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Summary 

Multiple Sclerosis is an auto-immune disorder of the central nervous system characterized 

by inflammatory demyelination and neurodegeneration of the brain. Neuroradiologic assessment 

of MR images plays an important role in the diagnosis of the disease as well as in the long-term 

monitoring of disease activity. Gadolinium-based contrast agents are often used to identify 

inflammatory active lesions and serve as a proxy for active disease. Such contrast agents have 

been shown to accumulate in the body leading to potential toxic effects. Nevertheless, since MS 

patients are typically young at disease onset and require regular follow-up scans, our goal was to 

develop a lesion-level deep learning approach to predict lesion enhancement in non-enhanced 

MRI scans of MS patients. Such an approach would ideally negate the requirement to use contrast 

agents. In total, 485 consecutive patients with 1034 exams from a prospective observational 

cohort of Multiple Sclerosis patients were included in this analysis (scanned between 01/2008 

and 09/2017). 10,311 lesion-level patches were generated from 297 patients (Mean age: 34.8 

years ± 9.7, Ratio Female: Male 196:101) to train a deep convolutional neural network (85% 

training, 15% validation) to discriminate between enhancing and non-enhancing lesions. Manual 

annotation of individual lesions enhancement on T1-weighted images after contrast 

administration served as the ground truth. This network was then tested on the remaining 188 

patients (Mean age: 33.9 years ± 9.1, Ratio Female: Male 130:58). Network performance was 

statistically assessed by AUC, sensitivity, specificity and accuracy analysis. On the lesion-level, 

an AUC of 0.905 was observed. A pre-specified probability threshold of 0.75 allowed for 

identification of enhancing lesions with a sensitivity of 47.65%, specificity of 97.27% and accuracy 

of 95.27%. On patient-level, the network exhibited a sensitivity of 82.76%, specificity of 66.15% 

and accuracy of 71.28%. An external data set of 29 patients was additionally used to validate and 

confirm these results. Our study revealed that a deep learning approach at the lesion-level is 

effective in predicting contrast-enhancing lesions from non-enhanced MRI images of patients with 

MS. 
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Zusammenfassung 

Multiple Sklerose ist eine Autoimmunerkrankung des zentralen Nervensystems, die durch 

entzündliche Demyelinisierung und Neurodegeneration des Gehirns gekennzeichnet ist. Die 

neuroradiologische Beurteilung von MR-Bildern spielt eine wichtige Rolle bei der Diagnose der 

Krankheit sowie bei der langfristigen Überwachung der Krankheitsaktivität. Kontrastmittel auf 

Gadolinium Basis werden häufig zur Identifizierung entzündlich-aktiver Läsionen verwendet und 

dienen als Indikator für eine aktive Erkrankung. Es hat sich gezeigt, dass sich solche 

Kontrastmittel im Körper anreichern und zu potenziell toxischen Wirkungen führen können. Da 

MS-Patienten bei Ausbruch der Krankheit in der Regel jung sind und regelmäßige 

Nachuntersuchungen benötigen, war es unser Ziel, einen Deep-Learning-Algorithmus auf 

Läsionsebene zu entwickeln, um die entzündlich-aktiven Läsionen in nativen MRT-Scans von 

MS-Patienten vorherzusagen. Ein solcher Ansatz würde im Idealfall den Einsatz von 

Kontrastmitteln überflüssig machen. Insgesamt wurden 485 konsekutive Patienten mit 1034 

Untersuchungen aus einer prospektiven Kohorte von Multiple-Sklerose-Patienten in diese 

Analyse einbezogen (gescannt zwischen 01/2008 und 09/2017). Von 297 Patienten 

(Durchschnittsalter: 34,8 Jahre ± 9,7, Verhältnis weiblich:männlich 196:101)  wurden 10.311 

Patches auf Läsionsebene generiert, um ein neuronales Netzwerk zu trainieren (85 % Training, 

15 % Validierung), um zwischen potenziell Kontrastmittel anreichernden und nicht-anreichernden 

Läsionen zu unterscheiden. Die manuelle Annotation der Läsionen auf Basis der T1-gewichteten 

Bildern nach Kontrastmittelgabe diente dabei als Grundwahrheit. Dieses Netzwerk wurde dann 

an den verbleibenden 188 Patienten (Durchschnittsalter: 33,9 Jahre ± 9,1, Verhältnis 

weiblich:männlich 130:58) getestet. Die Leistung des Netzwerks wurde anhand von AUC-, 

Sensitivitäts-, Spezifitäts- und Genauigkeitsanalysen statistisch bewertet. Auf der Ebene der 

Läsionen wurde dabei eine AUC von 0,905 beobachtet. Bei einem vorgegebenen 

Wahrscheinlichkeitsschwellenwert von 0,75 konnten anreichernde Läsionen mit einer Sensitivität 

von 47,65 %, einer Spezifität von 97,27 % und einer Genauigkeit von 95,27 % identifiziert werden. 

Auf Patientenebene wies das Netzwerk eine Sensitivität von 82,76 %, eine Spezifität von 66,15 

% und eine Genauigkeit von 71,28 % auf. Zusätzlich wurde ein externer Datensatz von 29 

Patienten zur Validierung verwendet, der diese Ergebnisse bestätigte. Unsere Studie zeigte, dass 

ein Deep-Learning-Ansatz auf Läsionsebene bei der Vorhersage von kontrastanreichernden 

Läsionen aus nativen MRT-Bildern von Patienten mit MS ein vielversprechender Ansatz ist. 
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Abbreviations 

