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Introduction: MicroRNAs have a significant role in the regulation of the

transcriptome. Several miRNAs have been proposed as potential biomarkers

in different malignancies. However, contradictory results have been reported

on the capability of miRNA biomarkers in cancer detection. The human

biological clock involves molecular mechanisms that regulate several genes

over time. Therefore, the sampling time becomes one of the significant factors

in gene expression studies.

Method: In the present study, we have tried to find miRNAs with minimum

fluctuation in expression levels at different time points that could be more

accurate candidates as diagnostic biomarkers. The small RNA-seq raw data of

ten healthy individuals across nine-time points were analyzed to identify

miRNAs with stable expression.

Results: We have found five oscillation patterns. The stable miRNAs were

investigated in 779 small-RNA-seq datasets of eleven cancer types. All

miRNAs with the highest differential expression were selected for further

analysis. The selected miRNAs were explored for functional pathways. The

predominantly enriched pathways were miRNA in cancer and the P53-signaling

pathway. Finally, we have found seven miRNAs, including miR-142-3p, miR-

199a-5p, miR-223-5p, let-7d-5p, miR-148b-3p, miR-340-5p, and miR-421.

These miRNAs showed minimum fluctuation in healthy blood and were

dysregulated in the blood of eleven cancer types.

Conclusion: We have found a signature of seven stable miRNAs which

dysregulate in several cancer types and may serve as potential pan-cancer

biomarkers.
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Introduction

The discovery of microRNAs (miRNA) as the new player of

the transcriptome has changed the field of molecular biology.

miRNAs are single-stranded small non-coding RNAs composed

of 18–22 nucleotides (Sarshar et al., 2020). The binding of

miRNA to the target genes, especially to the 3′ untranslated
region (UTR), induces post-transcriptional gene regulation

(Huntzinger and Izaurralde, 2011; Ipsaro and Joshua-Tor,

2015). A single miRNA could potentially target several

mRNAs. Therefore, dysregulation of miRNAs profoundly

affects the expression of numerous genes that may lead to

human diseases such as cancer (Dharap et al., 2013; Peng and

Croce, 2016; Zhang et al., 2018). Many studies have confirmed

that miRNAs play an essential role in various cancer-associated

biological processes such as apoptosis, proliferation, metabolism,

invasion, differentiation, immune response, and metastasis

(Kabekkodu et al., 2018; Abkhooie et al., 2021; O’Brien et al.,

2018; He et al., 2019).

miRNAs have been found in various biological samples,

including peripheral blood, which is readily obtainable in

significant amounts (El-Mogy et al., 2018; Hermann et al.,

2019). Studies have shown that miRNAs are the most

significant regulating RNA components existing in

peripheral blood and could be applied as biomarkers with

high specificity and sensitivity for detecting cancers

(Buschmann et al., 2016; Bhome et al., 2017; Carter et al.,

2017; Dumache, 2017; Yan et al., 2017). However, the

application of miRNAs as diagnostic biomarkers has some

significant challenges. Several factors such as data

preprocessing and optimization, interpersonal differences,

the interaction of miRNAs with serum molecules, and the

retention time of samples have been reported as the causes

of controversies regarding the use of miRNAs as diagnostic

biomarkers (Witwer, 2015; Monzo et al., 2017; Xu et al., 2017;

Zhou et al., 2017; Grätz et al., 2022). The circadian clock system

is based on a transcription-translation feedback loop (Jennifer

et al., 2012). The circadian cycle organizes the regulation of the

daily timing of transcriptome (including miRNA) (Du et al.,

2014; Zhou et al., 2021). Therefore, in gene expression studies,

the sampling time becomes one of the significant factors

affecting the gene expression results. In this study, we tried

to find miRNAs in the blood with minimum fluctuation at

several time points. We proposed that these miRNAs could be a

better candidate for cancer detection. We present here a panel

of seven miRNAs with the slightest oscillation in healthy

peripheral blood, which showed a significant dysregulation

in 11 types of cancers.

