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Abstract: We introduce and prove the “root theorem”, which establishes a condition for families of
operators to annihilate all root states associated with zero modes of a given positive semi-definite
k-body Hamiltonian chosen from a large class. This class is motivated by fractional quantum Hall
and related problems, and features generally long-ranged, one-dimensional, dipole-conserving terms.
Our theorem streamlines analysis of zero-modes in contexts where “generalized” or “entangled”
Pauli principles apply. One major application of the theorem is to parent Hamiltonians for mixed
Landau-level wave functions, such as unprojected composite fermion or parton-like states that were
recently discussed in the literature, where it is difficult to rigorously establish a complete set of zero
modes with traditional polynomial techniques. As a simple application, we show that a modified V1

pseudo-potential, obtained via retention of only half the terms, stabilizes the ν = 1/2 Tao–Thouless
state as the unique densest ground state.

Keywords: condensed matter theory; quantum many-body physics; topological phases; fractional
quantum hall effect; exactly solvable models; frustration free lattice models; topological orders;
quantum orders

1. Introduction

Recent decades have greatly added to our understanding that quantum phases of
matter are not comprehensively described by the conventional, symmetry-based orders
described by Landau [1]. Instead, the description of quantum orders is a paramount
challenge in the study of complex interacting many-body systems. While we may still
be far from a complete understanding of all such possible orders, a time-tested approach
toward adding to this understanding is identifying a “correct” quantum-many body wave
function describing a given phenomenology, and extracting from it the essential features
responsible for its universal behavior. Perhaps the first example of this approach is the
BCS trial wave function for superconductivity [2], even though the insight of its Landau-
paradigm defying character came somewhat later [3]. Interacting quantum many-body
systems in one spatial dimension represent another important niche where this approach
has been fruitful. While integrability provides a powerful tool here—albeit one peculiar
to the one-dimensional situation—important general principles, e.g., regarding gapped,
symmetry protected, topological phases have been discovered through explicit construction
of classes of many-body wave functions. The original case in point here is the seminal AKLT
model [4], which sparked vast efforts of generalization, and generation of methodology
for classification via matrix product states, (e.g., [5–8]). For gapped, partially gapped, and
gappless one-dimensional quantum-systems, another method reliant on the identification
of correct trial wave functions is that of the “factorization of the wave function” [9–12].
Indeed, in this context, there emerges some notion of “squeezing” [12] that, perhaps not
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coincidentally, may be a close cousin of a similar notion that will be of central importance
in the present work.

In this paper, our foremost concern will be the fractional quantum Hall effect and mod-
els for related phenomena. Here, it was of course Laughlin who pioneered the technique of
writing down unique trial wave functions that capture the underlying physics. This has
been key to the discovery of a plethora of quantum orders in the fractional quantum Hall
regime. For many holomorphic, single-component lowest-Landau-level wave functions,
à la Laughlin, a highly consistent framework exists to link those wave functions to field
theory [13], in particular, the effective edge theory. The connection with universal physics
at the edge can, however, be made in another very convincing way that involves a certain
type of parent Hamiltonian. The prototype for this kind of Hamiltonian is the V1 Haldane
pseudopotential (or its bosonic counterpart) [14], with an equivalent Trugman–Kivelson
form [15]. This Hamiltonian stabilizes the Laughlin state as its unique lowest-angular-
momentum zero-energy eigenstate (zero mode). At higher angular momenta, however, the
zero mode space is increasingly degenerate. Indeed, the counting of linearly-independent
zero modes at a given angular momentum relative to the incompressible fluid exactly
reproduces the mode counting in the edge conformal field theory. A number of other such
parent Hamiltonians exist that conform to such a “zero mode paradigm” [14–27]. Originally,
this was especially the case for holomorphic, lowest Landau-level wave functions. In the
presence of an appropriate confining potential that lifts the zero-mode degeneracy, and
assuming a bulk gap, this rigorously establishes the edge physics in a microscopic model.
Due to bulk-edge correspondence in these systems, one may argue that this is basically as
good as knowing the bulk topological quantum field theory. Indeed, recent probes of the
statistics of fundamental particles make essential use of the physics at the edge [28], as do
other probes, such as momentum-resolved tunneling [29–31].

Recently, there has been much renewed interest in wave functions that are not holo-
morphic, at least not without projection to the lowest Landau level. The best known
examples are the Jain composite fermion states [32], but also beyond that a larger class of
so-called “parton states”, which historically were among the first non-Abelian fractional
quantum Hall states to be written down [33–35]. The recently revived interest [24,27,36–39]
in parton states stems, in part, from the arrival of new platforms to harbor the fractional
quantum Hall effect, such as graphene in its multi-layer varieties. Not being described by
holomorphic polynomials, the general framework of Ref. [13] does not immediately apply,
and indeed, one can argue that the identification of “zero-mode paradigm conforming”
parent Hamiltonians is the most direct way to establish universal physics from microscopic
principles. At the same time, where such Hamiltonians exist, their zero mode spaces are
considerably harder to study than for Hamiltonians stabilizing holomorphic lowest Landau-
level wave functions. This is so because techniques surrounding symmetric polynomials,
which have, for example, been successfully used in the case of the Laughlin [40] and several
other [20,21,41] quantum Hall states to facilitate such counting, do not apply in this case.
For reasons of this kind, parent Hamiltonians (with proper zero-mode counting) for Jain
composite fermion states have only recently been constructed [25]. On the other hand, non-
Abelian parton states can, in many cases, be characterized by analytic-clustering conditions
that lead to natural parent Hamiltonians. However, the rigorous full characterization of the
zero-mode spaces of such Hamitonians can, again, not be carried out with the polynomial
techniques—or any standard device of commutative algebra—that are characteristic of the
lowest Landau level. Instead, radically different methods for zero-mode characterization
and counting have been developed [24,25,27,42] that put less emphasis on analytic wave
functions and a larger emphasis on second quantization, breaking with the tradition of the
field. The key ingredient to these methods is the generalization of squeezing principles
that had hitherto been associated with the lowest Landau level, especially Jack-polynomial
wave functions [43,44]. These generalizations, leading to notions of “root states” governed
by Pauli-like principles, are then turned into devices for the rigorous characterization of
complete sets of zero modes. The resulting methods certainly also work for parent Hamilto-
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nians of holomorphic wave functions, but moreover can be applied to non-holomorphic,
mixed-Landau-level wave functions and their parent Hamiltonians as well, where we know
of no alternative.

