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Abstract: Electric vehicles (EVs) can be charged wirelessly using inductive charging technology. This
process has a number of advantages in terms of automation, safety in harsh environments, reliability
in the event of natural disasters and adaptability. On the other hand, the inductive charger has many
issues, including a complex design, sensitivity to misalignment, safety concerns, and a high cost. The
transmitting and receiving coils are the primary causes of the cited problems. This paper presents an
in-depth study of an electric vehicle charging system based on the magnetic coupling between two
coils by introducing different materials to concentrate the magnetic flux and hence improving the
overall efficiency of the charging system and its design. Three situations of the magnetic coupling
between two identical rectangular coils as a function of both the horizontal (X axis) and vertical
(Z axis) alignment are examined. In the first case, the analysis of the magnetic coupling between two
copper coils separated by an air gap is presented. The results show that the magnitude of the fields
decreases according to the distance between the transmitter and the receiver coils and the obtained
coupling coefficient was very low with a high leakage flux which affected the performance of the
charging system. In the second case, a straightforward shielding method that involves inserting
a magnetic material of the ferrite type is proposed to overcome these problems. The use of ferrite
magnetic shielding contributes to channeling the field lines as well as reducing leakage flux which
makes the transmitted power higher. This perspective shows that simple shielding is still only a
partial and insufficient solution. In the third situation, an aluminum sheet was consequently placed on
the top of the ferrite to provide an adequate shielding structure. A 3D analysis of the self and mutual
induction parameters separating the two coils as well as a magnetic field is also performed using the
Ansys Maxwell software. The results highlight the significance of the enhanced proposed design.

Keywords: Wireless Power Transfer (WPT); rectangular spiral; magnetic analysis; Ansys Maxwell;
magnetic shielding

1. Introduction

The electric vehicle using batteries is a viable solution over traditional transportation
because it offers a variety of advantages such as: a clean environment, reduced costs and
no congestion charges. However, the restricted capacity for charging, the high cost, and the
short lifespan of the batteries are the main challenges to the mentioned solution.

In recent years, this subject has extremely attracted the attention of researchers. A dis-
covery in 2006 has improved the performances of the WPT systems. Marin Soljacic, an
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assistant professor in the physics department of the Massachusetts Institute of Technology
and his colleagues were able to light a 60-watt light bulb from 2 m away with a total
efficiency of 40%. Since 2009, International Consortia has been created to set standards for
power transfer efficiency and safety [1]. In 2011, Qualcomm acquired HaloIPT, owned by
the university of Auckland, which had successfully developed wireless inductive charging
systems for Citroën and had entered into an agreement with Rolls Royce to charge the lux-
ury car Phantom. In July 2012, WiTricity demonstrated the capacity of this type of vehicles
when driving an electric Bavarian Motor Work (BMW) from Massachusetts to Connecticut
(225 km) with only three wireless charging stops. On 13 February 2013, the Korea Advanced
Institute of Science and Technology and the Korea Railway Research Institute announced
that they had developed a wireless electricity transfer system suitable for rail transport [2].
For dynamic charging, the French manufacturer Renault has developed a 2.5 kW inductive
charging system for a distance of 15 cm between transmitter and receiver at a frequency of
85 kHz. The project was carried out in collaboration with Centrale-Supelec [3].

In this article, the emphasis is on suggesting ways to improve the wireless charging
capacity of the electrical vehicles.

Currently, there are two main battery charging methods. The first involves the use of
a cable while the second is based on WPT pad. The power pad is made up of two separate
coils, one transmitting and the other receiving [4–6]. In [7–9] A comprehensive study was
conducted on the latest technology and the future of wireless charging techniques.

In [10], H2020 INCIT-EV, which seeks to improve the infrastructure for charging
vehicles with an emphasis on dynamic charging, fixed charging, and enhancing charging
devices through the converter at various energy levels in order to support the market-ing
of electric vehicles.

Despite the fact that wireless dynamic charging was more frequently used in a variety
of industrial and biomedical fields [11–16] and does not require human presence, there
are still some drawbacks to overcome. In these applications, the coupling decreases, the
charging time increases, and the human is not covered from the risks of the propagating of
the magnetic field. Electro-Motive Force leakage occurs when a proportion of the force is
emitted around the WPT system during power transfer. Electromagnetic loss has an effect on
more than just the main equipment of the WPT system. It also endangers human health and
safety by producing induced current and heat within the human body, which may irritate
muscles and nerve cells and tissues [17–20]. On the other hand, as stated in [21], the issue
of charging speed requires a rise in the capacity of WPT systems which, in return, causes
higher Electro-Motive Force leakage. The assessment of WPT system in charge mode and
its influence on biological matter have both been the subject of numerous studies [22–26].
The effect of human attitude toward WPT data remains one of the main concerns of the
most recent research, specifically, when dealing with the magnetic field produced by a fixed
85 kHz medium frequency WPT system that is used to charge 500 compact car battery [26].