Materials and methods

Patients and samples

We conducted a detailed search in the Gene Expression

Omnibus (GEO) database to find appropriate small RNA

sequencing raw data, using the keywords “small-RNA seq”,

“whole blood derived”, and “blood-derived cancer” resulting

in 779 patient raw data sets from 11 cancer types (Table 1

and Table 2). Our input criteria only include datasets that

obtained blood. The RNA seq raw data for healthy individuals

(n = 90) were obtained from the study of (Haberberger et al.,

2018; Mussack et al., 2021), including whole blood samples of ten

healthy male individuals at nine time-points (0 h, 3 h, 6 h, 24 h,

48 h, 72 h, Day7, Day30, and day60). A table of clinical

information of 10 healthy individuals was provided in

Supplementary Table S1 (Supplementary File S1).

Study design

This study was conducted in two steps (Figure 1). At first,

to determine the miRNAs with minimum oscillation in

different time points, each time point’s Deseq2-normalized

count is compared to the mean of Deseq2-normalized count

in all nine time points separately. miRNAs that showed

aberrant expression across time points were therefore

removed from the analysis. Median absolute deviation

(MAD) was applied to measure miRNA variability fold

changes during nine time points and define the cutoff for

expression change (Rousseeuw and Croux, 1993; Leys et al.,

2013). The value of MAD for each miRNA was calculated as

follows, where b is constant (b = 1.4826) (Leys et al., 2013)

and Xn is the expression value Log2(FC) for a single miRNA

of each time point of healthy samples compared to the overall

mean expression:

MAD � b × median X −median X( )| |( ) (1)

To specify whether the miRNA was diverted throughout the

timepoints, thresholds were defined as where x stands for each

miRNA in all time points:

Median x( ) � ± 3 × MAD (2)

In the second step, miRNAs with MAD <0.2 and fold

changes out of the threshold range (outlier) compared to

cancer datasets and their specific control samples were

selected for further analysis. COSINOR analysis was used to

confirm the absence of oscillation in selected miRNAs.
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Data processing and differential
expression analysis

Small RNA-seq data analysis was performed on the

GALAXY platform (Afgan et al., 2016). The quality of the

small RNA libraries was assessed using FASTQC software.

Sequence quality was checked per base sequence quality, and

all reads with a mean quality score under 30 were excluded.

Trim Galore was used to discard adapter sequences and

sequences less than 16 bases to ignore false positive

mapping. Then sequences were aligned to the human

reference genome (Hg38). The annotation file was used from

miRbase v22.1 (Ambros et al., 2003), which contains all known

humanmiRNAs. Alignment and quantification were performed

using Bowtie 1.2.0 and FeatureCount 1.6.4 (Bates et al., 2014;

Mascher et al., 2017). Differential expression analysis of

miRNAs was performed using DESeq2 version 2.11.40.6 with

the Benjamini–Hochberg procedure, which controls the false

discovery rate (FDR) (Love et al., 2016). miRNAs with DESeq2-

normalized mean read counts under 20 were discarded to avoid

false-positive results.

Cluster analysis of gene expression

TimeClust software (Magni et al., 2008) was used to cluster

the miRNA’s expression foldchanges during nine time points

according to their temporal expression profile. The random walk

models for Bayesian clustering were used as the clustering

algorithm.

TABLE 1 Cancer small RNA-seq raw datasets. Eleven different cancer datasets with their specific controls in nine different tissues. One time series dataset
obtained from ten healthy individuals including 90 samples (Mussack et al., 2021). All the samples were obtained from blood in each cancer. All datasets are
available in Gene Expression Omnibus (GEO) database (c). AML: acute myelogenous leukemia, CLL: chronic lymphocytic leukemia, ALL: acute lymphocytic
leukemia.

