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Abstract

Alternative splicing (AS) refers to differences in the processing of transcripts
(e.g. exon skipping, intron retention, etc.) allowing cells to synthesise vari-
ous protein variants (isoforms) from the same gene. Protein isoforms differ in
their functionality and can even have opposite roles. Thus, AS is an essential
mechanism in cell maturation and differentiation but also in diseases such as
cancer, heart, and kidney diseases. On the other hand, Protein-protein interac-
tion (PPI) networks and pathway databases are important resources in systems
biology. PPIs are identified in tedious experiments but due to the high num-
ber of possible interactions, efforts are limited to testing only major protein
isoforms, neglecting the considerable influence of AS on the interactome. Simi-
larly, pathway databases only include a single isoform per gene, although most
isoforms don’t share all biological functions.

In this work, I first developed DIGGER (Domain Interaction Graph Guided
ExploreR), a user-friendly database and web tool to explore the functional im-
pact of AS in human-protein interactions. DIGGER integrates the PPIs with
Domain-domain interactions (DDIs) to identify the binding domains for each
PPI. Notably, none of the existing resources annotates the role of individual
exons, which is a prerequisite to studying the consequence of AS on DDIs. To
mitigate this, DIGGER provides a unique mapping of interface residues of in-
teracting proteins to exons, based on experimentally resolved structures in the
Protein Data Bank. In this way, genomic information on a splicing event can
be directly mapped onto three-dimensional protein structures and the impact
of the AS event on the PPI interface can be assessed. Through DIGGER’s
user-friendly web interface, researchers can interactively visualise the domain
composition for any protein isoform, with detailed information on the interact-
ing domains between the selected protein and its partners in the PPI network.

To leverage the joint PPI and DDI network in DIGGER for studying the con-
sequences of AS across two or more conditions, I further developed the python
tool NEASE (Network Enrichment method for Alternative Splicing Events).
The classical approach for studying differential alternative splicing focuses on
alternatively spliced genes, rather than the exact exons. In contrast, NEASE
considers interactions impacted by AS and identifies enriched pathways based
only on these edges. The analysis presented in this thesis shows that NEASE
largely outperforms classic gene set enrichment in the context of AS and gener-
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ates meaningful biological insights on the impact of AS. Together, DIGGER and
NEASE provide essential resources for studying the mechanistic consequences
of AS in systems and network medicine.
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Zusammenfassung

Das alternative Spleißen (AS) bezieht sich auf Unterschiede in der Verar-
beitung von Transkripten (z.B. Exon-Überspringen, Intron-Retention usw.), die
es Zellen ermöglichen, verschiedene Proteinvarianten (Isoformen) aus demsel-
ben Gen zu synthetisieren. Protein-Isoformen unterscheiden sich in ihrer Funk-
tionalität und können sogar entgegengesetzte Rollen haben. Daher ist das AS
ein wichtiger Mechanismus bei der Zellreifung und Differenzierung, aber auch
bei Erkrankungen wie Krebs, Herz- und Nierenerkrankungen. Auf der an-
deren Seite sind Protein-Protein-Interaktionsnetzwerke und Datenbanken von
Wirkungspfaden wichtige Ressourcen in der Systemsbiologie. PP-Interaktionen
werden in aufwendigen Experimenten identifiziert, aber aufgrund der hohen An-
zahl möglicher Interaktionen beschränken sich die Bemühungen darauf nur die
wichtigsten Protein-Isoformen zu testen, wodurch die erheblichen Auswirkun-
gen der AS auf das Interaktom unberücksichtigt bleiben. Ähnlich enthalten
Datenbanken von Wirkungspfaden nur eine Isoform pro Gen, obwohl die meis-
ten Isoformen nicht alle biologischen Funktionen gemeinsam haben.

In dieser Arbeit habe ich zunächst DIGGER (Domain Interaction Graph
Guided ExploreR) entwickelt, eine benutzerfreundliche Datenbank und Web-
Tool, um den funktionellen Einfluss von AS in menschlichen Proteininter-
aktionen zu erforschen. DIGGER integriert die PPIs mit Domain-Domain-
Interaktionen (DDIs), um die Bindungsdomänen für jede PPI zu identifizieren.
Bemerkenswert ist, dass keine der vorhandenen Ressourcen die Rolle einzelner
Exons annotieren, was eine Voraussetzung für die Untersuchung der Auswirkun-
gen von AS auf DDIs ist. Um dieses Problem zu lösen, bietet DIGGER eine
einzigartige Zuordnung von Oberflächen-Residuen interagierender Proteine zu
Exons auf der Grundlage experimentell aufgelöster Strukturen in der Protein
Data Bank. Auf diese Weise kann genomische Information über ein Splicing-
Ereignis direkt auf dreidimensionale Proteinstrukturen abgebildet und der Ein-
fluss des AS-Ereignisses auf die PPI-Schnittstelle bewertet werden. Durch die
benutzerfreundliche Web-Schnittstelle von DIGGER können Forscher interaktiv
die Domänenkomposition für jede Protein-Isoform visualisieren, einschließlich
detaillierter Informationen über die interagierenden Domänen zwischen dem
ausgewählten Protein und seinen Partnern im PPI-Netzwerk.

Um das gemeinsame PPI und DDI-Netzwerk in DIGGER zur Untersuchung
der Auswirkungen von AS zwischen zwei oder mehr experimentellen Gruppen
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zu nutzen, habe ich außerdem das Python-Tool NEASE (Network Enrichment
Methode für alternative Splicing-Ereignisse) entwickelt. Der klassische Ansatz
zur differenzieller Analyse alternativen Spleißens konzentriert sich auf Gene
und nicht auf betroffene Exons. Im Gegensatz dazu berücksichtigt NEASE
Interaktionen die von AS betroffen sind und identifiziert angereicherte Pfade
auf der Grundlage dieser Kanten. Die Analyse in dieser Arbeit zeigt, dass
NEASE im Kontext von AS deutlich besser abschneidet als die klassische Gene-
Set-Enrichment-Analyse und sinnvolle biologische Erkenntnisse über den Ein-
fluss von AS liefert. Zusammen bieten DIGGER und NEASE unverzichtbare
Ressourcen für die Untersuchung der mechanistischen Konsequenzen von AS in
der Systems- und Netzwerkmedizin.

x



Publications record

Main thesis publications

• Louadi, Z, Yuan K, Gress A, Tsoy O, Kalinina OV, Baumbach J,
Kacprowski T, List M. DIGGER: exploring the functional role of alterna-
tive splicing in protein interactions. Nucleic acids research 49, no. D1
(2021): D309-D318.

• Louadi, Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni
D, Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of
alternative splicing events with NEASE reveals insights into tissue identity
and diseases. Genome Biology 22, no. 1 (2021): 1-22.

Other publications and pre-prints

• Louadi Z*, Lazareva O*, Kersting J, Baumbach J, Blumenthal D, List M.
DysRegNet: Patient-specific and confounder-aware dysregulated network
inference. bioRxiv. 2022 Jan 1. * These authors contributed equally.

• Louadi Z, Oubounyt M, Tayara H, Chong KT. Deep splicing code: Clas-
sifying alternative splicing events using deep learning. Genes. 2019 Aug
1;10(8):587.

• Louadi Z*, Oubounyt M*, Tayara H, Chong KT. Deep learning models
based on distributed feature representations for alternative splicing predic-
tion. IEEE Access. 2018 Oct 8;6:58826-34. * These authors contributed
equally.

• Lio CT, Louadi Z, Fenn A, Baumbach J, Kacprowski T, List M, Tsoy
O. Systematic analysis of alternative splicing in time course data using
Spycone. Bioinformatics. Accepted 2023.
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Chapter 1

Introduction

1.1 Biological background

1.1.1 Gene regulation

Nucleic acids are macromolecules that are composed of nucleotides. The double
strands of deoxyribonucleic acid (DNA) are one such molecule that stores genetic
information and instruction for the functioning of all known forms of life that
exist, and also some types of viruses. A typical eukaryotic’s DNA is divided
into several chromosomes in the cell nucleus and the mitochondria. In a human
cell, for example, there are 22 pairs of autosome chromosomes and a pair of
sex chromosomes. In addition to the DNA, ribonucleic acid (RNA) is another
nucleic acid that also carries genetic material. It differs from DNA by being a
single single-stranded molecule, less stable, and found in multiple types. The
messenger RNA (mRNA) is one type of RNA molecule that corresponds to the
genetic sequence used by ribosomes to direct the synthesis of specific proteins
(translation).

Approximately 1-2% of the human genome consists of protein-coding DNA
[80]. This is the portion of DNA that contains the instructions for synthesiz-
ing proteins, and it incorporates regions of around 20,000 protein-coding genes
[15]. The rest of the genome consists of non-coding DNA that is not used for
translation but contains crucial patterns that regulate the genetic information
flow between DNA to RNA and then to proteins, providing structural support
for the genome. This process, often referred to as “gene regulation”, is charac-
terized by being very dynamic as a means to respond to different environmental
changes and cell types [28]. In essence, this mechanism decides how much of
each RNA or protein product is made and how stable are they on the latter
stages.

The life of the RNA molecule starts with the transcription process where
the DNA is used as a template to make an mRNA. The first step is the iden-
tification of the regulatory binding sites in the DNA, such as promoters and
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Activator TF

Promoter

Enhancer

mRNA

TFs complex

RNA polymerase

Figure 1.1: An illustration of the transcription process. The TF complex bends
the DNA by binding in the enhancer and promoter regions and facilitates the
binding of the RNA polymerase that produces the pre-mRNA. Created with
BioRender.com.

enhancers, by specific proteins called transcription factors (TF). These proteins
often work together and assemble a complex that can either promote or repress
gene expression. Even though the binding sites can be thousands of base pairs
away from each other as usually observed for enhancer regions, the TF complex
can curve the DNA and bring it near a gene promoter region (Figure 1.1). This
formulation makes it possible for the enzyme RNA polymerase to attach to the
promoter and initiate the DNA unwinding to produce the RNA molecule.

A TF can also work as a repressor for a target gene by binding in the
DNA regulatory region and blocking the RNA polymerase binding. Accordingly,
a high expression of the activator results in an increase in the expression of
the target gene. In the same way, an increase in a suppressor decreases the
transcription. This is all regulated by each cell and it is crucial to make sure
that the right amount of the target gene is expressed at the right time.

1.1.2 Alternative splicing

1.1.2.1 Overview

The primary RNA (pre-mRNA) is the initial molecule produced from the tran-
scription of the DNA. It is made of exons, introns, and 5’ and 3’ untranslated
regions (3’/5’ UTR) [83]. Introns are the non-coding regions that are located
between exons, which are the coding sequences of DNA and are often shorter

2
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3

DNA

pre-mRNA

mRNAs

Isoform 1 Isoform 2 Protein 3

Transcription

Exon 1 Exon 2 Exon 3 Exon 4 Exon 5

1 2 3 4 5

1 23 4 35

Alternative splicing

Translation

3

5
1

2 5 4

3

2 4 5

3
2

4

Figure 1.2: A pre-mRNA with 5 exons is produced from the gene’s transcription.
The alternative splicing process results in different combinations of exons that
make 3 mature mRNA. The transcript variants, in the example, are protein-
coding and thus transcribed to 3 proteins. These protein isoforms are similar
in amino acid composition and share some of the structures. Created with
BioRender.com.
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and evolutionary more conserved [2]. Thus, before the pre-mRNA can be used
to make a protein, it must undergo a process called splicing, in which the in-
trons are removed and the exons are merged together. This is performed by a
protein complex known as a spliceosome [83]. The resulting molecule of splicing
is called mature mRNA and it mostly consists of exons and the 3’/5’ UTRs. In
some cases, an intron can also be retained with the rest of the exons [29].

Introns and exons can be removed and merged in different combinations,
thus, one pre-mRNA frequently produces multiple transcripts and proteins.
This process is called alternative splicing (AS) and it is the primary biologi-
cal mechanism of interest in this thesis. AS is the regulatory mechanism that
allows removing not just the introns but also some of the coding exons and
alternatively including others together (Figure 1.2). For instance, in Figure 1.2
the pre-mRNA is composed of five exons, four being alternatively spliced and
combined to produce 3 slightly different mature messenger RNA. Finally, the
mature messenger RNA is translated to a protein if it has coding potential,
otherwise, it is degraded often through the nonsense-mediated decay pathway.
It is estimated that more than 95% of genes with multiple exons undergo AS
[36]. From just around 20,000 coding genes in human genomes, AS can help
produce over 120,000 transcripts and immensely boost human protein diversity
[66].

AS is a highly regulated process. Even though the introns don’t encode
amino acids, they still play an important role in regulating the splicing process
by enhancing or blocking the binding of splicing factors [83]. These are special-
ized proteins that compose the spliceosome and interact with the RNA molecule
to decide the selection of exons. The most important regulatory element is the
branch point, which is a conserved nucleotide, usually adenine, located near
the 3’ end of the intron. The branch point interacts with a component of the
spliceosome called the U2 snRNP (small nuclear ribonucleoprotein particle), to
covalently link the 5’ end of the intron to the branch point. This process facili-
tates the formation of the lariat intermediate and allows the intron to be excised
and the adjacent exons to be spliced together [18]. Additionally, both exons and
introns contain certain sequences, known as splicing enhancers or silencers, that
can affect the efficiency and accuracy of splicing [84].

Multiple types of AS exist including the skipping of a whole exon (or some-
times called cassette exon), retention of an intron, and the alternative usage of
a 3’ or 5’ splice site (Figure 1.2). In addition, more complex events can also
occur such as mutually exclusive exons where two exons never occur together.
In mammalians, the most common and well-studied type is exon skipping [82].

The protein variants originating from the same gene are referred to as iso-
forms and often have different structures, functions, and locations within the
cell. However, the true degree of the impact of AS is heavily debated; It is still
not clear yet if all splicing variants have a coding potential or if they are func-
tionally relevant in the cell [77]. Few argue that AS can also indirectly control
gene expression even without producing coding variants since the expression of
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Alternative 3' splice sites

Intron retention

Mutually exclusive exons

Alternative splicing types

Alternative 5' splice sites

Exon skipping

Figure 1.3: The most common alternative splicing types. Created with BioRen-
der.com.
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transcripts that are eliminated by nonsense-mediated decay negatively correlate
with the expression of the protein-coding transcripts [91]. Therefore, these alter-
native non-coding transcripts produced by AS are also considered functionally
significant.

1.1.2.2 Tissue-specific splicing

As discussed previously, the selection of the splice site depends on the regulatory
sequence in the pre-mRNA (cis-regulatory elements). Other factors such as
the amount of expression of a splicing factor in the cell are also important
contributors to the exons selection decision.

Since the splicing factors can be expressed differently in some tissue, the
same pre-mRNA can be processed in multiple ways depending on the cell type
and state. Thus, AS is decisive for generating tissue-specific proteins by up-
or down- regulating the inclusion of some exons. Numerous evidence shows
that these exons are co-regulated and are likely to affect protein biochemical
properties, structure, and interactions [83, 88]. A recent study validated these
events at the proteomic level and uncovered a significant enrichment of tissue-
specific exons in muscles and neurons[7]. These changes in isoform usage are
vital for tissue identity, as well as cell differentiation, and maturation.

1.1.2.3 Mis-splicing in diseases

AS plays a crucial role in disease onset and development. It is estimated that
mis-splicing is associated with at least 30% of all genetic diseases [83, 45]. The
first known type of mis-splicing is cis-regulatory; such as mutations in a regu-
latory motif that can disturb the selection of the splice site, the branch point,
or even cause the formation of a new exon (cryptic splicing). A prominent ex-
ample of a cis-regulatory disruption of splicing is a single nucleotide variation
in the gene SMN2 that causes mis-splicing at the junction of intron 6 to exon
8 in individuals affected by Spinal muscular atrophy [50]. The second type of
mis-splicing is trans-acting, i.e. dysfunctional spliceosomal components. This
latter is frequently characterized by disruption in multiple events or genes since
one splicing factor can regulate the splicing of multiple genes. These defects are
relatively rare, compared to cis-regulatory dysregulation, since they are often
fatal [17]. Nevertheless, few diseases such as cancer and cardiomyopathy are
linked to mutations and/or abnormal expression of RNA binding proteins [49].
One major example is the splicing factor “RNA Binding Motif 20” (RBM20).
It has been shown that mutated or deficient RBM20 is present in up to 3% of
individuals with familial dilated cardiomyopathy [13] and affects the splicing of
at least 31 genes [30].

Thus, understanding the exact impact of mis-splicing is crucial to character-
ize a considerable amount of genetic diseases and to understand their progres-
sions. Furthermore, in case of trans-acting mis-splicing such as a disruption of
spliceosomes, the functional impact of AS should be examined systematically to

6
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account for the combined effect of multiple disrupted and co-regulated events.
This is one of the motivations behind developing the method NEASE, intro-
duced in this thesis, by enabling the functional enrichment of mis-splicing (see
subsection 2.3.2).

1.1.3 Proteins structure and interactions

1.1.3.1 Overview on proteins

The proteins are the result of translation, which is the process of decoding the
mature mRNA in a ribosome into a chain of amino acids. Unlike the transcrip-
tion and splicing processes, the translation occurs outside the nucleus, mainly
in the cytoplasm. The ribosome operates by adding one amino acid at a time
[19]. This procedure is decided based on the three-nucleotide subsequence (trin-
ucleotide, codon) of the mRNA. Finally, the translation is terminated when a
stop codon is found, which is also a trinucleotide. In this way, the final mRNA
can be regarded as a template for the amino acid chain that comprises the
protein [14].

Alongside the DNA and the RNA molecules, proteins are one of the most
important molecules that perform a variety of functions within an organism,
including providing cell structure, cell growth, and gene expression by enabling
signal transduction and transporting other molecules [3]. They also act as en-
zymes and hormones. A few examples of such tasks were already covered in
this introduction including DNA binding during the transcriptions and RNA
binding during splicing which is maintained by specialized proteins called tran-
scription factors and splicing factors respectively. As well as histone proteins
that wrap the DNA and pack it around complexes [8]. All these mechanisms
are dynamic and act following responses to stimuli. This complexity is often
represented by biologists in terms of a pathway, where all the elements are in-
cluded together, often in a chronological manner or a set of events, to describe
a biological mechanism such as stimuli and responses [23].

1.1.3.2 Protein structure

Initially, the amino acid chain has a linear shape, known as the primary struc-
ture. The chain folds into a stable three-dimensional structure. The folding pro-
cess goes through multiple steps starting with the secondary structure, where
the arrangement of the amino acid chain occurs in two elements: Alpha helix
and Beta strand [58]. The tertiary structure is the following level, where the
entire amino acid chain (or polypeptide) folds into a three-dimensional structure
[58, 52].

The fundamental unit of the tertiary structure is the protein domain, typ-
ically 40 to 350 amino acids long [52, 1]. The domain is self-stabilized and
folds independently from the rest of the polypeptide [4]. Often, a single pro-
tein is composed of multiple such units with unique functions and properties

7
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Figure 1.4: An example of a three-dimensional structure of the protein Spike
glycoprotein (SPIKE SARS2) from the virus SARS-CoV-2. Generated from
(https://swissmodel.expasy.org/ [85]).

such as catalyzing chemical reactions, binding to other molecules, or providing
structural support [52]. Domains with a similar structure can also appear in
different proteins. Thus, the domains can be considered as building blocks of
proteins used by evolution to make new proteins. In the case of multidomain
proteins, the final arrangement of the domains is sometimes referred to as do-
main architecture [33] and it is at this level that the proteins become biologically
functional.

Besides domains, intrinsically disordered regions are also an important class
of polypeptide segments that do not have a unique three-dimensional structure
but are characterized by dynamic state and multiple conformations [6]. The
dynamic state of these regions helps with binding with other proteins as well
as other molecules such as RNA, DNA, and ligands (More details in subsubsec-
tion 1.1.3.3).

Experimental protein structure identification is possible with techniques such
as X-ray crystallography and nuclear magnetic resonance [51]. Furthermore, in
silico methods for the prediction of a protein’s three-dimensional structure are
also attracting a lot of attention recently due to the remarkable progress in
the accuracy of machine learning methods [89]. Notably, the machine learn-
ing algorithm AlphaFold 2 achieved an accuracy comparable to high-quality
experiments, enabling a faster and more accurate annotation for the scientific
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community [37]. Both experimental and high-quality predictions of the three-
dimensional structure are deposited in large databases such as the Protein Data
Bank (PDB) and the AlphaFold Protein Structure Database, where the users
can either download or visualize the structure [10, 79].

Figure 1.4 shows an example of a three-dimensional structure of the protein
Spike glycoprotein (SPIKE SARS2) from the virus SARS-CoV-2 that causes
COVID-19 [85]. The protein consists of multiple domains that are coloured
differently for visualization. The identification of the complete protein three-
dimensional structure is a fundamental task for understanding the functional
role of proteins and their evolution.

1.1.3.3 Protein-protein interactions

Proteins rarely act individually, instead, they tend to form complexes by binding
to each other [20]. A single protein can have multiple partners or participate in
different protein complexes. Nowadays, the majority of studies aiming to char-
acterize the function of a protein within a living cell are done in the context of
its interacting partners [92]. Thus, It is crucial to determine all protein-protein
interactions within a cell. Furthermore, the goal of protein-protein interactions
research is not just to identify the interacting proteins, but also to study the
condition, the structure, and the stability of the interaction [55]. The answer
to these fundamental questions can shed more light on the impact of genomics
variants such as SNPs or transcript variants resulting from splicing or even help
design new drugs and proteins.

Most often protein binding is a physical contact through a combination of
hydrogen bonding and the hydrophobic effect. The strength of the binding
depends on the size of the interacting region of the proteins [21]. The interaction
is typically mediated either by a domain or a short linear motif. The latter
are generally located in intrinsically disordered regions [61]. Since intrinsically
disordered regions do not have a single unique tertiary structure, they are more
adapted to binding to different interaction partners compared to domains [34].

To detect protein interactions, experimental biologists rely on a variety of
techniques. The most common one is the Yeast Two-Hybrid which uses a yeast
cell to test if two proteins interact using a reported gene. Affinity purification
coupled with mass spectrometry is another popular technique that has the ad-
vantage of identifying a large number of interactions for a given protein at once
[56]. Furthermore, structural-based methods such as X-ray crystallography pro-
vide valuable information about the structure of the complex at high resolution
[12]. However, since they often require a high degree of protein purification and
a specified environment to be successful, such methods can be less accessible
and available.

