
Technische Universität München
TUM School of Computation, Information and Technology

Automatic Generator Methodology for Safe Embedded
Software

Michael Werner

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology zur
Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Wolfgang Kellerer

Prüfer der Dissertation: 1. Hon.-Prof. Dr.-Ing. Wolfgang Ecker

2. Priv.-Doz. Dr.-Ing. habil. Daniel Müller-Gritschneder

Die Dissertation wurde am 23.03.2023 bei der Technischen Universität München eingereicht und durch
die TUM School of Computation, Information and Technology am 24.11.2023 angenommen.

"The function of good software is to make the complex appear to be simple."

(Grady Booch, Founder of the Unified Modeling Language)

Abstract

The growing complexity of embedded systems requires new strategies to meet the challenges of
embedded system development. The evolution of programming languages shows that abstraction
is the best way to overcome complexity. Model-driven engineering is a methodology that raises
the level of abstraction and attempts to approximate human language, thinking, and conceptual-
ization. Combined with a code generation approach, the development process shifts from manual
coding to generator-based development. Instead of manually implementing hardware (e.g., VHDL,
Verilog) or software code (e.g., C, C++), generators coded in high-level languages generate these
design views.

While such modern development techniques are becoming more and more accepted in hardware
development, embedded software is still predominantly implemented manually. Consequently,
software development becomes even more of a bottleneck than it already is, undoing the im-
provements made in HW development. This thesis addresses this shortcoming and proposes an
embedded software design methodology based on model-driven architecture to reduce costs, in-
crease quality and speed-up embedded software development. Together with the existing hardware
modeling approach, a holistic generation flow is created that ensures the synchronized generation
of hardware and embedded software.

The flow proposes an embedded software metamodel to abstract the structure and behavior
of embedded software. Through the holistic approach, transformations translate a specification
(conceptual model) into instances of the embedded software metamodel and the hardware meta-
model (hardware generation flow). They result in a ready-to-use embedded software code whose
structure and behavior are tailored to the particular hardware device. The presented approach
handles the entire embedded software stack. For the creation of the HW/SW interface, an au-
tomatism is set up to optimize the memory layout of the peripherals in order to implement an
efficient hardware abstraction layer. The approach follows several transformation steps for the
device driver layer to create a wide variety of device driver variants. A user can further customize
the variant according to the application and system needs. The generation flow supports (1)
highly configurable device specifications, (2) multiple embedded software architecture schemes,
(3) non-functional extensions (e.g., safety measures), and (4) different platforms (e.g., languages).

Applying this approach in the industry has high potential. A developer must no longer be a
domain expert to implement, e.g., safe embedded software. This saves a lot of development cost
while being less error-prone as it replaces repetitive implementation activities. Furthermore, the
designer can analyze several design alternatives to identify the best variant for a specific system.

III

Zusammenfassung

Die wachsende Komplexität eingebetteter Systeme erfordert neue Strategien um Komplexität
bei der Entwicklung von eingebetteten Systemen zu bewältigen.Die Evolution der Programmier-
sprachen zeigt, dass Abstraktion der beste Weg zur Bewältigung von Komplexität ist. Modell-
basierte Entwicklungsmethoden heben das Abstraktionslevel an und versuchen, sich der men-
schlichen Sprache, dem Denken und der Konzeptualisierung anzunähern. Zusammen mit der
Codegenerierung verlagert sich manuelle Codierung hin zur generatorgestützten Entwicklung.
Statt Hardware- (z.B. VHDL, Verilog) oder Software-Code (z.B. C, C++) manuell zu implemen-
tieren, können Generatoren, die in Hochsprachen kodiert sind, diese Entwurfssichten erzeugen.

Während sich in der Hardware-Entwicklung zunehmend solche neuen Entwicklungstechniken
durchsetzen, wird eingebettete Software immer noch überwiegend händisch implementiert. Damit
wird die Softwareentwicklung noch mehr zum Engpass, als sie es ohnehin schon ist, und macht die
bei der Hardwareentwicklung erzielten Einsparungen zunichte. Diese Arbeit befasst sich mit dieser
Herausforderung und schlägt eine Methodik für den Entwurf eingebetteter Software basierend
auf modellgesteuerter Architektur vor, um Kosten zu senken, die Qualität zu erhöhen und die
Entwicklung eingebetteter Software zu beschleunigen. Gemeinsam mit dem bestehenden Hard-
waremodellierungsansatz wird ein umfassender Generierungsfluss geschaffen, der die abgestimmte
Generierung von Hardware und eingebetteter Software gewährleistet.

Der Generierungsfluss schlägt ein Metamodell für eingebettete Software vor, um die Struktur
und das Verhalten von eingebetteter Software zu abstrahieren. Durch den holistischen Ansatz wird
eine Spezifikation (konzeptionelles Modell) in Instanzen des Metamodells für eingebettete Software
und des Hardware-Metamodells (Hardware-Generierungsablauf) übersetzt. Das Ergebnis ist ein
gebrauchsfertiger Code, dessen Struktur und Verhalten auf die jeweilige Hardware zugeschnitten
ist. Der vorgestellte Ansatz erzeugt den gesamten eingebetteten Software-Stack. Für die HW/SW-
Schnittstelle wird ein Automatismus eingesetzt, der das Speicherlayout der Peripheriegeräte op-
timiert, um eine effiziente Hardware-Abstraktionsschicht zu erzeugen. Für die Treiberschicht
durchläuft der Ansatz mehrere Transformationsschritte, um eine Vielzahl verschiedener Treiber-
Varianten zu erstellen. Der Anwender kann die Variante gemäß den Systemanforderungen weiter
anpassen. Der Generierungsablauf unterstützt (1) hochgradig konfigurierbare Gerätespezifika-
tionen (2) mehrere eingebettete Softwarearchitekturen (3) nicht-funktionale Erweiterungen (z.B.
Sicherheitsmaßnahmen) (4) verschiedene Plattformen (z.B. Sprachen).

Das Potenzial dieses Ansatzes für die Industrie ist enorm. Ein Entwickler muss nicht länger ein
Experte sein, um z.B., sichere eingebettete Software zu implementieren. Das erspart viel Entwick-
lungkosten und ist gleichzeitig weniger fehleranfällig, da repetitive Implementierungsaktivitäten
entfallen. Außerdem stehen dem Entwickler mehrere Entwurfsalternativen zur Verfügung, um die
beste Variante für ein bestimmtes System zu ermitteln.

V

Acknowledgements

The work conducted in this thesis documents research work carried out at Infineon Technolo-
gies AG, Germany, in collaboration with the EDA Chair at the Technical University of Munich,
Germany.

First of all, I like to thank my supervisor, Professor Wolfgang Ecker, for giving me the oppor-
tunity to write this thesis and for supporting me with ideas, criticism, motivation and guidance. I
especially appreciate the numerous discussions about the challenges and capabilities of metamod-
eling.

Furthermore, I like to thank my mentor Daniel Müller-Gritschneder for very insightful dis-
cussions, whose input has been of great importance to this work. I also benefited greatly from
working closely with his research group, especially Rafael Stahl and Uzair Sharif.

The SAFE4I and COMPACT projects, funded by the BMBF, have been a great experience
that helped me to understand the key challenges of model-based embedded software development
and inspired me to make certain research decisions. The collaboration with all members of the
funded projects also gave me the opportunity to apply the concepts developed in this thesis to
demonstrators.

I am thankful to friends and colleagues who contributed in many different ways: First of all, I
would like to express my gratitude to all my bachelor’s and master’s students who contributed to
the development of the tool infrastructure: Nicolas Ojeda Leon, Igli Zeraliu, Andreas Neumeier,
Chander Kumar, Mhemed Hajjej and Amaan Jeelani. Second, all colleagues who have partici-
pated in Infineon’s metamodeling working group: Zhao Han, Lorenzo Servadei, Keerthikumara
Devarajegowda, Sebastian Prebeck, Christian Lück and Moomen Chaari. Special thanks to Chris-
tian Bernhardt for all the help and support, interesting discussions, and effort to promote and
integrate the work’s embedded software flow in a very hardware-heavy project.

Working on a doctoral thesis requires not only technical but an equal amount of personal
support. Therefore, I would like to express my deepest gratitude to my girlfriend Kristin and our
families, who have supported me. Finally, I would like to thank all my friends, especially Andreas
Denk, Aditya Deshmukh and the “Dulis” for their support and sympathetic ear in difficult phases
of the Ph.D. work.

VII

Contents

Acknowledgements VII

Abbreviations XIII

1 Introduction 1
1.1 Handling Growing Complexity . 1
1.2 Outline of the Thesis . 4

2 Problem Statement and Contributions 7
2.1 Problem Statement . 7

2.1.1 Tool and implementation challenges . 8
2.1.2 Domain-related challenges . 10
2.1.3 Socio-Technical Challenges . 12

2.2 Requirements . 13
2.3 Targeted Approach . 18
2.4 Summary of the Key Advantages . 22

3 Model Driven Engineering 25
3.1 Metamodeling . 26

3.1.1 Modeling Language and Domain-specific Language 27
3.1.2 Model Transformations and Code Generators 28
3.1.3 Model Driven Architecture . 29

3.2 Previous Work . 30
3.2.1 Metamodeling environment . 30
3.2.2 MDA approach for RTL generation . 32

3.3 Embedded Software Architecture . 33
3.3.1 IP Core . 34
3.3.2 Hardware and Software Interface . 35
3.3.3 Register Interface . 36
3.3.4 Hardware Abstraction Layer . 37
3.3.5 Device Driver Layer . 38
3.3.6 Application . 39

3.4 Safety in embedded software . 40

4 View Generator and Language Model 43
4.1 View Generator . 43

IX

CONTENTS

4.1.1 Construction of a View Generator . 44
4.1.2 Abstract Language Model . 45
4.1.3 Unparser . 46

4.2 View Language Description . 47
4.2.1 EBNF Distinction . 47
4.2.2 VLD Notation . 48

4.3 C Code Syntax in VLD . 49
4.3.1 MISRA C Compliance . 49

4.4 C VLD Constructs . 50
4.4.1 File structure . 50
4.4.2 Data Types . 52
4.4.3 Expressions . 54
4.4.4 Statements . 56
4.4.5 Documentation . 58

5 Register Interface and Hardware Abstraction Layer 59
5.1 Abstract Model of the Register Interface . 59

5.1.1 Flexible Memory Layout . 61
5.1.2 Bitfield configurations . 61
5.1.3 Hardware Access Sequences . 62

5.2 Register Interface and HAL Generation . 62
5.2.1 Register Interface Hardware . 62
5.2.2 Hardware Abstraction Layer . 65

5.2.2.1 Implementation Variants . 66
5.2.2.1.1 Generic Bitfield Structures 66
5.2.2.1.2 Specific Inline Accesses 67

5.2.3 Access Optimization . 67

6 Embedded Software Modeling 71
6.1 Embedded Software Generation Flow . 72
6.2 Abstract Embedded Software Model . 74

6.2.1 Limitation . 75
6.2.2 Objects . 76
6.2.3 Activities and Actions . 79

6.2.3.1 Object Actions . 80
6.2.3.2 Control Flow Actions . 82

6.3 Generator Specification Model . 83
6.3.1 Organization of the Software Architecture 85
6.3.2 Generator Configuration Settings . 86

6.3.2.1 Device Driver Architecture and Design 86
6.3.2.2 Device Driver API . 88
6.3.2.3 Safety in Embedded Software . 88
6.3.2.4 Analysis and Verification . 89

X

CONTENTS

7 Device Specific Generator Frontend 91
7.1 Template of Embedded Software . 92

7.1.1 Device Driver Structure . 94
7.1.2 Device Driver Behaviour . 96

7.2 Domain Specific Language and Design Pattern Reuse 98
7.2.1 Domain Specific Language . 98
7.2.2 Design Pattern . 100

8 Device Generic Generator Backend 103
8.1 Design Decisions . 104

8.1.1 Driver Reusability . 104
8.1.2 I/O Driver Design . 106

8.1.2.1 Synchronous Driver . 107
8.1.2.2 Asynchronous Driver - Interrupt Service Routine 108

8.2 Safety Pattern . 114
8.2.1 Redundant Register check after modification 115
8.2.2 Watchdog . 116
8.2.3 Signature-based Program Flow Monitor . 118

8.2.3.1 Model Extensions . 119
8.2.3.2 Hardware Requirements . 120
8.2.3.3 Intra-procedural PFM . 121
8.2.3.4 Instruction-stream PFM . 125

8.2.4 Error Handler . 127
8.2.5 Results . 128

8.2.5.1 Fault Injection . 129
8.2.5.2 Diagnostic coverage and overhead 130

8.2.5.2.1 Transformation capabilities 130
8.2.5.2.2 Memory and performance overhead 131
8.2.5.2.3 Diagnostic coverage . 131

8.3 Optimization . 132
8.3.1 Compiler Optimization . 133

8.3.1.1 Compiler integration and training set generation 134
8.3.1.2 Clustering-based compiler exploration in nonlinear optimization

space. 135
8.3.1.3 Evaluation . 135

8.3.2 Memory layout optimization . 137
8.3.2.1 Training set generation . 137
8.3.2.2 Register Interface estimation and optimization 138

9 Application 141
9.1 State Machine . 142

9.1.1 Nested if-else FSM . 142
9.1.2 Function pointer based FSM . 143

XI

CONTENTS

9.2 External Software . 144
9.3 Analysis of application . 145

9.3.1 Firmware Verification . 145
9.3.2 Performance Analysis . 147
9.3.3 End-to-End analysis flow . 147

9.4 Proof of Concept . 149
9.4.1 Self Test System-On-Chip . 149
9.4.2 Safety Demonstrator - Human-Robot Interaction 150
9.4.3 ML-based Demonstrator - Location Detection 151

10 Summary and Conclusion 153

Bibliography 174

XII

Abbreviations

API Application Programming Interface
BF Bitfield
CC Clock Cycle
CFE Control Flow Error
CFG Control Flow Graph
CIM Computational Independent Model
CSR Control and Status Registers
DSL Domain-Specific Language
EBNF Extended Backus–Naur Form
ESW Embedded Software
EU Exception Unit
FIFO First In – First Out
FSM Finite State Machine
FTL Fault Tolerance Latency
HAL Hardware Abstraction Layer
I2C Inter-Integrated Circuit
I2S Inter-IC Sound
IC Interrupt Controller
IP Intellectual Property
IRQ Interrupt Request
ISR Interrupt Service Routine
LUT Lookup Table
MARTE Modeling and Analysis of Real-Time and Embedded systems
MBE Model-Based Engineering
MDA Model-Driven Architecture
MOF Meta Object Facility
OMG Object Management Group
PFM Program Flow Monitor
PIM Platform Independent Model
PM Platform Model
PSM Platform Specific Model
RI Register Interface
RMW Read-Modify-Write
RTL Register Transfer Level
SLOC Source Lines of Code

XIII

Abbreviations

SoC System-on-a-Chip
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver Transmitter
UML Unified Modeling Language
VLD View Language Description
XMI XML Metadata Interchange

XIV

Chapter 1

Introduction

Every generation has to face particular challenges that will influence the lives of tomorrow’s
generations. The major global challenges of our generation are the climate crisis and digital

transformation. Nevertheless, every challenge is also an opportunity for growth and technological
advancement. The semiconductor industry is a key driver in tackling these challenges and pushing
forward digitalization and decarbonization. From these megatrends, the industry is poised for a
decade of growth across multiple end-user verticals, including healthcare, consumer electronics,
industrial, automotive, financial services, and retail. According to McKinsey’s report [49], the
semiconductor industry will witness fast development of emerging technologies to become a $1
trillion industry by the end of this decade.

1.1 Handling Growing Complexity

The rapid growth of the market and the increasing ubiquity of embedded systems in our daily
lives are causing a growing productivity gap in the design of embedded systems. The problem
is further compounded by the fact that the embedded system’s complexity is growing faster
than the productivity of system designers. Today’s embedded designers need alternative design
methodologies to bridge this design gap and cope with stringent costs (see Figure 1.1), time-to-
market, and reliability requirements.

Intellectual Property (IP) reuse [74, 167] through modular designs is one paradigm to simplify
the design and increase quality and productivity. Nevertheless, in practice, hard-coded IPs suffer
from significant drawbacks, as shown in [77]. The major limitation of IP reuse is that a fixed
building block is not necessarily best suited for every application and product. Adapting the
IP to changing system requirements or the target application requires additional effort and high
generality of the IP. This lack of flexibility often negatively impacts the design’s performance and
quality, which calls for other development strategies. A fundamental approach that is often used
to manage complexity is abstraction. In short, abstraction simplifies the design process by hiding
all but the relevant details.

Grady Booch correctly points out, “The entire history of software engineering is that of the
rise in levels of abstraction” [40]. The first microprocessors were programmed in machine language
(first-generation language), and even today, all programs must be translated into this language.
The code is a sequence of zeros and ones that is difficult for humans to read and even more
challenging to develop. The assembly language (second-generation language), introduced in 1948,
translates human-readable words into a sequence of zeros and ones. Nevertheless, also the as-

1

1.1 Handling Growing Complexity

sembly language became unsuitable with the growing complexity of the systems. In addition,
assembly language is always tied to a specific platform. High-level languages (third-generation
languages) like Fortran introduce hardware-independency, adding abstract elements such as loops
or conditions to simplify the coding of more extensive programs. It enables a problem-oriented
representation that is transparent to the developer and meets the demands for user-friendliness
and comprehensibility. Subsequently, many other general purpose languages followed, such as
C, Pascal or C++, which offered a higher degree of abstraction. A general-purpose language is
not tailored to a specific domain and therefore requires a detailed description of how to solve a
particular problem. Today, the fourth-generation languages are intensively researched, which is
an upward trend toward higher abstraction.

Model-driven engineering (MDE) and code generation is an approach that raises the level of ab-
straction to cope with today’s design complexity. It enables the development of a fourth-generation
language, also called a domain-specific language, tailored to a specific domain. The idea of MDE
is to incorporate the aspects of abstraction and restriction in domain-specific languages derived
from conceptual models, as noted by [168]. In MDE, a model can represent a specific domain,
while code generators can translate the model into a particular target language. This process is
called metamodeling and is an excellent way to bridge the design gap. It is applicable in all phases
of embedded systems development, such as design, analysis, verification or documentation. The
MDE flow systematically translates the conceptual models into a final implementation through
different levels of abstraction, adding implementation details to each level. This translation step
is accomplished by a generator scheme that handles all possible alternatives of the conceptual
model. Rather than reusing hard-coded IPs, model-based development uses generators to create
different IP alternatives to optimize the design for a particular application. The consequence of
the development process is a shift in focus from code-centric to function-centric and platform-
independent engineering. In other words, instead of writing code manually, a designer implements
generator templates using scripting languages. He becomes a software developer who must put
solutions over technologies and abstraction over code.

MDE and code generation strategies are not new. Ad-hoc code generation from formalisms
such as UML (Unified Modeling Language) has been studied for quite a while [57, 141, 197].
Several quantitative and qualitative studies [41, 57] confirm the efficiency and effectiveness of
MDE practices in embedded systems development. However, according to Madni and Sievers [132],
model-based approaches have not yet fully unfolded their potential in the industry. Studies in [9,
27] revealed the widespread acceptance of informal modeling to facilitate stakeholder discussions.
However, the formality of the modeling language is still neglected and not employed for other
purposes, such as automatic generation.

MDE and code generation can be applied to various disciplines involved in the SoC develop-
ment chain, including hardware design, embedded software design, and system and application
development. In fact, companies hardly see any benefit in MDE since they employ it only se-
lectively for specific design tasks [45], e.g., architecture design. The full potential, however, only
comes to fruition when various engineering disciplines at the process and artifact levels are synchro-
nized coherently. Accordingly, only the consequent use of MDE across the entire design process
of an embedded system pays off. Indeed, a holistic approach is a major engineering challenge for
the industry to manage the rising development costs shown in Figure 1.1.

2

Chapter 1. Introduction

$.M

$100.M

$200.M

$300.M

$400.M

$500.M

$600.M

65nm 40nm 28nm 22nm 16nm 10nm 7nm 5nm

IP Qualification

Architecture

Verification

Physicial

Software

Prototype

Validiation

Figure 1.1: Leading factors driving the SoC design cost for shrinking process nodes. Data source
from IBS [91]

As the graph highlights, the industry can no longer afford to wait for hardware in order to start
developing software. Embedded software development is the biggest driver of overall SoC design
costs, skyrocketing with increasing process technology. NXP in [1] estimates that tomorrow’s car
in 2025 requires six times more code than a car in 2018, which counted 150 million lines of code.
At the same time, the industry is facing a shortage of software engineers [42], leaving positions
unfilled. So the number of lines of code is growing faster than the number of skilled embedded
software engineers. The demand for software development is not unjustified. The software stands
above the hardware and ultimately contributes to the product’s success. Bailey puts it drastically
in [25]: “Good hardware without good software is a waste of silicon.”

There are three primary reasons why software development cannot keep pace with hardware
development:

1. Many semiconductor companies use programmable hardware platforms while relying on
software as the prevailing differentiator.

2. Software development teams face challenges that require more engineering expertise to deal
with safety, quality or performance.

3. Despite the considerable software effort, design methodologies are still hardware-centric.

Simply adding a software development flow without proper integration is insufficient because
hardware and software are closely linked in embedded systems. Moreover, modern development
approaches such as MDE are more typical for hardware design but are rarely used in embedded
software development. However, what is the benefit of a hardware-only modeling and code gen-

3

1.2 Outline of the Thesis

eration approach that partially solves the problems and pushes the bottleneck even more to the
software designers?

Many available toolchains are hardware-centric development flows that can not meet system-
specific demands. Simply adding a software-development flow without proper integration is insuf-
ficient because hardware and software are closely interlinked in embedded systems. Today’s indus-
try requires modeling methodologies that minimize effort and maximize efficiency while tackling
complex embedded system design challenges. Modern embedded system development demands a
holistic approach that enables joint hardware and software modeling. The main principle of such a
single-source approach is to capture all relevant information about the system in abstract models.
Accordingly, an abstract model takes into account all software and hardware relevant properties
of an IP component to ensure interoperability between different generation flows. Based on the
separation of concerns, various generation flows can produce different kinds of outputs from that
single source.

Any generation flow, e.g., for embedded software, can translate the abstract model via different
abstraction layers into the target code. Model-driven architecture (MDA) is one of the most
popular approaches, which starts translating the abstract model into a platform-independent
model. A platform-independent model specifies a high-level notation of the particular design
aspect. Overall, it captures the essential features without considering implementation details,
e.g., programming language details. The second translation step in MDA turns the platform-
independent model into a platform-specific model before feeding it to the code generator to output
the target code.

Such an MDA approach not only automates the development process but also offers a high
degree of flexibility for creating different design alternatives in software and hardware. Compared
to manual coding, the methodology ensures greater efficiency and stability by automating repet-
itive, error-prone tasks. Moreover, a holistic generation flow for various aspects opens up many
possibilities that pure software or hardware generators do not have. First, it enhances consistency
between different design aspects due to the single-source principle, which reduces design errors and
improves their convergence. Second, design decisions and their impacts can be evaluated early in
development, enabling exhaustive design analysis and optimization. Indeed, such a multi-aspect
approach has the potential to bridge the widening design gap in the embedded industry headed
by embedded software development.

1.2 Outline of the Thesis

The main driver of this thesis is the increasing design gap that embedded software developer face
today. Chapter 2 outlines these challenges of embedded software development and automatic
generation approaches. Motivated by these problems, the requirements and the key paradigms
for the automatic generation of embedded software are developed. After outlining the targeted
approach, Chapter 3 discusses the main principles of MDE and solutions proposed by related work
to tackle these challenges. In this context, both the approaches used in this thesis and divergent
approaches are discussed. The main contributions of this work are presented in the following
chapters.

4

Chapter 1. Introduction

First, Chapter 4 introduces the concept of a generator to create code generators. The approach
is demonstrated for a Misra-C-compliant code generator. Chapter 5 deals with the hardware-
software interface, the lowest layer of the embedded software stack. The interface enables interac-
tion between hardware and embedded software. For the SoC’s efficiency, an innovative metamodel
and generator of the hardware-software interface are presented to enable tuning of the register
layout.

The layer above the register interface is the device driver layer. The following chapters describe
the highly configurable embedded software generation flow capable of auto-generating embedded
software layers such as the driver layer. It consists of two decoupled generator steps and a domain-
specific model that exploits embedded software’s typical pattern. Chapter 6 starts by giving a
detailed introduction to the complete framework. It introduces a new domain-specific model
for embedded software design. In addition, it outlines concepts to increase the flexibility and
design variability of the framework. Next, Chapter 7 describes the first transformation layer, the
generator front end, which assembles an abstract embedded software model from a specification
of the IP. This chapter introduces the “generator language”, the domain-specific language used
to assemble the structure and behavior of the embedded software model. It demonstrates the
language’s use through various IP driver examples and is intended as a guide for deploying other
IP driver generators.

Chapter 8 introduces the heart of the framework, the second transformation layer, also called
the generator backend. The generator backend is hidden from the user configurations and spec-
ifies numerous generic transformations that can be applied across various IPs. Three types of
transformations are presented in this chapter:

• Transformations to produce different design and architecture alternatives such as the I/O
driver design.

• Safety transformations automatically incorporate safety patterns, e.g., program flow moni-
tors, into the design.

• Automatic optimization step that identifies better design alternatives, e.g., memory layout,
based on a pre-defined cost function.

Chapter 9 introduces the last layer of the embedded software stack, the application layer. It
demonstrates how the framework can also be exploited to create applications. Moreover, indus-
trial applications are presented that have been built using this framework. Finally, Chapter 10
concludes the thesis and discusses future research topics.

5

Chapter 2

Problem Statement and Contributions

One of the major challenges in today’s software development is the shortening of development
cycles and, at the same time, the increase of software complexity. On top of that, embedded

software is subject to increasingly stringent requirements in terms of power, performance and
safety. In order to meet these challenges, the semiconductor industry is experiencing a paradigm
shift in software development from manually coding to model-driven engineering (MDE).

According to the survey in [9], the industry perceives shortened development cycles and cost
savings as the main reasons for using MDE. Additionally, reliability, compatibility, quality im-
provement and maintainability are generally considered to be essential advantages of MDE. In the-
ory, a model-based approach is a perfect concept for developing complex heterogeneous systems,
as it provides the ability for abstraction in the development process, from requirements develop-
ment through design, implementation, integration and verification. However, the introduction of
MDE in the industry entails major challenges that affect established development processes and
organizational structures. Along with the need for new tools and methods, engineers must also
change their mindset and acquire the skills required to apply MDE

Model-driven engineering has been used with considerable success in some embedded system
development disciplines. However, it has not yet been widely applied in the embedded software
community. This chapter outlines the key challenges in model-based embedded software develop-
ment that must be overcome to get acceptance and to achieve high cost and time savings. These
challenges are grouped into three categories as defined by Bucchiarone et al. in [48]: Tooling and
Implementation Challenges, Domain-Based Challenges, and Socio-Technical Challenges. The re-
quirements, solutions and expected contributions for a new methodology are developed based on
the identified problem space. Finally, the work’s approach is introduced, drawing on the previous
findings.

2.1 Problem Statement

Embedded systems and especially embedded software are becoming increasingly complex, and
hence traditional design concepts reach their limits in efficiency. Abstraction is a proven approach
to managing complexity. It increases the comprehensibility of complex systems at the expense of
the additional effort required to maintain abstract views. This section classifies the challenges of
a model-based approach based on abstraction principles.

7

2.1.1 Tool and implementation challenges

The challenges are grouped into three categories, defined by [48], that reflect the problem
areas of State-of-the-Art model-driven development. One group of these are the tooling and
implementation challenges that address model-based development’s conceptual and theoretical
aspects. Indeed, the lack of high-qualitative and industry-appropriate tools is often quoted as
one of the main aspects hindering the adoption of MDE. Also, introducing new model-based
instruments is associated with more complications in practice than considered in theory. Thus,
expectations are not met.

The domain-related challenges characterize the second category. Embedded software develop-
ment is fraught with specific issues that every embedded development team must deal with. For
this reason, embedded software development must be entrusted to professionals with extensive
experience. An embedded software modeling framework created by experts for everyone should
overcome these difficulties. Generally, a stable, qualitative and reliable generation is necessary
for each domain. For the embedded software domain, further three basic requirements for the
generated software must be fulfilled: Small memory footprint in terms of the stack size, ROM
and RAM usage, low power consumption and high performance. As a rule, focusing on one of
all these requirements compromises the others. Ideally, the generation framework aims for a wise
compromise between all these cost parameters. With the increasing complexity of embedded sys-
tems, safety and security concerns are also rapidly increasing. An embedded software tool must
provide safety and security measures to comply with the standards that must be adhered to.

In fact, apart from the technical issues, the social and community challenges are one of the
key factors for the success of MDE. These challenges are classified as socio-technical challenges.
MDE has not yet gained widespread acceptance in the embedded software community. The socio-
technical challenges primarily concern the apparent task of encouraging traditional developers and
development teams to use and accept MDE.

2.1.1 Tool and implementation challenges

According to [9, 126], the lack of good tooling is widely reported as one of the main aspects
hampering MDE adoption. Many tools have usability issues, such as difficulties with tool cus-
tomization, tool integration, or lack of code generation capabilities. Others are simple but only
cover a limited scope that is insufficient for modeling complex industrial embedded systems. Es-
pecially in the embedded systems domain, the size and diversity of artifacts, including models,
metamodels and their transformations, is enormous. Accordingly, configurability must be pre-
served while complexity is not shifted to the tool infrastructure. In other words, the complexity
of the MDE approach needs to be tamed or hidden from the user.

When implementing an MDE tool, it is important to consider that various stakeholders are
involved in the development process of an embedded system. Some stakeholders use models as
blueprints only for communication and documentation purposes. Others consider models to be
the key artifacts of the development process. A fundamental difference between the two use cases
is that there are increased demands on the completeness and accuracy of the models during devel-
opment. According to Bucchiarone et al. in [28], it requires an efficient and reliable mechanism for
mapping abstract models to more concrete models or the target code. In order to enhance relia-
bility, the modeling flow has to assure consistency across different transformation layers. First, all

8

Chapter 2. Problem Statement and Contributions

models and the modeling languages must be consistent with the associated metamodels. Second,
all transformations have to be deterministic, which helps to manage the consistency of models
undergoing modifications.

One potential factor that drives the adoption of model-based development is an intuitive tex-
tual modeling language1 while handling the code as a model. So it lowers the entry barrier for
a modeling tool. Such a textual modeling language is derived from a metamodel. It is used to
create, read or modify an instance of the metamodel. In essence, it is the central language that
the developer uses to implement the generators. In order to come up with a suitable modeling lan-
guage, generator and platform, the developers need to have a good understanding of the domain
for which they develop the infrastructure [215]. In fact, many tools provide a modeling language
that misses flexibility since it is customized for a certain metamodel. In practice, the develop-
ment of a mature infrastructure happens gradually over a relatively long period of time, based
on experiences and various projects. Building a fully comprehensive framework from scratch is
practically impossible. Indeed, modifications and extensions on the metamodel with new features
must be reflected on the modeling language. So, tools with missing customizability require much
effort to redesign the modeling language.

The usability of model-based development tools for managing models of complex systems is
often described as a challenge. In general, model-driven approaches try to cope with the system
complexity by increasing the level of abstraction. The main problems of many modeling tools
are bound to the model abstractions at different stages of the development process. Finding a
suitable model abstraction in a self-explaining notation used to describe different heterogeneous
views is the path to the tool’s success. However, it is always necessary to keep in mind that each
level of abstraction adds a further transformation layer, which requires extra maintenance effort.
The number of layers and the degree of abstraction between these layers must be chosen wisely.
A good modeling tool must find a suitable intermediate solution to tame the complexity of the
systems but also preserve variability while minimizing the effort of implementing transformation
templates. As a rule, the models’ size is less of a problem than the variety of artifacts that increase
the effort required to develop transformations and generators. A transformation converts a model
at one level of abstraction into a model or code at a lower level. A generator may consist of
multiple transformation steps that transform a model across multiple levels of abstraction.

Instead of manual coding, a designer in the model-driven approach has to implement the
transformation scripts of the generator. The effort required to implement the generators is a
crucial criterion in the acceptance of model-based solutions since it demonstrates the advantages
over manual coding. A rough method to compare the manual effort required to implement the
generator or target code is to measure the software metric, e.g., source lines of code. Actually,
many tools require far more effort2 compared to traditional coding, quickly leading to designers’
frustration. Finding the right balance between simplicity and expressiveness of the modeling
language used to program the generators is crucial to the tool’s success.

1A modeling language is any graphical or textual language that provisions the construction of models following
a consistent set of rules.

2Indeed, this is an unfair comparison since generators can produce many alternatives. A proper comparison
should also consider the number of variants that can be generated.

9

2.1.2 Domain-related challenges

A good modeling language and generator design mainly depend on the correct analysis of
the models involved in the transformation, as stated in [46, 48]. The challenge lies in analyzing
the correspondences between the artifacts of different models and understanding the semantics of
such connections to create a good modeling language that ensures traceability from requirements
to implementation. For further simplification, the modeling language should use a standardized
notation that adopts the features of modern object-oriented programming languages. In addition,
many modeling languages lack common software development practices such as information hiding
and DRY (Don’t repeat yourself) to ease the use of the language.

The study in [140] demonstrates that using model-driven development in the industry can lead
to quality improvements but may also cause productivity losses if designed improperly. Besides
modeling complexity, usability issues and user-friendliness, insufficient toolchains and the use of
MDE with legacy systems are often reported as challenges. As a result, the maturity of most tool
environments is considered inadequate for large-scale deployment in industry. This is often caused
by the lack of customizability of the toolchain. Certainly, it is nearly impossible to develop an
MDE tool from scratch that takes into account all possible industrial applications. Consequently,
developing a tool that grows and stabilizes with the number of applications realized is even more
important. According to many surveys [48, 126, 207], customizability and extensibility are the
most requested features by many practitioners to be improved by tool vendors. There are no
limitations in an intuitive toolchain since users can extend or modify all aspects of the tool,
including model-to-model generators, code generators, metamodels, and the modeling language.

Obviously, the key factor, apart from the tool’s limitations and complexity, is the generated
implementations’ quality and variability. Essentially, the challenge and goal are to produce code of
similar quality to manually written code. A major challenge, but also the primary attractiveness
of MDE, is the enormous variability of target implementations that can be automatically gener-
ated. These implementation alternatives result from different design decisions that the generator
resolves when constructing different implementations. A good generator makes cost-related design
decisions to match the target code to the requirements and the application. A designer relies on
each generated implementation, so a crucial requirement for MDE tools is to guarantee the code’s
correctness and quality. On the one hand, the tool must include features to verify the genera-
tor and the implementation alternatives. On the other hand, the tool must ensure consistency
between implementation and requirements.

2.1.2 Domain-related challenges

Developing complex and portable embedded software requires a clear software architecture. The
software architecture is the blueprint that manages large-scale embedded systems’ design, develop-
ment and maintenance. It embodies the fundamental organization of a system in its components,
their relationships to each other and to the environment [102].In general, software architecture
specifies layers with contractually defined interfaces as functional boundaries between components.
Such an interface provides declarations and function prototypes that separate the application from
the low-level code. Accordingly, a layered software architecture improves portability, allowing both
layers to be reused in other applications or on other hardware [32].

10

Chapter 2. Problem Statement and Contributions

A modeling framework has to reflect the structure of the software architecture and must be able
to generate these various layers. There are few tools that offer a solution for the generation of all
layers. Often, embedded software generators focus only on individual software architecture layers,
such as the hardware abstraction layer. A tool that covers both the application and the low-level
software development has many advantages and is in high demand in the industry. Primarily,
such tools help to overcome the problems encountered by many users concerning synchronization
between the different engineering disciplines and software layer development processes.

As mentioned earlier, a major challenge for tools is their ability to create modeling languages
for different domains. In order to come up with a suitable embedded software generation infras-
tructure, the developer needs to have a good understanding of all embedded software challenges.
As discussed before, one of the biggest challenges in this respect is finding an adequate degree of
abstraction and detail for the embedded software model. In the end, the model should contain
all features to support different target platforms and languages, such as C or Rust. Similarly, a
proper generation framework should be able to generate the entire embedded software avoiding the
need for manual post-processing. Many tools only create the skeleton of the embedded software,
more or less the header files. This basic generator also reduces work, but the core behavior still
has to be implemented manually. Such a partial-generation approach has several drawbacks since
each variant must be modified before it can be further processed, e.g., tested or analyzed. A gen-
erator that requires manual rework squanders much of the potential of model-based development.
However, a good modeling flow for embedded software should create embedded software that can
be directly processed and compiled. The abstract model of the embedded software must therefore
contain all artifacts required to create the design. This implies artifacts to represent the skeleton
and the embedded software’s behavior.

Embedded software developers face numerous challenges when manually creating software or
using model-based development tools. In the following, the fundamental challenges for embedded
software are listed. A big challenge arises with the growing system complexity. A modeling
tool must deal with simple projects and scale with complex applications from various domains
(e.g., IoT, automotive). Furthermore, it must be able to handle various designs, e.g., processor
families, which range from simple and extremely power-saving processors to highly powerful and
configurable processors. An embedded software generation framework needs to adhere to these
design constraints and be adaptable to specific hardware definitions.

Many tools for generating embedded software simply ignore hardware requirements. Instead
of generating hardware-specific designs, they aim for a high degree of modularity in the generated
designs. Although this approach can support any hardware platform, it also has significant draw-
backs. The implementations are not optimized for resources, and thus, the quality of a manual
hardware-specific implementation cannot be achieved. Embedded software can be implemented
in a resource-efficient and high-performance manner if hardware properties are mapped correctly
to software decisions.

The design can also be evaluated and optimized using this hardware-software coding approach.
According to [226], optimization is basically seen as a cycle of design, evaluation and redesign.
This is a major challenge as hardware and software elements interact in complex ways, making
choosing the best combination difficult. So it goes beyond the scope of many generation systems.
On the one hand, it requires an interface to simulate the generated designs and analyze their

11

2.1.3 Socio-Technical Challenges

results. On the other hand, an approach is necessary for randomizing the configuration of design
alternatives.

A large proportion of the development costs are attributable to the burning issue of increasing
safety and security requirements in products. Safety and Security are features that enhance
an application with life-saving or protective functionality. Generally, it is associated with strict
requirements that demand more design expertise. As stated by Streitferdt et al. in [194], modeling
tools barely address safety-related aspects in models or their transformations. For this reason, the
challenge is integrating safety-certified model transformations into the generation flow. Ideally,
these should be derived from best-practice knowledge of safety measures used in existing projects
and products.

2.1.3 Socio-Technical Challenges

When seeking solutions to technical challenges and developing an MDE ecosystem, there is an
urgent need to consider social aspects. Indeed, a new toolchain is only accepted and adopted in
practice if all stakeholders validate and approve it. For this reason, the social and community
challenges become critical factors for the success of MDE tools.

Model-based development is intended to be the catalyst that enables domain experts to develop
the tools they need in their domains with their knowledge. In manual coding, this knowledge,
such as best practices, might get lost, but with explicitly defined transformations, this knowledge
is preserved in the transformations - accessible to a community. In this way, even developers
with less experience gain access to an infrastructure that produces high-quality implementations.
Krogstie defines this principle in [117] fittingly as “Modeling by the people, for the people”. Ideally,
anyone, even a non-technical person, should easily use the model-based development framework
to create any design. Moreover, they can even explore a vast design space. This truly might be
a great vision for the future and an important impulse to overcome the challenges of embedded
development processes.

However, most developers do not dare to move from traditional to model-based development.
Of course, this skepticism is strongly influenced by the technical and domain-specific problems
encountered so far, but a general reluctance to accept model-based development is also noticeable.
One reason is the missing know-how about the concepts and tools. Especially for traditional
embedded software developers, the principles of metamodeling can be a culture shock that does
not lead to acceptance.

For designers, the transition generally means adopting a completely different way of thinking
and developing. Instead of focusing on the implementation of one variant, the designer of gen-
erators must consider all possible variants while the framework builds this variation. This way
of thinking is one reason why metamodeling is considered more challenging and quickly triggers
the designer’s frustration. A good tool, however, can contribute a lot to relieve the designer, e.g.,
by taking over design decisions. The report in [96] supports these findings and highlights three
essential factors for the success of model-based development. These include an iterative and pro-
gressive approach, organizational commitment, and motivated users. Many surveys also suggest
the concept of design-by-example, which is intended to slowly introduce the designer to the new
metamodeling approach and its details [177]. Ultimately, though, as noted in [2], “the problem

12

Chapter 2. Problem Statement and Contributions

with a completely new programming paradigm is not learning a new language... The tricky part
is learning to think in a different way.”

Particularly in industry, the acceptance is low. Establishing such a new development process
is associated with costs and enormous efforts. First, it requires a high effort to train developers.
Second, the new tooling infrastructure must be integrated into legacy processes, an issue with
many tools. Thirdly and most significantly, the benefits of a transition to metamodeling only
become apparent in the long run. In the beginning, the development of generators is costly. With
increasing generator reuse, the development costs amortize and the company profits enormously.

2.2 Requirements

Overall, the step from manual coding to generator-based development depends on the use case.
The benefit of generators depends on the required level of flexibility. Keep in mind that developing
a model-based infrastructure is a long-term commitment that requires continuous improvement to
compete with emerging applications and challenges. Before implementing a modeling framework,
it is important to consider the potential savings. Are the flexibility loss and the effort required to
implement a new approach justified?

This thesis definitely answers with “yes” to the question for the embedded software domain. A
good framework avoids typical design errors and can speed up development, thus reducing costs
in software development. The three identified categories of challenges capture the typical issues,
user concerns, and desires for model-based development frameworks for embedded software. Based
on these challenges, the requirements for a new approach can be derived. By adhering to these,
typical pitfalls can be avoided, and the full potential of model-based development can be exploited.
Thus, a real productivity boost can be achieved compared to existing tools.

The elaborated requirements concern the overall framework but also the requirements of the
sub-components, such as the code generator or the different abstraction layers. In the following,
these requirements are outlined. In the next section, their implementation and key advantages in
the target approach are discussed.

Today’s SoC complexity puts high demands on tools and engineers. In particular, the complex-
ity of embedded software has increased massively in recent years. A modern modeling approach for
the generation of embedded software has to solve the technical, domain-specific and socio-technical
challenges to establish itself in the industry. Building on the given problems, the requirements for
a new embedded software modeling and generation flow can be formulated.

The framework presented in section 3.2 from previous work allows the development of model-
driven generator toolchains with little effort. Applying this framework to the hardware domain
helps to model the complete hardware of embedded systems. However, an embedded system also
includes embedded software that is closely synchronized with the hardware. In order to establish
this modeling framework for building embedded software in an efficient and user-friendly way, the
following requirements must be met.

R 1 Single-Source Principle: Embedded software modeling must be performed as part of a holis-
tic system modeling framework. Modeling and generating embedded software isolated from
hardware modeling is fragile and prone to errors. A holistic system modeling approach en-

13

2.2 Requirements

sures consistency, quality, and correct and efficient interoperability between hardware and
software. Accordingly, the generation flow for hardware and embedded software should pro-
ceed from joint abstract models.

R 2 Separation of Concerns: A new SoC modeling tool should have mechanisms that support
both vertical and horizontal separation of concerns. Modularization of the functionality
through separation of concerns helps to develop large applications quickly and efficiently. It
reduces the complexity of dealing with large specifications.

R 3 Reusability: A new modeling framework must simplify the coding effort and eliminate
the need for designers with platform-specific expertise. In other words, the new modeling
methodology has to hide implementation details on the abstract layers. Furthermore, the
generation approach for embedded software should follow the same pattern as the hardware
generation flow. Similarly, the generator languages for hardware and embedded software
modeling should follow the same characteristics. The new modeling framework should con-
sider both aspects. It should be designed in a generic way to decrease the learning effort
required to apply it across different aspects of the overall embedded system development
chain.

R 4 Consistent Modeling: The tool must ensure that artifacts are generated consistently. So, it
has to support consistent modeling by following the constraints of all involved metamodels.
An instance is considered (syntactically) consistent with a metamodel when it satisfies the
conditions specified in the metamodel. In general, the model consistency depends strongly
on the degree of integration of the metamodels into the toolchain.

R 5 Correctness by Construction: A new tool for modeling and generating embedded systems
must ensure the correctness of the design. Correct-by-Construction minimizes development
effort on debugging and verification. By ensuring correctness-by-construction, the designer
can generate, execute, and analyze models directly.

R 6 Extensibility: It must be possible to extend the framework with new functions. A new
modeling framework should be extensible for capturing new IP devices, code generators, and
domain-specific features, e.g., design patterns.

R 7 Graphical Notation: All applied metamodels rely on a graphical notation to express the
design visually.

Code generation is an essential aspect of model-based development. It translates the abstract
model into target languages. One way to accomplish this is directly translating the abstract model
into the targeted language. A better approach, however, considers the requirements R4, R5, and
R6 using an intermediate language model. This language model is first assembled before being
translated (model-to-text transformation) into the target code. The following requirements must
apply to the code generation and associated language models.

R 8 Target Languages: A large number of different languages are in use in SoC development.
Meanwhile, existing languages are being replaced by modern languages. Accordingly, a

14

Chapter 2. Problem Statement and Contributions

modeling framework needs to be extensible with new language generators from time to time
to support new output languages, e.g., Rust and MicroPython.

Respectively, an intuitive approach for generating language generators is needed. Such an
automatism should build the language models and the model-to-text transformation scripts
for any kind of formal language. Thus, various target languages can be supported in a new
modeling flow to cover different platforms.

R 9 Meta Syntax: The language generator approach must support any formal language known
from RTL and embedded software design. The language generators must be automatically
derived from a metasyntax of a formal language. The metasyntax represents a metamodel
that constrains the syntax of the underlying formal language, thus reducing syntactic errors.

R 10 Coding Standard: Apart from the correct syntax, the generated code must also comply
with the coding guidelines that promote the safety and reliability of software for embedded
systems such as MISRA C.

R 11 Readability: In addition to the formal language syntax, the generated code must also
have good readability. A language generator must, therefore, also consider formatting, e.g.,
indentations. This way, a designer can customize the coding style by adapting the code
generators.

R 12 Documentation: The generated code must be adequately documented to ease subsequent
post-processing, integration, and analysis. Consequently, the language generator needs to
include appropriate elements for documentation.

An essential factor for the new methodology’s success is the quality of the generated embed-
ded software code. In particular, whether the methodology can solve the challenges and problems
encountered in developing embedded software. Design metrics provide important insight in deter-
mining the quality of the embedded software for the respective hardware.

A design metric is a measurable characteristic of the system, e.g., performance, memory foot-
print, safety or power consumption. Typically, these are conflicting requirements, i.e., optimizing
one requirement may negatively impact another. For example, a more powerful embedded software
may demand more memory. In the following, the most crucial design metrics are introduced.

R 13 Memory Footprint: Embedded software has to cope with limited memory in many appli-
cation areas (e.g., IoT, security controllers). For this reason, a generation framework must
be able to build code that is at least as compact as manually written code. In this context,
various aspects must be considered and optimized: static and dynamic memory, instruction
and data memory.

R 14 Performance: Of course, the new embedded software modeling framework must ensure
that the generated code executes at least as fast as the manually written code.

R 15 Functional Safety: A new modeling tool must provide features to create safe and reliable
software that complies with ISO standards such as ISO-26262.

15

2.2 Requirements

R 16 Security: A new modeling tool must be capable of building secure embedded software. It
should contain features to protect data and the interfaces from being abused.

In order to address the requirements R13, R14, R15 and R16 the following rules have to be
fulfilled for the embedded software modeling flow:

R 17 Abstraction and Concretization: The new abstract model for embedded software should
be close to the specification and the target code. If the metamodel is too close to the
specification, the generators need to cover every model instance of this metamodel. This
significantly raises the development effort for generators and their transformation scripts
since the generators have to examine the model extensively. In contrast, when the metamodel
is close to the target code, the development effort is reduced at the expense of reusability
and the degree of automation.

R 18 Flexibility: The modeling framework for generating embedded software must be highly
flexible. First, it needs to support an extensive range of IP and system configuration alter-
natives, respectively hardware variants. Second, the framework has to provide a wide range
of design choices to tune the embedded software for specific hardware implementation.

R 19 Hardware Adaption: The generated software must be optimized for the IP components’
specification and functionality, respectively, to its hardware implementation. The generated
code should not include any features that might not be required for specific functionality.

The abstract model that characterizes the embedded software design is the most important
component for modeling embedded software. The domain-specific language used for implementing
the transformation scripts is derived from this model. A transformation script transforms the
specification of an embedded system component into an instance of the abstract embedded software
model. The following requirements should apply to the transformations and the abstract model.

R 20 Legacy Code: The framework must be capable of maintaining and transforming legacy code
into an abstract model.

R 21 Behavior and Structure: The platform-independent embedded software model must include
all features necessary to auto-generate the fully functional device driver. The platform-
independent embedded software model must include all features necessary to auto-generate
the fully functional device driver. Consequently, the model has to contain both features to
represent structures, e.g., interface definitions, and features to model the behavior of the
data and control flow.

R 22 Portability: The platform-independent embedded software model should be sufficiently
generic that it can be mapped to different target platforms and languages. According to R8,
various code generators can thus be interfaced with the abstract model.

R 23 Software Stack: The platform-independent model for embedded software must be capable
of specifying different layers of the embedded software stack.

16

Chapter 2. Problem Statement and Contributions

The success of the new methodology depends on its entry barrier. One of the biggest struggles
in introducing a generation framework is the development of the transformation scripts. Writing
generators capable of creating thousands of variants instead of manually implementing the code
for a single variant is challenging and requires a shift in the developer’s mindset. Therefore, it
is even more important that the framework is straightforward and ensures that certain design
decisions remain hidden from the user. The following requirements are crucial for improving this
entry barrier:

R 24 Simplicity: In order to obtain acceptance from designers and entire project teams, a new
modeling tool has to be straightforward to use. Implementing a generator should not signifi-
cantly exceed the effort required to implement the code manually. As an evaluation criterion,
the number of lines of code can be considered analogous to the effort.

R 25 Design Pattern: The framework should provide a design pattern library. As specified by the
modeling domain, a design pattern describes a transformation rule that assembles or modifies
a subset of the abstract model. These are intended as extensions to the automatically
generated domain-specific language. A designer can draw on these design patterns or further
extend the library as needed.

R 26 Information Hiding: The principle of information hiding is a central guideline for modular-
izing complex software systems. Information hiding, also called encapsulation, seeks to hide
design decisions or implementation details from the user. The framework should hide design
decisions from the user that automatism can solve. In addition, irrelevant implementation
details should be hidden to make changes to the underlying platform easier.

R 27 Hardware Interface: The generator designer must not worry about the hardware and soft-
ware interface details. The framework should automatically derive the interface, including
the register mapping.

No matter how easy to use, a framework will not gain acceptance if the quality of the generated
code is poor. The created software must also be subjected to quality assurance measures for quality
and functional safety.

R 28 Design Validation: The correctness of the generated code must be automatically verified
in the generator backend of the modeling framework. The modeling tool must establish a
handshake with the compiler and the simulator to ensure the functional integrity of the code.
A compiler can check the code’s syntactic, logical or semantic correctness. The simulator,
in turn, validates the functional correctness of the code running on the generated RTL.

R 29 Safety Assurance: Safety-critical systems must be able to handle faults without causing
damage or misbehavior. An automatic approach is necessary, which evaluates the reliability
of the auto-generated safety measures and fault handling methods. Fault injection is a
technique widely used that introduces faults into the system during simulation. The goal of
fault injection is to introduce faults into the software or hardware to ensure that the system
still fulfills requirements while these faults are present.

