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Abstract: Order reduction methods are important tools for systems engineering and can be used, for
example, for parameter estimation of kinetic models for systems biology applications. In particular,
the Proper Orthogonal Decomposition (POD) method produces a reduced-order model of a system
that is used for solving inverse problems (parameter estimation). POD is an intrusive model order
reduction method that is aimed to obtain a lower-dimensional system for a high-dimensional system
while preserving the main features of the original system. We use a singular value decomposition
(SVD) to compute a reduced basis as it is usually numerically more robust to compute the singular
values of the snapshot matrix instead of the eigenvalues of the corresponding correlation matrix.
The reduced basis functions are then used to construct a data-fitting function that fits a known
experimental data set of system substance concentrations. The method is applied to calibrate a kinetic
model of carbon catabolite repression (CCR) in Escherichia coli, where the regulatory mechanisms
on the molecular side are well understood and experimental data for a number of state variables is
available. In particular, we show that the method can be used to estimate the uptake rate constants
and other kinetic parameters of the CCR model.

Keywords: model order reduction; proper orthogonal decomposition; singular value decomposition;
inverse problem; parameter estimation; kinetic model; Latin hypercube sampling

MSC: 9208; 65L09; 92C42

1. Introduction

In systems biology, mathematical models of cellular systems are essential for predicting
and optimizing cells behavior in culture [1–3]. One category of these mathematical models
is a continuous model, which describes the change of substance concentrations over time
via a system of differential equations. Mathematical models are capable of understanding
the full picture of biological systems, but finding the right parameter values (e.g., reaction
rate constants) is a serious challenge in systems biology.

Parameter estimation aiming to determine the parameter values for a mathematical
model so that the dynamical system evolves in a way such that the system characteristics
obtained from experimental observations are properly matched, see [4–6]. Mathematically,
the parameter estimation problem corresponds to an inverse problem [7], i.e., one seeks
to find the unknown model inputs (e.g., parameter values) using the measured system
states and other available information [8]. Different algorithms of computational opti-
mization can be used for estimating unknown parameters of a dynamical system [9,10],
e.g., Gauss–Newton Method [11], least square regression [12,13], or maximum likelihood
estimation [14]. In addition, parameter estimation was recently discussed using machine
learning algorithms, for instance, convolutional neural networks [15].

Proper orthogonal decomposition (POD) is a model order reduction (MOR) technique
is aiming to project high-dimensional system onto a lower-dimensional subspace whilst
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retaining the most important features of the original system [16,17]. The POD method,
also known as Karhunen–Loève Expansion (KLE) [18,19], is considered an optimal lin-
ear method since it minimizes the squared distance between the original and reduced
model. Recently, the POD has received much attention for analyzing complex physical
systems [20–22]. Moreover, it has been applied to different dynamical systems in biology,
e.g., the large-scale kinetic model of the metabolic network of Escherichia coli [3,23] and
oscillating biological network models [24].

The POD method generates a reduced-order model that is a linear combination of
basis elements. This basis elements are computed to capture the essential features of the
system [25]. Thus, the POD method is well suited in optimal control and for solving
inverse problem of dynamical systems, like the parameter estimation problem. Moreover,
the POD method takes an optimally large set of parameter values and then reduces the
set to a few estimates to be tested, so it is considered less computationally intense [24].
Often, the POD method is used for parameter estimation of partial differential equations
(PDEs), e.g., in [26] it is used to compute a reduced-order model for the bidomain equations
of cardiac electrophysiology which is utilized in an inverse problem solved using an
evolutionary algorithm. Also in [27], the POD method has been applied to estimate scalar
parameters in an elliptic PDE. In [24], the POD method is used for parameter estimation
of ordinary differential equation (ODE) systems for stable oscillating biological networks.
The study shows that the POD method is more accurate than the spline method for a stable
oscillating network.