We refer to the whole set of interactions as Interactome or Protein-Protein
Interactions (PPI) and it is constructed by combining multiple experimental
approaches for detecting interactions. Different variants of the interactome are

9
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stored in publicly available databases such as STRING, Biogrid, etc [54, 72].
In system biology and most precisely the branch of network biology, the PPI is
represented as a graph (or a network) with nodes as proteins and interactions
as edges [22]. This representation is beneficial for a set of computational biol-
ogy algorithms that aim to study the functionality of molecules within the cell
systematically. More details about these methods, their applications, and their
limitations are available in the section 2.2

1.2 Computational methods for transcriptomics

1.2.1 Overview of gene-level analysis

The most widely used method to quantify RNA in a sample is RNA sequencing
(RNA-Seq). A typical RNA-Seq data analysis workflow starts with quality con-
trol of reads, then mapping them to the genome, and quantifying the number of
reads per gene (gene expression) or per transcript (transcript expression). These
steps result in a raw count matrix that represents the number of reads mapped
to each gene or transcript in each sample. The matrix is then normalized to ac-
count for differences in library size and alternatively in gene/transcript length.
The normalized counts are a good approximation of the amount of RNA from
each gene in the sample. After correcting for technical variation, the gene counts
still vary between samples, which is referred to as biological variation. Thus,
using the count table and with a sufficient number of biological replicates, one
can capture the association between TF and their target genes. This is possible
because they are co-expressed; the amount of the RNA from the target gene
is proportional to the amount of the regulating TFs at any given time. Such
techniques are used to find modules of co-regulated genes and overlap them with
known biological pathway pathways (Figure 1.5).

Clustering is another popular approach for identifying genes or/and patients
with similar patterns. For instance, a cluster of patients could represent a disease
subtype. Since clustering is unsupervised, it is not constrained to our traditional
classification of phenotypes. This is especially useful for heterogeneous data or
in the case of less characterized phenotypes. Clustering is also often used to
compare the expression pattern of genes across tissues and cell types.

Often RNA-Seq experiments are designed in a control and case fashion. In
such a case, one can also perform a supervised approach, such as differential
expression analysis, to compare the mean expression of each gene between two
or more groups. A well-known method is the use of generalized linear models
such as Poisson or negative binomial that is fitted, for each gene individually,
to estimate an expression mean and variance. Using packages such as DESeq2
and edgeR [48, 64], a statistical test is later applied to compare the expression
between the two groups and results in a list of differentially expressed genes
(Figure 1.5). This list is used in the downstream analysis to retrieve hypotheses
about biological mechanisms that drive the difference between the two cases.
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1.2.2 Splicing-level quantification and differential analysis

In addition to quantifying gene expression, RNA sequencing technology can also
be used to quantify individual transcripts or even exons to study AS patterns.
The number of reads supporting exon inclusion is usually divided into the sum of
reads supporting both exon inclusion and exclusion (Figure 1.6). The proportion
is called the percentage spliced-in (PSI value) and represents the percentage of
usage of each exon; a skipped exon can then be defined as an exon with a PSI
value less than 1. The ratio can naturally be extended to quantify other types of
AS events by comparing the number of reads supporting one splice site against
all possible other splice sites [5]. This ratio is also normalized to account for
some of the RNA-Seq biases such as exon length.

In some cases, the expression of a gene between two groups stays the same
but the level of splicing differs and changes the proportions of produced isoforms.
For this reason, similar to gene-level analysis, differential splicing methods are
developed to compare the ratio of an exon inclusion across conditions. These
tools output a metric often called Delta PSI (dPSI), which ranges from 0 to
1 representing the difference in the usage of the exon between the two groups.
Multiple tools have been developed to identify and quantify splicing events, e.g,
MAJIQ, Whippet, and rMATS [78, 71, 67].

Transcript-based approaches are another way of approaching the problem,
where the focus is on quantifying the full transcript expression and comparing
it, and then identifying “the switches” in the fraction of usage. These techniques
have the advantage of being easier to interpret, unlike exon-based approaches. In
particular, recent cancer studies have shown that multiple isoform switches are
highly predictive of patient survival [81]. However, transcript-based approaches
are restricted to annotated transcripts. Event-based and exon-based approaches
on the other hand can identify new events and dysregulation and are less likely to
be biased or limited by the availability of the reference genome annotation. One
such straightforward application of event-based methods is the cryptic splice
site search. This latter is a splice site that is generally regarded as dormant but
could get activated because of a rare variant (often pathogenic) [39]. Since the
resulting exons are usually not annotated, event-based methods are handier in
such cases. For a detailed review and benchmark of methods used to quantify
exon inclusion and differential splicing, I recommend the following studies [27,
86].

1.3 Overview of the thesis

1.3.1 Aim and motivation

At the time of writing, more than a decade has passed since the development
of RNA sequencing (RNA-seq) [25]. During this period, a large amount of
transcriptomics data was generated, allowing us to rapidly reduce the cost of
experiments but at the same time increase the accuracy and the coverage of
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Figure 1.6: Splicing quantification with RNA-Seq. Created with BioRen-
der.com.

sequencing. Unlike previous technologies such as microarray, RNA-Seq is not
constrained to a reference [70]. This enabled a wider view of RNA biology,
especially in the field of alternative splicing. The latter is, in simple words, the
mechanism that allows a single gene to produce different protein variants. Thus,
now we can discover many of these splicing variants easily and cheaply.

On the other hand, computational approaches to interpreting the functional
role of transcriptome diversity still lag. A roadblock is the considerable knowl-
edge gap concerning the function of most transcripts and proteins: the vast ma-
jority of splicing variants are still annotated with “unknown function”. Protein-
protein interaction databases are also often limited to the major protein isoform
for every gene. Furthermore, since signalling and metabolic pathways only in-
clude the gene name instead of the protein variant, the widely used statistical
methods such as gene set enrichment are as well gene-centred and neglect AS.
Therefore, these resources are less suitable for interpreting the impact of splic-
ing events, including tissue-specific exons/isoforms expression and differentially
used exons. Both are crucial for understanding tissues and cell identity and
disease pathomechanisms. For example, multiple splicing AS events have been
recently linked to diseases including neurodegenerative disorders, cardiomyopa-
thy, and cancer [40]. Hence, splice-aware methods are urgently needed to extract
better biological insights from transcriptomics data.

In this thesis, I aim to develop computational methods to help address these
limitations. In particular, I first introduce DIGGER, the first database and web
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tool to explore the impact of AS in protein interactions. DIGGER integrates
structural annotation and domain-domain interactions to construct an isoform-
level protein-protein interaction network that can either be used for single gene
analysis or transcriptome-wide analysis. Since DIGGER was not designed for
multiple conditions analysis, I further extended it and developed NEASE, which
is aimed to address the functional enrichment of AS events. The approach
derives its power by focusing on exons and protein features they encode instead
of the spliced genes as a whole. I evaluate NEASE in multiple datasets from
both healthy and disease conditions and compared it with classical enrichment
approaches. I show that NEASE provides unique and meaningful biological
insights. The developed methods represent an important improvement over the
state of the art and offer new opportunities to interpret the impact of AS at the
system biology level.

1.3.2 Outline

This cumulative dissertation is based on two published manuscripts. In this
chapter, I presented the essential biological and computational concepts. In
Chapter 2, I introduce the state-of-the-art methods regarding AS analysis and
their limitations to briefly motivate the need for a more robust approach for
AS studies. In Chapter 3, I explain the methodology and resources used in
the newly proposed methods. Chapter 4 summarizes the two publications of
the tools DIGGER and NEASE and precisely describes my contribution. The
detailed results are available in the full versions of the publications and embed-
ded in Appendix A-B. Finally, Chapter 4 contains a general discussion of the
thesis including the potential impact of the work, limitations, future work, and
perspectives.
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Chapter 2

State-Of-The-Art and
Challenges

2.1 Overview

A wide range of approaches has been developed to interpret the results of RNA
sequencing data. In this chapter, I briefly cover widely used methods and tech-
niques. It is important to note that these methods were initially designed for
gene-level studies (gene expression as a whole), but have later been extended to
investigate alternative splicing (exons or junctions inclusion percentage).

The upstream strategies introduced in the last chapter such as differential
expression, differential splicing, and co-expression usually result in a list of genes
or exons that share a common pattern and are likely linked to the phenotype
of interest. This is because biological molecules are likely to work in systematic
and complex manners. Hence, system biology methods are designed to follow
up and interpret the mechanistic link between the obtained entities. In this
chapter, I will describe two categories of such methods: gene-set enrichment
and network-based approaches (see section 2.2).

In the context of splicing, the tools for quantifying and comparing AS across
conditions are available and relatively accurate. Yet, the recent availability of
more AS data draws more attention to the challenges of interpretation of the
functional impact of splicing. These challenges persist both at a single event
and most critically for the systematic impact of AS. In the last section of the
chapter, I explain the limitation of existing system biology approaches in the
context of AS studies and the challenges that motivated the development of the
methods DIGGER and NEASE.
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2.2 Current approaches for interpreting expres-
sion profiles

Co-expression, clustering, differential expression as well as similar analyses often
result in a list of thousands of genes. Unlike traditional approaches that focus
on a single gene, system biology aims to extract meaningful biological insights
from systematic data to understand the general state of the cells and tissues.
The main argument in favour of relying on system biology approaches is the
fact that genes do not work in isolation. For instance, the dysregulation of
one TF can result in the down-expression of multiple genes that are either
directly or indirectly regulated by the TF. Thus, It is essential to look at a
biological system as a whole to understand the complete mechanism underlying
the biological process.

Gene set enrichment analysis is the most popular of such approaches. It looks
for over-representation of a gene set in already characterized pathways using
hypergeometric or Fisher’s exact tests. The prior knowledge about genes allows
biologists to interpret an arbitrarily long list of genes with fewer human biases.
Furthermore, these analyses break down the complexity of whole-genome or
transcriptomics analysis to familiar concepts such as “cardiac development” or
“ cell cycle”, to help interpret and generate new hypotheses. More details about
the statistics side of the approach are presented in subsection 3.3.2. High-quality
databases of non-redundant pathways are the key to success for the system
biology approaches. An international community effort resulted in multiple
such databases for different species such as KEGG and Reactome [38, 26]. These
databases are curated and updated frequently to keep up with the most recent
progress and discoveries. They also provide user-friendly visualization for a
better understanding of the gene interactions [59].

Network approaches are another popular set of algorithms that can be per-
formed to find enriched modules such as protein complexes or co-regulated genes
(TFs and their targets). These methods are of particular interest since they are
not limited to small and already known pathways but rather rely on the whole
interactome or gene regulatory network. Therefore, they empower the possibil-
ity of finding new pathways or help discover novel gene candidates that were
missing from the originally known pathway (biomarkers).

2.3 AS meets system biology: limitations and
challenges

The AS mechanism, like the transcription, is co-regulated since the same splicing
factors regulate multiple pre-RNAs. Thus, the system biology view for common
AS patterns is important for deciphering the impact of this mechanism at the
cell level. However, most of the RNA sequencing studies in recent literature
were performed at the gene level only and without any splicing analysis at all.
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The availability and the accuracy of tools to detect and quantify AS events are
not the root cause of this practice but rather the difficulty of interpreting the
results.

Even though some of the traditional gene-level approaches such as clustering
and co-expression naturally extend to AS data, advanced interpretation tech-
niques such as the PPI are not designed to address the immense variation in
transcriptomics and proteomics produced by AS. For example, it is relatively
easy to interpret the effect of the down-expression of a gene participating in a
protein complex, but it is much more challenging to understand the impact of a
skipped exon from the same gene in the interactions of the complex. The study
of the systematic impact of AS such as interpreting AS-set events is also inher-
ently more challenging than a gene set since the available pathway and gene set
databases neglect the isoforms variants. Thus, interpreting the impact of AS
events is a curtail roadblock to making AS study a routine part of transcriptome
analysis.

2.3.1 AS impact on protein-protein interactions

The promising direction to interpret the functional consequences of AS is to
evaluate the resulting changes in protein structure. Exon skipping, for instance,
could cause the loss of a short linear motif, the shortness of a domain, or even
its complete deletion. Thus AS can affect interaction mediated by these motifs
or domains through the production of isoforms with different domains, or motif
compositions. This rewiring of protein-protein interactions is immensely ben-
eficial to cells since they can switch on or off different roles of the same gene
depending on the physiological state of a cell, or disease phenotype. Recent ex-
perimental studies have shown that isoforms share less than 50% of interactions
and less than 20% of isoforms are identical in terms of interactions [88].

However, the exact impact of rewiring protein interaction rewiring by AS
is still far from understood because of the limitation of the current system
biology approaches. To illustrate this limitation, let us assume an example where
we are interested in gene A and its functional role in different tissues. Using
the available large-scale transcriptomics datasets such as GTEx and TCGA
([16, 75], we could access its expression in different tissues and have an initial
understanding of the gene activity. We could also search in the PPI databases for
the interaction partners as well as their (co-)expressions, to further understand
the activity of the gene in different environments (tissue or cell type). Now let us
add the impact of AS to this complexity and assume that gene A produces two
different isoforms called A1 and A2. The isoform A1 is expressed in a healthy
heart and has three unique domains. While the isoform A2 is only expressed in
the heart of patients with dilated cardiomyopathy and is slightly shorter with
one less domain, because of the skipping of an exon (Figure 2.1 A-B). Using the
current available PPI, we know already that gene A interacts with gene B, but
since this information is only captured at the gene level it is not clear which of
the isoforms A1 or A2 is interacting. Assuming the interaction is mediated by
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the additional domain missing in A1, this interaction will then be specific to the
isoform A2 and thus specific to the heart tissue (Figure 2.1 C).

Considering that 95% of genes with multiple exons undergo AS in humans,
both the interacting proteins in a PPI can have multiple isoforms with dis-
tinct expression patterns. Furthermore, the PPI rewiring from AS is often not
limited to one edge but is observed globally in the network and includes mul-
tiple interactions and pathways (Figure 2.1 D). This complexity makes it very
hard to experimentally test all possible combinations (Figure 2.1 E). As dis-
cussed by [73], the current method for testing gene interactions results in both
false-negative and false-positive edges, and a more dynamic graph is needed to
capture the complexity of the interactome. Hence a computational method to
construct a condition-specific PPI is more appealing.

At the time of writing this thesis, only two methods address this challenge at
the whole network level: PPIXpress [87] and DIGGER. A detailed comparison
between DIGGER and PPIXpress is available in the first paper of this thesis
(Appendix A). Briefly explained, DIGGER is built similarly to PPIXpress but
extends it to a great extent, by including more protein structure information and
offering other exclusive modes of analysis. One such addition is the exon anal-
ysis mode, which allows the users to examine the impact of new splicing events
independently of transcript annotation. On the other hand, the isoform-level
mode is another new feature that is designed to deliver an easy way to compare
isoforms and their interactions with a particular focus on the “isoform-specific”
interactions. Furthermore, the transcriptomics data analysis, provided in PPIX-
press, is largely expanded in the DIGGER version to include protein complexes
visualization and re-scoring of individual interactions. Instead of binary edges
in the traditional PPI network, the scores suggested in DIGGER represent the
confidence in each interaction given the isoforms in consideration. For exam-
ple, by considering only one tissue-specific isoforms, DIGGER can generate a
new re-scored PPI and focuses on rewired protein complexes. Finally, DIGGER
offers, for the first time, a user-friendly and interactive web visualization to
navigate between all of these modes.

2.3.2 Functional interpretation of AS events

As stated in the previous sections, differential expressions analysis is likely to
output a large number of hits. This holds for both the analysis done at the gene
or exon levels. To interpret a large list of hits, countless functional enrichment
methods were introduced, but none of them was designed to address differential
splicing analysis. The common approach used to overcome this limitation is by
simply running enrichment on the genes originating from the differential exons
or isoforms instead of the exons themselves. For instance, running a one-sided
hypergeometric test on a list of differentially spliced genes to identify over-
represented pathways (Figure 2.2). This simplification neglects the contribution
of AS since genes can play multiple roles or participate in different pathways
depending on the used isoform. Experimental studies even show that isoforms
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could have an opposite role on a pathway. For example, the p38 isoforms are
known to have an opposite role in the regulation of AP-1-dependent activities
[57]. Similarly, it was revealed that TSC-22D1 isoforms have opposing functions
in mammary epithelial cell survival [35]. While many such examples are being
uncovered and validated experimentally, a computational method to truly scale
our understanding of AS impact remains absent.

The main roadblock here is that pathway databases such as Reactome and
KEGG are not isoform-specific, which requires more sophisticated methods than
a simple statistical test. One promising strategy to address the challenge is
the integration of different resources such as structure and PPI to predict the
consequences of individual AS events on a pathway. Exon Ontology is the
only tool, before NEASE, that was designed to perform a statistical test on a
set of skipped exons [76]. It first determines the protein feature encoded by
the skipping exons and then performs a permutation test to check if a well-
characterized feature is hit by splicing more than expected by chance. The
statistics used are indeed useful to identify common protein features that are
regulated by splicing but it doesn’t identify their functional impact.

For these reasons, NEASE (Network-based Enrichment method for AS Events)
approach was introduced, as an extension of DIGGER, to tackle these limita-
tions and to offer, for the first time, functional enrichment of an exon set as
well as biological insights on the exact impact of AS. By focusing only on edges
that are likely to be affected by splicing events, NEASE reduces the chances of
false positive results (Figure 2.2). In the next chapter, I will explain the general
method and statistics used in these tools.
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Materials and Methods

3.1 Datasets and tools

3.1.1 Data sources

The PPI network used in this work is originally obtained from the BioGrid
database BioGRID (v3.5) and the protein domain annotation from the Pfam
database. The domain-domain interactions were downloaded from 3did (v2019)
[53] and DOMINE (v2.0) [90] and the linear motifs instances and interactions
from the ELM resource [41]. The co-resolved structure was obtained from
the PDB [10] and pre-processed to extract residue-level and exon-level inter-
actions. All ID mapping was performed using the Biomart mapping table [69].
The biological pathways collection was downloaded from the ConsensusPathDB
database and includes 12 different pathway databases [32]. In the analysis pre-
sented here only the pathways from KEGG and Reactome were used, neverthe-
less, the Python package includes all 12 databases.

3.1.2 RNA-Seq datasets

All the RNA-Seq datasets used in this work are publicly available. Both TCGA
and GTEx, which are the largest RNA-Seq datasets by scale available publicly,
were used for validation. The Cancer Genome Atlas pan-cancer dataset [75] was
downloaded via the Xena Browser (https://xenabrowser.net/datapages) and
used in DIGGER’s network-level analysis section to illustrate an example of
condition-specific PPI. In this example, we construct a cancer-specific protein-
interactions network to highlight lost interactions caused by cancer. GTEx was
only used to validate the most critical tissue-specific exons from the enrichment
results.

An extensive evaluation of NEASE performance, as well as a comparison
against the other methods, was performed using three RNA-Seq experiments
and the VastDB resource: which is a large-scale collection of AS events across
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multiple datasets [74]. The evaluation scenarios, presented in the second publi-
cation of the thesis [47], include tissue-specific AS events, as well as a comparison
between conditions both healthy and pathogenesis, as detailed below:

• A comparison between reticulated and mature platelets ([11], access num-
bers: GSE126448).

• A comparison between normal-appearing white matter and active lesions
regions from postmortem white matter brains of multiple sclerosis patients
([24], access numbers: GSE138614).

• A comparison between heart tissue from healthy donors and dilated car-
diomyopathy patients ([31], access numbers: EGAS00001002454).

• VastDB is a large collection of RNA-Seq experiments from different tissues
with a focus on alternative splicing events ([74], https://vastdb.crg.eu/).
We extracted neural-specific and muscle-specific exons from the available
atlas of AS events.

Differentially splicing analysis was performed using MAJIQ [78] for the
platelet and multiple sclerosis datasets. For the dilated cardiomyopathy dataset,
the pre-processed data was used from the manuscript [31] and was originally
performed using DEXSeq [62].

3.2 DIGGER: method description

3.2.1 Network biology notations

Network biology uses the mathematical notation from graph (or network) theory
to represent complex biological relationships such as PPI and gene regulatory
pathways. The most used notation to define a graph G is by defining an ordered
pair G = (V,E), where V is a set of vertices or nodes and E is a set of edges
such as E ⊆ V × V .

In the context of the PPI network, nodes represent either genes or proteins,
and an edge is a physical interaction between them. By default, all PPI graphs
are undirected, where all edges are bidirectional. As opposed to a directed graph
where one vertice points to another. Mathematically a graph is say undirected
if (u,w) ∈ E necessarily implies (w, u) ∈ E.

Other definitions of interest include the order of the graph, which is the
total number of vertices |V |, and the degree of a vertex v notated as deg(v) and
defined as the number of edges connected to it. Additionally, the degree sum
formula states that the sum of the degree of all the vertices is twice the number
of edges contained in it: ∑

v∈V
deg(v) = 2|V |

.
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3.2.2 Joint graph construction

A protein domain can either interact with another domain or with a linear
motif. Several studies have attempted to construct domain-centred interaction
databases that store domain-domain interactions (DDI) and domain-motif in-
teractions (DMI). These databases are based on the 3D structure of domains
and proteins and/or known protein complexes [41, 53]. The same domain can
be a part of multiple proteins, thus, unlike the PPI databases, DDI and DMI
databases provide interacting interfaces independently of the originated genes.
The integration of the PPI with structural information such as DDI and DMI
can further enhance the details of protein interactions. Both DIGGER and
NEASE rely on this concept and aim to construct a structurally annotated
PPI. This network is, in principle, similar to the classical binary PPI network
by the fact that it provides interacting genes, but additionally involves the exact
position of the amino acids that mediate the binding. In addition to both DDIs
and DMIs, we additionally enrich the PPIs with the available amino acid level
interactions. These are derived from protein complexes with resolved structures
in The protein Data Bank resource [10].

By annotating each interaction with the protein interfaces mediating it, DIG-
GER identifies interactions that are unique to only some of the isoforms Fig-
ure 3.1. Furthermore, the second mode of DIGGER allows the prediction of the
effect of non-annotated splicing events such as exon skipping by mapping the
skipped exon to its structure and interfaces. Finally, the last level of analysis
provided by DIGGER is an extension of the same idea to handle the interaction
of multiple isoforms. This mode takes as input a list of isoforms and transcripts
from a couple of isoforms up to whole transcriptomics data. More details of this
mode are available in the next section.

It is important to note that one interaction can have multiple interfaces
too. In our scenario, the interaction can be mediated by either one or multiple
domains, linear motifs, or known residues from the co-resolved structure in the
PDB. In practice, to construct DIGGER’s new PPI, we integrated both PPI
and DDI into a single joint graph. The detailed pseudocode for constructing
this graph is presented in the Algorithm 1. Briefly, we annotate every PPI with
known DDIs of the interacting genes. Thus the nodes in the new graph represent
unique protein domains and are defined by concatenating gene id and domain
id. It is worth mentioning that in this representation, one single PPI can be
annotated with multiple edges and more than two nodes. For both linear motif
and residue level interactions, the information was saved as a database instead
of a graph.

3.2.3 Network-level analysis of DIGGER

In addition to isoform and exon-specific interactions, DIGGER also provides
a comprehensive view and analysis of multiple interactions between isoforms
from RNA-Seq datasets from a specific tissue, condition, and developmental

25



Chapter 3 – Materials and Methods

Algorithm 1 Join PPI and DDI network construction.