Type of cancer Healthy/Disease (N) RNA-seq platform References

Lung adenocarcinoma 4/6 GPL20795 HiSeq X ten GSE151963 Wang et al. (2021)

Wang X 2020

Colorectal cancer 192/92 GPL9052 Illumina Genome Analyzer GSE71008 Yuan et al. (2016)

Lin M 2019

Colon cancer 10/15 Illumina HiSeq 2500 PRJNA540919 Min et al. (2019)

Zhang Sh 2019

Pancreatic cancer 24/21 GPL16791 Illumina HiSeq 2500 GSE109319 Kim et al. (2019)

Kim K 2019

AML 9/10 GPL18573 Illumina NextSeq 500 GSE128079 Pandita et al. (2019)

Pandita A 2019

CLL 5/25 GPL18573 Illumina NextSeq 500 GSE123436 Kaur et al. (2020)

Kaur G 2020

Biliary tract cancer 24/10 GPL16791 Illumina HiSeq 2500 GSE109319 Kim et al. (2019)

Kim K 2019

Gastric cancer 12/36 GPL11154 Illumina HiSeq 2000 GSE130654 Tang et al. (2020)

Tang S 2020

Nasopharyngeal cancer 6/6 GPL16791 Illumina HiSeq 2500 GSE163867 Zheng et al. (2021)

Zheng W 2021

ALL 36/150 Illumina Nextseq 500 GSE89978 Wallaert et al. (2017)

Wallaert A 2017

Prostate cancer 50/36 GPL9052 Illumina Genome Analyzer GSE71008 Yuan et al. (2016)

Yuan T

Healthy individuals 90/0 GPL16791 Illumina HiSeq 2500 PRJEB38354 Mussack et al. (2021)

Veronika M
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TABLE 2 The foldchange of 37 selected DEMs in 11 cancer datasets compared to control in respective datasets. The miRNAs with expression fold change levels inside the threshold window were discarded. Seven
DEMs with the minimum oscillation (MAD) in healthy controls showed the highest dysregulation in 11 cancers cancer datasets. All miRNAs indicated MAD score <0.2. AML: acute myeloid leukemia, CLL: chronic
lymphoid leukemia. ALL: acute lymphoid leukemia. MAD: median absolute fold change.

miRNA Threshold window Expression changes in cancer (Log2FC) compared to healthy controls in each dataset

AML Biliary CLL Colorectal Early
colon

Gastric Lung
adenocarcinoma

Nasopharyngeal Pancreatic Prostate AllUpper
border

Lower
border

miR-142-3p −0.622 0.510 −1.491 −0.840 0.519 −0.773 −0.782 2.796 −1.678 0.296 −0.687 −0.792 1.697

miR-
199a-5p

−0.111 0.114 2.240 −2.165 −3.271 −0.899 −0.333 1.069 −2.151 2.906 −1.070 −0.679 0.432

miR-223-5p −0.326 0.278 −1.924 2.470 −0.004 −0.386 −0.042 1.550 0.968 1.684 1.496 −0.333 3.024

let-7d-5p −0.263 0.426 0.623 −0.435 −0.967 −0.676 0.559 1.473 −0.876 0.162 −0.222 −0.271 −0.623

miR-
148b-3p

−0.097 0.112 0.005 −0.834 −1.409 −0.666 −0.233 -0.841 −1.400 1.248 −0.675 −0.135 0.592

miR-340-5p −0.143 0.258 −2.075 1.286 0.533 0.169 −1.467 −0.769 −1.948 1.525 0.915 −0.080 2.611

miR-421 −0.354 0.317 −0.452 1.276 −1.172 0.368 −0.885 −1.709 −0.680 0.441 0.990 −0.083 −0.533
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Principal component analysis (PCA) was performed using

GraphPad Prism version 9.0.0 (GraphPad Software, San Diego,

California United States, www.graphpad.com) to specify

clustering in healthy versus cancer samples.

ROC curve analysis

The Deseq2-normalized read counts of all overlapping

differentially expressed miRNAs(DEMs) were used to assess the

sensitivity and specificity of each DEM to evaluate its detection

capability in cancer datasets versus the control group using receiver-

operating characteristic (ROC) curves and the area under

curve (AUC).