The aim of this study is to discuss parameter estimation using POD method for an
ODE system representing the kinetic model of a cellular system. Specifically, the method
is applied to the carbon catabolite repression (CCR) mechanism in Escherichia coli [28].
The POD method provides a reduced-order model that is a linear combination of reduced
basis functions. We use a singular value decomposition (SVD) of the snapshot matrix
to compute the reduced basis, while in [24,25,27], the reduced basis is computed via the
eigenvalues and eigenvectors of the correlation matrix. The snapshot matrix is generated
from numerical simulations of the kinetic model for different parameter values and with
certain initial conditions. The reduced basis functions are then used for constructing
a data-fitting function that fits measurement data sets of dynamical system substance
concentrations. Non-linear least square fitting is considered the most common approach
to estimate parameters for non-linear systems [9,10]. Therefore, we are aiming to perform
parameter estimation for the CCR kinetic model using POD and the Least square method
(LSQ) for comparison. As we will show in this study, the results of the CCR kinetic model
with the obtained estimated parameter values using the POD method fit well with the
experimental data.

The remainder of this paper is organized in the following manner. In Section 2, we
discuss the parameter estimation procedure for non-linear ordinary differential equations
using the POD method, singular value decomposition, and constructing a data-fitting
function for the observable components. In Section 3, the approaches are applied to the
carbon catabolite repression network of E. coli. Finally, we end with some concluding
remarks in Section 4.

2. Parameter Estimation for ODEs Using the POD Method

We consider a system of ordinary differential equations given by

ẋ(t) = f (x(t), Θ), x(t0) = x0 ∈ Rnm on I = [t0, tend], (1)

where x(t) ∈ Rnm is the state vector (in our case the vector of concentration of nm species)
and Θ ∈ Rnθ is a vector of parameters that contains all unknown constants determining
the dynamics, e.g., kinetic parameters. While the system may depend on a number of
parameters Θ = [θ1, . . . , θnθ

], at first, we estimate one parameter, nΘ = 1.
Assume that we have some measurement data from experiments that are given in the

following matrix
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Y =

 y1(τ1) . . . y1(τnτ )
...

ynd(τ1) . . . ynd(τnτ )

 ∈ Rnd×nτ ,

containing measurements for nd components at nτ measurement time points τj in the
interval I. Our final goal is to fit the parameters of the mathematical model to the experi-
mental data, we assume a suitable ordering of x for the sake of implementation simplicity
i.e., xi(τj) ≈ yi(τj) for i = 1, . . . , nd < nm and j = 1, . . . , nτ with sufficient high accuracy.

2.1. Creating the Snapshot Matrix

We perform ns simulations of the model using different sets of parameter values
Θ1, . . . Θns equidistantly distributed in [lb, ub], where lb and ub are the minimum and max-
imum for all parameter values. A Latin hypercube sampling (LHS) is used for generating
the parameter space [29,30]. In each of the ns simulations, we evaluate at nt simulation
time points. Note that nt can be much larger than nτ . In this way, we obtain the snapshot
matrix

X =


x̃(t1; Θ1) . . . x̃(tnt ; Θ1)
x̃(t1; Θ2) . . . x̃(tnt ; Θ2)

...
x̃(t1; Θns) . . . x̃(tnt ; Θns)

 ∈ Rnm ·ns×nt ,

where x̃(ti; Θj) denotes a numerical approximation to the solution x(ti; Θj) of (1) at the
time point ti for parameter value Θj.

We can regard X =
[
x̄(t1) . . . x̄(tnt)

]
as the snapshot matrix taken for the enlarged

system

˙̄x = f̄ (x̄), x̄(t0) = x̄0 ∈ Rnm ·ns , (2)

where x̄(t) :=


x(t; Θ1)
x(t; Θ2)

...
x(t; Θns)

 ∈ Rnm ·ns , with each x(t; Θi) ∈ Rnm is a solution of (1), and f̄ (x̄) =


f (x, Θ1)
f (x, Θ2)

...
f (x, Θns)

, as well as x̄0 =


x0
x0
...

x0

.

2.2. Computing the Reduced Basis

To obtain a reduced basis, one can use the eigenvalues of the correlation matrix
C = XTX as in [24,25]. Since the eigenvalues λj of C, and the singular values σj of X are
related as λj = σ2

j , we use a singular value decomposition (SVD) to compute the singular
values of X instead.