1: for Every edge (X,Y ) in the PPI do
2: Get all the n domains of gene X: Di for i in i = [1, 2, ..., n].
3: Get all the m domains of gene Y : Dj for j in i = [1, 2, ...,m].
4: for Every domain Di of gene X do
5: for Every domain Dj of gene Y do
6: if The edge (Di, Dj) is in in the DDI graph then
7: Append the joint graph with the edge (XDi, Y Dj).
8: end if
9: end for

10: end for
11: end for

stage. We refer to this task simply as network-analysis mode but it is worth
mentioning that previous studies used the term “condition-specific PPI” [87].
Typical examples of application include the analysis of isoform switches affecting
one or multiple genes in a protein complex or a tissue-specific PPI. In our case,
we do not just filter unexpressed genes in a given tissue but also involve the
impact of splicing in rewiring interactions.

Constructing a condition-specific PPI using DIGGER requires either a user-
defined list of isoforms or an expression table of transcripts. The DIGGER
network-level algorithm is inspired by PPIXpress but extended by computing a
confidence score for every interaction. The PPIXpress method on the other hand
only uses the most expressed isoform for each gene and filters all interactions of
the rest. Instead, DIGGER provides more flexibility by offering a filter option
and re-scoring each interaction based on the ratio of missing interactions or
isoforms. The output of this mode is a weighted PPI, where the score models
the confidence of interaction in the condition. Accordingly, a score of 0 means
that all interacting isoforms are absent and a score of 0.5 signifies that only
half of the interaction interfaces are missing (Figure 3.2). Finally, DIGGER
uniquely provides an interactive visualization together with a comprehensive
analysis workflow that links the network-level analysis mode to other parts of
the databases to further explore specific gene isoforms. A simplified workflow
for the network-analysis mode is explained in the Figure 3.3.

3.3 NEASE: method description

3.3.1 Overview on the hypergeometric distribution

The hypergeometric distribution is frequently applied in enrichment analysis to
estimate the significance of the results. It is a discrete probability distribution
since its random variable is a count value. It is a very similar distribution to
the binomial one, since it describes the probability of k success in n draw, from
a population of size N that has K success on it. In both the binomial and
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Figure 3.2: DIGGER constructs a condition-specific PPI and highlights domains
absent in the user-submitted isoforms and their interactions (Reprinted from
DIGGER’s publication [46]).

hypergeometric distribution the result of each draw is binary (e.g; success or
failure). But unlike the binomial, the hypergeometric distribution describes a
drawing experiment without replacement, which means that a single object can
only be drawn once. Consequently, the percentage of success and the population
changes with every draw, unlike the binomial that describes the probability with
replacement.

The probability mass function of a random variable X that follows that
follow the hypergeometric distribution is:

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
Where k is the observed number of successes in n draws, out of K possible

success in a population of size N . The symbol ! indicates the factorial operator
and

(
A
a

)
is the binomial coefficient and can be interpreted as the number of ways

of choosing a elements out of A possibilities. It is defined as:(
A

a

)
=

A!

a!(A− a)!

In the rest of the thesis, the probability mass function is simply denoted as:

X ∼ Hypergeometric (n,K,N)

3.3.2 Fisher’s exact test for enrichment analysis

In enrichment analysis, the hypergeometric distribution is used to calculate the
probability that a list of genes of interest (e.g. differentially expressed genes)
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Figure 3.3: The workflow of the network-level analysis mode of DIGGER. DIG-
GER process the user input that contains a list of transcripts or protein IDs
and constructs a condition-specific PPI by identifying the interactions specific
to the isoforms in the list and removing the rest.
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is over-represented in a gene set (pathways, co-expression in previous experi-
ments, or location on a chromosome). Assuming we run differentially expressed
analysis between healthy and tumour samples, we found 100 up-regulated or
down-regulated genes. We would like to know if the list of differentially ex-
pressed genes is over-represented in a pathway of interest of 300 known genes.
If that is the case we can hypothesize that this pathway is linked to the tumour.

In this case, we can use the analogy of randomly sampling 100 genes out
of a population of all human genes (around 20,000). The drawing is without
replacement because, in this scenario, a single gene can only be sampled once.
Thus, the number k of genes overlapping between the differentially expressed
genes and the list of genes of the pathway follows a hypergeometric distribution
with the following parameters:

X ∼ Hypergeometric (n = 100,K = 300,N = 20, 000)

Assuming the overlap is 5 genes (k=5) and using the probability mass func-
tion of the hypergeometric distribution, we can calculate the exact probability
of randomly choosing 5 genes from the pathway:

P (X = 5) =

(
300
5

)(
20,000−300

100−5

)(
20,000

100

) = 0.01343

This is a low probability which could indicate a link between the pathway and

the disease. However, in statistical testing, we are interested in getting a p-value
that represents the probability of drawing k or more success. An event might
have a low probability but a high p-value. In our case, we need to calculate the
probability of getting 5 or more overlapping genes P (X >= 5) by summing up
multiple events. This probability (p-value) needs to be small enough to reject
the null hypothesis that the genes are picked at random from the total gene
population. Usually, a threshold of either 0.05 or 0.01 is used to reject this null
hypothesis.

Since we are only interested in over-representation, the applied hypergeo-
metric test is one-sided and is identical to the one-tailed version of Fisher’s
exact test. The test is used in the analysis of 2x2 contingency tables and has a
wide range of applications including enrichment analysis [63].

Table 3.1: An example of a contingency table representation for enrichment
analysis.

- Diff. expressed Not Diff. expressed Total

Part of the pathway a (=k) b a + b (=K)
Not a Part of the pathway c d c+d
Total a+c (=n) b+c a+b+c +d (=N)

Another formulation of the enrichment analysis is the 2x2 contingency table.
As illustrated in Table 3.1, the list of differentially expressed genes is split the
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two: the first is designated to genes that are also part of the pathway, their
number is noted a and it is the same number of success k in the hypergeometric
distribution that we want to inspect its significance. The second is the list of
genes that are differentially expressed but not part of that pathway (c genes).
Thus the number of draws n is equal to a + c. Similarly, the rest of the genes
that are not differentially expressed are split depending if they are overlapping
with the pathway or not. From the table, it is easy to observe that a + b = K
is the number of genes in the pathway (or possible successes). After forming a
contingency table the p-value of Fisher’s exact test can be calculated by sum-
ming the probability of observing the obtained table and the probability of more
extreme tables (higher values). In the rest of the thesis and the second publica-
tion, we referee to this approach as either “classical enrichment” or “gene-level
enrichment” and we afterwards introduce a new test at the edge level for AS
study (see subsubsection 3.3.3.2)

In enrichment analysis, a common practice is to perform a test for every
known pathway in one database. This practice yields simultaneous testing of
more than one hypothesis and gave rise to multiple testing errors. Thus, multiple
testing corrections have to be conducted to adjust the original p-values. The
most popular method for adjustment is Bonferroni correction which divides
the original p-value with the number of tests performed (m). Since this is a
conservative approach, it might not be very appropriate for enrichment analysis.
Alternative approaches, such as the Benjamini–Hochberg are more suitable [9]
to control the false discovery rate. The Benjamini–Hochberg strategy works
by first sorting the original p-values from the smallest to the largest and then
calculating the critical value: (r/m)·α where r is the rank of the original p-value,
m is the number of tests and α is a selected false discovery rate. The procedure
ends by locating the test with the largest p-value that is smaller than the critical
value (the new significance condition). NEASE’s enrichment approach uses the
Benjamini–Hochberg method as the default for adjusting the p-values.

3.3.3 Statistics and hypothesis testing in NEASE

3.3.3.1 Overview of the method

The new method NEASE studies the impact of AS systematically. First, it
detects all the edges affected by splicing. This is done by mapping the list of
exons to their protein features (such as domain, residues, and linear motifs) and
then identifying the exact interactions mediated by these regions (Figure 3.4-A
and B). Thus, NEASE provides an exon-centric view of the PPI network where
a list of exons is represented as edges rewired by AS.

To estimate the significance of these edgetic changes and calculate an enrich-
ment p-value, NEASE projects the pathway of interest to the PPI (Figure 3.4-B)
and counts the number of affected interactions that are directly linked to the
genes of the pathway. Finally, the statistical significance of the connectivity
between the AS edges and the pathway is calculated using a one-sided hyper-
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Figure 3.4: Overview of NEASE’s procedure to run functional enrichment of
alternative splicing events (Reprinted from NEASE’s publication [47], an open-
access article under the terms of the Creative Commons Attribution 4.0 License).
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geometric test as explained in the next section. The procedure is repeated
for every pathway to obtain a list of p-values that are afterwards adjusted for
multiple testing.

The NEASE method can also run on a single event level by only considering
the interactions affected by that event. This has the advantage of prioritizing
the most relevant genes that are associated with a pathway. By running a
test on single genes, we reduce the effect of hubs that could be connected to a
pathway just by chance since they have a high node degree (many edges). The
hypergeometric probability used calculates how likely the affected edges from
the gene are just connected to the pathway by chance and the genes are sorted
accordingly (Figure 3.4-C).

3.3.3.2 NEASE metrics for genes and pathways ranking

The one-sided hypergeometric test used in NEASE is similar to the classical
test used for over-representation analysis (as previously explained in subsec-
tion 3.3.2) but revised to accommodate the edgetic effect of AS introduced by
our approach. A similar method was introduced in [68] for general gene set
enrichment at the gene level. The statistical test is conducted as follows:

• The total degree of the structurally annotated graph is calculated using the
degree sum formula. This represents the population N of the distribution.
It is important to note that the degree sum formula states that one edge
is counted twice, which is in line with our representation here since one
edge can be drawn in two ways (two interacting genes can be affected).

• The number of all affected edges from all exons is the number of draws n.

• For every pathway P, the total degree of all genes is summed up. This also
includes edges coming from external genes of the pathway. This number
represents the number of all possible successes K as defined previously
in the hypergeometric distribution. In our case, it also denotes all the
possible ways of selecting (drawing) an edge connected to the pathway.
Hence, in our hypothesis, an edge can be internal or external since we
assume that genes outside of the pathway can also have an impact on
genes on the pathway.

• From all affected edges, NEASE detects the ones that are connected to
the pathway and represent the observed number of successes k. This is
also the number we want to check if it is significant since it describes the
probability of association between the set of exons (or their interactions)
and the pathway.

We then model the random variable that the outcome is k using a hyperge-
ometric distribution as follows:

X ∼ Hypergeometric (n,K,N)
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Where:

• n: The number of affected edges.

• K: The degree of the pathway.

• N : The degree of the structurally annotated PPI using the degree sum
formula.

The p-value is eventually calculated by adding up the probabilities of a k
success or higher. If the test is performed for a single gene the hypergeometric
distribution is alternatively modelled as the number of observed successes from
the same gene or the number of edges from the gene that are connected to the
pathways:

X ∼ Hypergeometric (m,K,N)

Where m is the total number of affected edges from that gene. This gene-
specific p-value is used to rank genes in a single pathway or to find new biomark-
ers in the case of disease studies.

NEASE also introduces a new weighted score as a complement to the enrich-
ment p-value obtained from the hypergeometric test. The intuition behind the
score is to further rank and prioritize pathways that have more significant genes
and fewer hubs. Since the initial test considers all affected edges irrespective
of what genes they come from, the probability can be affected by a single gene
with a considerably higher number of interactions. Accordingly, the proposed
score scales the original p-value by the number of significant genes (obtained
from individual genes test), as follows:

NEASE score = −√g × log10 (p value)

The general pseudo code of the NEASE approach is presented in the Algo-
rithm 2 and the gene-specific test in the Algorithm 3.

3.3.3.3 Permutation tests

Permutation tests were performed to further validate the robustness of the en-
richment results obtained from NEASE. We initially ran NEASE on tissue-
specific exons and found relevant significant pathways such as “Muscle Con-
traction” for the set of heart-specific exons and “Synaptic vesicle cycle” from
the set of neural-specific exons. We then hypothesize that the enrichment was
just due to chance and that tissue-specific exons are not any different than other
skipped exons present in this tissue. Thus, the exact null hypotheses are:

Null Hypothesis 1 Any random set of skipped exon events in expressed genes,
of the same size, present in the heart can lead to an enrichment p-value of the
“Muscle Contraction” pathway as low or lower than heart-specific exons using
the NEASE approach.
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Algorithm 2 Pathway enrichment test.

Construct the structural annotated graph G′.
2: Calculate N the total degree of G′.

for Every exon in the submitted query list do
4: Identify the list of affected domains, motifs, or residues.

Update eG′ affected edges.
6: end for

Calculate n the total number of affected edges eG′ from the query.
8: for Every pathway P do

Calculate KP the pathway degree in the graph G′.
10: Calculate k number affected edges from eG′ that are part of P.

Calculate the one-sided pvalueP = Hypergeometric(k,n,KP ,N)
12: Calculate the gene-specific p values using Algorithm 2.

Calculate SCOREP the adjusted NEASE score using (Eq.: 1).
14: end for

Correct for multiple testing using Benjamini-Hochberg.
16: Rank pathways based on adjusted p values or NEASE scores.

Algorithm 3 Gene-specific enrichment test.

For a pathway of interest P with a degree KP , this function returns a p-value
for every gene.
for Every spliced gene i do

3: Calculate n′ the number of affected edges from the gene i.
Calculate k′ the number of edges that are part of P.
Calculate the gene-specific one-sided pvaluePi

=
Hypergeometric(k′,n′,KP ,N)

6: end for
Rank genes based on p values.
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Null Hypothesis 2 Any random set of skipped exon events, of the same size,
present in the brain can lead to an enrichment p-value of the “Synaptic vesi-
cle cycle” pathway as low or lower than brain-specific exons using the NEASE
approach.

From the set of highly confident skipped exons in VastDB (based on the
number of samples supporting them), we randomly sample 10,000 random sets
of exons of the same size as the original set. Let P = {p(1), . . . , p(10,000)} be
the set of 10,000 p-values obtained from running the permuted exon sets on
NEASE enrichment and let p(obs) be the originally observed p-value from the
up-regulated exon (tissue-specific). The empirical p-value is then obtained using
the formula below. The +1 is added here to avoid an empirical p-value of exactly
0.

p(empirical) =
|{p′ ∈ P : p′ ≤ p(obs)}|+ 1

10, 000

3.4 Implementation of the tools and availability

The user-friendliness of the developed tools is an important aspect of this work.
Both DIGGER and NEASE offer multiple and diverse options for the user to
dig deeper into the acquired results.

The DIGGER web tool was designed using the Python web framework
Django with graph visualization components using the Javascript library vis.js
that was accommodated to supply the specialized features of DIGGER such
as protein, domain, and missing domains and edges. The web tool offers three
different modes that can be used interchangeably: Isoform-Level analysis, Exon-
Level analysis, and Network-Level analysis with easy navigation between them
(Figure 3.5): the user can, for instance, input a list of isoforms to construct
a weighted subgraph of their interactions and visualize them. Likewise, this
mode is connected to two other modes to allow the user to dig deeper into one
specific gene of interest and compare its isoforms or even to a single exon and
its encoded protein features.

NEASE is a Python package with object-oriented features that allow the
user to run an enrichment job on multiple databases either separately or com-
bined. After running the initial enrichment, the user can further focus on an
individual pathway to prioritize the most relevant splicing events and biomarker
candidates. The Python package was linked to the DIGGER database and in-
dividual events can be visualized there. NEASE also provides visualization for
the whole pathways modules in the PPI together with the spliced genes and
relevant edges.

The source codes for both DIGGER and NEASE are released as open-source
under the GPLv3 license as well as the Python notebooks to reproduce most of
the results of the two publications, as summarized in Table 3.2.
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Figure 3.5: Navigation through DIGGER database (Reprinted from the Sup-
plementary Information of DIGGER’s publication [46]).

Table 3.2: Source code and data availability
Description Link of the code

DIGGER webtool source code https://github.com/louadi/DIGGER
DIGGER webtool live link https://exbio.wzw.tum.de/digger/
DIGGER databases and graphs https://exbio.wzw.tum.de/digger/download/
DIGGER documentation https://zenodo.org/record/4010881
NEASE Python package (source code) https://github.com/louadi/NEASE
NEASE Python package (PyPI) https://pypi.org/project/nease/
Cancer Genome Atlas pan-cancer analysis with DIGGER https://github.com/louadi/RNA-Seq-DIGGER
NEASE tutorials https://github.com/louadi/NEASE-tutorials
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Publications

4.1 DIGGER: exploring the functional role of
alternative splicing in protein interactions

The full citation of the paper

Louadi, Z, Yuan K, Gress A, Tsoy O, Kalinina OV, Baumbach J, Kacprowski
T, List M. DIGGER: exploring the functional role of alternative splicing in
protein interactions. Nucleic acids research 49, no. D1 (2021): D309-D318.
https://doi.org/10.1093/nar/gkaa768

The full text and the license are available in Appendix A.

Summary of the paper

The paper describes the database DIGGER that integrates protein-protein inter-
actions, domain-domain interactions, and residue-level interactions information
to lift exon expression analysis to a network level. DIGGER includes a scoring
system to account for limited evidence of multi-domain interactions, allowing for
a more fine-grained consideration of the trade-off between false positive and false
negative PPIs. As a user-friendly database, DIGGER allows users to seamlessly
switch between isoform and exon-centric views of the interactome, making it an
essential resource for studying mechanistic consequences of alternative splicing

The paper also provides several examples of how DIGGER can be used to
create hypotheses or interpret experimental results concerning molecular con-
sequences of alternative splicing. The application examples include the use of
DIGGER to study the effects of exon skipping on the anaplastic lymphoma
kinase (ALK) gene and the insulin receptor isoforms.
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Contribution of the thesis author

Design of the method, implementation of the software, data analysis and visu-
alization, literature review, results interpretation, and manuscript composition.
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4.2 Functional enrichment of alternative splic-
ing events with NEASE reveals insights into
tissue identity and diseases

Full citation of the paper

Louadi, Z, Elkjaer ML, Klug M, Lio CT, Fenn A, Illes Z, Bongiovanni D,
Baumbach J, Kacprowski T, List M, Tsoy O. Functional enrichment of alterna-
tive splicing events with NEASE reveals insights into tissue identity and diseases.
Genome Biology 22, no. 1 (2021): 1-22. https://doi.org/10.1186/s13059-021-
02538-1

The full text and the license are available in Appendix B.

Summary of the paper

This paper introduces NEASE, a tool for functional analysis of alternative splic-
ing (AS) events. The goal of the tool is to identify pathways that are affected
by AS events, which can be difficult to do using current methods that treat all
interactions of the genes affected by AS equally. NEASE uses DIGGER joint
graph (PPI and DDI) along with residue-level and domain-motif interactions, to
identify interaction partners that are likely affected by AS. The paper presents
a new gene set overrepresentation technique using an edge-level hypergeometric
test, that only considers protein interactions that are likely affected by AS.

To benchmark the method, we have used multiple datasets from both healthy
and disease cohorts. We show that it gives insights into the role of the muscle-
and neural-specific exons, and reveals splicing-related differences between retic-
ulated and mature platelets. We additionally demonstrate that it generates
novel disease-relevant insights and provides valuable context to prior findings
on altered RNA- and protein-expression levels consistent with recent litera-
ture. Examples include Dilated Cardiomyopathy and Multiple Sclerosis where
NEASE highlights the impact of multiple biomarker genes.

Finally, the NEASE Python package is made available for community use
with multiple functions and tutorials to help researchers deepen their analysis
of AS.

Contribution of the thesis author

Design of the method, implementation of the software, data analysis and visu-
alization, literature review, results interpretation, and manuscript composition.
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Discussion and Outlook

5.1 Impact and applications of the work

Despite the immense importance of AS in cellular differentiation and disease
development, AS analyses are not routinely performed for RNA-Seq data. I
argue that one main reason is the lack of tools to interpret the effect of splicing
both at the individual event level but also systematically. In this thesis, I
proposed two unique methods to address the challenge: DIGGER and NEASE.
Using multiple validation steps and datasets, I demonstrated that DIGGER and
NEASE confirm previous experimental results as well as provide unexplored
insights on public datasets. In particular, DIGGER confirms the impact of a
known event, on the anaplastic lymphoma kinase (ALK) gene, which is specific
to non-small cell lung carcinoma cancer and causes a non-functional variant.
NEASE, on the other hand, was compared with classical gene set enrichment
in five different scenarios and has been shown to regularly outperform it. In
the only scenario where NEASE results were not so different from the classic
method, we have shown that NEASE shines in terms of finding novel disease
candidates (biomarkers) that were not originally part of the pathway, which is
a unique feature of NEASE’s network-based method.

The developed tools are actively used by us and other researchers. In par-
ticular, Rodriguez-Polo et al. used DIGGER to characterize the exons 14 and
231 from the gene TTN that is linked to Non-Ischemic Dilated Cardiomyopathy
[65]. Similarly, Liu et al. studied the consequence of different AS events of gene
CD46 with its interaction with ITGA2 [44].

5.1.1 Application of NEASE in time series analysis

One notable application of NEASE is AS enrichment analysis for time course
data, presented recently by Lio et al., where I am also a contributor [43]. Un-
like the more straightforward methods that focus on a single condition or two
conditions, time course data is characterized by a larger set of time points. For
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example, the analysis of samples from different stages of progressing disease.

In Lio et al work, we present a framework named Spycone that first identifies
isoform switches in temporal data and then determines gene clusters with similar
switching patterns. The newly developed method incorporates a new metric to
prioritize isoform switches, as well as multiple clustering algorithms. NEASE
was later used for functional enrichment analysis of the obtained clusters from
the SARS-CoV-2 infection dataset (accession ID GSE157490). The results show
that the clusters were enriched in relevant pathways such as the MAPK pathway
and TLR pathways [43].

5.2 Limitation and outlook

5.2.1 Proteomics approaches to further uncover AS im-
pact

Numerous exciting technological improvements are greatly progressing the field
of AS. Namely, the decrease in the cost of short-read deep sequencing and the
advancements in long-read sequencing. But in my opinion, the most promising
technology for AS study is proteomics [60].

DIGGER and NEASE allow a comprehensive study of AS impact. But a
drawback of RNA-Seq is the fact that the AS events are not confirmed at the
protein level: for instance, it is unknown if an event produces a functional
protein variant or causes nonsense-mediated decay. Thus one possible future di-
rection would be to confirm isoform switches events at the proteomic level before
running NEASE enrichment and so omitting the events that yield non-coding
transcripts. Taking into account that for these events, classical enrichment
tests are more appropriate than the NEASE way. Accordingly, I believe that
the combination of multi-omics data such as proteomics and transcriptomics
will enormously boost the usefulness of DIGGER and NEASE.

5.2.2 More structural data is needed

The approach heavily relies on high-quality structural data that is currently
very limited in terms of coverage such as domain and motif annotation as well
as co-resolved structure. As a consequence, a large percentage of human exons
are not covered in the present databases.

One possible extension is the utilization of machine learning approaches. For
instance, the prediction of protein structure and interaction using deep learning
is a newly emerging field with promising results. Carefully including high-
confidence prediction of structure could help increase the coverage of DIGGER
and NEASE and decrease the current biases in the databases toward certain
genes.
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5.2.3 Understanding the splicing regulation is crucial to-
ward a system biology interpretation

NEASE and DIGGER offer a unique way to explore the impact of a given set of
AS events. However, understanding how and why are these events happening in
the first place is a crucial step toward complete system biology interpretation of
splicing. For instance, it will help understand the directionality of these events
and detect the causality and the drivers of a disease from the responses.