The notion of a root state will be central to our work. We give a technical definition
in the following section, where we formalize generalizations for multi-component/multi-
Landau-level states of the recent literature. For general intuition, let us appeal to the
well-known root state of the ν = 1/3 Laughlin state. This can be represented by a string of
consecutive numbers of a simple pattern, 100100100100 . . . , see also Equation (13) below.
There are several ways to uniquely assign simple strings of patterns to the set of zero
modes of certain Hamiltonians, including taking the thin torus/thin cylinder limit. In this
work, we will emphasize squeezing principles. The aforementioned simple patterns do
efficiently encode all of the edge physics, thus, as argued above, all of the universal physics.
Indeed, this includes braiding statistics, which can be extracted from these patterns rather
systematically and directly [45], as was recently demonstrated also for mixed-Landau level
states [24,27]. For these reasons, we think of simple patterns associated to root states as
the “DNA” of the underlying quantum Hall state. Though many as aspects of the single
component/single Landau level case carry over to the multi-component/multi-Landau
level case, the structure of the root states becomes more intricate in the latter case as roots
states, or DNA, will retain simple forms of entanglement. This makes the study of such
root structure a much more interesting and generally more demanding problem.

The main purpose of this paper is to prove a theorem that we hope will streamline
root-state analyses of this kind, with applications for composite fermion and parton states,
as well as possibly other, even more general holomorphic and non-holomorphic many-body
trial wave functions in mind. It will simplify and unify the application of the underlying
principles, and allow for generalization in several directions. In particular, the theorem
will readily cover k-body interactions and generalizations of Pauli-like principles, whereas
the non-holomorphic examples referenced above are all 2-body cases. It will also allow
questions concerning zero mode characterization of certain classes of Hamiltonians to be
addressed without undue focus on case-by-case adaption of proof techniques.

The remainder of this paper is organized as follows. In Section 2, we establish the
setting for our theorem and subsequently state it. In Section 3, we first illustrate simple but
typical use cases for our theorem, which we hope will convince the reader of its general
utility. In Section 4, we prove the theorem. We conclude in Section 5.

2. Statement of the Problem

Consider a (bosonic or fermionic) Fock space with a single particle basis

c†
j,r |0〉 (1)

for j ∈ N and r ∈ {0, . . . , n− 1} for some n ∈ N, where |0〉 is the vacuum. Pictorially, we
may think of this single particle space as the quasi-one-dimensional ladder represented
in Figure 1. This is the setting appropriate to the physics of a single Landau level in disk
geometry with internal spin or valley degrees of freedom, where j represents the angular
momentum of the orbital, and r the internal index.

It is equally appropriate to a system confined to a finite number of multiple Landau
levels. This is immediately natural for a half-infinite cylinder geometry with multiple
Landau levels. Alternatively, in disk geometry, j may represent the sum of the angular
momentum and the Landau-level index. This would likewise reproduce the “shape” of
the half-infinite ladder of Figure 1 (see, e.g., Ref. [25]). Independent of context, we will
refer to j as the single-particle angular momentum in this paper. In addition, slightly
different boundary conditions may be appropriate in disk geometry: many works in the
literature, to which our findings will also directly apply, represent n Landau levels as a
half-infinite ladder system via the boundary condition shown in Figure 2. In this case, j
still represents bona fide angular momentum and runs over all integers j > −n, and we
enforce the constraint r ≥ −j, leading to the “shape” shown in the figure. Neither the
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inclusion of negative j nor that of additional constraints of the type mentioned (including a
possible right boundary as appropriate in spherical geometry) will cause any problems in
the following, so we may restrict the setting to that of Figure 1 without loss of generality,
when definiteness is required.

Angular momentum j
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. . .

Figure 1. Half infinite ladder of single particle quantum Hall states with simple j ≥ 0 boundary
condition, as appropriate, e.g., for a single Landau level in the disk geometry with an additional spin
or valley index, or multiple Landau levels in the half-infinite cylinder.
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Figure 2. Half infinite ladder of quantum Hall states for a system of multiple Landau levels in the
disk geometry, subject to the constraint r ≥ −j.

Our focus is on positive (semi-)definite k-body Hamiltonians of the form

H =
k

∑
p=1

Hp =
k

∑
p=1

( mp

∑
q=1

∑
J

(
Qp,q

J

)†
Qp,q

J

)
, (2)

where
Qp,q

J = ∑
j1,...,jp

∑
r1,...,rp

δj1+···+jp ,Jη
p,q
j1,...,jp ,r1,...,rp

cj1,r1 . . . cjp ,rp , (3)

with q an additional label that runs over all mp p-body terms present in the Hamiltonian.
This is the form one generally obtains for pseudo-potential expansions of positive (semi-
definite) interactions in second quantization. Such expansions were originally introduced
in first quantization by Haldane [14], with the 2-body, single Landau-level case in mind, but
have been extensively generalized since. We emphasize that, while in many cases of interest
Hamiltonians of this type will be local in real space, the operators Qp,q

J will generally be
long-ranged in the Landau-level basis used here. This represents a considerable obstacle
both in analytic and numerical treatments. While various symmetries may be imposed,
here we will assume only angular momentum conservation, as enforced by the Kronecker-
delta in Equation (3). This renders the model center-of-mass [46], or, in modern language,
dipole-conserving.

Although Equation (2) is of a very general form, solvable models of this type are
usually frustration free: known eigenstates will be zero modes, i.e., ground states that are
annihilated by the Hamiltonian. Our theorem, to be formulated below, will apply to all zero
modes of such a Hamiltonian, i.e., it will make a non-trivial statement only in cases where
zero modes exist. Said differently, the Pauli-like principles that we will see can be extracted
with the help of the theorem and represent necessary conditions on zero modes (but do not
guarantee their existence. This existence is, however, usually obvious in concrete cases, and
one uses the theorem to arrive at statement about completeness, see the following section.).



Symmetry 2023, 15, 303 5 of 20

The positive semi-definiteness of each term
(

Qp,q
J

)†
Qp,q

J necessitates

Qp,q
J |ψ〉 = 0,

for all p, q, and J, i.e., any zero mode |ψ〉 will be annihilated by each such term in the
Hamiltonian.

Consider now the basis states of the Fock space of the form

|S〉 = |j1r1, . . . , jNrN〉 = c†
j1,r1

. . . c†
jN ,rN
|0〉 , (4)

where the “S” is a reference to Slater-determinants. We specialize to fermions in nomen-
clature only. Indeed, our results will equally hold for bosons, except where otherwise
noted, where the state |S〉 will be a bosonic permanent, also know as a “monomial” in
the literature, which is short for “symmetrized monomial”. Instead of Slater-determinant
or permanent/monomial, we will often use the neutral term configuration to refer to such
occupation number eigenstates.

We define the pattern of the configuration |S〉 to be the sequence

{nj} = {〈S|n̂j|S〉},

where
n̂j = ∑

r
c†

j,rcj,r (5)

is the usual number operator. Necessarily

∑
j

nj = N and nj ≥ 0

for each j. For |ψ〉, an N-particle zero-mode, we will call a sequence {nj} a pattern of |ψ〉 if
a basis state |S〉 of this pattern has a non-zero coefficient in the expansion of |ψ〉.