If the matrix X has the condition number κ(X), then the condition number of C is
κ(C) = κ(X)2, such that for problems with high condition number the computation of
eigenvalues is much less robust that the computation of singular values, see e.g., [31].

Let d = rank(X) ≤ min(nm · ns, nt). The SVD guarantees the existence of real numbers
σ1 ≥ σ2 ≥ · · · ≥ σd > 0 and orthogonal matrices V ∈ Rnm ·ns×nm ·ns with columns {vi}nm ·ns

i=1
and W ∈ Rnt×nt with columns {wi}nt

i=1, such that

VTXW =

[
D 0
0 0

]
=: Σ ∈ Rnm .ns×nt (3)
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where D = diag(σ1, . . . , σd) ∈ Rd×d and the zeros denote matrices of appropriate dimen-
sions. From (3), we obtain

X = VΣWT ,

or similarly, the vectors {vi}d
i=1 and {wi}d

i=1 satisfy

Xwi = σivi ⇔ vi =
1
σi

Xwi, for i = 1, . . . , d.

To obtain a reduced basis we can now cut off singular values with σi < ε, where
ε is chosen such that a smaller number of basis elements nr << nm · ns is sufficient to
capture the main features of the solution of (2). By setting Vr = [v1, . . . , vnr ] ∈ Rnm ·ns×nr

(the so-called POD modesor POD basis vectors), then a reduced order model (ROM) for (2)
is given by

˙̄xr = f̄r(t, x̄r), x̄r(t0) = VT
r x̄0 ∈ Rnr , (4)

where x̄ ≈ Vr x̄r, i.e., Vr x̄r serves as approximation for x̄, and f̄r(t, x̄r) := VT
r f̄ (t, Vr x̄r).

It is well-known that span{v1, . . . , vnr} is the best approximation of Range(X) in the
sense that minimizes the two-norm of the approximation error:

nt

∑
j=1
‖x̄(tj)−VrVT

r x̄(tj)‖2
2 =

d

∑
i=nr+1

σ2
i ,

see [32].
Usually, the goal is to choose nr small enough while the relative information con-

tent [33] of the basis for the nr-dimensional subspace, defined by

I(nr) =
∑nr

i=1 σi

∑d
i=1 σi

,

is near to one. If the nr-dimensional subspace should contain a percentage p of the informa-
tion contained in the full dimensional space Rnm ·ns , then one should choose nr such that

nr = argmin
{

I(nr) | I(nr) ≥
p

100

}
.

Each data vector x̄i ∈ Rnm ·ns , i.e., the i-th column of X, can be written as

x̄i =
d

∑
j=1

bijvj, with bij = 〈vj, x̄i〉 = (vj)T · x̄i, (5)

where 〈., .〉 denotes the canonical inner product in Rnm ·ns .
Thus, the state vector can be approximated in the reduced basis as

x̄i ≈
nr

∑
j=1

bijvj, i = 1, . . . , nt,

and each nm-dimensional component x̄i
`, ` = 1, . . . , ns of x̄i (relating to (1)) can be repre-

sented in the reduced basis by

x(ti; Θ`) = x̄i
` ≈

nr

∑
j=1

bijv̂
j
`,
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where vj is decomposed into ns components as in (2)

vj =



vj
1
...

vj
nm

vj
nm+1

...
vj

2nm
...

vj
(ns−1)nm+1

...
vj

nm ·ns



=:


v̂j

1
v̂j

2
...

v̂j
ns

.

Or analogously (in a continuous version of POD) as

x(t; Θ`) ≈
nr

∑
j=1

bj(t)v̂
j
`, (6)

for coefficient functions bj(t) = 〈x(t; Θ`), v̂j〉.

2.3. Construction of Data-Fitting Function

Next, we want to construct a data-fitting function Ψ(t) ∈ Rnm that fits the known
experimental data for the component k = 1, . . . , nd. We assume Ψ(t) to be of the form

Ψ(t) :=
ns

∑
`=1

c` x̄k
`(t) =

ns

∑
`=1

c`x(t; Θ`).