The sensitivity and specificity of all miRNAs as a prognostic

signature for prediction were evaluated by AUC of the receiver

operation characteristic with R program software using the

Combiroc package (Bombaci and Rossi, 2019).

Functional enrichment analysis

MIENTURNET (Licursi et al., 2019) was used to find the

interaction network of miRNAs with their target genes using

Targetscan (McGeary et al., 2019) and miRTarbase (Huang et al.,

2022) database and exploring the Kyoto encyclopedia of genes and

genomes (KEGG) database (Kanehisa and Goto, 2000). Also, we used

ShinyGoas a powerful functional enrichment analyzer tool to specify the

KEGG pathway and Gene ontology of targeted genes (Ge et al., 2020).

miRNA-protein interaction network

The MiRNET platform was used to explore the miRNA

target genes and the miRNA-gene interaction network (Chang

et al., 2020). Moreover, we explored other miRNA target

prediction analyzing tools, including miRDIP(Tokar et al.,

2018), miRDB (Chen and Wang, 2020), TargetScan, and

miRTarBase by a Venn diagram to find shared miRNAs.

Each miRNA and target gene with interaction number <3
(Degree filter) were discarded to reduce the false positive

targets.

Validation

The expression of candidate miRNAs was explored in

three different studies. Array express and TCGA datasets

was assessed and samples obtained from whole blood of

patients with different types of cancer with no

FIGURE 1
Study design flowchart performed on ten healthy individuals throughout nine time points. Each time point is compared to the mean of
expression of 90 samples during nine timepoints (M) separately. miRNAs with similar expression in all time points were selected for further analysis.
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treatment was selected. Three different study were explored

and analyzed. miRNA expression level from whole blood of

patients detected by lung cancer and nasopharyngeal cancer

including 1052 healthy individuals and 1438 cancer

patients were assessed (Patnaik et al., 2012; Wen, 2018;

Fehlmann et al., 2020). The mean expression levels of the

seven candidate miRNAs in the blood of cancer patients was

compared to the mean expression levels in blood of healthy

individuals. The expression intensity of candidate miRNAs in

the blood of cancer patients demonstrated a significant

difference with expression levels in healthy blood

(Figure 8) (Supplementary File S1). All datasets were

analyzed by one-way ANOVA followed by Dunnett’s

multiple comparisons tests using GraphPad Prism version

9.0.0 for Windows, GraphPad Software, San Diego, California

United States, www.graphpad.com.

Results

miRNAs have different oscillation patterns

The common miRNAs through nine time points were

analyzed to find the miRNAs with minimum oscillation

patterns. One hundred ninety-five miRNAs were found that

were expressed in all time points (Supplementary File S1).

Five different oscillation patterns were detected (Figure 2).

Cluster E comprised most miRNAs (61), and Cluster A the

least (17). Cluster C (red line) comprised 37 miRNAs with the

lowest MAD score (MAD <0.2) among other clusters and

showed the most consistent behavior. Hence cluster C

represented a group of miRNAs with minimum fluctuation in

expression levels across all time points (Supplementary File S1).

miRNAs with minimum oscillation
patterns show dysregulation in cancers

To evaluate the potential dysregulation regarding miRNAs in

cluster C (Figure 2A), we explored the total number of

differentially expressed miRNAs (DEM) in the blood of

11 cancers in comparison to their study-specific controls

(Figure 3A). The range of DEMs varied from 401 in ALL

(Acute lymphocyte leukemia) to 74 in CLL (Chronic

lymphocyte leukemia). The fold changes of 37 candidate

miRNAs (cluster C) in all cancers indicated that 17 miRNAs

with positive and 20 miRNAs with a negative average of fold

changes throughout all 11 cancer datasets. The miR-223-5p

demonstrated the highest (1.5), and miR-19b-3p showed the

lowest (0.01) average of fold changes compared to study-specific

controls (Figure 3B).