17

2.3 Targeted Approach

One of the main arguments in favor of a modeling framework over traditional design is, obvi-
ously, the ability to build various design alternatives R18. This diversity of variants enables design
exploration of the variant’s design metrics (trade-off analysis) and, thus, design optimization. This
way, appropriate design decisions for each application can be identified.

R 30 Design Exploration: A new modeling tool that generates different design alternatives should
also analyze design metrics such as those design alternatives’ performance or memory re-
quirements. This way, a large data set is ready for further analysis, e.g., through machine
learning.

R 31 Optimization: A modeling framework must determine the best configuration from an ex-
tensive range of alternatives based on a pre-defined cost function.

2.3 Targeted Approach

This thesis presents a solution for a top-down generation flow for embedded software that satisfies
the previously discussed requirements. The methodology extends the hardware generation frame-
work that will be described in Section 3.2 with a software complement to provide a comprehensive
model-driven SoC development toolchain. This embedded software generation framework can ful-
fill all the needs in developing complex distributed embedded software. To this end, it covers all
phases of modeling, analysis and validation up to the automatic generation of the implementation.

The basis of MDE is to capture the requirements of a system in a specification model. This
model is then gradually extended by implementation details by systematic model elaboration.
In this way, the RTL implementation of an SoC is derived from system’s specification. The
primary driver for this approach is the fact that a design is not determined by the hardware
alone. An efficient embedded system is based on the software interacting with the hardware in
the best possible way. The decisive factor in this approach is to consider hardware and software
holistically since both are mutually dependent. As hardware-software co-design suggests, the
proposed generation framework provides a top-down generation flow that follows R1 (Single-
Source Principle). So, the tool considers the same specification models as inputs for the holistic
generation of hardware and embedded software, as shown in Figure 3.5. The single-source design
principle ensures optimized, consistent and correct generation of hardware and embedded software
according to the requirements of R5 (Correctness by Construction).

In order to use a single model for multiple purposes, the tool executes a multi-domain gen-
eration flow starting from the same models. Therefore, the thesis extends the existing hardware
generation flow with a parallel embedded software generation flow. The total embedded system
generation is generally structured into two MDA flows, each implementing a different domain gen-
erator. Each MDA flow specifies a domain-specific mapping from the high-level system properties
to the hardware or embedded software. Such a formalized mapping enables the investigation of
design decisions and their impact on the software and hardware. So, it facilitates the selection
of the best combination of software design and underlying hardware. Both domain generators
are implemented with the same python-based modeling infrastructure R3 (Reusability) and code
generator approach. This reduces the maintenance and training effort. Modeling skills and tech-
niques are independent of the object being modeled. A good modeler can use the same skills and

18

Chapter 2. Problem Statement and Contributions

techniques to model the hardware and the embedded software (assuming they have the appro-
priate domain knowledge). A user can transfer knowledge between domains, lowering the entry
barrier and simplifying communication between domains.

As a second key principle, besides the single-source principle, the proposed SoC generation
framework applies the principle of R2 (Separation of Concerns) supporting both vertical and
horizontal separation of concerns. MDA proposes a vertical separation of concerns mechanism
consisting of three layers of abstraction and two model-to-model generator stages. As proposed
by MDA, the first layer specifies the characteristics of an IP of the embedded system in individual
models, such as a processor, memory controller, or communication IP model. The second layer
specifies the abstract design of the domain, e.g., the abstract embedded software. The last layer
adds implementation details to the abstract model. In order to resolve the vertical separation, a
series of two generator stages, namely an IP-specific generator frontend and an IP-generic generator
backend, are introduced. The generator frontend maps the IP specification to an embedded
software model, which specifies the general behavior of the IP. The backend converts this model
into a language model comprising all details.

The horizontal separation follows the organization of the embedded system into different sub-
components. This way, different concerns (IPs) are explicitly separated. Each of them is char-
acterized by its model and dedicated embedded software and HW generator, which makes them
explicit and thus more traceable, easier to change, and potentially reusable. Adding a new IP
component to the tool is straightforward because the investment in automation has already been
made. Once a new IP component needs to be supported, the developer only needs to develop the
IP-specific frontend generator to satisfy the IP’s capabilities. Meanwhile, the IP-generic part of
the tool can be reused R3. Both concepts, single-source principle and separation of concerns, are
essential features to reduce the generator development effort and increase the design quality.

The proposed framework considers R4 as it provides an intuitive and automatically generated
infrastructure that ensures consistency and validity of models across the generation flow. Among
others, an automatically generated modeling language is provided, which is used to assemble
instances of the metamodel, the so-called domain-specific languages (DSL). In other words, an
instance is developed in a language defined by the instance’s metamodel at a higher meta-level.
Accordingly, an instance of the metamodel is always valid as it complies with the modeling lan-
guage. Since the entire infrastructure for a particular metamodel can be generated, the proposed
approach fulfills R6 (Extensibility). Extending the features of the metamodel directly affects the
modeling language and infrastructure. So features can be added anytime as long as they do not
modify the previous structure of the metamodel. In addition, building a new modeling infras-
tructure for a new IP component or code generator is straightforward, thanks to this intuitive
framework. The only requirement for building the infrastructure is that each metamodel must fol-
low the Unified Modeling Language (UML). This satisfies R7, offering a standardized, graphically
based formalism for capturing system models.

Another advantage of the proposed model-driven framework for embedded software is its code
generator approach. It proposes an innovative concept in Chapter 4 to automatically build code
generators. So, various target languages and coding styles can be created as required by R8
(Target languages). For this purpose, the thesis introduces a new language named VLD (View
Language Description), which maps the meta-syntax as demanded by R9 of a formal language

19

2.3 Targeted Approach

similar to EBNF. Compared to other meta-syntax languages, VLD adds formatting elements (tabs,
spaces, line feeds, empty lines, comments). This way, the generated code is syntactically correct
and formatted for better R11 (Readability). As an example, this thesis introduces the C-VLD
used to build the C-Generator, which contains elements to fulfill R10 (Coding Standard) and R12
(Documentation). The C generator restrains the C language to a subset to be MISRA C compliant
and to simplify the code generator. Additionally, the C-VLD provides terminal elements that
describe specially formatted comments, which can be extracted by a documentation generator such
as Doxygen. Chapter 6 introduces the main components of the proposed framework, the platform-
independent embedded software metamodel, and the two generator steps. Moreover, the chapter
highlights the main strength of the approach, the capability to build a wide range of variants,
as demanded in R18 (Flexiblity). This is accomplished by following two approaches. First, the
framework features highly configurable specification models of IPs that enable the construction
of a wide range of IP designs, including HW and embedded software. Second, the framework
specifies embedded-software-specific parameters to customize and tune the two generator steps.

The central model of the approach is the embedded software model, which fulfills R22 (Porta-
bility) abstracting various implementation languages and platforms. It contains all the artifacts
necessary to design the R21 (Behavior and Structure) of the complete embedded R23 (Software
Stack). The structure of the abstract embedded software model matches R17 (Abstraction and
Concretization), providing a good balance between implementation details and abstraction to in-
crease flexibility and reduce the coding effort for generators. In summary, the embedded software
metamodel is significantly more abstract than the implementation code that would have to be
developed manually otherwise. This way, different manifestations, e.g., architecture and design
alternatives, can be created from a single embedded software instance. The architecture of a
software system is the result of all design decisions, which can hardly be modified when coded
manually. One striking example of this approach is the register access handling R27, described
generically on the abstract level. However, other elements of the embedded software model are
challenging in terms of abstraction and remain close to their implementation, e.g., type and ob-
ject definitions. The proposed framework follows the principle of abstracting as much as possible
unless the complexity increases drastically.

The first step of the generation process is handled by the IP-specific generator frontend that
assembles the embedded software model according to the requirements. Following the single-source
principle, the generator aims to improve the design to be compatible with the hardware and to
satisfy the design metrics R13 (Memory Footprint) and R14 (Performance). In other words, only
those elements are designed that are necessary for the particular application and the underlying
hardware R19 (Hardware Adaption). Thus no dead code is produced. In order to support as many
hardware alternatives as possible, embedded software is often constructed in a generic nature using
design patterns. However, the disadvantage of using design patterns is that the designs may not be
able to solve specific problems optimally on the cost of design metrics. In the framework context,
a design pattern describes a parameterizable transformation rule (or software factory) applied as
a wrapper to an artifact of the abstract embedded software model. Different IP generators can
reuse a design pattern to facilitate the design of recurring processes (sub-behaviors). For this
purpose, it assembles a substructure of the embedded software model concerning specific design
requirements. Developing generators using design patterns can provide many benefits, such as

20

Chapter 2. Problem Statement and Contributions

improved productivity, quality and evolution capability. So far, the framework proposes a large
library of R25 (Design Patterns) to simplify generator coding complexity.

The IP-generic generator backend constructs the final target code from the abstract embedded
software model. The main idea of the backend is to resolve certain design decisions hidden from the
developer R26. The hardware-software interface R27 is a great example of hiding design decisions.
Depending on the interface’s memory layout, the hardware area’s performance and register access
may improve or deteriorate. For example, a compact layout has less performance (inefficient
read and write accesses) but also requires less design area. The proposed framework presents an
automated approach that examines different memory layouts to extract the ones offering the best
cost trade-off. Further examples are provided in Chapter 8.

The backend further realizes a style-based architecture refinement through iterative horizontal
transformations3 where the source and target model reside in the same abstraction layer. This way,
an abstract architecture can be mapped into numerous design alternatives, such as an interrupt-
based or polling design. Following the same strategy, the backend also improves the non-functional
metrics, such as the design’s R15 (Functional Safety) and R16 (Security) of the design. These
transformations inject safety measures as safety patterns to extend the embedded software with
non-functional artifacts. So far, the framework provides a list of industrial-proven safety measures
that ensure the temporal and logical execution order, e.g., watchdog or program flow monitors.
Following the given safety pattern principle, a designer can extend the library with any further
safety and security patterns.

Numerous design alternatives can be generated using this model-driven approach. The qual-
ity and reliability of each generated design is an important issue in the acceptance of the tool.
Therefore, the framework extends the generation process with a subsequent optional validation
and exploration step that examines different design alternatives. The extension includes a compi-
lation and simulation step described in Chapter 9. The framework uses GCC as a compiler and
Verilator or Xcelium to run the simulation. The entire embedded system generation flow for the
simulation is executed to build the complete RISC-V-based SoC on which the binary is executed.
Note that the proposed approach does not execute a detailed verification but provides immediate
user feedback on the functional correctness and executability R28.

Furthermore, a simulator-based fault injection concept that extends Verilator with fault in-
jection capability is introduced. So, the functional safety, the system’s reliability, and the safety
pattern efficiency are evaluated as required by R29 (Safety Assurance).

The simulation result and the compiled binary are used to determine the design metrics for
each alternative, such as memory footprint, performance, or hardware area. As a result, the de-
signer obtains a vast data set mapping costs to the design specification. Indeed, such a large data
set opens the door for R30 (Design Exploration), e.g., through machine learning or other trade-off
analysis techniques. The thesis provides two examples for design exploration and R31 (Optimiza-
tion). One approach to compiler flag optimization and one to hardware-software interface memory
layout optimization.

3A horizontal transformation can also be called an endogenous transformation. It is a transformation between
models expressed by the same metamodel.

21

2.4 Summary of the Key Advantages

2.4 Summary of the Key Advantages

The presented approach provides several advantages for developing embedded software or embed-
ded systems. The following list briefly explains these:

• Developer productivity is improved because repetitive aspects do not need to be coded man-
ually repeatedly. A designer simply modifies the high-level requirements to create different
designs.

• The code generator approach is faster than humans and can handle optimization complexity
that far exceeds human cognitive abilities without being as error-prone. So the framework
helps to deal with optimization challenges.

• Models serve as a better basis for discussion and help to improve the understanding of the
systems at the design level.

• Models are very close to the problem domain and omit implementation details that are irrel-
evant for understanding the logical behavior. Thus, they reduce the semantic gap between
the concepts and the implemented solution.

• The framework allows experts to capture their knowledge in design patterns and transfor-
mations. So they share their expertise with other members of the organization. If well
documented, this knowledge remains in the patterns and transformation even if the experts
leave the organization.

• The modeling framework follows a definition of a stringent software and system architecture.
This reduces errors and improves the consistency and quality of the software architecture.

• With code generation, the code quality is improved. A template ensures correctness-by-
construction and high-quality code compared to manually written code.

• The generated code is very readable and includes comments and other artifacts to improve
readability. Compared to manually written code, it is easier to understand as it follows
production rules that define the formal language’s syntax and formatting.

• The approach separates different concerns and system components explicitly. Each one is
modeled, making them explicit and thus potentially reusable, more traceable and easier to
modify.

• The mapping of the models to the implementation code is deterministic. This means that
the design metrics of the implementation are known to some extent. It is a great advantage
for optimizing the embedded system based on cost analysis.

• The framework is extendable in all respects. Any code generators and sub-systems can be
included as long as they adhere to the separation of concerns. Likewise, existing models can
be extended unless their original structure is changed.

22

Chapter 2. Problem Statement and Contributions

• Embedded software generation is tightly connected to hardware generation. Both start
from a common specification level. As a result, the embedded software is well adapted and
efficiently leverages the hardware resources. Manual coding, in contrast, is often generic and
inefficient.

• The effort for generator coding is similar to manual coding. However, manual coding is
significantly more expensive if the effort is scaled according to the potential design alterna-
tives that can be generated. Accordingly, the return on investment from using this approach
increases each time it is reused.

23

Chapter 3

Model Driven Engineering

A model reduces the system’s complexity providing a more appropriate view of a system.
In general, models can express systems’ properties, structure, and behavior in various

scientific disciplines, such as all areas of mathematics and science. A well-known model is the
climate model [70], which is used to predict the climate. It is built on a set of mathematical
equations that describe the physical laws that govern the behavior of the atmosphere and oceans.
Similarly, a model can also express the behavior and structure of embedded systems.

In software engineering, a model serves as a specification that gives an overall picture of the
system under study. It defines and organizes the information that is needed to develop a system.
Accordingly, models make project planning more efficient and facilitate communication between
stakeholders. However, models are not just used for the documentation but can also serve as
primary artifacts for the software development process. Using models as recurring patterns within
a software development methodology can increase productivity and compatibility between systems.
This principle is considered model-driven engineering (MDE)4. According to France and Rumpe
[75], “MDE is typically used to describe software development approaches in which abstract models
of software systems are created and systematically transformed to concrete implementations.”
Respectively, MDE-based approaches include various techniques such as metamodeling, model
transformation, and code generation. MDE narrows the gap between an abstract description and
the target code. It thus contributes to the streamlining of development processes.

MMDA is a specific MDE proposal premised on the idea that a single model is too fuzzy and
cluttered for designing a larger and more complex system. Consequently, MDA employs multiple
models that describe the system from different viewpoints or at different levels of abstraction. In
particular, it specifies viewpoints representing the system’s requirements, design and implementa-
tion. This separation of concerns makes MDA a popular modeling approach, as it achieves both
platform independence and language and system independence. For example, an MDA approach
allows developers to focus on domain concerns rather than dealing with platform-specific details
such as application programming interfaces or language guidelines [75].

In the following, the basic concepts of MDE and MDA are outlined. Based on these concepts,
this chapter presents the prior work elaborating on the MDA principle to introduce an industrial
model-driven RTL generation flow. Furthermore, this chapter discusses the state of the art of
MDE in embedded systems and embedded software development.

4In the literature, also synonyms such as model-based engineering (MBE) model-driven development (MDD) or
model-driven software development (MDSD) are also widely accepted. In this thesis, the notion of model-driven
engineering is preserved.

25

3.1 Metamodeling

3.1 Metamodeling

Modeling is the process of building models that transform a perceived view of the system into an
abstract representation. According to Stachowiak [189], a model is a simplified image of reality
characterized by three fundamental properties. (1) Mapping criteria: models do not capture all
system features but only those relevant to the designer. (2) Reduction criteria: models do not
capture all features of the system, but only those that are relevant to the designer. (3) Pragmatism
criteria: models are tailored to the needs of the intended use.

Selic [176] emphasizes the criterion of reduction and abstraction as almost the only means of
coping with emerging complexity. Hiding details irrelevant for a viewpoint helps to clarify the
system’s essence. Good abstraction is difficult to achieve and should be chosen wisely, not forced
[116, 176]. Intelligent abstraction reduces complexity, increases understandability, and allows the
prediction of interesting but non-obvious properties of the modeled system. Above all, a model
must be economical, i.e., it must be much cheaper to construct and analyze systems [176].

Metamodeling (literally “beyond modeling”) is the act of modeling models [188]. It is a crucial
concept in MDE approaches as they provide a mechanism for the automated development of well-
structured and maintainable systems. A metamodel defines the permissible structure that must
be satisfied by a set of models [191, 193]. Compared to a model, a metamodel is an abstract
representation of the model itself [82]. In MDE, a metamodel specifies abstract syntax (the
constructs and relationships) of a modeling language to express a model. A model created with
the modeling language is called an instance5.

instance of

Meta-Metamodel

instance of

instance of

TransitionFSM State*

initialState

outgoing

incoming
*

*

Open

Event *

Start

Closed Locked

LockClose

UnlockOpen

Model

Embedded
Software

Metamodel

Figure 3.1: The hierarchy between meta-metamodel, metamodel, model and system under study.

5In the following, the terms instance and model are not distinguished. Both designate an element that complies
with the rules of the metamodel.

26

Chapter 3. Model Driven Engineering

To continue the train of thought: A metamodel is a model describing the modeling language.
Thus there also exists a meta-metamodel. Figure 3.1 depict the hierarchical relation between meta-
metamodel, metamodel, model and the system (e.g., hardware circuit or embedded software). The
Object Management Group (OMG) also proposes this layered infrastructure, which employs the
Meta Object Facility (MOF) as a meta-metamodel. MOF provides the language for creating UML
metamodels. A UML metamodel defines a “certain aspect” of the system, such as the finite state
machine (FSM). In addition, the metamodel supplies the language to build any type of FSM. An
FSM model provides an abstract view that can be reused for various purposes, for example, code
generation of RTL circuits or embedded software.

An MDE infrastructure relying on these modeling layers and, in particular, on a common
meta-metamodel can be generically processed in a unified manner. Bézivin calls this principle
in [34] “the unification power of models”. Exploiting this generic nature is the key driver for
increasing the efficiency of MDE, as it enables automatic model operations such as code generation,
transformations, and analysis techniques.

3.1.1 Modeling Language and Domain-specific Language

Metamodeling is the process of creating a domain-specific model by explicitly defining its con-
structs and rules. A domain-specific language (DSL6) can formally describe the structure, behav-
ior, and requirements of a specific system of this domain. This allows a designer or modeler to
work directly with the domain concepts at an abstract level since the DSL follows the abstrac-
tion and semantics of the domain. According to Kleppe, a domain-specific modeling language
comprises three main aspects [113]:

• the domain concepts and rules (abstract syntax)

• the notation used to express these concepts (concrete syntax)

• the semantics of the language.

The abstract syntax of a DSL is specified by a metamodel, which contains well-formed rules to
constrain all instances that can be created. Consequently, the metamodel provides the formalized
specification of the language; in other words, the metamodel represents the grammar of the DSL.
The concrete syntax of a DSL represents the human-readable notation that represents the abstract
syntax in a graphical or textual notation. In general, the concrete syntax maps the metamodel’s
concepts to the visual or textual representation of the metamodel. The graphical concrete syntax
establishes links between concepts and visual symbols, while the textual concrete syntax estab-
lishes links to the syntactic structures of the language. Such an analogy is well-known in formal
languages characterized by a metasyntax notation such as EBNF. Similar to the textual concrete
syntax of a metamodel, a metasyntax notation reflects the permissible structure and composition
of expressions and statements of a programming language. Indeed, a good modeling tool features
a concrete textual syntax for creating and modifying instances and the corresponding graphical
concrete syntax for visualizing them.

6This thesis considers the two terminologies, domain-specific modeling language and domain-specific language,
equivalent.

27

3.1.2 Model Transformations and Code Generators

While the concrete syntax seeks to leverage correct interpretability, the semantics of the lan-
guage adds meaning to the modeling language [57]. Bryant et al. observe a lack of a standardized
method for defining semantics [47]. For this reason, a slightly different approach is commonly
used in MDE to introduce translational semantics. Translational semantics comprises a mapping
between abstract syntax elements and a specific platform providing well-defined and executable se-
mantics. As pointed out by [47], such a mapping is represented by hard-coded model interpreters,
e.g., code generators that produce executable source code from models.

3.1.2 Model Transformations and Code Generators

The central concept of MDE is to specify the system as a model on an abstract level. The transition
from this abstraction level to a concrete implementation is achieved by model transformations,
which play a crucial role since they automate complex, tedious, error-prone and repetitive software
development tasks [29]. Figure 3.2 illustrates a model transformation. It is an automated process
that constructs a target model from a source model according to a transformation definition.

The generator executes this transformation process; a script that specifies the transformation
definition is called the generator template or transformation template. Templates specify a set of
transformation rules on how constructs of the source language can be transformed into constructs
in the target language [56]. The transformation rules are built with the DSL. In this context, the
generator can map any instance of the source metamodel to an instance of the target metamodel,
assuming that the instances follow the semantics (sem) of the metamodel.

MoF

Source
Metamodel

Target
Metamodel

Transformation
Rulessem

Source
Model

Target
Model

semfrom to

sem sem

Figure 3.2: Metamodeling and model-to-model mapping [35].

Essentially, two types of transformations are distinguished in MDE. On the one hand, model-to-
model transformations translate models that are both subject to a metamodel. On the other hand,
model-to-text transformations or code generation produce source code from models. Typically,
these transformations are mostly vertically oriented (vertical transformation), refining a view from
higher to lower levels of abstraction. Instead, a horizontal transformation7 derives a view at the
same level of abstraction.

7The horizontal transformation is distinguished between an endogenous and an exogenous transformation. An
endogenous transformation is a restructuring between two instances of the same metamodel. An exogenous trans-
formation is a transformation between instances of different metamodels.

28

Chapter 3. Model Driven Engineering

3.1.3 Model Driven Architecture

Model Driven Architecture (MDA) is a concept for model-driven, generative software development
proposed by the Object Management Group (OMG) [120, 136]. It is a particular form of model-
driven engineering focusing primarily on the unambiguously incremental refinement of models
into platform-specific code. It aims to manage software technologies’ and platforms’ complexity
by capturing the entire software development process in models [44] and separating domain con-
cerns from implementation concerns. The involved models define all levels of development, from
requirements analysis to implementation of the target system, automating the transformation of
abstract models into executable systems. MDA encourages the use of three successive models,
Computational Independent Model (CIM), Platform Independent Model (PIM) and PSM (Plat-
form Specific Model), to implement hardware and software systems. Figure 3.3 illustrates this
MDA principle as Y-chart [120].

CIM

PMPIM

PSM

Code

Figure 3.3: Y-Chart of the MDA principle [120].

CIM: The CIM captures the requirements of an application in a formal specification independent
of the system’s realization. It characterizes the software or system’s domain and the “concep-
tualization perspective” [185]. Hence it is also called domain or business model. As the name
suggests, the CIM reflects an informational view rather than the actual implementation. In
the following, the terminology “specification” is used for CIM.

PIM: The PIM describes the structure and functionality of the system regardless of the imple-
mentation technology or platform. It builds on the CIM model and adds information about
the processing of the planned software system. To achieve platform independence, the PIM
uses language-neutral implementation semantics on a high level of abstraction to describe
the system’s behavior. This description can be realized in several specific platforms (e.g.,
programming language, development environment).

PSM: The PSM adds platform-specific aspects and relevant technical details for implementing the
PIM. The properties of a PSM are determined by the platform model (PM). In this way,
the implementation is adapted to the properties of the respective target platform. Finally,
the PSM model contains all details necessary for the automated generation of code (model-
to-code transformation).

29

3.2 Previous Work

PM: A platform model is the representation of a platform at the model level. So, it specifies the
technical details relevant to implement the PIM.

MDA identifies model transformation and code generation as fundamental mechanisms to
facilitate software development and migration. It proposes a sequence of two model-to-model
transformations that iteratively add details to derive a PSM from the CIM. Subsequently, the
derived PSM is translated into the final implementation using the code generator. Abstraction
and transformations in MDA ensure a high degree of reusability, variability and maintainability of
the generated program code. Overall, this is intended to render software development efficiency,
cost-effectiveness, and quality.

This MDA principle has been adapted for RTL generation as described in Section 3.2. In this
thesis, an MDA principle for embedded software generation is presented. As the central model,
the FW-PIM is presented. As the RTL flow, the MDA approach for embedded software introduces
horizontal model-to-model transformations to incorporate non-functional add-on features such as
safety measures.

3.2 Previous Work

3.2.1 Metamodeling environment

The Unified Modeling Language8 (UML) is the best-known graphical language used to model
object-oriented systems. Overall, UML diagrams specify relationships between objects to con-
straint, design and document system artifacts. Indeed, UML is not a programming language, but
some tools utilize UML diagrams to generate domain-specific development environments. One
of these tools is Metagen, introduced in [66, 67], which has since been used successfully in the
industry for various design processes and designs. Metagen provides a generic approach that
automatically generates a Python-based modeling and code generation infrastructure.

The purpose of Metagen is to overcome the challenges of introducing metamodeling in various
design domains. It accelerates the transition from manual coding to generator-based design. The
approach follows a single-source strategy that generates all essential components of a domain-
specific modeling infrastructure from one UML metamodel, including its modeling language or
domain-specific language (DSL). A metamodel captures the abstract syntax of a modeling lan-
guage, including all its structures, and thus provides clear interfaces. Consequently, when assem-
bling an instance of the metamodel, it is necessary to apply the underlying concepts defined in its
metamodel. So, all components of the framework must be compliant with the metamodel. In con-
clusion, Metagen specifies an automatism that derives the Python-based modeling infrastructure
from the metamodel’s metadata.

Figure 3.4 illustrates the structure of a template-based generation framework created by Meta-
gen. A metamodel, the root of the concept, specifies all possible IP variants, such as here all
alternatives of an I2C peripheral. Based on this I2C metamodel, the generic approach automati-
cally derives an I2C-dependent modeling language (I2C API). The language is a mapping of the
metamodel’s structure into a Python class library. The I2C API provides a set of functions to

8When speaking of UML, implicit derivatives such as SysML and MARTE are included.

30

Chapter 3. Model Driven Engineering

access and populate various I2C instances, e.g., setter or getter. This way, an instance of I2C
can be expressed both in an XMI format and by the Python class library. The API handles the
translation between both formats by parsers (Reader and Writer).

derives

Metamodel

instance of

input

API

uses uses

input

Template

derives

Metamodel

API

Output Instance

Generator

Visual diagramming
tool

User

I2C

Name: String

 #I2C Class definition
 class I2C:
 def getName():

Statemachine

Name: String

 #FSM Class definition
 class Statemachine:
 def getName():

instance of

Statemachine

Name: FSM_PressureSensor

 #FSM for I2C
 def create_FSM_I2C(Instance):

Input Instance

I2C

Name: PressureSensor

instance of

uses

output

W
rit

er

R
ea

de
r

Figure 3.4: Components of a template-based generation framework.

Due to the clear interfaces and the polymorphic language, this modeling environment simplifies
the implementation of template engines. A template engine, also considered a generator, uses the
auto-generated API as a DSL to describe model transformation rules (generator tasks). A model
transformation maps a model as input to a new software aspect (e.g., code). Principally, model
transformation can be classified into model-to-text or model-to-model transformation. Model-to-
text transformations are code generators translating models directly into a target language, e.g.,
VHDL, C or LaTeX. A model-to-model transformation, as shown in Figure 3.4, is a model refine-
ment involving a target modeling environment. The designer of a model-to-model transformation
template uses the API of both environments to transform the input model into an output model.
Continuing the previous example, the designer once implements a generator that translates all
possible I2C variants into instances of, e.g., a state machine. When designing a system, the de-
signer can reuse the generator and only needs to configure instances of the I2C, e.g., with a visual
diagramming tool such as Enterprise Architect, to create the appropriate state machine.

In summary, Metagen’s generic generation of modeling frameworks perfectly solves the problem
of SoC development and all its design aspects. The generic generation approach based on the single
source strategy combats the concept of hiding [108] in metamodels and improves consistency
from the beginning. Complexity details are moved to the automatically generated API and thus
remain hidden from the user when defining transformations. In addition, due to the generic flow,
there is a semantic correspondence between the notations of different modeling languages built
with Metagen. This allows the designer to transfer design concepts he is familiar with from one
modeling flow to another, reducing the effort required to adopt a new modeling language.

31

3.2.2 MDA approach for RTL generation

3.2.2 MDA approach for RTL generation

In [64, 171, 172], this metamodeling environment is applied to establish an MDA-inspired approach
to automate digital hardware design. As MDA proposes, detailed in Section 3.1.3, the complexity
of code generation is handled by a sequence of model transformations that translate an abstract
model into a more concrete model. The lower part of Figure 3.5 shows such a three-layered
sequence for a hardware generation framework. The hardware development flow from specification
to implementation (HDL code) is formalized and divided into models of different abstraction. So,
transformations automatically generate the hardware design by adding implementation details
across MDA’s three abstraction layers.

Figure 3.5: A framework for building IP generators following the three-layered MDA approach.

The first layer defines the properties and requirements of an IP or subsystem, e.g., I2C, timer
or GPIO, in a formal specification of an IP Model. Initially, the designer can choose the scope
of features from a set of high-level definitions provided by the IP Metamodel. The high-level
requirements are transformed into an abstract RTL model (domain-specific model) that represents
an intermediate design of the RTL microarchitecture. It captures the RTL design through HW
primitives (e.g., AND) and building blocks (e.g., FSM) provided by the RTL Metamodel. The
RTL Metamodel and its automatically generated python-based hardware design language are
introduced in [85, 171].

A second transformation maps the RTL Model to a platform tailored to the language of the
target view. For example, one RTL Model can be mapped to different implementation models,
such as a VHDL Model or SystemC Model. A VHDL Model defines an abstract syntax tree of

32

Chapter 3. Model Driven Engineering

VHDL, constrained by the VHDL Metamodel, which specifies the metasyntax of VHDL. Finally,
such a language model can be translated into the target output.

In addition, by embedding domain knowledge in a high-level language, designers can leverage
modern software techniques from object orientation and dataflow programming to design hard-
ware. Python language, in particular, is ideally suited for this purpose, as it has the high flexibility
of a scripting language and an efficient syntax. The designer can use all features, such as functional
programming, polymorphism and operator overloading, within the model-to-model transforma-
tions. Consequently, the Python-based approach lowers the barrier for hardware designers to
adopt a metamodeling framework in hardware design. According to [171], this is a significant ad-
vantage compared to other frameworks. For example, the “Eclipse Modeling Framework” [193] is
more powerful but also complex and thus very difficult to learn and adopt for hardware engineers.

In a nutshell, this approach simplified end-to-end hardware flow, automates the generation
flow, but can also generate many IP hardware implementation alternatives. However, an IP or
complete embedded system without the necessary embedded software support is not of great value.
This thesis addresses this shortcoming and introduces an automatic code generation flow that runs
parallel to the hardware generation.

3.3 Embedded Software Architecture

An embedded system consists of a hardware platform and embedded software. It is constructed
using reusable IP blocks. The architecture of an embedded system can be divided into several
layers. These layers make it easier to deal with the growing complexity of embedded systems. It
defines fixed boundaries that decouple low-level operations, such as register accesses from high-
level behavior. In this way, implementation details can be hidden at the application level. For
example, the application code does not need to know all details of the driver. There are many
different approaches to how to divide these layers. In [33], some concepts are discussed, e.g.,
2-layered, 3-layered or 4-layered architecture. In this work, however, the embedded software
architecture is divided as shown in Figure 3.6.

Application

Device Driver

HAL

IP Register Interface

IP Core

Figure 3.6: A layered view of the embedded system architecture.

The lowest layer is the hardware layer containing the IP core (also called the peripheral), which
performs the operations, and the hardware/software interface, also called the register interface.
The register interface provides a set of memory-mapped registers to control the execution of the
IP but also to enable interaction between hardware and software.

33

3.3.1 IP Core

The accesses to these registers, which are necessary to control the hardware, are defined in
the first software layer, the hardware abstraction layer (HAL9). On the one hand, it offers direct
macros for writing and reading individual bit fields and registers. On the other hand, it offers
more complex access sequences to multiple registers and bit fields combined in a single function
call. The HAL keeps details like memory layout or register permissions hidden from the higher
embedded software layers, and a designer does not have to worry about bit fields and registers. The
device driver sits above the HAL and provides hardware functions with a standardized interface.
This way, the driver layer fully abstracts the hardware and acts as an intermediate layer between
the hardware device and the application. For example, a serial communication IP driver provides
a generic interface that is the same for all hardware configurations that always features a “receive”
and a “transmit” function. Finally, the application layer10 can access these functions without
knowing the exact hardware being used.

In the following, modeling approaches from related work are introduced that have automated
or partially automated these layers.

3.3.1 IP Core

In electronics design, an IP core is a functional block of a stand-alone RTL unit that can be reused
in various systems. An SoC contains several IPs, e.g., a communication controller, memory cores,
crypto cores, and arithmetic cores. In most IP design generation approaches, the IP is formally
captured in a data structure, while simple print statements or templates with macros handle the
HDL code generation. A better approach is to extend established programming languages with
hardware-specific primitives to increase the level of abstraction in hardware design.

A language widely used in academia that facilitates the creation and reuse of RTL designs
for IPs is Chisel. Chisel [24] is a hardware construction language embedded in Scala for describ-
ing digital logic designs. FIRRTL [125] is the intermediate language empowering Chisel with a
generic hardware design description. This intermediate language can be utilized to build different
highly-parameterized hardware generators to produce complex RTL architectures in Verilog. For
example, the rocket chip generator in [17] uses Chisel to generate cores, caches and interconnects
of a SOC.

The survey of Käyrä and Hämäläinen provides a list of other hardware construction languages
besides Chisel in [110]. For many hardware generators, Python is the preferred language of choice
as an HDL language due to its simplicity and clarity in popularity. The most popular Python-
based HDL languages are MyHDL [59], PyHDL [84] and PyMTL [130].

All these languages alone cannot solve the problem of generating IPs. A generator approach
must use a formal specification of the IP to construct the HDL language. Such ad hoc RTL
generation from formalisms such as UML has been studied for some time [118, 159, 214]. A
complete generation approach that turns IP requirements into RTL code is enabled by the MDA
flow described in 3.2.2.

9In some other layered architectures, the HAL is defined differently and is placed above the device driver. The
definition in this thesis is that only the HAL can access the hardware. All other software layers can only access
hardware through the HAL.

10The application layer can be composed of a pure application and a runtime environment/operating system.

34

Chapter 3. Model Driven Engineering

Differentiation from related work: First, languages like Chisel only partially solve today’s
design problems since it is a pure hardware design generator and provides no firmware support.
So it does not fulfill R1 and R4. Furthermore, Chisel does not start with a formal specification.
Compared to our approach, it loses the link to specification and has no underlying formal semantics.

3.3.2 Hardware and Software Interface

The communication between an IP and the CPU or memory controller is realized through the
IP-included hardware and software interface. A hardware and software interface connects an IP
of the SoC to the top-level system via the bus interface. In addition, each IP is controlled via a
set of memory-mapped registers accessible via the bus. The hardware-software interface specifies
the bus interface and register layout. Registers of such an interface are also called Control and
Status Registers11 (CSRs). A CSR appears for the software layer as an accessible storage location
that allows the embedded software to interact with the hardware. Each CSR may also provide a
side-effect behavior compared to ordinary memory. This side-effect may be triggered when reading
or writing the particular register. A register interface is a component frequently occurring in a
system and always has the same structure. It only differs in the memory layout and the bus
interface. The manual implementation of the interface is a tedious and repetitive task that is well
suited for using metamodeling and code generation [100]. A metamodel of a register interface
mitigates the problems encountered and can serve as a single source for the automatic generation
of all types of views, software, RTL, and documentation [65].

A number of human-readable source formats are available that help specify the register inter-
face and manage the register layout. Nevertheless, two unified standards provided by Accellera
have prevailed in the industry: SystemRDL [97] and IP-XACT [4]. The metadata of both stan-
dards provides a similar range of features that can be used to configure, verify, and integrate IPs
into advanced systems. On the one hand, IP-XACT is an XML format that focuses more on the
interconnection of IP interfaces featuring different bus protocols and bus definitions. It supports
a simple extension mechanism to add additional vendor-dependent design and flow information.
SystemRDL, on the other hand, is a language that contains more syntax features for describing
registers but is not as easy to extend as it does not follow the XML schema.

Both standards provide a common vendor-independent representation of a register interface
to enable automatic configuration and integration through different automation tools. Many
IP suppliers and electronic design automation (EDA) vendors have committed to this standard
to increase portability and drive agile design reuse and automation. Indeed, the standards only
specify the important features of the register interface but not how the features are translated into a
particular view. So, it is not recommending any generator. A large variety of commercial and open-
source generators/tools are available that take SystemRDL or IP-XACT to create synthesizable
RTL code, UVM register models, documentation or C header files.

Some basic open source projects are RgGen. [202] and PeakRDL. [142], which provide gen-
erators for different views but only support a limited number of SystemRDL/IP-XACT features.
More advanced open-source tools are the RegisterTool [147] of OpenTitan, Kactus2 [106] from the
Tampere university, or the Open Register Design tool [144] released by Juniper Networks. Com-

11Other names for CSR, such as Special Function Register (SFR), are also commonly used.

35

3.3.3 Register Interface

pared to the mentioned open source tools, commercial tools usually offer generators capable of
building more target views and languages. They can mostly handle both standard formats while
supporting the complete feature set (e.g., various AHB bus protocols). Most importantly, they
are more reliable and produce high-quality and industry-standard codes. The most frequently
applied tools are the CSRCompiler. [5], DesignSpec [26] or Magillem [15].

Differentiation from related work: The register interface (RI) metamodel used in this
work specifies a RISC-V-specific bus interface for atomic instructions, embedded software-related
extensions, and some additional functions to describe registers. Most importantly, the RI meta-
model specifies a decoupled composition of registers and bit fields that allows optimization of the
memory layout.

3.3.3 Register Interface

Implementing the RTL of a RI, including the address decoding and the registers with different
characteristics, is a defective and weeks-long effort for a designer. Generating the register inter-
face’s RTL code (VHDL, SystemVerilog or SystemC) from SystemRDL or IP-XACT is more or
less straightforward. It results in a significant improvement of the RTL development process. One
of those tools supporting the generation is the open-source tool Kactus2 [106]. It is a graphical
EDA tool that uses generator plugins to create the RTL design.

It is important to emphasize that interface standards describe only an IP’s structure, interface
and memory layout, but not the full functionality associated with each register. Therefore, they
cannot completely replace the hardware description language. Leber provides a detailed descrip-
tion of an exemplary generator approach that produces the RTL structure of an efficient register
interface implementations in [122]. The following describes a simplified RTL design as generated
by most generators.

A register interface consists of basic sub-components such as the bus slave connected to the
processor and memory controller via a standard bus such as AHB, APB, AXI or a customized
bus. The bus interface generally provides decoder logic specific to the bus protocol. It processes
the address, data, read/write and error/acknowledge signals and thus establishes a connection
between the application logic and the register. The logic resolves the write and read request to
an address location assigned to the IP address space. Write operations that match an address
generate an internal write enable for one or more registers. A read operation, on the other hand,
returns the register contents of the addressed register. With the previously introduced standards,
it is possible to define individual properties for each register and each bit field, such as read/write
permissions, virtual registers, and parity checks. Thus, a read or write transfer can also cause an
error response or different behavior.

The available register interface generators mentioned before have different advantages. They
differ in input/output formats, GUI support, bus protocols, underlying programming language and
register properties. While the standard format of SystemRDL and IP-XACT is widely accepted in
the industry, a particular generator has not yet gained acceptance. Design teams and companies
often develop their own generators to create the HDL interface implementation. One reason is
to avoid licensing costs and retain the ability to implement new features. Second, their designs
would not differ from those of other vendors if they re-use common generators.

36

Chapter 3. Model Driven Engineering

Differentiation from related work: The register interface generator used in this work
follows the approach described in 3.2.2. The idea is that the register interface generator is integrated
into the IP generation flow by using the same tooling. Thus, an instance of a hardware-software
interface metamodel (RI-CIM) is automatically created when the IP-CIM is transformed into the
IP-PIM. The RI-CIM can use the MDA generation flow to create the register interface. This way,
an IP’s complete hardware, including the IP core and the register interface, can be created.

3.3.4 Hardware Abstraction Layer

The hardware abstraction layer is directly above the hardware register interface. The HAL intro-
duces a unified interface with low-level access functions to the IP registers. A higher embedded
software layer can call the HAL to read or write bit fields or entire registers. A specification
defining the memory layout can be transformed into the HAL to provide a robust layer for the
device driver to interact with the hardware.

Many tools provide a simple generator that uses SystemRDL, IP-XACT or other specifications
to map the register layout into embedded software’s header files. For instance, they translate the
register layout into C structures or C macros [122]. However, such a header file misses the be-
havioral aspects and primarily describes the HAL structure or skeleton, while the implementation
of the register accesses still needs to be done manually. A sequence of register operations can be
combined into a single function call. When implementing such a function call, the relationships
between the registers and bitfields must be known in detail. In addition to the dependencies,
the characteristics of each register and bitfield must be analyzed to ensure a reliable and efficient
function implementation. Especially for more extensive access sequences, manual source code can
be either inefficient or faulty if one particular feature is not taken into account. A generator can
automatically resolve the dependencies to build correct and optimized access sequences.

The work of [105] extends the format of IP-XACT with FW-relevant properties to specify
so-called FW behaviors enabling the generation approach discussed so far. Similarly, the Se-
quenceEditor of Magillem [15] and the ISequenceSpec of DesignSpec [26] allow developers to model
register, and bitfield accesses sequences. Furthermore, the languages HAIL [195] and Devil [137]
provide a domain-specific language that provides a high-level definition of the communication
with a device and thus simplifies device access programming. However, all mentioned approaches
describe hardware operations based on sequences. These can be transformed into a powerful HAL
that allows direct access to registers on the fly without worrying about the underlying register
layout.

Differentiation from related work: The hardware software interface metamodel in this the-
sis supports the construction of complex register access sequences. Furthermore, the generator can
produce different HAL implementation variants, either memory-efficient or performance-optimized
R31. In this work, the interaction between HW and FW is considered a key factor for the system’s
performance. Therefore, it offers an automatic optimization step that modifies the register bitfield
mapping so that the sequences run as fast as possible without adding much hardware area and costs
R30.

37

3.3.5 Device Driver Layer

3.3.5 Device Driver Layer

Above the HAL is the device driver layer, which provides hardware-related services. This layer
is located below the application layer (optionally, a system can also contain an operating system
that is located between the application and the driver). The driver layer abstracts the hardware
completely into generic terms. For example, a UART driver has an API defined in terms of
communication operations, such as receive and transmit functions. The description languages
like HAIL [195] and DEVIL [137] specify low-level access functions hiding the low-level details of
bit-level programming. They are limited to register accesses and do not offer all features needed
to design the control and data flow of device driver programming.

DEVIL+ [232] is an extension of DEVIL, designed especially to describe the device’s basic
communication protocols. Wang et al. [218] extend DEVIL to synthesize more dedicated parts
of a device driver automatically. It introduces a platform-independent specification that can be
translated into a virtual environment and further mapped to a platform-specific driver implemen-
tation. A DSL for driver development is proposed through NDL [55] and Laddie [225]. They
provide high-level device driver development constructs and use state machines to specify driver
behavior. Both DSLs provide limited capabilities to describe the data- and control flow, covering
only portions of the device driver core. Furthermore, they are based on a single level of abstraction
and provide only C as a possible output language.

However, abstraction can be achieved through approaches other than modeling. For example,
with “mbeddr” [216, 217], a proper language extension for C to develop abstract embedded software
artifacts is offered. The extension includes modular constructs and notations that are integrated
into the target C code. During generation, these constructs are mapped to C code. Others apply
better programming methods to design embedded software, such as object-oriented programming
and inheritance. Instead of programming in C, programming in high-level languages such as Java
[161] or Python [206] is suggested. Such languages can simplify coding, but they are no substitute
for automatic generation.

An automatic driver generation process must be highly dependent on the hardware specifica-
tion. One way to achieve hardware dependency is to generate drivers from RTL test benches [38].
Another approach is to use a common specification of the system or the peripheral’s hardware and
software for driver generation. Termite [165] proposes an approach to driver synthesis based on
a device and OS specification. The specifications define communication or “access protocols” as
state machines used to create drivers that operate correctly and do not misconfigure the hardware.
It can be applied as an extension of DEVIL, and other register access generation approaches. The
Me3D [52] methodology addresses the problems faced by Termite, which models behavior using
only state machines, resulting in an explosion of states and a large code size. Me3D takes sev-
eral specifications, namely a model of the device properties, hardware specifications, an in-kernel
interface specification, libraries and driver configuration parameters, to create a device driver.

Even closer to the hardware and even more versatile is the generation flow DDGEN, which
is provided by Pendharkar and Kolathur [154]. It defines a domain-specific language called DPS
(Device Programming Sequence) that captures the details of device attributes and behaviors in
several device classes, e.g., interrupt specification and FIFO specification. A different solution is
taken by Tanguy et al. [203], proposing a generation flow that includes more information about

38

Chapter 3. Model Driven Engineering

the application to build drivers. Such an application-specific approach reduces the number of ab-
straction layers between the application and driver. In addition, it positively impacts performance
and memory footprint since it generates only the necessary behavior.

Many other approaches claim correctness-by-construction but offer only a semi-automatic ap-
proach [7, 38, 109, 128, 232]. Manual post-processing is always required, which in turn can lead to
errors in the design. For example, a template generator [7] that adapts to different embedded plat-
forms is a typical use case for reducing coding effort, leaving the behavior coding to the designer.
An exception is the tools [52, 154, 203], which claim to generate complete device driver code in
C automatically. However, they omit an intermediate abstraction layer and generate the target
code directly from the specification. This limits the generation capabilities and extensibility of
the tool.

Differentiation from related work: A driver generation flow, such as the one envisioned
in this work, must be able to create drivers that can be plugged directly into a compiler backend
without the need for manual post-processing R5, R22. In addition, this thesis proposes more than
one abstraction layer to enable platform-independent transformations and to be extensible in the
future. In this way, the generation flow can be tuned to specific design metrics and generate C
code and other target languages.

3.3.6 Application

The application code contains no driver code but has access to the hardware through the driver
layer interface, which hides the device’s details from the application developer. A model-based
approach for building applications is challenging since applications have a vast design space.
Conversely, the driver’s design space is constrained by the IP specifications. In general, all known
approaches assist in modeling applications and systems but do not offer complete generation
approaches, as this exceeds the complexity.

Panunzio and Vardanega [149, 150] mitigate the complexity by splitting the application into
reusable blocks. It considers a component-based software engineering approach [88], where the
application is created as a composition of application components interacting with each other.
This keeps the application modular and well-organized. Other approaches derive application code
from UML diagrams, e.g., activity diagrams [107].

A common approach of designers is to use graphical editing tools for UML to design appli-
cations. For example, Papyrus [121], Sparx Systems Enterprise Architect [11] or VisualParadigm
[151] enabled a more general way of modeling software behavior, which turns UML behavior charts,
e.g., sequence diagrams, activity diagrams or state machines, into software skeletons. In order to
also derive the complete behavior, the designer must specify the target code in UML artifacts,
e.g., state transitions and actions. Furthermore, the existing UML profiles are not tailored to the
embedded domain.

MARTE (Modeling and Analysis of Real-Time Systems) [80, 134] defines UML profiles that
capture detailed information about the application, the platform attributes and its architecture.
Thus, it covers the whole design flow and provides a model that supports the HW/SW code design
of complex embedded systems. The UML profile is suitable for modeling an application with
structural and behavioral aspects. MARTE specifies the execution platform as a set of connected

39

3.4 Safety in embedded software

resources, where each resource provides services to support the execution of the application [134].
MARTE can be used as a single-source specification to enable HW/SW code design activities

for complex systems [89]. The approaches in [58, 60] use MARTE profiles as input models for
the automatic generation of RTL code or software skeletons. [123] introduces a code generation
strategy that transforms MARTE’s application models into compilable C code. An approach
for building OpenCL from MARTE is proposed in [162]. gaspard2 [20] is a design environment
that follows MDA to design data-intensive applications and hardware platforms from MARTE
models. The use of MDA to design IPs and their application is further encouraged in [229]. The
MODES framework [61] uses UML/MARTE for the functional specification and generation of
the embedded application. MODES transforms UML models into internal models representing
the application, capturing the functionality using processes communicating through ports and
channels. The ENOSYS [43] project takes this one step further and presents a design flow that
generates hardware and software and explores the design space. The core behavior is defined
through activity diagrams and state machines, while an automatic partitioning step assigns the
behavior patterns to software and hardware components. Similarly, [157] presents a methodology
for automatically generating software and exploring different allocations of software components
in real physical platforms.

Differentiation from related work: The embedded software metamodel presented in this
work can be reused for application or library file generation in the same way it is used for device
driver generation. An application can be defined through various specification metamodels, while
generator templates handle the generation of the application, taking the driver interfaces into
account. The embedded system flow for the entire stack, hardware, HW/SW interface, driver
and application enables the automatic construction of embedded systems for FPGA, including
synthesizable hardware and compileable software. Consequently, it enables automatic validation
and design exploration R30 of various design decisions.

3.4 Safety in embedded software

Safety mechanisms repeatedly appear in safety-critical systems, and their automatic generation
can shorten the development time for such systems. The BMBF project SAFE4I 12 proposes ideas
to accelerate the development of functionally safe software. SAFE4I proposes a strict separation
between the design of the software functionality and the software safety measures.

Studies [201, 213] propose a metamodel with concepts and relationships for safety to facilitate
safety compliance. It consists of entities and relationships that abstract concepts common to dif-
ferent safety standards. In [51, 119, 131], a UML profile for developing of safety-critical embedded
systems compliant with the standard IEC 61508 [30] is proposed.

Some of the most applied safety patterns are documented in [63, 87, 115, 158]. Armoush et al.
[12] propose a template representation of the safety patterns. A model representation of some
selected safety design patterns can be found in [10]. The safety patterns contain all the required
information to construct the safety mechanisms, enabling the automatic application of the safety
measures through generators. Gleirscher and Kugele summarize the applied research on design

12https://www.edacentrum.de/safe4i/

40

Chapter 3. Model Driven Engineering

patterns for ensuring system safety [81].
A generative approach that is not relying on MDE is provided in [209]. It suggests a DSL

derived from AUTOSAR to formalize safety requirements and mechanisms and uses mbeddr’s [216]
functionality to customize and integrate safety mechanisms into the design. This approach makes
integration into other frameworks difficult. Several other approaches use standardized modeling
languages to design safety measures.

[155, 170] proposes a methodology for distributed run-time monitors based on UML and
design-by-contract [62, 138]. The main idea is to extend the interfaces of software components
with contract specifications (intended behavior) that have to be fulfilled at run-time. In [153], a
methodology to define run-time monitors is presented. A generative solution for software-based
memory protection is discussed in [39, 94, 152]. In general, many approaches focus on a specific
safety measure but do not provide a generic flow that supports diverse concepts.

A versatile framework that provides a set of code generators for various safety measures is
proposed by Huning et al.[93, 94, 95]. The framework supports the following categories of safety
measures: (1) Object protection, such as Cycling Redundancy Checksum (CRC), Triple Modular
Redundancy (TMR), Range Checks or time-based Update Checks. (2) Voting mechanisms, e.g.,
majority or plurality voting. (3) Time-based constraint monitors, e.g., watchdogs, to detect time-
related errors. In addition, the framework is designed to generate both software- and hardware-
implemented safety mechanisms and to enable the generation of error-handling procedures [93].

