. Projections help to reduce the complexity of a 3D dataset while maintaining 
relevant image information. Projections can be performed in various ways to enhance the 
image dataset. In this processing step, minimum intensity projection was used. The 
output of the minimum projection sums up minimum pixel values of microscopy slices in 
z-direction, providing improved structural information for automated segmentation with a 
deep neural network. 

Post-processing: Conventional image processing methods are used for data 
preparation. These include pixel value conversions, resizing or cropping of the image 
dataset11,62,74 to unify the image data for neural network applications. 

 

Data Augmentation: Data augmentation is an image processing technique to enhance 
the size and quality of a training dataset by applying a set of geometric transformations to 
the images in the dataset. These transformations include rotation, shifting, flipping, 
zooming, and other operations. The goal of data augmentation is to artificially provide 
higher diversity in the training dataset while simultaneously increasing the training dataset 
to prevent overfitting. Data augmentation can help to provide enough data for machine 
learning applications in scenarios where the actual generation of data is complicated or 
even impossible. Especially in the field of cell biology, the cultivation of cells is time and 
labor intensive which limits the generation of image data65,67.


3.3.3. Growth prediction 

The third experiment of this thesis focuses on a future frame prediction model to predict 
organoid growth. Simulation and microscopy image sequences are used as input data of 
the machine learning model. These include Projection of the images, image registration, 
pre-processing and segmentation of the organoids. The data processing is required only 

⃗x0 ⃗x1 Δ ⃗x
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for the biological image dataset. There is no processing required for the simulation 
dataset. 


Projection: To obtain high quality imaging results, microscopy of organoids was done in 
three-dimensional space. The prediction networks however require two-dimensional 
image information. Minimum projection was used to reduce the three-dimensional data to 
two-dimensional images. The algorithm combines the minimum pixel values of images in 
z-direction and provides the output in a single 2D image. 


Registration: Due to minimal vibrations during microscope, there is a drift of the 
organoids in respect to the field of view of the microscopy. The effect appears with any 
biological sample during microscopy. Organoids however are cultured in a 3D collagen 
matrix. The collagen is not attached to any border in the well plate. It therefore results in a 
floating gel, which increases this challenge. The result is a steady translation and rotation 
of the organoid between single frames. To encounter this problem, the rigid body 
transformation for image registration is used. 


Pre-processing: Pixel value conversions, resizing, rotation or cropping of the image 
dataset was performed11,62,74 to unify the dataset and make it applicable for training with 
the neural network used for image prediction.


Segmentation: Segmentation of organoids in the microscopy image was done by manual 
annotation of each organoid in the dataset. This ensures maximum accuracy for ground 
truth data. Manual annotation time of a single organoid was several minutes per organoid 
depending on the accuracy of annotation. 

3.4. Deep learning algorithms 

Deep learning algorithms have proven to exceed the results of data analysis compared to 
traditional analysis methods in many disciplines31,34,50. In this thesis, several deep learning 
algorithms are used to analyze microscopy images and image sequences of organoids in 
vitro. These include classification, segmentation and future frame prediction models. The 
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networks receive high quality microscopy as well simulation image data. The raw image 
data require a processing to meet the requirements of the individual deep neural 
networks. 


3.4.1. Classification 

Image classification in context of this thesis is used for quality control of the input 
dataset. Microscopy images of cells or organoids can show image artifacts due to a 
variety of reasons. This can be biological reasons like cell apoptosis due to environmental 
reasons such as a drop of temperature due to leakage of the incubation chamber or 
phototoxicity during fluorescence microscopy. 

The classification algorithm is based on the inception v3 architecture by Christian 
Szegedy et al.68. It was published in 2016 as a successor of the inception architecture 
from 201466. Inception v3 uses a system, which allows the network to learn abstract and 
complex features from images. The architecture of the network is shown in figure 3.9 
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Fig. 3.9: Architecture of the Inception v3 network for image classification68. The network 
consists in total of 42 layers. It is composed of a combination of convolutional layers, pooling layers 
together with 1x1 convolutional layers. To reduce the input dimensionality, 1x1 convolutional layers 
are used. This drastically lowers the amount of parameters in the network. The final layer of the 
network applies a softmax activation function that is used in order to make a classification prediction 
based on the input image. 
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The idea of the network is, instead of choosing specific filters for convolutions or pooling, 
the network instead applies multiple filters and concatenates the results. The network is in 
return able to learn which filters and which combinations work best for feature extraction. 
On the other hand, the computational cost due to this brute force method increases. To 
circumvent this issue, 1x1 convolutions are implemented to the input volume to reduce 
the dimensionality. This intermediate volume or bottleneck layer acts as an input for the 
actual convolution and in return lowers the computation cost to process the output 
volume.

The Inception v3 classification model is pre-trained on the ImageNet22 dataset. The 
dataset contains more than 14 million annotated images in over 20,000 categories. The 
network and the dataset are publicly available.


3.4.2. Segmentation 

The segmentation algorithm is based on the U-Net architecture by Olaf Ronneberger et 
al.26. It is a convolutional neural network for biomedical image segmentation. Figure 3.10 
shows the U-net network architecture. The network is composed of an encoder 
(contracting path) and a symmetric decoder (expanding path). The encoder takes an 
image tile as input and successively computes feature maps at multiple scales and 
abstraction levels yielding a multi-level, multi-resolution feature representation. The 
decoder takes the feature representation and classifies all pixels at original image 
resolution in parallel26. A main feature of U-Net is a flow of information between the 
encoder and decoder at the same level of image resolution. It is also referred as skip 
connection or shortcut connection and helps to increase the segmentation accuracy. 


Based on the U-Net architecture, the StarDist network by Uwe Schmidt et al.63 is used in 
combination with conventional image processing algorithms for self-supervised nuclei 
segmentation. StarDist is a neural network architecture for instance segmentation of 2D 
and 3D cell nuclei. In comparison to U-Net, StarDist is able to predict a star-convex 
polygon object classifier as a part of the network. This prediction of star-convex polygons 
allows an accurate localization and segmentation of cell nuclei. Especially in dense cell 
layers, nuclei on microscopy images can be very close to each other, thus hard to 
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segment and separate. Even in this difficult segmentation scenarios the network 
demonstrates high performance. This method is particularly helpful in the context of cell 
tracking tasks63. 




Figure 3.11 illustrates the segmentation approach of the StarDist network. The training 
data contains pairs of input images and corresponding annotated masks. The model is 
trained to predict the boundary of fluorescently labeled nuclei based on a star-convex 
polygon and a probability map. This approach of the network is not only limited to 2D 
data. Also, 3D nuclei can be segmented, given volumetric input images together with 
annotated labels in the training dataset.
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Fig. 3.10: Architecture of the U-Net network for image segmentation26. Each blue box 
corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. 
The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature 
maps. The arrows denote the different operations.
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3.4.3. Future frame prediction 

The algorithm for future frame prediction is based on the FutureGAN architecture by 
Sandra Aigner et al. (fig. 3.12)1. It is a generative adversarial network which is able to 
predict future images based on time-series sequence data. The network is an extension 
of the progressively growing GAN method by Karras et al.39. 


Progressive Growing of GANs (PGGAN) is a method for training a generative adversarial 
network to generate realistic images in high resolution. The main idea of PGGAN is to 
gradually increase the image resolution starting with low-resolution images by 
progressively adding layers in the encoder and decoder network. By this, the GAN is able 
to learn features and patterns from images of increasing complexity as the training 
progresses. The architecture was extended for the task of image sequence prediction. By 
using the FutureGAN architecture, the model is able to learn underlying patterns and 
dynamics of objects in an image sequence, and use the learned information to generate 
realistic image predictions of how the objects will propagate in the future1.
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a) b) c)

Fig. 3.11: Working principle of the StarDist segmentation network for cell nuclei63. a) 
Microscopy image of fluorescent labeled nuclei. The density of the cell nuclei promotes 
segmentation errors with traditional object segmentation algorithms. Identifying touching nuclei as 
separate objects requires a more sophisticated segmentation approach. (b) The StarDist method is 
able to fit star-convex polygons by the radial distances rki,j into objects to identify individual nuclei. c) 
Additional object probability maps di,j are predicted by the network. The combination with the star-
convex polygons allow separation of cell nuclei with high precision. 
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Similar to a GAN model, the FutureGAN framework is based on the idea of training a 
generative model in an adversarial setting. It consists of two separate networks, a 
generator and a discriminator. The generator network is trained to predict a sequence of 
future image frames given a sequence of past frames. The discriminator network is 
trained to distinguish between the generated image sequence and a real sequence from 
the training dataset. The discriminator alternately receives real and fake / generated 
sequences as an input and determines whether the sequence appears real or not1.
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Fig. 3.12: Architecture of the FutureGAN generator for training a dataset1. The initial step of 
model uses a set of 4 × 4 px resolution frames as wells as output frames of the same resolution. 
Layers are added progressively added during training to increase the resolution after a certain 
number of iterations. The image resolution of the input frames always matches the resolution of the 
current state of the network. In this example the figure demonstrates the growth progress of the 
generator for the MovingMNIST dataset with a final resolution of 64 × 64 px. The full generator 
network furthermore includes 8 × 8 px as well as 32 × 32 px resolution steps.
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3.5. Evaluation 

To evaluate the performance of segmentation and prediction, microscopy images are 
segmented and converted into image masks. This allows pixel wise classification analysis 
between ground truth (GT) mask and segmentation or prediction masks. To evaluate 
segmentation and prediction performance, several evaluation metrics are used25. These 
include True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives 
(FN), Precision, Recall / Sensitivity, Accuracy, Specificity as well as the Jaccard Index.