Finally, the presence (miRNA with Adj p-value <0.05) and
dysregulation level of the 37 candidate miRNAs were checked in

all types of cancer by rankingmiRNAs according to their distance

from the threshold window. The top seven DEMs were selected

based on their distance from the threshold (outliers) [2],

including miR-142-3p, miR-199a-5p, and miR-223-5p showed

the most significant distance to the cutoff border. Seven miRNAs

with significantly distinct fold change in comparison to cancer

datasets and study-specific controls and also distance from the

threshold window in more than 80% of cancers were selected as

top dysregulated miRNAs.

FIGURE 2
Patterns of miRNA expression during nine different time points. (A) Five clusters were detected in clustering analysis. Pattern C which includes
37 miRNAs, demonstrates the minimum and Pattern A demonstrated the maximum oscillation among the other patterns. (B) Pattern C consisting of
37 miRNAs with a similar oscillation pattern which demonstrated the lowest oscillations.
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In order to find the miRNAs responsible for variance in

expression of the cancer datasets from healthy and cancer samples,

we performed principal component analysis (PCA) with the first

principal component (PC1) and second principal component (PC2)

for seven miRNAs. The PC1 showed 54%, and PC2 showed a 17%

(Figure 4A) variance between all samples. A loading plot was created

utilizing the PC axis to distinguish between the miRNAs responsible

for these clusters. On the PC2, let-7d-5p, miR-148b-3p, miR-223-5p,

and miR-340-5p all exhibited a negative value. miR-148b-3p and

miR-421 were small contributors to the PC1. The PC2 contained the

highest contribution levels formiR-148b-3p andmiR-421 (Figure 4B).

The panel of miRNAs demonstrated the best discrimination power in

lung, Biliary tract and nasopharyngeal cancer.

Moreover, we conducted a literature review to compare the

reported miRNAs in other cancer studies with the present candidate

miRNAs result (Supplementary File S2). The most important

miRNAs reported numerously as biomarkers in the blood of

cancers were miR-142-3p and miR-223-5p. These miRNAs and

other reported miRNAs demonstrated significant dysregulation in

different cancer types.

Diagnostic values of DEMs

In order to evaluate the diagnostic values of DEMs in

discriminating cancer from healthy controls, ROC curve analysis

was performed on Deseq2-normalized read counts of sevenmiRNAs

with minimum oscillation. The seven miRNAs displayed promising

results in discriminating the two groups with a specificity and

sensitivity greater than 80% and a p-value <0.05 (Supplementary

FIGURE 3
Expression and number of miRNAs in all cancer datasets. (A) The absolute number of miRNAs were differentially expressed in each cancer
dataset. (B) The range of expression levels of each miRNA in all cancer datasets.

FIGURE 4
Principal component analysis (PCA) of healthy and all types of cancer. (A) PCA matrix was used to discover cancer and control group. 71%
variance was discovered in PC1 and PC2. (B) Loading plot of seven miRNAs.
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File S1). The best model performance was observed in AML,

pancreatic, and colon cancers (AUC> 90%). Gastric cancer and

lung adenocarcinoma showed lower performance (AUC>80%)
than other cancers. Seven miRNAs, including miR-142-3p, miR-

199a-5p, miR-223-5p, let-7d-5p, miR-148b-3p, miR-340-5p, and

miR-421 demonstrated the significant signatures as a panel for

distinguishing cancer from healthy samples (Figure 5).

miRNA-protein interaction network and
functional analysis

The miRNA interaction network of seven candidate miRNAs

had 2212 edges (interactions) and 1971 nodes (target genes)

(Figure 6A). Several miRNA target predictions analyzing were

used to find the best target genes for eachmiRNA. Amodule with

FIGURE 5
The area under curves analysis for seven DEMs as a signature in eleven cancers. AUC analysis of all seven miRNAs as a signature panel checked
with sensitivity and specificity >80% and p-value <0.05. The best model performance was demonstrated in Colon cancer.
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26 nodes and 79 edges was extracted with the most significant

interaction scores (degree score ≥3), including seven miRNAs

and 26 target genes (Figure 6B). The list of best fitted genes is

available in Supplementary File S1 and Supplementary Table S5.