Future challenges include constructing a full-splicing regulatory network and
extending the current gene regulatory networks to fully include regulation of
splicing, polyadenylation, microRNA, etc.

5.2.4 Addressing patient specificity and heterogeneity

Transcription and splicing are often uniquely altered in diseases. Most of
the current methods, including the ones in this thesis, are still focused on
population-level comparison and thus ignore patient-specific dysregulation.

A new emerging topic in transcriptomics is the development of a statistical
approach for patient-specific. In this direction, during my Ph.D., I also co-
developed the method DysRegNet that aims to infer patient-specific regulatory
alteration [42]. Briefly, DysRegNet uses a linear model to predict gene expres-
sion of the target gene from its transcription factor. The model is fitted on all
control data and tested on each patient individually to detect outliers.

While DysRegNet was designed for the analysis of transcriptions. One possi-
ble and straightforward direction for future work is the extension of this method
to model splicing. This can be done by correlating splicing factors with their
target genes or exons and then identifying outliers splicing events. The obtained
outlier events can be interpreted using NEASE and DIGGER in a system biol-
ogy manner to help understand how individual patient events contribute to the
phenotype or a rare disease.
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[76] Léon-Charles Tranchevent et al. “Identification of protein features encoded
by alternative exons using Exon Ontology”. In: Genome research 27.6
(2017), pp. 1087–1097.

[77] Michael L Tress, Federico Abascal, and Alfonso Valencia. “Alternative
splicing may not be the key to proteome complexity”. In: Trends in bio-
chemical sciences 42.2 (2017), pp. 98–110.

[78] Jorge Vaquero-Garcia et al. “A new view of transcriptome complexity and
regulation through the lens of local splicing variations”. In: elife 5 (2016),
e11752.

[79] Mihaly Varadi et al. “AlphaFold Protein Structure Database: massively
expanding the structural coverage of protein-sequence space with high-
accuracy models”. In: Nucleic acids research 50.D1 (2022), pp. D439–
D444.

[80] J Craig Venter. In: The sequence of the human genome. Science 291
(2001), pp. 1304–1351.

[81] Kristoffer Vitting-Seerup and Albin Sandelin. “The Landscape of Isoform
Switches in Human CancersIsoform Switches in Cancer”. In: Molecular
Cancer Research 15.9 (2017), pp. 1206–1220.

[82] Jianbo Wang et al. “Computational methods and correlation of exon-
skipping events with splicing, transcription, and epigenetic factors”. In:
Cancer Gene Networks. Springer, 2017, pp. 163–170.

[83] Yan Wang et al. “Mechanism of alternative splicing and its regulation”.
In: Biomedical reports 3.2 (2015), pp. 152–158.

[84] Zefeng Wang et al. “Systematic identification and analysis of exonic splic-
ing silencers”. In: Cell 119.6 (2004), pp. 831–845.

48



Chapter – BIBLIOGRAPHY

[85] Andrew Waterhouse et al. “SWISS-MODEL: homology modelling of pro-
tein structures and complexes”. In: Nucleic acids research 46.W1 (2018),
W296–W303.

[86] Jennifer Westoby et al. “Simulation-based benchmarking of isoform quan-
tification in single-cell RNA-seq”. In: Genome biology 19.1 (2018), pp. 1–
14.

[87] Thorsten Will and Volkhard Helms. “PPIXpress: construction of condition-
specific protein interaction networks based on transcript expression”. In:
Bioinformatics 32.4 (2016), pp. 571–578.

[88] Xinping Yang et al. “Widespread expansion of protein interaction capa-
bilities by alternative splicing”. In: Cell 164.4 (2016), pp. 805–817.

[89] Zhenyu Yang et al. “AlphaFold2 and its applications in the fields of biology
and medicine”. In: Signal Transduction and Targeted Therapy 8.1 (2023),
p. 115.

[90] Sailu Yellaboina et al. “DOMINE: a comprehensive collection of known
and predicted domain-domain interactions”. In: Nucleic acids research
39.suppl 1 (2011), pp. D730–D735.

[91] Sika Zheng. “Alternative splicing and nonsense-mediated mRNA decay
enforce neural specific gene expression”. In: International Journal of De-
velopmental Neuroscience 55 (2016), pp. 102–108.

[92] Mi Zhou, Qing Li, and Renxiao Wang. “Current experimental methods
for characterizing protein–protein interactions”. In: ChemMedChem 11.8
(2016), pp. 738–756.

49



Appendix A

Appendix: First publication

This is the copyedited PDF of the article originally published in the Nucleic
Acids Research journal.

Citation: Louadi, Zakaria, Kevin Yuan, Alexander Gress, Olga Tsoy, Olga
V. Kalinina, Jan Baumbach, Tim Kacprowski, and Markus List. ”DIGGER: ex-
ploring the functional role of alternative splicing in protein interactions.” Nucleic
acids research 49, no. D1 (2021): D309-D318. https://doi.org/10.1093/nar/gkaa768.

Rights and permissions: This is an open-access article under the terms of
the Creative Commons Attribution 4.0 License (CC BY 4.0), which permits use,
distribution, and reproduction in any medium or format, provided the original
work is properly cited.

50



Published online 25 September 2020 Nucleic Acids Research, 2021, Vol. 49, Database issue D309–D318
doi: 10.1093/nar/gkaa768

DIGGER: exploring the functional role of alternative
splicing in protein interactions
Zakaria Louadi 1, Kevin Yuan 1, Alexander Gress2, Olga Tsoy1, Olga V. Kalinina 2,3,
Jan Baumbach1,4, Tim Kacprowski 1,*,† and Markus List 1,*,†

1Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich,
85354 Freising, Germany, 2Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), 66123 Saarbrücken, Germany, 3Faculty of Medicine, Saarland University, 66421 Homburg,
Germany and 4Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense
M, Denmark

Received July 17, 2020; Revised September 01, 2020; Editorial Decision September 02, 2020; Accepted September 04, 2020

ABSTRACT

Alternative splicing plays a major role in regulat-
ing the functional repertoire of the proteome. How-
ever, isoform-specific effects to protein-protein in-
teractions (PPIs) are usually overlooked, making it
impossible to judge the functional role of individual
exons on a systems biology level. We overcome this
barrier by integrating protein-protein interactions,
domain-domain interactions and residue-level inter-
actions information to lift exon expression analysis
to a network level. Our user-friendly database DIG-
GER is available at https://exbio.wzw.tum.de/digger
and allows users to seamlessly switch between iso-
form and exon-centric views of the interactome and
to extract sub-networks of relevant isoforms, mak-
ing it an essential resource for studying mechanistic
consequences of alternative splicing.

INTRODUCTION

Alternative splicing (AS) refers to differences in the process-
ing of transcripts (e.g. exon skipping, intron retention etc.)
allowing to synthesize different protein variants from the
same gene. These protein variants, called isoforms, can vary
in their functionality or even have opposite roles (1). This
mechanism is important in cell development and differenti-
ation (2) but also in diseases such as cancer (3), heart and
kidney diseases (4,5).

Protein-protein interaction (PPI) networks such as Bi-
oGrid (6) or STRING (7) are an important resource in sys-
tems biology. PPI interactions are identified in tedious ex-
periments, mostly via affinity purification mass spectrome-
try or yeast two hybrid screens (8). Due to the high number
of possible interactions (quadratic in the number of consid-

ered proteins), efforts are limited to testing only major pro-
tein isoforms, hence neglecting the considerable influence of
AS on the interactome. For instance, it was shown that AS
remodels the network of PPIs in a tissue-specific manner
(9) and that protein variants from the same gene differ in
their interactions due to changes in the structural domain
composition (1,10). Yang et al. found that most isoforms
share <50% of interactions and only 21% of isoforms pairs
have identical interaction profiles (1). Furthermore, a high
proportion of these isoforms are known to be expressed in
a tissue-specific manner (11). Recently, Climenté-Gonzalez
et al. showed that around 30% of all isoform switches in
tumor cells affect domains that mediate protein interaction
(12). This suggests a widespread impact of AS in the human
interactome that is currently neglected (13).

Domain-domain interaction (DDI) databases provide an
annotation of PPIs in a structural context. This structurally
resolved interactome is frequently used to analyze the loca-
tion of disease mutations in proteins (14). 3did visualizes
DDIs as a graph but does not integrate this information
with experimentally validated PPIs (15). In contrast, Inter-
actome3D and INstruct add structural details such as DDIs
and residues to the PPI networks but do not project this in-
formation to the level of isoforms or exons (16–17). Given
the resolved structural composition of different isoforms,
this annotation can be extended to predict isoform-specific
interactions consistent with experimental results (1,18). It
is further possible to identify residues located at the in-
terface of a PPI to study PPI perturbation (19). However,
existing efforts are mostly focused on studying mutations
that perturb these interactions (20–21) but do not consider
consequences of AS. Few existing tools address this gap
to systematically study AS. The Cytoscape app Domain-
Graph (22) visualizes domain interactions simultaneously
with protein interactions and analyzes the effect of differ-
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ential exon usage. However, DomainGraph is limited to the
output of the tool AltAnalyze (22). Ghadie et al. developed
DIIP using a similar method to predict an isoform inter-
actome (18). While their results were verified based on the
experimentally validated isoform interactome reported by
Yang et al. (1), their database covers only a fraction of the
proteome with 2944 reference proteins and 4363 interac-
tions. Exon Ontology (EXONT) characterizes protein do-
mains and features that are affected by AS (23) but does
not consider AS on the network level.

PPIXpress extends this idea to construct a condition-
specific PPI network based on transcript expression (24).
While covering the entire proteome, it was not intended for
studying individual genes or protein variants. Neither DIIP
nor PPIXpress provide a graphical visualization or support
the analysis of a single splicing event such as the gain or
loss of a domain. Furthermore, existing tools do not allow a
side-by-side comparison of interactions of different protein
isoforms, which, however, is crucial to understand the func-
tional effect of an isoform switch between two conditions.
To close this gap, we developed DIGGER (Domain Inter-
action Graph Guided ExploreR), a user-friendly database
and web tool to explore the functional impact of AS on
human PPIs. In contrast to existing tools (Supplementary
Table S1), DIGGER includes residue-specific information,
highlights consequences of exon skipping events, visualizes
interactions between multiple isoforms and offers a user-
friendly web interface.

MATERIALS AND METHOD

Joint PPI and DDI network

The human PPI network with 24 969 reference proteins and
410 961 interactions was obtained from BioGRID version
Homo sapiens-3.5 (6) and DDIs were downloaded from
3did (v2019 01) and DOMINE (v2.0) (15,25). 16,094 low-
confidence interactions from DOMINE were removed. The
remaining 2989 high- and 2537 mid-confidence interactions
were integrated with all 13 499 reported interactions in 3did
to obtain 17 349 interactions between 8190 Pfam domains
(26). We implemented a joint network graph (Figure 1) that
integrates PPIs and DDIs and in which nodes represent pro-
tein domains defined by concatenating Entrez and Pfam id.
The edges between the nodes represent DDIs which are de-
fined if the domains are known to interact and if the respec-
tive proteins are also PPI partners. The joint graph greatly
speeds up the real-time processing of the requested data and
can also be useful for studying the interacting regions of the
proteins in other studies. Hence, we make the joint graph
available as download in multiple formats on the DIGGER
website.

Position-specific PPI network construction

We constructed a PPI network of the human proteome
based on experimentally resolved structures in the Protein
Data Bank (PDB) (27). First, we mapped individual amino
acid positions to individual residues in experimentally re-
solved protein structures. To this end, we aligned the se-
quences of all protein isoforms in the human proteome
to all protein chains with >95% sequence identity in the

PDB. The second step was the identification of all inter-
action partners of a particular amino acid residue, which
we defined as all amino acid residues from other protein
chains co-resolved in the same three-dimensional structure
and <5Å from the residue of interest (Figure 2). In total, we
could identify 8991 DDIs, 3230 of which are also covered
by BioGRID. Since a protein can be mapped to multiple
structures, a single amino acid can be involved in multiple
interactions with residues belonging to different interaction
partner proteins. For proteins that have been experimentally
resolved in complex with other human proteins, we can thus
map every residue on the PPI interface to a particular po-
sition in the genome, and hence to a particular exon. Addi-
tionally, we obtain the same information for the interacting
protein(s), creating a position-specific picture of the PPI in-
terface.

Mapping of protein domains to exons

The exons and the domain composition of annotated pro-
teins were obtained from Ensembl 99 using the Biomart
webtool (28). We generated database tables for both ge-
nomic data, e.g. genes with their corresponding transcript
and exon coordinates, and for proteins, e.g. isoforms and
their domains. We converted the protein coordinates to ge-
nomic coordinates in the coding sequence and merged both
tables to be able to map transcripts with their correspond-
ing exons to the corresponding protein isoforms and Pfam
domains. We further constructed a database table that maps
position-specific residue annotations to exons to obtain an
exon-level PPI network. The Biomart mapping table was
also used to convert between Entrez, Ensembl and Uniprot
ids. All data tables are available as downloads on our web-
site.

RNA-Seq dataset analysis

The transcript expressions using RNAseq were obtained
from the Cancer Genome Atlas pan-cancer dataset down-
loaded via the Xena Browser (29) (https://xenabrowser.net/
datapages/) for the sample identifier TCGA-S9-A7J2-01.
The isoform expression levels are originally estimated based
on RSEM (30). In this analysis, all transcripts with an ex-
pression value above 1.0 are considered as abundant. The
source code for the analysis is available at (https://github.
com/louadi/RNA-Seq-DIGGER).

Web interface

DIGGER was developed using the Python web framework
Django and is released as open source under the GPLv3 li-
cense (https://github.com/louadi/DIGGER). For visualiza-
tion, we used the Javascript library vis.js (https://visjs.org/)
with different graph layout parameters depending on the
size of the generated network.

DATABASE CONTENT AND APPLICATIONS

DIGGER integrates the interactome from BioGRID (6)
with DDIs of Pfam domains reported by DOMINE and
3did (15,25), comprising 9370 reference proteins and 52 083
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Figure 1. (A) Protein–protein interaction data is integrated with a domain–domain interaction data to construct structurally annotated interactions for
every gene. This annotation is then used to compare between different protein variants in isoform-level analysis mode (B) and to identify the functional effect
of a skipped exon in exon-level analysis mode (C). In the latter, residues located at the corresponding interaction interfaces are highlighted. Network-level
analysis (D): DIGGER generates a subnetwork from a list of protein isoforms (see network-level analysis for details).

PPIs that are confirmed by at least one DDI and 17 390
PPIs mediated by multiple DDIs. Notably, none of the ex-
isting resources annotate individual exons, which we con-
sider a prerequisite to study the consequence of AS on
DDIs. To mitigate this, DIGGER provides a unique map-
ping of interface residues of interacting proteins to exons
based on experimentally resolved structures in the Protein
Data Bank (PDB) (27). We generated a PPI network resolv-
ing interactions on a residue-specific level, i.e. for each pro-
tein residue on an interaction interface, we derived infor-
mation on all residues from the interacting protein that is
in contact with it (see Materials and Methods for details).
In this way, genomic information on a splicing event can be
directly mapped onto protein three-dimensional structure
and the impact of the AS event on the PPI interface can be
assessed. Through DIGGER’s user-friendly web interface,
researchers can interactively visualize the domain composi-
tion for any protein isoform, with detailed information of

the interacting domains between the selected protein and of
its partners in the PPI network.

DIGGER offers three different modes (Figure 1) that can
be used interchangeably. Here, we explain these modes in-
dividually and provide several use cases.

Isoform-level analysis

In this mode, users can query a protein isoform and visu-
alize its composition including the exons and their corre-
sponding domains as well as residues predicted to be part
of the interface to interacting proteins. Interactions spe-
cific to the selected isoform are displayed as an interactive
graph where users can toggle between the ProteinView and
the DomainView to visualize interacting proteins or do-
mains, respectively. Importantly, the ProteinView will high-
light missing domains, i.e. domains that are not annotated
in Pfam for a given isoform.
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Figure 2. Schematic representation of the construction of the position-specific protein–protein interaction network. Identification of an interaction between
proteins A and B based on their mappings to two different chains C1 and C2 in the same experimentally resolved structure. For example, the amino acid
at position A6 of protein A is defined to interact with the amino acids at positions B5, B6, and B7 of protein B and vice versa.

Protein domains are often shared between different iso-
forms. The DomainView (Figure 1B) highlights domain-
domain interactions together with potential protein interac-
tion partners that utilize this domain and can be considered
as a domain-specific interactome independent of the associ-
ated protein. This view is not only useful to study spliced do-
mains but can also be extended for other applications such
as studying coding disease variants affecting a protein do-
main or analysing specific drugs targeting a domain unit.

DIGGER scores multi-domain interactions to account for
limited evidence. In contrast to existing methods that only
consider a PPI missing if all its supporting DDIs are miss-
ing, DIGGER provides a score representing the percentage
of missing domains for every interaction in a PPI. This al-
lows for more fine-grained considerations and hence better
control of the tradeoff between false positive and false neg-
ative PPIs. As an example for the usefulness of this feature,
we consider a data set of 19 genes with 46 experimentally
verified isoform-specific interactions (1). DIGGER could
confirm 36 out of 46 experimentally verified splicing events
that disrupt interacting domains (Supplementary Table S2).
In 10 non-identified cases, no high quality structural anno-
tated interactions were reported for the spliced domains. In
one case, we observe that an isoform of CDK5 with a du-
plicated kinase domain interacts with the protein CCND2,
while in another variant with only a single kinase domain,
this interaction is missing.

Figure 3 illustrates two examples from the subset where
isoforms of the genes BAG1 and NCK2 are shown to lose
PPIs with their partners due to alternative domain usage.
The first example (Figure 3A and B) shows that the inter-
action between the proteins BAG1 and HSPA8 is mediated
by only one of the two domains of BAG1 (the BAG domain
PF02179). This interaction is also confirmed by residue-
level information. In contrast, we observe that for the inter-
action between NCK2 and ABI1 (Figure 3C and D), two
domains of NCK2 participate in the interaction (SH2 do-
main PF00017 and SH3 domain PF00018), but the loss of
the SH2 domain interaction disrupts the PPI.

This observation highlights a limitation of the current
practice where an interaction is only considered as missing if
all domain-domain interactions are missing (18,24). The ex-

act domain(s) that mediate a PPI can not be precisely iden-
tified when multiple domains interact between two proteins
as in the above example where the loss of domain SH2 alone
is sufficient to disrupt the interaction (1). In total, we found
25 isoform-specific interactions that are mediated by mul-
tiple domains reported in (1), which motivates DIGGER’s
approach of scoring interactions rather than filtering them
following an all or nothing strategy. The scores are available
in a downloadable table in InteractionView.

Exon-level analysis

We propose that an exon-level view on PPIs and DDIs is
best suited to recapitulate the effect of AS on the interac-
tome. Thus, DIGGER maps domains and interface residues
for all protein variants of a single gene to genomic coordi-
nates and corresponding exons (Figure 1A–C, see Materials
and Methods for details). In contrast to isoform-level anal-
ysis, the exon-level analysis mode allows the user to iden-
tify any domains encoded by the exon of interest and to
visualize the interaction mediated by them. This method
allows investigating the consequences of a putative or ob-
served exon loss. For a better comparison, we also linked
this feature with the isoform-level analysis by listing pro-
tein variants that contain the exon of interest. The user can,
in a similar way to the previous modes, visualize all inter-
actions of every partner individually, where the percentage
of missing putative interactions is shown as a percentage
score. Here, a missing domain is defined as any domain with
a sequence overlap with the selected exon. To compare dif-
ferent possible scenarios resulting from different isoforms,
the user can also visualize every DDI individually using the
DomainView (Figure 1B).

DIGGER is unique in that it goes beyond domain-level
annotation of PPIs to exon-level structural evidence of an
interaction. An exon is considered to have structural evi-
dence for a PPI if it codes for residues that are found within
a distance of <5 Å in a co-resolved structure of the two pro-
teins (see Materials and Methods for details). To run this
mode, the user can input an exon Ensembl ID or a gene ID
followed by the coordinates of the exon in hg38, which is
similar to the output produced by most AS event detection
tools. Another option to access this mode is from isoform-
level analysis mode, by selecting a protein and then choos-
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Figure 3. InteractionView example for comparing different isoforms. Circles represent proteins and triangles represent domains. A and B represent a
comparison between the exon and domain structure of two isoforms of the gene BAG1 and their interaction with the protein HSPA8. (A) Isoform BAG1–
207 lacks the domain PF002179 while for BAG1–210 both domains are preserved. (B) The effect of losing domain PF002179 is highlighted in the network
by red triangle nodes and dashed edges. Notably, PF002179 is the only domain mediating the interaction with a domain of the protein HSPA8 suggesting
that this interaction is missing for isoform BAG1–207. In the second example (C), two domains mediate the interaction between two proteins NCK2 and
ABI2. (D) As one of them is spliced out for isoform NCK2–202, the interaction is scored 0.5 for this isoform and 1.0 for NCK2–201. Missing exons such
as exon number 5–7 in BAG1–210 (A) are shown in orange if residues are predicted to be on the interface. In this case, the interface with HSPA8 is mapped
to the exon 5 and also supported by residue-level evidence.
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ing a specific exon from the exon or domain structure view
(Figure 4).

Use Case 1: Truncated isoforms of anaplastic lymphoma ki-
nase lose 97% of their PPIs due to AS. We demonstrate
how explorative analysis in DIGGER can be used to create
hypotheses or to interpret experimental results with respect
to molecular consequences of alternative splicing. As a case
study, we consider experimentally verified splicing variants
of the tyrosine kinase receptor family.

In non-small cell lung carcinoma, Lobo de Figueiredo-
Pontes et al. reported non-functional isoforms of anaplastic
lymphoma kinase (ALK) that lack a functional kinase do-
main due to skipping of exons 23 and 27 (31). Figueiredo-
Pontes et al. found that these isoforms are still able to
fuse with EML4 but because of the lack of the kinase do-
main, the dimer EML4-ALK was unable to phosphorylate
tyrosine sites. We can assess the consequence of skipping
these exons using DIGGER’s visualization, where we ob-
serve that no annotated isoform lacks exon 23 or 27 in our
database or in the Ensembl transcript database. In ALK-
201, the main isoform of the ALK gene, exons 21 to 28
encode for the domain tyrosine kinase (PF07714 in Figure
4A). By choosing the exon page (see exon-level analysis) of
any of the two exons, we can contemplate the effect of losing
one of these exons on ALK PPIs. Strikingly, the deletion of
either exon 23 or 27 affects 31 of the 33 known structurally
annotated interactions of the ALK gene (Figure 4B). This
corroborates the experimental results showing that skipping
of these exons leads to a translated but non-functional vari-
ant which likely lost 97% of its PPIs.

In another interesting example, Ellis et al. (9) found that
the ability of gene GRB2 to self-interact was lost by dele-
tion of a tissue-specific exon that overlaps with SH2 do-
main (PF00017) while the interaction with RAPGEF1 was
retained. DIGGER could confirm that the self-interaction
is mediated by the SH2 domain while the interaction with
RAPGEF1 is mediated by SH3 domain (PF00018) and thus
not affected in the isoform missing this exon.