MS – Multiple Sclerosis 

GBCA – Gadolinium Based Contrast Agents 

CIS – Clinically Isolated Syndrome 

RRMS – Relapsing Remitting MS 

CNN – Convolutional Neural Network 

DL – Deep Learning 

ML – Machine Learning 

DMT – Disease Modifying Therapy 

FLAIR – Fluid-attenuated inversion-recovery 

LST – Lesion Segmentation Tool 

ANT – Advanced Normalization Tool 

SPMS – Secondary progressive MS 

ROC – Receiver Operating Characteristic 

AUC – Area Under the Curve 

TP – True Positive 

TN – True Negative 

FN – False Positive 

CE- – Manually labelled as non-enhancing 

CE+ – Manually labelled as contrast-enhancing 

Pred CE- – Predicted to be non-enhancing 

Pred CE+ – Predicted to be enhancing 

EDSS – Expanded Disability Status Scale 
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Introduction 

Multiple Sclerosis (MS) is an auto-immune disease of the central nervous system 

characterized by inflammatory demyelination followed by axonal and neuronal degeneration 

(McGinley et al., 2021; Reich et al., 2018). More than 2.5 million people are affected worldwide 

(Reich et al., 2018; Tullman, 2013). MS patients often initially present with a neurological episode 

that lasts at least 24 hours, which is referred to as Clinically Isolated Syndrome (CIS) (Tafti et al., 

2021). As disease progresses, MS patients can be divided into 4 groups based on their disease 

course: relapsing-remitting MS (RRMS), primary-progressive MS (PPMS), secondary-

progressive MS (SPMS) and in 5% of cases as Progressive-relapsing MS (PRMS) (Figure 1) 

(Lublin & Reingold, 1996; Tafti et al., 2021). RRMS is the most prevalent form and is defined by 

a sequence of attacks followed by recovery over time, PPMS is characterized by a gradual 

progression of symptoms after initial onset, SPMS patients present with a gradual deterioration 

after presentation with initial RRMS and PRMS patients have gradual decline in parallel to 

recurrent relapses (Figure 1) (Tafti et al., 2021).  

Figure 1. MS Patients can be divided in 4 groups based on the course of the illlness. 

A. Relapsing-Remitting MS (RRMS) B. Primary-Progressive MS (PPMS) C. Secondary-Progressive MS (SPMS) D. 
Progressive-Relapsing MS (PRMS). Image modified from (Stephen et al., 2016). 
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Although the exact cause of MS remains unknown, from a pathology perspective, MS 

lesions in the brain can be characterized as being pre-active, active or inactive (Jonkman et al., 

2015; Reich et al., 2018; Van Der Valk & De Groot, 2000). Pre-active lesions display aggregations 

of microglia, but display no changes in myelination, active lesions display partial demyelination 

with the presence of immune cells and inactive lesions show complete demyelination as well as 

an absence of immune cells (Van Der Valk & De Groot, 2000).  At a given point in time, a patient 

Figure 2. MR scans of a patient with active RRMS. 

A. T2w image B. FLAIR image C. Contrast-enhanced T1w image. Both enhancing and non-enhancing lesions are 
observed depicting the various stages of lesion progression. Small lesions are only visible on FLAIR and depicted with 
white arrows. Contrast enhancing lesions are shown with yellow arrows. Image modified from (Ge, 2006). 

may have a combination of several lesion types with a weak correlation with clinical symptoms 

(Jonkman et al., 2015; Li et al., 2006). Neuroradiographic assessment plays an increasingly 

important diagnostic role in the diagnosis of lesions in vivo as described in the original McDonald 

criteria (Mcdonald et al., 2001). Diagnostic criteria have been refined such that an MS diagnosis 

can be made solely through a single contrast-enhanced study, which reveals dissemination in 

time through the simultaneous presence of enhancing and non-enhancing lesions as well as 

dissemination in space by identifying lesions in several pre-defined anatomical areas (Thompson 

et al., 2018).  

Active inflammatory lesions are visualized through intravenous injections of Gadolinium-

based contrast agents (GBCA) coupled to a chelating agent (Saade et al., 2018). Contrast-

enhancement is indicative of active inflammatory processes in and surrounding a lesion with a 
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disruption of the blood-brain-barrier (BBB) (Brück et al., 1997; Saade et al., 2018). Figure 2 is a 

sample MRI sequence (T2w, FLAIR and contrast-enhanced T1w images) of an RRMS patient 

with an active contrast enhancing lesion as well as non-enhancing lesions (Ge, 2006). The 

identification of enhancing lesions has been shown to be more sensitive for determining new 

disease activity than clinical monitoring (Barkhof et al., 1992). These lesions, greatly varying in 

shape and size, appear in the form of homogenous enhancing nodules and over time develop 

into enhanced ringlike structures (Ge, 2006). Due to the chronic nature of MS, patients are often 

monitored through repeated contrast-enhanced MR imaging over many years.  

Figure 3. Electron microscopy of post-mortem tissues show accumulation of GBCAs. 

Dentate nuclei from A, control patient and, B, contrast group patient. X-ray spectra of dense foci (arrow); Peaks in red 

indicate gadolinium. C= carbon, Cs = cesium, Cu = copper, Gd = gadolinium, O = oxygen, Os = osmium, Pb = lead, Ti 

= titanium, V = vanadium. Image modified from (Mcdonald et al., 2015).  

The use of GBCAs have been shown to be associated with toxic health effects 

(Rogosnitzky & Branch, 2016). Repeated exposure to Gadolinium can cause adverse effects at 

a range of 0.03% to 2.4% with detrimental effects documented in the central nervous system as 

well as in other parts of the body as seen through nephrogenic systemic fibrosis (NSF) (Kanal et 

al., 2014; Kanda et al., 2016; Rogosnitzky & Branch, 2016). Development of NSF can lead to 

severe disablement and death (Swaminathan et al., 2008). The continuous use of contrast agents 

have been shown to be detrimental to the body. Furthermore, GBCA has shown to accumulate in 

the brain also in patients with normal kidney function (Errante et al., 2014; Kanda et al., 2014).  