Any pattern can be represented either by specifying the sequence {nj} as introduced
above, or by specifying the sequence j1, . . . , jN of the underlying state (4). (The r-indices
defining this state are obviously irrelevant to the pattern.) We will denote such sequences,
defining patterns in terms of j (“angular momentum”) quantum numbers, by [ji], to dis-
tinguish them from equivalent but distinct occupancy-number sequences {nj}. As, in
particular, the elements of [ji] add to the total angular momentum of the state, J = ∑i ji, it
is natural to view the associated pattern as a partition of the number J (In mathematics, the
terms ji of the partition are conventionally non-negative, whereas in some physical contexts
negative ji are permitted, see above. This can always be remedied via positive additive
shifts, which will, however, be without consequence in the following.) In this context, we
think of the ji as the “terms” or “parts” of the partition, and the nj as the “multiplicities”,
where nj is the number of times the part j occurs in the partition. We may always go back
and forth between these representations via

nj = |{i : ji = j}| and ji = min{j :
j

∑
j′=jmin

nj′ ≥ i} ,

where jmin is the minimum allowed j-value, and, in writing the above, we have adopted the
convention j1 ≤ j2 ≤ . . . ≤ jN (which differs from most mathematical texts on partitions).
We will use this convention unless otherwise noted.

For patterns/partitions corresponding to the same J, we may adopt the partial order,
or “dominance relation” found in the mathematical literature, where

[ji] ≥ [j′i ] ⇐⇒ ∑
i

i≥i0

ji ≥ ∑
i

i≥i0

j′i for all i0 . (6)
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Whenever [ji] ≥ [j′i ], we will also write {nj} ≥ {n′j} for the occupancies/multiplicites
associated with [ji], [j′i ], respectively. We will, in particular, be interested in applying this
dominance relation to root patterns. Given that we only consider boundary conditions that
render any subspace of a given J finite dimensional, there are always maximal elements
under this relation. We will call any pattern of a state |ψ〉 that is not dominated by any
of the other patterns of |ψ〉 a root pattern of |ψ〉. As stated, if |ψ〉 has well-defined angular
momentum J, which we will always assume, there must always be at least one root
pattern. Whenever there is only a single Landau level without internal degrees of freedom,
this definition of a root pattern/root partition agrees with that found in the literature
(e.g., [43,47]). For the case of multiple Landau levels and/or internal degrees of freedom,
we obtain patterns from configurations by “forgetting” the internal r-indices, or “collapsing”
along the r-direction. We may thus think of a pattern as a configuration of identical particles
occupying a single Landau level, where multiple occupancies are allowed (irrespective
of whether the original particles with the r-degree of freedom were fermions or bosons).
This is represented in Figure 3. In terms of the occupancies {nj}, we may then understand
dominance as follows [48]. Consider “inward squeezing” processes as shown in the figure,
where a pair of particles is hopping inward while conserving total J. Then, {nj} ≥ {n′j}
if and only if {n′j} can be obtained from {nj} via a (finite, possibly empty) sequence of
inward squeezing processes.

Figure 3. Graphical representation of patterns/partitions (bottom) associated to configurations (top).
The pattern/partition is obtained by dropping the vertical index (r) present in the configuration, and
representing each horizontal index (j) by a single orbital. These single orbitals are then occupied by
identical particles that may multiply occupy each orbital, resulting in what we refer to as a pattern
of occupancies nj (see text). (If the original particles were bosons, multiple occupancies are already
possible for each state represented by a horizontal line in the configuration on top.) On patterns, one
may define inward squeezing processes as indicated by the arrows and as explained in the text.

Having now a suitable definition of the root patterns of a state |ψ〉 that is applicable to
the general situation of multiple Landau levels/internal degrees of freedom, we proceed by
defining a similarly general notion of a root state. Given any root pattern {nj} of a state |ψ〉,
we will refer to any configuration |S〉 that has pattern {nj} and appears in the expansion of
|ψ〉 into occupation number eigenstates as a root configuration of |ψ〉. Equivalently, we will
refer to the sequence of multi-indices (ji, ri) defining |S〉 in (4) as a root configuration.

For any root pattern {nj}, we also define an associated projection operator

P{nj} := ∑
|S〉, |S〉 has pattern {nj}

1
〈S|S〉 |S〉 〈S| . (7)
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It is generally possible for a zero mode to have multiple root patterns. We may thus also
consider the entire subspace of all root configurations by defining the root projection operator,

Proot := ∑
{nj} a root pat. of |ψ〉

P{nj}. (8)

We then refer to Proot |ψ〉 as the root state or, equivalently, the DNA of |ψ〉. (This definition
of a root state is slightly more restrictive than that used in most of the literature with n > 1,
but will agree in practical applications.) The root states consists precisely of that part of
the expansion of |ψ〉 into basis states |S〉 that one obtains if only root configurations are
kept. Note that in Equation (7), we chose to sum over all |S〉 of a given root pattern. By
definition, these need not all be root configurations, as some of them (but not all) may not
appear in the expansion of |ψ〉: in Proot |ψ〉, these extra terms do not matter. In this way,
one obtains a rather simple form for P{nj} in terms of second quantized ladder operators,

P{nj} =
1

∏j(nj)!
∑

r1,...,rN

c†
j1r1

. . . c†
jN ,rN

cjN ,rN . . . cj1,r1 , (9)

where the sum goes over all sequences of multi-indices with pattern {nj}. Strictly speaking,
the two forms of the projection operator are equivalent while acting on states of up to N
particles only. However, we will have no use for the operator P{nj} to act on states with
more than N particles. We finally emphasize that though we notationally suppress it, the
definition of Proot explicitly depends on |ψ〉, and in expressions like Proot |ψ〉, it will be
generally implied that |ψ〉 is acted upon by “its root projector”. As such, “taking the root
state” is thus by no means a linear operation, however, for fixed |ψ〉, Equation (8) is, of
course, a linear operator. For brevity, we will also write |ψ〉root for the root state of |ψ〉.

We now have everything in place to state the main result of this work.

Theorem 1. For fixed (j1, . . . , jl), let Z be an l-body operator of the form

Z := ∑
r1,...rl

ωr1,...,rl cβ1 . . . cβl , (10)

with βi = (ji, ri). If
Z |ψl〉root = 0

for all l-particle zero-modes |ψl〉 of the Hamiltonian H given in Equation (2), then

Z |ψ〉root = 0 (11)

for any zero-mode |ψ〉 of H, regardless of particle number.

Before proving this theorem, we first demonstrate its utility with a few examples,
some well-established and some lesser known.

