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Abstract

Magnetism in solid matter affects the macroscopic world, even though it is inherently a
quantum phenomenon. At first glace, interest in quantum magnetism seems to be purely
academic, however, it enables transformative technologies such as digital memory storage
or electronic sensor devices. One of the most fundamental and influential parameters of
any magnetic system is the dimensionality of its exchange interactions as it determines
the stability of magnetic order and its fluctuations.

In this work, two magnetic materials, which are nickel (Ni) and Cu(C4H4N2)2(H2O)2Cr2O7
(Cu-pyz), of different dimensionality have been investigated to further the understanding
of their microscopic interactions and the resulting magnetic properties. Nickel, one of
the archetypical, room temperature ferromagnets is known to behave as predicted for a
3D isotropic Heisenberg system, but ought to exhibit dipolar behavior in the vicinity of
the Curie temperature TC.

High resolution neutron spectroscopy was employed to investigate the critical dynamics
and the signature of dipolar coupling at the smallest wavevector transfer q and energy
transfer ∆E studied to date. Even though the measure of strength of the dipolar
interaction, the dipolar wavevector qD, was found to be a factor of 2 smaller than
previously reported, extensive modeling confirmed its necessity to explain the observed
spin wave dispersion. At the same time, the dynamical scaling behavior of the linewidth
of the paramagnetic fluctuations adhered to the purely isotropic Heisenberg model,
which is consistent with mode-coupling calculations of Résibois & Piette. This apparent
discrepancy with the observation of a signature of dipolar coupling in the spin wave
dispersion is resolved by an extension of the mode-coupling equations considering
anisotropic dipolar interactions. According to Frey and Schwabl, dipolar contributions
enter the dynamical scaling function of the transversal fluctuations only if q . qD/10,
which was not accessible in this measurement.

Inelastic neutron scattering at the three-axis spectrometer IN12, played an integral
role in validating the antiferromagnetic 2D Heisenberg model proposed for the metal-
organic hybrid system Cu(C4H4N2)2(H2O)2Cr2O7. Previous susceptibility measurements
performed with a 9 T physical property measurement system (PPMS) strongly suggested
the 2D nature of the exchange coupling and set the energy scale of the in-plane exchange
constant to J2D = 0.5 meV. Similarly, magnetization curves confirm this notion through
their upward bending, characteristic shape at 2 K. The negligible out-of-plane coupling
compared to the strong in-plane coupling is plausible due to the excellent separation of
magnetically active copper ions along the a axis. Evaluation of the spin wave dispersion in
the bc-plane tied together these results establishing Cu-pyz as a 2D quantum Heisenberg
antiferromagnet. These results lay the foundation for future studies under high pressure,
which allows tuning of the dimensionality of the Cu-pyz system.
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Zusammenfassung

Magnetismus in Festkörpern ist ein makroskopisches Phänomen, dessen Ursprung jedoch
nur auf Basis quantenmechanischen Eigenschaften auf atomarer Ebene erklärbar ist.
Obwohl dies von rein akademischem Interesse zu sein scheint, dient Magnetismus als Basis
for mannigfaltige, moderne Technologie, wie beispielsweise Festplatten und Sensorik.
Einer der elementarsten Parameter eines magnetischen Systems ist die Dimensionalität
seiner Austauschwechselwirkung, welche maßgeblich die Stabilität der magnetischen
Struktur und deren Fluktuationen beeinflusst. In dieser Arbeit wurden zwei magnetische
Systeme mit unterschiedlicher Dimensionalität der interatomaren Wechselwirkungen
untersucht um deren Einfluss auf die resultierenden, magnetischen Eigenschaften zu
verstehen.

Nickel, einer der archetypischen Raumtemperaturferromagneten, lässt sich mithilfe des
3D isotropen Heisenberg Models beschreiben, wobei Nickel in der Nähe der Curie-
Temperatur TC dipolares Verhalten zeigen sollte. Hochauflösende Neutronenspek-
troskopie wurde eingesetzt, um die kritische Dynamik und die Signatur der dipolaren
Kopplung bei den kleinsten bisher untersuchten Wellenvektorüberträgen q und En-
ergieüberträgen ∆E zu messen. Der dipolare Wellenvektor qD, welcher die Stärke der
dipolaren Wechselwirkung parameterisiert, konnte im Experiment bestimmt werden.
Der dabei erhaltene Wert ist um einen Faktor 2 kleiner als der bisher in der Literatur
publizierte Wert, jedoch bestätigte eine umfassende Modellierung seine Notwendigkeit,
um die beobachtete Spinwellendispersion zu erklären.