With (6), we obtain

Ψ(t) =
ns

∑
`=1

c`
nr

∑
j=1

bj(t)v̂
j
` =

ns

∑
`=1

nr

∑
j=1

c`〈x(t; Θ`), v̂j
`〉v̂

j
`.

Usually only a few specific states of the dynamical system can be measured in experi-
ments. Here, we assume that the first nd components of the state vector can be measured
and we want to determine the coefficients c` in such a way that the first nd components of
Ψ = [Ψk]

nd
k=1 are an acceptable fit of the experimental data points, i.e., Ψk(τs) ≈ yk(τs) for

s = 1, . . . , nτ and k = 1, . . . , nd.
Thus, we construct a linear system to be solved for c`:

yk(τs)
!
= Ψk(τs) =

[
ns

∑
`=1

nr

∑
j=1

c`bj(τs)v̂
j
`

]
k

=

[
ns

∑
`=1

nr

∑
j=1

c`〈x(τs; Θ`), v̂j
`〉v̂

j
`

]
k

for all k = 1, . . . , nd and s = 1, . . . , nτ .
We obtain nd · nτ equations for the ns unknowns c`, ` = 1, . . . , ns. For each

k = 1, . . . , nd, we obtain a linear system

Akc = yk
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where Ak = [ak
s`], and ak

s` := ∑nr
j=1 bj(τs)V((`− 1)nm + k, j), for ` = 1, . . . , ns, s = 1, . . . , nτ

and yk =

 yk(τ1)
...

yk(τnτ )

. Summarizing all Ak and yk into one large system yields Ac = y with

A ∈ Rndnτ×ns and y ∈ Rndnτ .

2.4. Estimating the Parameters

Once we have a representation for Ψ(t) we can substitute Ψ and

Ψ̇i ≈
Ψ(ti+1)−Ψ(ti)

hs

as approximation for Ψ̇i into the ODE (1) at the simulation time points ti to obtain

Ψ(ti+1)−Ψ(ti)

hs
≈ f (ti, Ψ(ti), θ), i = 1, . . . , nt.

Here, Ψ can be assumed to be smooth since it is composed as linear combination of
solution of an ODE. Inserting all information that we have gives

Ψ(ti+1)−Ψ(ti)

hs
= f (ti, Ψ(ti), θ)

∑ns
`=1 c`x(ti+1; Θ`)−∑ns

`=1 c`x(ti; Θ`)

hs
= f (ti,

ns

∑
`=1

c`x(ti; Θ`), θ).

This system can be solved for the parameter θ by a nonlinear system solver (e.g.,
fsolve in Matlab). We can sum up all these steps in the following Algorithm 1.

Algorithm 1 Parameter estimation for a kinetic model.

1. Compute ns solutions of a kinetic model given by (1) for different parameter values
Θ1, . . . , Θns and form the snapshot matrix X.

2. Compute the SVD of X. Truncate and remain only the most dominant singular values
nr to obtain the POD basis.

3. Express every vector in the snapshot matrix X as linear combination of the POD basis
x̄i = ∑nr

j=1 bijvj with bij = (vj)T · x̄i for i = 1, . . . , nt.
4. Construct a data-fitting function that fits the known experimental data ( y(τs)) as a

linear combination of POD basis Ψ(t) := ∑ns
`=1 c` x̄i

`(t).
5. Solve the linear system Ψ(τs) = y(τs), s = 1, . . . , nτ to obtain the value of cl , l =

1, . . . , ns.
6. Substitute the value of ψ into the original model Ψ(ti+1)−Ψ(ti)

hs
≈ f (ti, Ψ(ti), θ), i =

1, . . . , nt and solve the system for θ parameter.