3. Some Basics Applications
3.1. Laughlin State

The previous theorem is acutely relevant to situations involving multiple-component
states, such as the discussion of zero-mode properties of Refs. [23–25,27,49,50]. In particular,
it furnishes a streamlined machinery for the discussion of zero modes, and generalizes
previous approaches to three- and higher-body interactions. That said, it retains its useful-
ness in the simpler context of frustration-free interactions in single component states; to
demonstrate the utility of the theorem, we first turn to the simplest such example: the label
r can then be dropped.
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Perhaps the best-known single component state is the (fermionic) Laughlin state at
filling factor 1/3, with a first quantized wave function,

ψL = ∏
i<j

(zi − zj)
3 exp(−1

4 ∑
k
|zk|2) , (12)

in disk geometry. Here, zi = xi + iyi is the complex coordinate of the ith particle. In a
seminal paper [51], Rezayi and Haldane observed that (in the cylinder geometry, though
this makes no difference to the root analysis) this wave function has a “Tao-Thouless” [52]
type root pattern of the form

{nj} = 1001001001001001 . . . , (13)

which is the aforementioned DNA of the Laughlin state. Note that for single-component
states, a root pattern fully determines the associated root state, assuming the root pattern
is unique. The Laughlin state Equation (12) is the densest (i.e., lowest in terms of angular
momentum) zero mode of the V1 Haldane pseudo-potential, which, in first quantization,
takes on the form

V̂1 = ∑
i<j

P̂ij , (14)

where Pij projects the pair of particles with indices i and j onto the subspace where this
pair has relative angular momentum 1. Similar patterns as in Equation (13) apply to all
root states of zero modes: any pattern satisfying the constraint of having no more than one
particle in any three adjacent sites occurs as the root pattern of some zero mode. This can,
for example, be seen from a thin cylinder analysis [46,51], and constraints of this kind were
first appreciated to apply to a large class of states of Jack-polynomial type [43,44], and have
been coined “generalized Pauli principles” (GPPs). We will now re-derive some of these
results using our theorem. Accordingly, we first express V̂1 in second quantization, which
is well-known to be of the following form,

V̂1 = ∑
J

Q†
J QJ , (15)

where the precise expression for the QJ depends somewhat on the geometry and was
perhaps first explicitly stated for the cylinder/torus case [53]. Here, we will consider the
disk geometry for definiteness, where J ≥ 0 and [54]

QJ = ∑
p>0

p∈Z for J even
p∈Z+ 1

2 for J odd

p2−J/2+1

√
2
J

(
J

J/2 + p

)
c J

2−pc J
2+p. (16)

V̂1 thus satisfies the requirements needed to apply our theorem. While the proof of the
theorem, given below, heavily utilizes the second quantization of the Hamiltonian, one
efficient way to proceed is to study k = 2-particle zero modes using the original first-
quantized form of the Hamiltonian. Note that

ψm,J = (z1 − z2)
m(z1 + z2)

(J−m) , (17)

is a basis of all two-particle states in the lowest Landau level, where m is odd and J ≥ m,
and we drop the obligatory Gaussian factor displayed in Equation (12). Here, m and J play
the roles of relative and total angular momentum of the 2-particle state, respectively. A
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complete set of 2-particle zero modes is thus given by the ψm,J with m > 1, or m ≥ 3. By
forming suitable new linear combinations, we arrive at the alternative basis

φm,J = (z1 − z2)
m ×

(z1z2)
J−m

2 J odd

z
J−m−1

2
1 z

J−m+1
2

2 + z
J−m+1

2
1 z

J−m−1
2

2 J even
. (18)

Expressing the product z1z2 in terms of z1 + z2 and z1 − z2, one sees that the φm,J are linear
combinations of the ψm′ ,J with same J and m′ ≥ m. Therefore, the matrix relating φ’s to ψ’s
being triangular, the φm,J with m ≥ 3 still are a basis of the 2-particle zero mode space. Since
c†

r creates a state proportional to zr, the expansion of φm,J into 2-particle Slater determinants
|S〉 can be read off the monomial expansion of φm,J in terms of monomials za

1zb
2. It is then

clear that Prootφm,J has a pattern of the form

. . . 00100 . . . 00100 . . . , (19)

with two 1’s separated by m sites (m+1 sites) for J odd (J even), where the indices of the
two occupied sites add up to J. Since m ≥ 3 for zero modes, root states of these 2-particle
zero modes cannot have patterns of the form . . . 0110 . . . or . . . 01010 . . . . That is, all such
root states are annihilated by Z1

j = cjcj+1 and Z2
j = cjcj+2, for any j. Thus far, this holds for

zero modes of the form φm,J , m ≥ 3. The theorem requires this to be true for any 2-particle
zero mode, and thus for arbitrary linear combinations of φm,J ’s with m ≥ 3. One easily
sees this to be the case: for different total angular momenta J, J′, a superposition of two
2-particle zero modes having these angular momenta results in the same superposition
for the corresponding root states. When linearly combining φm,J ’s with different m but
identical J, the new root state is that corresponding to the φm,J with the largest m. Either
way, the given Z-operators annihilate the root states of any such linear combination. By
constructions, this is tantamount to the absence of sequences 11 and 101 in any root pattern,
at first for 2-particle zero modes, but, by the theorem, also for N-particle zero modes. This,
then, gives exactly the GPP for the 1/3 Laughlin state, namely that at root level, there can
be no more than one particle in any three adjacent sites. More precisely, this gives the GPP
for all zero modes of the V1-pseudo-potential.

Note that this logic does not yet imply that for any pattern satisfying this rule, there is
an associated zero mode. However, knowing that the Laughlin state is a zero mode and
Equation (12) does have the pattern (13) as its root pattern, and that no denser pattern can
satisfy the GPP, this automatically proves the Laughlin state to be a densest possible zero
mode of (14). We can also show that no other zero mode has the same angular momentum as
the Laughlin state: given that the pattern (13) is the unique pattern satisfying the GPP at this
angular momentum, and given that any two zero modes would admit a non-trivial linear
combination that is free of this pattern, we’d have a contradiction to the GPP. Similarly,
knowing that a set of N-particle zero modes exists for every possible pattern consistent
with the GPP, with some care, leads to the conclusion that this set is a complete set of zero
modes [23–25,27,47].