Jaccard Index: Jaccard similarity coefficient was used as a measure of similarity 
between two images56. It is calculated by using the Intersection over Union (IoU):


For further analysis the confusion matrix parameters True Positives (TP), True Negatives 
(TN), False Positives (FP) and False Negatives (FN) are evaluated77.


Precision: Proportion of true positive predictions, out of all the positive predictions.


(3)IoU = Area of Overlap
Area of Union

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Table 3.1: Elements of a binary confusion matrix. Positive and negative classifications are 
described by true positives, false negatives, false positives, true negatives.

(4)Precision = TP
TP + FP
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Recall: Proportion of true positive predictions, out of all the actual positive cases. Recall 
is a synonym for sensitivity or the true positive rate (TPR).


Specificity: Proportion of true negative predictions, out of all the actual negative cases. It 
is a synonym for the true negative rate (TNR).


Accuracy: Proportion of correct predictions, out of all the predictions.


For evaluation of the future-frame prediction deep learning network, further evaluation 
was considered. These include the structural similarity (SSIM) index, mean squared error 
(MSE) as well as peak signal-to-noise ratio (PSNR). The measures are used to measure 
the quality of predicted images.


F1-Score: The F1-score is a measure for the performance of binary classification. It 
depends on the precision and recall of the model.


(5)Recall = TP
TP + FN

(6)Speci f icit y = TN
TN + FP

(7)Accuracy = TP + TN
TP + TN + FP + FN

(8)F1 = 2TP
2TP + FP + FN
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Structural Similarity Index (SSIM): Measure of the structural similarity between two 
images by comparing their local means, standard deviations and cross-covariances12. A 
SSIM close to 1 indicates a high structural similarity between two images. 


Mean Squared Error (MSE): Measure of the average squared difference between the 
pixel values of two images79. Low MSE values indicate a high similarity between two 
images.


Peak Signal-to-Noise ratio (PSNR): Measure of the peak signal-to-noise ratio of two 
images37. High PSNR values indicate a better quality of the reconstructed image.


(9)SSIM =
(2μxμy + c1)(2σxy + c2)

(μ2x + μ2y + c1)(σ2x + σ2y + c2)

(10)MSE = 1
n

n

∑
i=1

(Yi − Ŷi)2

(11)PSNR = 20 × log10 ( MAX2
I

MSE )
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4. Self-supervised learning for biological image data 

Annotating or labelling datasets for machine learning applications is a time-consuming 
and tedious task. Especially annotating objects in images can take several minutes per 
object depending on the complexity of the structure. Annotated datasets are often not 
publicly available. In those cases where annotated these datasets are available it is often 
the case that depending on the specifications of individual experiments, these dataset are 
often not suitable for obtaining precise results for deep learning algorithms. 

This experiment demonstrates a self-supervised deep learning algorithm for automated 
labelling of fluorescent cell nuclei. The method can be applied to a variety of cell culture 
experiments. The StarDist deep learning network by Uwe Schmidt et al.63 was used for 
automated segmentation of MDCK nuclei. To provide self-supervised learning of cell 
nuclei, the algorithm was implemented in a data processing pipeline. This enables to 
automatically annotate newly seen nuclei and provide this information to the training 
dataset. The training dataset increases, containing additional variations of cell nuclei. In 
return, more precise results after retraining the deep neural network are available. To test 
the capabilities of this method, tracking of individual nuclei based on the annotations was 
investigated. The results shown in this section have been published previously25.


4.1. Data annotation 

The idea of the self-supervised deep learning algorithm is to automate the cell nuclei 
annotation process. To evaluate the performance of the algorithm, it is necessary to 
compare the automatically annotated nuclei with ground truth data.

To provide ground truth data for the segmentation algorithm, cell nuclei of MDCK cells 
with a fluorescent were annotated manually. Due to the fluorescent signal, manual data 
labelling can be performed with high precision. Traditional segmentation algorithms for 
this task often lack in the precision of annotation. The challenges can be due to 
inhomogeneous signals of the fluorophor, separation of close nuclei or nuclei during cell 
division and also dealing with different sizes of nuclei. Figure 4.1 shows a microscopy 
image of fluorescent labeled MDCK cell nuclei. Each nucleus was manually annotated 
and acts as ground truth to test the annotation performance of a self-supervised deep 

43



Self-supervised learning for biological image data

learning segmentation network. To obtain precise results and a high variation of input 
data, a total amount of 6409 cell nuclei was annotated manually. The duration of 
annotation was ~15 hours for a single researcher.

 


4.2. Automated annotation 

Segmentation performance of an automatically annotated training dataset after training a 
neural network was assessed. The results are compared to a manually annotated training 
dataset (fig 4.2). The neural network trained on automated annotation provides better 
segmentation of small nuclei (green arrows). Yet, it is only able to detect touching nuclei 
with low accuracy (red arrows), which are more efficiently segmented by the network 
trained on the manually annotated dataset (red arrows). This is attributed to the fact that 
touching nuclei are better annotated manually. Both training datasets - automatically and 
manually annotated - provide coequal overall segmentation performance after training a 
neural network, resulting in a mean IoU of 0.861 (precision: 0.982, recall: 0.984) and 0.863 
(precision: 0.999, recall: 0.905).

The sensitivity of nuclei size and shape in our method is unfavorable if the dataset 
contains nuclei of big size in combination with high nuclei density (touching nuclei) and is 
favorable if the dataset contains nuclei of small size in combination with low nuclei 
density. In general, segmenting small nuclei accurately has a higher effect on overall 
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Fig. 4.1: Manual data labelling of MDCK cell nuclei. The annotated nuclei act as ground truth 
data for automated segmentation of cell nuclei. The fluorophor shows variations of signal intensity 
between nuclei. 
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segmentation performance compared to accurately segmenting touching nuclei14 and 
should be considered when using the proposed method.


The adaptability of the method is demonstrated by applying the algorithm on a different 
cell nuclei dataset. The nuclei are imaged with a higher magnification objective (63x) 
compared to our previous results. Automated annotation on a new image dataset can 
quickly be performed and results in an accurate segmentation of the test images (mean 
IoU: 0.792). Results can be provided within minutes. Results are compared with the 
neural network which is trained on the manually annotated dataset at lower magnification 
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Fig. 4.2: Comparison of segmentation performance. a) Ground truth annotation data of cell 
nuclei. b) Segmentation of cell nuclei based on a neural network trained on automatically labeled 
data. c) Segmentation of cell nuclei based on a neural network trained on manually labeled data.

Fig. 4.3: F1 score of a segmentation network trained on a manually and automatically 
labeled dataset. Automated and manual annotation show equal segmentation performance after 
training a neural network. 
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(10x), which segments only poorly (mean IoU: 0.155). For better performance, a new time-
consuming manual annotation of the dataset imaged at higher magnification would be 
required to train the neural network. Figure 4.3 shows the IoU threshold as a function of 
the F1 score for segmentation based on an automatically and manually segmented 
training dataset, confirming a high precision of segmentation with the neural network. 


4.3. Conclusion and outlook 

The proposed method demonstrates a self-learning machine learning algorithm to 
automatically detect and segment cell nuclei in fluorescent microscopy images. The 
segmented data can be used as additional training input for the segmentation network. 
This allows automated segmentation of nuclei with high performance. The network 
demonstrates equal segmentation results compared to segmentation based on manually 
annotated cell nuclei.

Segmentation of cell nuclei furthermore allows a tracking of cell movements. The method 
was used to track cell nuclei for a timeframe of ~8 hours. The software Trackmate71 was 
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Fig. 4.4: Nuclei tracking results based on an automatically annotated dataset. a) Direction of 
migration of fluorescently labeled nuclei visualized by track-lines. The color of the tracks indicates 
the speed of each individual nucleus/cell (from blue: Low speed, to red: High speed). b) Distribution 
of the migration direction of cells within 8 hours 20 minutes. Predominant movement directions are 
obtained between 45˚-75˚ and 315˚-345˚ from its starting position.
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used to monitor a trajectory from individual cells within an image time-series. Trackmate 
provides reliable tracking of fluorescent labeled nuclei. Results are shown in figure 4.4. To 
investigate cell migration, parameters such as density, speed, mitosis events, number of 
tracks or the migration direction of single nuclei can be readily obtained.


For this experiment a dataset containing 6409 nuclei of fluorescent labeled MDCK cell 
nuclei were manually annotated for providing ground truth. Even during annotation by a 
single researcher, the amount of decision processes for accurately labelling data–
specifically including or excluding areas of interest, is prone to error. This introduces a 
bias to the dataset that should not be underestimated. Hence, the task of manual data 
annotation cannot be outsourced for biomedical applications. In fact, most of these 
datasets are split amongst several researchers for data annotation. A statistical error due 
to these decision processes amongst multiple annotators has to be considered54. The 
total annotation time of the manually annotated dataset is prohibitive for many 
applications. Moreover, the mean manual annotation accuracy varied for our experiment 
depending on the annotation duration. Automated annotation on the other hand provides 
a highly controllable and consistent way of nuclei annotation. Compared to manual nuclei 
annotation, automated annotation detects only a fraction (68%) of the total number of 
nuclei in an image. However, automated annotation can be applied easily to larger 
datasets. Therefore, the total number of annotated objects can easily be increased, which 
allows providing high-quality training data for a neural network.