Differentiation from related work: In this thesis, the safety modeling is separated from
the functional modeling R2. The safety pattern can optionally be extended on the functional-
correct abstract embedded software model (FW-PIM). This framework is designed to simplify the
extension with further safety measures R6. This work proposes a highly configurable time and
control-flow-based safety patterns, which can be studied as design-by-example.

41

Chapter 4

View Generator and Language Model

Code generation describes a mechanism that converts an abstract description (e.g., in UML)
into a target language source code. A well-deployed code generator increases productivity

since the generator is written with a one-time effort but can be reused indefinitely. It also increases
the target code’s quality: First, it reduces the risk of coding errors that are often introduced into
even the most repetitive code when manually written. Second, it preserves the consistency of the
code and its style between different projects and developers. Third, it increases consistency to
abstract specification models.

Model-driven architecture’s central concept is the separation between conceptual design and
a concrete implementation and automation by several transformation steps. MDA conceives the
code generation as the final model-to-text transformation step applied on the PSMs to complete
the end-to-end generation. A PSM, defined on the platform-specific layer, describes the PIM
extended by implementation artifacts tailored to the particular computing platform’s properties
(e.g., bit field or state machine schema). The presented framework defines a PSM as a language
model of, e.g., C or C++. This model contains all implementation details of the target view to feed
the code generator.

This chapter presents a novel approach that significantly simplifies code generation by moving
from a direct generation of target code with print-like statements to the view model’s assembling.
Furthermore, it introduces a domain-independent mechanism to construct any view generator con-
sisting of the platform-specific metamodel, its API and the model-to-text transformation template.
The view generator’s construction is triggered by a single source that captures the meta-syntax
of a formal language13, named as view language description (VLD). This approach simplifies the
construction of new code generators while coping with code generation’s two biggest challenges:
maintenance and complexity.

4.1 View Generator

Each step in the design process of an embedded system can be subject to different views, e.g.,
VHDL and Verilog for the HW and TeX or VBA for the documentation. In the embedded software
domain, common views are C, C++ or Rust. Each of these views has a specific implementation style
and is realized through its dedicated view generator. The principle of the view generator, shown

13A formal language encodes a grammar containing a specific set of production rules. It is, among others,
conceived to define the syntactical aspects of a programming language.

43

4.1.1 Construction of a View Generator

in Figure 4.1, is to assemble a PSM of the target language. For this purpose, a platform-specific
metamodel (PSMM) is introduced to capture the target view’s meta-syntax. An instance of this
metamodel derives part (skeleton) or all of the source code.

The view generator relies on the metamodeling environment, which automatically provides an
API for each PSMM used to populate and read the PSM in a transformation script. This way,
the designer can employ an IP-independent transformation in Section Design Pattern to map
the PIM to the PSM. Furthermore, the view generator includes the Unparser that performs the
model-to-text transformation.

PSMPSM

API

Designer

Target
Code

IP-independent
transformation from PIM

to PSM

Automatically
Generated from

VLD File

Unparser

instance
of

VLDPSMM

Statement

FirstExpression LastExpression

M
D

A G
eneration Flow

View Generator

Figure 4.1: Architecture of the view generator framework.

4.1.1 Construction of a View Generator

Each view generator supports a different target view in the MDA framework. The effort to provide
a view generator including all its components is low since it is automatically generated from a
single source. The designer only needs to specify the view language description in a one-time
effort. The individual components of the view generator are created without the necessity of
manual post-processing. A meta-syntax notation, such as the VLD, defines a formal description
of a formal language, emphasizing model constructs and targeting code formalities. A VLD defines
the structure of the source code through a set of production rules. Accordingly, it constrains the
hierarchical structure of syntactically correct views. In the generation of the view generator, the
VLD is mapped into a metamodel that allows describing any valid abstract syntax tree14 (AST).

Similarly, the framework generates the Unparser class, which contains methods to render each

14An abstract syntax tree represents the abstract syntactic structure of a language through constructs. However,
it does not represent any inessential details of the language.

44

Chapter 4. View Generator and Language Model

production rule. The methods of the class traverse a PSM recursively and output the source
code for each production rule. Thereby, the translation appends the model with language and
formatting details defined in the VLD.

struct_declaratoin

StorageClass: StorageClass[0..1]

Name: string[1]

type_doc

Doc: string[*]

type_definition

Value: string[0..1]

variable_doc

Doc: string[*]

1..*

0..1

identifier

Name: string[1]

Size: string[*]

<<enum>>
StorageClass

auto
register
static
extern
typedef

specifier_and_qualifier

StorageClass: StorageClass[*]

TypeQualifier: TypeQualifier[0..1]

TypeSpecifier: string[0..1]

<<enum>>
TypeQualifier

const
volatile
const volatile

0..1

1

0..1

Figure 4.2: Platform specific metamodel of a C-Structure.

4.1.2 Abstract Language Model

In the generation flow’s back-end, a designer can utilize different view generators. For the embed-
ded software domain, a designer constructs a valid PSM that describes part or all the software
architectural layer’s target. Each node of the PSM denotes a construct occurring in the target
code. For example, Figure 4.2 shows a part of the C view metamodel describing a C-Structure’s
essential constructs.

A struct_declaration of the C-PSMM defines a data type with an ordered sequence of one or
more type_definition. A type_definition specifies a list of structure members. Each contains an
identifier given by a Name and specifier_and_qualifier which is optionally assigning a default
Value. Furthermore, it can be specified as a static array member with a fixed Size. The designer
can optionally document the structure, but also its members.

:struct_declaration

StorageClass = typedef

Name = SPI_ChannelConfig

:type_doc

Doc = Handler to configure one SPI channel

:type_definition

:type_definition

:type_definition

:identifier

Name = ChannelID

:specifier_and_qualifier

StorageClass = const

TypeSpecifier = uint16_t

:identifier

Name = FIFO_Length

:specifier_and_qualifier

TypeSpecifier = uint16_t

:identifier

Name = TransferType

:specifier_and_qualifier

TypeSpecifier = SPI_TransferType

:variable_doc

Doc = Symbolic channel name

:variable_doc

Doc = Maximum number of data buffers

:variable_doc

Doc = Bit numbering - MSB or LSB

Figure 4.3: Platform specific model of the SPI_ChannelConfig handler.

Such a C-PSMM can take different manifestations by being instantiated as a function of a
more abstract model, the PIM. An instance of the struct_declaration is illustrated in Figure 4.3.

45

4.1.3 Unparser

It depicts the device handler of an SPI channel derived from the SPI’s PIM, including the members
ChannelID, FIFO_Length and TransferType. In this way, a designer can populate any handler
structure and the complete AST of the target view.

4.1.3 Unparser

The PSM captures the essence of the view and neglects irrelevant elements (e.g., formatting
constructs or terminal symbols) of the language. The Unparser disassembles the PSM’s AST and
extends the syntax constructs, e.g., formatting directives, to generate the target file. For this
purpose, the Unparser provides a set of transformation rules, which are utilized to translate all
AST nodes.

Algorithm 1: Method of the Unparser for rendering a struct_-
declaration in C.
1 self = struct_declaration object from the PSM instance
2 print_list = String list that is written to the output file

/* Optional constructs of a C-Structure. */

3 if self.hastype_doc() then
4 print_list.extend(self.gettype_doc().unparse())
5 if self.hasStorageClass() then
6 print_list.append(self.getStorageClass() + " ")
7 print_list.append("struct " + self.getName() + "{\n")
8 print_list0 = []

/* List containing any number of variable declarations. */

9 for x0 ∈ self.gettype_definitions() do
10 print_list0.extend(x0.unparse())
11 print_list0.append("\n")
12 print_list.extend(cf.indent(print_list0))
13 print_list.append("}" + self.getName())

The Unparser’s method for rendering the class or the production rule of struct_declaration is
provided in Algorithm 1. The function utilizes the API to assemble the string list of a C-Structure
depending on the PSM, which is finally output as a section of the target file. The feeding of this
method with the PSM of the SPI_ChannelConfig results in the target code of Listing 4.1.

Listing 4.1: Generated device handler for the SPI channel
/**
* Handler to configure SPI channels
*/
typedef SPI_ChannelConfig{

const uint16_t ChannelID; /**< Symbolic channel name*/
uint16_t FIFO_Length; /**< Maximum number of data buffers*/
SPI_TransferType TransferType; /**< Bit numbering: MSB - LSB*/

}SPI_ChannelConfig;

For the generation, all members of this class are traversed in sequential order and combined
with terminal symbols (e.g., “struct” in line 7) and formatting rules (e.g., indent() in line 12)
to obtain a legal sequence. This process considers cardinalities. For example, the C structure

46

Chapter 4. View Generator and Language Model

optionally includes a type documentation (lines 3-4) and a storage class (lines 5-6) along with a
repeating list of structure declarations (lines 9-11).

4.2 View Language Description

The view generator framework’s central format is the View Language Description, which follows
the idea of Extended Backus–Naur Form (EBNF) [175]. A VLD can be called a meta language
since it describes any formal language’s syntax. It provides a grammar that is substantially a list
of production rules that combines single constructs into significant structures [173, 222].

A VLD defines the grammar of a language and thus exclusively the syntactic validity and not
semantic correctness. In the MDA approach, the semantic validity is to a large extent guaranteed
by further constraints defined in the PIM-to-PSM transformation script. For example, it prevents
a struct_declaration from having multiple structure declarations with the same name.

Table 4.1: Symbol table for EBNF and VLD

Symbol Usage Symbol in EBNF Symbol in VLD

Rule definition = =
Rule termination ; ;
Concatenation , ,
Alternation | |

Terminal String "..." "..."
Repetition {...}* {...}

Repetition (at least one) {...}+ +...+
Grouped Elements (...) (...)

4.2.1 EBNF Distinction

A production rule of the EBNF standard ISO/IEC 14977 [192] defines a series of symbols, either
non-terminal production rules or terminal symbols. VLD utilizes many aspects of EBNF’s syntax
and notation, such as special symbols listed in Table 4.1. VLD adds new symbols and directives to
this notation to deal with formatting, which is a missing functionality of EBNF. The motivation
behind this extension is apparent when considering a subset of the C syntax in EBNF (grammar
adapted from [111]):

struct-specifier = "struct", <identifier>, "{", {struct-declaration}+, "}"
struct-declaration = {specifier-qualifier}*, struct-declarator-list
struct-declarator-list = struct-declarator | struct-declarator-list, ",", struct-declarator
struct-declarator = declarator | declarator, ":", constant-expression

The EBNF description only reflects a valid agreement on symbol order leaving out formatting
symbols. It, therefore, introduces abstraction since any number of whitespace, tab and newline
characters can be inserted between symbols. In most cases, this does not affect syntactic cor-
rectness but keeps the stylistic formatting abstract. This freedom can lead to unpretty-printing
and inconsistencies in the target code, prohibited in, e.g., [19, 98]. For example, an AST of the

47

4.2.2 VLD Notation

struct-specifier does describe multiple views and might result in a one-liner or a well-formatted
code, as shown in Listing 4.1.

4.2.2 VLD Notation

The VLD serves as the source for generating all components of the view generator: the PSMM,
its intuitive API and the Unparser. These requirements demand extensions to the EBNF notation
by additional syntax directives. The VLD for generating the components (PSMM in Figure 4.2
and Unparser in (Algorithm 1) of a C structure is shown in the VLD production rule struct_-
declaration.

It should be noted that VLD has high granularity compared to other formal languages. EBNF
specifies terminal symbols as a concatenation of alphanumerical characters. Instead, VLD defines
terminal symbols as common Python types added to the PSMM. By default, a symbol is of type
string. For assigning another type, the symbol is customized by a construct <name:type>. An
example is the symbol <first:expression> in arithmetic_expression. This notation has two
advantages: First, it restricts the type range and thus increases consistency. Second, it facilitates
the coding of the PIM-PSM transformation since variables can be directly assigned between mod-
els. For defining and referencing a custom enumeration15 in the PSMM, the designer adds @ as
a prefix to the symbol. For example, struct_declaration refers to an optional enumeration type
<@StorageClass>.

The VLD describes the formatting of production rules very precisely and specifies spaces,
tabs ("\t") and line breaks ("\n") as terminal strings in the production rules. Further, the VLD
provides special formatting directives included in the syntax, leaving for a source code that follows
any formatting convention.

One of these functions addresses a frequent problem of formal languages: index-based format-
ting for repeating symbols. In many views, the surrounding terminal strings of the first or last
instance of a repetitive sequence differ. For example, the EBNF production rule struct-declarator-
list recursively defines struct-declarators separated by a comma. It requires two hierarchical pro-
duction rules that invoke a recursive sequence of symbols, always adding a comma except for
the last one. This structure increases the effort to design the code generator and the PIM-PSM
transformation.

Instead, VLD defines a special formatting construct and stores such a recursive coding pattern
as a list in the model. Therefore, it reduces the total number of hierarchical production rules
significantly since it can handle such a pattern in a single production rule. The designer only has
to populate the list ignoring the index of the symbol. The Unparser then carries out different
formatting of each list item. For specifying item-based formatting, the list (either {...} or +...+)
is surrounded by the formatting construct %...%. Inside this notation, Python index operators can
be used to establish index-based formatting rules. A production rule that applies this formatting
construct is the variable_doc. In this example, all elements except the last one ([0:-1]) of DoC
are suffixed by a newline ("\n") operator.

Another issue of formal languages is the indentation and alignment of subsequent coding

15The UML specifies an enumeration type as a class with the stereotype «enum». The attributes of the UML
class are the values of an enumeration type.

48

Chapter 4. View Generator and Language Model

lines. For this reason, the VLD supports a modular approach to describe special functions to
handle different formatting needs. Such a function is describing a post-processing routine that
encloses part of the production rule with $<function_name>()$(...). A frequently applied
post-processor is the $indent()(...)$, which adds a tab character to each line generated by
the enclosed symbols. This notation is utilized within the struct_declaration to prepend an
indentation for the enclosed type_definition. In this example, the Unparser in Algorithm 1 calls
the post-processor print_list.extend(cf.indent(print_list0)) after resolving the enclosed
part of the production rule.

Since VLD focuses on un-parsing, the VLD rules cannot automatically be used to build a
parser. In particular, VLD does not care whether the rules form an ll(1) or ll(k) grammar or a
context-specific grammar. This is because the PSM is constructed by model transformation and
not by parsing.

4.3 C Code Syntax in VLD

A survey from EE Times and Embedded on embedded software in [71] indicates domination of
C in the embedded systems programming domain in 2019. C is the preferred choice in 56%
of the evaluated embedded projects as it neatly combines low-level functionality with modern
programming conventions. The described MDA flow for firmware generation can utilize various
view generators in the back-end. One of these view generators is the C generator.

This section introduces the C-VLD, which serves as the basis for constructing the C code
generator. The C-VLD is derived from the MISRA C guideline [19] recommended for software
development in embedded systems. MISRA C describes a subset of the ANSI-C language [99]
which defines rules constraining the language to increase reliability16. The guidelines focus on
coding practices that describe language usage but also formatting rules to improve readability.
The C-VLD production rules are designed to support these guidelines and to simplify the PIM-
PSM transformation. It provides consistent rules on the one hand and rules with appropriate
granularity on the other hand.

4.3.1 MISRA C Compliance

The MDA framework ensures compliance with a subset of the MISRA C rules listed in Table 4.2.
C-VLD handles formatting- and syntax-related rules, such as. MISRA D15.6, which obligates the
use of curly braces for the body of if, for, or while statements:

// Non-Compliant Code
if (condition)

execute_control_block();

// Compliant Code
if (condition)
{

execute_control_block();
}

These formatting rules have been extended with additional custom coding style and formatting
guidelines.

16Note that a formal language defines the language’s constructs but not how the compiler interprets them.
MISRA C improves reliability by avoiding error-prone language constructs as they might be interpreted differently
from compiler to compiler.

49

4.4 C VLD Constructs

• Indentation of control blocks initialized by loops or conditional statements.

• Surround expressions and operators with white spaces.

• Opening ({) and closing (}) braces grouping instructions shall be on their own line.

• Only one statement per line.

• No combination of a statement and a line comment // in one line.

Besides syntax, MISRA C also defines rules to ensure semantically clean code. These capture
essential aspects of program semantics that cannot be considered within a formal language, such
as the VLD. Most of these rules avoid programming errors that are not detected by the compiler
but lead to misbehavior. An example of misbehavior or undefined behavior arises with: Implicit
type conversion, values outside range, uninitialized variables or type mismatches.

Static code analysis is a common approach to ensure code compliance with most of the guide-
lines. There are different techniques available, such as AST walker analysis or data flow analysis,
which all rely on examining the source code AST. Each existing tool applies different techniques
to check MISRA conformance [73]. A tool such as PVS Studio [198] can be plugged into the
framework to perform static code analysis on the generated code.

Moreover, the MDA framework provides a built-in automatic checker to ensure compliance
with many of the MISRA C rules, listed in Table 4.2. The checker either forces compliance or
throws a warning within the PIM-PSM transformation. Instead of analyzing the source code AST,
the built-in checker processes the PIM, including the program control flow and the type system.
The analysis covers the rules that deal with semantic errors inside a single target file or function,
which requires no whole-program analysis17. Note that a program also references external libraries
not included in the PIM. For example, one rule within the scope of the built-in checker is D5.3:

// Non-Compliant Code
uint16_t var_1;
if (condition){

uint8_t var_1;
}

// Compliant Code
uint16_t var_1;
if (condition){

uint8_t var_2;
}

4.4 C VLD Constructs

The type system of C language consists of expressions, statements and blocks [111]. An expression
(x + y) is a construct that interconnects entities, e.g., variables and operators that yield a result
value. An expression is a fragment of a statement that describes a single identifier or a nested
expression tree. A statement can comprise multiple expressions to make up a complete execution
unit or action (a = b + c). Further, a block or control block is a region of the program grouping
multiple statements to a compound statement.

4.4.1 File structure

VLD specifies a syntactic file structure utilized to generate source (.c) and header (.h) files. The
root node representing the entire file is the source_text. Note that each VLD must have exactly

17The built-in static code analysis excludes all pointer arithmetic rules that require pointer analysis.

50

Chapter 4. View Generator and Language Model

Table 4.2: The firmware generation framework handles MISRA C guidelines for using C languages
in critical systems [19]. The rules are grouped into Mandatory(++), Required (+), Advisory (o).
The highlighted rules are respected through the C-VLD; others are handled within the PIM-PSM
transformation.

Category MISRA C rule Reference Title

++ D2.2 There shall be no dead code.
+ D3.1 The character sequences /* and // shall not be used within a comment.
+ D4.3 Assembly language shall be encapsulated and isolated.

+ D4.5 Identifiers in the same name space with overlapping visibility
should be typographically unambiguous.

+ D4.10 Prevent the contents of a header file being included more than once

++ D5.3 An identifier declared in an inner scope shall not hide
an identifier declared in an outer scope.

+ D8.1 Types shall be explicitly specified.
+ D8.2 Function types shall be in prototype form with named parameters.

+ D8.3 All declarations of an object or function shall use the same names
and type qualifiers.

+ D8.6 An identifier with external linkage shall have one external definition.

+ D8.12 Within an enumerator list, the value of an implicitly-specified
enumeration constant shall be unique.

++ D9.1 The value of an object with automatic storage duration
shall not be read before it has been set.

+ D9.2 The initializer of an aggregate shall be enclosed in braces.
+ D9.3 Arrays shall not be partially initialized.
+ D10.1 Operands shall not be of an inappropriate essential-type.
++ D10.4 Both operands of an arithmetic operator shall have the same type category.
o D12.1 The precedence of operators within expressions should be made explicit.
+ D12.3 The comma operator should not be used.
+ D13.4 The result of an assignment operator should not be used.

++ D13.6 The operand of the sizeof operator shall not contain any expression
which has potential side effects.

+ D14.1 A loop counter shall not have essentially floating type.
+ D14.2 A for loop shall be well-formed.
++ D15.1 The goto statement should not be used.
++ D15.5 A function should have a single point of exit at the end.

+ D15.6 The body of an iteration-statement or a selection-statement
shall be a compound-statement

++ D17.2 Functions shall not call themselves, either directly or indirectly.

++ D17.4 The exit path from a function with non-void return type
shall have an explicit return statement with an expression.

o D19.2 The union keyword should not be used

o D20.1 #include directives should only be preceded
by preprocessor directives or comments

+ D20.2 The ’, ” or \characters and the /* , // , or non-standard character
sequences shall not occur in a header file name in #include

+ D20.4 A macro shall not be defined with the same name as a keyword.
o D20.5 #undef should not be used.

+ D20.6 Tokens that look like a preprocessing directive
shall not occur within a macro argument.

51

4.4.2 Data Types

one root node without any brunches on top of it. An ifndef_description wraps the document with
preprocessor directives considering D4.10.

source_text = +description+;
description = normal_description | ifndef_description;

ifndef_description = "#ifndef ", <Name>, "\n#define ", <Name>,
"\n\n", normal_description, "\n\n#endif";

normal_description = "// AUTO GENERATED CODE // \n", [file_doc],
{preprocessor_statement, "\n"},"\n",
{type_statement, ";\n"},
{function_declaration, ";\n"},
{function_definition, ";\n"};

The file is organized into four sections. The file starts with a set of preprocessor_statements,
initializing an ordered sequence of C-preprocessors (D20.1). The section is followed by a list of
type_statements, which include type declarations and type definitions. Finally, the file first spec-
ifies a section with all function_declarations, followed by a section with all function_definitions.

Depending on the target file, the sections are assembled differently by the PIM-PSM transfor-
mation script. A header file collects all sections with declarations, such as macro definitions, type
declarations, and function declarations. So, it omits the function_definition section. On the other
hand, the source file includes all definitions and largely omits the sections of function_declaration
and preprocessor_statements.

4.4.2 Data Types

The C-VLD provides terminology for declaring and defining identifiers in the program. In general,
type declarations and definitions are intended to be within the type_statement section of the file,
but can also be moved to any other scope. A declaration introduces an identifier in the compilation
unit without allocating memory. It specifies the properties of the identifier and its storage type,
which can be either a C-primitive data type or a custom type. A typedef declaration specifies a
custom data type. According to D19.2, the VLD omits the union type and supports the following
type_statements:

type_statement = enum_declaration | struct_declaration | type_definition | array_definition;

The class type_definition performs a simple declaration or definition of a single identifier
(D12.3). A declaration specifies a named identifier with an enumerated list of declaration_-
specifier. The class can also be utilized as a pointer or array declaration. In contrast, a definition
allocates memory and instantiates a previously declared identifier according to its declaration.
It assigns a value to the memory area that was reserved through the identifier. The declaration
and definition can be split into two type_definitions, resulting in two lines of code, or it can be
handled in a single type_definition respecting D8.1.

52

Chapter 4. View Generator and Language Model

type_definition = identifier, [" = ", <Value>], "; ", [variable_doc];
identifier = [specifier_and_qualfier, " "], <Name>, {"[", <Size>, "]"};
specifier_and_qualfier = {<@StorageClass>, " "}, [<@TypeQualifier>, " "], [<TypeSpecifier>];

The struct_declaration introduces a struct type into the compilation unit, which comprises
a list of various type_definitions. The properties of the struct_declaration have already been
discussed in detail in the previous sections of this chapter. It is only used for declaring a structure
with all its members. In contrast, the definition of a structure is carried out to other classes, as
shown in the following coding snippet:

// Initialization with type_definition.
struct SPI_ChannelConfig spi_ch_1; /* Uninitialized */
struct SPI_ChannelConfig spi_ch_2 = temp_spi_ch; /* Reference members from existing object */
// Initialization with array_definition.
struct SPI_ChannelConfig spi_ch_3 = { 3, 32, MSB }; /* Initialization of contiguous memberss */

C handles structure and array definitions in the same way since both initialize a list of members.
The MDA framework exploits this fact and specifies a uniform approach to construct both in a
single production rule called array_definition. This production rule allows the composition of all
kinds of nested structures or multidimensional arrays, respecting the rules of D9.2 and D9.3.

An enum_declaration introduces a new enum tag, describing a set of named integer constants.
The VLD notation always starts with the constant value 0 and does not allow implicitly specified
enumeration constants to prevent the issue mentioned in D8.12.

struct_declaration = [type_doc], [<@StorageClass>, " "], "struct ", <Name>, "{\n",
$indent()$(+type_definition, "\n"+), "}", <Name>;

enum_declaration = [type_doc], [<@StorageClass>, " "], "enum ", <Name>, "{ \n",
$indent()$(%+<Value>+ [0:-1]:",\n" [-1]:"\n}"%), <Name>;

array_definition = identifier, " = { ", %{array} [0:-1]:", "%, " };", [variable_doc];
array = new_array | value_array;
value_array = %{expression} [0:-1]:", "%;
new_array = "\n{ ", %{array} [0:-1]:" }, \n{ " [-1]:" }"% ;

It is important to note that the type_definition section of the PSM can instantiate type
declarations and definitions in an arbitrary order maintained in the generated target code. A
rigid mapping of the order derived from the PIM can cause forwarding declarations. Instead, a
built-in mechanism in the PIM-PSM transformation checks and corrects the order by analyzing
dependencies between declarations and definitions.

The function_declarations are dumped in a different file section. It specifies the name of the
function, the expected identifier and the return type. Moreover, an addon can extend a function,
allowing to specify special function attributes (__attribute__(...)) are handled by the compiler.

53

4.4.3 Expressions

Each function_declaration has an associated function_definition with function body in another
file section unless it is declared as an external function.

function_declaration = [function_doc, "\n"], [<@FunctionSpecifier>, " "], specifier_and_qualfier,
" ", <Name>, "(", %{identifier} [0:-1]:", "%, ")", [" ", <Addon>];

4.4.3 Expressions

In a formal language, an expression is a fragment of code that evaluates to a return value. It may
consist of a single entity (operand), such as an identifier, or a contiguous combination of such
entities with C operators. The data type returned by an expression depends on the entities and
the operator.

<-

a

sizeof

ab a aa a aa

||>

&&

fedc

Figure 4.4: Abstract binary expression tree of the PSM.

Multiple sub-expressions can be combined to form a compound expression of certain execution
order. This is achieved by the recursive structure of the expressions in the C-VLD, which contain
either unary operator (e.g., logical NOT or sizeof()) or binary operators (e.g., arithmetic opera-
tion). In other words, the structure of expressions in the PSM resembles a binary expression tree.
Consequently, the VLD does not support a conditional expression (exp1 ? exp2 : exp3) as it
requires three expressions. Note that the function_expression is an exception to this rule.

In an expression tree, such as in Figure 4.4, each leaf is an identifier, while all internal nodes
of the tree represent operators invoked by a sub-expression. In order to prevent the execution
order, each expression defined as a production rule in the VLD is parenthesized. Accordingly,
the generator cannot produce an ambiguous compound expression with more than two identifiers
x + y + z. Instead, it always ensures an unambiguous order with parenthesis (x + y) + z.
So, the Unparser always generates target code that matches the execution order of the binary
expression tree by applying the in-order traversal strategy (from left to right). For example, the
introduced expression tree result: ((sizeof(a) > (b - c)) && ((d < e) || f))

The C-VLD supports the following expressions.

expression = arithmetic_expression | rational_expression | logical_expression |
prefix_expression | postfix_expression | function_expression |
sizeof_expression | typecast_expression | pointer_expression |
identifier | assembler_expression | plain_expression

The VLD introduces three types of expressions that can be utilized as binary expressions:
arithmetic_expression, rational_expression, logical_expression. The structure of every binary

54

Chapter 4. View Generator and Language Model

expression is similar since both contain two operands and a specific operator. This uniformity
also simplifies the implementation of the PIM-PSM transformation.

The expressions differ only in the optionality of the first operand, which makes them also
applicable as unary operators. A typical unary arithmetic operation is the inversion (-) of an
expression. On the other hand, a unary logical operation is the NOT (!) operation that reverses
the logical state of an operand.

arithmetic_expression = "(", [first:expression, " "], <@ArithmeticOperator>, " ", last:expression, ")";
rational_expression = "(", first:expression, " ", <@RationalOperator>, " ", last:expression, ")";
logical_expression = "(", [first:expression, " "], <@LogicalOperator>, " ", last:expression, ")";

Further, the C-VLD includes several other production rules that create unary expressions. The
postfix_expression and prefix_expression increment or decrement an expression. Other unary
expressions either extract information from the operand or cast the operand: sizeof_expression
retrieves the size of an operand with the C built-in function sizeof(); typecast_expression ex-
plicitly converts the value of the operand from one data type to another; pointer_expression is
used to either reference an operand (&) by taking its address or to dereference (*) an operand
that maps a memory address.

postfix_expression = "(", expression, <@PostPreFix>, ")";
prefix_expression = "(", <@PostPreFix>, expression, ")";

sizeof_expression = "sizeof(", expression, ")";
typecast_expression = "(", <Type>, ")(", expression, ")";
pointer_expression = <@PointerOrAddr>, "(", first:expression, ")";

The C-VLD provides unique expressions that may not follow binary or unary expressions and
may not yield a value. That is why they can be considered as statements and expressions. For
example, a function_expression realizes a function call containing any number of arguments, each
represented by an expression, which can appear as a stand-alone expression without returning a
value.

The assembler_expression is intended to express an obj_define_directive that describes an
ordered list of inline assembler instructions. It is not supported by the PIM-PSM transformation
to be called within a compound expression or compound statement D.4.3. A plain_expression is
a backup solution if the designer requests a particular coding pattern that is not supported by
the existing expressions. Both assembler_expression and plain_expression underlie no built-in
checks and have to be applied with caution as they might lead to an erroneous behavior.

55

4.4.4 Statements

function_expression = <Name>, "(", %{expression} [0:-1]:", "%, ")";

assembler_expression = "__asm__ __volatile__ (\\\n",
$indent()$({"‘", <Instruction>, "\\n’ \\\n"},
$indent()$(": ", %{"=", <ROut>} [0:-1]:", "%, "\\\n"
$indent()$(": "), {<RIn>} [0:-1]:", "%, ")");

plain_expression = %{<Text>} [0:-1]:"\n"%;

4.4.4 Statements

Statements are the smallest standalone fragment of a C program that forms a complete unit of
execution. It composes components like expressions to carry out a definite action. In the C-VLD,
statements are divided into preprocessor_statements constituting the starting section of a file and
basic statements that make up the body of a function.

The preprocessor_statement provides various directives invoked by the C preprocessor to
transform the program before actual compilation. The most common preprocessor is the include_-
directive, which is used to include system-defined or user-defined header files. The preprocessor
also handles conditional compilation through the ifdef_directive and ifndef_directive. The C-
VLD provides only a limited set of conditional compilation statements since these are hardly
needed in a model-driven generation framework. Such a framework already constructs the target
code specification-dependently using conditional transformations. For describing macro definitions
and extensions, the VLD provides object-like and function-like types of #define macros. The
obj_define_directive describes an object-like macro that replaces an identifier with a constant
expression in the compilation unit. The fct_define_directive can take additional arguments to
make the macro function-like.

preprocessor_statement = include_directive | obj_define_directive | fct_define_directive |
ifdef_directive | ifndefdirective | comment_line

include_directive = [type_doc], "#include ", <Name>;

obj_define_directive = [type_doc], "#define ", <Name>, " ",
$indent()$(expression);

fct_define_directive = [type_doc], "#define ", <Name>, "(", %{identifier} [0:-1]:", "%,
") {\", $indent()$(+statement "; \\n"+), "}"

ifndef_directive = "#ifndef ", <Name>;
ifdef_directive = "#ifdef ", <Name>;

The function body is a control block made up of a compound statement which is initialized
within the function_definition considering D13.4. A statement can be grouped into a simple
statement, iteration statement, selection statement or jump statement. The simple statement, also
named expression statement, consists of an expression followed by a semicolon, such as a function
call using function_expression. The assignment_statement belongs to the simple statements
which assign an expression to an identifier.

56

Chapter 4. View Generator and Language Model

function_definition = function_declaration, "{\n", $indent()$({statement, ";\n"}), "}";

statement = for_statement | if_statement | while_statement | dowhile_statement |
jump_statement | preprocessor_statement | expression | type_statement |
assignment_statement;

assignment_statement = <Name>, " ", <@AssignmentOperator>, " ", expression;

Another category are the iteration statements: for, do...while and while. The while_-
statement and the dowhile_statement have the same sub-components and are therefore initialized
by the same PIM-PSM transformation. Both contain a compound statement and a control expres-
sion, which is evaluated in a different sequence. The for_statement inherits a compound statement
but describes a loop proposed by D14.2 with a init-, a logic-, and an iterator-expression.

while_statement = "while(", expression, "){\n", $indent()$({statement, ";\n"}), "}";
dowhile_statement = "do {\n", $indent()$({statement, ";\n"}), "} while(", expression, ")";

for_statement = "for (", init:expression, "; ", logic:expression, "; ", [iterator:expression], "){\n",
$indent()$({statement, ";\n"}), "}";

The C-VLD covers one type of selection statement, the if_statement. The switch statement
is not supported since its characteristics can also be realized by other coding patterns. The if_-
statement contains one if_expression, multiple elseif_expressions and an optional else_expression.
Each of them also inherits a new control block as a compound statement. Additionally, the if_-
expression and elseif_expressions contain a control expression as well. The selection statements
and the iteration statements can be considered as control statements that influence the program
flow. They organize the program in a hierarchical control structure.

if_statement = if_expression, {"\n", elseif_expression}, ["\n", else_expression];
if_expression = "if (", expression, "){\n", $indent()$({statement, ";\n"}), "\n}";
elseif_expression = "else if (", expression, "){\n", $indent()$({statement, ";\n"}), "\n}";
else_expression = "else{", $indent()$({statement, ";\n"}), "\n}";

Furthermore, the C-VLD features jump_statements, limited to the three JumpOperator types
return, break and continue. The goto is omitted as it belongs to the unstructured control flow
statements and makes the code less readable and maintainable D15.1. For code documentation,
the comment_line is included as a statement enabling to insert comments between statements
considering D.3.1.

jump_statement = <@JumpOperator>, [" ", expression];

comment_line = "//", <Comment>;

57

4.4.5 Documentation

4.4.5 Documentation

Besides simple comment_line, the C-VLD is designed to support Doxygen [210] as a standard tool
for professional documentation. It includes specially formatted comments in the source code that
Doxygen extracts to generate clear documentation. Such documentation shows a well-structured
overview of the program and its constructs, e.g., (files, functions, variables). Accordingly, the
VLD provides the following rules variable_doc, type_doc, function_doc, file_doc to document
all program elements.

variable_doc = "/**< ", %{<Doc>} [0:-1]:"\n" %, "*/";

type_doc = "\n**\n",
" * ", <Doc>, "\n",
"*/\n";

function_doc = "/**\n",
" * ", <Doc>, "\n",
{" * @param ", <Parameter>, "\n"},
[" * @return ", <Return>, "\n"],
{" * @see ", <Reference>, "\n"},
"**/";

file_doc = "/**/\n",
" * @file ", <FileName>, "\n",
[" * @author ", <Author>, "\n"],
[" * @date ", <Date>, "\n"],
[" * @version ", <Version>, "\n"],
{" * ", <Doc>, "\n"},
"*/\n";

58

Chapter 5

Register Interface and Hardware Abstraction Layer

This chapter describes the implementation and integration of the register interface18 in the
design process. The register interface is a reoccurring module in SoCs that enables the

interaction between core and peripheral device (e.g., UART, SPI). It is required to operate the
peripheral and to share device information such as operating modes, configuration parameters
or data. This device information is stored in bit fields that are mapped to registers of an IP-
dependent address space. A bit field is a group of bits that contain a specific information of the
device. The allocation of bit fields in registers represent the memory layout of the device.

This chapter discusses the features of the register interface metamodel. An instance of the
metamodel is automatically created while generating the hardware of the peripheral device. So,
it defines bit fields depending on the specification model of the peripheral device. The register
interface metamodel is used as a single source specification for the generation of two layers of the
embedded stack. First, it generates the hardware of the register interface including the memory
layout of the memory mapped IP-device, as well as its connection to the bus architecture. Second,
the HAL is created from an instance of the register interface, which provides a higher-level layer
of the interface for the the device driver. This layer specifies register accesses to the IP-device on
the lowest embedded software architecture layer. The joint consideration of the software aspects
as well as hardware aspects in the model avoid specification inconsistencies.

This chapter gives an overview of the metamodel and the generation process to construct the
HW and the HAL. Furthermore, the chapter introduces an optimization step to optimize the
memory layout and discusses the advantages over standard specifications, such as IP-XACT [4]
or SystemRDL [97].

5.1 Abstract Model of the Register Interface

The abstract model of the Register Interface is shown in Figure 5.1. It is divided into two parts,
one covering the requirements for the hardware, such as the memory layout or the bus interface.
The other part is used to define access sequences to the registers of the peripheral device, relevant
for the software generation. The root node of the metamodel is the MetaRI that contains various
Interfaces. This feature allows the designer to connect the memory mapped device to multiple
busses. The Interface describes the bus architecture connected to the peripheral. It specifies the
bus protocol and the way the bus addresses the register of the peripheral.

18A distinction is made between the register interface and a HW/SW interface. A HW/SW interface describes
only the bus interface and not the memory layout of a memory mapped device.

59

5.1 Abstract Model of the Register Interface

MetaRI

Name: string[1]

Bitfield

Name: string[1]

Size: int[1]

HwRd: bool[1] = True

HwWr: bool[1] = True

SwWr: bool[1] = True

SwRd: bool[1] = True

Virtual: bool[1] = False

ParityBit: bool[1] = False

Description: string[0..1]

DontCareList

Sequence

Name: string[1]
*

Interface

Name: string[1]

AddressWidth: int[1] = 32

AddressUnit: Int[1] = 32

DataUnit: Int[1] = 32

DataWidth: Int[1] = 32

ByteOrder: Endianness[1] = Little

InterfaceType: InterfaceType[1] = AHB

Register

Name: string[1]

Address: int[1]

Description: string[0..1]

*

*

Contained

Position: int[1]
*

1

*

1

*

Access

Type: AccessType[1] = Write

Value: int[0..1]

*

1 0..1

*

<<enum>>
AccessType

Clear: AccessType

Write: AccessType

Read: AccessType

<<enum>>
InterfaceType

DataBus: InterfaceType

CSR: InterfaceType

AHB: InterfaceType

<<enum>>
Endianness

Little: Endianness

Big: Endianness

Figure 5.1: The Register Interface Metamodel

Three different bus protocols are supported by the metamodel through the InterfaceType.
The AHB (Advanced High-performance Bus) specifies a common bus standard [187] from ARM
providing a piplined protocol which is frequently used in industry. In contrast, the SimpleBus is
an in-house protocol, presented in [224, 231], which is not supporting pipelined behavior. The
CSR interface is a standard designed exclusively for RISC-V architectures to support atomic CSR
instructions. In the CSR interface, the registers are defined as external CSR registers mapped to
the addresses of the custom CSR address range19.

The ByteOrder determines how the order of the byte array present on the data bus is resolved.
Accordingly, an interface with a big-endian configuration stores the most significant byte of the
byte array into the lowest memory address. In little-endian configuration the low-order byte is
stored in the lowest memory address.

The AddressWith and DataWidth reflects the width of the connected address and data bus.
The width of the data bus dw determines the maximum number of bits that can be transferred
with one bus access. The width of the address bus aw limits the number of memory addresses of
the peripheral to the maximum of 2aw . The smallest distance between two consecutive addresses
in bits is configurable by AddressUnit au. In contrast to the DataWidth, the DataUnit du defines
the smallest number of bits that can be transmitted with a single bus access. The ratio between
dw and au indicates the number of addressable units in the register and thus defines the supported
store/load instructions for the peripheral. For example, dw = 32 and au = 8 results in a register
containing four 8-bit long addressable units. Each register is addressable through byte (sb, lb),
half-word (sh, lh) and word (sw, lw) store/read instructions. In comparison, an interface with
au = dw supports only one access size. This gives the designer numerous options for optimization
and a high degree of freedom20.

19RISC-V maps the CSRs into a separate 12-bit address space for up to 4096 CSRs. In general, the different
CSR lists are implemented as standard register file within the execution stage of the core. The CSR specification
in [16] leaves an address range for custom uses.

20Notice: The RISC-V specification defines load and store instructions for access sizes from byte to double word.

60

Chapter 5. Register Interface and Hardware Abstraction Layer

The designer must consider the following definition while creating an instance of the register
interface.

Definition 5.1. dw ∈ {x = 2n+1 | n ∈ N}

Definition 5.2. aw ∈ {x = n+ 1 | n ∈ N}

Definition 5.3. du, au ∈ {x = 2n+1 | n ∈ N ∧ n < log2(dw)}

5.1.1 Flexible Memory Layout

The flexible design of the memory layout is a significant advantage of the metamodel compared to
existing specification models described in 3.3.3. The Interfaces, Registers and Bitfields are decou-
pled from each other and can be arranged as preferred. An Interface contains multiple Registers
with the size dw, each addressable through a local Address21. Depending on the configuration of
the interface, the register is divided into dw

au
addressable units with adjacent addresses.

The MetaRI defines a set of nBF ∈ N Bitfields BF = {BF1, ..., BFn}, without specifying
the placement. In this way, Bitfields are not assigned explicitly to one of nR ∈ N registers. The
mapping of Bitfields to a certain Position of the Registers is achieved through the Contained
object. The Size of each Bitfield determines the required space of adjacent bits in the Register.
The total length of all included Bitfields must not exceed the size dw. So, it shall be entirely
within a Register. A valid mapping prohibits overlaps of Bitfields, but allows empty fields within
the Register. Consequently, each register r ∈ R = {R1, ..., RnR} allocates a multiset of n Bitfields
r = {bf1, bf2, ..., bfn}. This flexibility gives the designer control over many design choices.

However, the following design rules must be maintained.

Definition 5.4. ∀bf ∈ BF : ∃r ∈ R with bf ∈ r

The arrangement of the memory layout strongly influences the resulting hardware (see Section
5.2.1) and software design (see Section 5.2.2). A compact mapping is less performant but requires
a smaller logic area, while a loose mapping is faster and bigger in logic area. This is the trade-off
a developer must consider when defining a memory mapping.

5.1.2 Bitfield configurations

A designer configures each Bitfield in advance, either manually, or by a default configuration.
The placement is initially not considered since it is left to the generator to decide on the final
implementation, which gives freedom for optimizations. A chosen configuration for a Bitfield
applies to all position where it is finally mapped.

Each Bitfield supports two types of access privileges. First, a read (SwRd) or write (SwWr)
access via the bus. Without those, no software access from the HAL is possible. Second, it defines
the access rights through the IP core (HwWr and HwRd) where the register interface is placed.
A bf ∈ BF is specified by bfSw,Hw,Sr,Hr and satisfies the following definition.

For interfaces that allow further accesses, e.g. nibble or quadruple word, the instruction set must be extended by
customer-specific load/store instructions.

21The physical address is mapped to the local address of the peripheral device in a separate slave interface that
is connected in series.

61

5.1.3 Hardware Access Sequences

Definition 5.5. ∀bfSw,Hw,Sr,Hr ∈ BF : (Sw ∨Hw) ∧ (Sr ∨Hr)

The Virtual attribute determines the availability of the storage elements that represent the
Bitfield. A Virtual Bitfield indicates that the storage element is not created within the register
interface, but signals for addressing the Bitfield are forwarded to the core. This feature enables
individual modification of the read and write path of Bitfields.

Another feature is the ParityBit, which implements a safety measure by assigning a parity bit
to the Bitfield. For overwriting a Bitfield successfully, the parity bit must be activated during
the write operation. Accordingly, the size of the register is extended by one bit, which must be
considered in the mapping.

5.1.3 Hardware Access Sequences

Reducing the number of bus accesses increases performance. This is achieved by combining
hardware accesses into Sequences that are provided for the upper embedded software layer. A
Sequence defines a combination of Accesses of different Types, e.g., Write, Read or Clear, that
should be executed simultaneously in a single function. Each access in the Sequence references
a Bitfield independent of its location. A Write access optionally defines a constant Value or a
function argument that is written to the memory location. A sequence s is defined as:

Definition 5.6. s =
⋃
{(bf, a) | bf ∈ BF ∧ a ∈ {Clear,Write,Read}}

In addition, a designer can define a DontCareList for each Sequence, which references Bitfields
that may be modified during the access sequence without affecting the behavior. This can speed
up Sequences, since otherwise Bitfields of the same accessed address must be cached to prevent
them from being modified.

5.2 Register Interface and HAL Generation

The instantiation of the register interface is accomplished within the IP generation, as shown in
Figure 5.2. First, a default configuration of the CIM of the register interface is instantiated de-
pending on the chosen specifications. The required bit fields are derived from the IP specification,
while the bus information is extracted from the system specification22. For example, the CIM
of a communication device defines the availability of a FIFO as data buffer. This results in the
instantiation of bit fields such as FIFO_EMPTY, FIFO_FULL that would not otherwise occur.
The generator-backend builds the HW from the CIM using MetaRTL. A parallel HAL generator
constructs the access sequences and turns the CIM directly into a PSM.

Within the generation flow, the developer can manually refine the default memory layout of the
IP or use an optimizer for automatic refinement. The optimizer determines a mapping with the
best trade-off between performance, memory footprint and logic area, as shown in [178, 181, 182].

5.2.1 Register Interface Hardware

The generated SoC has a memory-mapped I/O architecture that uses a common bus for multiple
peripherals, including the data memory. The applied busses are CPU-external systems that map

22An IP that is created without reference to a system specification assumes a standard bus.

62

Chapter 5. Register Interface and Hardware Abstraction Layer

System
(CIM)

Designer

IP
Specification

(CIM)

Default Configuration

IP HW Generation

PIM

PSM

Target Code

RI
Specification

(CIM)

Driver Generation

PIM

PSM

Target Code

RI HW Generation

PIM

PSM

Target Code

HAL Generation

PSM

Target Code

Designer

RI and HAL Generation in the generator-backend

Optional
Refinement References

Optimizer

IP
Specification

(CIM)

IP
Specification

(CIM)
IP

Specification
(CIM)

Figure 5.2: The RI generation flow embedded in the generator-backend of the IP generation.

memory or peripheral accesses. The number of bus architectures connected to the peripheral is
unlimited. The intended design of different system bus architecture concepts is shown in Figure
5.3. This example illustrates a register interface connected to two bus systems (CSR and AHB).
Each system bus consists of a signal bundle, which is composed as follows.

AHB: The signal addr carries an unidirectional signal bundle from master to slave specifiying the
address of the addressed unit. The processor indicates with addr_size the size of the access
(e.g., byte, half-word, word) that range between the smallest possible addressable unit au

and the register size dw. The size and existence of the signal addr_size depends on following
definition:

Definition 5.7. length(addr_size) =

not generated, if dw = au

ceil[log2(log2(dw)− log2(au) + 1)], otherwise

The value addr_size = 0 determines the biggest possible access. Each increment of the
value halves the access size. The Table 5.1 lists the access options for a register interface
configuration with dw = 32 and au = 8.

The activation of a read or write access is triggered by the master, which enables the control
signals read_en and write_en. The two data bus bundles data_in and data_out transfer
the data between master and slave for the initiated operation.

CSR: The CSR bus is a specific bus for the RISC-V domain. A register interface of InterfaceType
CSR, defines registers of the IP as CPU-external CSRs. This allows faster accesses through

63

5.2.1 Register Interface Hardware

Table 5.1: All access combinations of a register interface with the configuration dw = 32 and
au = 8. A register within the interface has four addressable units (Bytes).

All possible accesses Access Size
(addr_size)

Base Address
(addr) Access Mask

First Byte 0b10 0x0 0xFF000000
Second Byte 0b10 0x1 0x00FF0000
Third Byte 0b10 0x2 0x0000FF00
Fourth Byte 0b10 0x3 0x000000FF
First HW 0b01 0x0 0xFFFF0000

Second HW 0b01 0x2 0x0000FFFF
Word 0b00 0x0 0xFFFFFFFF

atomic CSR instructions. The RISC-V specification limits the address range23 designated
for custom use. Similar to the AHB, the CSR is addressed via the addr signal and the data
is transmitted via data_in and data_out.

All CSR instructions atomically read-modify-write a single CSR. The two-bit signal mode
references the type of operation, as shown in Table 5.2. Compared to the AHB, the CSR
interface offers bit field-accurate accesses through mask-based operations. For a CSRC or
CSRS operation, a mask applied on data_in defines all bit fields to be cleared or set. The
bit-mask must match the mask of the bit field. In contrast, a CSRW instruction overwrites
the entire register with the applied data_in. A CSR read instruction is encoded as a CSRRS
instruction that transmits an empty mask to avoid modification of bit fields.

Furthermore, each CSR interface provides an unidirectional error signal that reports illegal
accesses to the master. There are two reasons for this: The address is invalid; The applied
mask is not matching a bit field.

Table 5.2: The mode signal determines the CSR instruction. The bus applies the same mode for
the immediate instructions, as well as the pseudo instructions.

Access Type mode signal CSR Instruction

No Operation 0b00 -
[Read]-Modify-Write 0b01 CSRRW, CSRRWI, CSRW, CSRWI
[Read]-Modify-Set 0b10 CSRRS, CSRRSI, CSRS, CSRSI
[Read]-Modify-Clear 0b11 CSRRC, CSRRCI, CSRC, CSRCI

The hardware of the interface is defined with three sub-components, as shown in Figure 5.3.
The decoder control logic processes the bus accesses from the master to the IP registers. It controls
the relevant write and read control logic of the addressed register. These in turn activate single
or multiple bit fields (in HW: flip flop arrays) within the register. Since the same bit fields can be
located in different registers, they can be activated by different register control blocks. The two
control logic blocks, write and read block, process the incoming and outgoing data.

The following applies to the activated bit fields during write access via the bus: The bit
fields are within the addressed unit and are writable by software (SwWr=True); The parity bit

23The CSR Listing of RISC-V specification in [16] defines 192 addresses for custom read/write use in machine
mode. The address range is between 0x7C0-0x7FF and 0xBC0-0xBFF

64

Chapter 5. Register Interface and Hardware Abstraction Layer

is set in data_in when the bit field contains a parity bit. The peripheral logic, however, can also
directly manipulate and read bit fields. For simultaneous access, the bus access is prioritized over
peripheral access.

data_in

addr
addr_sizeAHB

Bus

mode

addr

data_in

CSR
Bus

Decoder
Control Logic

Decoder
AHB

error

Decoder
CSR

Write
Control
Logic

Register 1

Read
Control
Logic

Write
Control
Logic

Register n

Peripheral
Logic

...

data_out_ahb_bus

data_out_csr_bus

bitfield_bus

Register Interface

access_control

Read
Control
Logic

...

BFs

Figure 5.3: Circuit block diagram of the register interface in the peripheral connected to two bus
architectures (AHB and CSR).

5.2.2 Hardware Abstraction Layer

The usability of the peripheral devices requires that the internal registers of the device can be
read and written. The HAL is considered as an interface to the hardware that operates at the
register level. In terms of software architecture layers, it acts as the intermediate layer between
the register interface and the driver layer. The HAL maps device memory into address spaces and
provides methods for the higher FW layers to perform operations on the registers. These methods
are primarily bit manipulations on the peripheral registers of the interface.

The interaction between software and hardware can be achieved by different memory mapping
techniques. For example, a memory efficient approach of dealing with bit-wise data are the
C/C++’s bit field structs. However, this approach leaves a lot of responsibility to the compiler. A
safer way to deal with bit fields is to employ shift and mask operations. Other approaches provide
a generic HAL using customized data structures to describe the memory mapping. In industry,
generating memory maps is attractive as it saves the effort of writing repetitive structures while
reducing associated errors.