Im Gegensatz dazu stimmt das dynamische Skalierungsverhalten der Linienbreite der
paramagnetischen Fluktuationen mit den Lösungen der Modenkopplungsgleichungen
von Résibois & Piette überein, welche auf Basis des rein isotropen Heisenberg-Modells
berechnet werden. Diese scheinbare Diskrepanz mit der Beobachtung einer Signatur der
dipolaren Kopplung in der Spinwellendispersion wird durch eine Erweiterung der Mod-
enkopplungsgleichungen unter Berücksichtigung anisotroper dipolarer Wechselwirkungen
gelöst. Nach Frey und Schwabel gehen dipolare Beiträge nur dann in die dynamis-
che Skalierungsfunktion der transversalen Fluktuationen ein, wenn q . qD/10. Dieser
Messbereich war im Rahmen des durchgeführten Experiments nicht zugänglich.
Inelastische Neutronenstreuung am kalten Dreiachsenspektrometer IN12 spielte eine

wesentliche Rolle bei der Validierung des vorgeschlagenen antiferromagnetischen 2D-
Heisenberg-Modells für das metallorganische Hybridsystem Cu(C4H4N2)2(H2O)2Cr2O7
(Cu-pyz). Vorangegangene Suszeptibilitätsmessungen, die mit einem 9 T ’Physical
Property Measurement System’ (PPMS) durchgeführt wurden, deuten stark auf die 2D-
Natur der Austauschkopplung hin und legten die Energieskala der Austauschkonstante
in der Ebene auf J2D = 0.5 meV fest. Zusätzlich bestätigen die Magnetisierungskurven
diese Vermutung durch ihre charakteristische, positiv gekrümmte Form bei 2 K. Die
Auswertung der Spinwellendispersion in der bc-Ebene vereint diese Ergebnisse, die Cu-pyz
eindeutig als 2D-Quanten-Heisenberg-Antiferromagneten identifizieren.
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1. Introduction

Magnetism in solid materials is by nature a phenomenon involving many interacting
particles on the microscopic scale. Therefore, it is not surprising that classical theories
like the mean field theory only manage to reproduce experimental results in the crudest
approximation, often far from quantitative agreement. Even more though, a rigorous
proof, led by van Leeuwen [1, 2], shows unmistakably that a classical theory is unable to
account for solid state magnetism, but requires an entirely new physical framework on
the microscopic scale.
A remarkably successful model put forward by W. Heisenberg, hence bearing his

name, considers magnetic ions on different lattice sites and their microscopic, pairwise
interaction. Treating the spins as quantum mechanical operators the Hamiltonian of the
Heisenberg model reads

H = −
∑
i,j

Jij Si · Sj . (1.1)

Here, Si is the spin operator located on lattice site i, Jij is the exchange constant
determining the preferred alignment of coupled spins. Although one may worry whether
the Heisenberg model is an oversimplification of reality, it has proven to reasonably
describe many magnetic properties in systems with localized magnetic moments and
itinerant systems alike [3].
Going beyond the isotropic Heisenberg Hamiltonian, a plethora of lattice models

emerge from changing the type of coupling (nearest-neighbor, next-nearest-neighbor,
anisotropy), spin-dimensionality (n = 1, 2, 3), spin value (S = 1

2 , 1,
3
2 , . . .) or the lattice-

dimensionality (d = 1, 2, 3). In case of a two-dimensional (2D) lattice model, the sum
over i, j only runs over positions of spins in a single plane. A graphical representation of
models of differing lattice dimensions is depicted in figure 1.1, where the colored lines
indicate the exchange coupling Jij of neighboring spins within the crystal. Evidently, (a)
shows the standard Heisenberg model with nearest neighbor coupling in three dimensions,
(b) a planar and (c) a 1D spin-chain model.