To demonstrate the advantage and practicability of the fully automated process, we 
automatically annotated a large-scale microscopy image of a millimeter range containing 
more than 60000 nuclei, illustrated in figure 4.5. The nuclei are segmented with a neural 
network and consequently tracked over 8 hours and 20 minutes with a time resolution of 
10 minutes. The whole process including our annotation method on the one hand as well 
as training the individual dataset on the other hand took less than one hour. The neural 
network was not pre-trained.


The method provides a solution to automate the data annotation process of cell nuclei in

microscopy images. The automated annotation process reduces the time and labor-
intensive manual data annotation to a minimum and can be adapted to individual 
datasets. Neural networks which are widely in use for biomedical or clinical applications 
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are used to train on these annotated datasets. Computer vision tasks for cell biology such 
as cell nuclei detection, segmentation or tracking can be analyzed in one single process 
with high segmentation precision. This allows instant access to experiment results and 
independence of pre-trained models (transfer learning)86 or third-party datasets.

The presented automated annotation is based on the identification of one object class 
with low variance in the cell nuclei area (e.g. single nuclei of cells) and is independent of 
the object morphology. However, our system works best in combination with a neural 
network for segmenting star-convex objects, which improves the segmentation of 
touching nuclei. The method can be adapted for segmentation of more complex object 
morphologies, histopathological images, as well as 3D nuclei segmentation applications. 
The results demonstrate the effectiveness of automatic nuclei annotation for quantitatively 
analyzing microscopy time series images with high flexibility.
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Fig. 4.5: Large scale nuclei segmentation of a widefield microscopy image trained on an 
automatically annotated dataset. The image has a field of view corresponding to 4.2 mm x 3 mm 
and containing more than 60000 single nuclei. Segmentation results are obtained within less than 
one hour, including (automatic) annotation and training with a neural network.
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5. Automated segmentation of organoids 

Segmentation of organoids in microscopy images is a non-trivial task. These annotations 
however are highly important in organoid research, as they allow a detailed analysis of 
organoid morphology. These range from volumetric analysis, obtaining the center of 
mass, to the number of branches in an organoid. With increasing complexity of the 
organoid morphology, this challenge of segmentation is even more difficult. To address 
this challenge, the performance of a neural network for segmentation was assessed. The 
network uses manually annotated image data of pancreatic ductal adenocarcinoma 
(PDAC) organoids at different developmental stages. Due to the limited throughput of 
biological microscopy data, the size of the dataset was artificially increased by data 
augmentation. The transformations include rotation, flipping, zooming and shifting of the 
original images. 


5.1. Data annotation 

Manual data annotation is a labor intensive and often tedious task. Data labelling often 
takes several minutes for a single object with a complex morphology. Annotated data 
however is mandatory for most machine learning and especially deep learning methods. 
In the case of organoids, their morphologies can range from relatively simple to complex 
structures, as shown in figure 5.1. The figure illustrates the variations of structural 
complexity of two organoids. Both organoids were imaged five days after seeding the 
cells in collagen and cell culture medium. The structure after five days is highly individual. 
To analyze the morphology of organoids it is helpful to assess segmentation masks of the 
microscopy images. These masks enable a more simple readout of organoid specific 
parameters such as the size of organoids, the elongation of branches, the total number of 
branches, the center of mass or the speed of growth. The data shows a projection of the 
organoids. Missing information in the z-direction has to be considered when analyzing the 
data. 
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In the specific case of future frame prediction, deep learning algorithms are most often 
able to process and predict colorized image data. The processing time however increases 
drastically compared to using image masks. Often it is not even necessary to use 
colorized image data, as all the relevant information is already contained in the image 
mask. In order to study growth formation processes in organoids, the morphology of the 
individual organoid is most relevant. This information is already contained in an image 
mask or binary image of an organoid. 


Manual annotation was performed in collaboration with Samuel Randriamanantsoa, 
Sandra Andrusca and Sándor Battaglini-Fischer. Manual annotation of multiple people 
implies differences in the level of detail54. Samples of annotation masks are shown in 
figure 5.2. While manual segmentation of organoids can take several minutes, there are 
still differences in the level of detail of the segmentation mask. The training dataset 
contains images with variations in the overall level of detail of segmentation.
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Fig. 5.1: Variations of structural complexity of pancreatic ductal adenocarcinoma 
organoids. a) Organoid with low morphological complexity. The microscopy image shows high 
contrast between the organoid structure and the background. b) Organoid with high morphological 
complexity. The organoid hast multiple very thin branches. Manual segmentation of the organoid 
with high precision takes several minutes and is complicated in regions where branches are thin and 
the contrast compared to the background is low.
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5.2. Automated segmentation 

To test the performance of automated segmentation of organoids, several methods are 
used. These include segmentation by thresholding, semi-automated segmentation with a 
human-in-the-loop deep learning model, as well as an encoder-decoder system used for 
segmentation. Results are shown in figure 5.3, demonstrating different levels of 
segmentation accuracy. To measure the segmentation performance, the organoids are 
segmented manually. Masks are used as ground truth data. The image was segmented 
with four different methods. The first method uses segmentation by thresholding the 
brightfield image. This method sets a threshold to separate a foreground and a 
background at a certain image pixel value. In the case of grayscale image data, such as 
brightfield microscopy images, segmentation is a difficult challenge using a brightness 
threshold. Due to brightness gradients in the microscopy image, this segmentation is 
even more difficult. These brightness gradients however regularly occur, for example due 
to shadowing effects at regions close to the border of a well plate. For experiments where 
organoids are cultured in multi-well plates, this effect is even increased. 
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Fig. 5.2: Manual annotation of various microscopy images of organoids. a) Brightfield 
microscopy images of PDAC organoids. Microscopy images show differences in brightness and 
contrast of the images. b) Manual annotation masks of brightfield microscopy images. The 
segmentation masks show different levels of annotation detail and complexity of organoid 
morphology. 
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Furthermore, a human-in-the-loop (HITL) machine learning model for segmentation was 
assessed. The segmentation results are shown in figure 5.3 c). The segmentation mask 
illustrates much more realistic segmentation of the organoid structure. For this example, 
the Trainable Weka Segmentation5 method implemented in the Fiji software was used. For 
segmentation, the foreground (organoid) and background of the image are manually 
classified. The network is trained on the given image classifiers. The model can be 
refined, by adding regional information to the classifiers and retraining the model on this 
information. The method therefore requires human interaction to improve the 
segmentation results. The segmentation mask demonstrates improvements in 
segmentation accuracy compared to traditional segmentation methods. There are still 
many false positive predictions in the region of actual background. Depending on the 
application, the level of detail of the segmentation mask by using this method might not 
be sufficient. 

U-Net, a neural network for segmentation is assessed. The encoder-decoder network was 
trained on manually annotated organoids with additional data augmentations of these 
images. The segmentation mask shows high structural precision (figure 5.3. d) compared 
to the ground truth (figure 5.3 e). The network allows automation of the segmentation with 
high accuracy without the need of human interaction. One requirement however is the 
availability of a manually labeled image dataset for training the network.
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Fig. 5.3: Comparison of segmentation methods for microscopy images of organoids. a) 
Brightfield image of a PDAC organoid. b) Segmentation by thresholding. c) Segmentation with a 
semi-automated machine learning algorithm (human-in-the-loop machine learning). d) Segmentation 
with a deep neural network trained on organoid masks. e) Manual annotation mask (ground truth). 
Segmentation algorithms show different levels of accuracy from low segmentation performance 
(thresholding), to high segmentation accuracy (deep neural network).  
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The evaluation of segmentation accuracy is shown in table 5.1. Segmentation masks 
obtained with conventional thresholding, a neural network (HITL) and a neural network (U-
Net) are compared to ground truth segmentation data. The decoder-encoder system used 
for segmentation shows highest performance. It is trained on a dataset of organoid 
images and masks. To increase the variation and size of the training dataset, additional 
augmented data are added.


Especially in cases with a contrast gradient, most traditional segmentation algorithms 
perform badly. Figure 5.4 illustrates an example where automatic segmentation is applied 

Thresholding Neural Network (HITL) Neural Network

IoU 0.13 0.45 0.82

Precision 0.15 0.46 0.85

Recall 0.48 0.96 0.95

Table 5.1: Evaluation of different segmentation methods. The performance of three different 
segmentation methods was analyzed. These include, segmentation by conventional thresholding, 
segmentation with a human-in-the-loop neural network as well as segmentation with a neural 
network only. The intersection over union, Precision and Recall of segmented images compared to 
ground truth annotation data was assessed. The neural network without of a human shows 
segmentation results with highest accuracy. 
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Fig. 5.4: Automated organoid segmentation of microscopy image with a brightness 
gradient. Even in cases where the illumination of the microscopy image is inhomogeneous the 
neural network demonstrates segmentation masks with high precision. 
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to a brightfield image with unfavorable brightness conditions in the image. The deep 
neural network demonstrates a high level of precision in detecting the overall structure of 
the organoid even in these more difficult scenarios. 


5.3. Conclusion and outlook 

Automated segmentation of organoids in microscopy images is an important task. Deep 
learning algorithms for future frame prediction often require high quality input data to 
guarantee high prediction performance. By using image masks instead of colorized 
images, the processing time for each training cycle can be reduced. In other words, for 
the same amount of processing time, much more images can be trained and analyzed 
using image masks.


The results of this experiment show that the segmentation accuracy of a machine learning 
architecture such as U-Net outperforms traditional segmentation algorithms or other 
machine learning algorithms where human interaction for refinement is required. There are 
limitations of this method, however. Depending on the complexity of the organoid 
structure, there are still noticeable differences between the precision of ground truth or 
manual segmentation and the prediction of U-Net. For less complex morphologies, the 
Jaccard index provides reliable results above 0.80. For more complex morphologies, the 
index can drop below values of 0.80. This effect can partly be compensated by increasing 
the amount and variability of input data.

