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Extensive blood transcriptome
analysis reveals cellular signaling
networks activated by circulating
glycocalyx components reflecting
vascular injury in COVID-19
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Markus Rehm1,6†, Gustav Schelling1*, Michael W. Pfaffl2
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1Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich,
Munich, Germany, 2Division of Animal Physiology and Immunology, School of Life Sciences
Weihenstephan, Technical University of Munich, Freising, Germany, 3Department of Neurology,
University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany, 4QIAGEN Digital
Insights, Redwood City, United States, 5Institute of Human Genetics, University Hospital, Ludwig-
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Background: Degradation of the endothelial protective glycocalyx layer during

COVID-19 infection leads to shedding of major glycocalyx components. These

circulating proteins and their degradation products may feedback on immune and

endothelial cells and activate molecular signaling cascades in COVID-19

associated microvascular injury. To test this hypothesis, we measured plasma

glycocalyx components in patients with SARS-CoV-2 infection of variable disease

severity and identified molecular signaling networks activated by glycocalyx

components in immune and endothelial cells.

Methods: We studied patients with RT-PCR confirmed COVID-19 pneumonia,

patients with COVID-19 Acute Respiratory Distress Syndrome (ARDS) and healthy

controls (wildtype, n=20 in each group) andmeasured syndecan-1, heparan sulfate

and hyaluronic acid. The in-silico construction of signaling networks was based on

RNA sequencing (RNAseq) of mRNA transcripts derived from blood cells and of

miRNAs isolated from extracellular vesicles from the identical cohort. Differentially

regulated RNAs between groups were identified by gene expression analysis. Both

RNAseq data sets were used for network construction of circulating

glycosaminoglycans focusing on immune and endothelial cells.

Results: Plasma concentrations of glycocalyx components were highest in

COVID-19 ARDS. Hyaluronic acid plasma levels in patients admitted with

COVID-19 pneumonia who later developed ARDS during hospital treatment

(n=8) were significantly higher at hospital admission than in patients with an

early recovery. RNAseq identified hyaluronic acid as an upregulator of TLR4 in

pneumonia and ARDS. In COVID-19 ARDS, syndecan-1 increased IL-6, which was

significantly higher than in pneumonia. In ARDS, hyaluronic acid activated NRP1, a

co-receptor of activated VEGFA, which is associated with pulmonary vascular
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hyperpermeability and interacted with VCAN (upregulated), a proteoglycan

important for chemokine communication.

Conclusions: Circulating glycocalyx components in COVID-19 have distinct

biologic feedback effects on immune and endothelial cells and result in

upregulation of key regulatory transcripts leading to further immune activation

and more severe systemic inflammation. These consequences are most

pronounced during the early hospital phase of COVID-19 before pulmonary

failure develops. Elevated levels of circulating glycocalyx components may early

identify patients at risk for microvascular injury and ARDS. The timely inhibition of

glycocalyx degradation could provide a novel therapeutic approach to prevent the

development of ARDS in COVID-19.
KEYWORDS

small RNA, COVID-19, glycocalyx, acute respiratory distress syndrome, endothelial
dysfunction, cell-free microRNAs, extracellular vesicles
1 Introduction

Severe forms of COVID-19 associated with acute pulmonary

failure (acute respiratory distress syndrome, COVID-19 ARDS) are

a multisystemic, thrombotic and inflammatory disorder with high

mortality (1, 2). Histopathological studies in COVID-19 ARDS

showed wide spread endotheliitis involving multiple organs (3, 4)

beside the affected lungs (5) which is in marked contrast to “classic”

ARDS (6). This pathophysiologic difference is probably due to a

combination of direct viral infection of endothelial cells (7) and the

systemic inflammatory response of the organism (cytokine storm) (8)

both resulting in vascular pathology (9, 10).

Under physiological conditions, vascular integrity is preserved by

a network of glycocalyx proteins located at the interface between the

endothelial cell surface and the vascular environment. Major

components of the glycocalyx are hyaluronic acid and heparan

sulfate. The endothelial transmembrane protein syndecan serves as

connecting structure for both. Severe infection and inflammation lead

to degradation of this protective layer by hyaluronidase and

heparanase resulting in immunologically active hyaluronic acid and

heparan sulfate fragments, both markers of glycocalyx shedding. In

patients with COVID-19, elevated levels of these glycocalyx fragments

were strongly associated with organ failures and increased

inflammatory cytokine levels (11).