The miR-340-5p and miR-142-3p demonstrated the best

interaction by having the most connectivity with target genes

(Figure 6C). The KEGG pathway enrichment analysis of

candidate miRNAs showed that microRNAs in cancer and

P53 signaling pathway are the most important pathways

(Figure 6D).

FIGURE 6
The miRNA-protein interaction network and cluster analysis of target genes and the interactions between selected miRNAs and target genes. (A)
miRNA-mRNA interaction network of all seven candidatemiRNAs. (B)The bestmiRNA candidate associationwith target genes squares representedmiRNAs,
and circles represented target genes. (C) miRNA target prediction tools were explored and found 26 best-fitted target genes common in all platforms. (D)
KEGG enrichment analysis of DEMs. KEGG pathway analysis showed candidate miRNAs significantly implicated with the cancer-related disease.
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The KEGG pathway enrichment and gene ontology analysis on

26 best-fitted target genes were performed using the ShinyGO tool.

GO analysis in biological process term (BP) demonstrated that the

target genes were associated with nucleobase-containing compound

metabolite process and regulation of gene expression (Figure 7A). In

addition, the endomembrane system was the cellular components

(CC) most involved in related targeted genes (Figure 7B). In

molecular function (MF) categories, target genes are associated

with sequence-specific DNA binding and transcription regulatory

activity. miRNA prediction tools were explored to find the overlap

(Figure 7C). On the other hand, we checked the KEGG enrichment

results based on their weight scores to cluster results based on the

minimum subset of target genes that cover all the genes from

enrichment sets. FOXO signaling pathway, signaling pathways

regulating pluripotency of stem cells, and longevity regulation

pathway were demonstrated with a greater fold enrichment ratio

and significant FDR <0.05 (Figure 7D).

Validation

The expression of candidate miRNAs was explored in total seven

studies Including three studies from different cancer types obtained

from whole blood. The expression intensity of candidate miRNAs in

the whole blood (Figure 8) of cancer patients demonstrated a

significant difference in compare the healthy controls. Statistical

analysis provided as supplementary file (Supplementary File S1

and Supplementary Table S6). All clinical data including sex and

age of control and patient samples were provided in supplementary

file (Supplementary File S1 and Supplementary Table S7).

Discussion

The molecular mechanisms that control a range of genes

across time are part of the human biological clock, which

influences many molecular processes (Takahashi et al., 2008).

The regulation of the daily timing of the transcriptome,

including miRNA, is organized by the circadian cycle (Du

et al., 2014; Zhou et al., 2021). As a result, one of the key

variables influencing the results of gene expression

investigations is the sampling time. In the present study, we

have tried to find miRNAs in the peripheral blood with

minimum fluctuation at different time points. Then, the

candidate miRNAs expression was assessed in eleven cancers.

The blood miRNAs in healthy controls showed different

oscillation patterns. We have found a cluster of 37 miRNAs with

the most stable behavior across all time points. It can be assumed

that a change in the expression of these miRNAs may indicate an

abnormal or pathological event (Farrell et al., 2015; Bertoli et al.,

2016). Therefore, we explored the expression level of these stable

miRNAs in the peripheral blood of different types of cancer. We

have found that seven miRNAs, including miR-142-3p, miR-199a-

5p,miR-223-5p, let-7d-5p,miR-148b-3p,miR-340-5p, andmiR-421

were significantly deregulated in the blood of cancer patients. The

sensitivity and specificity of these miRNAs were higher than 80%.