3. Application of the Parameter Estimation Method to a Kinetic Model of CCR in
E. coli

In this section, we apply the parameter estimation procedure introduced in the pre-
vious section to the kinetic model of carbon catabolite repression (CCR) in E. coli [28].
CCR is the main regulatory mechanism in E. coli for the control of carbohydrate uptake.
The regulatory network is strongly hierarchical with a regulator Crp (cyclic AMP receptor
protein) on the top. Crp serves as accelerator for gene expression in case of low C source
availability and in this way coordinates different subsystems of the cell, responsible for the
uptake of carbon sources, their breakdown for the production of energy and precursors,
and the conversion of the latter to biomass. In the second level, substrate specific regulator
proteins (main repressor proteins) are inactivated in case the specific substrate is available
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in the growth medium. The interplay between regulators and the transcription apparatus
results for example in the observation that only one substrate is taken up although two
substrates are provided in the beginning. Two distinct growth phases are observed, and a
sequential uptake of the substrates take place (diauxic growth).

3.1. The Kinetic Model of the Carbon Catabolite Repression

The main structure of the reaction scheme is outlined in Figure 1. Two extracellular
substrates (S1 and S2) are taken up in enzyme catalysed reactions by their respective spe-
cific transporters (E1 and E2). The substrates have representatives inside the cell (X1 and
X2). For example, in the case of glucose, X1 represents the phosphorylated form glucose
6-phospahte while in the case of lactose, the substrate is not modified during the transport
step. In general, transport systems for carbohydrate are inducible, that is, metabolites in the
cell activate gene expression of the respective enzymes. In the model, these mechanisms are
represented by a positive feedback from the Xi to the synthesis of the respective enzymes
Ei (dashed blue lines). A special case for the interaction between two uptake systems in
case of glucose and lactose is inducer exclusion (red dashed line); high levels of X1 inhibit
the activity of the second transporter for lactose uptake. The inhibition is so strong that
the level of X2 is minimal and, this way, the transporter E2 cannot be synthesized. Only
after they run out of glucose, the level of X1 decreases and the inhibition is degraded. Both
uptake branches converge in the central pathways, represented by metabolite M. From M,
the synthesis of the main biomass compartment B′ is described with a single reaction.

S1

S2

X1

X2

M B′

E2

E1
induction

induction

re1

re2

rd1

rd2
rs2

rs1

inhibition rb

Figure 1. Reaction scheme for the diauxic growth network. S1, S2 are the substrates, X1, X2 are the
intracellular metabolites, E1, E2 are the enzymes, M is the intermediate metabolite, and B′ is the
main Biomass. The reaction rates are indicated in (solid arrows), catalytic activities and regulatory
interactions in (dashed arrows).

The system of differential equations associated with the chemical reactions network is
given by

ẋ(t) = N · r(x(t)),

where x = [S1, S2, X1, X2, E1, E2, M, B′]T ∈ R8 is the vector of metabolite concentrations,
r = [rs1, rs2, rd1, rd2, re1, re2, rb]

T is the vector of reaction rates and N is the stoichiometric
matrix given as follows:
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N =



rs1 rs2 rd1 rd2 re1 re2 rb

S1 −1 0 0 0 0 0 0

S2 0 −1 0 0 0 0 0

X1 0 0 −1 0 0 0 0

X2 0 0 0 −1 0 0 0

E1 0 0 0 0 1 0 0

E2 0 0 0 0 0 1 0

M 0 0 1 1 0 0 −1

B′ 0 0 0 0 0 0 1



∈ R8×7.

The kinetic rate laws rs1, rs2 are defined by Michaelis–Menten kinetics [34] and
rd1, rd2, re1, re2, rb by mass action kinetics [35] as follows:

rs1 = ks1E1
S1

K1 + S1
, rs2 = ks2E2

S2

K2 + S2
,

re1 = ke1 f1, re2 = ke2 f2,

rd1 = kx1X1, rd2 = kx2X2, rb = km M,

where kx1, kx2, and km are the constant rates all in 1/h unit, K1, K2 are the Michaelis–Menten
constant in g/L unit and ke1, ke2 are the constant rates in the mol/gDW.h. The turnover
number of enzymes ks1, ks2 is in the unit 1/h.