There is little information, however, regarding the mediators of

intercellular communication between immune and endothelial cells

and the molecular signaling cascades of glycocalyx fragmentation in

COVID-19 pulmonary failure and microvascular injury.

An important part of intercellular communication are

extracellular vesicles (EVs) (12). They play a major part in the

regulation of immune response (13) in multiple human disorders

such as pneumonia (14) or vascular pathology in general (15–17). In

COVID-19, EVs are also key regulators of the immune response and

disease progression (18–20).

EVs are categorized as either exosomes or ectosomes. Exosomes

are of endosomal origin with a size between 40 to 160 nm whereas
02
ectosomes are larger EVs generated by the direct outward budding of

the plasma membrane with a diameter in the range between 50 nm to

one µm in diameter.

EVs contain many components of their cells of origin including

RNA, as well as DNA, lipids and cytosolic and cell-surface proteins

(21). Mechanistic studies show that these molecules serve as biological

signals transported by EVs from their cells of origin to specific target

cells, underlining their important function in intercellular

communication (12). Non-coding RNA - in particular -

microRNAs (miRNAs) - as EV components are taken up by target

cells where they regulate gene transcription.

In this study, we measured the circulating glycocalyx elements

hyaluronic acid and heparan sulfate and its connecting

transmembrane protein syndecan-1 along with the von Willebrand

factor-cleaving protease ADAMTS13 in hospitalized patients with

COVID-19 disease and identified molecular signaling networks

targeted by these glycocalyx components and ADAMTS13.

Network analysis was based on data from high-throughput RNA

sequencing (RNAseq) of mRNA isolated from blood cells and

miRNAs derived from EVs as mediators of intercellular

communication between blood, endothelial cells and immune cells.

Our aim was to characterize the role of circulating glycocalyx

components in immune and endothelial cell activation in COVID-19.
2 Methods

Figure 1 gives a summarized overview of the methodological

approach used in this study.
2.1 Study groups

A total of 60 individuals were studied at the Ludwig-Maximilians-

University Hospital. The study cohort consisted of 20 healthy controls

without known or suspected infection with SARS-CoV-2, 20 patients
frontiersin.org
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with COVID-19 pneumonia, and 20 patients with COVID-19 ARDS.

COVID-19 patients had at least one positive nasal swap for SARS-

CoV-2 virus (SARS-CoV-2-RNA PCR test, RdRP-Gen IP4) and

typical symptoms. All patients were infected with the wildtype of

SARS-CoV-2 during the first COVID-19 wave. Patients with COVID-

19 pneumonia were recruited consecutively from the hospital

COVID-19 isolation facility and ARDS patients from the COVID-

19 ICUs of the Ludwig-Maximilians-University Hospital. Healthy

controls were enrolled by advertisement and from hospital staff. All

study participants were recruited between 03/2020 and 04/2020 and

were non-vaccinated. Exclusion criteria for the study were: No

consent given by patients or legal representative, age < 18,

pregnancy, preexisting chronic infectious disorders (e.g.,

endocarditis, HIV or hepatitis), current tumor or malignant

disorders, limited patient’s life expectancy < 6 months (independent

of COVID-19 disease) and immunosuppression. Inclusion criteria for

COVID-19 associated pneumonia were clinical symptoms like fever,

cough or dyspnoea and a CURB-65 score ≥ 1. SARS-CoV-2 associated

ARDS was diagnosed by bilateral chest radiographical opacities with

severe hypoxemia due to non-cardiogenic pulmonary edema

according to the Berlin ARDS definition (22). The final diagnosis of

ARDS was made by experienced ICU and emergency room clinicians

without prior knowledge of the results of the molecular studies.
2.2 Blood sampling

Blood samples from the COVID-19 pneumonia patients and

healthy volunteers were obtained by venipuncture and from

patients with COVID-19 ARDS by sampling from arterial lines. A

previous study from our group has shown that venous vs. arterial

blood sampling has very little effect on expression values of EVs

derived miRNAs (23). Blood samples were obtained within the first

24 h after admission to the emergency room (COVID-19 pneumonia)

or the ICU (COVID-19 ARDS). Five ml EDTA tubes and 9 ml Serum

tubes were used for collection. Serum and EDTA samples were

centrifuged at 3400 g for 10 minutes at 4°C and the supernatant
Frontiers in Immunology 03
stored at -80°C. Whole blood samples for cellular RNA extraction

were collected in PAXgene tubes (PAXgene, Qiagen, Hilden,

Germany) in accordance with the supplier’s protocol.
2.3 Isolation and characterization of
extracellular vesicles