Studying the influence of dimensionality on magnetic systems has shown that features
of the thermodynamic quantities and parameters vary drastically. Exemplarily, the
3D and 2D Heisenberg models are known to harbor an ordering phase transition, even
though in the 2D case it is theoretically located at T = 0 K [4], whereas the 1D spin-chain
model never achieves magnetic long-range order (LRO). This is owed to the enhancement
of fluctuations and short-range order effects, which leave their mark most prominently
in the ’high-temperature tail’ of thermodynamic quantities just above the transition
temperature and has been verified by theoretical calculations [5, 6] and experiments
alike. Intriguing examples of real world materials well described by the 3D, 2D and 1D
Heisenberg models are RbMnF3 [7–10], CuF2(H2O)2(pyz) [11, 12] and Cu(NH3)4SO4

1



2 1. Introduction

(a) (b) (c)

d = 3 d = 2 d = 1

Figure 1.1.: Schematic visualization of the isotropic Heisenberg model in 3D, 2D and 1D for
an antiferromagnetic system. The connecting lines represent the exchange pathways for the
coupling Jij . In (b), (c) the planes or chains are isolated from each other. A major challenge
for experimental studies is the identification and preparation of suitable model systems.

[13, 14] or KCuF3 [15, 16], respectively. Among those CuF2(H2O)2(pyz) is especially
fascinating as it exhibits a dimensionality change from a planar Heisenberg to a 1D
spin chain system under hydrostatic pressure. Naturally, the examples given above are
anything but an extensive list, whereas the review on low-dimensional magnetism by de
Jongh provides an in-depth resource on this matter and is highly recommended [3] for
reading. As a result, interest in low-dimensional magnetic materials is diverse. They
serve as proofing ground for scaling theory predictions [8, 17], new territory for novel
non-classical ground states and magnetic phenomena [18–20], systems with an intricate
connection to high temperature superconductivity [21–25] or candidates for technical
application in sensor and spintronic devices [26, 27].
The projects of this thesis pick up the topic of dimensionality in magnetism from a

fundamental research perspective. On the one hand, we concern ourselves with nickel
(Ni), one of the three known ferromagnets exhibiting its properties in elemental form at
room temperature. The reported magnetic dynamics of Ni at small momentum transfers
are well described by the 3D isotropic Heisenberg model, even though it is an itinerant
system. Close to TC, critical exponents derived from the Heisenberg Hamiltonian should
govern the dynamical scaling behavior in Ni. The study of related systems has shown
that the pure Heisenberg behavior is altered by long range, anisotropic dipolar forces,
which ought to be present in Ni, however, to a much more subtle degree. High resolution,
inelastic neutron scattering experiments have been carried out to investigate the influence
of dipolar coupling on spin waves and critical fluctuations.

On the other hand, the metal-organic compound Cu(C4H4N2)2(H2O)2Cr2O7 (Cu-pyz)
was mentioned to be a potential 2D quantum Heisenberg antiferromagnet (2D QHAF)
by Goddard et al. [28] based on its structural resemblance to other 2D organic hybrid
systems. Using magnetic bulk measurements and inelastic neutron scattering, we aimed
to clarify the magnetic properties of this spin-1

2 system and build a Hamiltonian as a
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baseline model. This provides the necessary understanding for future investigations on
superconductivity and pressure induced dimensionality change.
The performed investigations relied heavily on neutron scattering techniques, which

are often the sole direct probe of magnetism on the atomic scale. As aptly phrased by
Lowde in the concluding remarks of his comprehensive study on nickel:

’Our final conclusion, therefore, must be that neutron inelastic scattering tech-
niques offer the means of probing quite deeply into the behavior of the electron
gas; it is much to be hoped that the possibilities thereby opened up will lead to
new insights in the difficult field.’ [29]

This unique suitability is owed to the magnetic moment of the neutrons interacting
directly with the magnetism inducing electrons. Subsequently, the static and dynamic
correlation of these electrons determine the measured neutron scattering cross section,
which allows reconstruction of the magnetic properties of a sample from the observed
intensity signal. As mentioned before, for this work, the properties of interest encompass
the spin wave dispersion relation in a low-dimensional antiferromagnet or the linewidth
of critical fluctuations of an isotropic Heisenberg system.