The system of ordinary differential equations of the carbon catabolite repression is
given by

Ṡi = −rsiwiB, i = 1, 2

Ẋi = rsi − rdi,

Ėi = rei − µEi,

Ṁ = rd1 + rd2 − rb,

Ḃ = µB,

Ḃ′ = rb − µB′,

where wi is the molecular weight of the substrates (g/mol). The main biomass compartment
B′ consists of macromolecular species like protein, DNA, RNA, lipid, etc., and variable B is
the entire biomass, growing with the specific growth rate µ. The growth rate µ = Y1rs1 +
Y2rs2 has the unit 1/h and Y1, Y2 are yield coefficients with unit gDW/mol. The process of
induction is described with rates f1, f2 that are expressed in the following form

f1 =
X1

β1 + X1
, f2 =

X2

β2 + X2
,

where β1, β2 are in the unit mol/gDW and k1, k2 are constant rates in mol/gDW.h unit.
The intracellular components are assumed to be at the steady state i.e., Ẋ1 = 0, Ẋ2 = 0,
and Ṁ = 0. This case study considers inducer exclusion where metabolite X1 works as a
regulatory metabolite and inhibits enzyme E2 which is responsible for substrate S2 uptake.
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In a scheme, this is represented by an extension of the uptake rate rs2 to rs2 ·
α

α + X1
, where

α is a constant. Then the kinetic model of the above network is given as follows

Ṡ1 = − ks1 · E1 · S1

K1 + S1
· w1 · B,

Ṡ2 = − ks2 · E2 · S2

K2 + S2
· w2 · B · finhibit,

Ė1 = ke1
X1

β1 + X1
− µE1,

Ė2 = ke2
X2

β2 + X2
− µE2,

Ḃ = µB,

Ḃ′ = km ·M− µB′,

(7)

where

X1 =
ks1 · E1 · S1

kx1(K1 + S1)
, X2 =

ks2 · E2 · S2
kx2(K2 + S2)

· finhibit

M =
kx1 · X1

km
+

kx2 · X2

km
, finhibit =

α

α + X1
.

3.2. Numerical Results

In the following we present some examples in which we estimate certain parame-
ter values of the kinetic model (7). All results presented in the following sections were
computed with MATLAB (R2022a).

3.2.1. Estimation of the Parameter ks1

In this first example we estimate one parameter value, namely, the uptake rate constant
ks1. First, we compute the snapshot matrix X from the simulation of the kinetic model (7)
for different values of the parameter ks1 over the time interval [0, 7] h. The different values
of parameter ks1 are equidistantly distributed in the interval [10−5, 10−2], which are the
lower and upper bound of parameter value, respectively. In each of ns simulation, we
evaluate at nt simulation time points. In this example, we set ns = 50. The remaining
constant reaction rates are given in Table 1 and the parameter value of ks2 = 0.0033 is
assumed. We use the MATLAB function ode15s with tolerances RTOL = ATOL = 10−6

to compute a numerical solution of the ODE system (7) with 50 different values for the
parameter ks1. The initial concentrations of extracellular and intracellular metabolites are
assumed to be (S1, S2, E1, E2, B, B′) = (0.22, 1.18, 0.1, 0.1, 0.032, 0.5) ∈ R6.

We used the MATLAB function svd to calculate the singular value decomposition of
X. The singular values are shown in Figure 2.

0 50 100 150 200 250 300

Number of singular values

10
-15

10
-10

10
-5

10
0

10
5

si
ng

ul
ar

 v
al

ue
s

Figure 2. Singular values of snapshot matrix X for estimating parameter ks1.
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Table 1. The set of all parameters of the kinetic model that are taken from literature [28].

Constant Rates Value Unit

K1 1× 10−4 g/L
K2 0.2 g/L
ke1 6 mol/gDWh
ke2 8.69 mol/gDWh
kx1 10 1/h
kx2 10 1/h
km 10 1/h
β1 1 mol/gDW
β2 0.6 mol/gDW
α 11.05 mol/gDW
Y1 90 gDW/mol
Y2 102.6 gDW/mol
w1 180 gDW/mol
w2 342 gDW/mol

The behavior of the model order reduction method strongly depends on the decay of
the singular values of the snapshot matrix. Figure 2 shows gradually decaying singular
values with a strong decay for the smallest singular values indicating that ignoring these
will not lead to any considerable loss of information. We truncate the most dominant
singular values such that the relative information coefficient I is close to one. In this
example, we use nr = 60 where I = 0.99. The date-fitting function Ψ(t) is constructed as in
Section 2.3 to fit the experimental data set for the three measurement components S1, S2,
and B at the measurement time points nτ = 15. The trajectories of the measurement data
set and the data-fitting function are depicted in Figure 3.
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Figure 3. (a) trajectory of substrate S1 using data-fitting function with a solid line and experimental
data with a circle. (b) The trajectory of substrate S2. (c) The trajectory of Biomass B.