EVs from study participants were available from a previous study

(18) and were precipitated by an isolation kit (miRCURY Exosome

Isolation Kit, Qiagen, Venlo, Netherlands), characterized by

Nanoparticle Tracking Analysis (ZetaView PMX 110, Particle

Metrix, Meerbusch, Germany) and visualized by transmission

electron microscopy as described earlier (23).
2.4 Measurement of glycocalyx components

Glycocalyx components (syndecan-1, hyaluronic acid and

heparan sulfate) and ADAMTS13 were measured from plasma by

ELISA, see supplemental information for details.
2.5 RNA processing and sequencing

Extraction and processing of non-coding RNA (miRNA) from

EVs was performed as previously described (18). Long RNA (mRNA)

sequencing from whole blood of all studied individuals was successful

in 15 healthy volunteers, 19 patients with COVID-19 pneumonia and

in 15 patients with COVID-19 ARDS. A blood RNA Kit (PAXgene

RNA Kit, QIAGEN, Hildesheim, Germany) was used for the

extraction of total RNA. All samples were processed according to

the manufacturer´s protocol. The quality of the extracted RNA

molecules was checked by RNA 6000 Nano assay on a Bioanalyzer

2100 (Agilent Technologies, Waldbronn, Germany). The extracted

RNA was quantified using a ND-1000 NanoDrop (Thermo Fisher

Scientific, Darmstadt, Germany) spectrometer.
FIGURE 1

Step by step illustration of the study procedure. After recruitment of the study participants and blood sampling, plasma concentrations of glycocalyx
components were measured by ELISA, EVs were extracted from serum and RNA extracted from EVs and whole blood cells followed by high-throughput
RNA sequencing. The last step consisted of bioinformatic analysis resulting in the construction of glycocalyx component signaling networks in COVID-
19. ADAMTS13 = von Willebrand factor-cleaving protease, DGE, differential gene expression analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1129766
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Borrmann et al. 10.3389/fimmu.2023.1129766
For long RNAseq, one µg of total RNA was rRNA and globin

depleted using the QIAseq FastSelect-rRNA/Globin Kit (Qiagen,

Hildesheim, Germany) and the settings for RIN 5-6 and insert size

150-250 bases. Libraries were prepared with the QIAseq Stranded

Total RNA library prep kit (Qiagen, Hildesheim, Germany) according

to the manufacturer’s protocol. An adapter dilution of 1:20 was

applied. Obtained DNA libraries were quantified and quality

checked with the High Sensitivity DNA assay on a Bioanalyzer

2100 (Agilent Technologies, Waldbronn, Germany). Sequencing

was performed on a HiSeq 2500 (Illumina Inc., San Diego, CA,

USA) in two runs.

Small RNA sequencing, libraries were prepared with a NEBNext

Multiplex Small RNA Library Prep Set for Illumina (New England

Biolabs Inc., Ipswich, USA) as described previously (24). RNA data

were processed by FASTQC software (https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) and sequence quality and length

distribution reviewed. In this way, adaptor sequences were trimmed

and reads without adaptors were removed. Reads mapped to

ribosomal and transfer RNA or sequences shorter than 16

nucleotides were deleted. Then sequences of the processed reads

were matched with RNAcentral (https://doi.org/10.1093/nar/

gkw1008). Finally, different gene expression between patient groups

and healthy controls were identified by using the Bioconductor

package DGEeq2 for R (R Foundation for Statistical Computing,

Vienna, Austria, version 4.0.1). Thresholds were set at a log2fold

change ≥|1|, an adjusted p-value (padj) of ≤ 0.1 and a mean expression

of ≥ 50 for significantly regulated protein-coding transcripts.
2.6 Statistical analysis of demographics and
clinical data

The estimation of the number of patients (nCOVID-19 = 40)

required demonstrating statistically significant differences in plasma

concentrations of glycocalyx components and heparanase activity was

based on a previously published study, where the inclusion of 10

healthy controls and 48 COVID-19 patients revealed significantly

higher heparanase and heparan sulfate concentrations in patients as

compared to controls (25). Case number estimation for mRNA

sequencing resulted from our earlier study in COVID-19 patients

where the analysis of differential gene expression analysis data showed

significant differences in EV miRNA expression levels when 20

healthy controls and 40 patients with either COVID-19 pneumonia

or COVID-19 ARDS were studied (18). We assumed that an equal

number of healthy controls and patients would again result in

sufficient statistical power to reject the null hypothesis at an a-level
of p = 0.05 that there is no significant difference in plasma

concentrations of glycocalyx components and mRNA expression

levels between controls and the two groups of patients.