Outline of this thesis
The manuscript is structured as follows. Due to its outstanding importance, chapter 2
is dedicated to elucidate the basic principles of neutron scattering. Given the sensitivity
of neutrons to nuclear and magnetic potentials, we introduce the thereof derived double
differential cross section and discuss the scattering expected from single crystalline
magnetic matter. Furthermore, the susceptibility of neutrons to magnetic fields in free
space and the resulting propagation of its spin states is presented in terms of the spinor
formulation. The latter plays a major role in understanding the MIEZE technique, a high
resolution neutron spectrometry method based on radio frequency spin manipulation,
which is one of the two neutron scattering techniques utilized for the study of critical,
magnetic fluctuations in the ferromagnet nickel. Together with three-axis spectrometry,
the second neutron scattering method, MIEZE is explained in detail in chapter 3. This
includes the measurement principle, the modes of operation of both techniques and the
introduction of both instruments RESEDA and IN12, where the measurements have been
performed. In addition, the final part of chapter 3 is concerned with the measurement of
magnetic bulk properties as these techniques played an integral part of investigating the
characteristics of the metal-organic spin-1

2 compound Cu-pyz. Chapter 4 is dedicated
to the dynamical behavior of magnetism in the archetypal ferromagnet nickel. We
address the collective spin wave excitations below TC and the critical fluctuations at
T = TC and above, in the attempt to elicit a behavior consistent with the notion of the
previously immeasurably small dipolar interaction. In chapter 5, we establish Cu-pyz
to be a pristine example of a two-dimensional quantum Heisenberg antiferromagnet
based on susceptibility, magnetization and complementary inelastic neutron scattering
measurements.



2. The physics of neutron scattering - Unraveling solid
state magnetism

In solid state physics, neutron scattering has been established as an invaluable method to
probe matter on the microscopic scale. Due to its lack of electrical charge, a free neutron
interacts with surrounding matter only via the strong nuclear force or magnetic fields
coupled to its magnetic moment. This sensitivity to magnetic potentials makes neutron
scattering a unique tool for the study of static magnetic order, magnetic interactions and
the resulting dynamics. Measurements can be understood in terms of the microscopic
spin-spin correlation function and the macroscopic generalized magnetic susceptibility,
which reflect the magnetic properties of a system. This chapter intends to elucidate the
mathematical description of neutron scattering and illustrate the signal expected from
magnetic systems.

2.1. Neutrons interacting with matter
The properties and phenomena exhibited by solid materials are tightly connected to their
microscopic arrangement of atoms and interaction between them. To understand the
neutron scattering pattern produced by the microscopic structure a whole, knowledge of
the interaction potential between neutrons and the constituent atoms is indispensable.

Starting with the discovery of the neutron itself, Chadwick et al. used the scattering
of an unknown form of radiation, now known as a neutron, from hydrogen atoms
to determine its properties [30, 31]. Nuclear scattering, which is mediated by the
strong nuclear force, is in this case mathematically described in the form of the Fermi
pseudopotential

Vnuc = 2π~2

mn
b δ (r) . (2.1)

Here, b is the scattering length of the scattering nuclei and δ (r) the three-dimensional
Dirac delta distribution, which models the short range interaction of neutrons and the
atomic nuclei. There is, as mentioned above, a magnetic potential created by the spin
and angular momentum of the electrons inside any material, but as a starting point, the
following discussion is limited to nuclear scattering.
Numerous authors, Lovesey [32], Squires [33], Sivia [34] and Shirane [35] to name a

few, have written extensive literature on the theory of neutron scattering whose insights
will be summarized in the following sections.

4



2.1. Neutrons interacting with matter 5

2.1.1. Fundamental scattering theory
In the field of physics, the expression scattering describes a wide variety of processes,
which make a moving wave or particle deviate from its unperturbed trajectory through
the medium of propagation . Scattering is caused by local inhomogeneities in the medium
or free particles in the volume traversed by the radiation. Given by the fundamental
conservation laws, in the scattering process the total momentum and total energy of the
system remains constant, while the quantities of each individual partner is subject to
change.

In the case of neutron scattering three quantities, namely the momentum p = ~k, the
energy E = ~ω = ~2k2/2mn and the spin σ fully determine the state of the neutron
probe. Knowledge about the initial state of the neutron and gaining knowledge of the
final state through a measurement, allows the reconstruction of the scattering process
and the interaction potentials involved therein.