Electron microscopic and mass spectrometric analysis of post-mortem brain tissue has 

localized intracranial Gadolinium deposition to capillary endothelium as well as neural interstitium 

of the dentate nucleus and globus pallidus (Figure 3) (Mcdonald et al., 2015). Kanda et al. further 
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demonstrated that the degree of hyperintensity correlated with the number of previous Gadolinium 

administrations (Kanda et al., 2014). Therefore, various organizations such as the International 

Society for Magnetic Resonance in Medicine and the Consortium of MS Centers have advocated 

caution in administration of GBCA (Gulani et al., 2017). This has led to the development of 

alternative efforts to avoid application of GBCAs. Nonetheless, identification of active 

inflammation through contrast-enhancement still carries clinically relevant information. 

Figure 4. Overview of a Deep Learning algorithm. 

DL algorithms consist of two major steps: A training step and a testing step. In the first step, a set of images are used 

as input to generate a network (Convolutional Neural Network, CNN) images are identified and clustered based on 

specific properties of the images. Then in a second step, a new image is run through the CNN to classified based on 

the properties attributed in the network. Image modified from (Webb, 2018). 
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Over the last several years, deep learning (DL) algorithms have proven to be effective in 

solving complex problems in the fields of biology and medicine. Modern DL algorithms in image 

analysis are based on convolutional neural networks (CNNs) generated to identify hidden patterns 

through training on large datasets (Webb, 2018). DL networks are characterized by the presence 

of multiple layers between input and output (Huang et al., 2017), allowing them to learn complex 

nonlinear mappings between input and output variables. After a network has been trained a new 

dataset can be applied to it in order to extract meaningful information (Figure 4). DL approaches 

have been used in the mining of genomic data to identify Single Nucleotide Polymorphisms, for  

Figure 5. Schematic representation of an interconnected DenseNet Block.  

The block consists of 5 layers that receive input from all other layers. Image modified from (Huang et al., 2017). 

virtual drug screening and for the stratification of disease types (Carpenter et al., 2018; Poplin et 

al., 2018; Webb, 2018). Recently DL approaches have also been used in the field of radiology for 

lesion detection, segmentation (Li et al., 2018) and classification (Narayana et al., 2020) in MS. 
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We hypothesized that contrast-enhancing, “active” MS lesions show a distinct imaging phenotype 

on non-enhanced images, which a neural network can recognize. 

To test our hypothesis, we trained and validated a deep learning classifier on a segmented 

lesion-level library of MS patients with contrast-enhancing and non-enhancing lesions to learn the 

characteristics of a typical contrast-enhancing lesion. To generate the classifier we made use of 

a DenseNet, a type of network architecture where all layers are interconnected in a feed-forward 

structure as seen in figure 5 (Huang et al., 2017). DenseNets have been proposed to significantly 

improve deep learning networks due to their simplified connectivity pattern, reduced redundancy 

and improved feature propagation (Huang et al., 2017).   

Our second objective was to apply the DenseNet to a test data set to predict lesions that 

would be contrast-enhancing on follow-up and assess accuracy of the network. In a further step, 

we sought to determine if we could predict which patients would have enhancing lesions in a 

follow up scan using only the baseline images. We accomplished this using the results of our 

classifier in an exploratory analysis to generate a multivariate model. The results of the model 

were then compared with the follow up scans to determine if the predictions were significantly 

associated with the manual annotations.  
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Materials and Methods 

Study participants 

For this study a secondary analysis of a monocentric prospective observational cohort 

was conducted. Data was collected from MS patients treated in the Neurology Department of the 

Klinikum rechts der Isar. Our local institutional review board reviewed and approved this study. 

Additionally participants were informed about the study and provided written consent to 

participate. 

Our inclusion criteria considered all patients newly-diagnosed with Clinically Isolated 

Syndrome (CIS) or Relapsing Remitting MS (RRMS) that have been scanned at a Philips Achieva 

3T scanner with a standardized scan protocol. The patient collective was restricted to a time 

period between 01/2008 and 09/2017 and only those with a follow-up scan at least within a 32 

months period from their first image were considered. Patients treated with Disease Modifying 

Therapies  (DMT) for a period longer than 6 months at the point of presentation for their first scan 

or patients diagnosed more than 3 years prior to or more than 1 month after their first scan were 

excluded from the study. Furthermore, we also excluded all exams without Gadolinium contrast-

enhanced T1-weighted sequences (n=160), resulting in a final total of 485 patients with 1034 

exams. For training and validation our deep learning algorithm, we used patients with at least four 

exams (n = 297 participants, 846 exams; 85% training, 15% validation).  Additionally, lesions were 

included from both baseline and follow-up studies for these patients. Subsequent to training and 

validation, in order to test the algorithm we used the remaining patients in the cohort and trained 

the algorithm using only baseline images of lesions. (n = 188 participants).  

MR image acquisition, processing and annotation 

For this project, a 3.0-T system (Achieva; Philips Healthcare, Best, the Netherlands, 

Software version 5.1, 8-channel coil) MRI was used for acquiring images. A three-dimensional 

fluid-attenuated inversion-recovery (FLAIR) sequence as well as three-dimensional T1-weighted 

sequences performed before and at least 5 minutes after administration of 0.1 mmol/kg 

gadolinium-based contrast material (Dotarem [gadoterate meglumine]; Guerbet, Villepinte, 

France) was included during image acquisition. For three-dimensional FLAIR images were 

acquired using the following parameters: acquired voxel size, 1.03x1.03x1.5 mm³; repetition time 

10 000 msec, echo time 140 msec; acquisition time, 5 minutes; plane, axial. For three-dimensional 
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T1-weighted gradient-echo imaging, the following parameters were used: acquired voxel size, 

1x1x1 mm³; repetition time 9 msec, echo time 4 msec; acquisition time 6 minutes; plane sagittal. 