Demographic, clinical data and differences in glycocalyx

components and ADAMTS13 levels between groups were

compared using the non-parametric Mann-Whitney U test and

Bonferroni corrections were considered because of multiple

comparisons between groups. The Chi-square or Fisher’s exact test

was used for comparison of categorical variables. Data analysis was

performed using Python (version 3.7, Python Software Foundation,

Beaverton, USA) and R version R-3.6.2 (26). Data in the text and in
Frontiers in Immunology 04
tables are reported as median and interquartile range (IQR). All

statistical tests were two-tailed and a p-value < 0.05 was considered

statistically significant.
2.7 Pathway analyses

The resulting RNAseq data were analyzed using Ingenuity

Pathway Analysis (IPA®, QIAGEN Digital Insights, Redwood, CA,

USA) for in-silico identification of mRNA gene targets of miRNAs

and the construction of causal networks involving immunological

effects of the glycocalyx components hyaluronic acid, heparan sulfate,

syndecan-1, the anti-thrombotic protein ADAMTS13, as measured by

ELISA, and HYAL1 (hyaluronidase 1, from RNAseq). Significantly

regulated miRNAs and mRNAs fulfilling predefined cut-off values

(baseMean ≥50, log2FC ≥1 or log2FC ≤ −1 and padj ≤ 0.05 for

miRNAs and padj ≤ 0.1 for mRNAs) were entered into the IPA®

microRNA Target Filter and conventionally paired for downregulated

miRNAs in combination with their upregulated mRNAs and vice

versa. As there is evidence that vascular pathology resulting from

endothelial injury plays a major role in COVID-19 (8) along with the

immunological reaction to the virus, IPA® network generation was

filtered to effects on immune and endothelial cells. Additional filter

criteria were respiratory disease and experimentally confirmed or

highly predicted relationships (see the online supplement for a

detailed description of filter criteria). Network construction focused

on comparisons between COVID-19 pneumonia and COVID-19

ARDS to healthy controls and COVID-19 pneumonia to COVID-

19 ARDS. These comparisons were performed to identify the

regulatory role of the glycocalyx components and their degradation

products in different disease severities and to illustrate the progression

from pneumonia to COVID-19 ARDS.
2.8 Ethics approval and consent
to participate

Approval of the study was granted by the Ethics Committee of the

Medical Faculty of the Ludwig‐Maximilians‐University of Munich

under protocol #18-398. All samples were pseudonymized during

analyses. The study was conducted in accordance with the declaration

of Helsinki and written informed consent to participate was obtained

from each participant or the patient’s legal representative.
3 Results

3.1 Study population

Twenty individuals were studied in each of the three study groups.

Their demographic and clinical data are presented in Table 1. Healthy

controls were significantly younger and showed a significantly lower

body mass index (BMI) than patients. Age and BMI did not differ

significantly between patients with COVID-19 pneumonia or

COVID-19 ARDS. Patients with ARDS showed significantly higher

levels of inflammatory parameters (IL-6, C-reactive protein, leucocyte

count, procalcitonin) at admission to the ICU and required a
frontiersin.org
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significantly longer hospital stay. Eight patients with COVID-19

pneumonia at hospital admission developed severe pulmonary

failure (ARDS) during treatment at the COVID-19 isolation facility

and required intubation, mechanical ventilation and transfer to the

ICU. One patient died in the COVID-19 pneumonia group, another

patient who was originally admitted with COVID-19 pneumonia

developed ARDS and died during ICU treatment and a further patient

deceased after direct admission to the ICU from COVID-19 ARDS.
3.2 Plasma concentrations of glycocalyx
components and the von Willebrand factor-
cleaving protease ADAMTS13

The highest plasma concentrations of syndecan-1, heparan sulfate

and hyaluronic acid and the lowest levels of ADAMTS-13 were

measured in patients with COVID-19 ARDS. Heparan sulfate

plasma concentrations did not differ between healthy controls and

patients with COVID-19 pneumonia, but ARDS patients showed

significant higher levels of heparan sulfate compared to the other

study groups (Figure 2).

When analyzing the difference between pneumonia patients who

later progressed to ARDS (n=8 in the pneumonia group) and those

who did not show a further progression of the disease, hyaluronic acid

plasma levels were significantly higher in the subgroup with disease

progression (164, 126 - 211 ng/ml vs. 80, 64 - 110 ng/ml, p=0.005,

median and IQR).