We can observe that the data-fitting function fits well with the measurement data.
Once the data-fitting function Ψ(t) is obtained, we can substitute the function Ψ(t) in
the kinetic model (7) and solve the system for the parameter ks1. We use the MATLAB
function fsolve with function tolerance TOL = 10−6 using the Levenberg–Marquardt
algorithm with initial guess ks1 = 0.0167. The solution gives an estimated parameter value
of kbest = 0.018. For the purpose of comparison, we also provide results from the least
square method (LSQ). We perform the LSQ method using MATLAB function lsqnonlin
and lhsdesign with the same assumptions (e.g., number of fits ns and lower and upper
bounds) as in the POD method. The solution gives an estimated value klsq = 0.01 of the
parameter ks1. The simulation results of the kinetic model with kbest in comparison with the
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simulation results of the kinetic model with klsq, and the measurement data are depicted in
Figure 4.

0 2 4 6 8

Time[h]

0

0.05

0.1

0.15

0.2

S
1
 [
g
/l
]

0 2 4 6 8

Time[h]

0

0.5

1

S
2
 [
g
/l
]

0 2 4 6 8

Time[h]

0

0.2

0.4

0.6

B
 [
g
/l
]

Experimental data

Fitted model-POD

Fitted model-LSQ

Figure 4. Simulation of the solution of the kinetic model with the parameter value ks1 using POD
method in blue (solid line), LSQ method in red (dashed line), and the experimental data in black
(open circles).

We can observe that the dynamical behavior of the kinetic model states with parameter
value kbest matches well with the experimental data for the substrates S1, S2, and the
Biomass B. While the simulation of the solution of the kinetic model with parameter value
klsq for the substrate S1 is unable to match well with the data. The substrate S1 spends
more time to consume compared to the measured data. In contrast, the trajectories of S2
and Biomass still fit good with the measured data. From the above figure, the POD method
gives better results than the LSQ method. Note, that with a change of the lower and upper
bounds in the LSQ method, we could obtain a better result. Both methods are sensitive
to assumptions, which means that the lower and upper bound of parameter value lb, ub,
the mesh size M, and the reduced basis nr can be adjusted to obtain a good fitting.

3.2.2. Estimation of the Parameters ks1 and ks2

In this example, we consider the two parameters for the uptake rate constants ks1
and ks2. The snapshot matrices X is computed from ns = 40 simulation of the kinetic
model equations (7) over the time interval. We use a Latin hypercube sampling (LHS) to
obtain different values of the parameters via the MATLAB function lhsdesign. To generate
parameter sampling for the parameters ks1 and ks2, we set the lower and upper bound for
the parameters as lb = 10−5, ub = 10−2. We use the MATLAB function svd to calculate the
singular value decomposition of X. The singular values are depicted in Figure 5.
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Figure 5. Singular values of the snapshot matrix X for estimating Parameters ks1 and ks2.

Here, we truncate at nr = 60, with relative information coefficient I = 0.9. Substituting
ψ in the kinetic model and solving the system for the two parameters using MATLAB
function fsolve with function tolerance 10−6 and initial guesses ks1 = 0.0167, ks2 = 0.0033,
we obtain the estimated values of the parameters kbest = [0.0194, 0.0032]. In this example,
we perform the LSQ method with different assumptions of bounds. We set the lower and
upper bounds in the LSQ method to be lb = 10−3, ub = 10−1, we obtain the estimated
values klsq = [0.0163, 0.0029].