Though not explicitly using our theorem as stated here, a variant of this logic has
first been presented for the Laughlin state in Ref. [47]. To be sure, for the Laughlin state
and many other single component wave functions [20,40,41,55], there exist alternative
ways to establish completeness of a class of zero mode wave functions, especially in the
context of Jack polynomials [43,44,56]. These alternatives are largely lost when multi-
component wave functions are concerned, especially in the mixed Landau-level setting
suitable for parton states. For the latter, the methods following the philosophy laid out in
this section have been successfully generalized, [23–25,27] and the theorem presented here
may serve to streamline this approach. One key additional feature of this approach when
applied to multi-component states is that it will generally lead to so-called entangled Pauli
principles (EPPs) [24]: As the sum in Equation (10) generally contains more than one term,
Equation (11) tends to enforce entanglement at root level.
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3.2. Jain-2/5 State

A simple example of an EPP can be found in the (unprojected) Jain-2/5 composite
fermion state. This state admits a parent Hamiltonian [17,18], which acts within the lowest
two Landau levels and enforces in any of its zero modes (of any particle number) the
“clustering condition” that the wave function has at least a third-order zero when two
particles approach the same point. In fact, when restricting to the lowest Landau level only,
the zero mode condition of the V1 Haldane pseudo-potential can also be stated in exactly
this way, as is manifest in the 2-particle zero modes discussed above. It is, therefore, not
surprising that this Hamiltonian can also be cast in the general form (2) [23]. In doing so,
a non-orthogonal, non-normalized single particle basis za z̄b is useful [23,25], where a ≥ 0
and b = 0, 1 when restricting to the lowest two landau levels. Taking j = a− b corresponds
to physical angular momentum and leads to the scheme in Figure 2 with r = b, while j = a
leads to the scheme in Figure 1, also with r = b. Note that each scheme comes with its
own, slightly different definition of “root state”. We will use the latter scheme (Figure 1) for
definiteness. As mentioned, the 2-particle zero modes discussed above remain zero modes
for the two-Landau-level problem at hand. We also have the zero modes

φ̃m,J = (z1 − z2)
m ×

{
(z1z2)

J−m+1
2 (z̄1 − z̄2) J odd

(z1z2)
J−m

2 (z1z̄1 − z2z̄2) J even
, (20)

where m is even, and m ≥ 2, and

φ̃m,J = (z1 − z2)
m ×

{
(z1z2)

J−m
2 (z̄1z1 + z2z̄2) J odd

(z1z2)
J−m+1

2 (z̄1 + z̄2) J even
, (21)

where m is odd and m ≥ 3. On top of that, there is a fourth category of zero modes,
consisting of the original φm,J (m ≥ 3) multiplied by z̄1z̄2. In principle, as r now runs
over two values, two fermions could occupy states with the same j; at root level, however,
all zero modes exhibit single occupancy in each orbital. Therefore, Z0

j = c̃j,0 c̃j,1 is now
included in our set of Z-operators, where we introduced a tilde to refer to pseudo-fermions–
fermion ladder operators that create/annihilate states in a basis that is not orthonormal.
For this, we also define dual creation operators c̃∗j,r such that {c̃j,r, c̃∗j′ ,r′} = δr,r′δj,j′ . We
may work with pseudo-fermions just as we do with ordinary fermions, keeping in mind
that c̃∗j,r and c̃j,r are not Hermitian conjugate, see, e.g., Ref. [25]. Most importantly, we
may re-express pseudo-fermions through ordinary fermions via a change of basis. Hence,
our theorem admits Z-operators expressed in terms of pseudo-fermions without needing
modification. Similarly, there is still no nearest-neighbor occupancy possible at root level,
and we may introduce additional operators of the type Z1

j defined above, adorned with
different combinations of r-indices, to formulate this constraint in two Landau levels.
However, it is now possible, at root level, for particles to occupy next-nearest-neighboring
sites. We see that this happens for φ̃2,J with even J, whose root state is(

c̃∗J/2−1,0 c̃∗J/2+1,1 − c̃∗J/2−1,1 c̃∗J/2+1,0

)
|0〉 . (22)

Conversely, this is the only 2-particle root state that can occur with two particles at distance 2.
Therefore, when generalizing the operators Z2

j introduced above, we must form all possible
linear combinations ∑r1,r2

ωr1,r2 c̃J/2−1,r1 c̃J/2+1,r2 that annihilate Equation (22). Note that if
we associate a pseudo-spin 1/2 degree of freedom with the r-label, then (22) describes a
singlet. By the theorem, we are thus enforcing that for general N-particles zero modes, at
root level, there are no double or nearest-neighbor occupancies, and next-nearest neighbors
must form a pseudo-singlet. This, then, characterizes the EPP of the unprojected Jain-2/5
state and its parent Hamiltonian [23]. It is easy to see that the densest root state consistent
with these rules is that shown in Figure 4. It is indeed a pattern that occupies 2/5 of all
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j-sites, as we should expect of a fractional quantum Hall state at filling factor 2/5. In
particular, by “monogamy of entanglement”, each particle in the root state can participate
in only one singlet, and hence no denser root state is possible. Moreover, this is the root
state of the Jain-2/5 wave function.

Figure 4. Root state, or DNA, of the Jain-2/5 wave function. Ovals represent singlets. This configura-
tion manifestly occupies 2/5 of all available hall states, and satisfies the entangled Pauli principle
that two particle entangled states must occur within a distance of 2.

We thus see how “entangled DNA” can come about. By arguments similar to those
given above for the Laughlin state, the Jain-2/5 state is seen to be the densest zero mode
of its parent Hamiltonian. In addition, it has been shown [23,42] that the counting of
all possible root states at the given angular momentum agrees with the counting of zero
modes, again utilizing similar arguments. In this way, it can be rigorously established that
this mode counting agrees with the counting of modes in the associated conformal edge
theory. Such reasoning is powerful in bridging the gap between microscopic Hamitlonians
and effective field theory, and is not limited to Abelian fractional quantum Hall states
such as Jain states, but rather has been carried out for a variety of increasingly complex
non-Abelian “parton” states [24,27]. Here, root-level entanglement becomes more non-
local, even leading to the emergence of AKLT-type [4] matrix product entanglement and
generalizations thereof. We refer the interested reader to the referenced literature.

3.3. Tao–Thouless State

We proceed by giving one final example of a single-component Hamiltonian that is
perhaps less known. We modify the pseudopotential V̂1 of Equation (15) by keeping only
the terms with odd J. By abuse of terminology, we will denote the resulting potential as V̂1

2
:

V̂1
2
= ∑

J>0,J odd
Q†

J QJ , (23)

with QJ as defined in Equation (16). We note that this operator, unlike V̂1, is no longer local
in real space, but this is irrelevant for the purpose of this application. We claim that the
densest zero mode of V̂1

2
is the product state associated with the pattern 10101010 . . . , i.e.,

the “ν = 1/2 Tao-Thouless state”

|TT1
2
〉 = |10101010 . . .〉 . (24)

Indeed, it is clear that |TT1
2
〉 is a zero mode of V̂1

2
; since the leading orbital has j = 0, there

is no pair in |TT1
2
〉 with odd J, so QJ |TT1

2
〉 = 0 for all odd J. On the other hand, showing

that |TT1
2
〉 is the (unique) densest zero mode of V̂1

2
requires more thought. The theorem,

though, makes this an easy task. Notice that the operator Q†
J QJ is precisely the 2-particle

projector onto ψ1,J , so that the 2-particle zero modes of V̂1
2

are those which we had for V̂1 in
addition to the ψ1,J with J even, or equivalently, the φm,J with those same indices. Therefore,
Z2

j no longer annihilates the root states of all 2-particle zero modes: in particular, it does
not annihilate Proot φ1,J for J even. Thus, the associated constraint prohibiting the pattern
101 at root level is moot. Z1

j , however, still satisfies the assumptions of the theorem, and
consequentially the pattern 11 is still ruled out at root level. Clearly, the pattern underlying
|TT1

2
〉 is the unique densest pattern avoiding the 11 configuration (note that |TT1

2
〉 is its

own root state). Therefore, repeating the argument made for the ν = 1/3-Laughlin state
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and the V1 pseudo-potential, we are able to conclude that |TT1
2
〉 is the unique densest zero

mode of V̂1
2
.