Many magnetic couplers have been proposed to improve the coupling between the
charging coils and the efficiency of the power pad. Several studies show that percentage
efficiencies, particularly for inductive power transfer, reach 90% [27–31].

One of the most important drawbacks of the energy transfer system remains the
misalignment problem which occur when the vehicle is moving. Efficiency is reduced
considerably when there is a significant misalignment between the two coils. According
to [32], the coupling coefficient is decreased from 1.6 to 0.2.

Currently, several investigations on electromagnetic shielding techniques to reduce the
emission of electromagnetic fields from WPT systems have been conducted in the past few
years. Magnetic coupler shielding is generally constructed in one of two configurations: single
or double ferrite in the first, but ferrite and an aluminum plate in the second [5,11,33,34].

Likewise, the self- and mutual inductance parameters are important factors in the
magnetic analysis of the coil structures that make up the power pad. Other geometries have
been integrated into the transformer design to enhance power transfer efficiency, rendering
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parameter calculations more complex. Luckily, the use of finite element analysis may be
able to overcome these limitations [35–37].

For many applications involving electromechanical systems, Ansys Maxwell solves
static, frequency, and time-varying electrical problems and provides specific design inter-
faces by checking the output data with the help of mathematical expressions. This software
may be used to calculate the coupling coefficient and mutual induction during the wireless
charging process in [38].

The present article Intends to propose a design of the power pad based on rectangular
spiral-shaped for EV charging capacity. The model takes into account the distance between
two identical rectangular spiral coils with the same number of turns as a function of both
the horizontal (X axis) and vertical (Z axis) misalignment. The analysis of the magnetic
parameters is first provided. However, as the intensity of the fields decreases according
to the distance between the transmitter and the receiver, it follows a reduction in the
transmitted power of the supply system. As a result, the obtained coupling coefficient is
not sufficient and the leakage flux is important. In order to reduce leakage flux, enhance
coupling coefficient, and develop a better power transfer system during dynamic charging,
the insertion of a single ferrite shielding and a double shielding based on the addition of
aluminum plate are employed. Also, the self and mutual induction parameters as well as
the distribution of the magnetic field are analyzed in 3D using Ansys Maxwell software.

This article proposes a review of the technologies involved in a WPT charger for electric
vehicles, in addition to demonstrating a methodology for its design and optimization. In
Section 2, a description of a WPT charging system for electric vehicles is provided. In
Section 3, a 3D representation of rectangular spiral coils is given. In Sections 4 and 5 the
results acquired during the development of the power system are discussed. Finally, the
conclusion is then drawn.

2. Description of WPT System

The system consists of two coils, one transmitting and the other receiving, which will
serve as the transformer’s primary and secondary windings (Figure 1). The transmitting
coil is supplied by an inverter which is connected to the grid through a rectifier. Once an
alternating current is generated in the reception coil, a second rectifier is used to charge the
battery [5].

Sustainability 2023, 14, x FOR PEER REVIEW 3 of 14 
 

 

configurations: single or double ferrite in the first, but ferrite and an aluminum plate in 
the second [5,11,33,34]. 

Likewise, the self- and mutual inductance parameters are important factors in the 
magnetic analysis of the coil structures that make up the power pad. Other geometries 
have been integrated into the transformer design to enhance power transfer efficiency, 
rendering parameter calculations more complex. Luckily, the use of finite element 
analysis may be able to overcome these limitations [35–37]. 

For many applications involving electromechanical systems, Ansys Maxwell solves 
static, frequency, and time-varying electrical problems and provides specific design 
interfaces by checking the output data with the help of mathematical expressions. This 
software may be used to calculate the coupling coefficient and mutual induction during 
the wireless charging process in [38]. 

The present article intends to propose a design of the power pad based on rectangular 
spiral-shaped for EV charging capacity. The model takes into account the distance 
between two identical rectangular spiral coils with the same number of turns as a function 
of both the horizontal (X axis) and vertical (Z axis) misalignment. The analysis of the 
magnetic parameters is first provided. However, as the intensity of the fields decreases 
according to the distance between the transmitter and the receiver, it follows a reduction 
in the transmitted power of the supply system. As a result, the obtained coupling 
coefficient is not sufficient and the leakage flux is important. In order to reduce leakage 
flux, enhance coupling coefficient, and develop a better power transfer system during 
dynamic charging, the insertion of a single ferrite shielding and a double shielding based 
on the addition of aluminum plate are employed. Also, the self and mutual induction 
parameters as well as the distribution of the magnetic field are analyzed in 3D using Ansys 
Maxwell software. 