Use case 2: AS leads to different insulin response. Den-
ley et al. investigated two isoforms of the insulin re-
ceptor gene that respond differently to insulin (32,33),
namely INSR-201 (ENST00000302850) and INSR-202
(ENST00000341500), which differ by the absence of exon
11 from the isoform INSR-202. Since the amino acids en-
coded in the skipped exon 11 (ENSE00001157509) are not a
part of any annotated domain, we explored the existence of
any known protein motifs. We found that the exon encodes
the PKA phosphorylation site (MOD PKA 1) according to
the Eukaryotic Linear Motif resource (34), suggesting that a
post-translational modification may be affected with possi-
ble consequences for protein signalling. Interestingly, DIG-
GER’s exon-level analysis shows that this exon also con-
tains residues that interact with four insulin isoforms (Fig-
ure 5). Consequently, the exon-level analysis results suggest
that this interaction will be affected by skipping this exon.
This observation shows the importance of residue-level in-
teraction data as a complement to domain interactions and
confirms the utility of this new feature that could be used

to generate hypotheses of possible scenarios resulting from
exon skipping.

Network-level analysis

To study the effect of AS on PPIs and DDIs on a larger
scale in systems and network biology, it is crucial to con-
sider interactions between multiple protein isoforms or do-
mains in a comprehensive view. Typical examples are the
in-depth analysis of AS-driven interaction changes in a pro-
tein complex or a list of differentially expressed (or spliced)
genes or proteins from transcriptomic or proteomic exper-
iments. PPIXpress (24), the only other tool that constructs
a subnetwork based on a list of transcripts, does not offer
visualization of the network, affected edges or interacting
domains. In contrast, DIGGER visualizes interactions be-
tween multiple proteins or isoforms. Users can input a list of
gene, transcript or protein Ensembl identifiers to construct
a subnetwork.

As illustrated in Figure 6, DIGGER generates a subnet-
work of interactions showing domains putatively mediating
these interactions. The interaction is labeled ‘PPI’, if there
is no structural evidence for it. Otherwise, it is labeled ‘PPI-
DDI’ and the specific DDIs are shown by one or multiple
edges. Analogous to the isoform-level analysis, we provide
a score for each interaction based on the fraction of anno-
tated DDIs that are present. When the resulting network is
exported, the score provides an edge weight for subsequent
analysis.

Applying network-level analysis to the RNA-seq data
from The Cancer Genome Atlas pan-cancer dataset (35),
we could identify 41 449 edges with one or more DDIs, of
which 3258 show at least one missing domain and 2,088 pu-
tative interactions that are likely completely missing. The
details and code for this analysis can be found in the Materi-
als and Methods section. These results corroborate the need
for transcript and isoform-level network analysis to better
reflect the proteome in disease-relevant conditions such as
cancer.

DISCUSSION

With DIGGER, we present a versatile, user-friendly
database and web tool to study the impact of AS on PPIs.
DIGGER integrates PPI and DDI interactions into a joint
graph and, as a key innovation, maps interacting residues
to exons, allowing us to better assess the functional con-
sequence of AS. Our analysis based on isoform-, domain-
and exon-specific views of the human interactome shows a
widespread effect of AS in concordance with experimental
data. DIGGER is the first tool to score isoform-specific in-
teractions based on the ratio of missing DDIs which facil-
itates the interpretation of interactions involving multiple
domains. To facilitate systems and network biology anal-
yses, DIGGER constructs a subnetwork of the joint PPI
and DDI graph based on a list of isoforms or protein vari-
ants. Using this network-level analysis mode, it is possi-
ble to visualize affected DDIs. The resulting network can
be exported for further analysis, e.g. for comparing differ-
ent conditions. However, it is important to bear in mind
that some interacting isoforms in the subnetwork are not
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Figure 4. DIGGER can be used to study the putative effect of an exon skipping event. (A) in this use case, we consider an event resulting in a non-
annotated protein. (B) We continue with exon-level analysis to show affected domains and interactions of the resulting protein. The dashed edges represent
the interactions of a spliced domain that is encoded by the selected exon.
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Figure 5. Three-dimensional structure of a complex with insulin (yellow) and the insulin receptor (green) (PDB id 6PXV, not resolved parts are drawn as
dotted lines). The residues that are part of exon ENSE00001157509 (blue) are forming an interaction interface between the insulin receptor and insulin.
Although only five residues (chain A 713–717) are resolved in the structure, they prove that the interface can be affected by the deletion of the exon
ENSE00001157509.

Figure 6. In network-analysis mode, DIGGER highlights domains absent in the user-submitted isoforms and identifies missing interactions mediated by
these domains. Edges are scored according to the ratio of missing putative interactions. Results can be visualized or exported for further analysis in third
party tools.

necessarily co-expressed in the same condition or tissue.
The user can use this mode with RNA-Seq data (Option 2
in DIGGER Network-level analysis) to extract expressed
transcripts and explore the specific interactions between
them.

In addition to the visualization, DIGGER offers the
following benefits over PPIXpress via its network analy-
sis functionality. First, in PPIXpress a PPI is only consid-
ered missing if all associated DDIs are missing. In contrast,
DIGGER allows more flexibility by offering a filter option
based on the ratio of missing interactions. Note that filtering
all interactions with weight equal to 0 will be equivalent to
the PPIXpress algorithm. Second, PPIXpress only consid-
ers the most highly expressed transcript, which is arguably
an oversimplification. In contrast, DIGGER combines all
structural information from different isoforms of the same

gene. As a result, missing domains are defined as those miss-
ing in all protein variants in the input list but known to
be present in other variants that were not included. Again,
users can choose to include one transcript or isoform from
each gene, e.g. the most highly expressed one to obtain com-
parable results to PPIXpress. We believe that these improve-
ments provide the user with considerably more flexibility
and better interpretability of the results for in-depth analy-
ses on the system or network level.

The general workflow of DIGGER provides the user
with an easy and interchangeable navigation between these
modes and the different views (Supplementary Figure S1).
As a result, DIGGER is the only database that allows for
a complete exploration of AS impact from the exon to the
network level. In contrast, comparable tools and methods
cover only individual aspects, such as the Ghadie et al.
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method (18) and DomainGraph (22) that only focus on the
isoform interactions or PPIXpress that analyzes transcript
expression data (24). Furthermore, DIGGER is the only
resource that combines DDIs with residue specific interac-
tions to identify the consequence of skipping an exon.

We could show that DIGGER’s ability to map interact-
ing residues to exons enables us to study splicing events that
result in hitherto unannotated protein isoforms with experi-
mental evidence. While this is a powerful approach to assess
the potential impact of alternative splicing events between
two conditions, we caution that the structures used for this
annotation are typically derived from the full-length tran-
script and mostly limited to the major isoform. They thus
do not reflect the influence of the exon itself on protein fold-
ing. Nevertheless, identifying putatively interacting residues
as well as domains encoded by the exonic region allows for
exploring all possible scenarios that result from AS events
such as exon skipping.

Naturally, the annotations found in DIGGER are limited
by the quality of the integrated PPI and DDI data sets as
well as the quality of the structural annotations of domains
and residue interfaces. Currently, DIGGER covers 37% of
the proteins and 13% of the interactions in BioGRID. Al-
though the majority of proteins are annotated with at least
one domain (26), the experimental coverage of DDIs is
comparably poor. Furthermore, the DDI view of interac-
tions neglects interactions mediated by disordered regions.
Moreover, AS events occurring in these exons can possibly
alter the translation or the folding of the protein. The func-
tion role of these exons is still not very well understood and
even controversial (36–37). In the current database, around
half of the annotated exons map to disordered regions (48%
of the 307 219 annotated exons from protein coding tran-
scripts) which limits the efforts towards a complete struc-
turally annotated isoform interactome. By incorporating
residue-level evidence, we increased the structural coverage
by 4968 exons that were initially mapped to a disordered re-
gion. Another way to approach this problem is to explore
linear binding motifs that could further expand our under-
standing of the rule of individual exons in the PPI. Thus,
we plan to incorporate protein binding motifs in a future
release of DIGGER and to integrate further data sources
for DDIs and PPIs such as STRING (7).

Another challenge in the field is to determine the exact
domains or exons responsible for a PPI when multiple do-
mains are mapped to the interaction interface. Our analysis
shows that 17 390 PPIs are annotated with multiple DDIs
(33% of the structurally annotated PPI). Identifying the AS
impact on these interactions is more difficult, since the role
of individual domains or exons is not clear. To mitigate this,
DIGGER scores the percentage of isoform-specific inter-
actions missing associated domains. Here, users should be
careful when choosing a threshold to avoid an excess in false
positives or false negatives. Additional experimental results
on isoform-specific interactions are needed to resolve this
and to determine the best possible threshold. Another pos-
sibility to narrow down the regions corresponding to the
interacting surfaces between the two proteins is the use of
residue-level evidence provided in DIGGER at the exon-
level. The existence of an interacting residue in a single spe-

cific interface provides strong support that the interaction
is specific to that domain (or exon).

CONCLUSION

Recent studies emphasize the considerable influence of AS
on human PPIs. As discussed previously by Talavera et al.
(38), this may lead to a significant bias in network-driven
systems biology analysis. For every PPI, there is a poten-
tially large number of isoform combinations that would
have to be experimentally validated (2). Given limited ex-
perimental data, it is essential to build computational ap-
proaches to distinguish between protein isoforms and to
identify the function and interactions of putative new vari-
ants. DIGGER closes this gap in order to help biomedical
researchers to address the complexity in visualizing and an-
alyzing the functional impacts of AS in a user-friendly fash-
ion and on multiple levels, ranging from protein isoforms,
via domains, down to exons. DIGGER integrates state-of-
the-art annotations of PPIs and DDIs and enriches them
with a novel approach to gain residue-level information of
PPI. We have shown that the results generated by DIGGER
are consistent with experimental evidence in the context of
isoform-specific interactions and exon skipping. DIGGER
is ideally suited to investigate the differences between iso-
forms, to analyse the effect of an isoform-switch, or to ex-
plore how alternative splicing events such as exon skipping
lead to altered interactions of protein isoforms. DIGGER
provides a basis for network analysis, by re-weighting the
reference PPI based on the structural evidence of the spe-
cific interacting proteins. In the future, we envision to ex-
tend DIGGER to provide network analysis features, such
as de novo network enrichment (39) and to cover additional
model organisms for which high-quality PPI networks are
available.
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Abstract

Alternative splicing (AS) is an important aspect of gene regulation. Nevertheless, its
role in molecular processes and pathobiology is far from understood. A roadblock is
that tools for the functional analysis of AS-set events are lacking. To mitigate this, we
developed NEASE, a tool integrating pathways with structural annotations of protein-
protein interactions to functionally characterize AS events. We show in four
application cases how NEASE can identify pathways contributing to tissue identity
and cell type development, and how it highlights splicing-related biomarkers. With a
unique view on AS, NEASE generates unique and meaningful biological insights
complementary to classical pathways analysis.

Keywords: Alternative splicing, Differential splicing, Functional enrichment, Systems
biology, Protein-protein interactions, Disease pathways, Platelet activation, Multiple
sclerosis, Dilated cardiomyopathy

Background
Alternative splicing (AS) boosts transcript diversity in human cells [1] and thus con-

tributes to tissue identity [2], cell development [3], and pathology in, e.g., cardiomyop-

athy [4], muscular dystrophy [5], or autoimmune diseases [6]. It is estimated that up to

30% of disease-associated genetic variants affect splicing [7]. RNA sequencing tech-

nologies (RNA-seq) allow the quantification of different types of AS events and detect

splicing abnormalities in disorders. However, RNA-seq utility is currently limited by

our incomplete understanding of the functional role of specific exons or the transcripts

they contribute to.

A major challenge in AS analysis is the functional interpretation of a set of events,

including isoform switching events and differentially spliced exons. The usual approach

is to perform gene set enrichment or overrepresentation analysis [8–10]. This ap-

proach treats all genes affected by AS equally, neglecting that some AS events may not

be functionally relevant at the protein level [11] or result from noise in the splicing
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machinery [12]. Furthermore, functional differences between protein isoforms remain

uncertain in many cases. A promising strategy to identify relevant AS events is to focus

on those that lead to meaningful changes in the protein structure. Recent studies have

shown that AS has the potential to rewire protein-protein interactions by affecting the

inclusion of domain families [13] and linear motifs [14] or by activating nonsense-

mediated decay [15].

This motivated the creation of databases and tools that predict the consequences of

individual AS events or isoform switches. IsoformSwitchAnalyzeR [16], tappAS [17],

DoChaP [18], and Spada [19] support transcript-level (as opposed to exon-level) ana-

lysis to identify isoform switches and their impact on the translation and the resulting

isoforms features, such as domains, motifs, and non-coding sites. Exon Ontology [20]

and DIGGER [21] support exon-level analysis to identify exon skipping events and their

possible impact on the protein structure and function. Spada and DIGGER further con-

sider the impact of AS on protein-protein interactions.

Most existing tools allow investigating AS-driven changes in an explorative fashion

but tools for systematic analysis of functional effects of AS are lacking. Exon Ontology

performs statistical tests to identify enriched features within a set of skipped exons.

One example is domain families affected by AS across proteins more frequently than

expected. However, none of the existing tools offer a systems biology view to specific-

ally highlight functional consequences of AS events.

To tackle these limitations, we developed the first tool for functional enrichment of AS

events. NEASE (Network-based Enrichment method for AS Events) first detects protein

domains affected by AS and then uses protein-protein interactions (PPI) integrated with

domain-domain interactions (DDI) [21], residue-level, and domain-motif interactions

(DMI) [22] to identify interaction partners likely affected by AS. Next, it employs an edge-

level hypergeometric test for gene set overrepresentation analysis. This approach is new

in the way genes are selected for the enrichment test. Rather than considering only differ-

entially spliced or expressed genes, which is currently the most common strategy, NEASE

uses network information to select genes that are likely affected in the interactome. This

is also superior to a simple network enrichment analysis, as we consider only those edges

for which an AS contribution seems relevant and for which false positive results are less

likely. We evaluated NEASE using multiple datasets from both healthy and disease co-

horts. We show that the NEASE approach complements gene-level enrichment, and even

outperforms it in scenarios where gene-level enrichment fails to find relevant pathways.

Moreover, NEASE generates unique and meaningful biological insights on the exact im-

pact of AS. Furthermore, since the statistical approach is network-based, NEASE can

prioritize (differentially) spliced genes and find new disease biomarkers candidates in case

of aberrant splicing. The NEASE Python package, freely available at https://github.com/

louadi/NEASE, provides multiple functions for a deeper analysis and visualization of af-

fected protein domains, edges, and pathways (individually or as a set).

Results
Overview of NEASE

NEASE uses a hybrid approach that combines biological pathways with PPIs and DDIs

to perform functional enrichment of AS. First, we use the structural annotation of
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known isoforms by mapping protein domains from the Pfam database [23] to the corre-

sponding exons (Fig. 1A). Second, we construct a structural joint graph as previously

reported [21] by enriching the BioGRID PPI [24] with DDIs (from DOMINE [25] and

3did [26]), DMIs from the Eukaryotic Linear Motif resource (ELM) [22], and interface

residues from the Protein Data Bank (PDB) [27] (see Methods). In the joint graph, pro-

tein features such as domains, motifs, and residues are mapped to their mediated

Fig. 1 Overview of NEASE. A Annotated exons are mapped to Pfam domains, motifs, and residues. The
joint graph of PPIs, DDIs, DMIs, and co-resolved structure is used to identify the interactions mediated by
these features. B For a list of exons/events, NEASE identifies interactions mediated by the spliced protein
features and pathways that are significantly affected by those interactions. C NEASE provides a corrected p
value, in addition to an enrichment score (NEASE Score) for every pathway (see the “Methods” section). The
user can further focus on an individual pathway, where NEASE can prioritize genes and find new
biomarkers. In this example, the gene G3 was not part of the enriched pathway A but it has the largest
number of affected interactions with genes from the pathway
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interactions. Thus, NEASE provides an exon-centric view of the interactome and ad-

dresses the limited exon-level annotation. Exons are represented by the features they

encode, and interactions between features are represented by edges. In this way, the im-

pact of AS can be seen as an edgetic change in the network. Analyzed AS events are

viewed as a set of affected edges that represent gained or lost PPIs.

We then perform statistical tests to find enriched pathways and most likely respon-

sible genes (Fig. 1B). Following, (differential) splicing analysis, a one-sided hypergeo-

metric test is used to test for enrichment of a given pathway or gene set by considering

all edges affected by AS in an experiment. A similar test is applied for each spliced gene

to prioritize the most relevant events/genes that are affecting a pathway. We further

introduce a weighted score (NEASE score) that penalizes hub nodes that are more

likely to be connected to the pathway of interest by chance. Notably, this approach also

considers genes that are not part of the existing pathway definition but show a signifi-

cant number of interactions with the pathway, highlighting new putative biomarkers

(see Methods and Additional file 1: Figure S6, for details).

The Python package provides an interactive analysis. Using a list of exons or events,

users can run a general enrichment on 12 different pathway databases (collected from

the ConsensusPathDB resource [28]), followed up by a specific analysis and

visualization for a single affected pathway or module of interest (Fig. 1C). To provide

analysis for individual isoforms and events, we linked NEASE to our previously devel-

oped database DIGGER, which provides an isoform- and exon-centric view of the inter-

actome [21].

To check if the structurally annotated PPI is more biased to hubs than the standard

PPI network, we computed the node degree distribution of the network before and

after filtering for the structure evidence. As shown in Additional file 1: Figure S1, the

two histograms show similar trends with an overall smaller number of edges in the

structurally annotated PPI. The latter has a maximum node degree equal to 424, com-

pared to 2887 in the full PPI. This observation shows that the structurally annotated

PPI does not increase the bias towards hub genes of the interactome.

NEASE gives insights into the role of the muscle- and neural-specific exons

Recent studies suggest that the regulation of AS occurs in a tissue-specific manner and

leads to remodeling of protein-protein interactions [29]. Understanding the functional

impact of co-regulated exons is critical in understanding gene regulation. We applied

NEASE to tissue-specific exons reported in VastDB, a resource that provides informa-

tion on multiple types of AS events detected by RNA-seq from different tissue types

and developmental stages [30]. We extracted 2831 exon skipping events and Percent

Spliced In values (PSI) from 12 different human tissue types (Additional file 7, see

Methods). We then performed hierarchical clustering on the z score standardized PSI

values (Fig. 2A). The heatmap shows two distinct clusters, where neural-specific and

muscle-specific (merged with heart-specific) exons are dominant.

Next, we extracted 56 skipped exons with a high PSI in the muscle tissues and 62

skipped exons with a high PSI in the neural tissues (z score ≥ + 2, see the “Methods”

section). We checked how many of these events are overlapping with protein features.

As shown in Fig. 2B, 27% of the upregulated exons in muscle tissues (13) and 28% of
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the upregulated exons in the neural tissues (17) overlap with protein features. NEASE

also provides statistics of how many of these domains have known binding partners in

the joint graph. In the two sets, around 60% of the affected domains have known inter-

actions in our joint graph: 8 binding domains in the muscle tissues and 10 binding do-

mains in the neural tissues (Additional file 2: Tables S4, S5 and Additional file 3:

Tables S8, S9). We further identified one affected motif in the gene ATP2B1 in neural

exons. For these groups of events, the exact protein complexes involved can be identi-

fied, and NEASE statistical analysis can be performed to determine affected pathways.

However, it is important to keep in mind that not all affected domains are necessarily

interacting domains but could also be regulating gene expression by binding to DNA

or RNA [31].

Fig. 2 Analysis of tissue-specific exons. A Heatmap and hierarchical clustering of standardized PSI values
obtained from VastDB. The heatmap only shows events with a standard deviation of PSI values ≥ 20. The
heatmap shows that clusters of exons upregulated in neural tissues and muscle/heart tissues are dominant
(clusters C1 and C3). B NEASE analysis shows that 28% and 27% for both neural and muscle upregulated
exons, respectively, are encoding protein features: domains, linear motifs, and residues. For these subgroups
of events, the exact protein complexes involved can be identified, and NEASE enrichment can be
performed. C, D Comparison between gene-level enrichment and NEASE enrichment for the two sets
of exons

Louadi et al. Genome Biology          (2021) 22:327 Page 5 of 22



First, we ran a gene set overrepresentation analysis (one-sided hypergeometric test),

which we refer to as gene-level enrichment, to detect enriched pathways (see the

“Methods” section). Next, we applied NEASE to the same genes to detect pathways af-

fected by AS. Unlike the gene-level enrichment, the results obtained from NEASE in

both sets better explain the functional role of the regulated exons (Fig. 2C, D). We also

compared with the results from the Network Enrichment Analysis method NEA [32].

NEA is a PPI-based approach that considers all edges for statistical tests. In contrast,

NEASE considers only AS-affected edges. For a fair comparison, we run NEA with the

same PPI network (BioGRID) and same pathways databases (see the “Methods” sec-

tion). The results of NEA did not improve over the classic gene-level enrichment (Add-

itional file 1: Figure S2), which suggests that our exon-specific approach helps to

narrow down the exact complexes/pathways affected by AS and reduces false positives.

To further validate the robustness of the enrichment obtained by NEASE, we further

conducted permutation tests. Here, our null hypothesis is that the tissue-specific exons

are not different from a random set of exons in terms of the quality of the functional

enrichment (measured as the p values of the hypergeometric test). For a more realistic

scenario, our background set of exons considers only exon skipping events that can ac-

tually be found in these tissues (see the “Methods” section for details). This approach

will also help evaluate our methods against known and unknown biases. The empirical

p values of the permutation test, which indicate the chance of finding an enrichment p

value as low or lower than the one reported by NEASE, are 0.0008 and 0.0001 for

neural and muscles upregulated exons, respectively. These results further demonstrate

the robustness of our analysis.

The upregulated exons in heart and muscle tissues were enriched in “Muscle Con-

traction” pathways (Fig. 2C and Additional file 2: Table S7 ), while, in the gene-level en-

richment, the pathways were related to very common subcellular functions such as the

Golgi apparatus, which also is an organelle for collecting, modifying or destroying pro-

tein products (Fig. 2 C and Additional file 2: Table S6). NEASE provides detailed infor-

mation about the affected domains and their interaction partners (Additional file 1:

Table S1). The domain Tropomyosin (Pfam id: PF00261), which is part of the gene

TPM1, e.g., is involved in the regulation of muscle contraction via actin and myosin.

GAS2 (Pfam id: PF02187) is a domain of DST, a dystonin encoding gene, which plays a

role in maintaining the integrity of the cytoskeleton. AS affects its binding with the

gene CALM1 that encodes a calcium-binding protein involved in various calcium-

dependent pathways like muscle contraction [33].

The exons upregulated in neural tissues showed enrichment in the synaptic

vesicle cycle pathway responsible for the communication between neurons (Fig.

2D). Gene-level enrichment performed on par with NEASE, resulting in the same

pathway but with a lower rank and significance (adjusted p values: 1.494631e−16

using NEASE and 0.0039 using gene-level, Additional file 3: Tables S10 and S11).