The basic quantity for the description of any scattering is the double differential cross
section

d2σ

dΩ dEf
=

#neutrons per second scattered into solid angle dΩ in the
direction θ, φ with final energy between Ef and Ef + dEf

Φ dΩ dEf
, (2.2)

which describes the frequency of the incoming neutrons with |ki σi〉 being scattered
into a final state |kf σf〉. This implies the change of a neutron’s momentum and energy,
where we use the convention ’initial minus final’, meaning

~Q = ~ki − ~kf and ∆E = ~2

2mn

(
k2

i − k2
f

)
. (2.3)

A graphical representation of such a scattering process, confined to two dimensions, is
depicted in Fig. 2.1. An incoming neutron from the left side might be scattered under
an angle 2θ into a solid angle dΩ element and a width dkf .
Therefore, understanding the double differential cross section (DDCS) is integral to

the interpretation of any neutron scattering experiment. For low energy neutrons, small
samples and the absence of nuclear resonances, the DDCS can be derived using Fermi’s
golden rule [33] or by introducing the scattering amplitude f (λ, θ) in a general scattering
theory formalism [34]. Independent of the approach, we arrive at a mathematical
expression for the DDCS, for the purpose of further discussion is taken from Squires
[33]:

d2σ

dΩ dEf
= kf

ki

(
mn

2π~2

)2
|〈kf σf ,Ψf |V |ki σi,Ψi〉|2 δ (EΨi − EΨf + Ei − Ef) . (2.4)

This equation expresses the dependence of the DDCS on the combined initial state
of the neutron and the scattering system, |ki σi,Ψi〉, interacting via a potential V that
leaves the the total system in a state |kf σf ,Ψf〉. The term in |...|2 is called the matrix
element, a well known concept in quantum mechanics, in which the wave function of the
scattering system is denoted by Ψ. Finally, the Dirac delta distribution enforces energy
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|ki σi⟩

kf

dkf

dΩ

|kf σf⟩

2θ

Ef Ef + dEf

Figure 2.1.: Visualization of a general scattering geometry and definition of the double
differential cross section. Incoming neutrons |ki σi〉, whose states are completely described by
wavevector k and spin σ, interact with the sample represented by the gray area in the center.
The double differential cross section expresses the frequency of these neutrons to scatter under
the angle 2θ into a solid angle segment dΩ and a wavevector interval [kf ,kf + dkf ]. Here we
omit a possible azimuthal angle φ dependency. Adopted from [36].

conservation in the scattering process and gives us immediately an expression for the
differential cross section (DCS)

(
dσ
dΩ

)
=
∞∫
0

(
d2σ

dΩ dEf

)
dEf (2.5)

applicable for experiments integrating over all energy transfers.
Equation 2.4 is the corner stone for any theoretical treatment of a physical system,

such as a single atom or more practically a crystal of 10× 1023 atoms with possibly
magnetic ions inside. In subsequent sections, we consider a few systems that are relevant
for instructive purposes and data analysis in later chapters, to calculate the expected
neutron scattering signal.

2.1.2. Elastic neutron scattering
One of the descriptive examples, which is invaluable for crystal structure analysis, is
nuclear scattering from a periodic arrangement of atoms inside a sample. Starting
from the general equation for the DCS 2.5 it can be shown that the matrix element
can be rewritten in terms of the Fourier transform of the real space potential. This
further requires the assumption of plane wave like neutron wave functions and the
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scattering potential’s independence on the neutron’s energy and spin state. Expressing
the scattering system as

V =
∑
j

Vj (r −Rj) (2.6)

where Vj (r −Rj) is the jth atom’s potential located at position Rj and interacting
with the neutron at position r, we get

〈kf ,Ψf |V |ki,Ψi〉 =
∑
j

Vj (Q) 〈Ψf | exp (iQRj) |Ψi〉 . (2.7)

As indicated beforehand, the Fourier transformed potential function ∑j Vj (Q) can be
extracted from the matrix element and in combination with the assumption of a Dirac
delta interaction potential, as motivated in equation 2.1, yields a simple constant:

Vj (Q) =
∫
Vj (xj) exp (iQxj) dxj

Vj(xj)= 2π~2
mn

bjδ(x−xj)
−−−−−−−−−−−−−→ Vj (Q) = 2π~2

mn
bj (2.8)