FIGURE 7
KEGG pathway enrichment and Gene ontology analysis best-fitted target genes. (A) Biological process term (BP) association with nucleobase
containing compoundmetabolite process and regulation of gene expression. (B) Endomembrane system of cells were the cellular components (CC)
most involved regarding targeted genes. (C) In molecular function (MF) categories, target genes are associated with sequence-specific DNA binding,
and transcription regulatory activity. (D) Longevity regulation pathway, FOXO signaling pathway and signaling pathways regulation pluripotency
of stem cells had best enrichment ratio and the more significant number of identified targets in KEGG pathway analysis.
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Several studies have been reported the deregulation of miR-142-3p

(Lv et al., 2012; Hu et al., 2013;Wang et al., 2018; Gao et al., 2019; Liu

et al., 2021), miR-199a-5p (Zhou et al., 2015; Zhang et al., 2021),

miR-223-5p (Gilicze et al., 2014; Zhu et al., 2019; Deng et al., 2021),

let-7d-5p (De Santis and Götte, 2021; Li et al., 2021), miR-148b-3p

(Mollazadeh et al., 2019; Yuan et al., 2019; Shan et al., 2021), miR-

340-5p (Guo et al., 2021; Huang et al., 2021; Tan et al., 2021), and

miR-421 (Chen et al., 2019; Mo et al., 2020) in the blood of different

cancer types. The KEGG pathway analysis showed that the

microRNAs in cancer and P53 signaling pathway were the most

enriched pathways. These pathways are important routes of cancer

development and progression.

FIGURE 8
Expression difference in seven miRNAs in comparison between healthy individuals and several types of cancer in three studies. All samples
obtained from whole blood of cancer patients. Significant difference demonstrated with p-value <0.05 in all three studies. Three studies including
(A): (Fehlmann et al., 2020), (B): (Wen, 2018) and (C): (Patnaik et al., 2012).
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The critical question is how changes in the expression of

miRNAs in the blood may be associated with cancer in other

tissues. A standard answer to this question is that the leakage of

miRNAs from cancerous tissues into the blood changes the level of

these molecules in the blood of cancer patients (Fichtlscherer et al.,

2011; Keller et al., 2011; Creemers et al., 2012). However, blood

cells are the primary producer of circulating miRNA (Pritchard

et al., 2012; Sohel, 2016). Moreover, comparisons of blood

miRNAs with cancerous tissues have shown that miRNAs in

blood are not just a byproduct of cancerous tissue but are a

part of the body’s defense against cancer (Coombs et al., 2017).

In a contradictory hypothesis (a version of clonal hematopoiesis)

(Jamieson, 2017), it can be assumed that deregulation of circulating

miRNAs due to somatic mutation in hematopoietic stem cells may

lead to an increased risk of cancer in other tissues. It has been shown

that miRNAs can be transferred to cancer cells and regulate cellular

processes and signaling pathways (Turchinovich et al., 2011;

Ramachandran and Palanisamy, 2012; Turchinovich and

Burwinkel, 2012; Turchinovich et al., 2013; Chevillet et al., 2014;

Turchinovich et al., 2015; Anfossi et al., 2018; Sun et al., 2018; Reshke

et al., 2020). We have found seven miRNAs that are highly stable

under normal conditions, which may dysregulate in mutated

hematopoietic cells with age (Coombs et al., 2017; Jamieson, 2017;

Fabre et al., 2022; Jeon et al., 2022). In addition, this panel of seven

miRNA may have use in surgical treatment response. There are

numerous studies reporting the use of circulatingmiRNAs in surgical

treatment response. Recent studies have shown that the expression of

some circulatingmiRNAs in patients diagnosedwith cancer was back

to the level of expression in healthy individuals after surgical

treatment (Heneghan et al., 2010; van Schooneveld et al., 2012;

Chen et al., 2016). Although the present study results are

promising for cancer detection, there is a limitation due to using

samples in different stages. Therefore, it is not clear whether these

miRNAs could detect cancer in its early stages. Furthermore, due to

the lack of time series datasets in healthy individual’s females, the

results may include sex bias expression. Also, Deeper verification is

required for our findings due to poor overlap among the other

reports.

In summary, we have found a pan-cancer signature of seven

miRNAs that may have the potential for cancer detection. Also,

this approach could be used as a survey for identifying

biomarkers for other pathological conditions. However,

further investigation is needed to validate our results and

examine the miRNA’s pan-cancer role.
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