This article proposes a review of the technologies involved in a WPT charger for 
electric vehicles, in addition to demonstrating a methodology for its design and 
optimization. In Section 2, a description of a WPT charging system for electric vehicles is 
provided. In Section 3, a 3D representation of rectangular spiral coils is given. In Sections 
4 and 5 the results acquired during the development of the power system are discussed. 
Finally, the conclusion is then drawn. 

2. Description of WPT System 
The system consists of two coils, one transmitting and the other receiving, which will 

serve as the transformer’s primary and secondary windings (Figure 1). The transmitting 
coil is supplied by an inverter which is connected to the grid through a rectifier. Once an 
alternating current is generated in the reception coil, a second rectifier is used to charge 
the battery [5]. 

 

Figure 1. Typical WPT charging system for Evs.

The WPT system is represented by a single-phase transformer, shown by the equivalent
circuit in Figure 2.
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The governing system equations are expressed by [16]:

v1 = L1
di1
dt

+ M
di2
dt

+ r1 · i1 (1)

v2 = L2
di2
dt

+ M
di1
dt
− r2 · i2 (2)

The total radiated energy is expressed by:

Wrad =
1
2

L1i21 +
1
2

L2i22 + Mi1i2 (3)

where:
v1, v2; i1, i2; r1, r2; L1, L2 are respectively the voltages, currents, resistances and

inductances of the primary and secondary coils.
M represents the mutual inductance between the primary and secondary coils.

3. Description of Spiral Coils in 3D

The transmitting and receiving coils have been modeled based on three-dimensional
(3D) presentation using Ansys Maxwell software. The two copper coils with a plan spiral
form are depicted in Figure 3. The distance between two adjacent wires in each coil, is taken
equal to 50 mm. On the other hand, a rectangular plate is placed between the transmitter
and the receiver coils in the main goal to ensure the capture of the magnetic field.
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The simulations would take place fully in the air and would comprise 1000-square-
millimeter areas. Figure 3 depicts the design of the rectangular spiral coils without ferrite
core.
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Table 1 includes information about the coil’s properties. Then, Tables 2 and 3, re-
spectively, provide information on the characteristics of the rectangular plate and the
air region.

Table 1. The coil’s properties.

Name Transmitter Coil Receiver Coil

Number of turns 10 10
Width of the spiral coil 3 mm 3 mm

Thickness of the spiral coil 0.0762 mm 0.0762 mm
Distance between turns 6 mm 6 mm

Frequency 85 kHz

Apparent Power 33.6 KVA

Active Power 14.8 KW

Table 2. Rectangular plate properties.

Command Coordinate System Position Axis Y Size Z Size

Rectangle global 50, 0.70 Z −70 mm −70 mm

Table 3. The air region properties.

Name Value Unit Evaluated Value

Command Created box

Coordinate system Global

Position −500, −500, −500 mm −500, −500, −500

Xsize 1000 mm 1000

Ysize 1000 mm 1000

Wsize 1000 mm 1000

4. Analysis and Simulation Results
4.1. Case One: Coils in Air Gap

The authors in reference [16] limited their study to vertical misalignment. In this
study, the two cases of vertical and horizontal misalignment are examined. The Ansys
Maxwell tool is used to perform the 3D simulations and analysis of a spiral rectangular
coil transformer. In the first step, according to Equation (3) the WPT model is examined
without ferrite in order to provide the influence of the different electromagnetic parameters
on the amount of energy transmitted as shown in Figure 4.

4.1.1. Vertical Misalignment (vd)

The calculation of the proper and mutual inductances is obtained by the variation
of the vertical misalignment (vd) separating the two coils of the model. The magnetic
permeability of the medium is that of air. As shown in Figure 5a, the self-inductances of
the transmitting and receiving coils are constant despite variations in the vertical distance
since the magnetic reluctance of each coil alone is unchanged. According to Figure 5b, the
mutual inductance is inversely proportional to the distance between the two coils because
the magnetic reluctance of the two coupled coils decreases.
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Figure 4. Design of the rectangular spiral coils without ferrite.
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Figure 5. (a) Self-inductances and (b) Mutual inductance, under variation of vertical misalignment
d = 50 mm up to 250 mm, of the rectangular spiral coils without ferrite.

Also, the radiated energy level can be estimated by the coupling coefficient. As can
be seen in Figure 6, the coupling coefficient (K) varies in the same way as the mutual
inductance as expressed by:K = M√

L1L2
. Therefore, less radiated energy is obtained as the

distance between the two coils increases.
Figure 7 shows that the field lines outside the region between the two coils are

widespread. As a result, appropriate shielding is required.