The baseline exam from each participant was segmented using the lesion segmentation 

tool (LST) (Schmidt et al., 2012) and in the follow-up exams new or enlarging lesions were 

detected using the longitudinal version of LST (Schmidt et al., 2019). The 2017 McDonald criteria 

was used to automatically categorize the lesion locations anatomically (Thompson et al., 2018) in 

periventricular, (juxta)cortical, subcortical and infratentorial locations, using a non-linear ANTs-

based registration (Avants et al., 2008) to the MNI152 atlas template. In parallel, T1w subtraction 

maps were generated by subtracting the non-enhanced T1w image from the contrast-enhanced 

T1w image. In a following step, baseline segmentations were verified and manually corrected 

(Yushkevich et al., 2006) for accuracy of voxel-level segmentation and localization by a medical 

student and a board certified neuroradiologist with 3 years of experience. In addition, the presence 

of contrast-enhancement was annotated for each lesion using the T1w subtraction maps. In a 

final step, all lesions with a volume less than 7mm3 were removed, as these represent with a high 

likelihood unspecific lesions (Grahl et al., 2019). All completed segmentations were reviewed by 

a neuroradiologist with 17 years of experience in neurological imaging. 

For images of follow-up exams, longitudinal FLAIR subtraction maps were calculated and 

used as a reference for manual corrections of the LST longitudinal segmentation as well as 

determination of the localization of new or significantly enlarged lesions as described previously 

(Eichinger et al., 2019; Eichinger et al., 2017). Similar to the baseline images, we calculated here 

contrast vs. non-contrast T1w subtraction maps and classified individual lesions as contrast-

enhancing or non-enhancing. As with the baseline images, a manual correction of the follow-up 

exams were performed by several specifically trained residents as well as a board-certified 

neuroradiologists and corrected by one experienced board-certified neuroradiologist. 

Prior to subsequent patch extraction, all HD-BET skull-stripped (Isensee et al., 2019) 

images and lesions maps were rigidly transferred to the MNI152 space using ANTs in 1x1x1 mm³ 

resolution. The images were winsorized, within the brain mask, between the 0.1st and 99.9th 

percentile. The intensities were then re-scaled to an interval of [0;1]. For each individual lesion, in 

addition to the total volume (in mm³), the 75th percentile of signal intensity in the T1w subtraction 

maps was also noted. 
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Validation using external cohort 

In order to validate our findings, an independent, external data set comprising 30 MS 

patients was downloaded from the University of Ljubljana (Lesjak et al., 2018). For all of these 

patients, FLAIR images and T1w images before and after contrast agent administration were 

available with the exception of one patient. Additionally, a corresponding manual lesion 

segmentation was also provided. Using T1w subtraction maps, lesion enhancement was 

assessed by a neuroradiologist with 10 years of experience. Steps for image processing were 

identical to those performed on our internal data. 

Deep learning architecture and training 

Huang et al. proposed, in 2017, DenseNets as a means to solve vanishing gradient 

problems and to train deep convolutional neural networks for the classification of images (Huang 

et al., 2017). As this approach met our requirements, we decided to use this architecture for our 

image classification task. In order to optimize information in the foreground and at the same time 

to prevent the need for fully segmented lesion masks as is commonly used in radiomics models, 

we decided to utilize three-dimensional patches extracted around the center of mass of each 

lesion with a voxel size of 16x16x16 as input. For each individual lesion, a concatenation of the 

FLAIR and the non-enhanced T1w patches was used as input for the network. The network used 

in our study was composed of three dense blocks including 6, 12 and 18 convolutional layers. In 

our approach, we start directly with a full resolution dense block which is in contrast to the original 

implementation where an initial down-convolution of the input is performed. A growth rate of 32 

was set, and after the first and second block a transition block with a reduction of 0.5 was carried 

out. After the third (final) dense block, global average pooling was performed along with a dense 

layer with a single sigmoid output neuron. Batch normalization and leaky ReLU activation was 

used for all convolutional layers. 2 weight regularization was applied to all convolutional layers 

to better control overfitting. Table 1 summarizes the network architecture. 

Adam optimizer was used to perform training and binary cross-entropy loss for 250 

epochs. Training was conducted with a polynomial learning rate decay from 0.01 to 0.0001. 

Considering that 90% of lesions were non-enhancing, we adjusted for the class imbalance by 

systematically oversampling enhancing lesions to ensure that they composed 50% of samples in 

each batch (batch size 96). Images were augmented through changes to image morphology and 
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content. This included flipping, rotating, shifting as well as changes in intensity in the form of 

gaussian smoothing and random noise. A total of 5 training runs were performed in order to 

ensemble predictions. Three models were saved for each run: These included the model with 

highest validation AUC, the model with the highest validation F1 score and the final model after 

250 epochs. This led us to have a total of 15 models. An Nvidia P6000 GPU was used for training 

(Nvidia, Santa Clara, California) and Keras/Tensorflow 2.4 for implementation (Abadi et al., 2016). 

The code for generating the 16x16x16 input patches and for defining the model 

architecture and training runs has been deposited in our Github repository can be accessed 

using the following link: https://github.com/CompImg/ms_ce_prediction. 

Table 1. Overview of DenseNet Architecture utilizing 16x16x16x2 input patches. 

ks = kernel size, s = strides 

Layer Architecture Output size 

Dense Block 1 [ks=1,s=1 conv, ks=3,s=1 
conv]*6 

16x16x16 

Transition 1 [ks=1, s=2 conv] 8x8x8 

Dense Block 2 [ks=1,s=1 conv, ks=3,s=1 
conv]*12 

8x8x8 

Transition 2 [ks=1, s=2 conv] 4x4x4 

Dense Block 3 [ks=1,s=1 conv, ks=3,s=1 
conv]*18 

4x4x4 

Classification Global average pooling, 
single sigmoid output 

1x1 

Prediction of Lesion enhancement and statistical analysis 

An average of all predictions for each model type (highest validation AUC, highest 

validation F1 score, final model) from the five runs, yielded three predicted probabilities per input 

lesion. Due to the class imbalance, we anticipated a potential tendency for false-positive labelling 

during validation. Consequently, we set a probability threshold of 0.75 for each prediction in order 

for it to classified as “enhancing”, and additionally conducted majority voting. Using this approach 

https://github.com/CompImg/ms_ce_prediction


Page 18 of 42 

it was necessary that at least two models predict a lesion to be “enhancing” with a probability 

greater than 0.75 in order for a final classification of a lesion as “enhancing”. 