Figure 5.5 illustrates the use of U-net for segmentation of organoids with different 
structural complexity. Visually, the segmentation demonstrates high segmentation 
precision. Numerical analysis shows, that the accuracy of segmentation lowers in cases 
of high morphologic complexity of the organoid. Increasing the dataset with additional 
organoid images and masks of this kind will most likely improve the performance of the 
segmentation network. The applications are therefore limited depending on the individual 
experiment.

Additionally, the use of colorized image data, such as with fluorescent microscopy, is 
highly promising for future applications. In addition to the morphological image 
information of organoids, the localization of cells or cell nuclei in the organoid for example 
can provide a better understanding of cell migration and structure formation in organoids. 


54



Automated segmentation of organoids



A limitation of this segmentation method is the specific use of two-dimensional data. 
Organoids however grow in a three-dimensional environment. 3D segmentation of 
organoids is still a complicated task which is prone to error in many cases. To simplify the 
segmentation and later prediction, 3D projections are used. To capture full information of 
organoid morphology, three-dimensional segmentation is required. Figure 5.6 illustrates 
an example of a three-dimensional representation of a PDAC organoid. The use of 3D 
image information would allow a more detailed analysis of organoids considering 
additional volumetric parameters. Implementations of 3D segmentation are already 
available to this date16. Considering structural predictions of organoids with a neural 
network, the use of volumetric data however exceeds the scope of this thesis.  

Another limitation is the accessibility of biological data. Culturing and growing organoids 
is a process that takes several days up to weeks. This limits the overall amount of data 
throughput. High throughput applications in cell culture are more and more established, 
however often still not available in many research environments. 
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Fig. 5.5: Organoid segmentation results of microscopy images with a neural network. a) 
Brightfield microscopy images of PDAC organoids at different developmental stages. b) 
Segmentation masks of organoids generated with a deep neural network. The network provides 
segmentation masks with high level of detail. The network is trained on microscopy images and 
masks (including image augmentation) of PDAC organoids. 
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The proposed segmentation method provides many advantages compared to other 
traditional segmentation methods. Whether to use this method in a research environment 
or not depends on the fact if the segmentation performance is accurate enough for the 
individual experiment. The accuracy of segmentation compared to ground truth data can 
still be improved by increasing the training dataset and retraining the network. The 
method can be improved by using simulation data of organoids in combination with real 
microscopy data. The use of simulation data bypasses the limitations of input data of 
biological samples. To encounter this challenge, data augmentation is often used to 
artificially increase the amount of training data65.
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Fig. 5.6: Three-dimensional representation of volumetric microscopy images of an 
organoid. a) Volumetric image data of a PDAC organoid. b) 3D render of a PDAC organoid based in 
volumetric microscopy image data. 
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6. Growth prediction of complex structure formation 
processes 

The following experimental results demonstrate the capabilities and limitations of a deep 
learning algorithm for the prediction of future organoid morphology. Organoids undergo a 
complex structure formation process when cultivating them in cell culture. In this 
experiment pancreatic ductal adenocarcinoma (PDAC) cells are seeded and grown in a 
collagen matrix. Five days after seeding the cells and cultivating them under cell culture 
conditions, organoids of different structural complexity have eventually grown. Figure 6.1 
illustrates samples of microscopy images of PDAC organoids. Even though the duration 
of cultivation after seeding the PDAC cells is identical, the organoids show highly 
individual morphologies. These individual structures are based on an underlying structure 
formation process. The structure formation is dependent on multiple factors. These can 
be either from biological nature or environmentally driven. 


To get a better understanding of the structure formation process in organoids, a deep 
neural network, specifically a generative adversarial network for future frame prediction 
was used. The idea of the network is to learn and understand the structural development 
of organoids, by analyzing image sequence data of individual organoids. With this 
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Figure 6.1: Microscopy images of pancreatic ductal adenocarcinoma (PDAC) organoids in 
collagen. All organoids are imaged 5 days after seeding while developing highly individual 
structures. The underlying growth process of organoids is non-trivial as it depends on multiple 
biological and environmental factors.
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understanding, the network is able to perform predictions of the future morphology of an 
organoid. The neural network was trained and tested with biological image data of real 
organoids, as well as simulation data of organoids to avoid limitations of training image 
data.  


To investigate the morphology of different organoids it is inevitable to understand the 
structure formation processes that lead to these individual morphologies. Organoids have 
shown to grow in multiple developmental phases58. These include an initiation phase at 
an early developmental stage, an extension phase, where the growth of an organoid is 
dominated by the longitudinal extension of its branches, as well as a thickening phase of 
the organoid and a lumen-formation phase at a late developmental stage of the organoid. 
In this experiment, simulation data is used to test the performance of the prediction 
network in scenarios with different growth phases. The fact that organoids are not 
synchronously following these growth patterns, increases the challenge of investigating 
the growth processes. 


6.1. Prediction of structure formation 

A generative adversarial network was used to predict the future morphological structure 
of individual organoids. The network was trained on a dataset including time-series image 
data of multiple individual organoids. The experiments demonstrate the prediction results 
of four different training datasets. The first set of image data includes simulation data of 
organoids where the growth of organoids (size of the organoid, including elongation, 
thickening, branching) increases exponentially. The second one includes simulation data, 
where the growth of the organoids includes instead of one, but three growth phases, thus 
containing a more complex growth pattern. The third dataset includes biological data of 
MDCK cells in a 2D layer. In the fourth dataset, biological image data of PDAC organoids 
(3D) are included. The datasets also differ in their total size of image data. The use of 
these different datasets allows an investigation of the capabilities and limitations of the 
network for future predictions. 
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6.1.1. Organoid simulation dataset - exponential growth 

The neural network was trained on image sequence data of simulated organoids. The 
total dataset contains image sequences of 1000 simulated organoids. Each image 
sequence contains 70 frames. Thus resulting in a total dataset of 70000 frames. The 
network automatically splits the dataset into 80% training data and 20% validation data. 
The test set includes 90 instead of 70 frames to allow a more detailed assessment of far-
future predictions.

After training the dataset, the network learns patterns of the structure formation of 
multiple individual organoids. These patterns can then be used to predict a given 
structure based on the information of the network. Figure 6.2 shows the growth of a 
simulated organoid in comparison to future frame predictions of the deep neural network.  
The test image sequence containing 90 frames was split into 14 time points for better 
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Fig. 6.2: Comparison of simulation data and long-term predictions at different time points. 
a) Simulation image sequence of the structure formation on an organoid. b) Predicted structure 
formation starting from time point t1. Due to the minimal structural information at time point t1, the  
final predicted structure highly differs from the final simulated structure. c) Predicted structure 
formation starting from time point t3. d) Predicted structure formation starting from time point t5. e) 
Predicted structure formation starting from time point t7. f) Predicted structure formation starting 
from time point t9.
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visualization. The difference between each time point includes 6 frames in the actual 
dataset. The prediction at each time point therefore corresponds to a future prediction of 
6 frames. The predictions start at different time points in respect to the ground truth data. 
Dependent on the time point from which the network performs a prediction, the structure 
of the organoid is affected. While predictions starting at early time points are based on 
low structural initial information, predictions at later time points are based on more 
individually developed structures. The initial image information affects the precision of far-
future predictions at late time points as shown in figure 6.2. b)-f).  

On the other hand, in many experimental cases, these long-term predictions are not 
necessary. In the case of drug treatments for example, the short-term effects of the drug 
on the structure of cells or organoids are often more important. Figure 6.3 compares 
simulation data to its corresponding short-term structure predictions for every time point. 
Short-term in this regard refers to the prediction of a single time point or 6 frames in the 
dataset. The predicted images demonstrate a high structural similarity between actual 
data and predicted data.


To further assess the structure formation of the simulation data, the overall growth of the 
organoids (increase of pixels between each time point) is analyzed. Figure 6.4 illustrates 
the growth curve of a simulated organoid in comparison to short-term as well as long-
term predictions. The plot shows an exponential pixel growth of the simulation data. 
Short-term prediction results are highly aligned with this process. Results of long-term 
prediction show that even if the overall trend is not accurately followed, an exponential 
increase of the structures is predicted. 


60

Fig. 6.3: Comparison of simulation data and short term predictions. a) Simulation image 
sequence of the structure formation on an organoid. b) Predicted structure formation starting from 
every previous time point in the ground truth data. The predictions show high structural correlation in 
comparison to the actual structure.
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It is important to highlight, that even if the structure prediction starting at early time points 
(figure 6.2. b) is not equivalent to the actual structure of the organoid at a late time point,
the underlying parameters of structure formation are still preserved. These include any 
kind of structural information, such as the growth rate, the number of branches, the size, 
or the elongation of the simulated organoid. 


6.1.2. Organoid simulation dataset - growth phases 

In this experiment, the neural network was trained on simulation data of organoid 
structures. In comparison to the previous experiment, the growth of the structures is not 
exponential but divided into three different growth phases. The dataset thus contains 
more complexity in the formation of its structure. Growth in that sense includes 
longitudinal growth of branches (elongation), transversal growth of branches (thickening), 
as well as the development of new branches.  
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Fig. 6.4: Growth curves of ground truth and prediction data. The GAN network shows high 
precision of structural prediction for short term future predictions. Long term future prediction shows 
a similar trend of the growth curve.
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Figure 6.5 shows the prediction results of the neural network in comparison to the 
simulation dataset. The simulation dataset shows a structure formation process including 
the three growth phases. 