From Figure 6, we can observe that the trajectories for the experimental data and the
simulation results of kinetic model with the estimated parameter values using POD method
match good for the substrates trajectories S1, S2 and Biomass curve. While the simulation
of the kinetic model with parameters value using the LSQ method is slightly different from
the measured data.
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Figure 6. Simulation of the solution of the kinetic model with the parameters value ks1 and ks2 using
POD method in blue (solid line), LSQ method in red (dashed line), and the experimental data in black
(open circles).

3.2.3. Estimation of the Parameters ks1, ke1, kx1 and kx2

In this example, we apply the method to estimate four parameters in the kinetic
model (7). We use the MATLAB function lhsdesign to generate parameter sampling for
the parameters ks1, ks2, ke2, and β2, where the lower and upper bound for the parameters
are [10−2, 10+1]. We set the number of simulation to ns = 20. The snapshot matrix X is
computed and the SVD is applied; Figure 7 shows the singular values. We choose nr = 60
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and the system is solved for the four parameters using MATLAB function lsqnonlin with
options algorithm levenberg-marquardt and initial guess of parameters ks1 = 0.0167,
ke1 = 6, kx1 = 10, and kx2 = 10. The estimated values of the parameters are kbest =
[0.01, 125.7, 103.6, 9.97]. We perform the LSQ method using the same assumptions as in the
POD method, the solution gives an estimated values klsq = [0.059, 0.084, 0.333, 9.99].
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Figure 7. Singular values of the snapshot matrix X for estimating parameters ks1, ke1, kx1 and kx2.

At the beginning of the simulation, we can observe from Figure 8 that the trajectory
of S1 using the estimated values from the POD method consumes slowly compared to
the trajectories by the LSQ method and the experimental data. Around the time 2 h, it is
exhausted a bit earlier than other curves. The trajectories of S2 and B from the POD method
are qualitatively similar to the measured data while their trajectories of the LSQ method
are slightly different.
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Figure 8. Simulation of the solution of the kinetic model with the parameters value ks1, ke1, kx1 and
kx2 using POD method in blue (solid line), LSQ method in red (dashed line), and the experimental
data in black (open circles).

4. Conclusions and Discussion

In this paper, we have discussed the parameter estimation procedure using model
order reduction by the POD method for a kinetic model of a cellular system. The process of
finding parameter values is considered to be a main challenge in mathematical modelling
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of biological system, so the possibility to use the POD method in the parameter estimation
problem is of crucial importance. We have applied the POD method and the singular
value decomposition to obtain the reduced basis elements, which are used for constructing
a function that fits the trajectory of the kinetic model to the observable data set of the
biological system. The parameter estimation using the POD method is capable to estimate
the uptake rate constants and other parameters of the CCR kinetic model. The solution of
the kinetic model with the estimated parameter values matches good with the experimental
data set. We performed the least square method to estimate parameter values of the CRR
kinetic model for the sake of comparison with the POD method and show to what extent
the POD method could estimate the values of parameters of the CRR kinetic model. We
could observe that the number of reduced basis, the lower and upper bounds, and the
number of simulations play an important role in the parameter estimation problem. For
every parameter estimation case, these numbers can be adjusted until the desired results
are obtained. In addition, the presented algorithm of parameter estimation can be used as a
reference for different kinetic models of biological systems. The presented approach has
some limitations as it strongly depends on the behavior of the singular value spectrum.
If there is only a small number of dominant eigenmodes, then the singular values will
rapidly decay and only a small number of them is enough to capture the characteristic
behavior of the system. However, in some ill-posed cases, this might not be the case and
the heuristic approach presented in the algorithm might not lead to satisfactory results.
The choice of a suitable threshold for discarding certain singular values also depends on
the quality of the data, in particular, rounding and approximation errors. It has been shown
in [36] that the truncated SVD is a suitable method for the regularization of an ill-posed
problem when the coefficient matrix is ill-conditioned with a well-determined numerical
rank. In this case, the solution obtained by the truncated SVD with a truncation threshold
equal to the numerical rank of the matrix is guaranteed to be similar to the regularized
solution where the regularization parameter is chosen near its intuitive optimum value.
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