In a next step, we calculated prediction probabilities for the internal test set and the 

external data set from the University of Ljubljana. Each individual lesion was classified in a binary 

manner as described above. Classification performance was evaluated from the prediction 

probabilities using the AUC of a receiver operating characteristic curve. Subsequently, diagnostic 

accuracies using confusion matrices and derived measures i.e. sensitivity or specificity were 

calculated for binary lesion prediction. In order to understand accuracy on a patient level, we 

aggregated data on a participant-wise basis. A participant was determined to have enhancing 

lesions if our model predicted one or more lesions to be “enhancing” and/or if the participant truly 

had enhancing lesion in the ground truth. Additionally, we explored lesion volume data from the 

segmentation maps and correlated this with lesions predicted to be enhancing or non-enhancing 

to determine any potential relationships. 

In a final step, to determine the value of our predictions for later disease activity, we 

compared lesions predicted to be enhancing with truly enhancing lesions. For this purpose, we 

searched for new or significantly enlarged lesions for each participant using subsequent follow-

up scans. These data were then subjected as a binary dependent variable to multivariate logistic 

regression models. 
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Results 

Patient demographics and flowchart 

A description of the patients that participated in this study is summarized on Table 2. As 

mentioned in the materials and methods, patients with Clinically Isolated Syndrome (CIS) or 

Relapsing Remitting MS (RRMS) were used for the study. As expected, patients in the training 

and testing data sets are very similar to each other (all comparisons p > 0.25), except for a slightly 

lower EDSS as baseline in the testing cohort (p = 0.04). Patients from the external data had a 

higher EDSS and were on average older. Additionally, a small proportion of patients were 

diagnosed with secondary progressive MS (SPMS) (3 / 29).  

Based on our inclusion criteria, a total of 774 patients were initially identified to fit our 

study.  Among these patients, we excluded 289 due to scans being outside of the time window 

specified for the study and/or due to missing contrast enhancing images. In the end, a total of 485 

patients were used in the final analysis. These patients were diagnosed with either the CIS or 

RRMS forms of Multiple Sclerosis. A flow diagram of the patients included in the study is 

summarized n Figure 6. 

Table 2. Overview of patient demographics in study.  

SD: standard deviation, CIS: clinically isolated syndrome, RRMS: relapsing-remitting MS, SPMS: secondary 

progressive MS; EDSS: Expanded Disability Status Scale, IQR: inter-quartile range 

Internal 
training/validation data (n 

= 297 participants) 

Internal test data (n = 188 
participants) 

External test data (n = 29 
participants) (Lesjak et 

al., 2018) 

Age (years, mean ± SD) 34.8 ± 9.7 33.9 ± 9.1 39.3 ± 10.1 

Sex (f, m) 196 / 101 130 / 58 22 / 7 

MS type 
(CIS / RRMS / SPMS) 

110 / 187 / 0 78 / 110 / 0 3 / 24 / 2 

Mean disease duration at 
baseline (years, mean ± 

SD) 
0.3 ± 0.7 0.4 ± 1.4 Not provided 

EDSS at baseline 
(median ± IQR] 

1.5 (1.0 – 2.0) 1.0 (0 – 2.0) 2.0 (1.5 - 4.0) 
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Figure 6. Flow diagram providing overview of study participants. 

A total of 774 patients were eligible based on diagnostic and radiologic inclusion criteria. All patients with scans outside 

the desired timeline as well as patients with missing images were excluded in final analysis. The final cohort consisted 

of 485 patients. 

Manual segmentation and annotation of lesions 

Initial LST segmented lesions served as the baseline for the study. Subsequently, lesions 

were manually annotated to be either enhancing or non-enhancing. As a proof of principle, images 

manually annotated to be enhancing display a higher T1w subtraction signal compared to those 

annotated to be non-enhancing (Figure 7), (unpaired t test, p < 0.001). Interestingly, lesions that 

were annotated to be enhancing were also found to be larger in volume when compared to the 

non-enhancing images (unpaired t test, p < 0.001).  
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Figure 7. Detecting enhancing lesions through manual annotation. 

As expected, results of manual annotation demonstrated that humans can identify and differentiate enhancing lesions 

from non enhancing ones. A. The top 75% of the manually annotated lesions displayed a higher T1w subtraction signal 

in the set of lesions identified as contrast-enhancing. B. Volumetric analysis of these lesions show that they are larger 

in size compared to non-enhancing lesions 

Deep learning algorithm to identify enhancing lesions 

In order to identify lesions that are potentially enhancing, we used a lesion-level deep 

learning approach using the manually annotated enhanced images as ground truth images.  a 

total of 10,311 lesions (981 enhancing lesions, 9,330 non-enhancing lesions) from 846 MR exams 

of 297 participants were used to train the network. Among these images, 85% were used for 

training and 15% were used for validation of images. To verify that our algorithm was indeed 

learning from our test images, we generated loss curves for each of the 5 learning runs. As shown 

in figure 8, each of the loss curves demonstrate a high learning rate.  
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Figure 8. Loss vs. Epoch curve of 5 training runs. 

The loss curves demonstrate that the network has a high learning rate. Please note that the curves have been stacked 
to allow for easier visibility of the individual runs. For graphs of individual runs, refer to appendix. 