The growth in the first phase is exponential, covered between time points t0 - t4. It 
corresponds to an increased rate of branching events as well as an increased speed of 
branch elongations.

The second phase shows linear growth of the simulated organoids between t5 - t9. 
Branching events are very low, the speed of branch elongation is slow. 

The third phase covers time points t10 - t13. This phase shows a thickening of branches 
with a decreased rate of branching events and a low speed of branch elongation. It 
results in an inverse exponential growth rate. 

Predictions were realized at different time points of the simulation data. Based on the 
structure of each specific time point the predictions are affected. The more structural 
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Fig. 6.5: Comparison of simulation data and long-term predictions at different time points. 
a) Simulation image sequence of the structure formation on an organoid. The image sequence 
represents three growth phases of the simulated organoid structure. b) Predicted structure formation 
starting from time point t1. Due to the minimal structural information at time point t1, the  final 
predicted structure highly differs from the final simulated structure. c) Predicted structure formation 
starting from time point t3. d) Predicted structure formation starting from time point t5. e) Predicted 
structure formation starting from time point t7. f) Predicted structure formation starting from time 
point t9.
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information given at the specific time point, the more similar is the predicted structure 
compared to the simulated structure. For long-term predictions, the final structures at 
time point t13 highly differ from the simulated structures, as shown in figure 6.5 b).  It 
furthermore shows that the third phase, which mainly represents the thickening of 
branches is poorly predicted. It is important to mention that only the test dataset contains 
the full structural information captured in the shown 14 time points or 90 frames. The 
training dataset only represents 12 time points. A decreased structural similarity of the 
prediction compared to the ground truth is therefore expected. 

For short-term predictions, on the other hand, predictions are preserved with a high level 
of structural similarity. Prediction results in comparison to ground truth data are shown in 
figure 6.6.


In the case of short-term predictions, the structural accuracy of the third growth phase is 
predicted with low accuracy, where branch thickening should be dominant. Figure 6.7 
shows the growth curve of the simulation data in comparison to short-term and long-term 
predictions of the GAN network. 


The plot illustrates a representation of the three growth phases in the ground truth data. 
Exponential growth is shown between frames 1-30, linear growth between frames 31-60, 
inverse exponential growth starts beginning from frame 61. 

In the case of short-term predictions, the plot also shows a representation of the growth 
phases in the predictions. The trend however is not accurately following the growth curve 
of the ground truth data. This effect occurs due to the additional complexity in the training 
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Fig. 6.6: Comparison of simulation data and short term predictions containing information 
of multiple growth phases. a) Simulation image sequence of the structure formation on an 
organoid with three growth phases between t0 - t4, t5 - t9 and t10 - t13 b) Predicted structure 
formation starting from every previous time point in the ground truth data. The predictions show high 
structural correlation in comparison to the actual structure. 
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dataset due to the implementation of growth phases. Furthermore, the lack of an equal 
amount of training data in the third growth phase (branch thickening) results in a decrease 
of the accuracy of growth prediction. The trend still illustrates an inverse exponential 
growth in this growth phase.

The trend for long term growth prediction only follows the actual trend in first and second 
developmental stage. The inverse exponential trend of the third growth phase on the 
other hand was not predicted. 

It is important to highlight that in the case of long-term predictions, the model tries to fit 
the ground truth data. By increasing the amount of training data, the model thus is able to 
provide more accurate results in prediction of the growth. 

This equivalently translates to any parameter that defines the simulated organoid 
structures, for example the number of branches or the position of a new branching event. 
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Fig. 6.7: Growth curves of ground truth and prediction data based on three growth phases. 
The GAN network shows high precision of structural prediction for short term future predictions in 
growth phases 1 and 2. Inverse exponential growth in phase 3 is maintained. Long term future 
prediction results maintain the overall trend in growth phase 1 and 2. The inverse exponential growth 
in the third phase was not maintained. 
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6.1.3. PDAC cell dataset (2D) 

This experiment focuses on structure formation processes of real biological data. The 
dataset contains segmentation masks of live-cell image data of MDCK cells. Due to the 
minimal amount of biological training data in comparison to the simulation dataset, only 
short term predictions are considered. Prediction results are illustrated in figure 6.8. After 
training the GAN network, an input sequence of 6 test frames is provided to the network. 
The network predicts 6 subsequent future frames based on the trained dataset and the 
short input sequence. The predicted sequence is compared to actual ground truth data of 
the segmented MDCK cell layer. The predicted sequence contains low contrast images. 
The structural information however is well-preserved. Predictions show a high level of 
structural similarity compared to ground truth data. The network is able to understand the 
structural formation of the growing PDAC cell layer. This results in a realistic prediction of 
future areas of migrations of the cell layer. The morphological changes between each time 
point are small in this case of short-term prediction.


Figure 6.9 demonstrates a more detailed illustration of a predicted image containing 
erroneous areas of predictions. The prediction is compared to the corresponding 
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Fig. 6.8: Prediction of a segmented layer of a MDCD cell layer image sequence. The neural 
network makes future predictions based on the training dataset and the input sequence containing 
6 image masks. The predicted image sequence is compared to ground truth data at for 6 
subsequent frames. 
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brightfield microscopy image of a MDCK cell layer, as well as a segmentation mask of the 
cell layer that acts as ground truth. The prediction shows errors in regions where cell 
clusters are close to each other. Regions at the border of the field of view show false 
positive predictions. In the biological image dataset, the growth of the cell layer at certain 
positions at the image border into the field of view can actually occur. This effect makes 
the erroneous predictions in the regions at the border of the field of view more 
reasonable. 

 

6.1.4. PDAC organoid dataset (3D projection) 

The last experiment of this thesis focuses on the prediction of actual organoid data. The 
organoids are cultured in a three-dimensional collagen matrix. Organoids are imaged in 
3D. The volumetric information is reduced by using 3D minimum-projections. This results 
in 2D images of organoids. The prediction network is trained on time-series image 
sequence data multiple organoids. Due to the culturing time of organoids, the throughput 
of organoid measurements is limited. The minimal amount of biological training data in 
comparison to the simulation dataset limits the prediction capabilities of the network. 
Therefore, only short-term predictions are considered.
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Fig. 6.9: Comparison between brightfield image, ground truth and predicted image. a) 
Brightfield microscopy image of the MDCK cell layer. b) Segmentation mask which acts as ground 
truth for the prediction. c) Predicted mask. Marked regions show areas where predictions are 
erroneous. 
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Figure 6.10 illustrates the prediction results after training the network. The prediction is 
based on an input sequence of 6 frames (t-5 to t0). The ground truth data of 6 subsequent 
frames is compared to the predictions of the neural network (t+1 to t+6). The difference 
between each time point corresponds to one hour of actual organoid growth. In the case 
of PDAC organoids the predictions show a realistic representation of the actual structure. 
Structural changes between each frame however are small.


6.2. Evaluation of neural network predictions 

The image sequence predictions provided by the neural network have demonstrated a 
high accuracy in predicting the actual structure for short-term predictions. In the case of 
long-term prediction, parameters which are affected by the underlying structure formation 
process are maintained. To obtain a more precise understanding of the results, the 
predicted images were evaluated and compared between the individual results.  


67

Fig. 6.10: Prediction of annotated masks of a PDAC organoid image sequence. The neural 
network makes future predictions based on the training dataset and the input sequence containing 
6 image masks (t-5 to t0). The predicted image sequence is compared to ground truth data for 6 
subsequent frames (t+1 to t+6). 
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Figure 6.11 illustrates the prediction results of a sequence of 6 future images (t+1 to t+6) 
compared to ground truth segmentation masks. The frames show an overlay of predicted 
masks and manually annotated ground truth masks of a 2D PDAC cell layer. The colors 
illustrate the accuracy of the prediction, with true positives (white), true negatives (black), 
false positives (cyan) as well as false negative pixels (magenta). The image sequence 
shows an increase of false positive and false negative predictions. While the prediction is 
able to represent a realistic representation of the cell layer, the overall accuracy of 
obtaining the exact future morphology is not preserved. The distribution of false positive 
and false negative predictions however seem to be in balance. This correlates with the 
results shown in chapter 6.1.1 and 6.1.2 that overall parameters learned from the dataset, 
such as the development of the cell area are contained.