The absolute values for each study group for all measured

glycocalyx components and ADAMTS13 are shown in Table E 1 in

the Supplementary File.
Frontiers in Immunology 05
3.3 RNA processing and sequencing

The comparison of RNAseq data by DGE analysis between

healthy volunteers (baseline) and patients with COVID-19

pneumonia revealed 42 differentially regulated miRNAs isolated

from EVs (17 upregulated) (s. Table E 2 in the Supplemental

Information for miRNAs) and 3448 significantly regulated mRNA

transcripts (1556 upregulated). The corresponding analysis of healthy

volunteers vs. patients with COVID-19 ARDS uncovered 72

significantly regulated miRNAs (30 upregulated) (s. Table E 3 in

the Supplement) and 2374 significantly regulated mRNAs (854

upregulated). The analogous assessment of COVID-19 pneumonia

in comparison to COVID-19 ARDS showed 20 significantly regulated

miRNAs (5 upregulated) (s. Table E 4 in the Supplement) and 149

mRNA transcripts with significantly different expression values (53

upregulated). mRNA sequencing data for all groups are presented in

the online data deposition of the study (European Nucleotide

Archive, access number to be determined).
3.4 Molecular networks of glycocalyx
components and ADAMTS13 signaling

3.4.1 Signaling network of COVID-19 pneumonia
compared to the healthy state

In the signaling network of syndecan-1 and hyaluronic acid

(Figure 3), upregulated syndecan-1 (SDC1, log2FC=1.76, padj =

0.034) interacts with upregulated ITGB3 (log2FC=1.19, padj=0.005)

(30) which is also activated by downregulated miR-32-5p (log2FC=-

1.25, padj=0.007). Hyaluronic acid activates TLR4 (log2FC=0.91,

padj<0.001) along with ICAM-1 (log2FC=0.77, padj=0.014) (31)
TABLE 1 Comparison of demographic and clinical data between study groups.

Group Healthy Controls COVID-19 Pneumonia COVID-19 ARDS

Age 35 (31 - 39)§,& 63.5 (53.5 - 75.5) 64.5 (55 - 71)

BMI (kg/m2) 23.4 (21.8 - 25.6) §,& 26.6 (24.5 - 33.3) 28.2 (25.7 - 31.8)

Sex, n (f/m) 8/12 2/18 2/18

Hospital Stay (d) 16.5 (20.0-40.0) & 31 (20.25 - 47.5)

PCT (ng/ml) 0 (0 - 0.2) & 0.9 (0.375 - 1.05)

Leukocyte count (G/l) 5.045 (3.24 – 8.0) & 8.675 (7.555 - 12.03)

CRP (mg/dl) 5 (2 - 10.53) & 22.5 (14.5 - 28.6)

IL-6 (pg/ml) 43.2 (16.9 - 82.42) & 304.5 (112.2 - 575.3)

ICU stay (d) 21 (14 - 37)

Progression to ARDS (n) 8

CURB Pneumonia Score 1 (0 - 2)

SOFA - Score 10 (9 - 11)

PaO2/FiO2 136 (97.85 - 158.25)
CURB Score = a score based on confusion, urea, respiratory rate, blood pressure, and age to quantify the severity of community acquired pneumonia (28). PaO2/FiO2 = ratio of partial pressure of
oxygen in blood (PaO2) and the fraction of oxygen in the inhaled air (FiO2). Used as a rough measure of oxygenation in patients on ventilators, particularly in ARDS. SOFA Score = Sequential Organ
Failure Assessment score. Well validated and widely used score for quantification of disease severity in ICU patients with sepsis (29). §significantly different compared to pneumonia (p<0.05);
&significantly different compared to ARDS (p<0.05).
Data are median and quartiles. IL-6 = interleukin-6, CRP = C-reactive protein, BMI = body mass index, PCT = procalcitonin, a widely used and validated biomarker in ICU patients (27).
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FIGURE 3

Network illustrating hyaluronic acid and syndecan-1 (SDC1) signaling in immune and endothelial cells for patients with COVID-19 pneumonia with
healthy controls serving as baseline. RNAseq data resulted from miRNAs (extracellular vesicles) and mRNA transcripts (blood cells). The significantly
downregulated miR-32-5p is shown in green and the activated molecules SDC1 and hyaluronic acid are shown in red. The network was filtered for
experimentally observed findings only, solid lines indicate direct and dashed lines indirect relationships.
FIGURE 2