Notably, NEASE also detected an enrichment in “oxidative phosphorylation”, which

is the initiator for powering all major mechanisms mediating brain information

processing [34]. The neuron’s energy demands are remarkable both in their inten-

sity and in their dynamic range and quick changes [35–38]. Therefore, AS could

modify oxidative phosphorylation to serve tissue-specific needs. Experimental stud-

ies have also found that several key enzymes in “oxidative phosphorylation” are
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spliced, e.g., pyruvate kinase (PKM) that shifts from the PKM2 to the PKM1 iso-

form [39, 40]. NEASE also provides a detailed view on the affected mechanisms,

such as an exon skipping event in the gene ATP6V0A1 overlapping with the V_

ATPase_I domain (PFAM id: PF01496) and affecting the binding with seven other

proteins from the complex vacuolar ATPase (V-ATPase) (p value: 5.853289e−17,

Fig. 3, Additional file 1: Table S2 ). V-ATPase is required for synaptic vesicle exo-

cytosis [41] The a1-subunit of the V0 domain in ATP6V0A1 was recently shown

to be highly expressed in neurons and to be essential for human brain develop-

ment [42, 43]. In another example, NEASE identified two co-regulated events of

the genes CLTA and CLTB (Fig. 3). CLTA and CLTB genes are involved in

Clathrin-dependent endocytosis which forms clathrin-coated vesicles. Both genes

play a major role in forming the protein complex of the coated vesicle. Both events

affect the same domain Clathrin light chain (Pfam id: PF01086). The Clathrin light

chain domain binds to CLTC and CLTCL1 which are the Clathrin heavy chain

genes (p value: 6.943483e−05). These results suggest that the formation of this

complex is co-regulated by AS. A similar finding about the role of the Clathrin

light chain in neurons was also described in [44]. NEASE highlights these co-

regulated events at the network level (Fig. 3). As a sanity check, we manually

checked the PSI values of these critical events identified by NEASE in the

Genotype-Tissue Expression data set (GTEx), a comprehensive resource for tissue-

specific gene expression and regulation [45]. VastDB includes the quantification of

PSI values from 8378 samples (49 tissues and 543 individuals) from GTEx version

6 on their website (https://vastdb.crg.eu/). As shown in the examples in Additional

file 1 Figures S4 and S5, the exons are confirmed to be highly upregulated in their

respective tissues. The analysis generated from VastDB using NEASE agrees with

the latest studies at transcriptomics and proteomics levels that emphasize the cru-

cial role of AS in the function and development of brain and heart tissues [46–48].

Fig. 3 NEASE visually highlights the impact of the AS regulation at the interactome level. The gray nodes
represent proteins from the pathway and the red nodes represent genes with AS events. Red edges
represent the affected interactions for the nodes with known DDIs, DMIs, or co-resolved structures. The
visualization of the pathway “Synaptic vesicle cycle” from the KEGG database for the exons upregulated in
the neural tissues shows that the splicing in the genes CLTA and CLTB is co-regulated and affects the
interactions of the same complex. Similarly, NEASE highlights the importance of the domain ATP6V0A1
which is upregulated in neural tissues and binds seven proteins from the “Synaptic vesicle cycle” pathway
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NEASE reveals splicing-related differences of reticulated and mature platelets

AS does not only drive tissue-specific regulation but also plays a major role in cell dif-

ferentiation and maturation. To illustrate an example of the utility of NEASE in such

studies, we used the RNA-seq data set from [49] which compares the transcriptome

profiles of reticulated platelets and mature platelets from healthy donors. Reticulated

platelets are younger [50], larger in size, and contain more RNA [51]. Moreover, they

have a prothrombotic potential and are known to be more abundant in patients with

diabetes, acute or chronic coronary syndrome, and in smokers [51–53]. Additionally,

elevated levels of reticulated platelets in peripheral blood are predictors of insufficient

response to antiplatelet therapies (e.g., aspirin and P2Y12 inhibitors) and are promising

novel biomarkers for the prediction of adverse cardiovascular events in different patho-

logical settings [52, 54]. A strong enrichment of pro-thrombotic signaling in reticulated

platelets was observed in healthy donors [49]. Comparative transcriptomic analysis re-

vealed a differential expression of several pathways in addition to an enrichment of pro-

thrombotic pathways and transcripts of transmembrane proteins as the collagen

receptor GPVI, the thromboxane receptor A2 and the thrombin receptors PAR1 and

PAR4. Gene set enrichment analysis indicated an upregulation of entire prothrombotic

activation pathways as the thrombin PAR1 and integrin GPIIb/IIIa signaling pathway in

reticulated platelets.

Since AS has been described to occur in platelets [55], we wanted to investigate the

splicing patterns between the previously defined reticulated and mature platelet sub-

groups. Using MAJIQ [56] (see the “Methods” section), we found 169 differentially

spliced genes. From 25 affected protein domains, 17 have known interactions (68% of

affected domains, Fig. 4A, Additional file 4: Tables S12 and S13). Other affected protein

features include 6 residues involved in PPIs and one linear motif in the gene PAWR.

We observed that the enrichment at the gene-level using the Reactome [57] database

ranks general cellular pathways higher, including “Membrane Trafficking” and “Vesicle-

mediated transport,” and “Golgi-to-ER retrograde transport.” An exception is the “Cir-

cadian Clock” pathway, which is hypothesized to be related to platelet activation [58]

(Fig. 4B). The pathway “Platelet activation, signaling and aggregation” was less signifi-

cant in gene-level enrichment (adjusted p value: 0.061, Additional file 4: Table S14)

compared to NEASE enrichment (adjusted p value: 0.004, Additional file 4: Table S15).

Using NEASE, we obtained more meaningful results and unique pathways. As shown

in Fig. 4C, the most significant pathways in reticulated platelets are G Protein-Coupled

Receptor-related. G proteins are essential in the second phase of platelet-dependent

thrombus formation [59]. Furthermore, GPCR isoforms are known to have distinct sig-

naling properties [60]. Other relevant pathways associated with platelet activation are

“Hemostasis,” “Thromboxane signaling through tp receptor,” and “Platelet homeosta-

sis.” The full tables for enrichment at the gene level and using NEASE are available in

the Additional file 4: Tables S14 and S15. The upregulation of these pathways in reticu-

lated platelets emphasizes their previously described prothrombotic phenotype and

their involvement in several downstream signaling processes.

We also looked at the individual AS events driving this enrichment. For each affected

feature, NEASE tests if it significantly interacts with the GPCR downstream signaling

pathway (Additional file 4: Table S16, see the “Methods” section). Figure 4C illustrates

affected genes and their p value ranking. The top gene is GNAQ (G-protein subunit
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alpha q), which is known to be involved in signal transduction in platelets leading to

platelet activation [61]. The regulation of the G-protein alpha subunit can be an indica-

tion that compared to mature platelets, reticulated platelets are more involved in vari-

ous signal transduction pathways related to, e.g., pro-thrombotic processes [51].

PRKCA, which also showed different splicing patterns between the two platelet sub-

groups, plays a major role in the platelet formation process by modulating platelet

function [62], megakaryocyte function, and development [63] and negatively regulates

pro-platelet formation [64]. Moreover, the regulation of PRKCA binding in reticulated

platelets might refer to the young nature of reticulated platelets, which have undergone

the pro-platelet formation process more recently than mature platelets [50, 65].

NEASE characterizes complex disorders such as Multiple Sclerosis

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the cen-

tral nervous system. Early in the disease course, MS is characterized by focal le-

sions in the brain induced by an influx of systemic inflammatory cells. These

active lesions infiltrated by immune cells and activated microglia are characterized

by inflammatory demyelination and axonal loss [66]. The surrounding white matter

tissue is termed normal-appearing white matter due to diffuse pathology without

focal lesion activity and dense immune activity [67]. The etiology of MS remains

unknown. Recently, a systematic literature review found 27 genes that were alterna-

tively spliced in MS patients [68].

We used RNA-Seq of macrodissected areas from postmortem white matter tissue of

patients with progressive MS [69]. We compared normal-appearing white matter and

active lesions regions from postmortem white matter brains of MS patients. We found

Fig. 4 A 15 % of differentially spliced exons, between reticulated and mature platelets, are known to
encode protein features. For this subset of exons, NEASE enrichment can be performed. B Gene level
enrichment of all differentially spliced exons in the Reactome database fails to capture the most relevant
pathways. C In contrast, NEASE shows an enrichment of the GPCR downstream signaling and other related
pathways that are well known to be important in platelet activation. D A further look at the genes driving
the enrichment of the GPCR pathway shows the most relevant genes affected by AS
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109 differentially spliced genes with 19 affected domains and one linear motif with

known interactions, in addition to 6 known interacting residues. In total, NEASE iden-

tified 156 affected interactions (Additional file 5: Tables S17 and S18).

Gene-level enrichment ranks high pathways likely irrelevant that are involved in

muscle contraction, cardiac conduction, and membrane trafficking, with the exception

of Ca2+ ion flow across membranes (Additional file 5: Table S19). Ca2+ is an essential

signal molecule for all cell activity. Although deregulation of calcium signaling is re-

lated to the pathogenesis of multiple diseases [70], including neurological disorders

[71], it is not specific to neuronal tissues. In line with the neurodegenerative and

immune-mediated features of MS, NEASE found unique enriched pathways related to

brain network signaling and neuronal pathways “Neurotransmitter receptors and post-

synaptic signal transmission,” “Transmission across Chemical Synapses,” “Activation of

NMDA receptor and postsynaptic events,” “MAPK family signaling cascades,” “Neur-

onal System”), as well as pathways related to immune responses (“interleukin-17 signal-

ing,” “Toll-Like Receptor 10 (TLF10) Cascade”) (Table 1 and Additional file 5: Table

S20). Two other pathways were related to the uptake of anthrax or bacterial toxins.

This could be a result of clean-up from toxic inflammatory processes or increased pres-

ence of invaders due to the leaky brain-blood-barrier in MS [72–74]. Additionally, it

also supports the theory of infections as the trigger of lesion damage in MS [75].

As shown in Table 1, the pathway “Uptake and function of anthrax toxins” has the

best overall adjusted p value, calculated only based on the total number of edges affect-

ing the pathway. When we also included the number of significant genes and calculated

Table 1 NEASE enrichment obtained from AS comparison between normal-appearing white
matter and acute lesions, from multiple sclerosis patients. The highly enriched pathways belong to
Neurotransmitter receptors, MAPK, and bacterial infection. Most of these pathways are hallmarks of
MS. The NEASE score is obtained after combining the p value with the number of significant
genes. The latter is obtained after individual tests for each gene in the column “Spliced genes” (see
the “Methods” section)

Pathway
name

Spliced genes
(number of interactions
affecting the pathway)

p value adj p value NEASE score

Neurotransmitter receptors and
postsynaptic signal transmission

GRIA1 (7), ATP2B1 (2), BRAF
(4), MAP2K4 (1), GRIN1 (4)

4.38e−09 0.000004 16.71

Uptake and function
of anthrax toxins

ATP2B1 (1), BRAF (5), MAP2K4 (3) 2.98e−09 0.000004 14.76

Transmission across
chemical synapses

GRIA1 (7), ATP2B1 (2), BRAF (4),
MAP2K4 (1), GRIN1 (4)

5.65e−08 0.000010 14.49

Uptake and actions
of bacterial toxins

ATP2B1 (1), BRAF (5), MAP2K4 (3) 3.46e−08 0.000009 12.92

Neuronal system GRIA1 (7), ATP2B1 (2), BRAF (4),
MAP2K4 (1), GRIN1 (4)

8.71e−07 0.000122 12.11

MAPK family signaling cascades MYH10 (2), ATP2B1 (1), BRAF (17),
MAP2K4 (5), GRIN1 (3)

1.52e−06 0.000184 10.07

Activation of NMDA receptor
and postsynaptic events

GRIA1 (2), ATP2B1 (1), BRAF (4),
MAP2K4 (1), GRIN1 (3)

2.12e−06 0.000241 9.82

FCERI mediated MAPK activation MYH10 (1), BRAF (7), MAP2K4 (8) 2.52e−07 0.000038 9.33

RAF/MAP kinase cascade MYH10 (1), ATP2B1 (1), BRAF (16),
MAP2K4 (4), GRIN1 (3)

1.00e−06 0.000130 8.48

Signaling by moderate kinase
activity BRAF mutants

MYH10 (1), BRAF (14), MAP2K4 (2) 8.30e−09 0.000004 8.08
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NEASE scores (see the “Methods” section), NEASE ranks the pathway “Neurotransmit-

ter receptors and postsynaptic signal transmission” first, and moves pathways such as

“Transmission across Chemical Synapses” and “Neuronal System” higher in the rank.

These observations illustrate the usefulness of the NEASE score as a complement to

the global edge-based enrichment.

Two of the most significant genes in the “Neurotransmitter receptors” pathway were

GRIN1 and GRIA1 (Additional file 5: Table S21). GRIN1 encodes GluN1, which is one

of the two obligatory subunits for the NMDAR1 receptor, whereas GRIA1 encodes the

AMPAR1 subunit. Their ligand is glutamate, and they are both ionotropic receptors

and have been associated with MS disease severity [76–78]. Interestingly, AS of

MAP2K4 appeared in both brain-related and immune-related pathways, significantly

enriched in active lesions vs normal-appearing white matter (Table 1). MAP2K4 is a

mitogen-activated protein kinase (MAPK) orchestrating multiple biological functions

[79, 80]. AS of MAP2K4 has been found in rheumatoid arthritis [81], as well as in path-

ways of patients with other autoimmune diseases [82]. MS also precedes autoimmune

attack, and therefore AS of MAP2K4 in active lesions detected with NEASE may repre-

sent dysregulated immune responses originating from the infiltrating immune cells or

inflammatory-activated brain cells. This is supported by previous studies that found (i)

overactivity of MAPK pathways in microglia (the resident immune cell of the brain)

during neurodegeneration [83, 84], and (ii) increased phosphorylation of MAPK kinases

in the systemic immune cells of MS patients [85, 86]. A recent study also characterized

activated MS-specific pathways in immune cells from blood using phosphoproteomics.

Here, MAP2K4 and its interaction partners (e.g., TAK1) were present in MS-specific

signaling activity [87]. Future functional studies on the AS of MAP2K4 may help ex-

plain if AS could be the reason for increased phosphorylation and overactivity detected

in MS. AS of MAP2K4 could result in switching protein conformation, increasing sus-

ceptibility to phosphorylation, or changing the downstream protein cascade.

With NEASE, we were able to specifically detect AS of genes and related path-

ways already known to be dysregulated within MS from excitotoxicity to inflamma-

tion. The detected AS genes in active lesions vs normal-appearing white matter

demonstrate how major components in signaling activities may be fine-tuned/chan-

ged from regulation of a homeostatic state to an inflammatory state. Combining

NEASE with functional experiments to understand the biological impact of AS

could fuel new therapeutic opportunities for complex neurological diseases as MS.

Novel developments in genome-editing tools and gene-specific strategies have made

it possible to use antisense oligonucleotides or small modulators for splice modifi-

cation. This is already used in the rare neuromuscular disease, spinal muscular at-

rophy, where an antisense oligonucleotide binds to a site near splicing to ensure

the inclusion of an exon during the splicing event [78].

NEASE finds new biomarker candidates for dilated cardiomyopathy

AS might play a role in driving dilated cardiomyopathy (DCM) [88]. DCM is a common

heart muscle disease that is often diagnosed with structural abnormalities resulting in

impaired contraction. Previous studies have shown a large number of differentially used

exons in DCM patients [4, 10]. In this analysis, we used a list of 1212 differentially used
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exons between DCM patients and controls as reported by Heinig et al. [10]. 29% of

these exons overlap with protein features, including 230 domains and 15 linear motifs.

(Additional file 6: Tables S22 and S23). In this exon set, both the gene level enrichment

and NEASE show very similar results (Additional file 6: Tables S24 and S25). In both

methods, we found that the list of exons was enriched in the dilated cardiomyopathy

(DCM) pathway from KEGG, as well as, “Adrenergic signaling in cardiomyocytes” and

“Regulation of actin cytoskeleton”.

In contrast to gene-level enrichment analysis, NEASE is able to score the contribu-

tion of alternatively spliced genes that are interacting with but are not part of the DCM

pathway, allowing us to highlight putative biomarkers (Table 2, Additional file 6: Table

S26, Additional file 1: Figure S3). The Myosin head domain from the gene MYO19 in-

teracts with 6 other genes associated with DCM: (1) MYL2, which triggers contraction

after Ca+ activation [89]; (2–5) TPM1/TPM2/TPM3/TPM4, which encode the TPM

protein—the main regulator of muscle contraction [90]; and (6) ACTG, which encodes

actin. Interestingly, MYO19 has not been investigated for its role in DCM, while its

interacting genes are associated with DCM [91–94]. Additionally, the gene OBSCN has

one affected interaction with the TTN gene [95]. The TTN gene itself is also differen-

tially spliced and associated with DCM [95]. OBSCN was recently reported as a new

DCM candidate [96, 97]. Another interesting example is CACNA1C (Calcium Voltage-

Gated Channel Subunit Alpha1 C), an already known DCM candidate [98]. The differ-

entially spliced exon overlaps with the domain Ion_trans (Pfam id: PF00520) which is

essential for myocyte contraction [99]. The affected interaction identified is with the

ryanodine receptor 2 (RYR2). In striated muscles, the excitation-contraction coupling is

mediated by this complex [100]. Both CACNA1C and RYR2 are part of the KEGG

DCM pathway [101]. Alterations in ryanodine receptors were repeatedly reported to be

related to heart failure [102–104].

Discussion
In spite of its importance for biomarker and therapeutic target discovery, differential

AS is still not a routine part of transcriptome analysis. A key reason for this could be

the lack of suitable methods and software tools for AS-specific functional analysis. Our

method NEASE closes this gap and provides a unique view on the impact of AS com-

plementary to functional insights gained from traditional gene-level enrichment ana-

lysis. We applied NEASE to four diverse data sets and show that its results generate

Table 2 Enrichment of the pathway “Dilated cardiomyopathy (DCM)” from KEGG for the exons
differentially used in DCM patients. The table shows the most significant genes (p value< 0.05) (see
the “Methods” section)

Differentially
spliced genes

DCM
associated

Percentage of affected edges
associated with DCM

P value Affected binding (edges)
associated with DCM

MYO19 No 6/51 0.000002 MYL2, TPM4, TPM3, TPM2,
TPM1, ACTG

OBSCN No 1/2 0.014 TTN

USP49 No 1/4 0.028 PRKACA

CACNA1C Yes 1/4 0.028 RYR2
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novel disease-relevant insights and provide valuable context to prior findings on altered

RNA- and protein-expression levels consistent with recent literature.

In many cases, NEASE improves over gene-level enrichment analysis focusing on dif-

ferentially spliced genes. One potential reason for this could be that not all AS events

are necessarily functional [11, 12]. NEASE mitigates this by focusing on AS events that

affect protein domains. However, it is important to keep in mind that this is not the

only way to define functional AS events. AS also affects interacting disordered regions

[14] or facilitates nonsense-mediated decay [105].

AS events could also lead to completely different functions or interactions [106], e.g.,

two isoforms can have different interaction partners depending on the inclusion or loss

of a single domain [13]. Such changes in the interactome can not be captured with

gene-level enrichment which has a strict focus on nodes rather than edges. With

NEASE, we could show that integrating structural information at the exon level and

PPI networks helps to identify the functional impact of differentially spliced and co-

regulated exons. In practice, we consider both approaches as complementary and rec-

ommend running gene-level and edge-level enrichments together (both supported by

the NEASE package). Note that while our analysis focuses on exon skipping events as

the most studied event type, our method is generally agnostic to the event type.

NEASE relies on structurally annotated interactions and existing pathway annota-

tions from databases such as KEGG [101] and Reactome [57]. Leveraging reliable

structural information and established pathways likely removes many false positive

PPI from considerations. While the structural annotations are generally of high

quality, it should be noted that their coverage is still limited and, thus, the number

of exons considered in our method is comparably low. For instance, the percentage

of considered exons, in our example datasets, ranges between 15 and 30%, which is

still far from being a global analysis of AS. Expanding the annotations at isoform-

level and more widespread availability of structural information will greatly raise

the usefulness of NEASE in the future. We also emphasize that while all events

can potentially affect protein interactions on the domain level, not all AS events

yield functional isoforms and other processes such as nonsense-mediated decay

need to be considered as well. In the future, further progress is urgently needed to

link transcriptomics and proteomics for better characterization and understanding

of the exact impact of AS events. With our current approach, a large fraction of

the PPI network remains unexplored, suggesting that adapting de novo network

enrichment methods such as KeyPathwayMiner [107] towards AS could be a prom-

ising research direction to uncover previously unknown disease mechanisms.

NEASE currently considers the immediate neighborhood of a pathway in the PPI

network. When carefully considering the expected increase in false positives, one

could also increase the size of the pathway neighborhood using, e.g., a fixed radius

for shortest paths. While these are attractive approaches, the biases of the PPI to-

wards hubs, as well as the high number of false (or missing) edges of PPI, in its

current form, make such approaches hard to control and statistically challenging.

Even though NEASE is relatively conservative, we demonstrated that it is simple,

robust, and generates meaningful and interpretable results. Thus, it provides an un-

precedented opportunity to understand the functional impact of tissue-, develop-

mental- and disease-specific AS in a system biology manner.
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Conclusions
While a plethora of gene set enrichment methods have been proposed in recent years,

AS is typically not addressed specifically. Thus, NEASE closes an important gap in

functional enrichment analysis of transcriptomics data. The analyses described here,

confirm the widespread impact of AS in multiple biological processes and disorders. In

the future, we plan to extend NEASE with further model organisms and to add struc-

tural annotations covering more types of AS events. Finally, we plan to integrate

NEASE with the DIGGER web tool [21] for seamless downstream analysis of AS in the

web browser with the vision of establishing functional AS event analysis as a routine

step in the transcriptomic analysis.

Methods
NEASE data sources

We construct a human structurally annotated PPI as described previously [21]. Briefly,

we integrate DDI and PPI information into a joint network where DDIs were obtained

from 3did (v2019_01 [26]) and DOMINE (v2.0 [25] including high- and mid-

confidence interactions) and PPIs were obtained from BioGRID 3.5 [24]. In summary,

out of 410,961 interactions from the human interactome 52,467 have at least one do-

main interaction. The linear motif instances and their interactions were downloaded

from the ELM website and mapped to the respective exons. We found 3926 PPIs that

are confirmed by at least one source of DMI. Position-specific PPI based on experimen-

tally resolved structure from the PDB was obtained from [21]. In total, 16,161 PPIs

were enriched by at least one residue-level interaction. From the combination of all

these resources the final structurally annotated graph contained in total 60,235 interac-

tions. Each one of these interactions is annotated with one or multiple levels of evi-

dence (DDIs, DMI, residues). The mapping of exons to their protein features was

performed using the Biomart mapping table, Pfam, and ELM annotations [22, 23, 108].