So far, the DDCS described the transition two specific state of the system, which
represents a very unlikely scenario for a real life experiment. As final steps to gain
an expression for the measured DDCS the δ distribution in equation 2.4 needs to be
replaced by its equivalent integral form, the scattering potential is rewritten as shown in
equation 2.7 and we need to sum over all possible final wave functions |Ψf〉 as well as
average over all initial states |Ψi〉 of the scattering system. It is reasonable to expect
the initial states to be distributed according to Boltzmann. This leads to

d2σ

dΩ dEf
= kf

ki

1
2π~

∑
jj′
bjbj′

∞∫
−∞

〈exp (−iQRj′(0)) exp (iQRj(t))〉 · exp (−iωt) dt, (2.9)

describing the entirety of neutron scattering processes from an assembly of atomic nuclei.
The sum over j, j′ run over all atoms with their generally time dependent position
operator Rj(t). Using a standard representation, introduced by Van Hove [37], we
absorb the thermal average 〈...〉 into the dynamical scattering function

S(Q, ω) = 1
2π~N

∑
jj′
bjbj′

∞∫
−∞

〈exp (−iQRj′(0)) exp (iQRj(t))〉 ·exp (−iωt) dt, (2.10)

also known as dynamical structure factor.
It is notable, that some calculation steps made use of the simplicity of the nuclear

scattering potential, which is why other scattering phenomena, such as magnetic neutron
scattering, need a deeper look at the interaction mechanism and subsequently lead to
more complicated expressions. These aspects will be discussed in the upcoming subsection
2.1.3 with emphasize on inelastic scattering, a method which has been extensively used
in the research presented in this thesis.
A more detailed account of the mathematics required to arrive at equation 2.9 can
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be found in Squires’s book [33] from which this overview has been derived and we
recommend a deeper look into the thorough literature [32, 34, 35] on neutron scattering.

2.1.3. Inelastic magnetic neutron scattering
Having explained the general approach to understanding neutron scattering by the
means of the DDCS, it is straightforward to realize the potential of elastic neutron
scattering for the determination of the microscopic structure of solid materials. In this
subsection, two extensions to the concept of neutron scattering will be made. First, the
interaction potential for magnetic neutron scattering will be introduced and used to
evaluate the matrix elements in this context. Secondly, the DDCS for coherent scattering
from collective magnetic excitations, spin waves, will be motivated. Especially the last
part is important for understanding the conclusions drawn from the inelastic neutron
scattering measurements performed on a low-dimensional magnetic system.

Magnetic scattering cross section

As mentioned in the first paragraph, the neutron, being a Fermion, possesses a spin and
an associated magnetic moment

µn = −γµNσ (2.11)

where

µN = e~
2mp

(2.12)

is the nuclear magneton, mp is the proton’s mass, e the elementary charge, γ = 1.913 a
constant value and σ the Pauli spin operator. In the presence of a magnetic field B,
the neutron is subjected to a potential

Vmag = −µn ·B (2.13)

as any classical magnetic dipole. Generally, the field can be external, produced by
powerful magnets, which has applications in sample environment or specialized instru-
mentation or the field can be internal as created by the spin and angular momentum of
unpaired electrons in a sample.
For the last case the magnetic potential in a sample with unpaired electrons has the

aforementioned contributions such that the field can be written as

B = BS +BL = µ0

4π

∇×
(
µe ×R
R3

)
︸ ︷︷ ︸

spin contribution

− 2µB

~
p×R
R3︸ ︷︷ ︸

ang. mom. contribution

 . (2.14)

In the formula, µe = 2µBs is an electron’s magnetic spin moment, p is the electron’s
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momentum and R is the position at which the field is determined.
In a similar fashion to nuclear scattering, the magnetic potential assembled from

equations 2.13 and 2.14 is put into the general expression for the DDCS 2.4 and can be
processed using planar wave ansatz for the neutron’s wave function. The DDCS now
reads

d2σ

dΩ dEf
= (γr0)2kf

ki
|〈σf ,Ψf |σ · S⊥ |σi,Ψi〉|2 δ (EΨi − EΨf + Ei − Ef) . (2.15)

where the magnetic interaction vector represents

S⊥ =
∑
j

exp (iQrj)
[
Q̂× (sj × Q̂) + i

~Q
(pj × Q̂)

]
, (2.16)

with rj, sj being the jth electrons position and spin vector, respectively. While S⊥
seems to be a technical and unintuitive quantity, it can be shown that it is directly
related to the Fourier transform of a samples magnetization M (Q):

S⊥ = Q̂×
(
− 1

2µB
M(Q)× Q̂

)
. (2.17)

In addition, from the definition of the magnetic interaction it can be directly inferred
that magnetic neutron scattering only occurs if there is a perpendicular component of
local magnetization with respect to the scattered neutron’s momentum transfer. A fact,
which can be used in the determination of the magnetic structure of a solid.