3.4. Thin Cylinder

Finally, one may observe that once a complete set of Z-operators has been identified,
the Hamiltonian

Hroot = ∑
Z

Z†Z (25)

stabilizes all root states consistent with the GPP or EPP as zero modes. As these root states
are, in many cases, found to be in one-to-one correspondence with the zero modes of some
original Hamiltonian (2), one may think of Hroot as an effective or “thin cylinder” version
of the Hamiltonian, since a Hamiltonian stabilizing root states will naturally emerge in
the thin cylinder/thin torus limit [46,51,57–59]. Given the formal resemblance between
Equations (2) and (25), one may ask why we find it beneficial to effectively replace, for
certain purposes, Q-operators with Z-operators. The reason for this is simple: While the
former are usually long ranged in the occupation number bases, see Equation (16), and have
matrix product ground states of infinite bond dimension, the latter will be short ranged and
have product states or matrix product states of finite bond dimension as ground states, i.e.,
the root states. It is for this reason that Z-operators encoding a GPP/EPP are formidable
tools to explore the structure of zero mode spaces.

We also note that while with each operator Z we may associate a positive (semi-
definite) Hermitian operator Z†Z, the converse is also true, in the following sense: Each
positive (semi-definite) Hermitian operator can be decomposed as a sum of the form
∑Z Z†Z, with Z-operators defined in terms of strings of annihilation operators of suitable
length as in Equation (10). Therefore, one may easily obtain an equivalent formulation of
our theorem, with Z-operators replaced by positive (semi-definite) Hermitian operators.

After this brief discussion of some of its utility, we are ready to prove our theorem:

4. Proof

Proof. Our proof strategy is technical and direct: standard (anti-)commutations relations
combined with the fact that Z annihilates all l-particle zero-modes yield the desired result.
The trick is to recognize that any N > l particle zero-mode can be connected to an l-particle
zero-mode through annihilation operators. For example, let |ψ〉 be an N-particle zero mode
of Equation (2), N > l, and define a reduced l-particle state

|ψl〉 := cβN−l . . . cβ1 |ψ〉 , (26)

where we assume that indices βi = (ji, ri), 1 ≤ i ≤ N, exist such that

|S〉 = c†
β1

. . . c†
βN−l

c†
βN−l+1

. . . c†
βN
|0〉 (27)

is a root configuration of |ψ〉 with pattern {nj}. Under the circumstances given above, we
will refer to β̌ = (β1, . . . , βN−l), as a partial root configuration of |ψ〉, and the underlying
pattern {ňj}, i.e., the pattern of the state c†

β1
. . . c†

βN−l
|0〉, a partial root pattern. Similarly, we

refer to βZ = (βN−l+1, . . . , βN) as a complementary root configuration of β̌ in |ψ〉, and to the
underlying pattern {nZ

j } as a complementary root pattern. While the reason for the superscript
“Z” will soon be apparent, note that the complementary root configuration/root pattern is
itself a partial root configuration/root pattern. By definition, β̌ is a partial root configuration
if and only if a complementary root configuration βZ exists, such that β = (β1, . . . , βN) is a
root configuration. Also, note that nj = ňj + nZ

j , and observe that there is nothing in our

definitions that prevents ňj and nZ
j from being simultaneously nonzero, so that neither of

their non-zero parts should necessarily be thought of as a sub-sequence of {nj}.
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Since |S〉 appears in the expansion of |ψ〉, the complementary root configuration βZ,

cβN−l . . . cβ1 |S〉 = c†
βN−l+1

. . . c†
βN
|0〉 ,

appears in the occupation-number expansion of |ψl〉. The same is true of any other comple-
mentary root configuration for β̌. Below, we will show that {nZ

j } is in fact a root pattern of

|ψl〉, but for now we note that since in particular {nZ
j } is a pattern appearing in |ψl〉, |ψl〉 is

non-vanishing. Moreover, as each Qp,q
J contains only annihilation operators, we have

Qp,q
J |ψ

l〉 = ±cβN−l . . . cβ1 Qp,q
J |ψ〉 = 0,

where the sign depends on N− l, p, and whether particles are bosons or fermions. It follows
that |ψl〉 is an l-particle zero-mode. If we want to emphasize the partial root configuration
β̌ from which |ψl〉 was generated via Equation (26), we will write |ψl

β̌
〉 instead.

By the assumptions of the theorem, Z must annihilate the root state of |ψl〉. We are
particularly interested in the situation where the β-indices in the definition of Z correspond
to the pattern {nZ

j } in the preceding discussion. To make this precise, we change the indices
in Equation (10) via

Z = ∑
rN−l+1,...rN

ωrN−l+1,...,rN cβN−l+1
. . . cβN . (28)

Now, we consider the sequence βZ = (βN−l+1, . . . , βN) in the above expression, and again
assume that the underlying pattern {nZ

j } (determined solely by the j-values) is a partial
root pattern of |ψ〉 whose complement we denote by {ňj}. Indeed, this assumption can be
made without loss of generality. Assuming the converse, i.e., that the {nZ

j } associated with
Z do not yield a partial root pattern of |ψ〉, is equivalent to the assumption that no root
pattern {nj} of |ψ〉 satisfies nj ≥ nZ

j for all j. In that case, Z already annihilates every root
configuration of |ψ〉 trivially, due to insufficient particle number on (some of) the orbitals
with the j-indices appearing in Z.

We now proceed by showing that, with |ψl〉 defined as above, Z actually annihilates
the entire state |ψl〉, and not just its root state. The key stepping stone is to show that, as
anticipated, {nZ

j } is a root pattern of |ψl〉.

Lemma 1. Let |ψ〉 be an N-particle zero mode of H, Equation (2). If {ňj} is a partial root pattern
of |ψ〉 and β̌ = (β1, . . . , βn−l) a corresponding partial root configuration with a complementary
root configuration βZ, then βZ is a root configuration of |ψl

β̌
〉. In particular, the pattern {nZ

j } of

βZ is a root pattern of |ψl
β̌
〉.