The framework includes the HAL generator, as shown in the RI flow of Figure 5.2. The HAL
generator transforms the RI CIM directly into the PSM. The PIM is omitted since the level of
abstraction between RI CIM and the target code is low. Compared to existing frameworks of
3.3.3, the generator allows to create different implementations of the mapping. Thus, the designer
has the power to make different design decisions on the HAL layout. This allows the designer

65

5.2.2 Hardware Abstraction Layer

to adapt the variant according to the application’s demands affecting: code size, performance,
portability. Two implementation variants are introduced in the following.

5.2.2.1 Implementation Variants

The generation of the HAL as a software architecture layer relies on the principal of R2 (Separation
of Concerns). The HAL is constructed independently of higher software levels using a separate
generator. The central FGC model provides individual control of the HAL generator for each
peripheral device. Thus, the configurations of the HAL respectively the implementation variant
can be adapted to the requirements of each individual system component. This impacts the
interface signatures.

The device driver layer describes these hardware accesses as abstract entities in the PIM model.
During transformation from PIM to PSM, these are replaced by the concrete signatures of the
interface. Thus, the transformation from CIM to PIM solely focuses on the functionality of the
peripheral driver without considering low-level properties (e.g., memory mappings and bit field
configurations). This simplifies the implementation of the device driver generators significantly,
considering the high proportion of hardware interaction. The following paragraphs present two
implementation variants.

5.2.2.1.1 Generic Bitfield Structures A portable implementation variant of the HAL is
generated using custom bit field structures. The structure’s definition, represented in Listing 5.1,
maps the position and length of each bit field within a register. The mask of each bit field can be
derived from the structure itself. This makes the HAL highly generic.

Listing 5.1: Type definition of the generic bit field structure.
typedef struct BitField{

uint8_t pos; /** Starting Position of the Bitfield */
uint8_t length; /** Length of the Bitfield */
uint32_t volatile* const Register; /** Pointer to the Register */

} BitField;

Bit field accesses can thus be realised by generic methods that reference the bit field structure
for clearing, reading or writing. The function to set a single bit field is shown in Listing 5.2. The
applicability of this implementation variant is limited and requires the following: Bit fields have
to be configured without parity bits: For all bf ∈ BF has to apply Sw ∧ !Sr = 0. If this does
not apply, the generator throws a warning about potential misbehaviour. This is due to the fact
that the structures and the generic functions only implement read-modify-write (RMW) accesses,
ignoring parity bits. However, bit fields that do not meet the requirements need individual access
strategies (e.g., with shadow variables).

Listing 5.2: Generic write function for BitfieldStructs.
static void bitfield_set(const BitField *bf, uint32_t val){

uint32_t msk= BIT_MASK(bf->length);
(bf->Register)=(((bf->Register) & ~(msk<<bf->pos)) | (val & msk)<<bf->pos);

}

66

Chapter 5. Register Interface and Hardware Abstraction Layer

The generic HAL reduces the memory footprint to a minimum24 and defines a portable inter-
face layer. However, a generic implementation lacks flexibility and leads to the following disad-
vantages. The performance is lower since each access is performed as a costly RMW operation.
Furthermore, the implementation does not support all metamodel attributes. The biggest disad-
vantage of the approach is that it it fails to support bit field access sequences. Accordingly, there
is also no possibility of optimisation.

5.2.2.1.2 Specific Inline Accesses This implementation variant is a counter-design to the
previous bit field structures. Bit field accesses are individually designed and optimised in terms of
their memory position and configuration. Depending on this, bit field actions are executed either
by direct operation or through time-consuming RMW operations. The generation also includes
shadow variables in the function if required. Thus, each generated access function has different
costs.

The generated access functions are mapped into a function table, also called a function pointer
array. The structure of the function table is thus dependent on the generated access functions
and indirectly on the IP specification. A structure of the function table of the UART is shown in
Listing 5.3. Each channel of the device25 defines its individual entity of the function table.

Multiple entities are mapped into an array of function tables, which has several benefits. First,
it enables the implementation of loop-based or iterative accesses to channels through indices, as
required in initialisation and configuration functions, for example. Second, it increases portability,
simplifying the implementation of design patterns on higher software layers. However, the program
size also increases slightly and de-referencing requires extra CPU clock cycles.

Listing 5.3: Function pointer array of the UART HAL.
typedef struct UART_HAL_Config{

void (*TX_ENABLE_UART_WRITE) (bool TX_enable_UART);
bool (*TX_ENABLE_UART_READ) (void);
void (*TX_DATA_UART_WRITE) (uint16_t TX_data_UART);
void (*SEND_UART_WRITE) (bool send_UART);
bool (*TX_FULL_UART_READ) (void);
bool (*TX_EMPTY_UART_READ) (void);
...

}UART_HAL_Config;

5.2.3 Access Optimization

Hardware accesses comprise a major part of the overall behaviour. At the same time, they are
a main cause of misbehaviour. Following the approach of correctness-by-construction, the HAL
generator reduces error sources and improves code efficiency. Especially, when considering complex
access combinations (Sequences) as introduced in Section 5.1.3.

Algorithm 2 outlines the control flow of the transformation for determining the best access
function for a given sequence. It maximises performance by minimising the required number of

24The memory footprint is only reduced if the compiler leaves the function call for bit field access uninlined.
Otherwise, the advantage of the generic HAL is lost due to its function overhead.

25Each IP device features one or more modules. A module is also considered as a channel.

67

5.2.3 Access Optimization

Algorithm 2: Control flow that determines the generation of
hardware accesses from a given sequence.
1 bfactive = Set of bit fields to be modified in the sequence s.
2 ractive = Minimal set of addressable units containing all bfactive
3 for bfa ∈ bfactive do
4 if bfa with Parity = True then
5 Set parity bit of bit field
6 if bfa with SwRd = False then
7 Write value also to Shadow Variable
8 for ri ∈ ractive do
9 bfpassive = bf ∈ ri ∧ bf with Sw = True ∧ Parity = False

10 if bfpassive ̸= ∅ then
11 Direct access to bit fields;
12 else
13 for bfp ∈ bfpassive do
14 if bfp has Sr = False then
15 Write back Shadow Variable
16 else
17 RMW: Buffer current bit field variable

bus accesses and instructions for each sequence individually. The algorithm takes into account the
properties of bit fields and the registers to determine the best transformation. Consequently, the
generator realizes the sequence using one or more constructs of the following implementations:

Direct Modification: The value at the data input is written directly into the addressable
unit. This takes a single bus access. Direct modification is only permitted when all bit fields
in the unit are either modified or protected.

Read-Modify-Write: For an RMW access, the addressable unit is cached, modified and
written back. This function requires two bus accesses, but ensures that the bit fields within
the addressable unit retain the old value. This sequence is required unless all bit fields are
modified.

Shadow Variables: Shadow variables store the value of bit fields that are not readable
via the bus as a copy in the RAM. The value of the HW bit field and the shadow variable
must be consistent at all times. This must be considered for direct modifications, as well
as for RMW. This implementation affects memory costs and performance (time for loading
shadow variable).

According to these generator constructs, different memory layouts lead to different access
implementations. For example, two different memory layouts of the UART device, as shown in
Figure 5.4, affect the application’s efficiency greatly. An initialisation sequence applied to the
UART device is one of many sequences of the IP. It includes a single write access to TX_EN
and RX_EN. The generator transforms the initialization sequence in dependence on the memory
layout into different target code implementations, as shown in Listing 5.4. Processing the code
of the compact layout takes 17 clock cycles, while the code of the optimised layout requires less
than half of that (7 clock cycles)26.

26The results were accomplished with GCC RISC-V 9.2.0 and optimisation -01. The number of cycles is derived

68

Chapter 5. Register Interface and Hardware Abstraction Layer

R
X_

D
AT

A
R

X_
D

AT
A

R
X_

EN

TX
_E

N

P_
ER

R

D
_B

IT
S

D
_A

VA
IL

P_
BI

TS

TX
_D

AT
A

R
X_

D
AT

A
TX

_D
AT

A

TX
_D

AT
A

TX
_D

AT
A

F_
ER

R

R
X_

D
AT

A
R

X_
D

AT
A

SE
N

D

R
X_

EN

TX
_E

N
P_

ER
R

S_
BI

TS

D
_A

VA
IL

P_
BI

TS

TX
_D

AT
A

R
X_

D
AT

A
TX

_D
AT

A

F_
ER

R

R
X_

D
AT

A
R

X_
D

AT
A

SE
N

D

R
EA

D
Y

Legend:

N/A Parity Bit
R = Readable
W = Writable

P = Parity

RW1 RW1 RW2 RWRW2 W9

0x0 0x1 0x2 0x3

0x4 0x5 0x6 0x7

R9RW1 RW1 WP1 RWP1

R
X_

D
AT

A
R

X_
D

AT
A

1-9 = BF Size

RW1 RW1 RW1 RW1RW1 R1 W1 W9

R9

S_
BI

TS

RW4 RW2 RWRW2

TX
_D

AT
A

TX
_D

AT
A

0x0

0x0 0x1 0x2 0x30x0

0x4 0x5 0x6 0x7

RP1

D
_B

IT
S

R
EA

D
Y

RW4

(a) Compact register layout

R
X_

D
AT

A
R

X_
D

AT
A

R
X_

EN

TX
_E

N

P_
ER

R

D
_B

IT
S

D
_A

VA
IL

P_
BI

TS

TX
_D

AT
A

R
X_

D
AT

A
TX

_D
AT

A

TX
_D

AT
A

TX
_D

AT
A

F_
ER

R

R
X_

D
AT

A
R

X_
D

AT
A

SE
N

D

R
X_

EN

TX
_E

N
P_

ER
R

S_
BI

TS

D
_A

VA
IL

P_
BI

TS

TX
_D

AT
A

R
X_

D
AT

A
TX

_D
AT

A

F_
ER

R

R
X_

D
AT

A
R

X_
D

AT
A

SE
N

D

R
EA

D
Y

Legend:

N/A Parity Bit
R = Readable
W = Writable

P = Parity

RW1 RW1 RW2 RWRW2 W9

0x0 0x1 0x2 0x3

0x4 0x5 0x6 0x7

R9RW1 RW1 WP1 RWP1

R
X_

D
AT

A
R

X_
D

AT
A

1-9 = BF Size

RW1 RW1 RW1 RW1RW1 R1 W1 W9

R9

S_
BI

TS

RW4 RW2 RWRW2

TX
_D

AT
A

TX
_D

AT
A

0x0

0x0 0x1 0x2 0x30x0

0x4 0x5 0x6 0x7

RP1

D
_B

IT
S

R
EA

D
Y

RW4

(b) Optimized register layout

R
X_

D
AT

A
R

X_
D

AT
A

R
X_

EN

TX
_E

N

P_
ER

R

D
_B

IT
S

D
_A

VA
IL

P_
BI

TS

TX
_D

AT
A

R
X_

D
AT

A
TX

_D
AT

A

TX
_D

AT
A

TX
_D

AT
A

F_
ER

R

R
X_

D
AT

A
R

X_
D

AT
A

SE
N

D

R
X_

EN

TX
_E

N
P_

ER
R

S_
BI

TS

D
_A

VA
IL

P_
BI

TS

TX
_D

AT
A

R
X_

D
AT

A
TX

_D
AT

A

F_
ER

R

R
X_

D
AT

A
R

X_
D

AT
A

SE
N

D

R
EA

D
Y

Legend:

N/A Parity Bit
R = Readable
W = Writable

P = Parity

RW1 RW1 RW2 RWRW2 W9

0x0 0x1 0x2 0x3

0x4 0x5 0x6 0x7

R9RW1 RW1 WP1 RWP1

R
X_

D
AT

A
R

X_
D

AT
A

1-9 = BF Size

RW1 RW1 RW1 RW1RW1 R1 W1 W9

R9

S_
BI

TS

RW4 RW2 RWRW2

TX
_D

AT
A

TX
_D

AT
A

0x0

0x0 0x1 0x2 0x30x0

0x4 0x5 0x6 0x7

RP1
D

_B
IT

S

R
EA

D
Y

RW4

Legend:

N/A

Parity Bit

R = Readable

W = Writable

P = Parity

1-9 = BF Size

Figure 5.4: Two alternative memory allocations of a UART instance composed of a transmitter
and receiver module.

Listing 5.4: Implementation of the UART initialization access sequence for different memory
layouts.
#define UART_CTRL_8_0 *(volatile uint8_t*) (0x0 + _BASE_ADDR_)
// Compact mapping of Figure 5.4 a): Shadow variables and RMW access
void enable_uart_rx_tx(bool rx_en, bool tx_en){

uint8_t tmp = UART_CTRL_8_0 & ~(TX_EN_8MSK | RX_EN_8MSK);
tmp |= ((rx_en << RX_EN_8POS) & RX_EN_8MSK) | ((tx_en << TX_EN_8POS) & TX_EN_8MSK);
UART_CTRL_8_0 = tmp | ((SEND_SHADOW << SEND_8POS) & SEND_8MSK);

}
// b) Optimized mapping of Figure 5.4 b): Direct access to register
void enable_uart_rx_tx(bool rx_en, bool tx_en){

UART_CTRL_8_0 = ((rx_en << RX_EN_8POS) & RX_EN_8MSK) | ((tx_en << TX_EN_8POS) & TX_EN_8MSK);
}

Similarly, performance also depends on the transfer sizes supported by the interface. By
limiting the transfer size to 32-bit accesses (au = 32), the performance gain for the initialization
sequence of the optimised memory layout decreases. Since both memory layouts now have to
perform a time-consuming RMW operation to access TX_EN and RX_EN.

For further performance optimisation, the inclusion of parity bits is beneficial. For example,
to signal the UART device that the received data has been read, a read-acknowledge sequence
is defined. This sequence consist of a write access to D_AVAIL and clearing of the error bit
fields (P_ERR and F_ERR). For the optimised memory layout of the Figure 5.4b the following
applies: the generator ignores the bit field SEND since it is protected through a parity bit. The
implementation of this access is illustrated in Listing 5.5.

from the number of instructions. The RMW operation of Listing 5.4 requires an additional write-back cycle.

69

5.2.3 Access Optimization

Listing 5.5: Implementation of a write access to the D_AVAIL bit field and clearing of P_ERR
and F_ERR.
#define UART_CTRL2_8_0 *(volatile uint8_t*) (0x4 + _BASE_ADDR_)
// b) Optimized mapping: Faster accesses through parity bits.
void enable_send_(bool d_avail){

UART_CTRL2_16_0 = ((d_avail << D_AVAIL_16POS) & D_AVAIL_16MSK) | D_AVAIL_PARITY;
}

70

Chapter 6

Embedded Software Modeling

The generation of embedded software is organized in hierarchical subsystems of different IP
components. In addition, each IP component is divided into several software architecture

layers. The previous chapter introduced the generator approach for the lowest layer consisting of
the Hardware Abstraction Layer. The generation followed a straightforward transformation from
a register interface CIM to its PSM. Above the HAL resides the device driver layer, which provides
hardware-related (respectively IP CIM related) functions. It is designed to enable interaction with
the hardware device, using the HAL as a communication interface layer. Compared to the HAL, a
device driver contains more complex elements to describe its control flow. The device driver layer
also uses the three-layer MDA approach to create the behavior and structures of the firmware.

This chapter introduces an intermediate model, the FW PIM, to formally specify the structure
and behavior of embedded software. It can also be perceived as an abstract firmware model
equivalent to the HW PIM in the hardware generation flow. It is defined by a metamodel and
can capture all relevant aspects of a particular subsystem to describe its device driver. However,
it omits implementation and platform details, such as hardware access implementations, driver
design and architecture, as MDA prescribes. The core structure of this embedded software model
resembles that of a UML 2.0 activity diagram [164]. However, it adds the following aspects:

• More explicitly modeled actions (e.g., flow monitoring nodes to describe a checksum-based
control-flow monitoring system) adapted to the embedded software domain.

• A firmware-specific type system (e.g., bit fields, device handlers).

• Combination of configuration attributes and behavior nodes in one model.

• Unified structure that simplifies the implementation of transformation scripts.

A designer can instantiate a FW PIM to create any embedded software subsystem, such as
an application, device driver, or external library. The automated embedded software flow is di-
vided in two generator stages: An IP-specific frontend and a generic, configurable backend. A
designer defines a transformation for a particular subsystem (IP) in the frontend, which maps one
or more CIMs27 to one FW PIM. In the generator backend, the designer can apply customizable

27The designer may also choose to write a generator without CIM dependency. The generation results in a
constant PIM, further translated into different PSMs.

71

6.1 Embedded Software Generation Flow

IP-independent transformations to realize different design decisions (e.g., safety mechanisms, ar-
chitecture and design styles). Both stages are not subject to fix transformation rules. Instead,
they are controlled by a generator specification model customized by the designer.

6.1 Embedded Software Generation Flow

An embedded system comprises multiple IP devices, each specified by a configurable CIM that
includes elementary features of the IP relevant for HW and FW development. Initially, a designer
only chooses the scope of features by configuring these CIMs. Based on the selected specifications,
the holistic embedded system generation process is performed. As shown in Figure 6.1, the
embedded design flow uses the IP specification (CIM) as a starting point to drive the different
generator flows. Thus, the entire flow is mastered by one entity, as described in the practice
of a single source of truth (R1 (Single-Source Principle)). The embedded software generator
is one of these generators that constructs the device driver for the particular IP design. Two
advantages arise for the embedded software from the single-source design principle: First, it can
be exploited to generate device drivers adapted or optimized to the HW. Second, it reduces the
risk of conflicting duplicate information, ensuring the consistent and design-correct generation of
hardware and firmware.

System
(CIM)

Designer

IP
Specification

(CIM)
IP

Specification
(CIM)

IP
Specification

(CIM)
IP

Specification
(CIM)

IP HW Generation

HW-PIM

PSM

Target Code

RI & HAL Generation Flow

RI-CIM

HAL Generation

PSM

Target Code

Generator
Spec

View Generation

PSM

Target Code

IP HW Generation

HW-PIM

PSM

Target Code

generation flow

control flow

IP Core Register Interface HAL Device Driver

Designer

FW PIMM

FW-PIM

CIM - PIM Transformation

PIM - PSM Transformation

PIM - PIM
Transformation

Figure 6.1: Integration of the embedded software generation flow in the embedded design flow.

72

Chapter 6. Embedded Software Modeling

The embedded software flow follows the same three-layered MDA approach as the HW genera-
tion flow of MetaRTL, outlined in Section 3.3.1. Both flows use device-specific generator frontends
to transform the CIMs into PIMs of their domain. In HW, the generator maps the specification to
a HW PIM that describes an abstract RTL architecture with various design primitives as build-
ing blocks. The high configurability of the CIM combined with a flexible HW generator enables
numerous hardware variants, which exponentially grow with the number of attributes in the CIM.

Following the same concept, the parallel firmware flow provides an abstract formal description
that combines the structural and behavioral view of the device driver defined by the FW meta-
model. It captures both aspects for specifying the device’s behavior and an object-type system
tailored to firmware development. An instance of this metamodel (FW PIM) is derived from the
CIM with device-specific transformations. In general, the implementation of firmware requires
detailed knowledge about the underlying hardware. Due to the single-source principle of the pro-
posed framework, the instantiated FW PIM automatically aligns to the respective generated HW
variant.

UART
Configuration

UART
Generator

UART
Frontend

Generic
Backend

Ethernet
Configuration

Ethernet
Generator

USB
Configuration

USB
Generator

C

HDL

UART-Core

UART-Register
Interface

UART HAL

UART Driver

C

HDL

C

HDL

Ethernet-Core

Ethernet-Register
Interface

Ethernet HAL

Ethernet Driver

C

HDL

C

HDL

USB-Core

USB-Register
Interface

USB HAL

USB Driver

C

HDL

CIM PIM PIM PIM PSM

Ethernet
Frontend

Generic
Backend

CIM PIM PIM PIM PSM

USB
Frontend

Generic
Backend

CIM PIM PIM PIM PSM

Figure 6.2: SoC stack for different IP components.

The device-specific transformation belongs to the framework’s generator frontend, which the
designer implements for each IP component individually. Instead, the generator backend is ap-
plied to each instantiated PIM in the same way, regardless of the IP. Compared to the hardware
flow, the embedded software flow structures the first transformation in two steps: The first step
refactors and extends the PIM (PIM-PIM transformation) without changing the abstraction layer
or manipulating the actual firmware behavior. For example, it carries out the integration of
safety measures, performs coding guideline checks (e.g., suggested by MISRA in table 4.2) and
implements different driver design styles. In the second step, the PIM feeds different view genera-
tors (PIM-PSM-Transformation) proposed in Section 4 to realize different platform-specific target

73

6.2 Abstract Embedded Software Model

languages and custom styles.
These generator steps are the most significant advantage of such a framework since they can

be exploited to produce different manifestations of the firmware design for a particular IP con-
figuration. For this purpose, the generator steps provide configurable transformations (mainly
for the generator backend) to realize different design decisions controlled by a generator specifica-
tion (generator-spec). The customizable generator steps are ideal for building recurring memory-
mapped IPs in SoCs, such as SPI, UART, I2C, Timer, and Interrupt Controller. The designer
only needs to implement the generator frontend for each IP while reusing the generic generator
backend written in a one-time effort, as shown in Figure 6.2. The design effort for a device driver28

is thus limited, but the number of producible variants is enormous.

6.2 Abstract Embedded Software Model

The heart of the framework for firmware generation is the platform-independent metamodel for
firmware (FW PIMM), which is shown in Figure 6.3. An instance of the FW PIMM is constructed,
transformed, and forwarded to different view generators utilizing multiple generator steps. The
FW PIMM combines aspects to capture device attributes, software architecture and behavior
fully. So, it serves as an intermediate model of the embedded design flow that covers all relevant
features required to generate complete device drivers.

An instance of the metamodel, the FW PIM, resembles the complete structure of any firmware
target file. On the one hand, it captures the basic structural features (skeleton) of the device driver
consisting of variable and function declarations. According to the software layers, this structural
specification defines the application programming interface of the device driver to the upper ap-
plication or operating system layer. On the other hand, the FW PIM specifies behavioral features
inspired by UML activity diagrams to model processes’ control and data flow (Activities). A
designer defines an Activity as a programming sequence constructed by a procedural order of
Action nodes.29 In general, each action defines a subordinate behavior that cannot be further
decomposed within the activity. The FW PIMM provides actions either as control nodes (e.g.,
decisions, loops) or data nodes (e.g., object manipulations, arithmetic operations) that can be
arranged in any order. Conclusively, the FW PIMM covers two essential aspects to specify a com-
plete structural and behavioral abstract firmware model: A comprehensive type system (Objects)
and a large set of firmware-specific Actions. Both, Actions and Objects, are designed as templates
that can be easily extended by other entities in new versions.

All firmware’s target files are instantiated in the same single FW PIM in the embedded software
flow. An instance comprises each IP as a Driver, including one or more Modules, also called
channels. A module, in turn, specifies the structural and behavioral features of the device. This
general consideration simplifies the cross-referencing of variables and functions between different
scopes. Additionally, it allows performing further rule checks, e.g., concerning the visibility of
objects in the firmware as defined in D4.5, D8.3.

28The framework is not limited to device drivers. It can also create firmware libraries that do not have an
underlying hardware generator. In the following, the term device driver is used for all these kinds of the firmware.

29Compared to the abstract HW model, the FW model maps a sequential programming structure, similar to
programming languages such as C.

74

Chapter 6. Embedded Software Modeling

Furthermore, a firmware component can optionally include a Statemachine. The state machine
structure is similar to UML’s state machine notation, consisting of Transitions and States.

*

*

*

*

*

In

1

Out

1 *

Out

1 *

In

1

Out

1 *

In

0..1 *

In

1

Out

0..1 *

In

1

FunctionType

1

Out

1*

In

*

Out

1

1

*

1

0..1 0..1

*

If

1..*

Else

0..1

*

In

*
*

In

0..1
*

In

*
* *

Index

*

*

*

*

entry

0..1

do

0..1

exit

0..1

incoming *

outgoing *

0..1

*

*

Metafirm

ObjProps
AccessType: Access = None

Pointer: bool

Type: string

Driver
Include: string [*]

HAL: string [0..1]

Statemachine
Include: string [*]

Guard

Variable
Value: string [0..1]

Enum: string [*]

State
kind: StateType = None

TypeCast

GroupBitfield

ArrayConfig
In: Object[*]

Module
Index: int

Operation
 Operator: string

Write Clear CreateCreate Return

Type: JumpType = Return

Object

CreateCall FlowMonitoring

Type: FlowMonitorType = Update

Activity

Condition
Not: bool = False

Operator: string [0..1]

Repeat
Iterate: Iterate = None

From: string [0..1]

Do: bool [1] = False

Decision

ActionNode

ActivityGroup

Bitfield
SwRd: string

SwWr: string

Size: int

Transition

ObjExtract
Address: bool [0..1]

Decision, Write, Clear, Repeat, Operation ...

Config, Variable, Bitfield, GroupBitfield, Array, ObjExtract, Activity, Condition,

Out

0..1

PerformanceWrapper

Type: WrapperType = Timer

ActivityGroup: PreGroup

ActivityGroup: PostGroup

ActivityGroup: Group

*

In

1*

In

*

Size

*

*

In

1

Out

1

VerificationWrapper

ActivityGroup: PreGroup

ActivityGroup: PostGroup

ActivityGroup: Group
<<enum>>

FlowMonitorType

Initialize: FlowMonitorType
Update: FlowMonitorType
Verify: FlowMonitorType
HandleError: FlowMonitorType

<<enum>>
WrapperType

MemAddr: WrapperType
Timer: WrapperType
InsCounterCSR: WrapperType
CycCounterCSR: WrapperType

<<enum>>
Access

ReadOnly: Access
Asynchronous: Access
Persistent: Access
AsynchronousReadOnly: Access
AsynchronousPersistent: Access
PersistentReadOnly: Access
None: Access

<<enum>>
Iterate

dec: Iterate
inc: Iterate
None: Iterate

<<enum>>
StateType

exitState: StateType
entryState: StateType
None: StateType

<<enum>>
JumpType

Return: JumpType
Break: JumpType
Continue: JumpType

Instruction
 Operator: string

*

In

*

Out

1

NamedElement
Description: string [*]

Name: string [0..1]

*

Figure 6.3: The FW PIMM (Metafirm) of the embedded software generation framework. The gray
classes depict the abstract object type system. The black boxes represent the action system that
can be assembled into sequences to describe the behavior of a device.30

6.2.1 Limitation

The FW PIMM is an abstract representation of conventional embedded software languages such
as Misra-C or Misra-C++. Thus, it covers a wide range of embedded language constructs on an
abstract level. The model is mainly considered for developing simple embedded software architec-
tures following simple control loops, cooperative multitasking or preemptive multitasking. For two
reasons, the FW PIMM is not recommended for embedded software that deals with sophisticated
kernels beyond simple microkernels. First, it supports no simultaneous behavior (parallelization),

30Note: All metamodel classes have a generalization relation to NamedElement, which contains the attributes
Name and Description. For simplicity, the generalization relationship has been neglected from the figure.

75

6.2.2 Objects

which is mainly required for modeling multicore systems with complex synchronization efforts.
Second, the FW PIMM supports inline assembly capabilities only in a basic way. Accordingly,
systems demanding substantial assembly parts for complex resource management or speed-critical
behavior require further extensions or a special assembler submodule.

Compared to the UML activity diagram, the FW PIMM focuses on implementing synchronous
processes that define a process through subsequent actions. However, the UML notation provides
specific asynchronous events or invocation actions such as Send Signal Action, Timer Action or
Call Behavior Action. The FW PIMM, instead, implements asynchronous behavior as interrupts.
Furthermore, the FW PIMM defines some actions provided in UML as a conjunction of different
action nodes. For example, a Wait Action is implemented as a decision node in conjunction with a
timer call. A Send Signal Action is implemented as an IP-Transmitter call. However, the required
UML-functions are not needed for device driver generation and are therefore not supported.

6.2.2 Objects

The object-type system (classes in gray) constitutes the central element of the FW PIMM. Objects
define entities that can be referenced in various aspects of a firmware file. They serve as, e.g.,
arguments for functions or as input or outputs for various action nodes. Compared to EBNF or
C-PSM, an Object constitutes identifiers and also expressions. In a real application, an object
can be of any complexity. The FW PIMM provides a flexible scheme to create and reference all
possible variants of objects in the same way. In other words, it specifies no predefined type system
(e.g., int, char). However, it gives the designer the latitude to customize objects and types.

Table 6.1: A list of different access types and the corresponding type identifiers (example for the
language C) specifying objects.

Access type Qualifiers Remarks

None Object is stored in RAM and the cached value can be used.

ReadOnly const The variable is protected throughout the entire scope.
Cached values can be used.

Asynchronous volatile The compiler applies no optimization and access reordering.
Cached values will not be used.

Persistent static The variable remains in memory and preserves the value.
It limit the variable’s or function’s scope.

AsynchronousPersistent static volatile Forces different threads to read the variable each time.
AsynchronousReadOnly const volatile The code keeps the value, but it can be changed externally.

PersistentReadOnly static const A protected variable with internal linkage.

Object is a generic class in the metamodel that can take different variants and is easy to main-
tain due to consistency. Each manifestation of the object is declared, assigned and transformed
similarly. The most basic object is the Variable that describes a storage element of a specific type.
The type and scope of each variable and certain other objects are managed by the class called
ObjProps. This class provides a very abstract pattern to cover all needed data representations. So,
the FW PIMM does not specify concrete types. Instead, it defines the Type as a string attribute
for giving a hint that representations are the same. A variable can refer to any ObjProps instance,
with the object defined as both default type (e.g. int, boolean) or as a complex type structure. In
addition, the ObjProps can be used to declare the variable as Pointer. Furthermore the ObjProps

76

Chapter 6. Embedded Software Modeling

contains one entry to declare the variable as Pointer. Another entry is used to specify the storage
and AccessType which can be obtained from the Table 6.1.

The objects demonstrate the essence of FW PIMM’s concept of reusing model patterns as much
as possible. Many other object types reuse the same attributes of (ObjProps) as the variable, which
keeps the design effort and the static checks for the transformation low. Furthermore, a variable
is defined to be assigned and reused in more complex storage elements like arrays or structures. In
the following, the other fundamental manifestations of the object besides the variable are discussed
in more detail:

• Bitfield: A device driver interacts with bit fields as objects. The FW PIMM describes a
Bitfield object only with device driver-relevant attributes, including its name, software read-
write capabilities and size. When instantiating the FW-PIM, a framework automatically
loads all bit fields from the device-associated RI-CIM (cf. Figure 5.1), ignoring driver-
irrelevant information31. A bit field, which is used as an entity of actions, automatically
employs the functions and macros defined in the HAL. So, each Bitfield object’s address,
offset, and read and write functions can be cross-referenced.

Each Driver contains a list of Bitfields, while a single module allocates only a subset of those.
This limitation increases the robustness since each module can only address its designated
bit fields. The absence of a bit field for a certain device configuration can either be exploited
in the generator for describing alternative control flows or cause an error.

• GroupBitfield: The FW PIM automatically groups bit fields with the same context but
different modules in GroupBitfield. Each group represents a pointer array for a common bit
field that exists among IP modules. Groups reduce the coding effort for transformations
and simplify dealing with different generator and device configurations. They comprise
important information for the generation steps, which can be exploited in the generator to
examine the presence and number of bit fields of a particular context.

Listing 6.1: Three different device driver implementations for activating timer channels. Note:
The code snippets show the generated driver code for a HAL that follows the implementation
variant of Specific Inline Accesses of Section 5.2.2.1.2.

// a): Enabling a specific timer channel via specific driver function.
void enable_timer_channel0(){

BF_ACTVAL_CH0_WRITE(MAX_VALUE[0]); // HAL: Reset actual counter value.
BF_STATUS_CH0_WRITE(TIMER_READY_ENUM); // HAL: Status of the timer channel.
BF_ENABLE_CH0_WRITE(1); // HAL: Enables the timer channel.

}

// b): Enabling a specific timer channel by function argument via generic driver function.
void enable_timer_channel(TIMER_CHANNEL_ENUM CH){

Timer_HAL[CH].BF_ACTVAL_WRITE(MAX_VALUE[CH]); // HAL: Reset actual counter value.
Timer_HAL[CH].BF_STATUS_WRITE(TIMER_READY_ENUM); // HAL: Status of the timer channel.
Timer_HAL[CH].BF_ENABLE_WRITE(1); // HAL: Enables the timer channel.

}

31The designer of a transformation script can also directly reference the complete RI CIM with all bit field
attributes. In this case, however, the designer has to utilize the API of the register interface metamodel to access
its attributes.

77

6.2.2 Objects

// c): Enabling all timer channels via loop.
void enable_timer_channels(){

for (int i=0; i<TIMER_CHANNEL_MAX; <++){
Timer_HAL[i].BF_ACTVAL_WRITE(MAX_VALUE[i]); // HAL: Reset actual counter value.
Timer_HAL[i].BF_STATUS_WRITE(TIMER_READY_ENUM); // HAL: Status of the timer channel.
Timer_HAL[i].BF_ENABLE_WRITE(1); // HAL: Enables the timer channel.

}
}

A designer describes the behavior in the transformation by referring to the bit field type (e.g.,
CHANNEL_EN) rather than a specific bit field (e.g., CHANNEL_0_EN). This simplifies
the design of generator patterns and enables the handling of different device driver designs in
a single transformation, as shown in Listing 6.1. In a), the specific device driver implementa-
tion addresses particular bit fields of the groups directly. In contrast, the implementation b)
generically (e.g., via a subscript) writes the bit fields of the group. Furthermore, Listing 6.1
shows addressing the bit fields of all groups via loops as provided in the code snippet c).

• Config: A Config is comparable with a structure in C. It contains a list of various Objects
that recursively may contain further Configs. Thus complex hierarchical structures can be
defined, necessary, e.g., for the specification of device handlers.

• Array: The Array describes a multidimensional list of objects. All entries of the array have
the same ObjProps type as the array type itself. In general, the structure of the array
resembles that of the Config. Nevertheless, an array additionally references a list of objects
to describe its dimensions. Accordingly, an object as an array entity is either intended to
define the array Size or an entity of the array (In). The objects that specify the array’s
dimension sizes can be of any type, e.g., a bit field. All other objects are subject to static
type checks that verify the array criteria of matching component types.

• TypeCast: The TypeCast is a special object mostly considered an expression in a target
language. However, it is treated as an object in the FW PIMM since it has no impact as a
standalone action. It converts an object of one data type into another. A TypeCast takes a
single object as input and defines an explicit conversion to the new type given by ObjProps.

• ObjExtract: Similar to the TypeCast, the ObjExtract takes one object as input. This object
is applied for two different purposes. First, for indexing specific elements of an array. The
indices reference a list of objects to access the array element (in FW PIMM: Index).

Second, the ObjExtract is used to reference or de-reference objects. Referencing, i.e., set-
ting the attribute Address to True, means taking the address of an object. De-referencing
(Address is False), on the other hand, takes the value pointed to. Exemplary for C code,
the reference operator (&) or de-referencing operator (∗) is thus inserted into the generated
code.

• Condition: A Condition is primarily a part of a conditional statement, e.g., if-statement. The
FW PIMM handles the Condition as a non-standalone entity that can only be referenced
within actions. An object defined as a condition is always evaluated as either true or

78

Chapter 6. Embedded Software Modeling

false. A designer can define a unary condition by referencing a single object, as shown for
n_full_cond in Listing 6.2. Alternatively, a condition may be described by two objects
linked through an Operator, defined in count_cond. For more complex conditions involving
more than two objects, e.g., spi_write_cond, the designer must specify condition trees
using recursive references to other conditions.

Listing 6.2: Specification of a nested condition from the SPI driver generator.
// Expected/Generated Code: ((! bitfield_get(BF_FIFO_FULL)) & (i < max_count))
count_cond = sCondition(Ins=[i, max_count], Operator="<"); // (i < max_count)
n_full_cond = sCondition(Ins=[BF.FIFO_FULL], Not=True); // (! bitfield_get(BF_FIFO_FULL);
spi_write_cond = sCondition(Ins=[n_full_cond, count_cond], Operator="&");

• Activity: An Activity as an object specifies a function defined within the scope of the FW
PIM. In case the activity is defined as a Pointer, the object provides the pointer to the
function. Otherwise, the object is interpreted as a function call.

All introduced objects are processed equally within the framework. For example, actions
always define operations taking predefined objects as entities independent of their type. The
decomposition of the objects into target code is hidden from the designer and takes place in
the generator back-end. Object construction is accomplished utilizing the auto-generated API as
shown in Listing 6.3. On top of the API, object handling (e.g., instantiating and static checks) is
extended and optimized by the FW DSL detailed in Section 7.2.

Listing 6.3: A set of examples demonstrating the initialization of objects utilizing the automatically
generated API. Note: The FW-DSL provides simplified functions serving the same purpose.

/*Example Variable: uint16_t *rx_data */
rx_data = sVariable(Name="rx_data", Pointer=True, Type="uint16_t");
/* Example Array: uint16_t rx_data_array[bitfield_get(BF_FIFO_SIZE)] */
data_array = sArray(Name="rx_data_array", Sizes=[BF.FIFO_SIZE], Type=rx_data.getType());
/* Example ObjExtract: rx_data_array[2] */
data_array_idx2 = sObjExtract(In=data_array, Index=[2]);
/* Example TypeCast: (uint8_t) tx_data_array[2] */
data_reduced = sTypeCast(Type="uint8_t", In=data_array_idx2)
/* Example Activity: ctrl_uart(); */
ctrl_uart = sActivity(Name="ctrl_uart", Type="void")
/* Example Config: UART_Config_t UART_Config = {data_reduced, *rx_data} */
config_data = sConfig(Name="UART_Config", Type="UART_Config_t");
config_data.addObject(data_reduced);
config_data.addObject(rx_data);

6.2.3 Activities and Actions

The second part of the FW PIMM deals with functions and their behavior. A target file repre-
sented as a Driver entity provides a list of n-ary functions (in FW PIMM: Activity), taking n

objects as arguments. Each function is perceived as a self-contained activity within the scope
specified by the AccessType. Note: One activity specifies the function header, while all activities
of a driver entity provide the complete driver API.

79

6.2.3 Activities and Actions

The structure of the behavior follows the structured programming paradigm since it maps the
abstract behavior in the same order in which it is created and also executed. Considering the FW
PIMM, the behavior or control flow of an activity is given by the ActivityGroup, which symbolizes
a cohesive basic building block with a sequential list of action nodes. An ActionNode also called
an action, is a single step within the control block that is not further decomposable at the PIM
layer. The FW PIMM defines actions as a template class that can take various types, similar
to objects. In order to realize a variety of different behaviors, these action nodes can be freely
arranged to a coordinated flow of actions. In other words, the FW PIMM maps a control flow
as a flexible arrangeable list of actions. This list notation has two significant advantages: First,
Python’s built-in functions for list population or list manipulation can create or transform the
control flows. Second, a list reflects an exact sequence of behavior with a start and end node and
enables the control flow analysis at an abstract level.

The structure of all action entities (classes in black) has some common characteristics since
they always reference a set of objects to realize a certain behavior.32 Considering the FW PIMM,
an action references an object as an incoming (In-) or outgoing (Out-) object. As a straightforward
analogy: An In-object serves as the input of action and typically retains its value, e.g., operand
on the right-hand side of an assignment. Out-objects, in contrast, are modified by the action
(left-hand side).

In general, the actions are clustered into two different groups. One group comprises control
flow actions that coordinate the flows through alternative sub-control blocks. The other defines
object actions that purely map the data flow.

6.2.3.1 Object Actions

A list of object actions is treated as an ordered sequence of successive behavior steps without
branching (An exception is the Return action). The sequence must be strictly maintained through
the different transformation steps. In other words, manipulating the list by injecting action
patterns is legal unless it changes the order of the existing actions.33

An object action in the FW PIMM describes the smallest single step, which can not be further
subdivided. Such a step describes an action on an object, e.g., Write, Clear, Create, Operate.
The notation of all actions is uniform, thus reducing the complexity of the abstract language and
leading to more usability and less implementation effort for transformations. All these actions
share an optional composition to objects, which is the key aspect of object-based actions. This
freedom allows referring to an object that is not in the scope of the FW PIM or is not instantiated,
e.g., a constant or an external object. In addition, each action refers to one or more objects,
depending on the action’s type. At this point, the action can associate its composite object or
any other object in the scope.

As shown in the examples, the structure of all object actions is similar, thus increasing usability
and reducing the implementation effort of generators.

32This consistent characteristic of the template-based design of actions in FW PIMM is suitable for extensions
so that new actions, e.g., safety-related actions, can be easily added to the FW PIMM.

33However, the binary code or the final execution sequence may differ. A compiler can rearrange the order,
guaranteeing that the optimization does not change the functionality.

80

Chapter 6. Embedded Software Modeling

Listing 6.4: A set of examples demonstrating the implementation of object actions utilizing the
generated API. Note: The FW-DSL provides simplified functions serving the same purpose.
1 //Variable declarations from Listing 6.3
2 /*Example: Create */
3 group.addCreate(Out=rx_data); // uint16_t *rx_data;
4 group.addCreate(Out=rx_data_array); // uint16_t rx_data_aray[bitfield_get(BF_FIFO_SIZE)];
5 /*Example: Write */
6 group.addWrite(Out=rx_data, In=rx_data_array); // *rx_data = rx_data_array;
7 group.addWrite(Out=rx_data, In=BF.RX_DATA); // *rx_data = bitfield_get(BF.RX_DATA);
8 /*Example: Clear */
9 group.addClear(Out=rx_data); // *rx_data = 0;

10 /*Example: Return */
11 group.addReturn(Out=rx_data); // return *rx_data;
12 /*Example: Operation */
13 group.addOperation(Out=rx_data, Operator="++"); // *rx_data++;
14 /*Example: Compound Operation: data = data << (32-data_width);*/
15 group.addOperation(In=[data, dummy], Out=data, Operation="<<"); // data = data << dummy;
16 group.addOperation(In=[32, data_width], Out=dummy, Operation="-"); // dummy = 32 - data_width;
17
18 /*Example: Instruction */
19 // __asm__ __volatile__("mv %0, %1" : "=r"(rx_data_aray[2]) : "r"(*rx_data));
20 group.addInstruction(In=[rx_data], Out=[rx_data_array[2]], Operator = "mv");

The implementation of several actions is demonstrated in Listing 6.4. All examples reuse
objects constructed as shown in previous Listing 6.3. An essential object-action class is the
Create action, which declares an Out-object in the sequence. In lines 3 and 4, the Create action
initializes a pointer variable and an array. However, it can be applied to any other object type.
Optionally, the node can be extended by an In-object that pre-initializes the Out-object.

However, the Write action overwrites an existing Out-object with an In-object. As stated in
lines 6 and 7, it is mandatory to specify exactly one incoming and outgoing object. Keep in mind
that the generated code for a Write actions automatically adapts to each object combinations,
e.g., ObjectBitfield = ObjectActivity, ObjectV ariable = ObjectConfig. In contrast to the Write, the
Clear action refers only to the Out-object being deleted or destroyed. Similarly, the Return action
serves as an output node for the activity or action sequence that returns an optional Out-object.

Operations are arithmetic or logical calculations with one operator and an arbitrary number
of input objects. So they can appear as an unary operation without an incoming object (line 13)
or as an n-ary operation with n In-objects. In this context, complex operations with multiple
operators can be constructed as compound operations complying with the expression system of
the VLD (see 4.4.3). An example of a compound operation is shown in lines 15 and 16. Note that
the DSL simplifies the construction of compound operations in a single function.

Existing UML specifications for embedded development have ignored the unification of low-
level and high-level code in abstract models. The FW PIMM solves this shortcoming and supports
a low-level Instruction action that follows the same structure as the Operation. The Instruction
allows embedding special low-level code segments into the control flow, which is important for
two reasons: First, it can result in more efficient or safer code than the compiler might otherwise
create. Second, particularly in the domain of RISC-V systems, processor-specific instructions can
be incorporated into the control flow.

81

6.2.3 Activities and Actions

6.2.3.2 Control Flow Actions

The activity’s control flow actions are executed in the order in which they appear in the action
list. Control flow actions or control nodes, however, break this linear control flow into alternative
execution orders. The FW PIMM considers an action as a control node if it inherits one or more
sub-control flows as basic blocks. Often, this is also associated with branching and enables the
design of conditional executable basic blocks. The three most frequently used control nodes (while,
do-while, if-else) are shown in the control flow graph (CFG) of Figure 6.4.

If condition Else

A[x]
(Decision)

A[x].If

A[x+1]

A[x].Else

A[x-1]

(a) if-else

A[x]
(While)

While condition

A[x].While

A[x+1]

A[x-1]

(b) while

A[x].DoWhile

While condition

A[x]
(DoWhile)

A[x+1]

A[x-1]

(c) do-while

Figure 6.4: The control flow graphs for three standard control nodes available in the FW PIMM.

A Decision or if-then control node specifies a nested control block executed once under a certain
condition. In the FW PIMM, an if-decision comprises a Guard (If), which contains a Condition-
object and the conditionally executed action list (ActivityGroup). Furthermore, a decision node
can be extended by a set ng ∈ N of various guards, each providing a different execution path. In
this case, the if-guards gif = {1...ng−1} must contain a condition. At the same time, the last
guard gn = {ng} can optionally be specified as an alternative Else-guard without condition. The
CFG in a) illustrates such an if-then-else scenario. In this example, an action list A contains a
control node at position x that branches into two distinct execution paths. Each comprises an
action list A[x].If and A[x].Else as a child.

Compared to the Decision, a Repeat or loop node continually executes one building block
recursively. In FW PIMM, the Repeat is specified by a single Guard and thus by a unique
ActivityGroup and Condition. The class can be instantiated in different ways to create several
types of loops. However, all loops have one thing in common: once the condition is no longer met,
the loop terminates and continues executing the parent action list.

The CFGs in b) and c) show two characteristic loop structures, a while loop (same control
flow as a for-loop) and a do-while loop. Both loops have identical structures but have either the
attribute Do enabled or disabled. Following the graph, a do-while loop at position x of an action
list A comprises a block A[x].DoWhile, which must be executed at least once before executing
A[x+ 1]. A while-loop instead can directly jump to the action A[x+ 1]. In contrast, the for-loop

82

Chapter 6. Embedded Software Modeling

requires additional attributes. Besides the end condition, a for-loop declares an In-object as a
loop control variable and an Iterate that defines the increment of the control object.

Listing 6.5: Initialization of a control flow with multiple branches.
// if (SPIConfig.Receiver){
if_group = group.addIf(Condition=self.Receiver) // Child list "if_group"
if_group.addCreate(...) //if_group[0]

// while(!bitfield_get(BF_FIFO_EMPTY)){
while_group = if_group.addRepeat(Condition=[BF.FIFO_EMPTY], Operator="!") // Child list "while_group"
while_group.addWrite(...) //while_group[0]

// if(!(bitfield_get(BF_FRAME_ERROR) | bitfield_get(BF_PARITY_ERROR))){
frame_parity_error = sCondition(Ins=[BF.FRAME_ERROR, BF.PARITY_ERROR], Operator = "|")
not_error_group = while_group.addIf(Condition=[frame_parity_error], Operator = "!")
act_search = not_error_group.addWrite(...) //not_error_group[0]
// }}}

A complex device driver function with many alternatives to support may contain multiple
nesting levels, each providing a new action list as a leaf and thus resulting in an action list
tree. Regardless of the nesting level, the designer uses the same API to assemble, analyze, and
transform the particular action lists of the tree. An abstract implementation example for such
a code with multiple nested branches is shown in Listing 6.5. An action list or individual ac-
tions within this tree can be accessed via index operators since the framework supports easy
handling of multi-nested control blocks by exploiting Python’s NumPy array indexing. Thus,
the action named act_search from the example can be accessed from different tree perspectives,
e.g. not_error_group[0], while_group[0][0], if_group[0][0][0] or group[0][0][0]. This
makes the implementation of the generators more straightforward.

The FW PIMM provides two other control blocks named VerificationWrapper and Perfor-
manceWrapper, presented in detail in sections: 9.3.2 Performance Analysis and 9.3.1 Firmware
Verification.

6.3 Generator Specification Model

A generator frontend is implemented to not include any specific implementation feature into the
FW PIM. Accordingly, the transformations focus purely on the functional aspects of the firmware.
Nevertheless, there is a strong demand to support different system and application requirements
by different design choices. For this purpose, the generator specification metamodel is introduced
in Figure 6.5.

83

6.3 Generator Specification Model

<<enum>>
ErrorHandlerType

 Hardware: ErrorHandlerType
 Application: ErrorHandlerType
 Driver: ErrorHandlerType

0..1

*
*

*

*

<<enum>>
StatemachineType

 FunctionPointer: StatemachineType
 IfElse: StatemachineType

0..1

<<enum>>
HALStyle

 BitfieldStruct: HALStyle
 InlineFunction: HALStyle

<<enum>>
MonitoringVerification

 BeforeReturn: MonitoringVerification
 Continuous: MonitoringVerification
 BasePath: MonitoringVerification

<<enum>>
MonitoringFingerprint

 CRC: MonitoringFingerprint
 ValueInc: MonitoringFingerprint

1

<<enum>>
Architecture

 Generic: Architecture
 SpecificOne: Architecture
 SpecificMul: Architecture

Interrupt
ModuleName: String = ALL
Priority: int
Enable_by_init: bool = True
Preemptive: bool = True
Type: Type

Watchdog
Position: WatchdogPosition
Value: int
Mode: WatchdogMode

Monitoring

NonBlocking
ModuleName: String = ALL
Type: Type

SafetyPattern

ErrorHandler

DriverStyle
XMLpath: string
Architecture: Architecture= GenericFunction

InstructionMonitoring
Type: FingerprintType = CRC
Verification: MonitoringVerification
Level: int

ErrorSource
Type: ErrorHandlerType = Hardware

SystemConfig
CompilerPath: string

Application
Type: StatemachineType
Analysis: bool
Path: string

Template

RegisterInterface
BaseAddress: int
XMLpath: string
Style: HALStyle

Function

Blocking
ModuleName: String = ALL
Type: Type

Basic
ModuleName: String = ALL

BlockMonitoring
Type: FingerprintType = CRC
OptimizedRange: bool
Verification: MonitoringVerification
Balance: bool
Level: int

PAD
changeDirection: Basic [*]
toggle: Basic [*]

IODevice
control: Basic [*]
write: Basic [*]
read: Function [*]

Timer
close: Basic [*]
start: Basic [*]
stop: Basic [*]
setCCU: Basic [*]
setDelay: Basic [*]
getTicks: Basic [*]
getValue: Basic [*]

PWM
Channel: string = 'CH0'

Period: int = 0

StartRising: bool = True

StopFalling: bool = True

setDuty: Basic [*]

getPulse: Function [*]

CommunictionDevice
transmit: Function [*]
receive: Function [*]
close: Basic [*]
open: Basic [*]
control: Basic [*]

RiscVCore
XMLpath: string

UART I2S
start: Basic [*]
abort: Basic [*]

SPI
active: Basic [*]
start: Basic [*]
full: Basic [*]
empty: Basic [*]

InterruptController
DynamicContext: bool
Tail_Chain: bool = False

SafeWrite
Bitfields: string [*]

Blocking, NonBlocking, Interrupt, Basic

BlockMonitoring, SpecificMonitoring, InstructionMonitoring

UART, SPI, DMX, InterruptDevice, RiscVCore ...