Any further step in the determination of the DDCS of a magnetic system requires
assumptions on the state of the neutrons and sample. In a very general setting, such as
an unpolarized neutron beam and a non-Bravais crystal the DDCS can be expressed as

d2σ

dΩ dEf
= (γr0)2

2π~
kf

ki

∑
αβ

(
δαβ − Q̂αQ̂β

) ∑
l′d′,ld

1
4gd

′gdF
∗
d′(Q)Fd(Q)

·
∞∫
−∞

〈exp (−iQRl′d′(0)) exp (iQRld(t))〉

·
〈
Sαl′d′(0)Sβld(t)

〉
exp(−iωt)dt.

(2.18)

Arriving at equation 2.18 needs a considerable amount of theoretical calculations, for
which the reader is encouraged to look at the literature (e.g. Squires [33]). Nevertheless,
the main points will be become clear after the explanation of the components in 2.18.
First, the indices l′,l indicate the unit cell in the crystal and d′, d account for the position
inside the cell. The factors of the form gd are the Landé splitting factors necessary
to describe coupling between spin and orbital moments within a magnetic ion. The
magnetic form factor Fd(Q) is a result of the spatial distribution of the electrons in
orbitals around their atoms and is the Fourier transform of the normalized density of
all unpaired electrons. The sum over α, β ∈ [x,y,z] is a alternative way to express the
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magnetic interaction vector together with the thermal average over the time dependent
spin components of two magnetic atoms

〈
Sαl′d′(0)Sβld(t)

〉
.

For a system of localized spins, the averages over positional and spin correlations
contains several contributions to the DDCS, such as the elastic magnetic scattering,
inelastic spin wave scattering and contributions coupling lattice and spin components.

Inelastic magnetic scattering cross section

At the heart of understanding spin wave scattering lies the evaluation of the time-
dependent matrix element contained in

〈
Sαl′d′(0)Sβld(t)

〉
and can not be done in all

generality. It involves knowledge about the time evolution of the spins, a problem well
understood in the framework of linear spin wave theory. As a starting point, we take
the Heisenberg Hamiltonian already introduced in equation 1.1 of chapter 1

H = −
∑
mm′

Jmm′Sm · Sm′ , (2.19)

a well proven microscopic model for a magnetic, solid state system. Choosing the exchange
coupling or exchange energy Jmm′ > 0 leads to parallel spin alignment and ferromagnetic
ordering. This model is one of the instances, which can be solved analytically by
employing a second quantization scheme. While the calculation in its entirety is beyond
the scope of this introductory chapter, a few key computation steps, the result and the
conclusion drawn from them will be presented here. They are insightful even for more
complex systems.

In the first step, the spin operator Sm needs to be represented in terms of the creation
and annihilation operators a†m and am, respectively. They create or destroy a deviation
from the ferromagnetic ground state in the system. Then the Hamiltonian can be written
as

H = −NS2J(0) + 2SJ(0)
∑
m

a†mam − 2S
∑
mm′

Jmm′ama
†
m, (2.20)

where

J(q) =
∑
ρ

Jρ exp (iq · ρ) with ρ = Rm −Rm′ (2.21)

with q being in a vector in the first Brillouin zone, S being the total spin value of an
atom and N being the number of atoms in the crystal. The second step is already hinted
at in equation 2.20 since it is advantageous to change from real space to momentum
space by Fourier expanding the operators am and a†m with their respective momentum
space counterparts bq, b†q. The new representation of the Heisenberg Hamiltonian

H = −NS2J(0) +
∑
q

~ωqb†qbq (2.22)

contains the dispersion relation

~ωq = 2S (J(0)− J(q)) , (2.23)
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which is of major importance, as it connects the momentum of a spin wave excitation
quantum, also known as magnon, with its associated energy.
Finally, using the momentum space representation of H it is possible to calculate

the time dependent form of the spin operators S(t) = (Sx(t),Sy(t),Sz(t)) in terms of
bq, b†q and thus allows the evaluation of the spin-spin correlation functions explicitly,
because the states |Ψ〉 need to be eigenfunctions of the Hamiltonian. Leaving the detailed
explanation to Squires [33], the ultimate expression for the DDCS of a ferromagnet is
given by

d2σ

dΩ dEf
= (γr0)2kf

ki

(2π)3

v0

1
2S

2(1− Q̂2
z)
∣∣∣∣12gF (Q)

∣∣∣∣2 exp(−2W )

×
∑
G,q

δ(Q− q −G)δ(~ωq − ~ω) 〈nq + 1〉︸ ︷︷ ︸
spin wave creation

+ δ(Q+ q −G)δ(~ωq + ~ω) 〈nq〉︸ ︷︷ ︸
spin wave annihilation

.