We obtain the biological pathways with their gene list from KEGG [57] and Reactome

[101] integrated into the ConsensusPathDB database [28].

Statistical tests and pathway scores

Gene-level enrichment is performed using a hypergeometric test from the package

GSEAPY (a Python wrapper for Enrichr [109]) by considering all genes with (differen-

tial) AS events. Network enrichment analysis at the gene level was performed using the

EviNet web server (www.evinet.org), which is an implementation of the randomization

algorithm NEA [32]. To achieve a fair comparison with NEASE, we run NEA using

BioGRID as a PPI database and Reactome and KEGG as pathways references to match

the exact conditions of the NEASE analysis.

For NEASE enrichment, we filtered the PPI graph G=(V, E), where V is the set of

genes and E is the set of edges, to a subgraph G′=(V′, E′) containing only structurally

annotated interactions E′ and their nodes V′. An interaction is considered structurally

annotated if it is supported by at least one of these resources: domain-domain interac-

tions, motif-domain interactions, or residue-level interactions. For a submitted query

list of exons, NEASE first identifies affected domains, linear motifs, and residues that

overlap with the exons and their interactions. Let N be two times the number of edges

Louadi et al. Genome Biology          (2021) 22:327 Page 14 of 22



in G′ (the degree of the network) and n be the number of affected edges from the

query. These edges are then considered using a test modified from [110]. For every

pathway P with degree K, let k be the number of affected edges that are connected to

P. We model X whose outcome is k as a random variable following a hypergeometric

distribution:

X � Hypergeometric n ¼ number of affected edges;K ¼ degree of P;N ¼ degree of G0ð Þ

where k is considered as the number of observed successes out of n draws, from a

population of size N containing K success. Subsequently, NEASE tests if the number k

is significant using a one-sided hypergeometric test (over-representation). In contrast

to the test proposed in [110], our test only includes structurally annotated edges and

the ones likely to be impacted by AS in order to improve the signal-to-noise ratio. For

illustration purposes, in the example of Fig. 1B, the overall number of affected edges by

AS is n=7, and K=11 is the total degree of pathway A (11 possible success), the number

of affected edges that are linked to the pathway is k=4. The enrichment p value of path-

way A corresponds then to the significance of this last number. After testing for mul-

tiple pathways, the obtained p values for the edge-level enrichment are corrected, using

the Benjamini-Hochberg method [111]. The detailed pseudocode of this algorithm is

explained in Additional file 1: Figure S6, Algorithm 1.

For a pathway of interest, a similar test can be applied to determine if a splicing event

significantly affects interactions of a specific gene with this pathway (Additional file 1:

Figure S6, Algorithm 2 and Fig. 1B, C). Here, n is the number of all affected interac-

tions (edges) of a spliced gene and k is the number of affected interactions (edges)

across genes that are linked to the pathway of interest. In the example of Fig. 1B, C, the

gene G2 can be connected to pathway A just by chance due to its high number of af-

fected interactions. For this reason, it is ranked lower than the genes G3 and G4.

As a result, for every pathway, NEASE provides an overall p value, as well as the most

significant genes. Since the p value only depends on the overall number of affected

edges but not on the number of genes, the p value can be heavily influenced by hub

genes. To reduce this influence, an optional score (NEASE Score, Eq.: 1) can be com-

puted by NEASE to scale the natural logarithm of the p value with the total number of

significant genes using a cutoff from the user (for instance p value ≤ 0.05):

NEASE score ¼ −
ffiffiffi

g
p � log10 pvalueð Þ ð1Þ

where g is the total number of significantly connected genes obtained after testing in-

dividual spliced genes. Thus, the NEASE Score prioritizes pathways that are affected by

a larger number of spliced genes rather than pathways that have a larger number of af-

fected interactions (edges). The user can choose to rank enrichment based on the ad-

justed p value or by the NEASE score.

For permutation tests, the set of highly confident 2831 exon skipping events obtained

after the initial quality filtering is considered as the background set of exons. We com-

pared the enrichment obtained in the pathways “Muscle Contraction” and “Synaptic

vesicle cycle” from the set of exons upregulated in muscles/heart and neural tissues re-

spectively, with 10,000 random sets of exons of the same size and then derived distribu-

tion of p values. The empirical p values were then obtained by asking how likely it is to
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obtain a p value as low or more extreme than the one reported by NEASE in the ori-

ginal set of neural and muscles upregulated exons.

VastDB events processing

PSI values of the exon skipping events from VastDB were quantified by the developers

using vast tools [30, 112]. In our analysis, we extracted the PSI values for 32 experiments

belonging to 12 main tissues: muscles/heart, neural (whole brain, cortex, and peripheral

retina), placental, epithelial, digestive (colon and stomach), liver, kidney, adipose, testis,

immune-hematopoietic, and ovary. We then filtered out the events with low read cover-

age (VLOW) and performed hierarchical clustering of standardized values (z scores). For

every exon, we calculated the mean of PSI values from the samples of the same tissues.

To extract muscles/heart and neural-specific exons and to ensure that we only consider

functional events, we applied two filters: namely that the exon PSI value in the relevant

tissue is higher than 20 and that the z score is higher than 2.

RNA-Seq analysis

Raw RNA-Seq reads for two types of platelets and multiple sclerosis patients were down-

loaded from the GEO repository (access numbers: GSE126448 and GSE138614 ). The num-

ber of samples and sequencing depth are reported in Additional file 1: Table S3. RNA-Seq

reads were aligned to the reference human genome (hg38) using STAR 2.7 [113] in a 2-pass

mode and filtered for uniquely mapped reads. Differential AS analysis was performed by

MAJIQ [56] with default parameters, and with a threshold of P(dPSI > 20%) > 0.95.

NEASE: The Python package

NEASE’s Python package relies on NumPy [114], pandas [115], NetworkX [116], SciPy

[117], and Statsmodels [118]. The gene-level enrichment is also supported in the

NEASE package using the Python implementation of Enrichr [109]. To speed up the

edge hypergeometric test, the total degree of every pathway in the structural PPI, as

well as the overall degree of the network were pre-computed. For visualization, we use

the complete PPI (not the structural PPI) and extract connected subnetworks from

each pathway as well as spliced genes and their interactions with the extracted mod-

ules. The position of nodes is computed using the Fruchterman-Reingold force-

directed algorithm implemented in NetworkX [119]. The interactive visualization for

individual genes and events is implemented with information from the DIGGER data-

base and the Plotly package.

The package provides the option to automatically filter exons that are likely to dis-

turb the open reading frame of the transcript based on the prediction in [30]. In the

case of multiple AS events affecting the same genes, we consider every event individu-

ally and identify all protein features. The standard input of the package is a DataFrame

object with the exon coordinates and Ensembl IDs of the genes. The package also sup-

ports the output of multiple AS differential detection tools such as rMATs [120],

Whippet [121], and also tools that are event-based such as MAJIQ [56] where NEASE

only considers annotated exons. NEASE is released as open-source under the GPLv3 li-

cense and is available at (https://github.com/louadi/NEASE). Step-by-step tutorials for

running NEASE are available at (https://github.com/louadi/NEASE-tutorials).

Louadi et al. Genome Biology          (2021) 22:327 Page 16 of 22



Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02538-1.

Additional file 1: Tables S1-S3. Table S1. Enrichment of the pathway “Muscle contraction” from Reactome for
the exons upregulated in the muscles generated by the NEASE package. Table S2. Enrichment of the pathway
“Synaptic vesicle cycle” from KEGG for the exons upregulated in the neural tissues generated by the NEASE
package. Table S3. RNA-Seq samples used in the study. Figs. S1-S6. Fig. S1. Node degree distribution of the
classic PPI and structurally annotated PPI, the latter contains only interactions with evidence from DDIs and DMIs
or residue-level evidence from the co-resolved structure. Fig S2. Network Enrichment Analysis using EviNet webt-
ool for exons upregulated in muscles and neural tissues. Fig. S3. NEASE visualization highlights the interactions of
differentially spliced genes with the DCM pathway. Fig. S4. The PSI values of two exon skipping events in the
genes TPM1 and DST from the GTEx dataset confirm that both the exons are upregulated in muscles and heart tis-
sues. Fig. S5. The PSI values of two exon skipping events in the genes CLTA and CLTB from the GTEx dataset con-
firm that both the exons are upregulated in neural tissues. Fig. S6. Pseudocode of NEASE algorithm.

Additional file 2: Tables S4-S7. The analysis of the upregulated exons in muscles. Table S4: List of spliced
domains. Table S5: List of affected edges. Table S6: Gene-level enrichment. Table S7: NEASE enrichment.

Additional file 3: Tables S8-S11. The analysis of the upregulated exons in neural. Table S8. List of spliced
domains. Table S9. List of affected edges. Table S10. Gene-level enrichment. Table S11. NEASE enrichment.

Additional file 4: Tables S12-S16. Differential splicing analysis between reticulated platelets and mature
platelets. Table S12. List of spliced domains. Table S13. List of affected edges. Table S14. Gene-level enrichment.
Table S15. NEASE enrichment. Table S16. Enrichment of the pathway “GPCR downstream signal”.

Additional file 5: Tables S17-S21. Differential splicing analysis between normal-appearing white matter and
acute lesion from multiple sclerosis patients. Table S17. List of spliced domains. Table S18. List of affected edges.
Table S19. Gene-level enrichment. Table S20. NEASE enrichment. Table S21. Enrichment of the pathway
“Neurotransmitter receptors and postsynaptic signal transmission”.

Additional file 6: Tables S22-S24. Differential splicing analysis between Dilated Cardiomyopathy patients and
controls. Table S22. List of spliced domains. Table S23. List of affected edges. Table S24. Gene-level enrichment.
Table S25. NEASE enrichment. Table S26. Enrichment of the pathway “Dilated cardiomyopathy”.

Additional file 7: Table S27. The PSI values for VastDB exons in different tissues.

Additional file 8. Review history.

Acknowledgements
Not applicable.

Peer review information
Barbara Cheifet was the primary editor of this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team.

Review history
The review history is available as Additional file 8.

Authors’ contributions
ZL, TK, OT, JB, and ML conceived the project. ZL performed the initial experiments, developed the method, and
implemented the software. OT and ML supervised the project, provided critical feedback, and helped shape the
research. OT prepared the RNA-Seq datasets for the differential splicing analysis. AF, CTL interpreted and discussed the
biological insights of the results. MK and DB interpreted and discussed the platelet analysis. MLE and ZI interpreted
and discussed the Multiple Sclerosis analysis. ZL wrote the initial draft of the manuscript. All authors contributed to
writing the final manuscript and approved the final version.

Authors’ information
Twitters: @ZakariaLouadi (Zakaria Louadi); @itisalist (Markus List); @janbaumbach (Jan Baumbach); @KacprowskiTim (Tim
Kacprowski); @meeklug (Melissa Klug)

Funding
This work was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of
the e:Med research and funding concept [grant 01ZX1908A (Sys_CARE)]. JB was partially funded by his VILLUM Young
Investigator Grant (nr.13154). MLE is grateful for financial support from Lundbeckfonden (no. R347-2020-2454). ZI is
grateful for financial support from Scleroseforeningen (no. A29926, A 31829, A33600). Open Access funding enabled
and organized by Projekt DEAL.

Availability of data and materials
RNA sequencing data for reticulated platelets was provided by the authors [49] and it is freely available at GEO (access
number: GSE126448). Multiple sclerosis Raw sequence was provided by the authors [69] and freely available at GEO
(access number: GSE138614). Dilated Cardiomyopathy raw data is available in the European Genome-phenome Archive
(Dataset ID: EGAS00001002454), in our analysis, we used pre-processed data from the manuscript [10]. VastDB dataset
for humans (hg19) was downloaded from https://vastdb.crg.eu/wiki/Downloads. The linear motifs instances and inter-
actions were downloaded from (http://elm.eu.org/). The generated joint graphs and the exon mapping databases are
available on the DIGGER database website https://exbio.wzw.tum.de/digger/download. NEASE is released as open-

Louadi et al. Genome Biology          (2021) 22:327 Page 17 of 22



source under the GPLv3 license and is available at GitHub [122] and deposited to Zenodo [123]. All processed datasets,
as well as step-by-step tutorials for using NEASE to reproduce the results presented in this paper, are available at
https://github.com/louadi/NEASE-tutorials and deposited to Zenodo [124].

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising,
Germany. 2Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg,
Germany. 3Department of Neurology, Odense University Hospital, Odense, Denmark. 4Institute of Clinical Research,
University of Southern Denmark, Odense, Denmark. 5Institute of Molecular Medicine, University of Southern Denmark,
Odense, Denmark. 6Department of Internal Medicine I, School of Medicine, University hospital rechts der Isar, Technical
University of Munich, Munich, Germany. 7German Center for Cardiovascular Research (DZHK), Partner Site Munich
Heart Alliance, Munich, Germany. 8Department of Cardiovascular Medicine, Humanitas Clinical and Research Center
IRCCS and Humanitas University, Rozzano, Milan, Italy. 9Institute of Mathematics and Computer Science, University of
Southern Denmark, Campusvej 55, 5000 Odense, Denmark. 10Division Data Science in Biomedicine, Peter L. Reichertz
Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig,
Germany. 11Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany.

Received: 15 July 2021 Accepted: 10 November 2021

References
1. Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, et al. Function of alternative splicing. Gene. 2005;344:1–20.

https://doi.org/10.1016/j.gene.2004.10.022.
2. Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5(10):

R74. https://doi.org/10.1186/gb-2004-5-10-r74.
3. Baralle F, Giudice J. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol. 2017;

18(7) Available from:. https://doi.org/10.1038/nrm.2017.27.
4. Beqqali A. Alternative splicing in cardiomyopathy. Biophys Rev. 2018;10(4):1061–71.
5. Douglas AGL, Wood MJA. Splicing therapy for neuromuscular disease. Mol Cell Neurosci. 2013;56:169–85. https://doi.

org/10.1016/j.mcn.2013.04.005.
6. Evsyukova I, Somarelli JA, Gregory SG, Garcia-Blanco MA. Alternative splicing in multiple sclerosis and other 673

autoimmune diseases. RNA Biology. 2010;7(4)462–73. https://doi.org/10.4161/rna.7.4.12301.
7. López-Bigas N, Audit B, Ouzounis C, Parra G, Guigó R. Are splicing mutations the most frequent cause of hereditary

disease? FEBS Lett. 2005;579(9):1900–3. https://doi.org/10.1016/j.febslet.2005.02.047.
8. Karlebach G, Veiga DFT, Mays AD, Chatzipantsiou C, Barja PP, Chatzou M, et al. The impact of biological sex on

alternative splicing. bioRxiv. 2020:490904. https://doi.org/10.1101/490904.
9. Tollervey JR, Wang Z, Hortobágyi T, Witten JT, Zarnack K, Kayikci M, et al. Analysis of alternative splicing associated with

aging and neurodegeneration in the human brain. Genome Res. 2011;21(10):1572–82. https://doi.org/10.1101/gr.12222
6.111.

10. Heinig M, Adriaens ME, Schafer S, van Deutekom HWM, Lodder EM, Ware JS, et al. Natural genetic variation of the
cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy. Genome Biol. 2017;18(1):170.
https://doi.org/10.1186/s13059-017-1286-z.

11. Tress ML, Abascal F, Valencia A. Alternative Splicing May Not Be the Key to Proteome Complexity. Trends Biochem Sci.
Elsevier Ltd. 2017;42(2):98–110. Available from: https://pubmed.ncbi.nlm.nih.gov/27712956/. https://doi.org/10.1016/j.
tibs.2016.08.008.

12. Melamud E, Moult J. Stochastic noise in splicing machinery. Nucleic Acids Res. 2009;37(14):4873–86. https://doi.org/10.1
093/nar/gkp471.

13. Yang X, Coulombe-Huntington J, Kang S, Sheynkman GM, Hao T, Richardson A, et al. Widespread Expansion of Protein
Interaction Capabilities by Alternative Splicing. Cell. 2016;164(4):805–17. https://doi.org/10.1016/j.cell.2016.01.029.

14. Buljan M, Chalancon G, Eustermann S, Wagner GP, Fuxreiter M, Bateman A, et al. Tissue-specific splicing of disordered
segments that embed binding motifs rewires protein interaction networks. Mol Cell. 2012;46(6):871–83.

15. da Costa PJ, Menezes J, Romão L. The role of alternative splicing coupled to nonsense-mediated mRNA decay in
human disease. Int J Biochem Cell Biol. 2017;91(Pt B):168–75.

16. Kristoffer V-S. Sandelin A. Genomics: The Landscape of Isoform Switches in Human Cancers; 2017; Available from:.
https://doi.org/10.1158/1541-7786.MCR-16-0459.

17. delafuente L, Arzalluz-luque Á, Tardáguila M, Delrisco H, Martí C, Tarazona S, et al. tappAS: a comprehensive
computational framework for the analysis of the functional impact of differential splicing. Genome Biol. 2020;21(1)
Available from:. https://doi.org/10.1186/s13059-020-02028-w.

18. Gal-Oz ST, Haiat N, Eliyahu D, Shani G, Shay T. DoChaP: the domain change presenter. Nucleic Acids Res. 2021;49(W1):
W162–8. https://doi.org/10.1093/nar/gkab357.

Louadi et al. Genome Biology          (2021) 22:327 Page 18 of 22



19. Ctor Climente-Gonzá Lez H, Porta-Pardo E, Godzik A, Correspondence EE, Eyras E. The Functional Impact of Alternative
Splicing in Cancer. Cell Rep. 2017;20:2215–26.

20. Tranchevent L-C, Aubé F, Dulaurier L, Benoit-Pilven C, Rey A, Poret A, et al. Identification of protein features encoded by
alternative exons using Exon Ontology. Genome Res. 2017;27(6):1087–97.

21. Louadi Z, Yuan K, Gress A, Tsoy O, Kalinina OV, Baumbach J, et al. DIGGER: exploring the functional role of alternative
709 splicing in protein interactions. Nucleic Acids Res. 2020;49(D1):D309-D318. https://doi.org/10.1093/nar/gkaa768.

22. Kumar M, Gouw M, Michael S. Amano-S ´ Anchez HS´, Pancsa R, Glavina J, et al. ELM-the eukaryotic linear motif resource
in 2020. Nucleic Acids Res. 2020;48. Available from: https://academic.oup.com/nar/article/48/D1/D296/5611669. https://
doi.org/10.1093/nar/gkz1030.

23. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic
Acids Res. 2019;47(D1):D427–32. https://doi.org/10.1093/nar/gky995.

24. Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C, et al. The BioGRID interaction database: 2019 update.
Nucleic Acids Res. 2019;47(D1):D529–41. https://doi.org/10.1093/nar/gky1079.

25. Yellaboina S, Tasneem A, Zaykin DV, Raghavachari B, Jothi R. DOMINE: a comprehensive collection of known and
predicted domain-domain interactions. Nucleic Acids Res. 2011;39(Database issue):D730–5. https://doi.org/10.1093/nar/
gkq1229.

26. Mosca R, Céol A, Stein A, Olivella R, Aloy P. 3did: a catalog of domain-based interactions of known three-dimensional
structure. Nucleic Acids Res. 2014;42(Database issue):D374–9. https://doi.org/10.1093/nar/gkt887.

27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;
28(1):235–42. https://doi.org/10.1093/nar/28.1.235.

28. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res.
2013;41(Database issue):D793–800.

29. Ellis JD, Barrios-Rodiles M, Çolak R, Irimia M, Kim T, Calarco JA, et al. Tissue-Specific Alternative Splicing Remodels
Protein-Protein Interaction Networks. Mol Cell. 2012;46(6):884–92.

30. Tapial J, Ha KCH, Sterne-Weiler T, Gohr A, Braunschweig U, Hermoso-Pulido A, et al. An atlas of alternative splicing
profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple
major isoforms. Genome Res. 2017;27(10):1759–68.

31. Seo PJ, Kim MJ, Ryu J-Y, Jeong E-Y, Park C-M. Two splice variants of the IDD14 transcription factor competitively form
nonfunctional heterodimers which may regulate starch metabolism. Nat Commun. 2011;2(1):303. https://doi.org/10.103
8/ncomms1303.

32. Alexeyenko A, Lee W, Pernemalm M, Guegan J, Dessen P, Lazar V, et al. Network enrichment analysis: extension of
gene-set enrichment analysis to gene networks. BMC Bioinformatics. 2012;13(1):226. https://doi.org/10.1186/1471-21
05-13-226.

33. Tansey MG, Luby-Phelps K, Kamm KE, Stull JT. Ca(2+)-dependent phosphorylation of myosin light chain kinase
decreases the Ca2+ sensitivity of light chain phosphorylation within smooth muscle cells. J Biol Chem. 1994;269(13):
9912–20.

34. Hall CN, Klein-Flügge MC, Howarth C, Attwell D. Oxidative phosphorylation, not glycolysis, powers presynaptic and
postsynaptic mechanisms underlying brain information processing. J Neurosci. 2012;32(26):8940–51. https://doi.org/10.1
523/JNEUROSCI.0026-12.2012.

35. Sanganahalli BG, Herman P, Blumenfeld H, Hyder F. Oxidative neuroenergetics in event-related paradigms. J Neurosci.
2009;29(6):1707–18. https://doi.org/10.1523/JNEUROSCI.5549-08.2009.

36. Vergara RC, Jaramillo-Riveri S, Luarte A, Moënne-Loccoz C, Fuentes R, Couve A, et al. The Energy Homeostasis Principle:
Neuronal Energy Regulation Drives Local Network Dynamics Generating Behavior. Front Comput Neurosci. 2019;13:49.
https://doi.org/10.3389/fncom.2019.00049.

37. Du F, Zhu X-H, Zhang Y, Friedman M, Zhang N, Ugurbil K, et al. Tightly coupled brain activity and cerebral ATP
metabolic rate. Proc Natl Acad Sci U S A. 2008;105(17):6409–14. https://doi.org/10.1073/pnas.0710766105.

38. Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J
Cereb Blood Flow Metab. 2012;32(7):1222–32. https://doi.org/10.1038/jcbfm.2012.35.

39. Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86(4):
883–901. https://doi.org/10.1016/j.neuron.2015.03.035.

40. Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, et al. Metabolic reprogramming during neuronal differentiation from
aerobic glycolysis to neuronal oxidative phosphorylation. Elife. 2016;10:5. Available from:. https://doi.org/10.7554/
eLife.13374.

41. Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, et al. The v-ATPase V0 subunit a1 is
required for a late step in synaptic vesicle exocytosis in Drosophila. Cell. 2005;121(4):607–20. https://doi.org/10.1016/j.
cell.2005.03.012.

42. Aoto K, Kato M, Akita T, Nakashima M, Mutoh H, Akasaka N, et al. ATP6V0A1 encoding the a1-subunit of the V0 domain
of vacuolar H+-ATPases is essential for brain development in humans and mice. Nat Commun. 2021;12(1):2107. https://
doi.org/10.1038/s41467-021-22389-5.

43. Poëa-Guyon S, Amar M, Fossier P, Morel N. Alternative splicing controls neuronal expression of v-ATPase subunit a1 and
sorting to nerve terminals. J Biol Chem. 2006;281(25):17164–72. https://doi.org/10.1074/jbc.M600927200.