On application of the resulting algorithm ensemble on our test data set of 188 participants 

with 4,232 lesions (170 enhancing lesions, 4062 non-enhancing lesions) we obtained an AUC of 

0.905 for predicting CE at the lesion level (Figure 9). 
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Figure 9. ROC curve. 

Utilizing various probability thresholds, ROC show the correlation of the true positive rate vs the false positive rate for 

detection of enhancing lesions. The dashed blue line indicates potential outcomes based on chance. Orange line shows 

the average ROC. Mean area under the receiver operating characteristic curve (AUC) is 0.905. 

Figure 10. Selected sample of Lesion-wise classification. 

All lesions classified by the algorithm were compared to the groundtruth to verify enhancement. Subsequently, lesions 

were then annotated as either true positive (TP), true negative (TN), false negative (FN) and false positive (not shown). 

Yellow arrow shows a lesion that was classified to be a FN lesion.  

Taking advantage of majority voting on a probability threshold of 0.75, as outlined in the 

Methods section, we showed a binary accuracy of 95.27% (4032 of 4232 lesions correctly 

classified) on lesion level. Figure 10 shows a sample visual depiction of how the lesions are 

classified through our algorithm. On a lesion-level, specificity was determined to be very high 

(97.27%), while sensitivity was relatively lower (47.65%). On a patient-level, where patients are 

dichotomized as either having no enhancing lesions (true or predicted) or at least one enhancing 
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lesion (true or predicted), accuracy was 71.28% (134 of 188 patients correctly classified), 

sensitivity 82.76% and specificity 66.15%.  

In order to better understand enhancing lesions, we looked at additional lesion properties 

in more detail. It was determined that lesions predicted to be contrast-enhancing indeed displayed 

significantly higher T1w subtraction map intensities, despite our model never seeing contrast-

enhanced T1w images (Figure 11A). This difference was determined to be statistically highly 

significant (unpaired t test, p < 0.001). Furthermore, a difference in lesion volume was also 

determined to be significant between both groups (unpaired t test, p < 0.001), with lesions 

predicted to be enhancing possessing a greater volume (Figure 11B). Surprisingly, a comparison 

with the ground truth yielded a similar effect: Enhancing lesions were found to be significantly 

larger in comparison to non-enhancing lesions (unpaired t test, p < 0.001). It is likely that this 

association is also partly responsible for samples being misclassified. From our observations, 

samples falsely predicted to be non-enhancing (false-negative) were significantly smaller in 

comparison to those wrongly predicted to be enhancing (false-positive) (Figure 11C; unpaired t 

test, p = 0.004). 
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Figure 11. DL algorithm classification of enhancing lesions 

A. In the test data set using a probability threshold of 0.75, lesions predicted to be enhancing by our DL algorithm had 

a significantly higher t1 subtraction signal. After selecting threshold, prediction data was binarized so that 0 represents 

non-enhancing lesions and 1 represents enhancing lesions. B. Analysis of additional lesion properties revealed that 

enhancing lesions in comparison to non-enhancing lesions are significantly larger in volume. C. Comparison with 

manually annotated images reveal that enhancing lesions that were predicted not be enhancing also have larger 

volumes. 

Table 3. Confusion matrix on lesion level and patient level.  

Sensitivity, Specificity and Accuracy of the predictions are shown below. CE-: Manually labelled as non-enhancing, 

CE+: Manually labelled as contrast-enhancing, Pred CE-: Predicted to be non-enhancing and Pred CE+: Predicted to 

be enhancing. 

Pred CE- Pred CE+ Sensitivity Specificity Accuracy 

Lesion-Level 
CE- 3951 111 

47.65% 97.27%  95.27% 
CE+ 89 81 

Patient-level 
CE- 86 44 

82.76% 66.15% 71.28% 
CE+ 10 48 
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Validation with external data set from Lesjak et al., 2018 

As a further validation of our prediction we used an external MSl dataset of 29 patients 

that was publicly available from the University of Ljubljana (Lesjak et al., 2018). ROC analysis of 

this dataset provided a similar AUC to our internal dataset with a value of 0.967 (Figure 12A). 

Further analysis of intensities and volumes of lesions from T1w subtraction maps revealed 

consistency with our internal test data (Figure 12B, 12C). Additionally, lesion-level sensitivity was 

calculated to be 93.33%, specificity to be 99.43% and accuracy to be 99.39%. On a patient level, 

sensitivity as determined to be 100%, specificity to be 75% and accuracy to be 82.76% (Table 4). 

Figure 12. Validation of results using an external dataset (Data from Lesjak et al., 2018).  

A. ROC analysis revealed an AUC of 0.967. Analysis of T1 Subtraction signals B, and lesion volumes, C, of predicted 

lesions reflected results of our internal test data. 
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Table 4. Confusion matrix using external dataset (Data from Lesjak et al., 2018).  

Sensitivity, Specificity and Accuracy of the predictions are shown below: CE-: Manually labelled as non-enhancing, 

CE+: Manually labelled as contrast-enhancing, Pred CE-: Predicted to be non-enhancing and Pred CE+: Predicted to 

be enhancing. 