Plasma concentrations of syndecan-1, ADAMTS13, hyaluronic acid and heparan sulfate in healthy controls, patients with COVID-19 pneumonia and those
who progressed to ARDS presented as boxplots. Horizontal lines across the boxes show significant differences with p-values between groups. Boxes
represent Q1 and Q3 with median in between. Whiskers are Q1-1.5*IQR and Q3+1.5*IQR. Outliers are shown as dots.
Frontiers in Immunology frontiersin.org06

https://doi.org/10.3389/fimmu.2023.1129766
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Borrmann et al. 10.3389/fimmu.2023.1129766
and indirectly PTEN (log2FC=0.85, padj=0.002) (32) which in turn

interacts with SDC1 (33).
3.4.2 Signaling network of COVID-19 ARDS
compared to the healthy state

In severe pulmonary failure (ARDS), syndecan-1 (SDC1)

upregulates IL-6 (34) and downregulates SDC2 (syndecan-2,

log2FC=-13.2, padj<0.001) (35). Elevated IL-6 levels in COVID-19

ARDS (s. Table 1) downregulate ADAMTS13 (36). Heparan sulfate

binds to downregulated NRP1 (neurophilin-1, log2FC=-3.14,

padj=0.091) (37) and upregulated VCAN (versican, log2FC=2.43,

padj<0.001) (38) which also interacts with hyaluronic acid (39).

HYAL1 (hyaluronidase 1), the degradation enzyme of hyaluronic

acid, is upregulated in the network and targets VCAN (38) along with

hyaluronic acid. Degradation products of hyaluronic acid (40) and

heparan sulfate (41) are associated with upregulation of MET

(tyrosine-protein kinase Met, log2FC=3.92, padj=0.062) (Figure 4).
3.4.3 Signaling network of COVID-19 pneumonia
after progression to COVID-19 ARDS

In this comparison, syndecan-1 and heparan sulfate plasma

concentrations are significantly higher and ADAMTS13

significantly lower in patients progressing from pneumonia to

severe pulmonary failure (ARDS) (Figure 2). The corresponding

network derived from immune and endothelial cell signaling is

considerably smaller than the networks comparing COVID-19

patients to healthy controls (Figures 3, 4) and no direct regulatory

effects for the glycocalyx components or ADAMTS13 can be

identified (Figure 5). The downregulated miRNAs miR-1228-5p

(log2FC=-2.29, padj<0.001) and miR-4433-3p (log2FC=-2.63E-06)

target ADAMTS13 and are predicted by the model to activate the

interferon inducible CARD6 (log2FC=0.63, padj=0.07, caspase

recruitment domain family member 6) as well as upregulated PKM

(log2FC=0.59, padj=0.011, pyruvate kinase isozyme) but do not

directly interact with ADAMTS134.
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4 Discussion

Severely affected COVID-19 patients are in a state of endothelial

injury with widespread microthrombosis coupled with

hyperactivation of the immune system (10). Immune cell activation

is reflected by high levels of IL-6, IL-1b, IL-18 known as the COVID-

19 cytokine storm (42). High concentrations of pro-inflammatory

cytokines in-turn lead to endothelial cell activation. The reduced

levels of ADAMTS13 as seen in our study result in high

concentrations of the endothelial adhesion protein von Willebrand

Factor on the “naked” endothelial cell surface along with loss of its

protective glycocalyx layer. This leads to platelet wall adhesion with

microangiopathy and microthrombosis (43).

Less investigated, however, was the direct effect of circulating

glycocalyx components and the decrease in ADAMTS13 on

molecular signaling in immune and endothelial cells. We addressed

this research question in our study and showed that circulating

glycocalyx components during SARS-CoV-2 infection are not

biologically inactive markers of severe microvascular injury but

have distinct feedback effects on signaling networks in immune and

endothelial cells resulting in immune and endothelial cell activation

with an increase in inflammation and further enhancement of

microthrombosis formation.

The construction of glycocalyx component signaling networks in

our study was based on RNA expression levels determined by high-

throughput sequencing of miRNAs from EVs and mRNA transcripts

from blood cells. Extracellular vesicles as a source for miRNAs were

selected because our group and others have demonstrated their

important role in regulating the immune response and the

development of immunothrombosis (18, 20). In addition, platelets

release extracellular vesicles with procoagulant activity in COVID-19

(44). miRNAs associated with extracellular vesicles can regulate

mRNAs transcription in target cells during systemic inflammation

and in vascular disorders such as atherosclerosis (17, 45, 46).