Figure 6.12 illustrates that the overall pixel area is well-preserved over the whole structure 
formation process of a simulated organoid for short-term predictions. The dataset 
contains simulated organoids with an exponential growth pattern. The predicted masks 
demonstrate a similar exponential trend, based on the patterns it learned from the training 
dataset. The intersection over union lowers at a later developmental stage. This confirms 
the result, that the prediction does not preserve the actual structure of the organoids and 
is affected due to an increased motility. Patterns learned from the dataset such as the 
growth of the organoids are represented in the predictions however. Further evaluation 
results are shown in the appendix. 
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Fig. 6.11: Structural accuracy of a future prediction image sequence. Assessment of the 
structural accuracy of six predicted frames (t+1 to t+6). The images show an overlay of ground truth 
and predicted data. True positives (white), true negatives (black), false positives (cyan) and false 
negatives (magenta) are illustrated. 
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Exponential growth is one of the most simple pattern growth patterns and therefore easily 
to predict. It is not necessary to us a machine learning or deep learning approach to 
predict such trend. To increase the complexity of the dataset, three growth phases 
instead of a single one is introduced. The effect of the increase in complexity is shown in 
figure 6.13. The growth patterns between frames 1-30, 31-60 and 61-90 affect the pixel 
area of the segmentation masks in the simulation dataset. The accuracy of the growth 
prediction is lowered compared to a single exponential growth pattern. Especially 
between frames 61-85, the predicted area is hardly preserved. This is due to the fact that 
the training dataset contains only 70 frames instead of 90 frames per image sequence. 
The third growth phase is trained on only one third of the training data compared to the 
first and second growth phase. The amount of training data therefore highly affects the 
accuracy of the predictions. This is even more clearly illustrated in the plot showing the 
intersection over union. Compared to the single exponential growth pattern, this increase 
in complexity in the structure formation process directly affects the ability of the network 
to predict the actual structure. Due to short-term predictions of the dataset, the overall 
predicted growth curve however, provides a good representation of the actual growth 
based on the image dataset. 
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Fig. 6.12: Prediction performance of simulated exponential growth. a) Development of the 
pixel area of simulated organoids compared between ground truth and predicted data. The overall 
growth shows an exponential trend. b) Intersection of union of the prediction compared to ground 
truth data. The accuracy of the network to predict the actual morphology of the simulated organoids 
increasingly lowers at later developmental stages. 
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It is important to note that even in the case of long term predictions these learned 
patterns of the dataset are preserved as shown in the results of this experiment. Further 
evaluation of simulated growth phases is shown in the appendix.


6.3. Conclusion and outlook 

This work and specifically the proposed method has demonstrated the capabilities and 
limitations of a generative adversarial network for future frame prediction. The predictions 
show a high level of accuracy for short-term predictions. In the case of long-term 
predictions, overall structure formation parameters are well obtained. The predictions 
enable a new approach for understanding complex growth processes in cell biology - 
specifically in the case of organoids - where the information contained in microscopy 
images and the throughput of biological samples are limited. The prediction of the 
simulation data has shown that the network learns to understand the structure formation 
process and is able to generate a realistic prediction of the future structure based on this 
information. The predictions of the network can be improved at any time by increasing the 
size of the dataset and retraining the network.
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Fig. 6.13: Prediction performance of simulated growth phases. a) Development of the pixel 
area of simulated organoids compared between ground truth and predicted data. The overall growth 
shows three different growth phases. b) Intersection of union of the prediction compared to ground 
truth data. The ability of the network to predict the actual morphology of the simulated organoids is 
hindered due to the increase in data complexity.
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Based on the results of this work, there are many opportunities to improve the 
performance and the accuracy of prediction results for future applications. To this end, 
the prediction of structure formation in organoids is limited to two-dimensional image 
data. A three-dimensional approach however, would give a more general view of organoid 
growth. 

There are several applications where the use of future frame prediction networks is highly 
promising. In particular, the detailed analysis of structure formation processes in 
combination with sophisticated biological analysis techniques of organoids, such as RNA 
sequencing or gene expression profiling will most likely provide a holistic understanding 
of why organoids develop these highly individual complex morphologies. For applications 
like personalized drug treatments on organoids, the use of future frame prediction 
algorithms is also highly relevant. Due to the individual complex morphology of organoids, 
the prediction could be used as a digital control - also referred to as digital twin -  of the 
real organoid. Figure 6.14 illustrates the effect of a calyculin treatment on a PDAC 
organoid. Calyculin A is a marine toxin isolated from disodermia calyx which is an 
inhibitor of protein phosphatase 136. It can be used as a drug component for treating 
certain types of cancer. The drug was added to the organoid after time point t4. Between 
time point t0 - t4 the organoid shows normal growth behavior. After calyculin A was added, 
the organoid shows a contractile behavior within a short period of time (t5 - t9). Together 
with a segmentation mask of the brightfield microscopy data, the image sequence can be 
used to train a neural network for future frame prediction. This directly leads to two 
possible future applications of the method. 
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Fig. 6.14: Calyculin A treatment of a PDAC organoid. a) Brightfield microscopy images of the 
development of a PDAC organoid at 10 time points. The organoid was treated with calyculin after 
time point t4. The treatment with calyculin leads to a contractility of the organoid. b) Segmentation 
masks of the PDAC organoid. Brightfield images and segmentation mask can be used as training 
input to predict the future structure, based on the information of the morphological change of the 
organoid due to the drug treatment. 
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The network can be trained on specific drug treatments. The information can be used to 
predict an organoid (which was not treated) to obtain the effects of a drug on a normal 
growing organoid. This can be useful for example in the field of drug development.

Another application is to use the method as a control experiment or “digital twin”. A 
prediction network trained on normal growing organoid image sequences is considered. 
In the example of figure 6.14, calyculin was added after time point t4. The network can be 
used to make future predictions based on time point t4. The predicted sequence would 
show a continuing organoid growth without the effects of the drug treatment. Compared 
to the actual image data with the treatment, the predictions can be used as a control to 
the calyculin treatment. This would help to better understand the effects of a drug on the 
morphology of an organoid. Especially when focusing on different length scales during 
imaging, such as monitoring the migration of individual cells with a higher magnification 
objective would provide a detailed insight of the effect of the drug also on a cellular level.

Apart from using a GAN network to perform future frame predictions, other deep learning 
methods should also be considered to accomplish this task. Especially the performance 
of recently promising transformer models76 apparently show high potential at prediction 
tasks of sequential data.


Yet, it has to be noted that the structure formation processes in organoids are far more 
complex than the assessed simulation examples. A realistic representation not only 
requires a large dataset of organoid image sequences but also an in-depth analysis of the 
biological mechanisms that drive the formation processes in organoids. 

The proposed method, is not limited to the analysis of the overall structure of organoids 
but can be directly applied to study the growth behavior of organoids on different levels of 
scale, such as the migration of individual branches or even cells within the organoid. To 
this end, the assessed results for future frame prediction of organoids to study the 
fundamental growth behavior and structure formation processes in organoids sets a 
relevant benchmark for future organoid research.
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Appendix

7. Appendix 

7.1. Evaluation data 

7.1.1. Simulation data - exponential growth 
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# Frame 13 19 25 31 37 43 49 55 61 67

TN 16316 16244 16187 16081 15966 15811 15639 15423 15140 14780

FP 13 33 20 38 47 74 98 130 185 270

FN 12 16 42 55 74 98 135 182 229 304

TP 43 92 136 210 297 401 512 650 831 1030

Precision 0.76 0.74 0.88 0.85 0.87 0.86 0.85 0.84 0.83 0.81

Recall 0.81 0.85 0.79 0.81 0.82 0.83 0.82 0.82 0.82 0.80

Sensitivity 0.81 0.85 0.79 0.81 0.82 0.83 0.82 0.82 0.82 0.80

Specificity 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.98

Accuracy 1.00 0.99 0.99 0.99 0.99 0.98 0.97 0.96 0.95 0.94

IoU 1.00 0.99 0.99 0.99 0.99 0.98 0.97 0.96 0.95 0.94

F1-score 0.77 0.79 0.83 0.83 0.84 0.84 0.84 0.82 0.82 0.80

SSIM 1.00 0.99 0.99 0.98 0.98 0.97 0.96 0.95 0.93 0.91

MSE 100 191 243 369 481 683 924 1237 1642 2277

PSNR 29 26 26 23 23 22 21 19 18 16

Area (GT) 51 109 175 261 361 488 638 830 1069 1360

Area (PRED) 55 131 149 230 316 437 575 753 1004 1293

Table 7.1: Evaluation of short-term predictions of simulation data (exponential growth).
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Fig. 7.1: Evaluation of short-term predictions of simulation data (exponential growth).
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7.1.2. Simulation data - growth phases 
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# Frame 13 19 25 31 37 43 49 55 61 67

TN 16169 15955.715791.815543.615487 15468.415438.715399.315309.914929.4

FP 43 115 59 27 67 67 71 78 57 15

FN 44 73 93 202 78 78 88 102 166 490

TP 128 241 440 612 752 771 786 804 851 949

Precision 0.82 0.70 0.89 0.96 0.93 0.93 0.93 0.93 0.95 0.99

Recall 0.76 0.78 0.85 0.77 0.92 0.93 0.92 0.91 0.86 0.68

Sensitivity 0.76 0.78 0.85 0.77 0.92 0.93 0.92 0.91 0.86 0.68

Specificity 0.97 0.97 0.98 0.97 0.99 0.99 0.99 0.99 0.98 0.97

Accuracy 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.96

IoU 0.99 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.97 0.94

F1-score 0.77 0.72 0.87 0.85 0.92 0.93 0.92 0.92 0.90 0.81

SSIM 0.98 0.97 0.97 0.96 0.97 0.97 0.96 0.96 0.95 0.92

MSE 329 700 565 841 510 499 550 625 803 1913

PSNR 24 20 22 20 22 23 23 22 21 16

Area (GT) 153 278 483 741 753 766 786 812 917 1347

Area (PRED) 171 356 499 638 819 837 858 882 908 964

Table 7.2: Evaluation of short-term predictions of simulation data (growth phases).
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Fig. 7.2: Evaluation of short-term predictions of simulation data (growth phases).
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7.2. List of figures 

Figure 1.1: Microscopy images of pancreatic ductal adenocarcinoma organoids. All organoids 
are imaged five days after seeding and culturing the tumor cells, while developing highly individual 
structures. The underlying growth process of organoids is complex and depends on multiple 
biological and environmental factors. 