4.1.2. Horizontal Misalignment (hd)

This section examines the relationship between the coupling coefficient and the hori-
zontal misalignment distances that range from −40 mm to 40 mm with a step of 10 mm as
well as the relationship between the mutual inductance and the same distances as shown
in Figure 8.
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The obtained results show that the coupling coefficient and mutual induction vary in a
parabolic-shaped forms. Both the mutual inductance and the coupling coefficient decrease
as the misalignment is increased. When the misalignment is zero and the two coils are
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in phase (X = 0 mm), the coupling coefficient and mutual inductance also achieve their
maximum values. As a result, the magnetic coefficients are more effective when the two
coils are closely together, as shown in Tables 4 and 5 and Figure 9.

Table 4. Inductor values obtained from horizontal misalignment.

Z Space [mm] Mutual Inductance [nH]

1 −40 692.976

2 −30 819.490

3 −20 922.116

4 −10 989.814

5 0 1013.691

6 10 991.027

7 20 924.681

8 30 822.780

9 40 696.879

Table 5. Coupling coefficient values obtained from horizontal misalignment.

Z Space [mm] Coupling Coefficient

1 −40 0.109618

2 −30 0.129554

3 −20 0.145936

4 −10 0.156849

5 0 0.160521

6 10 0.156756

7 20 0.146528

8 30 0.130157

9 40 0.110225
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From these results, it appears that in order to maintain a good level of radiated energy
and the effectiveness of the power pad system, a series of transmitting coils must be
installed along the path that the receiving coil follows.

4.2. Case Two: Ferrite on Coils (Simple Shielding)

The magnetic coupler leads to the channeling of the magnetic field lines in the energy
transfer zone (between the two coils) and is designed to minimize their effect outside the coils.
The position of the shielding is shown in Figure 10. In this figure, Lp and Ls are respectively
the primary and secondary inductances and RL represents the charging battery.
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4.3. Model of Single Shield Using Ferrite Core

Inserting the ferrite can enhance magnetic shielding and mutual inductance for a
proper design of the magnetic coupler, particularly when there is a significant air gap as
depicted in Figure 11. In this first part of the study, a magnetic coupler with and without
ferrite cores is simulated using Ansys Maxwell.
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The insertion of ferrite with higher relative magnetic permeability (µr ≈ 1000) im-
proves the coupling coefficient and the energy transferred to the receiver coil especially for
short gaps as shown in Figure 12.
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Figure 12. Variations of the mutual inductance with and without ferrite along the misalignment
distance.

The distribution of magnetic field lines is much more channeled in its propagation
from the transmitting coil to the receiving coil. The simulated results show that the leakage
flux remains important at the corners of the ferrite plate as depicted in Figure 13.
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Figure 13. Magnetic field (H) along the ZY axis with ferrite at vd = 50 mm.

The insertion of the ferrite core has improved the shielding but the leakage flux still
reduces the overall energy transfer. To overcome this drawback, a second shielding is
introduced on top of the ferrite plate and the simulation results are described below.

4.4. Case Three: Ferrite and Aluminum on Coils (Double Shielding)

The single shielding of the WPT model discussed above is improved in this second
section by using a double shielding between the coils with Air gap of 50 mm where it is
made by adding aluminum to the ferrite, realizing that the thickness of the Aluminum sheet
is chosen as 1 mm as shown in Figure 14. The simulations are conducted using an eddy
current solution with a frequency of 85 kHz with was undertaken with a starting frequency
of 30 kHz and a stopping frequency of 85 kHz. Step Size 10 kHz and an alternating current.

The new self and mutual inductances are determined by varying the vertical distance
(vd) between the two coils, as shown in Figure 15 and the results show that there is no
effect of the double shielding on these parameters.
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As shown in Figure 16, and indicated by red circles, the effect of adding a second
shielding appears in reducing the leakage flux and thus improve the overall transfer
of energy.
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5. Conclusions

This article has dealt with the problem of energy transfer in WPT systems for electric
vehicles. In order to optimize the power pad of the charging system, three cases of magnetic
coupling between two identical rectangular spiral coils with the same number of turns
depending on both the horizontal (X axis) and vertical (Z axis) alignment have been studied.
In the first case where the magnetic circuit is air, the obtained results have shown that
the primary and secondary self-inductances are constant and independent of the distance
between the two coils. The distribution of the magnetic field has shown that the field
lines are outside the area between the two coils which requires effective shielding. In the
second case, a ferrite with a high magnetic permeability is inserted on top of the two coils
so as to concentrate the field lines in the energy transfer area. As a result, the coupling
coefficient was improved by 26%, as well as an increase in the level of transferred energy.
This design improved the performance of the original system but the leakage flux still
remains important. In the latter case, an additional insertion of an aluminum plate above
the coils has been discussed. According to the results, aluminum effectively enhances the
shielding. In perspective of the studies presented in this paper, the results can be validated
and tested experimentally using different materials and shapes. Additionally, research
should be done on the resonance phenomenon and the matrix of “emitting/receiving” coils
in order to improve the effectiveness of the charging system.
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