0..1

1

WatchdogCH
Channel: string = 'CH0'

start: Interrupt[0..1]

stop: Interrupt[0..1]

feed: Function[*]

expire: Interrupt[0..1]

control_channel: Basic [*]

InitValue
Line: int
Value: int

VerificationValue
Line: int
Value: int [*]

CFile
Path: string

Generator
Path: string

0..1

1

**

*

1

0..1 0..1

1 <<enum>>
WatchdogMode

 Start: WatchdogMode
 Stop: WatchdogMode
 Reset: WatchdogMode

<<enum>>
WatchdogPosition

 Start: WatchdogPosition
 End: WatchdogPosition
 Wait: WatchdogPostion

Figure 6.5: The generator specification metamodel (generator-spec) controls the generator steps.
The metamodel organizes the software architecture (gray classes) and includes optional safety
features (black classes). The figure shows the reduced metamodel, which contains a subset of all
available templates.

84

Chapter 6. Embedded Software Modeling

This metamodel serves as a user interface whenever a designer customizes a new software
architecture. A single instance of this metamodel is called a generator-spec, which drives the entire
generation process with all generators involved. It primarily specifies the software architecture
with all its components. Respectively, it stipulates those IPs that have to be built, respectively,
those IP generators that have to be executed. Furthermore, the generator-spec defines the design
options and the API of these components. The design options include features to customize the
implementation style and optional non-functional transformations (e.g., safety patterns) for each
component.

The next two chapters discuss the transformation implementations of all these settings, while
the generator specification metamodel is discussed in more detail below.

6.3.1 Organization of the Software Architecture

An SoC assembles multiple IPs provided by the framework. The generator-spec organizes all
IPs and firmware components used in the embedded system through the SystemConfig class. In
general, it manages the Paths to all CIMs (given as XMLPath) and transformation scripts of
the project. Accordingly, it executes all required generators to implement the desired embedded
system, consisting of the following sub-components.34

• The Application describes the main routine of the embedded system. It is referencing the
transformation script that assembles the FW PIM. Especially in polling-based designs, the
application defined as a state machine main routine. The generator-spec provides two Types
of state machines. First, a function-pointer-based state machine containing a state transition
matrix or an if-else-based state machine.

A designer must be aware that the preferred solution largely depends on the application and
system requirements. An if-else-based state machine has more overhead with the conditional
statements for an increasing number of events and states, as stated in [8]. Accordingly, it is
not intended for time-critical applications. The table-based design, however, leads to more
memory overhead.

• The RegisterInterface controls the HAL generator. It defines the implementation style of
the generated HAL as either (Specific Inline Accesses) or (Generic Bitfield Structures). In
addition, the generator manages the address ranges through BaseAddress for each interface
to avoid overlapping address spaces.

• A Template can define either a component specified through an IP CIM or a fixed firmware
file (e.g., a library file) that is not configurable by an abstract specification. In the Figure 6.5
of the metamodel, these classes are highlighted in grey. An IP CIM can describe a hardware
module of the SoC which is subject to an HW generator that results in a device driver when
executing the generation flow.

Each component, e.g., I2S, SPI, PAD, is adaptable to a set of requirements. For example,
a designer can configure not only the Style of the driver but also each function individually.

34The metamodel is designed so that further generators for IPs or software components can be easily added.

85

6.3.2 Generator Configuration Settings

For instance, the I2S features a set of functions such as receive, transmit, open, start and
others, which altogether constitute the driver interface of the I2S.

Likewise, a template can also be a CIM that only feeds the firmware generator and not
a hardware generator. In other words, it is a pure software component, such as a ring
buffer or a data scrambler. Additionally, the generator-spec is flexible as it provides further
generic templates to enable a wide range of applications. First, it can include Generators
that have no CIM as input resulting in a non-configurable and static PIM instantiation.
Second, a designer can incorporate CFiles as external libraries which can be referenced by
the generator, see 9.3.

6.3.2 Generator Configuration Settings

A main advantage of the framework is its ability to generate different design and architecture
variants for the same embedded system and software architecture. The generator-spec model
provides several options to create a wide variety of implementations. Note that each variant
retains the underlying behavior. This design flexibility offers two advantages. On the one hand,
the generator and the resulting firmware design can be adapted to different application and system
requirements. On the other hand, the design diversity enables analytical methods to examine
variants by SW cost, e.g., memory footprint.

6.3.2.1 Device Driver Architecture and Design

Firmware can be designed and implemented in many different ways. Every design decision can
impact not only the efficiency of the firmware but also the real-time behavior and memory footprint
of the system. The driver Architecture is one design principle that must be chosen individually for
each device driver. Architecturally, a generic and specific implementation style is distinguished.

A generic architecture provides a driver implementation that supports all instantiated modules
of the IP MoT. Such a driver is designed in a minimalistic way to take every potential behavior into
account35. In other words, the driver can be reused for every module of the peripheral type in the
system. However, a generic device driver may not be as efficient as a specific device driver. More
control blocks are generated with increasing diversity between modules, slowing down the generic
design’s performance. Indeed, a specific driver adapts to one specific module variant and therefore
requires less time-consuming conditional control flows in the implementation. Nevertheless, as a
consequence, more instruction memory is occupied (.text section) since each module requires a
specific implementation. The generator-spec provides two options: SpecificMul creates a separate
driver target file for each module, while SpecificOne packs all module-specific entries into one file.

A second design decision concerns the architecture of the individual driver functions. Certain
functions that mainly interact with external components, e.g., I/O functions, can be implemented
in the following modes, as shown in the sequence diagrams of Figure 6.6:

• A blocking architecture blocks the CPU until the process completes. A blocking function
may enter a busy-wait, waiting for a specific hardware event to continue the operation.

35A generic device driver created for a specific set of modules of a certain IP MoT is valid for this set. However,
this does not imply that it can be applied to any other IP MoT configuration since the generator optimizes the
generic design for the specified CIM.

86

Chapter 6. Embedded Software Modeling

During this time, the driver is continuously polling a register, which consumes power and
devours cycles that could be used for other operations. For example, for a communication
device like the SPI, the execution time of the blocking function is thus dependent on the
baud rate of the SPI interface.

• A non-blocking driver function returns immediately once the hardware is unable to con-
tinue the execution. When the driver function is left, the driver status is returned to the
application to be resumed later. In the meantime, other portions of the application can
access the microprocessor. In fact, this increases the application’s performance but causes
non-deterministic behavior, which may pose a hazard.

• An interrupt-based driver function is called an ISR (Interrupt Service Routine). A function
can only be generated as an ISR if the SoC provides an InterruptController. The detailed
implementation of the ISR is strongly dependent on the interrupt controller’s specifica-
tion (e.g., non-vectorized or vectorized, nested interrupts ...) detailed in Section 8.1.2.2.
Interrupt-driven drivers can be more efficient because they spend no time waiting for a de-
vice to be ready. Apart from the HW overhead, the firmware’s complexity also increases
since the CPU has to do additional work to process interrupts and to continue the previous
execution of programs (e.g., Context Switch).

Application Blocking driver

HW event

(a) blocking

Application Non-blocking driver

HW event

(b) non-blocking

Application Interrupt driver

HW event

(c) interrupt

Figure 6.6: The sequence diagrams for a blocking, non-blocking and interrupt based driver function.

Every design decision has its legitimation. Selecting the perfect configuration for a particu-
lar application and system involves a trade-off between memory requirements and performance.
Time-critical applications benefit more from a specific architecture with interrupt-based functions.
In contrast, a generic design with blocking or non-blocking functions is preferable for memory-
constrained software.

87

6.3.2 Generator Configuration Settings

6.3.2.2 Device Driver API

A driver API is an application programming interface that defines the high-level interface of the
IP’s behavior and capabilities. In general, an API should be designed so that it is generic and
implementation-independent. An application developer does not focus on the hardware details
and the function behavior but on the inputs required to achieve the desired results. CMSIS [83]
and AUTOSAR [23] provide two important standards that describe vendor-independent interfaces
for processors and peripherals. However, these standards impose a significant overhead for many
applications [33, 160] and do not offer the capability for fine-tuning.

In contrast, a generator-based design is intended to reduce the overhead while supporting dif-
ferent specifications. The generator-spec combines these two requirements. It provides a standard
API skeleton, which can be further customized to meet specific requirements.

The API of each IP driver depends on several factors. First, the choice of the desired routines
from an existing collection. Second, on their design and architecture. Third, on an input type
that acts as a function argument influencing the behavior of the function. Thereby, the type setup
is limited to the basic data types (uint8_t, uint16_t and uint32_t) and their array or pointer
representation (uint8_t *, uint16_t * and uint32_t *). An array type is mostly associated with
an iterative process in the driver. In contrast, a basic data type leads to a single iteration.

Depending on the configuration of these settings, the behavior is enormously changed, whereas
the interface description is only slightly adjusted. For example, a UART’s transmit function can
result in different APIs, as shown in Listing 6.6.

Listing 6.6: Initialization of a control flow with multiple branches.
// Blocking and specific architecture with uint16_t as input argument.
UART_STATUS uart1_transmit_uint16_blocking(uint16_t data);

// NonBlocking and generic architecture with uint8_t* as input argument.
UART_STATUS uart_transmit_uint8ptr_nonblocking(UART_ENUM idx, uint8_t *data);

// Interrupt with uint8_t as hidden input argument.
void __attribute__((interrupt)) uart_transmit_uint8_isr(void);

6.3.2.3 Safety in Embedded Software

Embedded systems operate in a variety of environments that can cause undesirable interference
and malfunction. These failures can be detected or even corrected by safety measures. The
framework’s strategy is to provide a set of safety measures as configurable design patterns that
can be incorporated into any function or activity within a FW PIM. Each safety mechanism
targets a specific type of failure and can be individually configured for each software component.
Since the mechanisms are implemented as model transformations on the abstract layer, they
are function-agnostic and more resistant to implementation errors. Furthermore, the modular
approach simplifies development because the designer of a new generator can focus solely on
implementing the functional behavior.

The generator-spec defines a SafetyPattern as an optional extension of a function that can
take various forms. SafeWrite, Watchdog, Monitoring are three of many safety measures that can

88

Chapter 6. Embedded Software Modeling

be integrated into the design. The details of the transformations and the attributes of the safety
patterns are discussed in Section 8.2. The SafeWrite is a simple but efficient method that verifies
the correctness of a hardware register or bit field manipulation through a subsequent cross-check.

The watchdog timer is a crucial component in safety-critical systems to protect the time-
related program flow [22, 143]. A watchdog in the generator-spec is linked to a timer channel
of the general-purpose timer or the RISC-V counter, which raises an error (interrupt) when it
expires36. An activity including the watchdog triggers an event that may reset, start or stop the
watchdog channel. A designer can thus schedule different application tasks.

Program Flow Monitoring (PFM), however, is devised to check the correct execution of a
function. Two PFM concepts are distinguished, block BlockMonitoring (Block-PFM) and In-
structionMonitoring (Instruction-PFM). Block-PFM is a software-based approach that executes
checksum calculations (e.g., CRC) via software commands across different control blocks. This
approach ensures the correct execution sequence of the control blocks. However, the sequence of
instructions within a control block may be incorrect. An instruction-PFM can handle this fault
model since it calculates the checksum on each executed instruction via a hardware PFM module.
In general, the instruction-PFM requires more hardware resources but is more efficient and has
a lower memory footprint. Both concepts verify the executed path by comparing the resulting
checksum state against the expected one. A corrupt sequence (e.g., missing checksum) will raise
an error. Depending on the configuration of the PFM, the diagnostic coverage and the cost may
vary.

Each safety pattern also references an ErrorSource grouped in a central ErrorHandler. An
ErrorSource defines the course of action for faulty behavior. Multiple safety patterns can thus
refer to the same error handler source, respectively fault handling response. The details of the
safety pattern concepts and their implementation are covered in Section 8.2.

6.3.2.4 Analysis and Verification

Before the release of an embedded system, it has to pass detailed analysis and verification steps.
The generator-spec includes a switch called Analysis that activates the debugging and analysis
mode. In this mode, predefined analysis and verification nodes are injected into the application
to examine the embedded system’s correctness and performance.

Verification nodes are used as data monitors that record the status of objects and memory
locations. This status is compared with a golden data set, which may result in a deviation that
is treated as erroneous behavior. Also, profilers are used as analysis nodes to measure the time
spent by the CPU on individual sub-behaviors. In this way, the developer can identify bottlenecks
in the application for the respective SoC.

On the one hand, invoking the debugging mode helps the designer to verify different software
concepts generated by the generator-spec for a given SoC. On the other hand, it eases design
exploration to identify best-performance software design variants for the system configuration.

36A watchdog pattern requires a SoC with an interrupt controller and a general purpose timer or RISC-V counters.
Otherwise the watchdog implementation will fail.

89

Chapter 7

Device Specific Generator Frontend

The generator front-end serves as a translator, specified as transformation rules that turn a
CIM IP, which is part of a system, into the corresponding abstract firmware model. Based

on the IP’s specifications, the transformation rules specify a control flow that constructs different
manifestations of (e.g., functions) the FW PIM based on the IP’s specifications. It makes up the
generator part that is implemented for each IP.

For building the generator frontend, the designer implements a list of transformations, gener-
ating different parts of the driver file. The transformations are specified in such a way that they
can cope with different hardware characteristics. In general, this means that the IP front-end
designer cannot focus on a single design but must cover all possible combinations of IP specifi-
cations. This way of programming is called meta-programming, which is more demanding than
manual programming of a single variant. Additionally, the coding effort increases with the number
of adjustable parameters.

This framework, however, reduces the overall implementation effort. On the one hand, by
adhering to the single-source principle and the idea of separation of concerns. On the other hand,
it offers an innovative FW DSL [86] as well as a design pattern library, as shown in Figure 7.1.

Design Pattern Library

FW-PIM

Generator
Frontend

FIFO Scrambling Ring Buffer

CRC
Row Major

Order ...

FW PIMM

A
PIDSL

System
(CIM)

IP
Specification

(CIM)
IP

Specification
(CIM)

IP
Specification

(CIM)
IP

Specification
(CIM)

MDA generation flow

Uses
Instance ofGenerator

Backend

...

Ring
Buffer

FIFO

Figure 7.1: The device specific generator frontend flow.

91

7.1 Template of Embedded Software

The FW DSL is a partially automated extension of the automatically generated API of the FW
PIMM. While the API exclusively provides standard functions for instantiating and evaluating
UML class models, e.g., getter and setter, the DSL provides more advanced methods. The DSL
uses the API to represent methods that describe more complex access sequences. For example,
a DSL function may specify a combination of actions to realize advanced sub-behaviors, e.g., a
busy-wait, read-modify-write, or conditional-return.

Instead, a design pattern describes a parameterizable transformation, utilizing the API and
DSL to describe cohesive software fragments. These fragments are more complex software con-
structs that are typically subject to a hardware sub-component of the IP, e.g., FIFO, ring buffer
or CRC. Accordingly, a design pattern must define a coherent hardware transformation (CIM IP
to HW PIM) and software transformation (CIM IP to FW PIM) to include the pattern in the
IP design. As the design pattern is intended to be derived from the IP CIM and reused across
different IPs, two key considerations must be met. First, the attributes of the design pattern
must be consistently incorporated into the different CIMs. Second, the design pattern must be
incorporated into the design without further transformations or modifications.

Due to the innovative FW DSL and elegant use of design patterns, the framework significantly
reduces the complexity of meta-programming. Indeed, for some IPs, the effort between generator
coding and manual HDL coding remains comparable.

7.1 Template of Embedded Software

An SoC consists of various IPs, including I/Os-, system-, memory-, or communication devices such
as Watchdog, Timer, I2C and ADC. Each IP is specified through its respective computational
independent metamodel (CIMM), as shown in Figure 7.2. These metamodels include numerous
configuration parameters that define the elementary features of the design. With an increasing
number of parameters, the number of configurable variants even grows exponentially. So, the
CIMM for the UART device, as shown in Figure 7.2c, contains a wide range of attributes for
defining, e.g., the communication protocol, transmit/receive logic and internal storage.37.

Writing reliable and efficient device drivers require an in-depth understanding of the underlying
behavior and structure of the generated hardware. In order to cope with all variants, the framework
includes the firmware generator frontend, a template designed in the same manner as the template
for hardware modeling. For example, it uses similar coding patterns, such as the type system,
to model the generator’s control flow. This consistent way of implementing the templates across
different domains contributes to the designer’s learning curve and avoids inconsistencies.

Like the HW generator, the FW generator frontend consists of a set of transformation rules
translating every potential CIM of an IP into an FW PIM. The transformation rules primarily
describe a control flow driven by the characteristics of the IP’s CIM. This way, attribute-specific
fragments of the abstract firmware model are assembled into a complete firmware model. Two
aspects of the generator frontend and the resulting firmware model need to be emphasized: First,
the resulting PIM contains all components required to generate the ready-to-use driver. Second,

37Note that the CIM feeds the HW as well as the FW generator. For this reason, some attributes can be
considered as hardware-only attributes that affect the resulting HW and not the driver generator, e.g., the clock
Prescaler.

92

Chapter 7. Device Specific Generator Frontend

the generator builds the FW PIM in a minimalistic way exclusively tailored toward the particular
CIM.

I2S

Receiver
Name: string [1]

Transmitter
Name: string [1]

Module
Name: string [1]

Description: string [*]

DynamicPrescaler: bool = False

Prescaler: int = 10

MasterMode: bool = True

DataSource: Channel [1] = Stereo

FIFO
Depth: int = 8

<<enum>>
Channel

Mono: Channel
Stereo: Channel

SystemMaster
Name: string [1]

Slave

Transmitter, Receiver

0..1 0..1

0..10..1

*

(a) I2S CIMM

SPI

Module
Name: string [1]

Description: string [*]

MOSI: bool [1]

MISO: bool [1]

Polarity: bool [1]

Phase: bool [1]

DataWidth: int[1] = 32

Cascadable: bool [1]

ToggleCS: bool [1]

*

Instance
Master, Slave

Slave
Name: string [1]

FrameSetting
DynamicFrame: bool [1]

Hold_CS: int [0..1]

Setup_CS: int [0..1]

WordCount: int [0..1]

FIFO
Depth: int = 8

TX_FIFO
0..1

RX_FIFO

<<enum>>
StartBit

LSB: StartBit
MSB: StartBit

Master
Name: string [1]

CS: bool [1] = True

CountSlaves: int [1]

DynamicPrescaler: bool = False

Prescaler: int = 10

DynamicWidth = bool [1]

0..1

1

1

(b) SPI CIMM

UART

Module
Name: string [1]

Description: string [*]

DynamicPrescaler: bool [1]

Prescaler: int = 10

FrameSetting
DynamicFrame: bool = False

DataBits: int [1] = 8

StopBits: int [1] = 1

ParityBits: int [1] = 1

Receiver
Name: string [1]

Transmitter
Name: string [1]

FIFO
Depth: int = 8

0..1 0..1

0..1

*

0..1

1

(c) UART CIMM

PAD

 *

Module
Name: string [1]

Description: string [*]

Instance
InPad, OutPad, InOutPad

1

InPad
ConstraintName: string [0..1]

Size: int [1] = 1

PullType: PullType [1] = PULLUP

UseSynchronizer: ActivationType [1]

DebounceSize: int [0..1] = 8

InitialSync: bool [1] = True

<<enum>>
PullType

PULLUP: PullType
PULLUP: PullType
KEEPER: PullType

<<enum>>
ActivationType

ALWAYS: ActivationType
NEVER: ActivationType
DYNAMIC: ActivationType

InOutPad

OutPad
ConstraintName: string [0..1]

Size: int [1] = 1

DefaultOutput: ValueType [0..1] = Register

(d) PAD CIMM

Figure 7.2: Examples of computational independent metamodels of communication and I/O IPs.

Generally, each generator frontend is divided into two parts, one dealing with the structure and
the other dealing with the behavioral components. Both aspects address all relevant driver parts,
as shown for the UART in Listing 7.1 and 7.2. To recap Chapter 6, the fundamental entities of the
FW PIMM to achieve this are objects- and action-nodes expressing the structure and behavior of
the firmware.

The generator defines the driver structure by introducing objects required for the driver’s
operation or interface. These include macros, constants, variables, enumerated lists, types, and
more. One essential entity of the structural view is the CIM-dependent device handler that
specifies hardware capabilities or configurable run-time attributes. These structural entities serve
as the driver’s interface and objects that constitute the data and control flow. This leads to the
second purpose of the generator front end, which is to construct behavior. The generator provides

93

7.1.1 Device Driver Structure

transformation rules that arrange actions in a CIM-dependent sequence. For example, a sequence
that describes a control function or an I/O activity.

Listing 7.1: UART.h.
/************** Include Files **************/
#define Uart_hal.h
#define System_config.h
/************ Constants & Macros ***********/
#define UART_LEN = 2;
/****************** Types ******************/
// IP specific enumerated lists
typedef enum {

MODULE1;
MODULE2;
MAX_UART_LEN;

}Uart_Module_t;
// Device handler declarations
typedef struct{

uint8_t Databits;
uint8_t StopBits;
uint8_t ParityBits;

} Uart_Framesetting_t;
/*********** Function Prototypes ***********/
uart_init{Uart_Module_t module};
uart_transmit_blocking_uint8(

Uart_module_t module, uint8_t data);

Listing 7.2: UART.c.
/************** Include Files **************/
#define Uart.h
/******************* Data ******************/
// Initialization of Variables and Handlers
Uart_Framesetting_t Uart_Module1_Framesetting{

.Databits = 8,

.Stopbits = 1,

.Paritybits = 1
};
// Initialization of the configuration array
Uart_config_t uart_config[2] = {

{<Module1 handlers>},
{<Module2 handlers>}

};
/************** Functions **************/
uart_init{Uart_Module_t uart_module}{

// Initialization sequence
}
uart_transmit_blocking_uint8(

Uart_Module_t module, uint8_t data){
// Transmit sequence
}

7.1.1 Device Driver Structure

The device driver’s structure defines the driver’s basic skeleton, e.g., the driver interface and the
data objects appearing in the driver. An essential part of the structure is the device handler. The
device handler structures hardware attributes into data structures to operate driver functions in
a way that keeps details behind the scene. A cleverly designed handler that follows a common
standard for different variants simplifies the integration of generated drivers into the application
layer. Further, it improves the portability of the generated code between different applications.

But back to the definition of a device handler. A device handler, e.g., the Uart_Receiver_t in
Listing 7.3, specifies a data structure that describes the properties of a module. Furthermore, it is
responsible for the data exchange between hardware and firmware. A handler generally includes
constant hardware characteristics and features that can be configured at run-time. A handler
always refers to a specific module. In contrast, a configuration table defines a handler array
covering all module characteristics and features. A configuration table offers more implementation
options. For example, it allows designing simplified initialization functions or batch processes.
Device handlers linked in an acyclic graph are called device trees.

Inspired by the OpenFirmware-style of [127], the generator approach defines a configuration
table with device trees. A firmware function that passes a pointer to this array can access any
attribute of the module. This structure facilitates the implementation of different driver architec-

94

Chapter 7. Device Specific Generator Frontend

tures and increases portability and configurability.38

The mapping of the device tree is similar to the structure of the IP CIM. However, the
generator only maps the firmware-relevant attributes in the device tree and neglects attributes
that are purely relevant for hardware generation. When assembling the handler, the generator
identifies those attributes across different modules. These include run-time configurable attributes
and hardware capabilities that vary between modules of the IP. So, the generator tunes the device
handlers depending on the IP’s capabilities and attributes.

A device tree that adheres to one coding standard is easier to integrate into applications
and facilitates behavioral modeling. The framework maintains a particular structure for different
CIMMs, as shown in Figure 7.2, which ensures a consistent structure of the extracted device trees.
For example, all CIMMs reuse the same pattern for organizing different IP modules. For example,
the IP CIMMs in Figure 7.2 can contain any number of Modules, each managed by an individual
device tree.

An important aspect of device tree generation is optimization to keep the memory footprint
small. For this purpose, the generator evaluates the relevance of each attribute (is relevant if it
is run-time configurable or varies between modules). Otherwise, it is omitted. Listing 7.3 applies
to a particular CIM but may become invalid or inefficient for a different CIM. For example,
disabling DynamicFrame and specifying identical frame settings for all modules would make the
Uart_Framesetting_t handler obsolete.

Listing 7.3: Structure of the UART source.
//Uart Frame Settings.
typedef struct Uart_Framesetting_t{

const uint8_t Databits; /**< Number of transferred data-bits */
const uint8_t StopBits; /**< Number of transferred stop-bits */
const uint8_t ParityBits; /**< Number of transferred parity-bits */

}Uart_Framesetting_t;

//The receiver handler.
typedef struct Uart_Receiver_t {

struct Fifo_t FIFO; /**< Handler for fifo pattern */
Status_t Status; /**< Receiver status */

} Uart_Receiver_t;

//The transmitter handler.
typedef struct Uart_Transmitter_t {

struct Fifo_t FIFO; /**< Handler for fifo pattern */
Status_t Status; /**< Transmitter status */

} Uart_Transmitter_t;

//The root structure of the Uart device tree
typedef struct Uart_Config_t {

uint16_t * Prescaler ; /**< Handler for data transmission baudrate */
struct Uart_Framesetting_t * FrameSetting; /**< Protocol frame settings */
struct Uart_Receiver_t * Receiver; /**< Module has Receiver */
struct Uart_Transmitter_t * Transmitter; /**< Module has Transmitter */

} Uart_Config_t;

38A pointer array can result in additional overhead being required to dereference the pointer [127].

95

7.1.2 Device Driver Behaviour

7.1.2 Device Driver Behaviour

Besides the structural components, the generator frontend template contains transformation rules
for creating the driver behavior. Once again, the transformation creates no general-purpose be-
havior but a fully functional behavior tailored to the specification. Thus, this generator addresses
typical drawbacks of FW generator approaches, summarized in Chapter 3. The framework pro-
vides features to specify the control and data flow and a flexible modeling language to describe
the device driver behavior in detail.

In order to describe a function or an activity as a transformation rule, the designer specifies
the function’s requirements. These requirements are satisfied when generating the function. For
example, a UART- or I2S-transmit function cannot be built unless the CIM covers a module with
a transmitter. Furthermore, the designer has to identify all attributes of the CIM which influence
the function’s behavior. These attributes impact the generator’s control flow. This control flow is
essential as it ensures diversity and adaptability to the CIM and, thus, to the hardware of the IP.
The generator’s designer provides for each generator’s control node a certain sub-behavior. Each
sub-behavior is defined as a group of actions which is also considered a basic block. Once the
generator is executed, it assembles the sub-behaviors into an overall behavior, the final activity.

Listing 7.4: The transformation rule inside the SPI generator frontend that generates the
spi_control function.
1 def ActionControl(self):
2 activity = self.addfunction(Name="spi_control", Type="bool")
3 group = activity.createGroup()
4
5 master_group = group.getIfGroup(self.Master)
6 if master_group[0]:
7 transmission_group = master_group[0].getIfGroup(self.Master & self.DynamicFrame)
8 if transmission_group[0]:
9 transmission_group[0].addWrite(Name=BF.POLARITY, Value=self.Polarity)

10 ...
11 transmission_group[0].addWrite(Name=BF.HOLD_CS, Value=self.HoldCS)
12
13 prescaler_group = master_group[0].getIfGroup(self.Master & self.DynamicPrescaler)
14 if prescaler_group[0]:
15 prescaler_group[0].addWrite(Name=BF.PRESCALER, Value=self.Prescaler)
16
17 slave_sel_group = master_group[0].getIfGroup(self.Master & self.DynamicSlaveSel)
18 if slave_sel_group[0]:
19 slave_sel_group[0].addWrite(Name=BF.SLAVE_SEL, Value=self.SlaveSel)
20
21 data_width_group = master_group[0].getIfGroup(self.Master & self.DynamicWidth)
22 if data_width_group[0]:
23 data_width_group[0].addWrite(Name=BF.WIDTH, Value=self.DataWidth)
24
25 group.addReturn(Name="True")

96

Chapter 7. Device Specific Generator Frontend

Listing 7.4 shows a template that instantiates an activity of the FW PIM. The activity de-
scribes the spi_control function, configuring and initializing a SPI module at run-time according
to the parameters stored in the associated device handler. It includes several action groups for
setting different bit fields. Lines 8-10 of the template generate the code for configuring the trans-
mission settings, line 14 the Prescaler, line 18 the slave-select and line 22 the data-width. However,
each action group is only generated for a specific set of CIM attributes. For example, an SPI CIM
that feeds the generator template may result in the target code of Listing 7.5.

The FW template language provides a conditional generator node defined as getIfGroup

with an argument for a generation condition. When instantiating the activity, the generator
distinguishes between the following three scenarios at these nodes.

• No module supports the generation condition. Consequently, the whole activity group is
not created. For example, the SPI CIM that results in the provided target code contains
no module being a master with run-time configurable slave selection. Accordingly, the
generation condition in line 16 of the template is not fulfilled, and the associated action
group is not created.

• Not every module supports the generation condition, but at least one module does. In this
case, the action group is enclosed with a conditional statement. For example, this applies to
the transmission settings in lines 8-12 of Listing 7.5 since some modules provide no hardware
support to configure the transmission settings dynamically.

• All modules support the generation condition. So, no conditional statement is required. The
associated activity group is added to the group (see data width and Prescaler configuration
in lines 14-15 of Listing 7.5).

Listing 7.5: A potential spi_control function generated for a particular SPI CIM.
1 /**
2 * Control function to configure the SPI module.
3 * @param modIdx defines the selected modules via Enumeration index
4 **/
5 bool spi_control(SPI_Enum modIdx){
6 SPI_Config_t *module; /**< Load device handler.*/
7 module = &SPI_Config[modIdx];
8 if (SPI_Config.Master_Config->TransmissionSettings){
9 SPI_HAL[modIdx].POLARITY_WRITE(SPI_Config.Master->TransmissionSettings->polarity);

10 ...
11 SPI_HAL[modIdx].HOLD_CS_WRITE(SPI_Config.Master->TransmissionSettings->hold_CS);
12 };
13
14 SPI_HAL[modIdx].PRESCALER_WRITE(SPI_Config.Master->Prescaler);
15 SPI_HAL[modIdx].WIDTH_WRITE(SPI_Config.Master->DataWidth);
16 return True;
17 }

The template of spi_control demonstrates that the template language is abstracted from the
target languages. However, the level of abstraction remains very close to the target languages.

97

7.2 Domain Specific Language and Design Pattern Reuse

For example, the entities (e.g., variable widths) are described more abstractly, while the behavior
is specified in detail. This facilitates the best possible use of the language while maintaining a
wide range of variants without implementing platform-specific target code directly. This diversity
is already evident in this simple spi_control function. Moreover, the coding effort for the shown
template is comparable with the generated code. With increasing function complexity, the coding
effort for the template may increase. However, the framework keeps the design effort low since it
provides a FW DSL and a simplified interface for design pattern reuse.

7.2 Domain Specific Language and Design Pattern Reuse

The auto-generated API of the FW-PIM is used to specify the transformation rules of the em-
bedded software template. However, mapping between IP CIM and FW PIM solely based on the
API requires a non-negligible amount of effort when implementing the template since each model
feature must be instantiated individually. A benefit of the proposed methodology is reducing the
effort by including an advanced FW DSL and design patterns.

The FW DSL generally performs tasks that go beyond the simple standard API derived from
the metamodel. A DSL function specifies a sequence of API calls to construct more complex
patterns of the underlying metamodel, as shown in 7.1. Furthermore, as described in [85], the FW-
DSL simplifies the construction of the PIM by providing more object-flow-driven programming
constructs. In addition, the DSL combines several aspects of the abstract firmware model in a
single function. In this way, more advanced modeling sequences can be performed in a single call,
e.g., conditional assignments, data transformations, and loop-based initialization.

A firmware design pattern implements a sub-behavior of the driver as a sub-template. Like the
generator frontend, a sub-template provides transformation rules that can be included in different
IP driver templates39 or functions. A design pattern mainly implements recurring tasks, such as
initialization sequences, status monitoring, or IP controls.

Both the DSL and the design patterns reduce template design effort, minimize coding errors,
and increase consistency between IP drivers. Note that a designer can customize the FW DSL by
configuration and keeps the freedom of introducing new design patterns.

7.2.1 Domain Specific Language

Automatically generated APIs, such as those provided in this framework, define standard building
blocks for instantiating and analyzing classes or attributes of a metamodel. An API provides for
each class and property access method. When writing a template solely with API functions,
each object and attribute must be treated individually. The DSL is considered an API extension
that specifies domain-specific building blocks. In [85], an automated approach is provided that
generates an expressive python-based DSL by combining building blocks of the API into domain-
specific routines40.

39A firmware design pattern is only suitable for different IPs if they are subject to the same HW. The best way
to ensure portability is to use a corresponding HW design pattern for the HW generator as a counterpart to the
FW pattern. An example of an HW and FW design pattern is the register interface, which is reused in various IPs.

40The DSL automation approach can be applied to different domains. In addition to the FW generation frame-
work, it has been applied, for example, to the HW modeling framework and the formal verification framework.

98

Chapter 7. Device Specific Generator Frontend

The firmware framework uses the approach of Han et al., which relies on a metamodel that
includes all API functions. An instance of this metamodel employs the metadata of a target
domain, e.g., the FW PIMM. It maps all entries of the metamodel and their API functions. Within
this model, the designer can assemble API functions into more advanced assignment sequences.
These constitute the source of the DSL, which is generated in an automatic process. The example
in Listing 7.6 demonstrates the use and capabilities of different FW DSL routines to construct a
square root function template.

Listing 7.6: A square root function template
1 function = sActivity(Name="square_root", ObjProps(Type="float") // "Babylonian method"
2 function.value = sVariable(ObjProps=ObjProps(Type="float") // "is the radicand."
3 group = function.createGroup()
4 group.y = sVariable(Name="y", ObjProps = function.getOptProps()); // "square root result."
5
6 // value >= 0
7 preCondition = sCondition(Ins = [function.value, 0], Operator = ">=")
8 // y*y == value
9 postCondition = sCondition(Ins = [y * y, function.value], Operator = "==")

10
11 sub_group, post_group = group.addContract(In=preCondition, Out=postCondition)
12 sub_group.addAction(...) // "Approximating the square root through Babylonian method."

Object-oriented languages such as Python allow polymorphism and, accordingly, operator
overloading. Operator overloading reduces coding overhead and moves potentially complex API
routines into an object method that is called using standard operator syntax. lines 2 and 4
demonstrate the use of a DSL function for simplified instantiation of a Variable as an FW PIM
object. The standard way of instantiating the variable is to use the API function createVariable

(generally: create<ClassName>) and then use other API calls to set the variable’s properties. In-
stead of utilizing the API, the DSL overloads the built-in __setattr__ routine to invoke the
createVariable function under the hood and to set all properties. Thus, the designer can in-
stantiate the object by a simple object assignment.

Similarly, the designer defines comments in the template assigned to the target code, as shown
in lines 1,2,4 and 12. However, for commenting, the DSL overloads the “//” operator. In other
words, the __floordiv__ function is overloaded to call the API function setDescriptions(), as
shown in Listing 7.7. Likewise, the multiplication __mul__ or other arithmetic expressions are
overloaded in order to create PIM internal expression nodes. An application is shown in line 9
(see y * y) of the square_root template. The listed example depicts a more object-flow-oriented
programming approach of the DSL.

Listing 7.7: The FW DSL with operator overloading for the variable class.
1 class sVariable:
2 def __floordiv__(self, other):
3 self.setDescriptions(other)
4
5 def __mul__(self, other):
6 self.addOperation(Operator="+", Ins[self, other])

99

7.2.2 Design Pattern

A more concrete example of a DSL function is given by addContract() in line 11. A contract
describes a run-time check through a pre-condition, post-condition, or both of a sub-routine. The
DSL specifies a contract as an entity of an ActivityGroup manifested by one or two conditions
(see lines 6-9). The pre-condition of the square root is that an argument is a natural number.
As a post-condition, the square of the calculated result must be equal to the argument. This
behavior is achieved by the DSL that invokes a sequence consisting of an if-statement (in FW
PIM: Decision) enclosing the contracted sub-routine, followed by another if-statement. The result
of the discussed template using the C-generator is shown in Listing 7.8.

Listing 7.8: The generated C target code obtained from the square root template in Listing 7.6.
1 /**
2 * Babylon method
3 * @param value is the radicand.
4 * @return square root result.
5 **/
6 float square_root(float value){
7 float y = 0; // square root result.
8 // Contract: Pre-condition
9 if (value >= 0){

10 // Approximating the square root through Babylonian method.
11 ...
12 }
13 //Contract: Post-condition
14 if (y * y == value) {
15 return value;
16 }
17 return -1;
18 }

Further on, Han et al. [86] introduce the self-verifying DSL, extending the DSL generation
framework with automated complementary tests. These tests describe various test inputs to
verify the DSL functionalities and thus assure the quality of the DSL, such as the FW DSL.

7.2.2 Design Pattern

Design patterns in the FW modeling framework are well-established generator templates for solv-
ing recurring design problems across different IPs. Like the generator frontend, a design pattern
depicts transformation rules for problem-solving that can be used in a specific context, such as
communication IPs. Accordingly, a design pattern is implemented through API and DSL func-
tions. Compared to a DSL routine, a design pattern can be further populated by a sub-structure
of the IP CIM. Note that all IPs applying the design pattern must share the same sub-structure
in the CIM, as is the case for the FIFO structure (in UART, SPI and I2S) in Figure 7.2.

The FIFO pattern describes alternative generation flows as subject to the CIM configuration,
as discussed in Section 7.1.2. Depending on whether the HW module includes a FIFO logic or
provides a simple register buffer, the generator constructs the correct code for reading. There are
two possible solutions: Either it is resolved as simple register access to read the single data register
RX_DATA or as a loop of accesses to read the whole FIFO. Listing 7.9 shows the generator that

100

Chapter 7. Device Specific Generator Frontend

is able to construct the FIFO design pattern depending on the availability of the FIFO in the HW
module.

There are no limits to the complexity of the design patterns. The only limitation to each design
pattern is that they must construct a valid inherent sub-structure of the PIMM, e.g., a partial
behavior of the driver function. The use of design patterns in various generators is recommended
since design patterns are more robust through continual improvements.

Listing 7.9: The design pattern for reading a FIFO or buffer.
1 def FifoBufferRead(self, Group=None, SetVar=None, ReturnVar=None, Style=None):
2 """
3 :param Group: The current activity group which is extended by the FIFO/buffer.
4 :param SetVar: The variable that stores the read data.
5 :param ReturnVar: Return value in case something went wrong (NonBlocking)
6 """
7 # Buffer space is available?
8 fifo_group = Group.getIfGroup(Name=[self.FifoReceiver, None])
9 if fifo_group[0]:

10 fifo_group[0].addBlocking(Name=BF.RX_EMPTY, Style=Style, Return=ReturnVar)
11 if fifo_group[1]:
12 fifo_group[1].addBlocking(Not=True, Style=Style, Name=BF.DATA_AVAIL, Return=ReturnVar)
13 # Read Data from FIFO
14 Group.addWrite(Name=SetVar, Value=BF.RX_DATA) // "Read data from buffer"
15 # Send notification that data was read.
16 fifo_group = Group.getIfGroup(Name=[self.FifoReceiver, None])
17 if fifo_group[0]:
18 fifo_group[0].addWrite(Name=BF.BYTE_READ, Value=1) // "FIFO: Data is available?"
19 if fifo_group[1]:
20 fifo_group[1].addClear(Name=BF.DATA_AVAIL) // "Buffer: Data is available?"

101

Chapter 8

Device Generic Generator Backend

The scope of device driver variants that the generator frontend can construct depends on
the number of IP requirement combinations. However, the framework increases flexibility

through the generator backend, providing further customizable cross-IP transformations on the
abstract firmware model. This generator backend phase is IP-independent. It performs endoge-
nous transformations to realize various design decisions, such as software architectures for a given
IP. So the development effort reduces as these transformations are implemented in a one-time
effort and can be reused for all peripheral components. Thus, the generator remains hidden from
the developer of a new IP.

The generator backend performs horizontal transformations that do not affect the essential
characteristics of the assembled abstract firmware model. Consequently, the underlying core
behavior is unchanged. Some of these transformations incorporate additional features into the
abstract design, e.g., safety patterns or debugging nodes. Others are intended to realize various
firmware design and architecture decisions. Note that all these transformations are driven by the
generator-spec metamodel discussed in Section 6.3.

Another task of the backend is the translation of the PIM into the PSM. For this purpose,
the abstract firmware constructs are mapped to the chosen language model, e.g., C, Rust or C++,
which feeds the code generator described in Chapter 4. The framework extends this step with
a subsequent compilation step that builds the binary. For this, the backend feeds the generated
code into a customizable compiler flow, including a range of optimization flags based on GCC.
Due to the transformations on the platform-independent level, the different language generators
and the configurable compiler flow, the backend can create a large number of IP variants that
form the design space.

A designer benefits from model-based development by selecting a target instance from this
design space. In addition, it enables trade-off analysis [166] that assists the designer in filtering
suitable variants of that space. A trade-off analysis in an embedded context is about determin-
ing the impact of different factors on various design objectives (costs) such as performance, code
segment size (.text), data segment size (.data), and fault coverage. Note that no design decision
simultaneously optimizes all objectives. Instead, it deteriorates one cost parameter while improv-
ing another. Conclusively, the trade-off analysis based on the Pareto principle41 provides variants

41The Pareto principle addresses the multi-objective optimization problem and identifies a set of non-dominated
solutions. A solution is considered optimal if no objective can be improved without degrading other objectives
[139].

103

8.1 Design Decisions

that meet the system’s non-functional cost requirements [124, 211].
This chapter details the backend and introduces two examples of trade-off analyses. One deals

with optimizing compiler flags, the other with register interface optimization.

8.1 Design Decisions

Design decisions, such as the Device Driver Architecture and Design, are defined in the generator-
spec introduced in 6.3.2.1. All design decisions are legitimate and can be applied to any existing
or future IP. For example, the designer can define the driver architecture of the IP as either
generic or module-specific. When choosing the generic implementation, the generator creates a
generic function, while a specific implementation is tailored to each module. Moreover, a designer
can define the IP design to realize a driver function following an interrupt-, blocking- or non-
blocking-based design. As approved by Yang et al., each of these settings has its advantages.
Their work in [228] gives empirical evidence for and against polling42- and interrupt-driven I/O
in terms of performance. The paper in [169] provides similar results, pointing out the advantages
and disadvantages of purely synchronous RTOS-based and interrupt-based designs.

Overall, these driver configuration options and the IP configuration lead to an enormous
number of driver variants. Design exploration becomes possible since the backend automatically
executes the architecture and design transformations. This capability is essential since each design
decision is a legitimate choice that significantly impacts performance and memory requirements.

8.1.1 Driver Reusability

A designer’s choice in the generator-spec is whether the driver architecture follows a generic or
specific implementation. A generic driver design considers the properties of all modules of a device
in a single driver. So, it provides a driver reusable for various modules of the IP. In contrast, in
a module-specific design, the generator tailors the driver design to the characteristics of a single
module. Accordingly, each module is specified by a unique set of functions.

The pseudo-code in Algorithm 3 shows a snippet of the spi_receive function dependent on the
generator-spec. The example demonstrates that a generic architecture results in a higher number
of branches and control blocks, which slows down the performance of the design. However, a
module-specific solution omits those control blocks, such as the termination conditions in lines 7-
10. In particular, a generic function may inflate due to hardware-dependent alternative control
flows, as shown in lines 13-17. This increasing complexity is especially prevalent whenever there
are many hardware dissimilarities between the modules.

Furthermore, the bitfield accesses, as well as the function declaration, adapt to the architecture
style. Both are optimized in the module-specific implementation and are more performant using
direct accesses and less de-referencing. For example, a generic variant can only be executed with
a device handler de-referenced in advance (lines 2-4). This handler determines the control flow
of the module through the device driver. A handler may become obsolete in a module-specific
implementation since it does not need to capture the hardware settings to determine the control

42Polling is another wording for blocking. It specifies a synchronous I/O realized by a busy-wait loop that keeps
the CPU busy while waiting for completion.

104

Chapter 8. Device Generic Generator Backend

Algorithm 3: Pseudocode of a blocking SPI receive function as generic or module-
specific variant.
/* Function declaration */

1 if generator-spec == Generic then
2 SPI_RESULT receive_spi(SPI_Enum modIdx, uint16_t len, uint32_t *rxbuf){
3 SPI_Config_t *spi; /**< Load configuration from the modules config list*/
4 spi = SPI_Config[modIdx];
5 else
6 SPI_RESULT receive_spi_module1(uint16_t len, uint32_t *rxbuf){

/* Leave Condition: Only generated if at least one module meets the condition. */

7 if generator-spec == Generic then
8 if((spi.Master & !spi.MISO) | (spi.Slave & !spi.MOSI)){
9 return NO_HW_SUPPORT;

10 }
11 while(len){

/* FIFO or Buffer available? */

12 if generator-spec == Generic then
13 if (spi.FIFO){
14 while (SPI_HAL[modIdx].RX_EMPTY_READ()){};
15 } else {
16 while (SPI_HAL[modIdx].RX_WORD_READ()){};
17 }
18 else
19 while (SPI_HAL[module1].RX_EMPTY_READ()){};}

/* Read data. */

20 if generator-spec == Generic then
21 uint32_t cache = SPI_HAL[modIdx].DATA_RX_READ();
22 else
23 uint32_t cache = SPI_HAL[module1].DATA_RX_READ();
24 ...
25 }

path.
As noted, the control flow of a generic architecture considers all possible modules of one IP and

therefore differs in complexity. In contrast, the module-specific variant is tailored to the respective
instance. So, depending on the IP CIM, either the generic or module-specific architecture can be
beneficial. Table 8.1 summarizes the data for different device driver architectures, such as generic
device drivers to handle multiple modules in one function or module-specific driver functions. The
average number of instructions for each function of a generic driver is significantly larger than
the number of instructions in the specific driver. There are several reasons: First, the function
includes more conditional branches and control blocks to handle the different modules. Second,
the device handler and hardware registers are accessed generically. So, the choice of architecture
is a trade-off between performance, memory footprint, and program size.

On average, each device driver requires 55% more instructions per function for four randomly
assembled modules when the generic design is chosen over a specific design. Also, this implies
deviations in performance (number of clock cycles). Contrary, the generic design reduces the
.bin size by an average of 11% compared to the specific design. However, with an increasing

105

8.1.2 I/O Driver Design

similarity of the modules, fewer control blocks are in the generic design. This results in a minor
performance deviation (-36%) and higher memory footprint reduction (24%) between generic and
specific designs. As highlighted in Table 8.1, a generic solution should be contemplated if the
configurations of the modules within the IP differ only slightly.

Table 8.1: Comparison of different device driver implementations using no compiler optimization.

4 random modules 4 identical modules
Generic driver Specific driver Generic driver Specific driver

P
er

ip
he

ra
l

.b
in

si
ze

fu
nc

ti
on

s
/

in
st

ru
ct

io
ns

Ø

.b
in

si
ze

fu
nc

ti
on

s
/

in
st

ru
ct

io
ns

Ø

.b
in

si
ze

fu
nc

ti
on

s
/

in
st

ru
ct

io
ns

Ø

.b
in

si
ze

fu
nc

ti
on

s
/

in
st

ru
ct

io
ns

Ø

UART 8373 (8) 78,9 8781 (28) 26,4 10448 (8) 57,3 12744 (32) 32,3
DMX 7626 (8) 93 8734 (26) 39,0 7080 (8) 62,4 10156 (32) 39,4
I2S 8296 (7) 102,3 7740 (20) 29,2 5924 (5) 45,6 7300 (20) 28,6
SPI 8556 (11) 71,2 8804 (30) 27,9 10936 (9) 51,7 13540 (36) 31,4
PAD 3464 (7) 52,3 3968 (18) 27,7 2268 (3) 42 3108 (12) 28
Timer 13324 (13) 57,1 18836 (52) 40,7 12524 (13) 57,1 18036 (52) 40,8

8.1.2 I/O Driver Design

The type of synchronization for each I/O module can be chosen from a set of alternatives. As
described in Section 6.3.2.1, a distinction is made between blocking, non-blocking and interrupt-
based I/Os. A blocking driver is the easiest to implement, as it requires no additional hardware
and no additional synchronization at the application layer. Instead, a blocking-based driver is
synchronized by a synchronization or polling flag in the driver function.

A non-blocking process, as the name implies, does not block the CPU from executing other
processes. Instead, a non-blocking driver immediately returns from the function if the condition
for continuing the process is not met. The biggest challenge and the most important aspect of a
non-blocking I/O function is the task of maintaining the function status. So the operating system
or application layer can thus continue executing the process from the previously stored state. This
design requires no additional hardware but further attributes in the device handler to store the
state.

When the system includes a programmable interrupt controller HW, an interrupt-based device
driver can be implemented. In addition, the IP must supply interrupt wires that the interrupt
controller gathers. An interrupt signal from an I/O IP is set when the IP hardware triggers
a specific event, e.g., a task is completed, or an error occurs. The I/O module reports the
interrupt through this signal, which causes the processor to stop the current process and to
execute the exception handler. The exception handler determines the cause of the asynchronous
or synchronous exception and invokes the associated interrupt service routine (ISR). The ISR
processes the operation for the module that triggered the interrupt. After returning from the
routine, the CPU restores the system’s state before being interrupted.

The main benefit of the interrupt-based design is that the CPU can work continuously on a
task without permanently checking the I/O devices. The IPs themselves can interrupt the CPU

106

Chapter 8. Device Generic Generator Backend

when necessary, which might prove to be more efficient. When using such a design, it is important
to keep two aspects in mind. First, an ISR should be short and compact since an interrupt service
routine prevents other lower-level interrupts from occurring. Second, an interrupt-based design
adds additional complexity to hardware and software, e.g., event handling, context switches or
interrupt nesting. This additional complexity defines the interrupt latency, the delay between
triggering the interrupt and executing the first instruction of the ISR. The framework offers
various settings for configuring the complexity and latency of the interrupt-driven design. In the
following subsections, common choices are presented, e.g., vectorized or non-vectorized.

Table 8.2: Evaluation of coding effort for different driver designs. (blocking, non-blocking and
interrupt

Peripheral Generated device driver (SLOC) Template (SLOC)interrupt non-blocking blocking

UART 232 236 226 302
DMX 192 196 187 377
I2S 312 321 303 489
SPI 360 364 348 471
PAD 430 430 422 440

A comparison between the three supported variants by source lines of code (SLOCs) is provided
in Table 8.2. A blocking driver generally requires fewer resources but can become inefficient
for poor throughput. An interrupt-based routine is usually faster but can become complex as
the number of IPs working together increases. Ultimately, the design decision must be made
considering all application requirements (e.g., time constraints and functional safety requirements).
However, in many applications, a blocking driver is sufficient.

8.1.2.1 Synchronous Driver

The generation of the different driver designs is done by endogenous transformations. The main
idea is to identify the parts that differ between the designs and offer alternative transformations
based on the design decision. These parts are defined in the abstract model by artifacts resolved
differently in the generator backend.

The pseudocode in Algorithm 4 points out these parts and shows the resulting code generated
depending on the generator-spec. The behavior of the receive_uart function between the non-
blocking and blocking variants is quite similar. However, depending on the design choice, the two
differ in a single control node labeled to be resolved. As shown in line 11, the blocking variant
resolves this node as a waiting queue used to synchronize the driver. A while loop stops the process
until the exception conditions (e.g., TX_FULL) are met. In contrast, the non-blocking variant
resolves the node into a simple conditional statement, as shown in lines 13-15. The function is
aborted, and the intermediate result is returned unless the operable condition is met. Therefore,
the higher software layers must proactively call the function again later to complete the process.
This behavior differs from asynchronous design, which uses an interrupt to invoke a function if
the device fully satisfies the operating condition.

107

8.1.2 I/O Driver Design

Algorithm 4: Pseudocode of the generated receive function for different driver architec-
tures in a module-specific implementation.