Pred CE- Pred CE+ Sensitivity Specificity Accuracy 

Lesion-Level 
CE- 2276 13 

93.33% 99.43% 99.39% 
CE+ 1 14 

Patient-level 
CE- 15 5 

100% 75% 82.76% 
CE+ 0 9 

In order to investigate the clinical value of prediction we conducted an exploratory analysis 

of lesion-wise contrast-enhancement from non-enhanced scans. For this purpose, we calculated 

multivariable logistic regression models to predict disease activity and progression (i.e. new or 

significantly enlarged lesion) in follow-up scans of patients. As exploratory variables, we used 

total number of lesions that were predicted to be contrast-enhancing (Table 4A) or the patient-

wise absence or presence of lesions that were predicted to be enhancing (Table 4B). Considering 

the importance of lesion volume for the clinical disease severity and the prediction of our model, 

we used, in both models, total lesion volume as a covariate. A significant association was 

determined for both the lesion count predicted to be enhancing and the binary patient-wise label 

with imaging-assessed disease activity in the follow-up scan. 
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Table 5. Multivariable logistic regression model for predicting active disease and lesion count 

Model A) Count of lesions predicted “enhancing” 

Variable Regression coefficient 
(95% CI) 

p value 

Intercept 0.0058 (-0.381 - 0.393) 0.976 

Total lesion volume (mm³) 5.222e-5 (-7.21e-5 - 0.000) 0.410 

Lesion count 0.3354 (0.004 - 0.667) 0.048 

Model B) Presence of lesions predicted “enhancing” yes or no 

Variable Regression coefficient 
(95% CI) 

p value 

Intercept -0.0835 (-0.502 - 0.335) 0.696 

Total lesion volume (mm³) 7.909e-5 (-3.54e-5 - 0.000) 0.176 

Enhancing lesions present 0.6734 (0.022 - 1.325) 0.043 
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Discussion 

The MR assessment of disease progression plays a central role in the management of 

patients with Multiple Sclerosis, in particular the identification of contrast-enhancing (active) 

lesions. In this project we developed a deep learning architecture to predict the contrast-

enhancement of lesions in MS patients from non-enhanced input FLAIR and T1w images. For 

this purpose a supervised deep learning strategy was employed. This approach required that 

enhancing lesions be manually annotated initially prior to running the DL algorithm. Through an 

assessment of the 75th percentile of these images, as proof of principle we showed, as expected, 

that contrast enhancing lesions display significantly higher T1w subtraction signals. 

Subsequently, these images were defined as ground truth for our DL network. For the purposes 

of training and testing the network, 3D patches around the center of mass of lesions were used. 

Plotting loss over epochs for quality-control showed that training was efficiently being performed. 

After training and validation, in a next step, we ran our network on the test data. An analysis of 

the accuracy of the test-run in correctly identifying enhancing lesions revealed a value of 95.27% 

on the lesion-level, and 71.28% on a patient-level. Furthermore, to investigate the clinical 

relevance of our findings, we showed that prediction of contrast-enhancing or active lesions 

indeed is significantly associated with disease activity in a patient’s follow-up exam. In a final step 

to validate our results, we used an external dataset to test our network. The results of this analysis 

confirmed the findings from our internal dataset. 

Although prediction of contrast enhancement has been performed previously at slice-level 

(Narayana et al., 2020), our study reveals the first study to perform this at a lesion-level. In 

contrast to the ability of slice-wise approaches to correctly predict disease activity on a patient 

level, our approach provides further insights in other lesion specific parameters such as the 

number and total volume of contrast-enhancing lesions. It is important to highlight that our 

approach avoids the requirement for a voxel-wise, exact segmentation of lesions, due to the 

patch-based cropping that occurs systematically around the center of mass of an individual lesion; 

This allows for even coarse annotations including single seed points to be sufficient for prediction. 

A manually segmentation of each lesion is then rendered unnecessary and instead only needs a 

detection of the lesion. Through our approach lesion features to be learned by the network were 

not pre-defined. This makes the approach unique in comparison to alternative radiomics based 

approaches, which require pre-defining of features as well as full lesion segmentation. 
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All lesions in MS typically follow a “life-cycle”, initiated by oedema and swelling and then 

subsequently followed by contrast enhancement a week later (Eisele et al., 2019; Eisele et al., 

2012; Filippi et al., 1999). After approximately four weeks, there is a loss of contrast enhancement, 

followed by a decrease in swelling and oedema. Taking this temporal sequence of events into 

consideration and the close relationship between morphology and contrast enhancement several 

studies have attempted to use imaging methods to predict potential contrast-enhancing lesions 

from non-enhanced images (Gupta et al., 2017). Examples of these studies include fractional 

anisotropy where a parameter map is generated from diffusion tensor imaging and quantitative 

susceptibility mapping. Unlike these techniques which rely on advanced imaging techniques, our 

analysis utilized standard T1w and FLAIR images, which are part of a standard imaging protocol 

for MS (Traboulsee et al., 2016). The reliance on standard imaging protocols allows for a more 

widespread accessibility for implementation. In line with this argumentation, our model performed 

yielded similar results when applied to an external validation dataset when compared to our 

internal dataset. Although the cohort size of the external dataset was relatively smaller, the results 

suggest the applicability of our network to external data. It may however, be of interest to compare 

our method with the aforementioned advanced imaging techniques for the prediction of contrast 

enhancement, to investigate the added value for the prediction of contrast enhancement. As 

several factors in our approach may lead to an over- or underestimation of contrast enhancement, 

a combination with other approaches may improve clinical significance. Challenges in prediction 

may occur due to the variability in lifetime between lesions that are enhancing in comparison to 

oedema and lesion swelling. A shorter lifetime of contrast enhancement relative to oedema and 

lesion swelling would lead to an overestimation of the number of contrast-enhancing lesions when 

only relying solely on morphometric properties of lesions. It is also possible that oedema is 

undetectable in small lesions, which would then cause an underestimation of contrast 

enhancement in small lesions. Both of these occurrences were also found in our data with lesion 

size revealing to play an important role.  