When comparing plasma concentrations of syndecan-1 and

hyaluronic acid in COVID-19 pneumonia to healthy controls, both
FIGURE 4

Network for immune and endothelial cells comparing COVID-19 ARDS to the healthy state based on experimentally observed findings. Upregulated
molecules are shown in red and downregulated ones in green. Significantly increased plasma concentrations of hyaluronic acid, heparan sulfate,
syndecan-1 (SDC1) and downregulated signaling of ADAMTS13 are colored in darker red/green. Solid lines indicate direct and dashed lines indirect
relationships.
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glycocalyx components were significantly elevated (Figure 2). The

corresponding molecular signaling networks demonstrated that

several important mRNA transcripts are regulated by these

glycocalyx components in immune and endothelial cells. Syndecan-

1 interacts directly with ITGB3 (CD61 or integrin beta 3) (Figure 3).

Additionally, ITGB3 is activated by downregulated miR-32-5p. In

COVID-19, ITGB3 is indicative of a large number of megakaryocytes

in the pulmonary circulation (47). Megakaryocytes as the source of

platelets (48) lead to an increase risk for platelet activated thrombus

formation. Furthermore, ACE2 expression (angiotensin−converting

enzyme 2) as the key host protein of COVID-19, correlates with

expression levels of ITGB3 in post-mortem lung tissues obtained from

patients who died from COVID-19 ARDS (49). In our study,

expression in extracellular vesicles is downregulated in COVID-19

patients in comparison to healthy controls. Downregulation of miR-

32-5p showed potential activating effects on ACE2 expression in a

recent in-silico investigation (50). In combination with signaling

effects of syndecan-1, a lower expression of miR-32-5p could

therefore be associated with immune cell activation, ACE2

mediated virus entry and pulmonary microthrombi formation.

A further important finding in the COVID-19 pneumonia

network was the direct interaction between hyaluronic acid with

TLR4 (toll-like receptor 4) (51) (Figure 3). TLR4 activation results in

increased ACE2 expression on the cellular surface of circulating

monocytes leading to increased susceptibility to infection with

SARS-CoV-2. Extracellular vesicles (exosomes) were found as a

source of ACE2 in this context (52). Blocking of TLR4 signaling

has been suggested as a means of limiting pulmonary injury in viral

infections (53).

The significant increase in syndecan-1 and hyaluronic acid, the

decrease in ADAMTS13 and the associated activation of procoagulant

and inflammatory pathways seen in COVID-19 pneumonia indicates

that patients with this clinically milder variety of COVID-19 disease

are also at risk of microvascular complications.
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As a next step, we constructed glycocalyx component and

ADAMTS13 signaling networks which compared patients with

COVID-19 ARDS - the most severe form of the disease - to healthy

controls. In this analysis, all glycocalyx components are significantly

higher and ADAMTS13 levels are even lower than in COVID-19

pneumonia, a reflection of the progress in disease severity towards

pulmonary failure. In the resulting molecular network, the activating

effect of heparan sulfate on TLR4 is maintained and, in addition, this

proteoglycan is associated with an increase in VEGFA signaling as

heparan sulfate is an endogenous agonist on VEGFA and TLR4 (54–

56). VEGFA acts as a potent inductor of vascular leakage (55), a

hallmark of pulmonary injury leading to ARDS. The signaling

network involving TLR4 and VEGFA in COVID-19 ARDS is more

complex than in pneumonia and shows additional activating effects of

downregulated miR-150-5p and miR-126-3p on VEGFA.

Downregulation of miR-150-5p is associated with severe COVID-19

disease (57). miR-126-3p amongst other miRNAs differentiated

between survivors and non-survivors in patients with COVID-19

ARDS in an earlier study (58). Another interesting connection in this

network is the binding of heparan sulfate to downregulated NRP1

(neurotropin 1 or neuropilin-1), an antagonist of VEGF (59). Lower

expression of NRP1 could result in even higher activity of VEGF,

further enhanced by additional downregulation of NRP1 through

upregulated miR-1-3p derived from extracellular vesicles in our data

(Figure 4). Upregulated miR-1-3p in bronchial aspirates also

distinguished between survivors and non-survivors with COVID-19

ARDS (58).