Input: Type = Device driver architecture [blocking, nonblocking, interrupt]
1 receive_uart_<Type>(
2 if not Type==interrupt then
3 uint8_t* data, uint16_t len // Function arguments for non-interrupt

4)
/* Arguments can not be passed within interrupt service routine. */

5 if Type==interrupt then
6 interrupt_pre_function(); // Interrupt controller dependent actions

7 uint8t data = rx_data_uart;
8 uint16t len = FIFO_SIZE_UART;

/* Core behavior of receive function */

9 while (length > 0){
10 if Type==blocking then
11 while(bitfield_get(RX_EMPTY_UART)); // Busy-loop

12 else if Type==nonblocking then
13 if(bitfield_get(RX_EMPTY_UART)){ // Process is queued

14 return len;
15 }
16 *data = bitfield_get(RX_DATA_UART);
17 bitfield_set(BYTE_READ_UART);
18 *data++;
19 len=len-1;
20 }

/* Return from function */

21 if Type == interrupt then
22 interrupt_post_function(); // Interruptcontroller dependent actions

23 return;
24 else
25 return len;

8.1.2.2 Asynchronous Driver - Interrupt Service Routine

According to the RISC-V Privileged Architecture Specification [16], the term exception refers to
an unusual condition that occurs synchronously at run-time with executing an instruction in the
RISC-V CPU core. An exception that occurs asynchronously to regular program execution and
disrupts the control flow is called an interrupt. In other words, an interrupt is an event caused
by a component other than the CPU. Note that the term exception is used for asynchronous and
synchronous events in the following.

The software consists of two parts in order to handle exceptions. First, an exception handler,
also called a trap handler, determines how the program behaves in case of an exception. Second,
an ISR serves the interrupt. There are different modes for handling interrupts and exceptions.
Through the MDA approach and configurable CIMMs, different variants of the exception unit
and a fitting interrupt controller can be defined and generated. Depending on the configuration,
this may also affect the I/O driver functions. The general exception handling flow according to
the RISC-V specifications is outlined before describing these two key hardware components and

108

Chapter 8. Device Generic Generator Backend

enumerating their configurable modes. Figure 8.1 shows the different phases processed from an
exception’s occurrence until completion.

Exception
Entry

Exception
Address Fetch

Save Context ISR Load Context

Indicate
Completion

Exception
Return

Return to main programException occurs

1

4

2

3 5

6

7
Pending Exception

Figure 8.1: The phases of exception handling according to the RISC-V standard.

1. The processor receives a request to handle an exception. The request is prioritized depending
on the appearance of other exceptions with higher priority and the CPU status.

2. Once the request is accepted, the processor disables the interrupts and invokes the trap
handler, which handles the requested exception.

3. Upon entering the handler, the processor must save its state by context switching. The state
information to be stored includes all relevant resources used by the interrupted program that
the exception handling routine may also use.

4. The processor services the exception by executing the interrupt service routine assigned to
the exception.

5. Once completed, the processor returns to the regular program running when the exception
occurred. Thus, the program’s context is restored.

6. A mret instruction43 is executed after handling the exception to indicate the completion.
This instruction notifies the processor to re-enable the interrupts to receive new requests
from the interrupt controller.

7. Before returning, the processor checks whether exceptions are pending. If this is the case,
the exceptions are chained, and the pending exception is serviced. Otherwise, the processor
continues with the regular program.

These phases may vary depending on the configuration of the interrupt controller and the
exception unit. The most significant types of exception handling are discussed in the following.
However, first, the interrupt controller and the exception unit are introduced.

Exception unit and interrupt controller The hardware components required for exception
handling in a RISC-V SoC are the Exception Unit (EU) and the Programmable Interrupt Con-
troller (PIC). The EU is the central control unit for handling exceptions and is implemented inside

43The RISC-V specification defines specific instructions for returning from a trap handler. Each privilege level
has its own trap handler return instruction: MRET (machine mode), SRET (supervisor mode), and URET (user
mode). The framework’s generated SoCs only require the machine mode trap handler return (mret).

109

8.1.2 I/O Driver Design

the instruction fetch stage of the processor’s pipeline. This position allows the EU to set the pro-
gram counter to the address of the prioritized exception handler. Besides, it can stall or flush
the CPU pipeline and directly modify specific CSRs related to exception handling (e.g., mstatus,
mtvec, mepc). For this reason, the EU is configured and maintained in the CIM of the RISC-V
core.

The second component, the PIC, is implemented outside the CPU core and is responsible for
handling external interrupt events. The unit collects and manages all available interrupt sources
from different peripherals of the SoC. Its main task is to process all those and forward the relevant
interrupt request to the CPU. Next, the CPU accepts the interrupt when no other exception with
higher priority is currently running or stacked. Otherwise, the interrupt waits until all stacked
higher priority exceptions are processed.

The PIC created by the framework is specified by a highly configurable PIC-CIMM shown
in Figure 8.2, providing many variations. Like other I/O IPs, its instances (PIC CIMs) also
feed a dedicated HW and a FW generator that constructs both HW and FW, depending on the
specification. The designer can configure the general behavior of the interrupt controller and each
IRQ (interrupt request).

InterruptController
Name: string [1]

Configuration
IrqHandling: HandlingType [1]

NestedInterrupt: bool[1]

IRQ
Name: string [1]

Maskable: bool [1]

DynamicPriorityType: bool [1]

DynamicSensitivity: bool [1]

Priority: int [1]

Preemptible: bool [1]

Sensitivity: SensitivityType [1]

*

1

<<enum>>
SensitvityType

RaisingEdge: SensitivityType
FallingEdge: SensitivityType
BothEdges: SensitivityType
LowLevel: SensitivityType
HighLevel: SensitivityType

<<enum>>
HandlingType

nonVectorized: HandlingType
VectorizedBus: HandlingType
VectorizedDirect: HandlingType

Figure 8.2: The CIMM of the interrupt controller.

A IRQ is triggered by a signal event that defines edge-based or level-based Sensitivity. Dynam-
icSensitivity can change this sensitivity via a bit field at run-time. Furthermore, each IRQ can be
defined as Maskable and Preemptible. A maskable hardware interrupt can be disabled via CPU
instruction, while a non-maskable interrupt is always enabled and never ignored. Meanwhile, a
preemptible interrupt defines a critical task that another IRQ cannot disrupt. Besides, a Priority
is assigned to each IRQ to determine the order between different IRQs. Also, the priority level is
configurable via a bit field when activating DynamicPriority.

Further, two attributes are included to shape the essential behavior of the PIC independent
of the specific interrupt channels. One feature is the IrqHandling which influences the exception
address fetch stage of the exception handler (see Figure 8.1). Second, the choice of NestedInterrupt
determines whether the interrupt controller can handle the preemption and nesting of interrupts
inside its core. The impact and trade-off of both features on the system are elaborated in the
following paragraphs.

110

Chapter 8. Device Generic Generator Backend

The PIC includes a register interface, introduced in Section 5, assembled depending on the
PIC configuration. Figure 8.3 shows the generated registers addressed by the firmware to control
the interrupt device.

A P ENMPRIO

R R RW RW

31 01234161819 15

RW

(a) IRQx_CTRL

IRQ_ADDR

RW

31 0AW AW-1

(b) IRQx_ADD

ADDR_OUT

R

31 0AW AW-1

(c) ADDR_OUT

Bitfield Size Type Description

EN 1 RW
IRQ source enable
0 DIS: The IRQ channel X is disabled.
1 EN: The IRQ channel X is enabled.

M 1 RW
Mask interrupt channel
1 MASK: The interrupt channel X is masked.
0: UNMASK: The interrupt channel X is unmasked.

P 1 R
Pending interrupt
0 RESOLVED: The interrupt X is resolved.
1 PENDING: The interrupt X is taken and has not yet been finished

A 1 R
Active interrupt
0 INACTIVE: The interrupt X is not executed.
1 ACTIVE: The ISR of interrupt X is currently executed.

PRIO 3 RW Priority
The priority level of the interrupt X.

IRQ_ADDR AW RW Interrupt jump address
Stores the address of the ISR associated with interrupt X.

ADDR_OUT AW R Interrupt active address
Stores the address of the ISR associated with the active interrupt.

Figure 8.3: Definition of the register layout of the interrupt controller specified within the register
interface model discussed in Section 5.

Vectorized and non-vectorized interrupts The PIC offers three types of interrupt handling,
defined by the PIC CIM. These modes are grouped as non-vectorized or vectorized, while vector-
ized is further classified as vectorized-bus or vectorized-direct. The generated firmware required
to resolve an interrupt for each handling mode is shown in Figure 8.4.

111

8.1.2 I/O Driver Design

non-vectorized vectorized-bus vectorized-direct

void __irq__ mei_handler(void){
 // Pre-Actions, e.g., enable interrupts
 if (bitfield_get(IRQ1_ACTIVE){
 jumptohandler(&receive_spi);
 } else if (bifield_get(IRQ2_ACTIVE){
 jumptohandler(&watchdog_expired);
 } ...
 // Post-Actions, e.g., disable interrupts
}

void __irq__ receive_spi(void){
 // Pre-Actions, e.g., enable interrupts
 ...
 // Post-Actions, e.g., disable interrupts
}

void __irq__ mei_handler(void){
 // Pre-Actions, e.g., enable interrupts
 jumptohandler(ADDR_OUT)
 // Post-Actions, e.g., disable interrupts
}

void receive_spi(void){
 ...
}

PIC
(CIM)

- Interrupt
Handling

 Designer

Figure 8.4: Interrupt handler generation flow.

In the non-vectorized interrupt handling, the PIC jumps to the same destination address (vec-
tor entry) for each interrupt source. The firmware defines the location of the vector entry in the
mtvec CSR44 during the initialization phase of the PIC. In general, this destination address spec-
ifies the location of the interrupt handler that contains the interrupt vector table. The interrupt
handler resolves the active interrupt source by looping through all available interrupt sources of
the table and invokes the corresponding service routine. Compared to a vectorized PIC, a non-
vectorized PIC entirely shifts the task of identifying and invoking the correct interrupt address to
the software domain.

In vectorized-bus mode, the interrupt address is resolved within the PIC, not by firmware. In
this mode, the PIC generator creates for each interrupt source IRQx an additional register called
IRQx_ADDR, which specifies the destination address of the interrupt service routine. Thus,
these registers populated by firmware instructions constitute the interrupt vector table. When
an interrupt occurs, the hardware resolves the interrupt request and writes the associated ISR
address from the vector table to the ADDR_OUT register. Like the non-vectored mode, the CPU
again triggers a jump to the interrupt handler for each interrupt. However, the interrupt handler’s
complexity is reduced since it only needs to retrieve the address from the ADDR_OUT register
to invoke the specific ISR. So, there is no need to loop through all the different interrupt sources
anymore.

The vectorized-direct mode offers the fastest concept as it delegates the whole handling of the
specific interrupt service routine from the firmware to the hardware. The address is resolved within

44The machine trap-vector base-address (mtvec) stores the destination address that overwrites the program
counter in case of an exception.

112

Chapter 8. Device Generic Generator Backend

the PIC and propagated to the CPU. For this purpose, the ADDR_OUT register is replaced by
a direct connection to the CPU. So, the address of the interrupt service routine is calculated and
propagated directly to the hardware structure that sets the program counter. Accordingly, the
CPU calls the interrupt service routine without an intermediate step using an interrupt handler.

Hardware areaInterrupt latency

Code size Portabilty

non-vectorized

vectorized-bus

vectorized-direct

Figure 8.5: Comparison between different interrupt modes on binary size, hardware area and
interrupt latency.

Figure 8.5 compares the different interrupt modes and points out where they are best deployed.
The efficiency, measured by interrupt latency, refers to the time that elapses from the occurrence
of an external interrupt until interrupt processing begins. Software primarily causes this latency
during interrupt processing, e.g., semaphores, context switches, or the interrupt vector table
processing. A non-vectorized PIC has performance penalties and requires more code size. This
code size45 increase is mainly because expensive bus accesses are required to resolve the interrupt
vector table. However, the hardware footprint of the non-vectorized PIC is significantly smaller
because the vectorized PIC requires additional registers and combinatorics to process the interrupt
vector. A vectorized PIC has decreased portability since additional software wrappers are needed
for specific design choices, e.g., generic driver architecture. For example, different interrupts may
refer to the same generic ISR, as shown in Listings 8.1 and 8.2.

Listing 8.1: Generic driver architecture with
non-vectorized PIC.
/************ Interrupt Handler ************/
void __irq__ mei_handler(void){

if(bitfielde_get(IRQ1_ACTIVE){
receive_uart(UART1);}

else if (bitfielde_get(IRQ2_ACTIVE){
receive_uart(UART2);}

}
/***************** UART ******************/
void receive_uart(UART_Config_t UART_Config);

Listing 8.2: Generic driver architecture with
vectorized PIC
/***************** UART ******************/
void __irq__ receive_uart1_irq_wrapper(void){

receive_uart(UART1);}

void __irq__ receive_uart2_irq_wrapper(void){
receive_uart(UART2);}

/***************** UART ******************/
void receive_uart(UART_Config_t UART_Config);

45A larger code size also causes a higher memory requirement, i.e., it contributes to larger memory size.

113

8.2 Safety Pattern

Interrupt nesting A PIC that supports nesting temporarily disrupts a currently running ex-
ception by another one. So, the processor can faster serve higher priority exceptions. When a
nesting interrupt occurs, the processor preempts the higher priority exception before finishing the
current exception. Preemption is only possible if the interrupt is in a non-critical phase. A critical
phase of a running interrupt is, e.g., during the context switches.

In RISC-V, the critical phase of the interrupt is protected by the global interrupt enable bit
mie held in the mstatus CSR. The bit field controls whether an interrupt of a higher priority can
be taken or not. The generated ISR routines set the mie bit after the context save phase to allow
nesting of the ISR main task. Before entering the context load phase, it is cleared again. Special
handling is required for critical ISRs, defined as non-preemptible, as they must be protected
throughout execution regardless of their priority. Therefore, the generated critical ISR keeps the
mie bit cleared for the entire process until the interrupt is returned. All interrupts that appear
meanwhile wait until the interrupt is returned.

The performance of a PIC with nesting is purely application-specific and can be advantageous
or disadvantageous. The main problem that nested interrupts may cause is that the CPU spends
more and more time processing interrupts instead of doing other tasks. However, for many time-
critical systems, nesting is essential to respond quickly to events. Another criterion that should
not be underestimated is the complexity of the hardware. For example, a PIC that supports
nesting requires about 250 more LUTs (3508 LUTs without nesting to 3766 LUTs with nesting)
when defining four interrupt sources (increases with the number of interrupt sources).

8.2 Safety Pattern

Functional safety seeks to mitigate the level of risk in a function or the system. A functionally safe
system identifies potentially hazardous situations and assures correct behavior despite systematic
or randomized errors. As described in AUTOSAR [21], faults can be grouped into execution- and
timing-related faults (e.g., deadlocks, incorrect execution sequence) caused by the processing unit.
This framework introduces safety measures like watchdogs or PFMs (Program Flow Monitors) to
verify the correct logical and temporal execution sequence.

Functional safety is commonly a neglected aspect of firmware generation frameworks. How-
ever, safety measures are best suited for model-driven generation systems as they usually define
recurring structures. One of the reasons is that most safety measures require hardware support
and are not software-only mechanisms, e.g., watchdog, redundancy checks, and assertions. Most
firmware generation frameworks cannot deal with this. However, in the featured holistic HW/FW
generation framework, the firmware generator is aware of all HW details and can thus create such
HW-dependent safety patterns.

In order to include safety measures in the design, the generator backend deploys an endoge-
nous safety transformation (also named safety pattern generator) on the abstract firmware model
[221]. A designer can customize this safety transformation through safety patterns defined in the
generator-spec introduced in Section 6.3. Figure 8.6 shows a snippet of the generator-spec used
to instantiate safety patterns. On generation, the generator backend applies the safety transfor-
mation on the FW PIM as a function of the instantiated safety patterns. The result of this safety
transformation is again an instance of the FW PIMM, but now containing the safety measure.

114

Chapter 8. Device Generic Generator Backend

Note that this step of embedding safety patterns in the design preserves the previously-assembled
functionality.

Furthermore, it is worth mentioning again that the safety transformation only extends the
abstract firmware model in a device- and compiler-independent way. Accordingly, a safety pattern
is not bound to implementation details and is reusable for different software layers, devices and
compilers.

0..1

Watchdog
Position: WatchdogPosition
Value: int
Mode: WatchdogMode

Monitoring

SafetyPattern

ErrorHandler

InstructionMonitoring
Type: FingerprintType = CRC
Verification: MonitoringVerification
Level: int

ErrorSource
Type: ErrorHandlerType = Hardware

BlockMonitoring
Type: FingerprintType = CRC
OptimizedRange: bool
Verification: MonitoringVerification
Balance: bool
Level: int

SafeWrite
Bitfields: string [*]

BlockMonitoring, InstructionMonitoring

0..1

InitValue
Line: int
Value: int

VerificationValue
Line: int
Value: int [*]

0..1

1

**

*

1

Function
Blocking, NonBlocking, Interrupt, Basic

*

<<enum>>
WatchdogMode

 Start: WatchdogMode
 Stop: WatchdogMode
 Reset: WatchdogMode

<<enum>>
WatchdogPosition

 Top: WatchdogPosition
 Bottom: WatchdogPosition
 Loop: WatchdogPostion

<<enum>>
ErrorHandlerType

 Hardware: ErrorHandlerType
 Application: ErrorHandlerType
 Driver: ErrorHandlerType

<<enum>>
MonitoringVerification

 BeforeReturn: MonitoringVerification
 Continuous: MonitoringVerification
 BasePath: MonitoringVerification

<<enum>>
MonitoringFingerprint

 CRC: MonitoringFingerprint
 ValueInc: MonitoringFingerprint

WatchdogCH
...

Figure 8.6: Snippet of the safety relevant classes from the generator-spec metamodel of Figure 6.5.

This section describes the concept of incorporating safety measures into an abstract model
using three abstract safety patterns as examples: Watchdog, PFM, and redundant register check-
ing. All those examples illustrate the framework’s strength, which is its flexibility. Because of
the pattern’s configurability, designs with different safety measures can be generated. This di-
versity enables cost analysis (e.g., diagnostic coverage, hardware area and performance) and the
adaptation of safety measures to the system requirements.

8.2.1 Redundant Register check after modification

A safety pattern protecting registers, suitable for introducing the principle of safety transforma-
tions, describes the redundant register check (in generator-spec: SafeWrite). This measure aims
to control a write transfer to a register with subsequent read access and evaluation of the data.
A potential error on the bus and the affected flip-flop inclusive access logic can be detected.

To deploy the safety measure, the designer specifies the list of Bitfields in the SafeWrite pattern
that should be protected. During generation, the safety transformation is executed to apply the

115

8.2.2 Watchdog

redundant register check to the design. In the first step, the transformation traverses the entire
behavior, all action nodes of the function, to find the particular write event to the bit field.

If such an event appears, it is replaced by a combination of action nodes, as shown in Listing 8.3.
The safety pattern generator implements this safety measure only under the following conditions:
The bit field must also be readable by software as well as the read access may not trigger a side
effect.

Listing 8.3: Cross check of register write accesses.
uint8_t value_parity = 3;

setBitfield(PARITY_BF, value_parity);
uint8_t safe_write = getBitfield(PARITY_BF, value_parity);

if (safe_write != value_parity){
error_handler(parity_check_error);

}

Following the idea and implementation of the redundant register check, other safety mech-
anisms can be added to the framework. A designer can implement various safety mechanisms
through special safety pattern generators. A safety pattern generator wraps safety mechanisms
around artifacts of the model. Such a generator approach is made in two steps: First, a de-
tector identifies artifacts enveloped by safety measures, e.g., the protected register. Second, a
safety transformation extends the abstract model with safety-relevant aspects, e.g., the write ac-
cess is extended by a redundant check. In the following, this method is applied to further safety
mechanisms.

8.2.2 Watchdog

The watchdog timer is a crucial component in safety-critical systems to protect the time-related
program flow [22, 143]. A watchdog monitors the chronological behavior of the system and thus
increases the system’s resilience. The watchdog measure in software aims to prevent the watchdog
timer from elapsing by resetting it at certain event-based checkpoints. A checkpoint may not be
reached in a corrupted system (e.g., deadlock, blocking of executions), so the watchdog timer
expires, triggering a reset or recovery mechanism.

A configurable Watchdog safety pattern is provided in the generator-spec. The system must
contain a general-purpose timer46 and an interrupt controller for implementing the watchdog.
Both components can be customized and generated by the MDA framework. The WatchdogCH
defines the channel of the general-purpose timer referenced by the watchdog that triggers an
interrupt when it expires. The software controls the watchdog and resets its counting value at
certain events. The system must ensure that the watchdog does not expire at any time.

A designer needs to define a timing sequence that maps all events that trigger a watchdog
timer action. The generator-spec defines the time sequence as a list of functions, including a
watchdog Watchdog event. Each watchdog event references a specific behavior triggered on the

46The RISC-V internal timer and instruction counter can also be used for the watchdog implementation instead
of the general-purpose timer.

116

Chapter 8. Device Generic Generator Backend

chosen watchdog channel. The configurable attributes of the watchdog are Mode, Position and
Value.

The Mode specifies the type of action that controls the watchdog incorporated into the func-
tion. The list of modes to be selected includes: Start, which enables the watchdog and starts its
execution; Reset feeds the watchdog with a new Value; Stop disables the watchdog. Furthermore,
the designer can define the Position of the watchdog action in the function. The watchdog can
be handled at function Entry or function Return. Additionally, the watchdog can be configured
as Wait to be handled within the labeled control node. As shown in Section 8.1.2.1, this may
result in the watchdog action being included in the busy-wait loop (blocking architecture) or be-
fore returning (non-blocking architecture). This setting makes the watchdog independent of the
hardware performance, e.g., the baud rate of a communication device.

Watchdog
Timer

CH0

CH1

UART

T_Sensor

+ Blocking: receive

P_Sensor

+ Interrupt: receive

SPI

LED_Display

+ NonBlocking: transmit

GMR_Sensor

+ Interrupt: receive

GPIO

Button

+ Interrupt: receive
<reset>

limit_time

<reset>
limit_time

<start>
t1

<reset>
t2

<stop>

Figure 8.7: Configuration of watchdog patterns in a generator-spec instance.

Figure 8.7 illustrates an example with two watchdog timer channels (CH0 and CH1) while
Listing 8.4 shows the generated code. With both channels, two separate time sequences can be
defined for watchdog patterns. The first watchdog pattern referencing channel CH0 monitors
whether data is received periodically via the UART interface from the pressure sensor (P_Sensor
and temperature sensor T_Sensor. The UART’s receive function resets the watchdog when data
is successfully received and prevents the timer from elapsing under regular operation. In the
example, the activation and termination of the watchdog are left to the application layer.

The CH1, meanwhile, is referenced by the watchdog pattern added to the GPIO and SPI
functions. A button event triggers the initialization (V alue = t1) and the watchdog’s activation.
Within period t1, the system must receive data from the GMR_sensor to reset the watchdog
(value = t2). Subsequently, the data must be transmitted to the LED display within t2. Using
the approach, the designer can specify any timing sequence by linking the functions of the firmware
model and the timer channel.

Listing 8.4: The generated code from the watchdog configuration of Figure 8.7.
// UART.c
void receive_uart_P_Sensor_interrupt(){

watchdog_reset(CH0); // Reset Watchdog
...

}
void receive_uart_T_Sensor_blocking(uint16_t* data){

watchdog_reset(CH0); // Reset Watchdog
...

}
// PAD.c
void receive_GPIO_Button_interrupt(){

117

8.2.3 Signature-based Program Flow Monitor

watchdog_start(CH1, 20000); // Start Watchdog
...

}
// SPI.c
void receive_spi_GMR_Sensor_interrupt(){

watchdog_reset(CH1, 20000); // Start Watchdog
...

}
void transmit_spi_LED_Display_nonblocking(uint16_t* data){

watchdog_stop(CH1); // Stop Watchdog
...

}

8.2.3 Signature-based Program Flow Monitor

Execution-related errors such as control flow errors (CFE) are anomalies in the control flow,
such as incorrect execution orders, skipped or suppressed instructions, or additional instructions.
Figure 8.8a shows a control flow graph (CFG) with nodes vn and edges en and three potential
types of CFEs. Signature-based program flow monitors (PFMs) are common safety measures to
alleviate such CFEs, as described in [13, 54].

A signature monitoring technique embeds signatures into the program during code generation
or compile-time and verifies them during run-time. So, a PFM safety pattern extends the nodes of
the control flow graph with two routines named “Signature Update” and “Signature Verification”,
as shown in Figure 8.8b. As the name implies, the “Signature Update” sr+1 = U(sr, u(vn))

calculates the next run-time signature sr+1 based on the preceding run-time signature sr and a
basic-block specific signature constant u(vn) assigned to the node vn. The update routine specifies
a signature function47 such as CRC or MISRA. The “signature verification” V (s, prior(vn)) verifies
the correctness of the run-time signature. In this step, the run-time signature is compared with
all compile-time pre-determined signatures of all potentially preceding nodes prior(vn). If no
pre-determined signature matches the run-time signature, the PFM pattern reports a CFE.

In general, a PFM monitors control transitions among the execution path to assure the correct-
ness of the logical program flow and, thus, system resilience. However, PFMs can occur in various
forms grouped into three granularity levels. The levels are defined by [13, 14] as inter-procedural
PFM, intra-procedural PFM and instruction-stream PFM.

At the highest level of granularity is the inter-procedural PFM. That verifies the correctness
of the calling relationships (represented as call graph) among functions. Such a measure aims
to ensure that procedures are called and returned correctly according to the call graph. In this
way, invalid function calls and returns can be detected. In order to build a call graph, detailed
knowledge of the entire application behavior is required. This is beyond the scope of a framework
that focuses on generating embedded software below the application layer.

The intra-procedural PFM, also called inter-block PFM, is a more fine-grained scheme that
verifies the correct execution of basic building blocks48 inside a function [227]. This measure is

47Werner et al. analyzed in [220] the functional requirements of signature functions and performed an evaluation
on different signature functions for instruction-stream PFMs.

48A basic block describes a part of consecutive instructions with a single entry point as well as a single exit point

118

Chapter 8. Device Generic Generator Backend

v0

v1 v2

v4 v5

v6

v3

CFE CFE

CFE

v1

v0

v2

v5v4

v6

(a) Control flow graph with potential CFEs.

vn

if V(s, s(prior(vn)) != 0: error

Instructions in vn

s = U(s, u(vn))

(b) Extension of a node by a PFM pattern.

Figure 8.8: Program Flow Monitoring concept in a control flow graph.

a logical succession of the inter-procedural PFM, which examines the validity of execution using
the function’s CFG. It monitors the correct flow between building blocks by assigning signatures
to each building block. This measure does not detect CFEs at all instruction levels, e.g., illegal
jumps within the basic building block.

The instruction-stream PFM or intra-block PFM [174, 184] can deal with such errors and
ensure the executed instructions’ integrity. A building block contains an arbitrary number of
sequential instructions. The instruction-stream PFM monitors that all instructions of the building
block are properly sequenced at run-time. This granularity level requires that each instruction
is assigned a signature. Compared to the two previous PFMs, the software does not trigger the
“Signature Update” routine. Instead, the signature of each executed instruction is calculated in a
dedicated module of the processor, as proposed in [220]. Finally, the calculated signatures can be
verified, e.g., at the end of each basic block or function block.

There are several factors to consider when selecting the proper monitoring approach. In
general, a pure software PFM such as [146] does not require additional hardware but causes a
significant overhead in execution time to update the signature. Conversely, a hardware-assisted
scheme such as the instruction-stream PFM requires special post-processing of the compiled binary
[219, 220]. Furthermore, when choosing a PFM, it is important to note which error is a threat
and needs to be handled.

8.2.3.1 Model Extensions

Figure 8.6 distinguishes between two PFM (Monitoring) concepts in the generator-spec that can
be generated. The designer can apply either an intra-procedural PFM (BlockMonitoring) or a
hardware-assisted instruction-stream PFM (InstructionMonitoring) to a function. In addition,
depending on the safety requirements, the designer can further tailor the monitoring pattern, e.g.,
the monitoring depth or the hash function. These configuration options are discussed in the next
sub-sections.

and only one execution path. All instructions within a basic block are always executed sequentially from start to
finish, without branches or jumps.

119

8.2.3 Signature-based Program Flow Monitor

In general, each function of the abstract firmware model is considered as CFG. To recap: In
the FW PIMM of Figure 6.3, a function specifies an activity group as a control block, also named
a basic block, which contains a list of actions. An action node can be a control node, which
inherits another control block. Signature-based flow monitoring pattern generation is carried out
in two phases. In the first phase, the pre-processing phase, the abstract function of the FW PIM
is extended by a special flow monitoring artifact named FlowMonitoring node. The FW PIMM
specifies a generic FlowMonitoring action node that can be inserted into any position within the
activity. The node is treated as any other action node. It describes one of the following three
manifestations:

• Signature Initialization: The initialization node pre-initializes the run-time signature with
a specific signature constant. Upon this point, the signature can be updated along the
execution path of the function. The initialization node is inserted at the beginning of the
first basic block of the monitored activity.

• Signature Update: The update node calculates the next run-time signature based on the
current run-time signature and a unique block signature constant.

• Signature Verification: The run-time signature is compared with the expected compile-time
signature list.

The pattern generator inserts these action nodes into the control graph, ensuring coverage of
all possible paths through the function. It considers each control block as a separate execution
unit and places “Signature Updates” in each according to a defined set of rules.

In the second phase, the post-processing phase, the PFM generator determines all paths of
the modified function’s control flow graph that can be traversed from an initialization node to a
verification node. In this way, a set of paths is obtained, with each path containing a different
sequence of traversed update nodes. Together with the initialization node, the signature for each
path can thus be calculated. Finally, the pre-computed signatures are appended as the compile-
time signature list to the verification node.

8.2.3.2 Hardware Requirements

The PFM relies on a signature function such as the cyclic redundancy check (CRC) to calculate
the run-time signature. In general, software computation of signature functions is feasible but
involves significant performance costs. Therefore, a hardware PFM module shown in Figure 8.9 is
added to the system, permanently active to compute the signatures. This HW unit is required to
realize the PFM software pattern. The PFM is specified within the CPU generation framework
and can be configured similarly to other IP components, e.g., by type of signature function.

The PFM module resides within the RISC-V core as the RISC-V pipeline controls it. The
PFM module is accessed via the CPU’s CSR interface. In particular, the instruction-stream PFM
needs the pipeline status and the executing instruction as inputs to calculate the signature and
to ensure the instruction stream’s integrity. So, the PFM has to be connected to the execution
stage of the processor’s pipeline. In addition, the PFM registers, such as the real-time signature

120

Chapter 8. Device Generic Generator Backend

register, are placed within the fast RISC-V CSR interface49. This location allows access to the
registers by privileged atomic instructions and avoids slower multi-cycle bus accesses.

The intra-procedural PFM is integrated into the write paths of the following two CSRs, as
shown in the architecture of Figure 8.9. First, the register CSR_STATE stores the run-time
signature. This register is updated with the value of csr_state_in when initializing the signature
via software command. Second, the virtual register CSR_HASH is used to compute the signa-
ture_nxt. While in intra-procedural PFM, the signature update event is triggered when writing
to the CSR_HASH register via a software command. In the PFM instruction stream, this is
triggered by an HW event. This event occurs for each instruction accepted and processed by the
core. Both events cause the signature function to calculate the next CSR_STATE based on the
csr_hash_in and the current value stored in CSR_STATE .

While checkpoints are calculated selectively in the intra-procedural PFM, they are calculated
permanently in instruction-stream PFM. Accordingly, the PFM instruction stream architecture
performs more hash calculations and therefore requires more power but can also handle more
error cases. Moreover, the permanent calculation is faster since it is executed simultaneously with
the processor’s execution stage. However, the instruction-stream PFM needs more logic due to
additional control signals.

signature function

MUX

32-bit
CSR_STATE

signature_nxt

signaturedata_in

data_out

data_in

EN
csr_state_en

csr_hash_en

csr_state_in

CSR logic

csr_hash_in

Figure 8.9: The PFM hardware module included in the RISC-V core.

8.2.3.3 Intra-procedural PFM

The safety transformation of an intra-procedural PFM pattern follows transformation rules that
automatically extend the functional model with flow monitoring actions. The implementation
details of this PFM are determined by the designer’s configuration of the BlockMonitoring pattern
in the generator-spec. With the MDA approach, a wide variety of intra-procedural PFMs can thus
be generated. The intra-procedural PFM features the following options:

• Type: The Type defines the applied signature function.

49The custom CSRs for the PFM are specified in the user section of the CSR address range.

121

8.2.3 Signature-based Program Flow Monitor

• OptimizedRange: The RISC-V CSR specification supports r-type (register operand) and
i-type (immediate operand) instructions, as shown in Listing 8.5. An i-type write instruction
(CSRRWI) uses a zero-extend unsigned 5-bit immediate. In contrast, the r-type write
instruction (CSRRW) first loads the value to be written from the internal register, which
requires additional instructions to be set. The designer can choose between both options,
which affect the signature size used at each signature update node. Larger signature values
are less efficient but provide higher coverage due to the larger bit-wise distance between
values, reducing the likelihood of false negatives.

Listing 8.5: The generator applies the register or the immediate operand depending on the
PFM configuration.

// Swap value in the CSR Register (csr) and the internal register (src_r)
#define CSRRW(csr, src_r) __asm__ __volatile__("csrw %0, %1" :: "i" (csr), "r" (src_r));
// Write constant value (val) into CSR Register (csr)
#define CSRWI(csr, val) __asm__ __volatile__("csrwi %0, %1" :: "i" (csr), "i" (val));

• Level: Each function specifies a hierarchically nested control block. The Level specifies the
depth of the nesting level that the PFM should protect. Adjusting the level can reduce the
number of paths through all flow monitoring nodes. The signature path sp is defined as:

Definition 8.8. sp = {{v0, ..., vn}, {v0, ..., vn}, ...} where {v0, ...vn} is a sequence of flow
monitoring nodes starting at the initialization node v0 and ending at the final node vn.

For example, Figure 8.10a shows a CFG with three nesting levels. Note that each control
node introduces a further nesting level. Only the base path is monitored if the designer sets
the level to 1; level 2 also includes the first nesting hierarchy. The whole list of paths for
each level spli of the example is:

Level1 : spl1 = {{v0, v1, v6, v7}};
Level2 : spl2 = {{v0, v1, v2, v6, v7}, {v0, v1, v5, v6, v7}};
Level3 : spl3 = {{v0, v1, v2, v3, v6, v7}, {v0, v1, v2, v4, v6, v7}, {v0, v1, v5, v6, v7}};

As the level increases, the number of valid paths through the CFG grows. This increases the
granularity of the monitoring and, thus, the diagnostic coverage. In return, the time spent
by the CPU in the verification node to compare the run-time signature with each path’s
signature increases.

• Balanced: The Balanced setting aligns the signatures of different execution paths, improv-
ing the PFM pattern’s performance. The objective of the approach is to match signatures
to produce the same signature regardless of the execution path. Thus, only a single compile-
time signature must be checked in the signature verification node.

As discussed in the preceding bullet, the CFG in Figure 8.10a yields three execution paths
spl3, i.e., three valid signatures. Balancing the “signature updates” reduces the number of
valid signatures to a single one without changing the execution paths, as shown in the CFG
of Figure 8.10b. While the balancing approach improves verification effort, it also reduces
diagnostic coverage since illegal jumps to parallel control blocks may not be detected.

122

Chapter 8. Device Generic Generator Backend

• Verification: The PFM pattern supports three Verification options that affect the position
of the verification nodes and thus the fault-tolerance latency (FTL50).

– BeforeReturn: The generator builds a design, as shown in Figure 8.10a, which verifies
the signature at a single point when leaving the function. This setting has a high FTL
for complex functions.

– Continuous: The signature is verified along the execution path after each signature
update, as shown in the CFG of Figure 8.10c. Continuous verification minimizes the
FTL.

– BasePath: The BasePath is a trade-off between the previous two approaches. The
verification nodes are distributed along the function’s base path after each control
node of its root group.

[Condition] [Else]

Control Block 1

Control Block 5

Control Block 3

 [Condition] Else

Control Block 4

Control Block 6

Control Block 2

v0

Checkpoint (v5)

Checkpoint (v4)Checkpoint (v3)

Checkpoint (v1)

Checkpoint (v2)

Checkpoint (v6)

Init State

Control Block 4

Verification

v7

(a) Default flow monitoring.

[Condition] [Else]

Control Block 1

Control Block 5

Control Block 3

 [Condition] Else

Control Block 4

Control Block 6

Control Block 2

v0

Checkpoint (v2)

Checkpoint (v3)Checkpoint (v3)

Checkpoint (v1)

Checkpoint (v2)

Checkpoint (v4)

Init State

Control Block 4

Verification

v5

Checkpoint (v3)

(b) Balanced flow monitoring.

[Condition] [Else]

Control Block 1

Control Block 5

Control Block 3

 [Condition] Else

Control Block 4

Control Block 6

Control Block 2

v0

Checkpoint (v5)

Checkpoint (v4)Checkpoint (v3)

Checkpoint (v1)

Checkpoint (v2)

Checkpoint (v6)

Init State

Control Block 4

Verification

v7

Verification

Verification

VerificationVerification

Verification

(c) Low latency flow monitoring.

Figure 8.10: Different flow monitoring concepts are generated from the safety pattern configuration.

Figure 8.11 shows the transformation steps for generating the intra-procedural PFM according
to the designer’s design choices. The transformation steps are explained in the following, taking
the generated sample code of Listing 8.6 as a reference.

First, the generator must instantiate a random number generator (RNG) which populates the
monitoring nodes. In particular, the “signature initialization” in line 3 and “signature update” in
line 8, 12 and 15 utilize the RNG to write random constants to the registers. The RNG supplies
integers according to the chosen maximum allowed integer size given by the ReducedRange setting.

50Fault Tolerance Latency (FTL) is defined as the total time taken from the occurrence of a fault to system’s
recovery. The FTL, according to [112], includes different fault-handling stages as error detection, fault location,
system reconfiguration.

123

8.2.3 Signature-based Program Flow Monitor

Initialize
Randomizer

<Type>

Initialize
Fingerprint

<Verification>

Hierarchical Control Blocks

<Level>

Insert
Verification

<RangeOptimize>

Calculate
Paths

Config defines

Initialize
Fingerprint

Figure 8.11: Transformation steps to integrate a configurable intra-procedural PFM.

The reduced range limits the random integer to 5 bits, while the long range allows all 32-bit
integers.

The subsequent steps are performed in the first traversal phase, where the pure CFG is analyzed
without monitoring nodes. In this phase, the generator adds monitoring nodes to the abstract
model. The signature is initialized (CSR_STATE_WRITE) at the beginning of the function, while
signature updates (CSR_HASH_WRITE) are included along the control path. The “signature update”
is generally included in each control block before branching to a new control block, considering
the configured level. The “signature verification” is optionally inserted at the end of each control
block as defined by the Verification setting.

The signatures are balanced in an optional step that analyzes the CFG, including the moni-
toring nodes. The balancing step modifies the CFG to ensure that each execution path hits the
same signature update nodes. This may imply that the signature constant for specific nodes needs
to be adjusted or that additional “signature update” nodes must be included. In addition, minor
changes to the graph may be required to satisfy the balancing requirement, e.g., a standalone
if-statement must be extended by an else statement:

// Before balancing: Standalone If-Statement
if (condition){

...
CSR_HASH_WRITE(325755)

}
...

// After balancing: Update in Else-Statement
if (condition){

...
CSR_HASH_WRITE(325755)

} else {
CSR_HASH_WRITE(325755)

}
...

The modified model is analyzed in the last step, and the compile-time signature list of all paths
is calculated. This calculation is done in a second traversal step that iterates over the graph of
the modified function to determine all signature paths sp between a signature initialization node
and a signature verification node.

Together with the signature function, the compile-time signature list can be calculated51 and
included in the signature verification node, as shown in lines 17-26. This verification node processes
the compile-time signatures and calls the error handler in case of a mismatch.

51Note that the signature function used by the generator to determine the compile-time signatures must follow
the same concept as the one used in the hardware.

124

Chapter 8. Device Generic Generator Backend

Listing 8.6: Target code with a block-PFM pattern generated by the safety transformation template.
1 void receive_uart(uint16_t len, uint16_t *data){
2 uint32_t _signature;
3 CSR_STATE_WRITE(2473823); //Signature is initialized with random value.
4 /* Behaviour of the function on the first control block level. */
5 CSR_HASH_WRITE(3463452); // Signature update before branch.
6 if (Condition){
7 /* Behaviour of the function on the sub-control block (if). */
8 CSR_HASH_WRITE(123482); // Signature update in if-branch.
9 }

10 else{
11 /* Behaviour of the function on the sub-control block (else). */
12 CSR_HASH_WRITE(456323); // Signature update in else-branch.
13 }
14 /* Behaviour of the function on the first control block level. */
15 CSR_HASH_WRITE(325755);
16
17 /* Verification of the correct control paths.
18 1. Path: 2473823->3463452->123482->325755 = 1910696930
19 2. Path: 2473823->3463452->456323->325755 = 3535675038 */
20 CSR_STATE_READ(_signature);
21 static const uint32_t _valid_signatures[] = {1910696930, 3535675038}; // Calculated paths
22 static const uint8_t _valid_signatures_len = 2;
23 bool _valid = verify_signature(_signature, _valid_signatures_len, _valid_signatures);
24 if (False == _valid){
25 /* Error Handler */
26 }
27 }

A special handling in the transformation steps is required for non-deterministic loops in the
CFG, as shown in Listing 8.7. The control block within the non-deterministic loop is considered a
standalone CFG that is transformed independently of the previous and subsequent program flow.
To this end, the same transformation steps are applied again to the loop only. Furthermore, the
run-time signature is buffered when the CPU executes the loop.

Listing 8.7: Transformation of a non-deterministic loop for an intra-procedural PFM.
CSR_STATE_READ(_signature); // Store signature
while (condition){

... // PFM pattern applied on the CFG of the non-deterministic loop.
}
CSR_WRITE_Write(_signature); // Load signature

8.2.3.4 Instruction-stream PFM

Instruction-stream PFM differs from intra-procedural PFM because it is a hardware-assisted
methodology. The “signature update” routine is not triggered by a software event (writing to
CSR_HASH_WRITE) but runs concurrently with the program execution. Instead of a random
constant value, the HW PFM module uses the instruction encoding of each executed instruction
from the CPU pipeline to calculate the next signature. However, the initialization of the signatures
and the verification remains further under the control of the software.

125

8.2.3 Signature-based Program Flow Monitor

Indeed, the compile-time signatures of each execution path can no longer be derived from
the abstract firmware model. The execution paths and, thus, the compile-time signatures are
obtained from the disassembly file of the compiled target code. Therefore additional steps in the
PFM pattern generator are required.

Initialize
Randomizer

<Type>

Initialize
Fingerprint

Generate
&

Compile

<Verification>
Insert

Init Values &
Verification Values

Calculate
Paths

Hierarchical Control Blocks

<Level>

Insert
Verification

First Iteration

<Verification
Value>

<Init Value>

Calculate
Paths

Config

defines

Figure 8.12: Transformation steps to integrate a configurable instruction-stream PFM.

The transformation flow of the instruction-stream PFM is shown in Figure 8.12. Note that
the transformation steps specified in the flow are performed in two iterations. In general, each
run is similar to the intra-procedural transformation, except that no signature update nodes are
inserted into the model, and thus the balancing step is skipped. Also, the state of the signature
is buffered for any non-deterministic event in the control flow graph.

In the first iteration, the steps are performed according to the chosen configuration follow-
ing the previous flow of the intra-procedural PFM. When calculating the number of paths from
initialization to verification node, the generator considers the abstract model, as shown in Fig-
ure 8.13a. The number of paths indicates the number of compile-time signatures to be checked at
the verification node. Those compile-time signatures are initially not subject to any calculation
and are populated as dummy values.

The target code has to be generated and compiled with predefined compiler settings to derive
the correct verification values. The control paths with all included instructions are reconstructed
from the disassembly file.

The extraction is done by a parser that determines the control flows based on the instruction
encoding, as described in [14, 204, 212]. The parser extracts all paths starting with the “CSR_-
STATE_WRITE(...)” instruction that initializes the PFM and ends with the verification node:
“CSR_STATE_READ(...)”. The enclosed instructions are dropped if the state is buffered due to
a non-deterministic event. In this way, all possible sequences of instructions from initialization to
verification are obtained, as shown in Figure 8.13b.

From these sequences, the compile-time signatures can be calculated. Each signature is cal-
culated based on its initialization value and the encoding of all instructions in the sequence using
the signature function of the PFM module. The calculated signatures and the initialization values
are stored in a temporal file.

In the second iteration of the safety transformation, the initialization and verification nodes
are filled with the values stored in the temporal file and not with random values. Thus, the same
transformations are executed in both iterations resulting in the same target code but different
compile-time signatures. As a final step, the instruction sequences and the correctness of the
previously determined paths must be verified after another generation and compilation step. If

126

Chapter 8. Device Generic Generator Backend

Condition

Control Block

Control Block

Control Block

Init State

Verification

(a) Abstract CFG

 1d24: 81071073 csrw 0x810,a4

Condition 17a8: 04078a63 beqz a5,17fc

 1738: 000127b7 lui a5,0x12
 :

 17fc: 000127b7 lui a5,0x12
 :

 1864: 81002773 csrr a4,0x810

 17ac: 000126b7 lui a3,0x12
 :

(b) CFG reconstructed from the disassembly file.

Figure 8.13: Compilation flow of the instruction-PFM pattern.

the paths differ from the determined ones of the first iteration, the generation has failed, and the
designer will be notified.

A crucial factor is that the firmware model and the compiler configuration are identical for
both iterations. In addition, the CFG of the abstract function and the assembler must match to
ensure that the correct number of valid paths can be determined. Otherwise, an error occurs, e.g.,
due to aggressive compiler optimization.

8.2.4 Error Handler

Each generated safety pattern refers to an error-handling routine invoked upon an error occur-
rence. The generator-spec defines the ErrorHandler as a group of different ErrorSources. An
ErrorSource specifies the appropriate course of action upon an error detected by the safety pat-
tern, as demonstrated in line 25 in Listing 8.6. In this context, multiple safety patterns can thus
refer to one error source, accordingly one error response.

Listing 8.8: An enumeration of all error sources associated with the system’s safety patterns.
typedef enum error_source_t{

ERROR_HANDLER_NONE,
ERROR_HANDLER_SPI_rx,
ERROR_HANDLER_UART_rx,
ERROR_HANDLER_I2S_tx,
ERROR_HANDLER_I2C_tx,

}error_source_t;

The generation of the error handler is defined in a separate transformation template. This
generator constructs an enumeration in Listing 8.8 containing all possible error sources. In addi-
tion, the generator builds skeletons that manage those error sources, leaving it up to the designer
to implement the best method to deal with the error manually. The following ErrorHandlerTypes
define the implementation detail of the error handler:

127

8.2.5 Results

• Hardware: The hardware layer handles the error and triggers a system reset in case of an
error source. This reset can be caused by an illegal instruction or an architecture-specific
reset such as the “EBREAK”52, which is inlined into the safety pattern’s error response:

inline static void error_handler_hardware(error_source_t err_src){
__asm__ volatile ("EBREAK"::)

}

• Application: When an error occurs, a global variable is written by the safety pattern to
indicate the source of the error error_source_t error_source. Instead of executing a
direct error handling routine, this routine is moved to the application layer. On this layer,
the error_source can be queried permanently to ensure the system’s integrity. However,
this increases the FTL.

error_source_t error_source;
inline static void error_handler_application(error_source_t err_src){

error_source = err_src;
}

• Driver: This handler is also intended for the application developer to decide on the error
response. Unlike error-handling in the application layer, this approach reduces FTL since
the error handler is called immediately after the error occurs. The generator builds the error
handler as an if-else skeleton with all error sources, which is called by the error routine of
the safety pattern.

void error_handler_driver(error_source_t err_src){
if ((err_src == ERROR_HANDLER_watchdog_uart_sensors))

// Fill manual code here
else if ((err_src == ERROR_HANDLER_watchdog_button_display)

// Fill manual code here
}

The designer can individually choose each function’s safety pattern approach and thus provide
multiple error-handling methodologies in the system. Note that the designer must consider the
FTL when taking a particular approach.

8.2.5 Results

Safety-critical designs should be rigorously verified to ensure functional correctness and safety as
outlined in the ISO-26262 standard [98]. This standard recommends fault injection as an essential
technique for the safety verification of safety-critical designs. As defined by [114], fault injection
can be defined as the deliberate insertion of faults into the system. There are various fault injection
techniques such as hardware-based, simulation-based and emulation-based. The proper system’s
response to an injected error can prove the reliability of the safety patterns.

52In general, the “EBREAK” instruction in RISC-V was primarily designed to cause an execution stop by the
debugger. However, the “EBREAK” is also used to mark code paths that should not be executed leading to an
hard reset.

128

Chapter 8. Device Generic Generator Backend

Safety patterns increase diagnostic coverage but also influence cost requirements. The following
detailed analysis measures the cost impact of each safety pattern, including performance, memory
footprint, and diagnostic coverage.

8.2.5.1 Fault Injection

Proving the reliability of safety patterns requires introducing a fault injection mechanism. Simulation-
based techniques are a standard method for demonstrating diagnostic coverage. Kaja et al.
[103, 104] present a fault simulator that extends Verilator53 [186], an open-source hardware sim-
ulator with fault injection capability. This extension of Verilator simplifies fault injection and
captures the system’s response.

A fault simulator [196, 200] generally manipulates the values of internal signals during sim-
ulation time by applying fault models. Accordingly, the system can be put into a state as if a
hardware error has occurred. After that, the system can be observed to determine the impact of
the introduced error on the safety pattern report. In order to verify the resilience of the system
and its safety patterns, thousands of randomized failure models have to be applied. Verilator’s
strength lies in the fact that it is a cycle-based high-performance simulator.

Instruction memory RISC-V CPU

SPI

SPI1 SPI2

TXRX TX

GPIO

PAD1 PAD2 PAD3

TXRX TX RX

UART

UART1 UART2 UART3

TXRX TX RX

Communication IPs

...

Fault Injection

IF ID EX MEM WB

PFM

CSR

Data memory

Stack Heap

1da4: 00177713 andi a4,a4,1
1da8: 01071733 sll a4,a4,a6
1dac: 00e6e733 or a4,a3,a4
1db0: 00e5a02 sw a4,0(a1)
1db4: 802fd073 csrwi 0x802,31
1db8: 801026f3 csrr a3,0x801
1dbc: e17e8737 lui a4,0xe17e8
....

Instruction Bus

Data Bus

IA

Prefetcher

+4

Figure 8.14: A SoC including the CPU pipeline stage with the fault injection concept.

In order to verify each safety pattern, various errors in hardware are examined that manipulate
the program counter (PC). Therefore, different fault models are injected into the design, such as
permanent (stuck-at) and transient faults (bit flips). Correct behavior increments the PC value by
four if no control flow instruction is present. A fault model weaved into the PC register, as shown
in Figure 8.14, leads to an incorrect execution order in simulation and, thus, faulty behavior.

For example, to validate the PFM and watchdog, a fault model is weaved into the CPU
pipeline to manipulate the logical behavior and temporal execution order. More precisely, the

53Verilator employs a cycle-accurate behavioral model that computes the logical state once per clock cycle.
Compared to event-based simulators, Verilator is super-fast but cannot observe intra-period glitches.