44. Redlingshöfer L, McLeod F, Chen Y, Camus MD, Burden JJ, Palomer E, et al. Clathrin light chain diversity
regulates membrane deformation in vitro and synaptic vesicle formation in vivo. Proc Natl Acad Sci U S A. 2020;
117(38):23527–38.

45. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. Nat
Genet. 2013;45(6):580–5. https://doi.org/10.1038/ng.2653.

46. Rodriguez JM, Pozo F, di Domenico T, Vazquez J, Tress ML. An analysis of tissue-specific alternative splicing at the
protein level. Orengo CA, editor. PLoS Comput Biol. 2020;16(10):e1008287.

47. Raj B, Blencowe BJ. Alternative Splicing in the Mammalian Nervous System: Recent Insights into Mechanisms and
Functional Roles. Neuron. 2015;87(1):14–27. https://doi.org/10.1016/j.neuron.2015.05.004.

Louadi et al. Genome Biology          (2021) 22:327 Page 19 of 22



48. Su C-H, Dhananjaya D, Tarn W-Y. Alternative Splicing in Neurogenesis and Brain Development. Front Mol Biosci. 2018;5:
12.

49. Bongiovanni D, Santamaria G, Klug M, Santovito D, Felicetta A, Hristov M, et al. Transcriptome Analysis of Reticulated
Platelets Reveals a Prothrombotic Profile. Thromb Haemost. 2019;119(11):1795–806. https://doi.org/10.1055/s-0039-1
695009.

50. Ault KA, Knowles C. In vivo biotinylation demonstrates that reticulated platelets are the youngest platelets in circulation.
Exp Hematol. 1995;23(9):996–1001.

51. Karpatkin S. Heterogeneity of human platelets. II. Functional evidence suggestive of young and old platelets. J Clin
Invest. 1969;48(6):1083–7.

52. Cesari F, Marcucci R, Gori AM, Caporale R, Fanelli A, Casola G, et al. Reticulated platelets predict cardiovascular death in
acute coronary syndrome patients. Thromb Haemost. 2013;109(05):846–53. https://doi.org/10.1160/TH12-09-0709.

53. Guthikonda S, Alviar CL, Vaduganathan M, Arikan M, Tellez A, DeLao T, et al. Role of reticulated platelets and platelet
size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable
coronary artery disease. J Am Coll Cardiol. 2008;52(9):743–9. https://doi.org/10.1016/j.jacc.2008.05.031.

54. Muronoi T, Koyama K, Nunomiya S, Lefor AK, Wada M, Koinuma T, et al. Immature platelet fraction predicts
coagulopathy-related platelet consumption and mortality in patients with sepsis. Thromb Res. 2016;144:169–75. https://
doi.org/10.1016/j.thromres.2016.06.002.

55. Nassa G, Giurato G, Cimmino G, Rizzo F, Ravo M, Salvati A, et al. Splicing of platelet resident pre-mRNAs upon activation
by physiological stimuli results in functionally relevant proteome modifications. Sci Rep. 2018;8(1):498. https://doi.org/1
0.1038/s41598-017-18985-5.

56. Vaquero-Garcia J, Barrera A, Gazzara MR, González-Vallinas J, Lahens NF, Hogenesch JB, et al. A new view of
transcriptome complexity and regulation through the lens of local splicing variations. Elife. 2016;5:e11752.

57. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome Pathway Knowledgebase.
Nucleic Acids Res. 2018;46(D1):D649–55. https://doi.org/10.1093/nar/gkx1132.

58. Scheer FAJL, Michelson AD, Frelinger AL 3rd, Evoniuk H, Kelly EE, McCarthy M, et al. The human endogenous circadian
system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One. 2011;6(9):
e24549.

59. Offermanns S. Activation of Platelet Function Through G Protein–Coupled Receptors. Circ Res. 2006;99(12):1293–304.
https://doi.org/10.1161/01.RES.0000251742.71301.16.

60. Marti-Solano M, Crilly SE, Malinverni D, Munk C, Harris M, Pearce A, et al. Combinatorial expression of GPCR
isoforms affects signalling and drug responses. Nature. 2020;587(7835):650–6. https://doi.org/10.1038/s41586-020-2
888-2.

61. Jalagadugula G, Dhanasekaran DN, Kim S, Kunapuli SP, Rao AK. Early growth response transcription factor EGR-1
regulates Galphaq gene in megakaryocytic cells. J Thromb Haemost. 2006;4(12):2678–86.

62. Moore SF, van den Bosch MTJ, Hunter RW, Sakamoto K, Poole AW, Hers I. Dual regulation of glycogen synthase kinase 3
(GSK3)α/β by protein kinase C (PKC)α and Akt promotes thrombin-mediated integrin αIIbβ3 activation and granule
secretion in platelets. J Biol Chem. 2013;288(6):3918–28. https://doi.org/10.1074/jbc.M112.429936.

63. Harper MT, Poole AW. Diverse functions of protein kinase C isoforms in platelet activation and thrombus formation. J
Thromb Haemost. 2010;8(3):454–62. https://doi.org/10.1111/j.1538-7836.2009.03722.x.

64. Williams CM, Harper MT, Poole AW. PKCα negatively regulates in vitro proplatelet formation and in vivo platelet
production in mice. Platelets. 2014;25(1):62–8.

65. Ault KA, Rinder HM, Mitchell J, Carmody MB, Vary CP, Hillman RS. The significance of platelets with increased RNA
content (reticulated platelets). A measure of the rate of thrombopoiesis. Am J Clin Pathol. 1992;98(6):637–46. https://doi.
org/10.1093/ajcp/98.6.637.

66. Bö L, Dawson TM, Wesselingh S, Mörk S, Choi S, Kong PA, et al. Induction of nitric oxide synthase in demyelinating
regions of multiple sclerosis brains. Ann Neurol. 1994;36(5):778–86. https://doi.org/10.1002/ana.410360515.

67. Ludwin SK. The pathogenesis of multiple sclerosis: relating human pathology to experimental studies. J Neuropathol
Exp Neurol. 2006;65(4):305–18. https://doi.org/10.1097/01.jnen.0000225024.12074.80.

68. Hecker M, Rüge A, Putscher E, Boxberger N, Rommer PS, Fitzner B, et al. Aberrant expression of alternative splicing
variants in multiple sclerosis - A systematic review. Autoimmun Rev. 2019;18(7):721–32. https://doi.org/10.1016/j.autrev.2
019.05.010.

69. Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, et al. Molecular signature of different lesion types in
the brain white matter of patients with progressive multiple sclerosis. Acta Neuropathol Commun. 2019;7(1):205. https://
doi.org/10.1186/s40478-019-0855-7.

70. Gissel H. Ca2+ accumulation and cell damage in skeletal muscle during low frequency stimulation. Eur J Appl Physiol.
2000;83(2-3):175–80. https://doi.org/10.1007/s004210000276.

71. Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos Trans R
Soc Lond B Biol Sci. 2016;5(1700):371(1700). Available from:. https://doi.org/10.1098/rstb.2015.0425.

72. Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler. 2003;9(6):540–9. https://doi.org/1
0.1191/1352458503ms965oa.

73. Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple
sclerosis. Acta Neuropathol. 1995;90(3):228–38.

74. Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, et al. Role
of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014;45(8):687–97.

75. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;
61(4):288–99.

76. Baranzini SE, Srinivasan R, Khankhanian P, Okuda DT, Nelson SJ, Matthews PM, et al. Genetic variation influences
glutamate concentrations in brains of patients with multiple sclerosis. Brain. 2010;133(9):2603–11. https://doi.org/10.1
093/brain/awq192.

77. Strijbis EMM, Inkster B, Vounou M, Naegelin Y, Kappos L, Radue E-W, et al. Glutamate gene polymorphisms predict brain
volumes in multiple sclerosis. Mult Scler. 2013;19(3):281–8. https://doi.org/10.1177/1352458512454345.

Louadi et al. Genome Biology          (2021) 22:327 Page 20 of 22



78. Wang JH, Pappas D, De Jager PL, Pelletier D, de Bakker PI, Kappos L, et al. Modeling the cumulative genetic risk for
multiple sclerosis from genome-wide association data. Genome Med. 2011;3(1):3. https://doi.org/10.1186/gm217.

79. Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of
physiological functions. Methods Mol Biol. 2010;661:3–38. https://doi.org/10.1007/978-1-60761-795-2_1.

80. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40. https://doi.org/10.1038/3
5065000.

81. Shchetynsky K, Protsyuk D, Ronninger M, Diaz-Gallo L-M, Klareskog L, Padyukov L. Gene-gene interaction and RNA
splicing profiles of MAP2K4 gene in rheumatoid arthritis. Clin Immunol. 2015;158(1):19–28.

82. Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A. Common and specific signatures of gene expression and protein-
protein interactions in autoimmune diseases. Genes Immun. 2013;14(2):67–82.

83. GJA t B, Bolk J, `t Hart BA, Laman JD. Multiple sclerosis is linked to MAPKERK overactivity in microglia. J Mol Med. 2021;
Available from:. https://doi.org/10.1007/s00109-021-02080-4.

84. Mass E, Jacome-Galarza CE, Blank T, Lazarov T, Durham BH, Ozkaya N, et al. A somatic mutation in erythro-
myeloid progenitors causes neurodegenerative disease. Nature. 2017;549(7672):389–93. https://doi.org/10.1038/na
ture23672.

85. Kotelnikova E, Kiani NA, Messinis D, Pertsovskaya I, Pliaka V, Bernardo-Faura M, et al. MAPK pathway and B cells
overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis. Proc Natl Acad Sci U S A.
2019;116(19):9671–6. https://doi.org/10.1073/pnas.1818347116.

86. Krementsov DN, Thornton TM, Teuscher C, Rincon M. The emerging role of p38 mitogen-activated protein kinase in
multiple sclerosis and its models. Mol Cell Biol. 2013;33(19):3728–34.

87. Bernardo-Faura M, Rinas M, Wirbel J, Pertsovskaya I, Pliaka V, Messinis DE, Vila G, Sakellaropoulos T, Faigle W, Stridh P,
Behrens JR. Prediction of combination therapies based on topological modeling of the immune signaling network in
Multiple Sclerosis. Genome Medicine. 2021;13(1):1-6.

88. Maatz H, Jens M, Liss M, Schafer S, Heinig M, Kirchner M, et al. RNA-binding protein RBM20 represses splicing to
orchestrate cardiac pre-mRNA processing. J Clin Invest. 2014;124(8):3419–30. https://doi.org/10.1172/JCI74523.

89. Sheikh F, Lyon RC, Chen J. Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene. 2015;569(1):14–20.
90. Matyushenko AM, Levitsky DI. Molecular Mechanisms of Pathologies of Skeletal and Cardiac Muscles Caused by Point

Mutations in the Tropomyosin Genes. Biochemistry. 2020;85(Suppl 1):S20–33.
91. Caleshu C, Sakhuja R, Nussbaum RL, Schiller NB, Ursell PC, Eng C, et al. Furthering the link between the sarcomere and

primary cardiomyopathies: restrictive cardiomyopathy associated with multiple mutations in genes previously associated
with hypertrophic or dilated cardiomyopathy. Am J Med Genet A. 2011;155A(9):2229–35. https://doi.org/10.1002/a
jmg.a.34097.

92. Brody MJ, Hacker TA, Patel JR, Feng L, Sadoshima J, Tevosian SG, et al. Ablation of the cardiac-specific gene leucine-rich
repeat containing 10 (Lrrc10) results in dilated cardiomyopathy. PLoS One. 2012;7(12):e51621.

93. Gupte TM, Haque F, Gangadharan B, Sunitha MS, Mukherjee S, Anandhan S, et al. Mechanistic Heterogeneity in
Contractile Properties of α-Tropomyosin (TPM1) Mutants Associated with Inherited Cardiomyopathies*. J Biol Chem.
2015;290(11):7003–15.

94. Huang W, Liang J, Yuan C-C, Kazmierczak K, Zhou Z, Morales A, et al. Novel familial dilated cardiomyopathy mutation in
MYL2 affects the structure and function of myosin regulatory light chain. FEBS J. 2015;282(12):2379–93.

95. Herman DS, Lam L, Taylor MRG, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations of titin causing dilated
cardiomyopathy. N Engl J Med. 2012;366(7):619–28. https://doi.org/10.1056/NEJMoa1110186.

96. Marston S, Montgiraud C, Munster AB, Copeland O, Choi O, Dos Remedios C, et al. OBSCN Mutations Associated with
Dilated Cardiomyopathy and Haploinsufficiency. PLoS One. 2015;10(9):e0138568.

97. Marston S. Obscurin variants and inherited cardiomyopathies. Biophys Rev. 2017;9(3):239–43. https://doi.org/10.1007/s12
551-017-0264-8.

98. McNally EM, Mestroni L. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms. Circ Res. 2017;121(7):731–48.
https://doi.org/10.1161/CIRCRESAHA.116.309396.

99. Boczek NJ, Ye D, Jin F, Tester DJ, Huseby A, Bos JM, et al. Identification and Functional Characterization of a Novel CACN
A1C-Mediated Cardiac Disorder Characterized by Prolonged QT Intervals With Hypertrophic Cardiomyopathy,
Congenital Heart Defects, and Sudden Cardiac Death. Circ Arrhythm Electrophysiol. 2015;8(5):1122–32.

100. Mouton J, Ronjat M, Jona I, Villaz M, Feltz A, Maulet Y. Skeletal and cardiac ryanodine receptors bind to the Ca(2+
)-sensor region of dihydropyridine receptor alpha(1C) subunit. FEBS Lett. 2001;505(3):441–4. https://doi.org/10.1016/
S0014-5793(01)02866-6.

101. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
102. Ather S, Respress JL, Li N, Wehrens XHT. Alterations in ryanodine receptors and related proteins in heart failure. Biochim

Biophys Acta. 2013;1832(12):2425–31. https://doi.org/10.1016/j.bbadis.2013.06.008.
103. Yano M, Yamamoto T, Kobayashi S, Matsuzaki M. Role of ryanodine receptor as a Ca2+ regulatory center in normal and

failing hearts. J Cardiol. 2009;53(1):1–7. https://doi.org/10.1016/j.jjcc.2008.10.008.
104. Moccia F, Lodola F, Stadiotti I, Pilato CA, Bellin M, Carugo S, et al. Calcium as a Key Player in Arrhythmogenic

Cardiomyopathy: Adhesion Disorder or Intracellular Alteration? Int J Mol Sci. 2019;16(16):20(16). Available from:. https://
doi.org/10.3390/ijms20163986.

105. Jaffrey SR, Wilkinson MF. Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and
disease. Nat Rev Neurosci. 2018;19(12):715–28.

106. Schwerk C, Schulze-Osthoff K. Regulation of apoptosis by alternative pre-mRNA splicing. Mol Cell. 2005;19(1):1–13.
107. List M, Alcaraz N, Dissing-Hansen M, Ditzel HJ, Mollenhauer J, Baumbach J. KeyPathwayMinerWeb: online multi-omics

network enrichment. Nucleic Acids Res. 2016;44(W1):W98–104.
108. Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across

taxonomic space. Database. 2011;2011:bar030.
109. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set

enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7. https://doi.org/10.1093/nar/
gkw377.

Louadi et al. Genome Biology          (2021) 22:327 Page 21 of 22



110. Signorelli M, Vinciotti V, Wit EC. NEAT: an efficient network enrichment analysis test. BMC Bioinformatics. 2016;17(1):352.
https://doi.org/10.1186/s12859-016-1203-6.

111. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple
Testing. J Royal Stat Soc: Ser B (Methodological). 1995;57:289–300. Available from:. https://doi.org/10.1111/j.2517-
6161.1995.tb02031.x.

112. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T, Babor M, et al. A highly conserved
program of neuronal microexons is misregulated in autistic brains. Cell. 2014;159(7):1511–23. https://doi.org/10.1
016/j.cell.2014.11.035.

113. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15–21.

114. Van Der Walt S, Chris Colbert S, Varoquaux G. The NumPy array: a structure for efficient numerical computation. arXiv
[cs.MS]. 2011; Available from: http://arxiv.org/abs/1102.1523.

115. McKinney W, Others. Data structures for statistical computing in python. Proceedings of the 9th Python in Science
Conference. 2010;445:51–6. https://doi.org/10.25080/Majora-92bf1922-00a.

116. Hagberg A, Swart P, S Chult D. Exploring network structure, dynamics, and function using networkx. Proceedings of the
7th Python in Science Conference (SciPy2008). 2008;11-15.

117. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nat Methods. 2020;17(3):261–72. https://doi.org/10.1038/s41592-019-0686-2.

118. Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling with python. Proceedings of the 9th Python in
Science Conference. https://doi.org/10.25080/Majora-92bf1922-011.

119. Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pract Exp. 1991;21:1129–64.
Available from:. https://doi.org/10.1002/spe.4380211102.

120. Shen S, Park JW, Lu Z-X, Lin L, Henry MD, Wu YN, et al. rMATS: robust and flexible detection of differential alternative
splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A. 2014;111(51):E5593–601.

121. Sterne-Weiler T, Weatheritt RJ, Best A, Ha KCH. Whippet: an efficient method for the detection and quantification of 944
alternative splicing reveals extensive transcriptomic complexity. bioRxiv. 2017. https://doi.org/10.1101/158519

122. Louadi Z. NEASE: A network-based approach for the enrichment of alternative splicing events. Github. 2021. Available
from: https://github.com/louadi/NEASE. Accessed 22 Nov 2021.

123. Louadi Z. NEASE: v.1.1.6. Zenodo; 2021. Available from:. https://doi.org/10.5281/zenodo.5653490.
124. Louadi Z. NEASE-tutorials: v1.2. Zenodo; 2021. Available from: https://doi.org/10.5281/ZENODO.5562626

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Louadi et al. Genome Biology          (2021) 22:327 Page 22 of 22



Appendix C

Appendix: Teaching and
Supervision Record

• Teaching Assistant for Systems BioMedicine class in TUM/LMU

• Teaching Assistant for Advanced Bioinformatics class in TUM/LMU

• Master’s thesis supervision: “Methods forinferring patient-specific dysreg-
ulated networks using regression.” Johannes Josef Kersting.

• Bachelor’s thesis supervision: “Predicting tissue-specific splicing factor
expression from whole blood expression.”, Ningyue Zhou.

• Bachelor’s thesis supervision: “Predicting alternative splicing in non-accessible
tissues using machine learning.”, Deniz Enes Hasler.

• Bachelor’s thesis supervision: “Systematic identification of rare splicing
events in a disease context.” Anna Schuster.

84



List of Figures

1.1 An illustration of the transcription process. The TF complex
bends the DNA by binding in the enhancer and promoter regions
and facilitates the binding of the RNA polymerase that produces
the pre-mRNA. Created with BioRender.com. . . . . . . . . . . . 2

1.2 A pre-mRNA with 5 exons is produced from the gene’s tran-
scription. The alternative splicing process results in different
combinations of exons that make 3 mature mRNA. The tran-
script variants, in the example, are protein-coding and thus tran-
scribed to 3 proteins. These protein isoforms are similar in amino
acid composition and share some of the structures. Created with
BioRender.com. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The most common alternative splicing types. Created with BioRen-
der.com. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 An example of a three-dimensional structure of the protein Spike
glycoprotein (SPIKE SARS2) from the virus SARS-CoV-2. Gen-
erated from (https://swissmodel.expasy.org/ [85]). . . . . . . . . 8

1.5 Overview of common transcriptomics data analysis methods. Cre-
ated with BioRender.com. . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Splicing quantification with RNA-Seq. Created with BioRen-
der.com. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Impact of AS on protein-protein interactions and limitations of
the current databases. (A-D) An illustration of two isoforms
with different protein domains and interaction partners. (E) The
current PPI representation neglects the effect of the alternative
splicing and causes both false negative and false positive interac-
tions. Created with BioRender.com . . . . . . . . . . . . . . . . . 18

2.2 Current approach for functional enrichment of AS-events and a
comparison with the method of NEASE. The proposed method
relies only on the interactions of the domains and residues affected
by splicing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

85



LIST OF FIGURES

3.1 Overview of DIGGER method that incorporates protein-protein
interaction with domain-domain interactions in a joint graph.
DIGGERS offer three modes of analysis: exon-, isoform-, and
network- levels (Reprinted from DIGGER’s publication [46], an
open-access article under the terms of the Creative Commons
Attribution 4.0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 DIGGER constructs a condition-specific PPI and highlights do-
mains absent in the user-submitted isoforms and their interac-
tions (Reprinted from DIGGER’s publication [46]). . . . . . . . . 27

3.3 The workflow of the network-level analysis mode of DIGGER.
DIGGER process the user input that contains a list of transcripts
or protein IDs and constructs a condition-specific PPI by iden-
tifying the interactions specific to the isoforms in the list and
removing the rest. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Overview of NEASE’s procedure to run functional enrichment
of alternative splicing events (Reprinted from NEASE’s publica-
tion [47], an open-access article under the terms of the Creative
Commons Attribution 4.0 License). . . . . . . . . . . . . . . . . . 31

3.5 Navigation through DIGGER database (Reprinted from the Sup-
plementary Information of DIGGER’s publication [46]). . . . . . 36



List of Tables

3.1 An example of a contingency table representation for enrichment
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Source code and data availability . . . . . . . . . . . . . . . . . . 36

87


	Acknowledgements
	Abstract
	Zusammenfassung
	Publication Record
	Contents
	Introduction
	Biological background
	Gene regulation
	Alternative splicing 
	Overview
	Tissue-specific splicing
	Mis-splicing in diseases

	Proteins structure and interactions
	Overview on proteins
	Protein structure
	Protein-protein interactions


	Computational methods for transcriptomics
	Overview of gene-level analysis
	Splicing-level quantification and differential analysis

	Overview of the thesis
	Aim and motivation
	Outline


	State-Of-The-Art and Challenges
	Overview
	Current approaches for interpreting expression profiles
	AS meets system biology: limitations and challenges
	AS impact on protein-protein interactions
	Functional interpretation of AS events


	Materials and Methods 
	Datasets and tools
	Data sources
	RNA-Seq datasets

	DIGGER: method description
	Network biology notations
	Joint graph construction
	Network-level analysis of DIGGER

	NEASE: method description
	Overview on the hypergeometric distribution
	Fisher's exact test for enrichment analysis
	Statistics and hypothesis testing in NEASE
	Overview of the method
	NEASE metrics for genes and pathways ranking
	Permutation tests


	Implementation of the tools and availability

	Publications
	DIGGER: exploring the functional role of alternative splicing in protein interactions
	Functional enrichment of alternative splicing events with NEASE reveals insights into tissue identity and diseases

	Discussion and Outlook
	Impact and applications of the work
	Application of NEASE in time series analysis

	Limitation and outlook
	Proteomics approaches to further uncover AS impact
	More structural data is needed
	Understanding the splicing regulation is crucial toward a system biology interpretation
	Addressing patient specificity and heterogeneity


	Bibliography
	Appendix: First publication
	Appendix: Second publication
	Appendix: Teaching and Supervision Record
	List of Figures
	List of Tables