This analysis was followed by comparing patients with

pneumonia to those who had developed severe ARDS. Syndecan-1

and heparan sulfate plasma concentrations were significantly higher

and ADAMT13 levels significantly lower than seen in COVID-19

pneumonia (Figure 2) but no direct regulatory effects of these

molecules in the network could be identified. In addition, this

network (Figure 5) was smaller and more fragmented than the
FIGURE 5

Immune and endothelial cell signaling in COVID-19 pneumonia compared to patients progressing to COVID-ARDS. Upregulated molecules are shown in
red and downregulated in green. Network is based on experimentally observed findings and highly predicted interactions.
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signaling cascades comparing the healthy state to pneumonia and

ARDS. This indicates that many pathophysiologic changes occur

during the early phase of the disease when COVID-19 has not yet

progressed to pulmonary failure. In the network, ADAMTS13 was

targeted by downregulated miR-1228-5p and miR-4433b-5p

(Figure 5). As ADAMTS13 levels were already low, counter

regulatory effects of these miRNAs could explain this finding; the

inhibition of ADAMTS13 most likely occurs by other mechanisms

not reflected by the network. It is of interest to note, however, that

miR-1228-5p was upregulated in patients with COVID-19

pneumonia (s. Table E 2 in the online supplement) in contrast to

the comparison between COVID-19 pneumonia to ARDS where this

EV-derived miRNA was downregulated (Figure 5). This points to the

possibility that miR-1228-5p might be involved in an activation of

ADAMTS-13 in COVID-19 ARDS. miR-1228-5p also upregulated

CARD6 (caspase recruitment domain family, member 6) which plays

a role in immune defense, but the exact pathophysiologic function of

CARD6 is poorly defined (60). Nevertheless, CARD6 is highly

expressed in neutrophils, endothelial progenitor and venous

endothelial cells (s. Figure E 2 in the supplement). miR-4433b-5p

upregulated PKM (pyruvate kinase isozyme). Pyruvate kinase is

responsible for net ATP production within the glycolytic sequence.

In contrast to mitochondrial respiration, energy regeneration by

pyruvate kinase is independent from oxygen and allows survival of

organs under hypoxic conditions, which are present in ARDS. The

highest expression of PKM in COVID-19 ARDS patients is found in

circulating mono-CD14+ cells (61).

Interestingly, the subgroup of patients in our study originally

admitted with pneumonia who later progressed to ARDS showed

significantly higher levels of hyaluronic acid, while hyaluronic acid

plasma levels of all pneumonia patients were not statistically

significantly different to ARDS patients.

A limitation of our findings results from the fact that our study is

missing a proteomics analysis of blood and additional cellular studies

of blood and endothelial cells but our findings can form the basis for

further proteomic and cell-based analyses of glycocalyx signaling

networks and suggests a novel mechanism for immune modulation by

glycocalyx components involving EV-derived miRNAs. Furthermore,

the regulatory consequences of glycocalyx components and

ADAMTS13 on immune and endothelial cells identified by the

networks were not directly experimentally confirmed in our data

set. The canonical pathways identified in our study were based on the

Knowledge Base item underlying the IPA® software. This Knowledge

Base is created by millions of manually curated data obtained from

scientific journals, publicly available molecular content databases,

textbooks and more and allows the query, visualization and

computation across the Knowledge Base in relationship to the

researchers own dataset of miRNA, mRNA and protein findings

uploaded into IPA® (62). This holistic approach has been applied to

COVID-19 in an earlier study (63) and results in networks which

allow the identification of signaling cascades not previously studied.

As a disadvantage, the regulatory effects of glycocalyx components in

our networks could not explicitly be proven as causal and some of the

interactions could still be correlational. However, most regulatory

effects underlying the network connections were experimentally

confirmed in earlier experimental studies or showed at least a high

biologic plausibility.
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Circulating glycocalyx components in COVID-19 are not

harmless byproducts of microvascular injury but result in further

activation of immune and endothelial cells and may fuel a positive

feedback loop resulting in immune activation and more severe

systemic inflammation leading to microcirculatory failure. These

effects already appear during the early phase of COVID-19 when

patients present with pneumonia prior to progression to pulmonary

failure and ARDS. The timely identification of patients at risk for

ARDS is therefore critical and glycocalyx component levels may serve

as biomarkers for this negative outcome. A therapeutic consequence

for COVID-19 patients with early evidence of microvascular injury

would then be the targeted use of antiviral agents (e.g., Ritonavir-

boosted nirmatrelvir or Remdesivir) or the timely administration of

pharmacologic compounds that protect the glycocalyx layer (10).
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