129

8.2.5 Results

hardware logic responsible for calculating the PC is manipulated. The framework, as described in
[104], allows the injection and definition of different fault models, such as permanent (stuck-at)
and transient faults (bit flips). Figure 8.14 shows the SoC with the fault injection concept in
the pipeline stage. With this concept, the error is inserted into the feedback loop of the address
calculation. As a result, the next retrieved instruction address (IA) changes, and the execution
order deviates from the expected order. If no fault is fed in, the PC is incremented unless a jump
instruction is present.

For example, suppose the PC has the value 0x000C, and a bit flip is injected in the next clock
cycle (CC). In normal behavior, the PC takes the value 0x0010 in the next clock cycle; error
injection takes an erroneous value instead, e.g., 0x0110. A PFM or a watchdog is intended to
detect such an error.

8.2.5.2 Diagnostic coverage and overhead

The fault simulation is performed at the RTL level of the SoCs described in the next chapter 9. The
applications executed on the system, including the safety patterns, were compiled with RISC-V
GCC 9.2.0 using optimization level -01. For a good indication of diagnostic coverage, an analysis
was performed with 3000 fault models. Each fault model is simulated, and the result of each
simulation is stored in a dump file. This data is further analyzed to determine the proportion of
detected faults and the FTL.

First of all, the implementation of the watchdog is evaluated. A watchdog implementation
requires a general-purpose timer IP in hardware and a small overhead in device drivers. The
binary size increases, and performance decreases due to the instructions required to initialize,
reset, and stop the timer. Compared to the PFM, the watchdog has limited configurability. The
watchdog’s reliability and diagnostic coverage have been measured using stuck-at-fault models on
the PC register. A stuck-at-fault is critical when it results in an execution loop that updates a
watchdog in each iteration. However, employing multiple watchdog channels can avoid this kind
of fault scenario. The watchdog implementation achieved an average diagnostic coverage of 95.7%
for a single watchdog channel, while five watchdog channels achieved more than 99.9% coverage.
The FTL between watchdog expiration to execution of the error handler depends on the interrupt
controller design introduced in Section 8.1.2.2.

8.2.5.2.1 Transformation capabilities The strength of this approach, similar to the driver
design, is that a safety pattern is configurable and can result in various variants. The designer
can customize 18 variants of instruction-stream PFM and even up to 72 intra-procedural PFMs.
The effort to realize all variants is limited to the one-time implementation of the safety transfor-
mation (337 SLOCs for intra-procedural PFM and 631 SLOCs for instruction-stream PFM). The
generator frontend remains untouched. Thus the developer can focus exclusively on implementing
the functionality of a new IP component without worrying about safety details.

Therefore the generator approach saves much development time compared to manual coding.
More importantly, it is more reliable since the manual implementation of PFMs is a very repetitive
and thus error-prone task. Table 8.3 shows the average number of SLOCs generated for different
IP devices. The overhead for manual implementation of the intra-procedural PFM is the largest,

130

Chapter 8. Device Generic Generator Backend

as it takes care of initializing, updating and verifying the signature by FW. Instruction-stream
PFM neglects the signature updates but requires more SLOC to buffer the signature for non-
deterministic events. The difference between the IPs’ overhead arises from the number of IP
options that lead to more execution paths.

Table 8.3: Evaluation of the effort required to code safety patterns for different IP instances.

Peripheral Generated device driver (∅ SLOC) Device-specific
Transformation (SLOC)Block-PFM Instruction-PFM Without

UART 929 869 760 302
DMX 1055 993 859 377
I2S 667 649 549 489
SPI 1026 956 820 471
PAD 630 430 548 440

8.2.5.2.2 Memory and performance overhead Table 8.4 shows the achieved result for
each configuration of the block-PFM using the CRC as a hash function. The results describe the
average result of the safety pattern applied to all driver functions of various SoCs.

Each PFM configuration incurs different overhead in terms of binary size (ranging from 20,0%
to 48,2%) and performance (ranging from 12,2% to 31,1%). The largest contributor to overhead
is the verification node, which iteratively compares the run-time signature with all compile-time
signatures. The evaluation reveals that configurations resulting in more compile-time signatures
or adding more verification nodes have significantly more overhead.

For this reason, the overhead between instruction-stream PFM and intra-procedural PFM
differs slightly since both verify the signature via firmware commands. However, there are different
hardware costs: A CPU without the PFM concept requires 3904 lookup tables (LUTs). With intra-
procedural PFM, the number of LUTs increases by 5,3% and with instruction-stream PFM, even
by 8,6%.

8.2.5.2.3 Diagnostic coverage According to [133], between 33 % and 77 % of the errors, a
computer system can suffer lead to a control flow deviation. The PFM addresses these control
flow deviations. Table 8.4 shows the diagnostic coverage for bit-flips, stuck-at-0 (1000 CC) and
stuck-at-1 (1000 CC) faults. The described fault injection approach can randomize54 faults by
time as well.

Similar to the overhead, the diagnostic coverage also strongly depends on the configuration.
For example, the configuration determines the proportion of the monitored code. The diagnostic
coverage is thus 14% higher if all the drivers’ nesting levels (level=0) are monitored. The analysis
further shows that the diagnostic coverage of a bit-flip ranges from 57,2% (62,0% monitored code)
to 81,5% (89,2% monitored code). Whereas the FTL depends on the number of verification nodes.
The results show that the FTL for the Continuous configuration is, on average 54 CC (37.6%)
smaller for bit flip faults. Also, balancing reduces the FTL enormously (40%) but at the expense
of diagnostic coverage (-3%).

54Note that the randomized error can occur throughout the run-time, even in execution points that are not
monitored.

131

8.3 Optimization

Table 8.4: Diagnostic coverage and overhead analysis for different intra-procedural PFM concepts:
R=BeforeReturn, B=BasePath, C=Continuous; Level=0 covers all nesting levels, Level=1 covers
only first nesting level

Configuration Bit flip Stuck-at-0 Stuck-at-1 Overhead

B
al

an
ce

O
pt

im
iz

ed

V
er

ifi
ca

ti
on

Le
ve

l

D
ia

gn
os

ti
c

co
ve

ra
ge

F
T

L
av

er
ag

e
(C

C
)

D
ia

gn
os

ti
c

co
ve

ra
ge

F
T

L
av

er
ag

e
(C

C
)

D
ia

gn
os

ti
c

co
ve

ra
ge

F
T

L
av

er
ag

e
(C

C
)

M
on

it
or

ed
co

de

B
in

ar
y

si
ze

P
er

fo
rm

an
ce

T
ru

e

O
pt

im
iz

ed

R 0 69.5% 209 65.6% 892 69.7% 502 75.0% 24.5% 15.6%
1 57.2% 122 54.2% 783 59.3% 404 62.0% 20.0% 12.2%

C 0 81.5% 106 77.9% 803 82.3% 233 89.2% 45.7% 30.3%
1 62.5% 131 62.3% 848 64.4% 263 70.1% 32.2% 25.4%

B 0 77.0% 179 74.4% 849 78.7% 378 81.8% 34.7% 24.7%
1 58.9% 158 57.6% 825 58.5% 286 67.5% 28.3% 19.4%

E
xt

en
de

d R 0 71.8% 247 72.5% 947 69.5% 475 76.6% 26.9% 16.5%
1 59.9% 144 60.3% 830 60.1% 392 62.9% 21.4% 13.8%

C 0 85.5% 120 86.1% 825 87.0% 234 90.8% 48.2% 31.1%
1 67.0% 139 68.6% 830 63.7% 301 71.0% 33.5% 27.4%

B 0 78.6% 160 77.7% 847 77.8% 305 83.7% 37.5% 26.6%
1 63.9% 166 60.1% 858 63.8% 467 68.5% 29.7% 21.3%

Fa
ls

e

O
pt

im
iz

ed

R 0 68.0% 136 7.7% 831 65.2% 356 73.4% 22.0% 14.2%
1 57.3% 122 53.3% 799 54.2% 302 62.0% 20.0% 12.2%

C 0 79.1% 34 79.4% 720 79.3% 184 85.7% 40.5% 26.7%
1 66.3% 68 62.7% 759 62.9% 203 70.1% 32.2% 25.4%

B 0 73.3% 90 73.5% 772 69.6% 298 79.1% 30.7% 21.9%
1 64.5% 98 61.3% 773 61.7% 236 67.5% 28.3% 19.4%

E
xt

en
de

d R 0 71.1% 130 69.9% 888 69.9% 352 75.9% 25.9% 16.2%
1 59.4% 113 56.1% 801 59.4% 384 62.7% 21.0% 13.7%

C 0 81.2% 40 78.9% 727 78.7% 238 88.1% 44.1% 28.7%
1 67.3% 79 65.3% 766 65.6% 283 70.8% 33.2% 27.0%

B 0 78.4% 107 75.2% 780 76.6% 308 82.2% 35.2% 25.4%
1 63.8% 117 64.4% 800 60.4% 343 68.3% 29.5% 21.6%

The diagnostic coverage for stuck-at-1 errors is slightly larger than bit-flips because the error
is preserved over the observed time windows. Diagnostic coverage of stuck-at-0 errors is worse
because they can lead to an execution loop that gets stuck in a control block. Such a loop may
neither reach a verification node nor a signature update node.

The main disadvantage of intra-procedural PFM is that faults causing jumps within the scope
of a control block cannot be detected. Instruction-stream PFMs can cope with these faults and
achieve an average of 8% more diagnostic coverage.

8.3 Optimization

One of the great strengths of code generation and meta-modeling is that many SoC variants can
be generated. The framework presented so far includes several design choices the designer can

132

Chapter 8. Device Generic Generator Backend

make. Briefly, a designer can configure the top-level requirements of the SoC and its IPs. He can
also configure the architecture and design-specific preferences as well as safety patterns for the
particular IP instance. Additionally, he can customize the register interface and explore different
memory layouts, as shown in Chapter 5. Finally, the designer can select the code generator that
translates the abstract models into the desired target language with a specific implementation
style.

All these configuration options within a generator-based model-driven framework enable the
creation of millions of variants. This diversity leads to an enormous amount of simulation data,
which also opens up the possibility for design exploration and trade-off analysis. The insights
gained from these explorations further enable the application of design exploration. Referring
to [36, 92, 148], machine learning in EDA can become a state-of-the-art approach to design
optimization. However, the major obstacle of machine learning in EDA is the lack of training
sets [72]. For this reason, algorithms are primarily used that are particularly suitable for small
training sets [92]. However, the demonstrated MDA framework provides the training sets and
thus enables the application of machine learning and algorithms suitable for larger data sets.

In the following, two applications of design optimization, compiler optimization and memory
layout optimization, are described.

8.3.1 Compiler Optimization

So far, the compiler is an overlooked aspect of generation frameworks, but with a lot of opti-
mization potential. A compiler translates the target code into a binary file loaded into the SoC’s
memories. Elaborated compilers, such as the GCC [78], provide hundreds of optimization flags
for tuning the translation step.

In general, each compiler flag potentially causes a trade-off that affects costs like performance,
power and memory overhead. It is challenging to define the best combination of compiler flags.
On the one hand, compiler flags are interdependent and influence their effectiveness. On the
other hand, the efficiency of optimization flags varies depending on the application and CPU
(e.g., instruction set). Indeed, a designer can thus choose optimization flags that are not at all
optimal for the respective applications.

Furthermore, certain compiler requirements must be met, especially when optimizing embed-
ded software that interacts strongly with the hardware. For example, hardware accesses are often
tied to hardware events and may have timing constraints. Rearranging the accesses through op-
timization could cause a malfunction or an invalid race condition. In other words, too aggressive
optimizations can cause unexpected errors affecting hardware and software interaction.

Compilers like GCC generally provide predefined optimization levels, e.g., -O1, -O2 or -O3,
which activate a set of optimization flags [101]. With an increasing level, the optimization gets
increasingly aggressive, up to the point of breaking the standard’s compliance (-Ofast). Although
they are designed for various design spaces, these optimization levels achieve, on average, a good
result [79]. For this reason, there remains further potential for application- and hardware-based
fine-tuning, as described in [50, 53, 135, 156, 208].

In [223], a compiler flag optimization step is introduced, which is incorporated into the gen-
eration pipeline. The idea of the compiler optimization step is to adjust the default optimization

133

8.3.1 Compiler Optimization

level so that it is optimal for a given design space. For this purpose, the step identifies all flags
of the optimization level that have a negative impact on costs. It uses multi-criteria exploration
through clustering methods to identify those relevant compiler optimization flags.

This optimization step helps to tailor the compiler to the generation framework, hardware,
and firmware. Furthermore, it helps to quantify the potential memory and performance gains at
an early stage. For example, the information obtained from such a step can be used to adjust
CPU or memory specifications, e.g., through a feedback loop.

8.3.1.1 Compiler integration and training set generation

A designer can specify 2104 different optimization flag combinations for the RISC-V GCC v9.2.0
compiler. A common approach to overcome the huge parameter space is iterative optimization, as
presented in [53]. The iteration order in such an optimization approach can be determined by a
random number generator [37] or machine learning (ML) [18, 76, 145]. The ML-based technique
reduces the exploration time but cannot fully compete with the results obtained by iterative
compilation.

Similar to the approaches of [79, 156], the compiler exploration step is done in reverse order
starting from an aggressive optimization level. The -O3 level is considered the starting level, which
describes the superset of the -O1 and -O2, including the largest number of enabled optimization
flags. The optimization step successively determines the flags that reduce costs when disabled,
keeping -O3 active. This has the great advantage that dependencies between flags must not be
resolved. For example, optimization flag -fschedule-insns2 only takes effect if -fschedule-insns is
also enabled. If the flags are elaborated starting from no optimization level, -fschedule-insns2
is incorrectly evaluated as ineffective. In the reverse iteration, however, the impact of the flag
-fschedule-insns2 on the cost becomes apparent when disabled -fno-schedule-insns2.

gcc -march=rv32i -std=c99 -O3 -fno-reorder-block1

gcc -march=rv32i -std=c99 -O3 -fno-inline-functions104

...

Training set: Result1

CPU run-time: 4.739 Cycle
Binary size: 13.632 Byte
Result: Passed

CPU run-time: 4.354 Cycle
Binary size: 14.172 Byte
Result: Failed

...

Compile
and

Execute

Application

SoC

Input Set: Input1

Figure 8.15: Exploration of compiler flags as part of the generation framework.

In order to explore the cost impact of all flags for a generated RISC-V SoC and a specific
application, the framework automatically builds the binary for each disabled optimization flag.
Therefore a compiler command is constructed and executed for each flag to measure its impact, as
shown in Figure 8.15. Then, the SoC including the binary is simulated to determine the following
objectives:

134

Chapter 8. Device Generic Generator Backend

• CPU run-time: The application’s execution time in clock cycles.

• Binary size: The binary size of the compiled application.

• Trade-off: A 50%-50% trade-off after normalizing the results of the two metrics, binary size
and CPU run-time.

Two things are crucial for the application to determine the CPU run-time. First, the appli-
cation must specify a start and end event that defines the measured time frame. Second, the
application must verify that the execution was successful. Section 9.3 shows the implementation
of these two conditions.

8.3.1.2 Clustering-based compiler exploration in nonlinear optimization space.

This approach has been extended to determine the best compiler flags as a function of design
decisions described in the previous sections, e.g., device driver design, HAL or safety measures.
Investigating the effect of compiler flags on design decisions requires a set of data sets (training
sets). So, the previously described compiler flag exploration is performed on different applications
and SoCs.

The framework uses clustering as an unsupervised learning task to interpret the data sets
and determine suitable compiler flags. Clustering is a machine learning approach that looks for
hidden structures in the data to group them by characteristics [90]. For compiler flag optimization,
this is well suited because no effort is required to categorize the data55. Thus, the method can
easily adapt to new applications, compilers, design decisions or compiler flags without much effort
in categorizing them. Clustering analysis can determine the relevance of certain flags to CPU
run-time, binary size, or both.

The k-means clustering [129] suits the compiler optimization problem as it is straightforward
to implement, provides high scalability for large data sets, and can be easily adapted to new
samples. Elkan’s algorithm in [69] was preferred over the naive implementation to speed up the
k-means clustering.

One drawback of k-means remains, which is the number of clusters that have to be considered
by the algorithm. The exact number of clusters is, in fact, a hyper-parameter and must be specified
in advance. As a solution to this issue, the well-known Elbow method [205] is applied, which helps
to find the right number of clusters.

In summary, the Elkan k-means clustering method combined with the elbow method enables
identifying the flags of interest for a particular CPU and a set of design decisions. These flags, if
disabled, have a high impact on the optimization (in terms of performance and memory footprint).
A detailed discussion of the approach using the elbow method and Elkan’s k-means algorithm is
provided in [223].

8.3.1.3 Evaluation

This section gives an overview of the compiler flag evaluation applied to a particular processor
and set of design decisions. In particular, the presented analysis is done for a five-stage RISC-V

55Note that cost of memory demand and execution time is extracted automatically.

135

8.3.1 Compiler Optimization

processor supporting RV32I base ISA. The generated firmware contains no safety patterns and
follows a generic driver implementation with synchronous behavior. The compiler version used in
this evaluation is the GCC v9.2.0. Python 3.7 with scikit-learn 0.23.1 and yellowbrick 1.1 was used
to implement the considered methods. The methods were executed on the Intel Core i7-8700K
CPU and a DIMM 32GB DDR4-3000 module of RAM.

The analysis is done in two steps for each objective (CPU run-time, binary size and both).
First, the clustering algorithm is fed with n applications (input sets), yielding in n× 104 compila-
tion and execution runs. The k-means clustering is applied to this training data with the number
of clusters obtained from the elbow method. Second, the test applications (test sets) are applied
to evaluate the trained model.

(a) Elbow run-time (b) Elbow binary size (c) Elbow trade-off

(d) Scatter run-time (e) Scatter binary size (f) Scatter trade-off

Figure 8.16: Evaluation of elbow method and k-means clustering for different cost requirements.

The outcome of the elbow method is shown in Figures 8.16a–8.16c. The dashed vertical line
indicates the number of clusters K. (Ktime = 6, Ksize = 7 and Kboth = 6). Next, the clustering
is performed with the determined K on the training set, as shown in Figures 8.16d–8.16f. The
percentage of optimization for different clusters is highlighted (in grey, the centroids).

Table 8.5 lists the results of the test set when the identified flags are disabled (Disabled Flags).
The average optimization achieved takes as a reference the achieved optimization in level -O3.
The results for each optimization objective are discussed below:

• CPU run-time: The -O3 optimization is already geared towards performance optimization.
Nevertheless, the performance can be slightly improved by deactivating the suggested flags.
On average, the run-time can be improved by 3.1%.

• Binary size: The potential for improving the binary size is significantly larger with -O3 as
the reference optimization level. Thus, an average reduction of the firmware size of 20.93%
is achieved.

136

Chapter 8. Device Generic Generator Backend

CPU run-time Binary size Trade-off

Disabled
Flags

fcrossjumping
fguess-branch-probability

ftree-loop-optimize
finline_small_functions

finline-functions

fcrossjumping
ftree-vrp
ftree-fre

ftree-slp-vectorize
fguess-branch-probability

Average
Optimization 3.10% 20.93% 1.75%

Table 8.5: Achieved optimization compared to basic level -O3 through disabling the identified com-
piler flags applied to the test sets.

• Trade-off: The majority of flags affect both costs. Consequently, the optimization gains are
lower (1.75%) than the single-object optimization.

The evaluation results show that disabling flags can greatly improve the default optimization
levels of GCC.

8.3.2 Memory layout optimization

Chapter 5 discusses the generation flow for the register interface. Briefly, this chapter highlights
the flexibility of the register interface metamodel, which allows the configuration of various memory
layouts (mapping bit fields in registers). Most generator approaches let the designer configure all
possible options to specify the IP fully. This configurability is highly important as it impacts the
performance and the area of the IP containing the RI.

In [190], the memory layout was purely optimized to speed up the performance of register
accesses. The register interface can be tuned to address several cost factors in a holistic gener-
ation flow. This memory layout optimization step is hidden from the user, similar to compiler
optimization. The framework uses ML-based techniques inspired by computer vision detailed in
[179, 180, 181, 230] to predict the cost of memory layouts. Such a prediction obviates the need for
time-consuming synthesis in the exploration phase, speeding up cost exploration by a factor of 600.
Besides prediction, an automatic optimization step based on Deep Reinforcement Learning deals
with the multi-objective optimization problem to identify a better RI configuration [178, 182, 183].

8.3.2.1 Training set generation

In order to build the training set, a generation and analysis pipeline is created. This pipeline
randomizes instances of the register interface metamodel from Figure 5.1. So, each instance has
a different register layout. Apart from the layout, each instance also defines different access
sequences.

In the training phase, the actual costs of each instance are determined. The framework runs
the RTL synthesis of Vivado56 as a batch process to obtain the synthesis area report. This report

56The used version of Vivadio is the Design Suite 2018.2 and the synthesis is done for the Arty-7 FPGA board
from Xilinx. The documentation on Vivado and generated reports can be found on the Vivado Design Suite User

137

8.3.2 Memory layout optimization

provides good insight into the actual area requirement in terms of lookup tables (LUTs) and flip-
flops. The actual binary size of the HAL, including all memory macros and register accesses, is
retrieved from the disassembly file57. The actual run-time result is obtained from the simulation.

The Figures in 8.17 show the results of the costs for different memory layouts for the Safety
Demonstrator - Human-Robot Interaction application presented in Chapter 9. The diagram illus-
trates the total footprint and run-time of all RIs used in the demonstrator. The performance and
area of the RI depend strongly on the utilization of the registers and the number of protected BFs
(in the RI metamodel: ParityBit).

Figure 8.17a demonstrates that a compact BF allocation results in a much smaller design
since less control logic is required. In turn, protected BFs lead to a larger area because it requires
extra logic to evaluate the validity of the write access. However, the performance analysis in
Figure 8.17b shows an inverse proportionality to the logic area. A compact BF mapping leads to
an increased number of costly RMW accesses. Conversely, an increasing number of protected BFs
positively affects the performance.

A designer is confronted with a huge design space due to a large number of memory layouts.
The designer can choose configurations for the given application, yielding a range from 527 up to
1213 LUTs. Similarly, the run-time ranges from 411 up to 623 clock cycles. This potential highly
motivates the need for automatic memory-layout optimization.

Utiliz
ation Bitfie

lds/Units

���

���

���

���

���

Fraction of protected Bitfields

���

���

���

���

���

���

N
u

m
b

er o
f LU

Ts

���

���

���

���

���

����

����

����

���

���

���

���

���

����

����

����

����

(a) Area analsysis

Utilization Bitfields/Units

���

���

���

���

���

Fraction of protected Bitfields

���

���

���

���

���

���

N
u

m
b

er o
f C

lo
ck C

ycle
s

���

���

���

���

���

���

���

���

���

���

���

(b) Performance analsysis

Figure 8.17: Evaluation of costs for different memory layouts.

8.3.2.2 Register Interface estimation and optimization

The idea of cost prediction is to give an accurate estimation without performing the required
compiler/synthesis steps. The approach uses ML-based techniques from computer vision (CV) to
estimate the cost. In general, an image is extracted and interpreted in CV by associating specific
features with a particular context, e.g., pattern recognition.

The task of cost estimation for the RI’s memory layout can be mapped to the CV domain

Guide 2018.2.
57The disassembly file was created using RISC-V GCC 9.2.0 with optimization level -O1.

138

Chapter 8. Device Generic Generator Backend

[180, 181]. In this domain, the RI characteristics are associated with the costs. Accordingly, the
same algorithms can be applied. Instead of an image containing the information of the individual
pixels, a RI-specific data structure is used. This data structure comprises the properties of the RI
metamodel, e.g., bit field properties, mapping information or access sequences.

After the CV model is trained with the generated training set, the association between costs
and RI features is present in the trained model. As evaluated in [230], the trained model can
speed up the prediction time by 600 times. Moreover, the hardware area prediction has more
than 98% accuracy, while the firmware size and CPU run-time prediction reach 85% [180, 181].

On top of the prediction flow, the framework is extended by an optimization step. This step,
described in [178, 182], uses deep reinforcement learning (DRL) to analyze the data structures
and predict the best RI configurations. In [183], different DRL algorithms are compared. The
optimization results obtained with the best approach led to an average improvement of 12.2% in
area, 11.0% in firmware size, and 10.7% in run-time.

139

Chapter 9

Application

Modeling and generation is always a profitable approach if it can automate repetitive tasks.
This is the case with the generation of low-level embedded software, as explained in detail

in the previous chapters. The application layer generally does not satisfy this requirement since
the space of applications is enormous and cannot be mapped as an abstract specification model.
For example, a system with a single LED already offers a large range of application variants, e.g.,
different types of light sequences.

Nevertheless, it may also be reasonable to describe a generator for a concrete application,
especially when the application appears in several manifestations. The application generator
takes the same approach as a driver generator since the FW-PIMM and the language generator,
e.g., for C, are not restricted to a particular embedded layer. The application generator’s purpose
is once again to map an instance of the application as an FW-PIM, which is further translated
into the target language. The following three features are added to the generator framework to
facilitate modeling and analysis of applications:

• The FW-PIMM is extended by a finite-state machine, widely used as a design pattern for
application behavior.

• External libraries must be supported unless the entire embedded software is derived from
the framework. In other words, externally declared types, functions and other objects must
be able to be referenced through the application generator. To this end, a parser is employed
to extract these declarations.

• The framework is extended by verification as well as performance measuring nodes. These
nodes are intended for the analysis of the application.

This chapter introduces three examples to prove the applicability of the approach. One of these
examples is a self-test application in different manifestations, verifying generated designs and two
industrial demonstrators that successfully apply the model-based generation framework to more
complex use cases.

141

9.1 State Machine

9.1 State Machine

The application of a reactive (event-driven) embedded system interacting with its environment
using sensors and actuators is often organized as a finite state machine (FSM). An FSM describes
a logical process as a sequence of events and actions that depends on the system’s environment
(event) and the state machine’s history (state).

The basic concept, as described in UML 2.0 in [164], defines a process through a list of states,
whereby the process is always in exactly one of these states. A state change is caused by a well-
defined conditional trigger that causes the transition. The FW-PIMM follows the notation of the
UML FSM in Figure 6.3, which defines the FSM through a set of states and transitions. The
actions associated with the states and transitions are modeled as a sequence of actions described
in Activities and Actions. The FSM generally distinguishes three types of action allocations58:

1. The action associated with the transition.

2. The Do-action is executed as long as the process remains in the state.

3. The Else-action is executed when no transition takes place.

The generator follows two different state-centric implementations of the FSM59. First an FSM
that follows a nested if-else structure. Second, an FSM based on function pointers. Both options
offer the same functionality, although the implementation is different, resulting in varying benefits.

As a rule, the generator chooses the implementation variant of the FSM based on the number
of states. An if-else FSM is preferred for smaller FSMs with less than five states since a function
pointer implementation is design overkill. On the other hand, the function pointer FSM imple-
mentation is more suitable for more states. The designer can also bypass this general rule and
specify his preferred implementation option when configuring the generator

9.1.1 Nested if-else FSM

An FSM breaks down complex problems into manageable states and state transitions. A switch or
if-else construct is the most common and safest implementation of an FSM. Listing 9.1 shows the
generic implementation of an if-else-based FSM created by the generator. The generic implemen-
tation details the three positions where actions are included in the FSM. The Do-actions in Line
8 are triggered while the FSM is in the state. A state change triggers specific transition-related
actions, e.g., Line 10 and 14. Whereas the Else-actions in Line 19 are executed in the absence of
a transition.

This kind of implementation may lead to spaghetti code with an increasing number of states
since the logic is kept in one block. Also, performance decreases with larger FSMs due to the
increasing number of jump instructions. In contrast, the advantages of an if-else FSM are that it
occupies less static memory and is safer as it does not involve polymorphic behavior. Besides, it
is easier to debug.

58The UML specifies two types of state actions executed upon state entry and state exit. Both types are not
essential for a typical FSM design and are thus not considered in the FW-PIMM.

59Note that there are innumerable other ways to implement FSMs, such as a table-based FSM.

142

Chapter 9. Application

Listing 9.1: A generic generator result of a FSM based on if-else.
1 typedef enum {S_<label1>, S_<label2>, ...}state_t;
2
3 int main(){
4 state_t state = <entry_state>; // Initialize state variable with entry state
5 while(state != terminate_state){
6 // look for event
7 if (state == S_<label1>){
8 // Do action
9 if (event1){

10 // Transition actions for S_<label1> to S_<label2>
11 state = S_<label2>;
12 }
13 else if (event2){
14 // Transition actions for S_<label1> to S_<label3>
15 state = S_<label3>;
16 }
17 // Further events for S_<label1>
18 else{
19 // Else actions
20 }
21 }
22 // Further states
23 }
24 }

9.1.2 Function pointer based FSM

The function pointer FSM, as shown in Figure 9.2, breaks the entire FSM into state functions. The
state function array FSM[] defines the mapping between the states and their respective functions.
The run-time state is a global variable that assigns one of the possible values of the state_t

enumeration. Note that the enumeration has to be in sync with the state function array.
The FSM calls the function associated with the current state in the main loop. A state function

focuses on the actual state-related actions and reduces unnecessary jumps required for the high-
level flow of the FSM. Compared to the if-else-based FSM, unnecessary control jumps can thus be
omitted. In summary, the performance increases with such a design, but at the cost of additional
static memory.

Listing 9.2: A generic generator result of a function pointer based FSM.
1 typedef enum {S_<label1>, S_<label2>, ...}state_t;
2
3 struct fsm_type_t{
4 state_t state;
5 void (*func)(void);
6 };
7 // Maps a state to its state function
8 struct fsm_type_t FSM[]={
9 {S_<label1>, &S_<label1>_func},

10 {S_<label2>, &S_<label2>_func},

143

9.2 External Software

11 ...
12 };
13 // Global state variable
14 state_t state;
15
16 void S1_<label1>_func(void){
17 // Do action
18 if (event1){
19 // Transition actions for S_<label1> to S_<label2>
20 state = S_<label2>;
21 }
22 else if (event2){
23 // Transition actions for S_<label1> to S_<label3>
24 state = S_<label3>;
25 }
26 // Further events for S_<label1>
27 else{
28 // Else actions
29 }
30 }
31
32 void main(void){
33 state = <entry_state>; // Initialize state variable with entry state
34 while(state != terminate_state){
35 // look for event
36 FSM[state].func(); // Call the function associated with the current state
37 }
38 }

9.2 External Software

A generator approach is valuable when the design is not static but is reused in another variant.
This does not necessarily apply to the application layer. A pure generator approach at this level
can be overkill since external libraries or very application-specific software libraries are often
employed. Furthermore, establishing a new framework in existing structures poses the challenge
of maintaining support for proven concepts. For embedded system design, manually implemented
IPs still need to be integrated as part of a system. Therefore, the traditional way of IP design
must work seamlessly with the generator approach.

For this reason the framework contains a parser, which extracts the interface of the “external”
or manually written C or C++ file. The parser integrated into the process is the open license
pycparser60 [31]. The global declarations of the functions, variables and types are extracted from
these files and cached as a dictionary. Thus, the generator is aware of all available software
elements and can cross-reference them in the transformation scripts.

Once a manually coded function is referenced by the CIM to PIM transformation script, the
presence of the function is checked during generation. A warning is thrown whenever the function

60Pycparser is a python module that parses C code into an AST which can serve as a front-end for, e.g., analysis
tools.

144

Chapter 9. Application

is unavailable, or the call parameters do not match. This way, the developer can rectify the
application before compiling the source.

9.3 Analysis of application

High-level IP models connected with an automatic generation scheme for hardware and firmware
enables design space exploration. Section 8.3.1, presented two approaches for design space explo-
ration: Compiler Optimization and Register Interface Optimization. In this context, two require-
ments are crucial. First, invalid designs must be properly identified, and only verified designs
should be considered in the exploration process. Second, fast and sufficiently accurate metrics
have to be used to quantify performance uniformly.

To accomplish both, the FW PIMM establishes wrapper classes used to label the parts of the
application that are under test. Both wrappers are applied during the test phase or design space
exploration of the SoC. A verification wrapper specifies rules that must be followed when executing
the labeled activity. Similarly, a performance wrapper is applied to measure the execution time of
activities. The idea of both wrappers is to store their results in a reserved RAM address range for
testing during execution. This address range is written to a report file at the end of the simulation,
ready for further investigation.

9.3.1 Firmware Verification

An automated approach to variant verification is important to ensure the correctness of each
possible design decision, e.g., at the specification level. Beyond that, an automatic verification
approach also enhances the stability of such a framework. Software RTL simulation on the system-
level is a holistic approach to verify both firmware and hardware to a high confidence level. The
FW-PIMM establishes a verification class as a wrapper to verify the activities of interest. The
developer allocates a set of activity- and specification-dependent rules to this class, which are
applied during the SoC’s test phase or design space exploration.

*

ActionNode

ActivityGroup

Write, PerformanceWrapper, VerificationWrapper...

PerformanceWrapper

Type: WrapperType = Timer

Channel: String

ActivityGroup: PreGroup

ActivityGroup: PostGroup

ActivityGroup: Group

VerificationWrapper

ActivityGroup: PreGroup

ActivityGroup: PostGroup

ActivityGroup: Group

<<enum>>
WrapperType

Timer: WrapperType
InsCounterCSR: WrapperType
CycCounterCSR: WrapperType

Ve
rif

ic
at

io
n/

Pe
rfo

rm
an

ce
W

ra
pp

er

PreGroup
(Initialize Objects)

Group
(code under test)

PostGroup
Evaluation

Figure 9.1: Integration of the wrappers into the FW-PIMM, snippet from 6.3.

A VerificationWrapper in Figure 9.1 specifies an action node that comprises three activity
groups. Since the wrapper is an action, it can be inserted into an existing activity just like any
other action node. The three subgroups of the wrapper are defined as follows: Pre-group that

145

9.3.1 Firmware Verification

carries out actions to initialize the verification wrapper, followed by the group that specifies the
activity to be verified. The post-group defines the measures comparing the activity’s outcome
against the golden model’s expectations. The pre-group and the post-group are excluded from
the generation when running the generation flow for the product.

Listing 9.3 shows the verification wrapper’s implementation on the Montgomery multiplication
example. It demonstrates the previously described structure with the three groups that must be
implemented.

Listing 9.3: Implementation of a verification wrapper in a transformation script.
1 # Verification Wrapper
2 pre_group, main_group, post_group = group.addVerifWrapper(Label="MontgomeryMul")
3
4 # Pre-group - Initialize Variable
5 b_int = 7854451
6 e_int = 4572177
7 m_int = 5641457
8
9 b = pre_group.addCreate(In=sVariable(Name="b", Type="uint32_t", Value=b_int));

10 e = pre_group.addCreate(In=sVariable(Name="e", Type="uint32_t", Value=e_int));
11 m = pre_group.addCreate(In=sVariable(Name="m", Type="uint32_t", Value=m_int));
12 c = pre_group.addCreate(In=sVariable(Name="c", Type="uint32_t"));
13
14 # Main-group - Montgomery multiplication: c = b^e mod m
15 montgomery = self.getActivity("montgomery_mul")
16 montgomery.setIns(b,e,m)
17 main_group.addCall(In=montgomery, Out=c)
18
19 # Post-group - Result
20 main_group.addVariableVerification(Result = c, Expected = pow(b_int, e_int) % m_int)

The resulting code from the example is given in Listing 9.4. The pre-group, as well as the
main-group, is resolved in the usual way. Instead, a marker (INSERT_MARKER) is introduced in the
post-group. It stores the value of interest at a specific address location inside the test address
space. Note that the code does not directly execute the comparison between the expected and
resulting values. The comparison takes place after the end of the simulation.

Listing 9.4: The generated C code in test mode for the example Listing 9.3.
1 //*************** START OF VERIFICATION WRAPPER *********************;
2 //*************** pre-group *********************;
3 uint32_t b = 7854451;
4 uint32_t e = 45721770;
5 uint32_t m = 5641457;
6 //*************** main-group *********************;
7 uint32_t c = montgomery_mul(b, e, m);
8 //*************** post-group *********************;
9 INSERT_MARKER(539648, c);

10 //**************** END OF VERIFICATION WRAPPER **********************;

146

Chapter 9. Application

9.3.2 Performance Analysis

A similar approach is followed for performance measurement as for verification. However, com-
pared to the verification approach, the generator back-end automatically populates the pre-group
and post-group. So, the designer only needs to provide the activity of interest and the kind of
performance measurement when designing the generator. The PerformanceWrapper in Figure 9.1
defines distinct Types of performance measurement.

One option is to utilize a separate Channel of the general-purpose timer for the measurement.
A second option uses the machine timers and counters available in the M-mode of the RISC-V
[16]. The mcycle CSR records the number of cycles the processor has executed, while the minstret
CSR captures the number of successfully executed instructions. Both counters are incremented
automatically while the processor is running61. Furthermore, both counters have 64 bits to keep
track of the counter’s value. So, each machine counter is depicted by two 32-bit registers, with
the upper 32 bits stored in the mcycleh respectively minstreth CSR. An example of a performance
wrapper is outlined in Listing 9.5.

Listing 9.5: The generated C code of a performance wrapper utilizing the machine counter.
1 //*************** START OF PERFORMANCE WRAPPER *********************;
2 //*************** pre-group *********************;
3 uint32_t t0_lower = CSR_READ(mcycle);
4 uint32_t t0_upper = CSR_READ(mcycleh);
5 //*************** main-group *********************;
6 uint32_t c = fibonacci_result = fibonacci(521);
7 //*************** post-group *********************;
8 uint32_t t1_lower = CSR_READ(mcycle);
9 uint32_t t1_upper = CSR_READ(mcycleh);

10 INSERT_MARKER(539652, t0_lower);
11 INSERT_MARKER(539656, t0_upper);
12 INSERT_MARKER(539660, t1_lower);
13 INSERT_MARKER(539664, t1_upper);
14 //**************** END OF PERFORMANCE WRAPPER **********************;

9.3.3 End-to-End analysis flow

The basic concept of the wrappers is that their result is written into a particular address range
during the simulation. A simulation process, controlled and executed by a batch script (or test
bench), can analyze this address ranges at the end of the simulation. Both the generation of the
batch script and the evaluation of the results can be automated. Thus, the analysis process can
be directly interfaced with the MDA generation flow, as shown in Figure 9.2.

An essential part of the analysis flow is the creation of a wrapper.txt file next to the target code.
This file holds the reference addresses of the used wrappers to store their result, e.g., time-stamp
or values of the monitored variables. This information is needed to create the batch script that
starts the simulation and evaluates the memory once the simulation is finished. The evaluation
result is then provided as a report (.rpt) file.

61The counters are only active if the enable bit is set in the mcountinhibit CSR. When disabled, e.g., the user
has no need to read the counter, the machine counter is paused to save power.

147

9.3.3 End-to-End analysis flow

UART
CIMUART

CIM

HW/FW
Generation

Compile
&

Linker

Batch Script
with test bench

Simulation

SoC
Config

Compiler
Config.

IP (SPI)
CIM

.rpt

wrapper.txt

[Performance Fibonacci]

 StartAddress: 539652
 EndAddress: 539660

[Verification MontgomeryMul]
[Variable]

 Name: c
 Expected: 1170299
 Var Address: 539644

Figure 9.2: End-to-end flow from generation to performance evaluation and verification.

The framework supports two simulators, namely Vivado and Verilator. In Vivado, the simula-
tor is addressed by a .tcl script, while Verilator requires a C++ script for controlling the simulation.
In principle, Verilator has the advantages of a higher simulation speed [163] along with the ability
of error simulation [104, 199].

In summary, this automatic flow provides excellent opportunities for design exploration. For
example, a designer can compare the impact of different RISC-V extensions, compiler settings
(in Figure 9.3) or hardware design decisions. Also, the integrity of safety measures for different
compiler settings can be checked, as well as many other use cases.

Figure 9.3: Run-time comparison between different compiler levels.

148

Chapter 9. Application

9.4 Proof of Concept

The framework’s approach is verified by practical applications running on an FPGA (Arty Z7-
10). The hardware for these applications, synthesized on the FPGA, is built using the embedded
systems automation approach [68]. The presented embedded software generation flow incorporates
into this MDA flow and closes the design gap of missing software support for the generated SoCs.

The following introduces two demonstrators and a Self-Test SoC, proving the generation frame-
work’s quality. Both demonstrators show that the methodology is also suitable for more complex
industrial applications. One application describes an ML-based mechanism for location detection.
The second application is from the domain of human-robot interaction. The Self-Test Soc, in-
stead, is mainly used to verify the generation framework together with different IP and embedded
software variants.

UART
Transmitter

UART
Receiver

I2C
Transmitter receive_i2c(...)

I2C
Receiver

SPI
Transmitter

 transmit_i2c(...)

receive_spi(...)

SPI
Receiver

receive_<device>(...)

<device>
Receive

<device>
Transmitter

transmit_<device>(...)

ErrorValidate
==

..

..

..

0x32 0xF2 0x83 transmit_uart(...) 0x06Create
data

Transmission
Loop

transmit_spi(...)

 receive_uart(...)

HW Path

SW Path

Data processing

data

..

Figure 9.4: Self-Test SoC with receiver-transmitter pairs.

9.4.1 Self Test System-On-Chip

A Self-Test SoC is applied to verify the different configurations of the IPs. The overall idea of the
Self-Test SoC is to establish a transmission loop consisting of different transmitter-receiver pairs.
Such a transmitter-receiver pair is created by a random configuration of a communication IP
containing a receiver and a transmitter module, e.g., an I2S, I2C or DMX CIM. Figure 9.4 shows
the setup of the Self-Test SoC that systematically verifies different IP and driver configurations.

The receiver of the IP is directly connected to its transmitter via an HW connection. The
driver, however, carries out the task of sending transmit_<device>(len, *data) and reading re-
ceive_<device>(len, *data) the data. Accordingly, data packages are thus forwarded through the
loop across different IPs. The original data data_in fed into this loop must therefore return intact

149

9.4.2 Safety Demonstrator - Human-Robot Interaction

at the end of the loop. The correctness of the generation framework is not guaranteed if the data
is corrupted.

Conclusively, this simple setup verifies various IPs, IP configurations, and driver implementa-
tion variants, improving the quality of the generation framework. So far, more than 50 different
variants of the Self-Test SoC have been generated and verified. On average, a loop was composed
of approximately 6 IPs.

9.4.2 Safety Demonstrator - Human-Robot Interaction

Safety is a significant issue whenever machines and humans interact with each other. The demon-
strator62 in Figure 9.5 showcases an example of industrial human-robot interaction. The demon-
strator depicts an industrial application where a human and a robot jointly work on the same
project. The demonstrator’s task both are working on is a drawing on a LED panel. The demon-
strator is mainly designed to prove the functionality of automatically generated safety patterns
ensuring that humans are not exposed to any danger from the robot at any time.

Figure 9.5: SAFE4I Demonstrator: Cooperative drawing through safe human-robot interaction.

Before discussing the applicability of automatically generated safety patterns and the achieved
results, the demonstrator is explained in detail. The implementation realizes an industrial appli-
cation that maps a robot arm’s position onto a LED matrix to visualize the motion sequences.
The demonstrator is divided into two main components: A robot arm with a robot control unit63

and the light table control unit.
62The presented demonstrator has been partly developed in the SAFE4I project, which is funded by the German

ministry of education and research (BMBF) (reference number: 01IS17032A) [3]
63The robot control unit is developed by the “Forschungszentrum fuer Informatik” FZI, a partner of the SAFE4I

project.

150

Chapter 9. Application

The robot’s control unit has the task of capturing and sending the near future position (con-
sidering the robot arm motion) of the robot arm to the light table control unit. From this data,
the LED matrix of the table is colored to highlight the dangerous areas (red) and the safe areas
(green) to avoid risks to people and machines.

The generation framework has been used to build the light table control unit. The primary task
of this control unit is to receive the coordinates via the DMX interface, process the data and drive
the LED matrix via a Serial Peripheral Interface (SPI). The degree of automation is quantified by
comparing the number of manually implemented SLOCs with the automatically generated SLOCs.
The result of this evaluation, which focuses particularly on the degree of automation for various
safety patterns, is illustrated in Table 9.1. The framework achieves an automation rate of 85.3%
when building the demonstrator. The share of safety patterns within the entire code is 10.8%.

Table 9.1: Evaluation of the automatically generated FW safety mechanisms in the light table
control system.

Number of
manual implemented SLOCs

Number of
automatic generated SLOCs

Safe Register accesses 0 63
Watchdog 0 26

Program Flow Monitor 0 51
Current Sensor 34 0
Error Handler 23 43

Total Application 327 1891

The safety measures used in the demonstrator (detailed in Section 8.2) are watchdog, PFM,
safe register accesses and a current sensor. The result shows that the framework’s safety measures
do not require additional manual implementation effort. The generation approach is not used for
the current sensor as its behavior is very application specific and, therefore, cannot be modeled
in an abstract and reusable way. Also, the application-specific error response of the error handler
is partially left to the designer. Overall, a substantial degree of automation of 76.3% is achieved
for all safety-relevant SLOCs.

9.4.3 ML-based Demonstrator - Location Detection

The demonstrator64 in Figure 9.6 successfully uses the framework to create the firmware for
an ML-based location detection application based on audio information. As with the previous
demonstrator, the basic setup, including the LED matrix table, remains the same. However, four
microphones are attached to the table corners recording an acoustic knock on the table.

The LED matrix highlights the knocking spot after deriving the exact position from the four
audio records. Two different approaches carry out the prediction of the position. First, a conven-
tional method based on the microphones’ synchronicity and arrival time difference. Second, the
location prediction is performed via signal processing using machine learning.

64This demonstrator has been partially funded by the German Federal Ministry of Education and Research
(BMBF) within the project Scale4Edge under contract no. 16ME0127 [6]

151

9.4.3 ML-based Demonstrator - Location Detection

Figure 9.6: Scale4Edge Demonstrator: 2D automatic location detection based on audio informa-
tion.

With the model-driven firmware generation approach, the firmware can be customized individ-
ually for each of the two approaches. The demonstrator features the following modules that are
entirely handled by the generation framework: I2S interfaces for the microphones, SPI interface
to control the LED matrix, I/Os and a general purpose timer. In addition, a UART interface is
provided, which is applied in the training phase of the ML-based approach. The UART transmits
the audio samples (training data) to the machine that carries out the training of the ML model.

152

Chapter 10

Summary and Conclusion

This work presents a new methodology to develop embedded systems following model-driven
architecture. Rather than considering models as construction blueprints, the established

framework points out that models are one solution to today’s design challenges. The presented
work describes the infrastructure for embedded software metamodeling. It introduces a novel
platform-independent model for embedded software design, a generator for code generators, and
concepts beyond functional modeling, such as safety transformations and optimization techniques.
Along with the hardware generation framework presented in Section 3.2.2, the embedded software
framework forms a complete framework for the generation of embedded systems.

Compared to previous generator approaches, this work reduced the effort required to create IP
code generators. The work proposed an industry-strength IP code generator framework capable
of building the device’s hardware and the complete embedded software stack. So, the framework
targets different design aspects, such as HW, FW, and the HW/FW interfaces. This holistic
consideration reduces the susceptibility to implementation errors by preventing requirements and
design inconsistencies. It enables self-adaptive and correct-by-construction implementations of
HW, FW and the HW/FW interfaces, which solves the challenges of FW integration. This
holistic generation methodology is a major contribution since existing tools rely on pure hardware
or firmware generators, which mostly require manual adjustments.

Another contribution is the embedded software metamodel, which formally describes the struc-
ture and behavior of embedded software. As a key benefit, the generator addresses not only the
skeletons (structure) of the embedded software but also the full functionality (behavior). The
generation flow is divided into an IP-specific generator frontend and a generic generator backend.
In the frontend, model transformations map the IP specification to an instance of the formal
descriptions of the embedded software and hardware. In the generator backend, transformations
are applied before feeding the model to code generators. This holistic approach and the tight inte-
gration of FW and HW flow ensure the generation of uniform firmware tailored to the hardware.
So, the flow maintains a consistent functional interface even if HW details change.

Table 10.1 compares traditional design methodologies with the one presented in this thesis. It
highlights the design effort through source lines of code that are required to develop the embedded
software of an SPI component. Manually implemented device drivers cover only a single combi-
nation of requirements. They are tailored to a specific peripheral device configuration and follow
a fixed driver design and target language. Developing code with conditional directives handles
more IP configurations but becomes confusingly complex with increasing options. Generation by

153

traditional templates with a direct conversion from specification to target code can handle all
peripheral variants. However, it lacks an intermediate abstract layer to support different driver
styles and target languages. The described framework decouples the generation flow into different
abstract layers. This abstraction supports the generation of various peripheral configurations,
driver variants and languages. Thus, the generator implementation effort is low and comparable
to the manual coding effort of a single variant.

Table 10.1: Analysis of various options for implementing the embedded software of an SPI com-
ponent.

IP
re

qu
ir

em
en

t
co

m
bi

na
ti

on
s

D
ri

ve
r

St
yl

e
co

m
bi

na
ti

on
s

La
ng

ua
ge

s

E
ffo

rt
(S

LO
C

)

O
pt

io
ns

/
T
ot

al
va

ri
an

ts

R
em

ar
ks

Manual
Coding 1 1 1 435 0 / 1

Single Variant
Frequent adaptation necessary

Error prone
Conditional
Directives 6,55E04 1 1 1357 14 / 6,55E04 Limited number of variants

Code is hard to read

Template 2,15E09 22 1 1312 21 / 4,72E10
Hard to debug

IP dependent transformation
Single target platform

MDA 2,15E09 3564 2 489 27 / 1,53E13
IP independent transformation

Trade-off analysis
Multiple target platforms (languages)

The framework is ideally suited for building embedded software for recurring memory-mapped
IPs in SoCs, such as SPI, UART, I2C, Timer, and PIC. The designer only needs to implement
the generator frontend of the IP utilizing an intuitive embedded software DSL in Python. The
result of the generator frontend is a functional embedded software model conforming to the IP
specification. It is further fed into the generic generator backend that supports customizable cross-
IP transformations to realize different design decisions. These transformations do not change
the actual functionality of the design but perform design extension or implementation-specific
translations to:

• generate memory-layout-dependent hardware accesses following different access methodolo-
gies.

• build different device driver design alternatives such as generic or specific driver implemen-
tations.

• build different I/O concepts, e.g., interrupt, blocking or non-blocking.

• automatically integrate safety measures into the design.

Therefore, the framework’s main advantage is the ability to generate a large number of different
design alternatives resulting from diverse design decisions. The effort required to support an IP
and generate all these variants is minimized because the generation flow is split into an IP-specific
frontend generator and a generic backend generator. So a designer only needs to implement

154

Chapter 10. Summary and Conclusion

the frontend and can reuse the backend. Table 10.2 provides an overview of the generators’
capabilities and illustrates the design effort for the proposed framework. For example, the UART
metamodel contains 14 configuration options (just taking into account device requirements). This
enables the configuration of approximately 9.43 million different combinations. In order to reach
this flexibility, the templates require only 302 SLOC (IP FW template) and 1480 SLOC (IP HW
template). The average generated code for a UART is 387 SLOC (generic driver design) and 18.7k
SLOC (IP core). When considering all components, a comparable effort (in terms of SLOC) can
be observed between generator template implementation and manual programming in C. However,
the significant advantage of the presented generator approach becomes evident with the increasing
number of realized design variants and projects. It already pays off after the second deployment.

Table 10.2: Evaluation of generator templates and generated code of different peripheral compo-
nents

Abstract Peripheral Model Generator Template Generated Files (4 modules each IP)

P
er

ip
he

ra
l

C
on

fig
ur

at
io

n
op

ti
on

s

R
ea

liz
ab

le
V

ar
ia

nt
s

D
es

ig
n

T
em

pl
at

e
SL

O
C

D
ri

ve
r

T
em

pl
at

e
SL

O
C

R
eg

is
te

r
In

te
rf

ac
e

SL
O

C

N
o.