Proof. We will prove this result by way of contradiction; suppose {nZ
j } is not a root pattern

of |ψl
β̌
〉. We have already established that it is a pattern of this state. For it not to be a root

pattern, there must be another pattern {n′Zj } of |ψl
β̌
〉 that dominates {nZ

j }, {n′
Z
j } ≥ {nZ

j }.

For {n′Zj } to be a pattern, there must be a state

|β′Z〉 = c†
β′N−l+1

. . . c†
β′N
|0〉 (29)

of pattern {n′Zj } that appears in the expansion of |ψl
β̌
〉 into configurations. This, in turn, is

only possible if the state
c†

β1
. . . c†

βN−l
c†

β′N−l+1
. . . c†

β′N
|0〉 (30)
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appears in the full expansion into configurations of |ψ〉. This configuration clearly has the
pattern n′j = ňj + n′Zj . However, if {n′Zj } ≥ {nZ

j }, one immediately sees that {n′ j} ≥ {nj},
where nj = ňj + nZ

j . For one, this follows easily from the fact that {nZ
j } is obtainable from

{n′Zj } via inward squeezing processes, and the addition of {ňj} to both does not change

that. More generally, the addition of multiplicities nj = ňj + nZ
j facilitates the “union” of

the underlying partitions, [ji] = [ ǰi] ∪ [jZ
i ], where the right hand side denotes the partition

whose parts are those of [ ǰi] and [jZ
i ] combined, after reordering. Similarly, [j′i ] = [ ǰi] ∪ [j′Zi ].

The statement then follows from the general fact that if [µi], [νi], [µ′i], [ν
′
i ] are partitions

with [µ′i] ≥ [µi], [ν′i ] ≥ [νi], then also [µ′i] ∪ [ν′i ] ≥ [µi] ∪ [νi] [48]. Note that [ ǰi] ≥ [ ǰi], as the
dominance relation is reflexive.

Thus, since {n′ j} ≥ {nj}, {nj} is not a root pattern of |ψ〉, which contradicts the
choices of {ňj} and {nZ

j }.

The desired annihilation of |ψl〉 by Z is then obtained as a corollary:

Corollary 1. Let |ψ〉 be an N-particle zero mode of the Hamiltonian H, Equation (2), and let {nZ
j }

be the number of times j appears among the ji-indices in the operator Z of Theorem 1. Assume that
{nZ

j } is a partial root pattern with complementary root pattern {ňj}. Let β̌ be a configuration with
pattern {ňj}. Then, under the assumptions of the Theorem,

Z |ψl
β̌
〉 = 0

for the reduced state |ψl
β̌
〉 of |ψ〉.

Proof. There are two cases to consider: either β̌ = (β1, . . . , βN−l) is a partial root configu-
ration of |ψ〉 or that it is not. If it is, we write

|ψl
β̌
〉 = |ψl

β̌
〉

root
+ |rest〉 , (31)

where the rest consists of that part of the expansion of |ψl
β̌
〉 into occupation number

eigenstates that does not consist of root configurations. By the assumptions of the theorem,
Z annihilates |ψl

β̌
〉

root
. However, Z also annihilates |rest〉, because, by Lemma 1, the pattern

of indices in Z, {nZ
j }, is a root pattern of |ψl

β̌
〉, and |rest〉 contains no such pattern. If β̌ is

not a partial root configuration of |ψ〉, using Equation (28), consider

Z |ψl
β̌
〉 = ∑

rN−l+1,...rN

ωrN−l+1,...,rN cβN−l+1
. . . cβN cβN−l . . . cβ1 |ψ〉 . (32)

The indices β1 . . . βN on the right hand side define a pattern nj = ňj + nZ
j . ňj and nZ

j being
complementary partial root patterns, nj is by definition a root pattern. Then the ket

c†
β1

. . . c†
βN−l

c†
βN−l+1

c†
βN
|0〉

cannot appear in the configuration-expansion of |ψ〉 for any choice of rN−l+1 . . . rN . That is
so since the configuration β = (β1, . . . , βN), whose pattern is the root pattern {nj}, would
then be a root configuration. Therefore, β̌ would be a partial root configuration, contrary to
assumption. Thus, Z |ψl

β̌
〉 = 0 in this case also.

With this key fact established, we are nearly ready to essay the final calculation. To
this end, we pose the following lemma.
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Lemma 2. Let Z be as in Equation (10) and fix j, k ≥ 0 arbitrarily. Then

∑
r1,...,rk

c†
j,rk

. . . c†
j,r1

Zcj,r1 . . . cj,rk = (−1)lk f Z
k−1

∏
s=0

(n̂j − (nZ
j + s)),

where f is 1 for Fermions and 0 for Bosons, and nZ
j is the number of occurrences of j among the

indices in Z, as before, and n̂j is the number operator, Equation (5).

Proof. Our proof will follow from an induction applied to k. For simplicity, we write m for
nZ

j , and employ the notation

cj,r1

i
↑. . .cj,rn = ∏

s 6=i
1≤s≤n

cj,rs

to refer to a product with one element removed. By linearity, it is sufficient to prove the
theorem for operators of the form

Z = cj,r1 . . . cj,rm cjm+1,rm+1 . . . cjl ,rl ,

instead of Z, with j 6= ji for i > m. Further, we use the fact that

c†
xcy1 . . . cyn = (−1)n f cy1 . . . cyn c†

x −
n

∑
p=1

(−1)p f δx,yp cy1

cyp
↑. . .cyn

obtained from standard canonical commutation relations. Then,

∑
r

c†
j,rZcj,r = ∑

r
c†

j,r
(
cj,r1 . . . cj,rm . . . cjl ,rl

)
cj,r

= ∑
r

(
(−1)m f cj,r1 . . . cj,rm c†

j,r −
m

∑
p=1

(−1)p f δr,rp cj,r1

p
↑. . .cj,rm

)
cjm+1,rm+1 . . . cjl ,rl cj,r

= (−1)m f cj,r1 . . . cj,rm ∑
r

c†
j,rcjm+1,rm+1 . . . cjl ,rl cj,r

− (−1)p f+(l−p) f
m

∑
p=1

cj,r1 . . . cj,rp−1

(
∑

r
δr,rp cj,r

)
cj,rp+1 . . . cjl ,rl

= (−1)l f cj,r1 , . . . cjl ,rl

(
∑

r
c†

j,rcj,r

)
− (−1)l f

m

∑
p=1

cj,r1 . . . cjl ,rl

= (−1)l fZ
(
n̂j −m

)
.