Fig. 2.1: Types of machine learning algorithms2,3. Traditional classification of machine learning 
algorithms with a) supervised learning: the model is trained on a labeled dataset. For each output, a 
correct input is provided. b) unsupervised learning: the model is trained on unlabeled data. It finds 
patterns within the data by itself. c) reinforcement learning: the model learns to make decisions by 
interactions with its environment and updates its understanding by an integrated feedback loop. 

Fig. 2.2: Schematic of an artificial neural network2. The feedforward neural network consists of 
an input layer, an output layer and two hidden layers (deep neural network). Each layer contains 
several interconnected neurons. Each neuron in the ANN receives input from other neurons of 
previous layers. The neurons perform a computation on that input, and produce an output that is 
passed on to neurons in the next layer. 

Fig. 2.3: Representation of an artificial neuron in a neural network83. A neuron receives the 
inputs x1, x2 and x3 which are multiplied by weights w1, w2 and w3. Multiplications of inputs and 
weights are summed up. An activation function is applied to the weighted sum. A bias unit b is added, 
which leads to an output y. 

Fig. 2.4: Network architecture of a convolutional neural network2. The network uses several 
convolution and pooling layers to extract features from input images. In the fully connected layers (Fc), 
every input neuron is connected to every output neuron. The output is forwarded to an activation 
function of the CNN. 

Fig. 2.5: Schematic of the convolution process in a convolutional neural network24. A filter / 
kernel is used to scan over an input image with a padding of 1. Each pixel value is multiplied by the 
values of the kernel and summed for all positions. The convolution results in an extraction of image 
features. 

Fig. 2.6: Schematic of max pooling in a convolutional neural network30. Maximum values from 
the input feature map are collected within a certain field of view. Values are passed to the output 
feature map. The most important information of the input feature map is contained in the output 
feature map. Pooling reduces the spacial dimension of the output layer in a CNN. 

Fig. 2.7: Fitting of data when using machine learning models2. The separation line represents 
how well the trained model fits the dataset. An underfitted model does not capture essential details of 
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the dataset. An overfitted model represents the dataset to a very high level of detail. Overall trends are 
not captured anymore. In the balanced model, the fit shows an ideal representation of the dataset. 

Fig. 2.8: Comparison of loss curves in machine learning4,72. a) The learning rate at which the 
model updates information, affects the loss of model. A low training loss can be obtained by an 
adequate selection of the learning rate. b) Validation and training loss curve for a dataset trained with 
a neural network. The model represents the dataset where the validation is minimal. Overfitting occurs 
when the validation loss increases. The model starts to represent noise in the dataset. At early training 
cycles the model is underfitting the training data. The model is unable to relate input data to output 
data. 

Fig. 2.9: Schematic of a recurrent neural network69. Information flow from neurons in the input 
layer via neurons in the hidden layer to neurons in the output layer. Neurons in the hidden layer are 
able to interact with the environment. Due to this feedback loop, future decision can be affected. 

Fig. 2.10: Schematic of a generative adversarial network27. The model consists of two networks. 
A generator network and a discriminator network. The generator network generates an image from 
random noise. The discriminator tries to distinguish the generated image from a real input image. The 
discriminator sends a feedback to the generator based on its decision. Due to the feedback loop, the 
generator is able to generate more realistic images. At some point the discriminator is not able to 
distinguish generated images from real images. 

Fig. 2.11: Cell migration on a 2D substrate60. a) An unperturbed and confluent monolayer of 
(epithelial) cells. b) A mechanical scratch creates a gap and free space between cells. The edge cells 
may be injured (orange asterisks). c) The cell sheets move inwards to close the gap. Red arrows 
indicate displacement vectors for individual cells at one time point. d) Higher magnification of the area 
in c). A front cell automatically has polarity, a front (red) surface adjoining the free space and cell layer. 
e) Side view of cells moving inwards to fill the gap, with free surface extension of the front cell in red. 

Fig. 2.12: Mesenchymal and amoeboid cell migration84. The mesenchymal cell aligns along the 
ECM fibers while at the same time creating a tunnel of proteolytically digested ECM. The amoeboid 
cell does not align along the ECM fibers but instead propagates by protruding through pores in the 
ECM. 

Fig. 2.13: Developmental phases of PDAC organoids58. Development phases are denoted by 
color bars which follow the color code - blue: onset phase, orange: extension phase, green: 
thickening phase, pink: lumen formation phase. All organoids are grown in collagen. Cellular motion 
patterns are observed with live confocal imaging for each development phase (n = 66 organoids). Cell 
nuclei are stained with SiRDNA (white). Scale bars: 100 µm. From left to right: Day 4 sum projection, 
and Day 7, Day 10, Day 13 maximum projections.  

Fig. 3.1: 2D and 3D image acquisition. a) Example of a 2D image acquisition pipeline. For two-
dimensional cell growth, PDAC cells are seeded in a 2 well plate. The wells are imaged by live-cell 
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microscopy. The stitched microscopy image contains multiple subsample of image sequences. b) 
Example of a 3D image acquisition pipeline. PDAC organoids are grown in a 24-well plate. The 
positions of each organoid is registered in the microscopy software. Each measurement contains an 
organoid within a cubic imaging volume. Additionally time-series data of each organoid is acquired. 

Fig. 3.2: Sample images of time-series datasets. a) MDCK cell nuclei dataset. The dataset 
contains microscopy data of fluorescent labeled MDCK cell nuclei. b) PDAC cell dataset (2D). The 
dataset contains brightfield microscopy images of a PDAC cell layer. c) PDAC organoid dataset (3D).  
The dataset contains brightfield images of multiple individual PDAC organoids. d) Organoid simulation 
dataset. The dataset contains simulation data of the structure formation of organoids. Corresponding 
segmentation masks are provided for all images in the microscopy image datasets. The image 
datasets differ in the amount of total images. Scale bars are not contained in the image dataset. Scale 
bars: a) 120 µm, b) 350 µm, c) 500 µm. 

Fig. 3.3: Time series data of Madin-Darby Canine Kidney (MDCK) cells. The data contains 
microscopy images of fluorescently labeled nuclei of MDCK cell growth. The dataset covers the 
growth process and movement of cells up to confluence of the cell layer. 

Fig. 3.4: Time series data of pancreatic ductal adenocarcinoma (PDAC) cells. The data 
contains brightfield microscopy images of PDAC cells. 

Fig. 3.5: Time series data of pancreatic ductal adenocarcinoma (PDAC) organoids. The data 
contains brightfield microscopy images of PDAC organoid growth. 

Fig. 3.6: Growth stages of simulated organoids. Four time points of the development stage of a 
simulated organoid image dataset. The image sequence of each simulated organoid contains a total 
of 70 time points.   

Fig. 3.7: Comparison of simulation test datasets. Image sequence data of simulated organoids is 
shown for 14 time points. Between every time point 6 frames are acquired. The test set contains a 
total of 90 images. a) Simulation data of exponential organoid growth. b) Simulation data of organoid 
growth with 3 different growth phases. Phase 1 shows exponential growth. Phase 2 shows linear 
growth at a small rate of structural change. Phase 3 represents an inverse exponential growth pattern.     

Fig. 3.8: Process of automated and manual nuclei annotation for segmentation with a neural 
network. a) Automated data annotation considers image pre-processing, binary thresholding, 
watershed-segmentation, filtering and post-processing to provide a training dataset for nuclei 
segmentation with a neural network. b) Manual data annotation is applied on raw image data (after 
pre-processing) in order to provide a training dataset of images and annotation masks. 

Fig. 3.9: Architecture of the Inception v3 network for image classification. The network 
consists in total of 42 layers. It is composed of a combination of convolutional layers, pooling layers 
together with 1x1 convolutional layers. To reduce the input dimensionality, 1x1 convolutional layers are 
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used. This drastically lowers the amount of parameters in the network. The final layer of the network 
applies a softmax activation function that is used in order to make a classification prediction based on 
the input image.  

Fig. 3.10: Architecture of the U-Net network for image segmentation. Each blue box 
corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. 
The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. 
The arrows denote the different operations. 

Fig. 3.11: Working principle of the StarDist segmentation network for cell nuclei. a) 
Microscopy image of fluorescent labeled nuclei. The density of the cell nuclei promotes segmentation 
errors with traditional object segmentation algorithms. Identifying touching nuclei as separate objects 
requires a more sophisticated segmentation approach. (b) The StarDist method is able to fit star-
convex polygons by the radial distances rki,j into objects to identify individual nuclei. c) Additional 
object probability maps di,j are predicted by the network. The combination with the star-convex 
polygons allow separation of cell nuclei with high precision.  

Fig. 3.12: Architecture of the FutureGAN generator for training a dataset. The initial step of 
model uses a set of 4 × 4 px resolution frames as wells as output frames of the same resolution. 
Layers are added progressively added during training to increase the resolution after a certain number 
of iterations. The image resolution of the input frames always matches the resolution of the current 
state of the network. In this example the figure demonstrates the growth progress of the generator for 
the MovingMNIST dataset with a final resolution of 64 × 64 px. The full generator network furthermore 
includes 8 × 8 px as well as 32 × 32 px resolution steps. 

Fig. 4.1: Manual data labelling of MDCK cell nuclei. The annotated nuclei act as ground truth 
data for automated segmentation of cell nuclei. The fluorophor shows variations of signal intensity 
between nuclei.  

Fig. 4.2: Comparison of segmentation performance. a) Ground truth annotation data of cell 
nuclei. b) Segmentation of cell nuclei based on a neural network trained on automatically labeled data. 
c) Segmentation of cell nuclei based on a neural network trained on manually labeled data. 

Fig. 4.3: F1 score of a segmentation network trained on a manually and automatically 
labeled dataset. Automated and manual annotation show equal segmentation performance after 
training a neural network.  