D
ri

ve
r

Fu
nc

ti
on

s

D
ev

ic
e

sp
ec

ifi
c

dr
iv

er
SL

O
C

D
ev

ic
e

ge
ne

ri
c

dr
iv

er
SL

O
C

H
A

L
SL

O
C

P
er

ip
he

ra
lC

or
e

(H
W

)
SL

O
C

R
eg

is
te

r
In

te
rf

ac
e

(H
W

)
SL

O
C

UART 14 9,43E06 1480 302 108 8 760 387 446 18727 1898
DMX 13 8,39E06 1327 377 128 8 859 425 886 15603 2156
I2S 12 1,05E06 907 489 141 11 549 317 1014 9253 2591
SPI 19 2,15E09 1138 471 170 11 820 435 907 10858 2090
PAD 10 1,18E06 412 440 44 6 548 299 122 2056 1116
Timer 9 4,92E05 625 378 49 13 1260 378 365 4828 3693
PIC 12 3,69E05 788 284 72 3 103 103 757 4878 1750

The proposed framework produces not only a complete compilable embedded software stack
but also a synthesizable hardware design for FPGA. The generated embedded software code can
thus be compiled and simulated directly on the FPGA, offering many advantages and new opportu-
nities. First, the compilability, but also the functional correctness of the designs, is automatically
validated. Second, design metrics, such as power, memory consumption or hardware area, are
automatically evaluated. This, in turn, helps the user of the proposed framework to either choose
between different design alternatives based on the design cost or rely on an automatic optimiza-
tion step that selects the correct alternative. In this way, certain parameters can be hidden from
the user, and automatic optimization can determine the best configuration based on a predefined
cost function. This work successfully demonstrated two optimization concepts: memory layout
optimization and compiler flag optimization.

155

Bibliography

[1] Cars are made of code. URL https://www.nxp.com/company/blog/cars-are-made-of-

code:BL-CARS-MADE-CODE.

[2] Functional thinking. URL https://www.oreilly.com/library/view/functional-

thinking/9781449365509/ch01.html.

[3] URL https://www.edacentrum.de/safe4i/.

[4] Ieee standard for ip-xact, standard structure for packaging, integrating, and reusing ip within
tool flows. IEEE Std 1685-2014 (Revision of IEEE Std 1685-2009), pages 1–510, Sep. 2014.
doi: 10.1109/IEEESTD.2014.6898803.

[5] Csrcompiler™, Jul 2020. URL https://semifore.com/csrcompiler/. [Online; accessed
28-August-2022].

[6] Zuse-scale4edge, Jun 2020. URL https://www.elektronikforschung.de/projekte/zuse-

scale4edge.

[7] Andrea Acquaviva, Nicola Bombieri, Franco Fummi, and Sara Vinco. Semi-automatic gen-
eration of device drivers for rapid embedded platform development. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 32(9):1293–1306, 2013.

[8] Paul Adamczyk. The anthology of the finite state machine design patterns. In The 10th
Conference on Pattern Languages of Programs, 2003.

[9] Deniz Akdur, Vahid Garousi, and Onur Demirörs. A survey on modeling and model-driven
engineering practices in the embedded software industry. Journal of Systems Architecture,
91:62–82, 2018.

[10] Pablo Oliveira Antonino, Thorsten Keuler, and Elisa Yumi Nakagawa. Towards an approach
to represent safety patterns. In Proceedings, 2012.

[11] Enterprise Architect. Sparx systems, 2010.

[12] Ashraf Armoush, Falk Salewski, Stefan Kowalewski, et al. Design pattern representation for
safety-critical embedded systems. Journal of Software Engineering and Applications, 2(01):
1, 2009.

[13] Divya Arora, Srivaths Ravi, Anand Raghunathan, and Niraj K Jha. Secure embedded
processing through hardware-assisted run-time monitoring. In Design, Automation and
Test in Europe, pages 178–183. IEEE, 2005.

157

https://www.nxp.com/company/blog/cars-are-made-of-code:BL-CARS-MADE-CODE
https://www.nxp.com/company/blog/cars-are-made-of-code:BL-CARS-MADE-CODE
https://www.oreilly.com/library/view/functional-thinking/9781449365509/ch01.html
https://www.oreilly.com/library/view/functional-thinking/9781449365509/ch01.html
https://www.edacentrum.de/safe4i/
https://semifore.com/csrcompiler/
https://www.elektronikforschung.de/projekte/zuse-scale4edge
https://www.elektronikforschung.de/projekte/zuse-scale4edge

BIBLIOGRAPHY

[14] Divya Arora, Srivaths Ravi, Anand Raghunathan, and Niraj K Jha. Hardware-assisted run-
time monitoring for secure program execution on embedded processors. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 14(12):1295–1308, 2006.

[15] Inc. Arteris. Soc amp; hardware-software interface (hsi) development product. URL https:

//www.arteris.com/soc-hardware-software-interface-hsi-development-product.

[16] Krste Asanovic and Andrew Waterman. The risc-v instruction set manual. In Privileged Ar-
chitecture, Document Version 20190608-Priv-MSU-Ratified, volume 2. RISC-V Foundation,
2019.

[17] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin,
Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al.
The rocket chip generator. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, 4, 2016.

[18] Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A
survey on compiler autotuning using machine learning. ACM Computing Surveys (CSUR),
51(5):1–42, 2018.

[19] Motor Industry Software Reliability Association and Motor Industry Software Reliability As-
sociation Staff. MISRA C:2012: Guidelines for the Use of the C Language in Critical Sys-
tems. Motor Industry Research Association, 2013. ISBN 9781906400101.

[20] Rabie Ben Atitallah, Philippe Marquet, Éric Piel, Samy Meftali, Smail Niar, Anne Etien,
Jean-Luc Dekeyser, and Pierre Boulet. Gaspard2: from marte to systemc simulation. In Pro-
ceeedings of the DATE’08 workshop on Modeling and Analyzis of Real-Time and Embedded
Systems with the MARTE UML profile, 2008.

[21] AUTOSAR. Overview of functional safety measures in autosarautosar cprelease
4.3.0. https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/

AUTOSAR_EXP_FunctionalSafetyMeasures.pdf, 2017.

[22] AUTOSAR. Specification of watchdog manager autosar cp release 4.3.1. https:

//www.autosar.org/fileadminuser_upload/standards/classic/4-3/AUTOSAR_SWS_

WatchdogManager.pdf, 2017.

[23] GbR AUTOSAR. Specification of i/o hardware abstraction. Website. http://www. autosar.
org/download/AUTOSAR_SWS_IO_ HWAbstraction. pdf. Version, 36:117, 2007.

[24] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižie-
nis, John Wawrzynek, and Krste Asanović. Chisel: constructing hardware in a scala em-
bedded language. In DAC Design automation conference 2012, pages 1212–1221. IEEE,
2012.

[25] Brian Bailey. Firmware skills shortage, Mar 2021. URL https://semiengineering.com/

ai-ml-skills-shortage/.

158

https://www.arteris.com/soc-hardware-software-interface-hsi-development-product
https://www.arteris.com/soc-hardware-software-interface-hsi-development-product
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
https://www.autosar.org/fileadmin user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogManager.pdf
https://www.autosar.org/fileadmin user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogManager.pdf
https://www.autosar.org/fileadmin user_upload/standards/classic/4-3/AUTOSAR_SWS_WatchdogManager.pdf
https://semiengineering.com/ai-ml-skills-shortage/
https://semiengineering.com/ai-ml-skills-shortage/

BIBLIOGRAPHY

[26] Anupam Bakshi. Idesignspec (tm) don’t fear change, embrace it. Agnisys Inc. May, 1, 2008.

[27] Sebastian Baltes and Stephan Diehl. Sketches and diagrams in practice. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 530–541, 2014.

[28] N Md Jubair Basha, Salman Abdul Moiz, and Mohammed Rizwanullah. Model based soft-
ware development: issues & challenges. Special Issue of International Journal of Computer
Science & Informatics (IJCSI), ISSN (PRINT), 2(1):2, 2012.

[29] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves Le Traon, and Jean-
Marie Mottu. Barriers to systematic model transformation testing. Communications of the
ACM, 53(6):139–143, 2010.

[30] Ron Bell. Introduction to iec 61508. In Acm international conference proceeding series,
volume 162, pages 3–12. Citeseer, 2006.

[31] E Bendersky. Pycparser c parser and ast generator written in python, 2012.

[32] Jacob Beningo. Concepts for developing portable firmware. In Reusable Firmware Develop-
ment, pages 1–28. Springer, 2017.

[33] Jacob Beningo, Jacob Beningo, and Anglin. Reusable Firmware Development. Springer,
2017.

[34] Jean Bézivin. On the unification power of models. Software & Systems Modeling, 4(2):
171–188, 2005.

[35] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the omg/mda framework.
In Proceedings 16th Annual International Conference on Automated Software Engineering
(ASE 2001), pages 273–280. IEEE, 2001.

[36] Vijay Deep Bhatt, Wolfgang Ecker, Volkan Esen, Zhao Han, Daniela Sanchez Lopera, Rituj
Patel, Lorenzo Servadei, Sahil Singla, Sven Wenzek, Vijaydeep Yadav, et al. Soc design
automation with ml-it’s time for research. In Proceedings of the 2020 ACM/IEEE Workshop
on Machine Learning for CAD, pages 35–36, 2020.

[37] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Rohou. Iterative
compilation in a non-linear optimisation space. 1998.

[38] Nicola Bombieri, Franco Fummi, Graziano Pravadelli, and Sara Vinco. Correct-by-
construction generation of device drivers based on rtl testbenches. In 2009 Design, Au-
tomation & Test in Europe Conference & Exhibition, pages 1500–1505. IEEE, 2009.

[39] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. Generative software-based mem-
ory error detection and correction for operating system data structures. In 2013 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages
1–12. IEEE, 2013.

159

BIBLIOGRAPHY

[40] Gerry Boyd. Executable uml: Diagrams for the future. available from Internet< http://www.
devx. com/enterprise/Article/10717>(30 December 2004), 2003.

[41] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineering in
practice. Synthesis lectures on software engineering, 3(1):1–207, 2017.

[42] Travis Breaux and Jennifer Moritz. The 2021 software developer shortage is coming. Com-
munications of the ACM, 64(7):39–41, 2021.

[43] Etienne Brosse, Imran R Quadri, Andrey Sadovykh, Frank Ieromnimon, Dimitrios
Kritharidis, Rafael Catrou, and Michel Sarlotte. Enosys fp7 eu project: An integrated mod-
eling and synthesis flow for embedded systems design. In 7th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), pages 1–5. IEEE,
2012.

[44] Alan W Brown. Model driven architecture: Principles and practice. Software and systems
modeling, 3(4):314–327, 2004.

[45] Manfred Broy, Sascha Kirstan, Helmut Krcmar, and Bernhard Schätz. What is the benefit
of a model-based design of embedded software systems in the car industry? In Emerging
technologies for the evolution and maintenance of software models, pages 343–369. IGI global,
2012.

[46] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. A feature-based survey
of model view approaches. Software & Systems Modeling, 18(3):1931–1952, 2019.

[47] Barrett R Bryant, Jeff Gray, Marjan Mernik, Peter J Clarke, Robert B France, and Gabor
Karsai. Challenges and directions in formalizing the semantics of modeling languages. 2011.

[48] Antonio Bucchiarone, Jordi Cabot, Richard F Paige, and Alfonso Pierantonio. Grand chal-
lenges in model-driven engineering: an analysis of the state of the research. Software and
Systems Modeling, 19(1):5–13, 2020.

[49] Ondrej Burkacky, Julia Dragon, and Nikolaus Lehmann. The semiconductor decade:
A trillion-dollar industry, Apr 2022. URL https://www.mckinsey.com/industries/

semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-

industry.

[50] Leslie Pérez Cáceres, Federico Pagnozzi, Alberto Franzin, and Thomas Stützle. Automatic
configuration of gcc using irace. In International Conference on Artificial Evolution (Evo-
lution Artificielle), pages 202–216. Springer, 2017.

[51] Daniela Cancila, Francois Terrier, Fabien Belmonte, Hubert Dubois, Huascar Espinoza,
Sébastien Gérard, and Arnaud Cuccuru. Sophia: a modeling language for model-based
safety engineering. In ACES-MB@ MoDELS. Citeseer, 2009.

[52] Hui Chen, Guillaume Godet-Bar, Frédéric Rousseau, and Frédéric Pétrot. Me3d: A model-
driven methodology expediting embedded device driver development. In 2011 22nd IEEE
International Symposium on Rapid System Prototyping, pages 171–177. IEEE, 2011.

160

https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry
https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry
https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry

BIBLIOGRAPHY

[53] Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Olivier
Temam, and Chengyong Wu. Deconstructing iterative optimization. ACM Transactions
on Architecture and Code Optimization (TACO), 9(3):1–30, 2012.

[54] Kiho Choi, Daejin Park, and Jeonghun Cho. Sscfm: Separate signature-based control flow
error monitoring for multi-threaded and multi-core environments. Electronics, 8(2):166,
2019.

[55] Christopher L Conway and Stephen A Edwards. Ndl: a domain-specific language for device
drivers. ACM Sigplan Notices, 39(7):30–36, 2004.

[56] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation approaches.
In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of
the Model Driven Architecture, volume 45, pages 1–17. USA, 2003.

[57] Alberto Rodrigues Da Silva. Model-driven engineering: A survey supported by the unified
conceptual model. Computer Languages, Systems & Structures, 43:139–155, 2015.

[58] Roberto de Medeiros, Marcilyanne M Gois, Drausio L Rossi, and Vanderlei Bonato. De-
signing embedded systems with marte: A pim to psm converter. In 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12), pages 303–306. IEEE, 2012.

[59] Jan Decaluwe. Myhdl: a python-based hardware description language. Linux journal, 2004
(127):5, 2004.

[60] Marco Di Natale, David Perillo, Francesco Chirico, Andrea Sindico, and Alberto
Sangiovanni-Vincentelli. A model-based approach for the synthesis of software to firmware
adapters for use with automatically generated components. Software & Systems Modeling,
17(1):11–33, 2018.

[61] Francisco Assis Moreira do Nascimento, Marcio FS Oliveira, and Flávio Rech Wagner. A
model-driven engineering framework for embedded systems design. Innovations in Systems
and Software Engineering, 8(1):19–33, 2012.

[62] Gabriel Dos Reis, Jose Daniel Garcia, J Lakos, A Meredith, N Myers, and B Stroustrup.
Support for contract based programming in c++. C++ Standards Committee Working
Group ISOCPP, 2018.

[63] Bruce Powel Douglass. Doing hard time: developing real-time systems with UML, objects,
frameworks, and patterns, volume 1. Addison-Wesley Professional, 1999.

[64] Wolfgang Ecker and Johannes Schreiner. Introducing model-of-things (mot) and model-
of-design (mod) for simpler and more efficient hardware generators. In 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6. IEEE,
2016.

[65] Wolfgang Ecker and Johannes Schreiner. Metamodeling and code generation in the hard-
ware/software interface domain. In Handbook of hardware/software Codesign, pages 1051–
1091. Springer, 2017.

161

BIBLIOGRAPHY

[66] Wolfgang Ecker, Michael Velten, Leily Zafari, Ajay Goyal, and Wolfgang Mueller. Meta-
modeling and code generation-the infineon approach. In MeCoES-Metamodelling and Code
Generation for Embedded Systems: Workshop with ESWEEK, pages 1–4, 2012.

[67] Wolfgang Ecker, Michael Velten, Leily Zafari, and Ajay Goyal. The metamodeling approach
to system level synthesis. In 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1–2. IEEE, 2014.

[68] Wolfgang Ecker, Keerthikumara Devarajegowda, Michael Werner, Zhao Han, and Lorenzo
Servadei. Embedded systems’ automation following omg’s model driven architecture vision.
In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1301–1306. IEEE, 2019.

[69] Charles Elkan. Using the triangle inequality to accelerate k-means. In Proceedings of the
20th international conference on Machine Learning (ICML-03), pages 147–153, 2003.

[70] Elfatih AB Eltahir and RL Bras. Estimation of the fractional coverage of rainfall in climate
models. Journal of Climate, 6(4):639–644, 1993.

[71] Embedded. 2019 embedded markets study, Nov 2019. URL https://www.embedded.com/

wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf.

[72] Elias Fallon. Machine learning in eda: Opportunities and challenges. In 2020 ACM/IEEE
2nd Workshop on Machine Learning for CAD (MLCAD), pages 103–103. IEEE, 2020.

[73] Anum Fatima, Shazia Bibi, and Rida Hanif. Comparative study on static code analysis
tools for c/c++. In 2018 15th International Bhurban Conference on Applied Sciences and
Technology (IBCAST), pages 465–469. IEEE, 2018.

[74] Harry D Foster. Why the design productivity gap never happened. In 2013 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 581–584. IEEE, 2013.

[75] Robert France and Bernhard Rumpe. Model-driven development of complex software: A
research roadmap. In Future of Software Engineering (FOSE’07), pages 37–54. IEEE, 2007.

[76] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam,
Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, et al. Mile-
post gcc: Machine learning enabled self-tuning compiler. International journal of parallel
programming, 39(3):296–327, 2011.

[77] Daniel D Gajski, Allen C-H Wu, Viraphol Chaiyakul, Shojiro Mori, Tom Nukiyama, and
Pierre Bricaud. Embedded tutorial: essential issues for ip reuse. In Proceedings of the 2000
Asia and South Pacific Design Automation Conference, pages 37–42, 2000.

[78] GNU GCC. Gcc, the gnu compiler collection. URL: https://gcc. gnu. org, 2021.

[79] Kyriakos Georgiou, Craig Blackmore, Samuel Xavier-de Souza, and Kerstin Eder. Less
is more: Exploiting the standard compiler optimization levels for better performance and
energy consumption. In Proceedings of the 21st International Workshop on Software and
Compilers for Embedded Systems, pages 35–42, 2018.

162

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf

BIBLIOGRAPHY

[80] Sébastien Gérard and Bran Selic. The uml–marte standardized profile. IFAC Proceedings
Volumes, 41(2):6909–6913, 2008.

[81] Mario Gleirscher and Stefan Kugele. Assurance of system safety: A survey of design and
argument patterns. arXiv preprint arXiv:1902.05537, 2019.

[82] Cesar Gonzalez Perez and Brian Henderson-Sellers. Metamodelling for software engineering.
John Wiley and Sons, 2008.

[83] M Gouda. Cmsis-rtos an api interface standard for real-time operating systems. In ARM
Technology Symposia, 2012.

[84] Per Haglund, Oskar Mencer, Wayne Luk, and Benjamin Tai. Pyhdl: Hardware scripting
with python. In Engineering of Reconfigurable Systems and Algorithms, pages 288–291, 2003.

[85] Zhao Han, Keerthikumara Devarajegowda, Michael Werner, and Wolfgang Ecker. Towards
a python-based one language ecosystem for embedded systems automation. In 2019 IEEE
Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Sympo-
sium of System-on-Chip (SoC), pages 1–7. IEEE, 2019.

[86] Zhao Han, Shahzaib Qazi, Michael Werner, Keerthikumara Devarajegowda, and Wolfgang
Ecker. On self-verifying dsl generation for embedded systems automation. In MBMV 2021;
24th Workshop, pages 1–7. VDE, 2021.

[87] Robert S Hanmer. Patterns for fault tolerant software. John Wiley & Sons, 2013.

[88] George T Heineman and William T Councill. Component-based software engineering.
Putting the pieces together, addison-westley, 5, 2001.

[89] Fernando Herrera, Julio Medina, and Eugenio Villar. Modeling hardware/software embed-
ded systems with uml/marte: a single-source design approach. In Handbook of Hardware/-
Software Codesign, pages 141–185. Springer, 2017.

[90] Geoffrey E Hinton, Terrence Joseph Sejnowski, Tomaso A Poggio, et al. Unsupervised
learning: foundations of neural computation. MIT press, 1999.

[91] J Hruska. As chip design costs skyrocket, 3nm process node is in jeopardy. ExtremeTech
https://www. extremetech. com/computing/272096-3nm-process-node (22 June 2018), 2018.

[92] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian
Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. Machine learning for electronic design
automation: A survey. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 26(5):1–46, 2021.

[93] Lars Huning and Elke Pulvermueller. Automatic code generation of safety mechanisms in
model-driven development. Electronics, 10(24):3150, 2021.

[94] Lars Huning, Padma Iyenghar, and Elke Pulvermüller. Uml specification and transformation
of safety features for memory protection. In ENASE, pages 281–288, 2019.

163

BIBLIOGRAPHY

[95] Lars Huning, Padma Iyenghar, and Elke Pulvermüller. Uml-based model-driven code gen-
eration of error detection mechanisms. ICSEA 2020, page 108, 2020.

[96] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven engineering practices
in industry. In Proceedings of the 33rd International Conference on Software Engineering,
pages 633–642, 2011.

[97] Accellera Systems Initiative. SystemRDL 2.0: Register Description Language. https:

//www.accellera.org/downloads/standards/systemrdl, 2018. [Online; accessed 22-
August-2019].

[98] ISO, CD. Road vehicles — functional safety — part 6: Product development at the software
level. International Standard ISO/FDIS, 2, 2018.

[99] ISO/IEC 9899:1999. Programming languages — c. Standard, American National Standards
Institute, December 1999.

[100] Ahmed A Jerraya and Wayne Wolf. Hardware/software interface codesign for embedded
systems. Computer, 38(2):63–69, 2005.

[101] M Tim Jones. Optimization in gcc. Linux journal, 2005(131):11, 2005.

[102] Ademir AC Júnior, Sanjay Misra, and Michel S Soares. A systematic mapping study on
software architectures description based on iso/iec/ieee 42010: 2011. In International Con-
ference on Computational Science and Its Applications, pages 17–30. Springer, 2019.

[103] Endri Kaja, Nicolas Gerlin, Mounika Vaddeboina, Luis Rivas, Sebastian Prebeck, Zhao Han,
Keerthikumara Devarajegowda, and Wolfgang Ecker. Towards fault simulation at mixed
register-transfer/gate-level models. In 2021 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE, 2021.

[104] Endri Kaja, Nicolas Ojeda Leon, Michael Werner, Bogdan Andrei-Tabacaru, Keerthikumara
Devarajegowda, and Wolfgang Ecker. Extending verilator to enable fault simulation. In
MBMV 2021; 24th Workshop, pages 1–6. VDE, 2021.

[105] Antti Kamppi, Lauri Matilainen, Joni-Matti Määttä, Erno Salminen, and Timo D Hämäläi-
nen. Extending ip-xact to embedded system hw/sw integration. In 2013 International
Symposium on System on Chip (SoC), pages 1–8. IEEE, 2013.

[106] Antti Kamppi, Esko Pekkarinen, Janne Virtanen, Joni-Matti Määttä, Juho Järvinen, Lauri
Matilainen, Mikko Teuho, and Timo D Hämäläinen. Kactus2: A graphical eda tool built
on the ip-xact standard. Journal of Open Source Software, 2(13):151, 2017.

[107] Sungwon Kang, Hyunho Kim, Jongmoon Baik, Hojin Choi, and Changsup Keum. Trans-
formation rules for synthesis of uml activity diagram from scenario-based specification. In
2010 IEEE 34th Annual Computer Software and Applications Conference, pages 431–436.
IEEE, 2010.

164

https://www.accellera.org/downloads/standards/systemrdl
https://www.accellera.org/downloads/standards/systemrdl

BIBLIOGRAPHY

[108] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter,
Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lifting metamodels to
ontologies: A step to the semantic integration of modeling languages. In International
Conference on Model Driven Engineering Languages and Systems, pages 528–542. Springer,
2006.

[109] Tetsuro Katayama, Keizo Saisho, and Akira Fukuda. Prototype of the device driver gen-
eration system for unix-like operating systems. In Proceedings International Symposium on
Principles of Software Evolution, pages 302–310. IEEE, 2000.

[110] Matti Käyrä and Timo D Hämäläinen. A survey on system-on-a-chip design using chisel
hw construction language. In IECON 2021–47th Annual Conference of the IEEE Industrial
Electronics Society, pages 1–6. IEEE, 2021.

[111] Brian W Kernighan and Dennis M Ritchie. The C programming language. 2006.

[112] Hagbae Kim and Kang G Shin. Evaluation of fault tolerance latency from real-time appli-
cation’s perspectives. IEEE Transactions on computers, 49(1):55–64, 2000.

[113] Anneke Kleppe. Software language engineering: creating domain-specific languages using
metamodels. Pearson Education, 2008.

[114] M. Kooli and G. Di Natale. A survey on simulation-based fault injection tools for complex
systems. In 2014 9th IEEE International Conference on Design Technology of Integrated
Systems in Nanoscale Era (DTIS), pages 1–6, 2014. doi: 10.1109/DTIS.2014.6850649.

[115] Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann, 2020.

[116] Jeff Kramer. Is abstraction the key to computing? Communications of the ACM, 50(4):
36–42, 2007.

[117] John Krogstie. Modelling of the people, by the people, for the people. In Conceptual
modelling in information systems engineering, pages 305–318. Springer, 2007.

[118] Wido Kruijtzer, Pieter Van Der Wolf, Erwin De Kock, Jan Stuyt, Wolfgang Ecker, Albrecht
Mayer, Serge Hustin, Christophe Amerijckx, Serge De Paoli, and Emmanuel Vaumorin.
Industrial ip integration flows based on ip-xact standards. In 2008 Design, Automation and
Test in Europe, pages 32–37. IEEE, 2008.

[119] Dirk Kuschnerus, Felix Bruns, Attila Bilgic, and Thomas Musch. A uml profile for the
development of iec 61508 compliant embedded software. In Embedded Real Time Software
and Systems (ERTS2012), 2012.

[120] LINAGORA Research Labs. What is MDA? Why concerns BPMN? https://research.

linagora.com/pages/viewpage.action?pageId=3639295, 2021. [Online; Accessed 7 Au-
gust 2022]].

[121] Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien Gerard, Patrick
Tessier, Remi Schnekenburger, Hubert Dubois, and François Terrier. Papyrus uml: an

165

https://research.linagora.com/pages/viewpage.action?pageId=3639295
https://research.linagora.com/pages/viewpage.action?pageId=3639295

BIBLIOGRAPHY

open source toolset for mda. In Proc. of the Fifth European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-FA 2009), pages 1–4. Citeseer, 2009.

[122] Christian Leber. Efficient hardware for low latency applications. 2012.

[123] L Lennis and José Aedo. Generation of efficient embedded c code from uml/marte models. In
Proceedings of the International Conference on Software Engineering Research and Practice
(SERP), page 1. The Steering Committee of The World Congress in Computer Science,
Computer . . . , 2013.

[124] Patrick Leserf, Pierre de Saqui-Sannes, and Jérôme Hugues. Trade-off analysis for sysml
models using decision points and csps. Software and Systems Modeling, 18(6):3265–3281,
2019.

[125] Patrick S. Li, Adam M. Izraelevitz, and Jonathan Bachrach. Specification for the firrtl lan-
guage. Technical Report UCB/EECS-2016-9, EECS Department, University of California,
Berkeley, Feb 2016. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-

2016-9.html.

[126] Grischa Liebel, Nadja Marko, Matthias Tichy, Andrea Leitner, and Jörgen Hansson. Assess-
ing the state-of-practice of model-based engineering in the embedded systems domain. In
International conference on model driven engineering languages and systems, pages 166–182.
Springer, 2014.

[127] Grant Likely and Josh Boyer. A symphony of flavours: Using the device tree to describe
embedded hardware. In Proceedings of the Linux Symposium, volume 2, pages 27–37, 2008.

[128] Edson Lisboa, Luciano Silva, Igino Chaves, Thiago Lima, and Edna Barros. A design flow
based on a domain specific language to concurrent development of device drivers and device
controller simulation models. In Proceedings of th 12th International Workshop on Software
and Compilers for Embedded Systems, pages 53–60, 2009.

[129] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,
1982.

[130] Derek Lockhart, Gary Zibrat, and Christopher Batten. Pymtl: A unified framework for
vertically integrated computer architecture research. In 2014 47th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, pages 280–292. IEEE, 2014.

[131] Shourong Lu and Wolfgang A Halang. A uml profile to model safety-critical embedded real-
time control systems. In Contributions to Ubiquitous Computing, pages 197–218. Springer,
2007.

[132] Azad M Madni and Michael Sievers. Model-based systems engineering: Motivation, current
status, and research opportunities. Systems Engineering, 21(3):172–190, 2018.

[133] Mohammad Maghsoudloo, Hamid R. Zarandi, Saadat Pour Mozafari, and Navid Khoshavi.
Soft error detection technique in multi-threaded architectures using control-flow monitoring.

166

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-9.html

BIBLIOGRAPHY

Proceedings - 2011 14th Euromicro Conference on Digital System Design: Architectures,
Methods and Tools, DSD 2011, pages 789–792, 2011. doi: 10.1109/DSD.2011.104.

[134] UML MARTE. Uml profile for marte: modeling and analysis of real-time embedded systems,
2015.

[135] Luiz GA Martins, Ricardo Nobre, Joao MP Cardoso, Alexandre CB Delbem, and Eduardo
Marques. Clustering-based selection for the exploration of compiler optimization sequences.
ACM Transactions on Architecture and Code Optimization (TACO), 13(1):1–28, 2016.

[136] OMG MDA. Object management group model driven architecture, 2008.

[137] Fabrice Mérillon, Laurent Réveillere, Charles Consel, Renaud Marlet, and Gilles Muller.
Devil: An {IDL} for hardware programming. In Fourth Symposium on Operating Systems
Design and Implementation (OSDI 2000), 2000.

[138] Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–51, 1992.

[139] Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science &
Business Media, 2012.

[140] Parastoo Mohagheghi and Vegard Dehlen. Where is the proof?-a review of experiences
from applying mde in industry. In European Conference on Model Driven Architecture-
Foundations and Applications, pages 432–443. Springer, 2008.

[141] Maryam I Mukhtar and Bashir S Galadanci. Automatic code generation from uml diagrams:
the state-of-the-art. Science World Journal, 13(4):47–60, 2018.

[142] Alex Mykyta. Peakrdl: Command-line tool for control/status register automation. https:

//pypi.org/project/peakrdl, 2020. [Online; accessed 28-August-2022].

[143] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Watchdog: Hardware for
safe and secure manual memory management and full memory safety. In 2012 39th Annual
International Symposium on Computer Architecture (ISCA), pages 189–200. IEEE, 2012.

[144] Juniper Networks.

[145] William F Ogilvie, PetoumeAutomatic Tuning of Compiler Optimizations, Pavlos Analy-
sis of their Impactnos, Zheng Wang, and Hugh Leather. Minimizing the cost of iterative
compilation with active learning. In 2017 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 245–256. IEEE, 2017.

[146] N. Oh, P. P. Shirvani, and E. J. McCluskey. Control-flow checking by software signatures.
IEEE Transactions on Reliability, 51(1):111–122, 2002. doi: 10.1109/24.994926.

[147] Opentitan. Register tool. https://docs.opentitan.org/doc/rm/register_tool/. [On-
line; accessed 28-August-2022].

[148] Manish Pandey. Machine learning and systems for building the next generation of eda tools.
In 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), pages
411–415. IEEE, 2018.

167

https://pypi.org/project/peakrdl
https://pypi.org/project/peakrdl
https://docs.opentitan.org/doc/rm/register_tool/

BIBLIOGRAPHY

[149] Marco Panunzio and Tullio Vardanega. On component-based development and high-integrity
real-time systems. In 2009 15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 79–84. IEEE, 2009.

[150] Marco Panunzio and Tullio Vardanega. A component model for on-board software appli-
cations. In 2010 36th EUROMICRO Conference on Software Engineering and Advanced
Applications, pages 57–64. IEEE, 2010.

[151] Visual Paradigm. Uml class diagram tutorial. Visual Paradigm, 2020.

[152] Karthik Pattabiraman, Vinod Grover, and Benjamin G Zorn. Samurai: protecting critical
data in unsafe languages. ACM SIGOPS Operating Systems Review, 42(4):219–232, 2008.

[153] Lars Patzina, Sven Patzina, Thorsten Piper, and Paul Manns. Model-based generation
of run-time monitors for autosar. In European Conference on Modelling Foundations and
Applications, pages 70–85. Springer, 2013.

[154] Sandeep Pendharkar and Venugopal Kolathur. Ddgen: An automated device driver gener-
ation tool for embedded systems. 2009.

[155] Mauro Pezzé and Jochen Wuttke. Model-driven generation of runtime checks for system
properties. International Journal on Software Tools for Technology Transfer, 18(1):1–19,
2016.

[156] Dmitry Plotnikov, Dmitry Melnik, Mamikon Vardanyan, Ruben Buchatskiy, Roman
Zhuykov, and Je-Hyung Lee. Automatic tuning of compiler optimizations and analysis
of their impact. Procedia Computer Science, 18:1312–1321, 2013.

[157] Héctor Posadas, Pablo Peñil, Alejandro Nicolás, and Eugenio Villar. Automatic synthesis of
embedded sw for evaluating physical implementation alternatives from uml/marte models
supporting memory space separation. Microelectronics Journal, 45(10):1281–1291, 2014.

[158] Laura L Pullum. Software fault tolerance techniques and implementation. Artech House,
2001.

[159] Imran Rafiq Quadri, Samy Meftali, and Jean-Luc Dekeyser. Designing dynamically recon-
figurable socs: From uml marte models to automatic code generation. In 2010 Conference
on Design and Architectures for Signal and Image Processing (DASIP), pages 68–75. IEEE,
2010.

[160] Douglas Paulo Bertrand Renaux. Comparative performance evaluation of cmsis-rtos. In
2014 Brazilian Symposium on Computing Systems Engineering, pages 126–131. IEEE, 2014.

[161] Matthew J Renzelmann and Michael M Swift. Decaf: Moving device drivers to a modern
language. 2009.

[162] A Wendell O Rodrigues, Frédéric Guyomarc’h, and Jean-Luc Dekeyser. An mde approach for
automatic code generation from uml/marte to opencl. Computing in Science & Engineering,
15(1):46–55, 2012.

168

BIBLIOGRAPHY

[163] Peter Rössler, Roland Höller, Christopher Reisner, and Oliver Maischberger. Survey and
comparison of digital logic simulators. In 2019 Austrochip Workshop on Microelectronics
(Austrochip), pages 87–92. IEEE, 2019.

[164] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education, 2004. ISBN 0321245628.

[165] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser. Automatic
device driver synthesis with termite. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 73–86, 2009.

[166] Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjödin. Toward model-based trade-off
analysis of non-functional requirements. In 2012 38th Euromicro Conference on Software
Engineering and Advanced Applications, pages 142–149. IEEE, 2012.

[167] Soujanna Sarkar, S Shinde, et al. Effective ip reuse for high quality soc design. In Proceedings
2005 IEEE International SOC Conference, pages 217–224. IEEE, 2005.

[168] Bernhard Schätz, Alexander Pretschner, Franz Huber, and Jan Philipps. Model-based devel-
opment of embedded systems. In International Conference on Object-Oriented Information
Systems, pages 298–311. Springer, 2002.

[169] Gunar Schirner, Andreas Gerstlauer, and Rainer Domer. Automatic generation of hardware
dependent software for mpsocs from abstract system specifications. In 2008 Asia and South
Pacific Design Automation Conference, pages 271–276. IEEE, 2008.

[170] Rolf Schmedes, Philipp Ittershagen, and Kim Grüttner. Towards distributed runtime mon-
itoring with c++ contracts. In Proceedings of the International Conference on Omni-Layer
Intelligent Systems, pages 141–145, 2019.

[171] Johannes Schreiner and Wolfgang Ecker. Digital hardware design based on metamodels
and model transformations. In IFIP/IEEE International Conference on Very Large Scale
Integration-System on a Chip, pages 83–107. Springer, 2016.

[172] Johannes Schreiner, Rainer Findenigy, and Wolfgang Ecker. Design centric modeling of dig-
ital hardware. In 2016 IEEE International High Level Design Validation and Test Workshop
(HLDVT), pages 46–52. IEEE, 2016.

[173] Johannes Schreiner, Felix Willgerodt, and Wolfgang Ecker. A new approach for generating
view generators. In Design and Verification Conference-US, 2017.

[174] Michael A. Schuette and John Paul Shen. Processor control flow monitoring using signatured
instruction streams. IEEE Transactions on Computers, (3):264–276, 1987.

[175] Roger S Scowen. Generic base standards. In Proceedings 1993 Software Engineering Stan-
dards Symposium, pages 25–34. IEEE, 1993.

[176] Bran Selic. The pragmatics of model-driven development. IEEE software, 20(5):19–25, 2003.

169

BIBLIOGRAPHY

[177] Petri Selonen, Kai Koskimies, and Markku Sakkinen. Transformations between uml dia-
grams. Journal of Database Management (JDM), 14(3):37–55, 2003.

[178] L. Servadei, E. Mosca, M. Werner, V. Esen, R. Wille, and W. Ecker. Combining evolu-
tionary algorithms and deep learning for hardware/software interface optimization. In 2019
ACM/IEEE 1st Workshop on Machine Learning for CAD (MLCAD), pages 1–6, 2019. doi:
10.1109/MLCAD48534.2019.9142090.

[179] Lorenzo Servadei, Elena Zennaro, Keerthikumara Devarajegowda, Martin Manzinger, Wolf-
gang Ecker, and Robert Wille. Accurate cost estimation of memory systems inspired by
machine learning for computer vision. In 2019 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 1277–1280. IEEE, 2019.

[180] Lorenzo Servadei, Elena Zennaro, Tobias Fritz, Keerthikumara Devarajegowda, Wolfgang
Ecker, and Robert Wille. Using machine learning for predicting area and firmware metrics
of hardware designs from abstract specifications. Microprocessors and Microsystems, 71:
102853, 2019.

[181] Lorenzo Servadei, Edoardo Mosca, Elena Zennaro, Keerthikumara Devarajegowda, Michael
Werner, Wolfgang Ecker, and Robert Wille. Accurate cost estimation of memory systems
utilizing machine learning and solutions from computer vision for design automation. IEEE
Transactions on Computers, 69(6):856–867, 2020.

[182] Lorenzo Servadei, Jiapeng Zheng, José Arjona-Medina, Michael Werner, Volkan Esen, Sepp
Hochreiter, Wolfgang Ecker, and Robert Wille. Cost optimization at early stages of design
using deep reinforcement learning. In Proceedings of the 2020 ACM/IEEE Workshop on
Machine Learning for CAD, pages 37–42, 2020.

[183] Lorenzo Servadei, Jin Hwa Lee, José A Arjona Medina, Michael Werner, Sepp Hochreiter,
Wolfgang Ecker, and Robert Wille. Deep reinforcement learning for optimization at early
design stages. IEEE Design & Test, 2022.

[184] John Paul Shen. On-line monitoring using signatured instruction streams. In Proc. IEEE
International Test Conference, Oct. 1983, pages 275–282, 1983.

[185] Yashwant Singh and Manu Sood. Model driven architecture: A perspective. In 2009 IEEE
International Advance Computing Conference, pages 1644–1652. IEEE, 2009.

[186] Wilson Snyder, Paul Wasson, and Duane Galbi. Verilator. Direct search methods: then and
now, 2007.

[187] AMBA Specification. Rev. 2.0. ARM Limited, 1999.

[188] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. 3 metamod-
elling. In Dagstuhl Workshop on Model-Based Engineering of Embedded Real-Time Systems,
pages 57–76. Springer, 2007.

[189] Herbert Stachowiak. General model theory. Springer, 1973.

170

BIBLIOGRAPHY

[190] Rafael Stahl, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. Driver generation for
iot nodes with optimization of the hardware/software interface. IEEE Embedded Systems
Letters, 12(2):66–69, 2019.

[191] Thomas Stahl, Markus Völter, and Krzysztof Czarnecki. Model-driven software development:
technology, engineering, management. John Wiley & Sons, Inc., 2006.

[192] EBNF Syntaxt Specification Standard. Ebnf: Iso/iec 14977: 1996 (e). URL http://www. cl.
cam. ac. uk/mgk25/iso-14977. pdf, 70, 1996.

[193] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse model-
ing framework. Pearson Education, 2008.

[194] Detlef Streitferdt, Georg Wendt, Philipp Nenninger, Alexander Nyßen, and Horst Lichter.
Model driven development challenges in the automation domain. In 2008 32nd Annual IEEE
International Computer Software and Applications Conference, pages 1372–1375. IEEE,
2008.

[195] Jun Sun, Wanghong Yuan, Mahesh Kallahalla, and Nayeem Islam. Hail: a language for
easy and correct device access. In Proceedings of the 5th ACM international conference on
Embedded software, pages 1–9, 2005.

[196] Rickard Svenningsson, Jonny Vinter, Henrik Eriksson, and Martin Törngren. Modifi: a
model-implemented fault injection tool. In International Conference on Computer Safety,
Reliability, and Security, pages 210–222. Springer, 2010.

[197] Eugene Syriani, Lechanceux Luhunu, and Houari Sahraoui. Systematic mapping study of
template-based code generation. Computer Languages, Systems & Structures, 52:43–62,
2018.

[198] Program Verification Systems. PVS-Studio Analyzer. https://pvs-studio.com/en/m/,
2021. [Online; accessed 20-April-2021].

[199] Bogdan-Andrei Tabacaru, Moomen Chaari, Wolfgang Ecker, Thomas Kruse, and Cristiano
Novello. Fault-effect analysis on system-level hardware modeling using virtual prototypes.
In 2016 Forum on Specification and Design Languages (FDL), pages 1–7. IEEE, 2016.

[200] Bogdan-Andrei Tabacaru, Moomen Chaari, Wolfgang Ecker, Thomas Kruse, and Cristiano
Novello. Speeding up safety verification by fault abstraction and simulation to transaction
level. In 2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-
SoC), pages 1–6. IEEE, 2016.

[201] Kenji Taguchi. Meta modeling approach to safety standard for consumer devices. In Seminar
on Systems Assurance & Safety for Consumer Devices, 2011.

[202] Ishitani Taichi. Rggen. https://www.librecores.org/taichi-ishitani/rggen, 2015.
[Online; accessed 28-August-2022].

171

https://pvs-studio.com/en/m/
https://www.librecores.org/taichi-ishitani/rggen

BIBLIOGRAPHY

[203] Julien Tanguy, Jean-Luc Béchennec, Mikaël Briday, Sébastien Dubé, and Olivier H Roux.
Device driver synthesis for embedded systems. In 2013 IEEE 18th Conference on Emerging
Technologies & Factory Automation (ETFA), pages 1–8. IEEE, 2013.

[204] Lydie Terras, Yannick Teglia, Michel Agoyan, and Régis Leveugle. Taking into account
indirect jumps or calls in continuous control-flow checking. In 2016 11th International
Design & Test Symposium (IDT), pages 125–130. IEEE, 2016.

[205] Robert L Thorndike. Who belongs in the family. In Psychometrika. Citeseer, 1953.

[206] Nicholas H Tollervey. Programming with MicroPython: embedded programming with micro-
controllers and Python. " O’Reilly Media, Inc.", 2017.

[207] Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessandro Tiso, and Gianna Reggio.
Preliminary findings from a survey on the md state of the practice. In 2011 International
Symposium on Empirical Software Engineering and Measurement, pages 372–375. IEEE,
2011.

[208] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I August. Com-
piler optimization-space exploration. In International Symposium on Code Generation and
Optimization, 2003. CGO 2003., pages 204–215. IEEE, 2003.

[209] Raphael Fonte Boa Trindade, Lukas Bulwahn, and Christoph Ainhauser. Automatically
generated safety mechanisms from semi-formal software safety requirements. In International
Conference on Computer Safety, Reliability, and Security, pages 278–293. Springer, 2014.

[210] Dimitri Van Heesch. Doxygen: Source code documentation generator tool. URL:
http://www. doxygen. org, 2008.

[211] Pham Van Huong and Nguyen Ngoc Binh. An approach to design embedded systems by
multi-objective optimization. In The 2012 International Conference on Advanced Technolo-
gies for Communications, pages 165–169. IEEE, 2012.

[212] Jens Vankeirsbilck, Niels Penneman, Hans Hallez, and Jeroen Boydens. Random additive
signature monitoring for control flow error detection. IEEE transactions on Reliability, 66
(4):1178–1192, 2017.

[213] Jose Luis de la Vara and Rajwinder Kaur Panesar-Walawege. Safetymet: A metamodel for
safety standards. In International Conference on Model Driven Engineering Languages and
Systems, pages 69–86. Springer, 2013.

[214] Jorgiano Vidal, Florent De Lamotte, Guy Gogniat, Philippe Soulard, and Jean-Philippe
Diguet. A co-design approach for embedded system modeling and code generation with uml
and marte. In 2009 Design, Automation & Test in Europe Conference & Exhibition, pages
226–231. IEEE, 2009.

[215] Markus Voelter, Christian Salzmann, and Michael Kircher. Model driven software develop-
ment in the context of embedded component infrastructures. In Component-Based Software
Development for Embedded Systems, pages 143–163. Springer, 2005.

172

BIBLIOGRAPHY

[216] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz. mbeddr: Instantiating
a language workbench in the embedded software domain. Automated Software Engineering,
20(3):339–390, 2013.

[217] Markus Voelter, Arie van Deursen, Bernd Kolb, and Stephan Eberle. Using c language
extensions for developing embedded software: A case study. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 655–674, 2015.

[218] Shaojie Wang, Sharad Malik, and Reinaldo A Bergamaschi. Modeling and integration of
peripheral devices in embedded systems. In 2003 Design, Automation and Test in Europe
Conference and Exhibition, pages 136–141. IEEE, 2003.

[219] Nancy J Warter and Wen-Mei W Hwu. Compiler-assisted signature monitoring. Coordinated
Science Laboratory Report no. UILU-ENG-90-2236, CRHC-90-6, 1990.

[220] Mario Werner, Erich Wenger, and Stefan Mangard. Protecting the control flow of embedded
processors against fault attacks. In International Conference on Smart Card Research and
Advanced Applications, pages 161–176. Springer, 2015.

[221] Michael Werner, Keerthikumara Devarajegowda, Moomen Chaari, and Wolfgang Ecker.
Increasing soft error resilience by software. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1–4. IEEE, 2019.

[222] Michael Werner, Andreas Neumeier, and Wolfgang Ecker. A syntax oriented code generation
approach for soc design automation. In Final Workshop Proceedings, page 33, 2019.

[223] Michael Werner, Lorenzo Servadei, Robert Wille, and Wolfgang Ecker. Automatic compiler
optimization on embedded software through k-means clustering. In 2020 ACM/IEEE 2nd
Workshop on Machine Learning for CAD (MLCAD), pages 157–162. IEEE, 2020.

[224] Michael Werner, Igli Zeraliu, Zhao Han, Sebastian Prebeck, Lorenzo Servardei, and Wolf-
gang Ecker. Optimized hw/fw generation from an abstract register interface model. In 2020
23rd Euromicro Conference on Digital System Design (DSD), pages 35–39. IEEE, 2020.

[225] Lea Wittie. Laddie: The language for automated device drivers (ver 1. 2008.

[226] Michael V Woodward and Pieter J Mosterman. Challenges for embedded software devel-
opment. In 2007 50th Midwest Symposium on Circuits and Systems, pages 630–633. IEEE,
2007.

[227] Yanxia Wu, Guochang Gu, Shaobin Huang, and Jun Ni. Control flow checking algo-
rithm using soft-basedintra-/inter-block assigned-signature. In Second International Multi-
Symposiums on Computer and Computational Sciences (IMSCCS 2007), pages 412–415.
IEEE, 2007.

[228] Jisoo Yang, Dave B Minturn, and Frank Hady. When poll is better than interrupt. In FAST,
volume 12, pages 3–3, 2012.

173

BIBLIOGRAPHY

[229] Benabdallah Ahcene Youcef and Boudour Rachid. A fast prototype for modeling ip cores
using in soc with uml marte. Informatica, 45(6), 2021.

[230] Elena Zennaro, Lorenzo Servadei, Keerthikumara Devarajegowda, and Wolfgang Ecker. A
machine learning approach for area prediction of hardware designs from abstract specifica-
tions. In 2018 21st Euromicro Conference on Digital System Design (DSD), pages 413–420.
IEEE, 2018.

[231] Igli Zeraliu. Automated generation of an optimized hal from the register interface models.
Master’s thesis, TU Kaiserslautern, 2020.

[232] Qing-Li Zhang, Ming-Yuan Zhu, and Shuo-Ying Chen. Automatic generation of device
drivers. ACM SIGPLAN Notices, 38(6):60–69, 2003.

174

	Acknowledgements
	Abbreviations
	Introduction
	Handling Growing Complexity
	Outline of the Thesis

	Problem Statement and Contributions
	Problem Statement
	Tool and implementation challenges
	Domain-related challenges
	Socio-Technical Challenges

	Requirements
	Targeted Approach
	Summary of the Key Advantages

	Model Driven Engineering
	Metamodeling
	Modeling Language and Domain-specific Language
	Model Transformations and Code Generators
	Model Driven Architecture

	Previous Work
	Metamodeling environment
	MDA approach for RTL generation

	Embedded Software Architecture
	IP Core
	Hardware and Software Interface
	Register Interface
	Hardware Abstraction Layer
	Device Driver Layer
	Application

	Safety in embedded software

	View Generator and Language Model
	View Generator
	Construction of a View Generator
	Abstract Language Model
	Unparser

	View Language Description
	EBNF Distinction
	VLD Notation

	C Code Syntax in VLD
	MISRA C Compliance

	C VLD Constructs
	File structure
	Data Types
	Expressions
	Statements
	Documentation

	Register Interface and Hardware Abstraction Layer
	Abstract Model of the Register Interface
	Flexible Memory Layout
	Bitfield configurations
	Hardware Access Sequences

	Register Interface and HAL Generation
	Register Interface Hardware
	Hardware Abstraction Layer
	Implementation Variants
	Generic Bitfield Structures
	Specific Inline Accesses

	Access Optimization

	Embedded Software Modeling
	Embedded Software Generation Flow
	Abstract Embedded Software Model
	Limitation
	Objects
	Activities and Actions
	Object Actions
	Control Flow Actions

	Generator Specification Model
	Organization of the Software Architecture
	Generator Configuration Settings
	Device Driver Architecture and Design
	Device Driver API
	Safety in Embedded Software
	Analysis and Verification

	Device Specific Generator Frontend
	Template of Embedded Software
	Device Driver Structure
	Device Driver Behaviour

	Domain Specific Language and Design Pattern Reuse
	Domain Specific Language
	Design Pattern

	Device Generic Generator Backend
	Design Decisions
	Driver Reusability
	I/O Driver Design
	Synchronous Driver
	Asynchronous Driver - Interrupt Service Routine

	Safety Pattern
	Redundant Register check after modification
	Watchdog
	Signature-based Program Flow Monitor
	Model Extensions
	Hardware Requirements
	Intra-procedural PFM
	Instruction-stream PFM

	Error Handler
	Results
	Fault Injection
	Diagnostic coverage and overhead
	Transformation capabilities
	Memory and performance overhead
	Diagnostic coverage

	Optimization
	Compiler Optimization
	Compiler integration and training set generation
	Clustering-based compiler exploration in nonlinear optimization space.
	Evaluation

	Memory layout optimization
	Training set generation
	Register Interface estimation and optimization

	Application
	State Machine
	Nested if-else FSM
	Function pointer based FSM

	External Software
	Analysis of application
	Firmware Verification
	Performance Analysis
	End-to-End analysis flow

	Proof of Concept
	Self Test System-On-Chip
	Safety Demonstrator - Human-Robot Interaction
	ML-based Demonstrator - Location Detection

	Summary and Conclusion
	Bibliography