This proves the base case. For the induction step, we also note that

n̂jcj,r = cj,r
(
n̂j − 1

)
for both bosons and fermions. Now, suppose the result holds for some k, and compute
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∑
r1,...,rk+1

c†
j,rk+1

. . . c†
j,r1

Zcj,r1 . . . cj,rk+1

= ∑
rk+1

cj,rk+1

(
∑

r1,...,rk

c†
j,rk

. . . c†
j,r1

Z cj,r1 . . . cj,rk

)
cj,rk+1

= ∑
rk+1

c†
j,rk+1

(
(−1)lk f Z

k−1

∏
s=0

(n̂j − (m + s))

)
cj,rk+1

= (−1)lk f ∑
rk+1

c†
j,rk+1

Z cj,rk+1

(
k−1

∏
s=0

(n̂j − (m + s + 1))

)

= (−1)l(k+1) f Z (n̂j −m)

(
k−1

∏
s=0

(n̂j − (m + s + 1))

)

= (−1)l(k+1) f Z
k

∏
s=0

(
n̂j − (m + s)

)
,

as desired. This completes the induction.

Corollary 2. The formula

k−1

∏
s=0

(
n̂j − s

)
= ∑

r1,...,rk

c†
j,r1

. . . c†
j,rk

cj,rk . . . cj,r1 .

holds for both bosons and fermions.

Proof. This is an application of Lemma 2 with Z ≡ 1.

Having gathered our pieces, all that remains is putting them together. For now,
let |ψ〉 be a zero mode of the Hamiltonian (2) with well-defined particle number N. It
suffices to show Z P{nj} |ψ〉 = 0 for all root patterns {nj} of |ψ〉. Let {nZ

j } be the pattern

associated with Z as in the above. If {nZ
j } is not a partial root pattern with nj ≥ nZ

j for all j,
Z P{nj} |ψ〉 = 0 trivially, for the reasons mentioned before Lemma 1. Thus, let {nZ

j } be a

partial root pattern with nj ≥ nZ
j , such that ňj = nj − nZ

j is a complementary root pattern.

If now β̌ = (β1, . . . , βN−l) is any configuration with pattern ňj, Corollary 1 tells us that

0 = Z |ψl
β̌
〉 = ZcβN−l . . . cβ1 |ψ〉 .

Next, consider the expansion of |ψ〉 into occupation-number eigenstates,

|ψ〉 = ∑
|S〉

κ|S〉 |S〉 .

Here, all |S〉 are N-particle configurations. By considering Z |ψl
β̌
〉 in the form (32), we see

that all strings of annihilation operators in this expression have indices belonging to the
pattern {nj}. Therefore, all |S〉 having a different pattern are trivially annihilated by the
expression. The expression thus remains valid when |ψ〉 is replaced with P{nj} |ψ〉:

0 = ZcβN−l . . . cβ1 P{nj} |ψ〉 .
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Acting on the above with c†
β1

. . . c†
βN−l

, and summing over the ri’s hidden in the βi’s, we have

0 = ∑
r1,...,rN−l

c†
β1

. . . c†
βN−l

ZcβN−l . . . cβ1 P{nj} |ψ〉 .

Applying Lemma 2, recalling that ňj is the number of times the index j occurs in β̌, and
similarly that nZ

j is the number of occurrences of j among the indies in Z, we obtain

0 = Z ∏
j

ňj>0

(−1)lňj f

ňj−1

∏
s=0

(
n̂j − (nZ

j + s)
)P{nj} |ψ〉 . (33)

We can then make the replacement

P{nj} |ψ〉 → ∏
j

ňj>0

n̂j . . .
(

n̂j − (nZ
j − 1)

)
nj . . .

(
nj − (nZ

j − 1)
)P{nj} |ψ〉 , (34)

as the above operator product acts as the identity within the range of P{nj}. In partic-

ular, since nj ≥ nZ
j , there are no singularities introduces in the denominator. Using

this in Equation (33), and dropping the the non-zero c-number from the denominators in
Equation (34), as well as the factors of −1 in Equation (33), we obtain

0 = Z ∏
j

ňj>0

nj−1

∏
s=0

(
n̂j − s

)P{nj} |ψ〉 , (35)

where the inner products now go up to s = nj − 1, rather than s = ňj − 1. With the help of
Corollary 2, we may rearrange this to read

0 = Z ∑
k1,...,kN

c†
β1

. . . c†
βN

cβN . . . cβ1 P{nj} |ψ〉 .

Finally, using Equation (9), dropping further positive factors:

0 = ZP{nj}P{nj} |ψ〉 = ZP{nj} |ψ〉 ,

and since {nj} was chosen arbitrarily, we have

ZProot |ψ〉 = Z |ψ〉root = 0, (36)

as well. To complete the proof, we finally consider a zero mode |ψ〉 that is not necessarily a
particle number eigenstate. We emphasized that (|ψ1〉+ . . . + |ψm〉)root is not necessarily
equal to (|ψ1〉)root + . . . + (|ψm〉)root. However, if the components |ψ1〉 , . . . , |ψm〉 have
disjoint decompositions into configurations, i.e., are each composed of mutually disjoint
subsets of configurations, then equality trivially holds. This is in particular the case when
|ψ〉 = |ψ1〉 + . . . + |ψm〉 is the decomposition of |ψ〉 into particle number eigenstates
|ψi〉. Equation (36) then trivially generalizes to such |ψ〉. This completes the proof of the
root theorem.

5. Conclusions

In this paper, we have proved a general theorem about the root states of zero modes
of large classes of positive-definite k-body Hamiltonians typical of fractional quantum Hall
and related systems. The theorem streamlines a methodology established in the literature
to make rigorous statements about zero-mode spaces of such Hamiltonians, leading to
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powerful constraints whenever these spaces are non-trivial (which may or may not be the
case for arbitrary particle number N), i.e., whenever the Hamiltonian is frustration free. This
includes a variety of situations where the Landau-level guiding-center degrees of freedom
may coexist with others, particularly dynamical momenta that render first-quantized
many-body wave functions non-holomorphic. The theorem represents a generalization of
the methodology to k-body operators, where, at least in the non-holomorphic case, only
2-body operators seem to have been considered previously. Moreover, while the very
notion of root-states is naturally second-quantized, our theorem makes it easy to carry
out the analysis in a mixed “first-second” quantized manner, while only dealing with
states of finite particle number, as we have demonstrated in some examples. In contrast,
the method used so far in the literature on parent Hamiltonians for non-holomorphic
states embraces a slightly more cumbersome approach, where Pauli-like constraints on
root states are derived with a particle number treated as an arbitrary unknown from the
outset, and the constraints on root states are derived using the fully second-quantized
operators (3). Note that the examples we discussed indicate that the second quantized form
(3) may not be needed explicitly at all. We expect that the theorem we proved in this work
will significantly simplify the workflow when studying related problems, especially for
k > 2-body interactions and associated Pauli-like principles, and/or when root patterns
occur that have some of the nj greater than two. We are thus hopeful that the present
work will lead to further exciting developments in the study of frustration-free models for
fractional quantum Hall-like systems, especially for states with internal and/or multiple
Landau-level degrees of freedom, such as parton states and their generalizations.
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