Fig. 4.4: Nuclei tracking results based on an automatically annotated dataset. a) Direction of 
migration of fluorescently labeled nuclei visualized by track-lines. The color of the tracks indicates the 
speed of each individual nucleus/cell (from blue: Low speed, to red: High speed). b) Distribution of the 
migration direction of cells within 8 hours 20 minutes. Predominant movement directions are obtained 
between 45˚-75˚ and 315˚-345˚ from its starting position. 
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Fig. 4.5: Large scale nuclei segmentation of a widefield microscopy image trained on an 
automatically annotated dataset. The image has a field of view corresponding to 4.2 mm x 3 mm 
and containing more than 60000 single nuclei. Segmentation results are obtained within less than one 
hour, including (automatic) annotation and training with a neural network. 

Fig. 5.1: Variations of structural complexity of pancreatic ductal adenocarcinoma organoids. 
a) Organoid with low morphological complexity. The microscopy image shows high contrast between 
the organoid structure and the background. b) Organoid with high morphological complexity. The 
organoid hast multiple very thin branches. Manual segmentation of the organoid with high precision 
takes several minutes and is complicated in regions where branches are thin and the contrast 
compared to the background is low. 

Fig. 5.2: Manual annotation of various microscopy images of organoids. a) Brightfield 
microscopy images of PDAC organoids. Microscopy images show differences in brightness and 
contrast of the images. b) Manual annotation masks of brightfield microscopy images. The 
segmentation masks show different levels of annotation detail and complexity of organoid 
morphology.  

Fig. 5.3: Comparison of segmentation methods for microscopy images of organoids. a) 
Brightfield image of a PDAC organoid. b) Segmentation by thresholding. c) Segmentation with a semi-
automated machine learning algorithm (human-in-the-loop machine learning). d) Segmentation with a 
deep neural network trained on organoid masks. e) Manual annotation mask (ground truth). 
Segmentation algorithms show different levels of accuracy from low segmentation performance 
(thresholding), to high segmentation accuracy (deep neural network).    

Fig. 5.4: Automated organoid segmentation of microscopy image with a brightness 
gradient. Even in cases where the illumination of the microscopy image is inhomogeneous the neural 
network demonstrates segmentation masks with high precision.  

Fig. 5.5: Organoid segmentation results of microscopy images with a neural network. a) 
Brightfield microscopy images of PDAC organoids at different developmental stages. b) Segmentation 
masks of organoids generated with a deep neural network. The network provides segmentation 
masks with high level of detail. The network is trained on microscopy images and masks (including 
image augmentation) of PDAC organoids.  

Fig. 5.6: Three-dimensional representation of volumetric microscopy images of an organoid. 
a) Volumetric image data of a PDAC organoid. b) 3D render of a PDAC organoid based in volumetric 
microscopy image data.  

Fig. 5.7: Three-dimensional representation of volumetric microscopy images of an organoid. 
a) Volumetric image data of a PDAC organoid. b) 3D render of a PDAC organoid based in volumetric 
microscopy image data.  
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Figure 6.1: Microscopy images of pancreatic ductal adenocarcinoma (PDAC) organoids in 
collagen. All organoids are imaged 5 days after seeding while developing highly individual structures. 
The underlying growth process of organoids is non-trivial as it depends on multiple biological and 
environmental factors. 

Fig. 6.2: Comparison of simulation data and long-term predictions at different time points. a) 
Simulation image sequence of the structure formation on an organoid. b) Predicted structure 
formation starting from time point t1. Due to the minimal structural information at time point t1, the  
final predicted structure highly differs from the final simulated structure. c) Predicted structure 
formation starting from time point t3. d) Predicted structure formation starting from time point t5. e) 
Predicted structure formation starting from time point t7. f) Predicted structure formation starting from 
time point t9. 

Fig. 6.3: Comparison of simulation data and short term predictions. a) Simulation image 
sequence of the structure formation on an organoid. b) Predicted structure formation starting from 
every previous time point in the ground truth data. The predictions show high structural correlation in 
comparison to the actual structure. 

Fig. 6.4: Growth curves of ground truth and prediction data. The GAN network shows high 
precision of structural prediction for short term future predictions. Long term future prediction shows a 
similar trend of the growth curve. 

Fig. 6.5: Comparison of simulation data and long-term predictions at different time points. a) 
Simulation image sequence of the structure formation on an organoid. The image sequence 
represents three growth phases of the simulated organoid structure. b) Predicted structure formation 
starting from time point t1. Due to the minimal structural information at time point t1, the  final 
predicted structure highly differs from the final simulated structure. c) Predicted structure formation 
starting from time point t3. d) Predicted structure formation starting from time point t5. e) Predicted 
structure formation starting from time point t7. f) Predicted structure formation starting from time point 
t9. 

Fig. 6.6: Comparison of simulation data and short term predictions containing information 
of multiple growth phases. a) Simulation image sequence of the structure formation on an organoid 
with three growth phases between t0 - t4, t5 - t9 and t10 - t13 b) Predicted structure formation starting 
from every previous time point in the ground truth data. The predictions show high structural 
correlation in comparison to the actual structure.  

Fig. 6.7: Growth curves of ground truth and prediction data based on three growth phases. 
The GAN network shows high precision of structural prediction for short term future predictions in 
growth phases 1 and 2. Inverse exponential growth in phase 3 is maintained. Long term future 
prediction results maintain the overall trend in growth phase 1 and 2. The inverse exponential growth 
in the third phase was not maintained.   
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Fig. 6.8: Prediction of a segmented layer of a MDCD cell layer image sequence. The neural 
network makes future predictions based on the training dataset and the input sequence containing 6 
image masks. The predicted image sequence is compared to ground truth data at for 6 subsequent 
frames.   

Fig. 6.9: Comparison between brightfield image, ground truth and predicted image. a) 
Brightfield microscopy image of the MDCK cell layer. b) Segmentation mask which acts as ground 
truth for the prediction. c) Predicted mask. Marked regions show areas where predictions are 
erroneous.  

Fig. 6.10: Prediction of annotated masks of a PDAC organoid image sequence. The neural 
network makes future predictions based on the training dataset and the input sequence containing 6 
image masks (t-5 to t0). The predicted image sequence is compared to ground truth data for 6 
subsequent frames (t+1 to t+6).  

Fig. 6.11: Structural accuracy of a future prediction image sequence. Assessment of the 
structural accuracy of six predicted frames (t+1 to t+6). The images show an overlay of ground truth 
and predicted data. True positives (white), true negatives (black), false positives (cyan) and false 
negatives (magenta) are illustrated.  

Fig. 6.12: Prediction performance of simulated exponential growth. a) Development of the pixel 
area of simulated organoids compared between ground truth and predicted data. The overall growth 
shows an exponential trend. b) Intersection of union of the prediction compared to ground truth data. 
The accuracy of the network to predict the actual morphology of the simulated organoids increasingly 
lowers at later developmental stages.  

Fig. 6.13: Prediction performance of simulated growth phases. a) Development of the pixel area 
of simulated organoids compared between ground truth and predicted data. The overall growth 
shows three different growth phases. b) Intersection of union of the prediction compared to ground 
truth data. The ability of the network to predict the actual morphology of the simulated organoids is 
hindered due to the increase in data complexity. 

Fig. 6.14: Calyculin A treatment of a PDAC organoid. a) Brightfield microscopy images of the 
development of a PDAC organoid at 10 time points. The organoid was treated with calyculin after time 
point t4. The treatment with calyculin leads to a contractility of the organoid. b) Segmentation masks 
of the PDAC organoid. Brightfield images and segmentation mask can be used as training input to 
predict the future structure, based on the information of the morphological change of the organoid 
due to the drug treatment. 
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7.3. List of tables 

Table 3.1: Elements of a binary confusion matrix. Positive and negative classifications are 
described by true positives, false negatives, false positives, true negatives. 

Table 5.1: Evaluation of different segmentation methods. The performance of three different 
segmentation methods was analyzed. These include, segmentation by conventional thresholding, 
segmentation with a human-in-the-loop neural network as well as segmentation with a neural network 
only. The intersection over union, Precision and Recall of segmented images compared to ground 
truth annotation data was assessed. The neural network without of a human shows segmentation 
results with highest accuracy.  
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7.4. List of acronyms 

AI Artificial Intelligence

ANN Artificial Neural Network

AUC Area Under Curve

CNN Convolutional Neural Network

CPU Central Processing Unit

CV Computer Vision

DMEM F-12 Dulbecco’s Modified Eagle’s Medium Mixture F-12

DNN Deep Neural Network

ECM Extra-Cellular Matrix

FBS Fetal Bovine Serum

FN False Negatives

FNN Feedforward Neural Network

FP False Positives

FPR False Positive Rate

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GT Ground Truth

HITL Human-In-The-Loop

IoU Intersection over Union

LIF Leica Image File Format

LSTM Long-Short Term Memory

MDCK Madin-Darby Canine Kidney

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

PDAC Pancreatic Ductal Adenocarcinoma

Pen-Strep Penicillin / Streptomycin

PGGAN Progressive Growing Generative Adversarial Network
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PR Precision Recall

PSNR Peak Signal-to-Noise Ratio

RAM Random-Access Memory

ReLU Rectified Linear Unit

RGB red, green, blue

RL Reinforcement Learning

RNN Recurrent Neural Network

ROC Receiver Operating Characteristics

SSIM Structural Similarity

TIFF, TIF Tagged Image File Format

TN True Negatives

TP True Positives
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