We decided to use a patch size of 16x16x16 mm (4096 mm³), to optimize for enrichment 

of foreground information (i.e. lesion voxels over brain voxels) as well as to “fit” the majority of 

lesions. It was determined that enhancing lesions were larger in comparison to non-enhancing 

lesions, even when their mean volume was largely below that of the patch volume. The mean size 

of enhancing lesions was 476 mm³. This caused the network to utilize lesion volume as a good 

surrogate marker for contrast-enhancement, and consequently this is one of the reasons that 

false-negative predictions were often seen with the smaller lesions. These findings validate 
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previous reports on the relationship of lesion load on clinical outcome (Filippi et al., 1999; Ge, 

2006). In order to further optimize our network, a deeper exploration of complex augmentations 

such as heavy zooming and/or shearing or normalizing to an average lesion size, as opposed to 

the simple augmentations involving image geometry our current pipeline, could prove meaningful 

to learn additional properties of contrast-enhancing lesions.  

To assess the potential of our network to predict enhancing lesions from non-enhanced 

scans for each patient in follow-up scans, we developed a multivariable logistic regression model. 

Upon testing of multiple variables, it was determined that the count of lesions as well as the 

presence of an enhancing lesions in the baseline scan was revealed to have a significant 

correlation with disease activity in the subsequent follow-up imaging. Interestingly, this correlation 

with disease activity was not present for both of these variables in the manually annotated dataset. 

This could indicate that the identified associations may have occurred as a result of the specific 

output generated by the deep learning algorithm, which would imply that improvements to the 

accuracy of the model need to be implemented before it is applied. 

Deep Learning approaches used in indications and areas of medicine such as 

glioblastoma (Kleesiek et al., 2019) imaging and cardiovascular imaging (Bustamante et al., 

2021), aimed to directly simulate contrast enhancing images have demonstrated that an 

unspecific synthesis of contrast-enhanced images is not possible (Lee et al., 2020). These results 

imply that a lesion-centered approach is necessary in the case of MS as presented here. 

Furthermore, DL techniques that prove to be successful in predicting contrast enhancement will 

lead to a significant reduction in contrast material needed for imaging MS patients (Gong et al., 

2018). 

There are several limitations in our study that affect the output of our network. As 

mentioned earlier, in our total dataset non-enhancing lesions outnumbered enhancing lesions 

approximately 10-fold. Though the use of oversampling techniques along with image 

augmentation allowed to partially mitigate this effect, a larger dataset with a greater number of 

enhancing lesions could improve the network output. Furthermore, the validation that we 

successfully performed using external data was conducted using a relatively small dataset. Thus, 

a further validation using larger and heterogenous external datasets could lead to better 

generalizability. Through our analysis, increased volume was found to be an important 

characteristic of enhancing lesions. This finding is substantiated by previous reports where it has 

been demonstrated that patients with high disease activity also reveal enlarging lesions followed 
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by shrinkage and/or growth over time (Köhler et al., 2019; Lee, 1998). We also found, 

interestingly, that lesion volume was associated with the number of false positives. Corrections to 

adjust for the effect of lesion volume would also improve the accuracy of the network. Similarly, 

adding more input sequences such as diffusion weighted imaging with improved lesion depiction 

would also improve the accuracy of classification. During the initial classification of lesions, we 

annotated their anatomic locations (periventricular, juxtacortical, infratentorial and subcortical). 

This anatomic information was, however, not subsequently used in our study as it was not within 

the scope of the project. There is substantial clinical value in understanding how enhancing 

lesions correlate with anatomic sites as this may improve our knowledge of Multiple Sclerosis and 

further our understanding of patients’ symptoms.  

Despite the wide contribution of ML approaches in transforming our understanding of 

phenomena in biology and medicine, the “Black Box” problem is an additional inherent limitation 

of the approach to be considered (Hayashi, 2019). Due to the way ML algorithms are designed, 

the only components that are transparent are the input variables and the output predictions. The 

remaining processes leading from input to output are not readily decipherable (Rudin & Radin, 

2019). In a clinical context. this leads to physicians being provided with an output, but not a clear 

justification for the output (Price, 2018).  Rendering DL algorithms more interpretable and 

modifiable would solve the black box problem and allow clinicians and users to troubleshoot as 

well as identify biases that may be present in the output (Rudin & Radin, 2019).  

Ultimately, the strength of DL lies in combining radiological data with other clinical data of 

patients.  Data including, but not restricted to patient symptoms, medication information, genomic 

data, clinical tests, pathological data and blood tests could strengthen the network leading to more 

accurate output. Figure 13 shows a schematic example of how such a workflow would look like 

where patient data (in this case for cancer patients) is integrated from different sources to 

determine a patient-specific diagnosis as well as personalized therapy plan (Bodalal et al., 2018).  

However, it has to be kept in mind that imaging is usually performed to objectify treatment 

decisions based on clinical findings. In such cases, an integration of data from other source may 

affect the network in a biased manner. Therefore, the appropriate validation must be in place to 

ensure that objectivity of the network output is maintained. 
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Figure 13. Model of interdisciplinary digital clinical workflow for personalized medicine.  

The example above is for cancer patients, but the framework can be applied in principle to wide range of disease 

including Multiple Sclerosis.  Image modified from (Bodalal et al., 2018). 
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Conclusions 

In summary, we developed a DL pipeline to predict lesions that are active and potentially 

contrast-enhancing without the need for administering GBCA. In the future, incorporating larger, 

more heterogeneous data sets could strengthen the accuracy of the network. Additional 

incorporation of non-imaging clinical data from patients could significantly improve the model’s 

performance to not only predict lesion activity, but also clinical progression. Including 

pharmacological data and clinical symptoms, would allow the possibility to develop optimal 

treatment plans. For example, determining the relationship of specific medications on disease 

progress and relapse would further our understanding how best to optimally treat MS patients. 

Furthermore, incorporating genetic and family history data could help to identify genetic 

predispositions that are responsible for various forms of the disease. However, with each added 

layer of complexity to the network, the necessary validation steps must be conducted to avoid 

biased outputs from being generated. In the longterm, such an integrative model could serve in 

the future as an effective platform by playing an important role in long-term clinical management 

of MS and improving patient outcomes. 
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