(2.24)

It contains the Deby-Waller factor exp(2W ), the Boltzmann factor

〈nq〉 = 1
exp(~ωq/kBT )− 1 (2.25)

and the unit cell volume v0. Two terms contribute to the inelastic spin wave scattering
spectrum. The first term represents spin wave creation, where the neutron loses energy
of ~ωq when its momentum transfer matches Q = G + q. Similarly the second term
represents spin wave annihilation, a process during which the neutron gains energy
according to the dispersion relation ~ωq, while anywhere else in momentum-energy space,
the inelastic neutron scattering cross section is zero. The Boltzmann factor determines
the occupation number of a particular magnon state with the energy ~ωq. Thus, the
Boltzmann factor causes that at low temperatures, where few excitations modes are
present in the sample, spin wave annihilation is suppressed. Scattering processes creating
magnons are still allowed.
Clearly, INS is not confined to the study of collective magnetic excitations, but for

more random dynamics of diffusion or spin fluctuations as well. Staying on the topic
of magnetism, a useful approach to calculate the spin dependent part of equation 2.18
by relating it to the magnetic susceptibility tensor of the system. For the Fourier
transformed dynamical spin-spin correlation function of a Bravais crystal with one
magnetic atom in the unit cell we introduce

Sαβ(Q, ω) = 1
2π

∑
l

∞∫
−∞

exp (iQRl − iωt)
〈
Sα0 (0)Sβl (t)

〉
dt , (2.26)

which contains the time independent and dependent contributions leading to magnetic
Bragg scattering and inelastic diffusive scattering respectively. It can be shown, and has
been comprehensively written up by Marshall and Lowde [38], that the dynamical spin
correlation function is connected to the imaginary part of the dynamic susceptibility
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=
(
χαβ

)
via the fluctuation-dissipation theorem:

Sαβ(Q, ω) = ~
π

1
g2µ2

B

1
1− exp

(
− ~ω
kBT

)=(χαβ(Q, ω)
)
. (2.27)

This equation concisely expresses the relation between the response of the macroscopic
system (right side of equation 2.27) and the spectrum of the microscopic fluctuations
(see equation 2.26). Going back to the previous derivation, in a magnetic system with
LRO, the poles of =

(
χαβ(Q, ω)

)
correspond to the spin wave spectrum.

Having motivated the INS cross sections, final remarks are due. The discussion of
inelastic scattering was restricted to magnetic interactions between a ferromagnetic
sample and neutrons, but the result is valid also without strict ferromagnetic order.
This is related to the fact that under certain conditions non-ferromagnetic systems can
be mapped onto a ferromagnetic state with an appropriate transformation. There, the
dispersion is known and performing the inverse transformation yields the sought after
excitation spectrum of the initial system [39]. As a side note, it should be mentioned that
the ansatz of creation, annihilation operators can also be used to calculate scattering
from collective lattice vibrations (phonons), which have not been addressed here. In
both cases, INS instruments, such as triple-axis, time-of-flight or neutron spin echo
spectrometers can be utilized to map the dispersion relation of the investigated system.
Recalling the derivation steps above, it is evident that the dispersion relation is intimately
tied to the Hamiltonian describing the magnetic or interatomic coupling. Therefore, INS
data is invaluable to develop or refine models and coupling mechanisms in solid state
physics, giving access to fundamental parameters.

2.2. Description of the neutron spin
A fundamental property of a neutron is its spin of value ~/2, which is why it is
characterized similarly to the proton and electron as a Fermion. Just as the orbital
momentum induces a magnetic moment so does the spin. In order to mathematically
describe the interaction due to spins, the spinor formalism is highly useful [40].

Being an inherent quantum mechanical property, a spin-1/2 system has only two states
corresponding to the eigenvalues of the operator |ê,±〉 with respect to an arbitrary
quantization axis ê. Without restrictions to generality, the choice of ê = ẑ can be made.
Therefore, applying the spin operator S = (Sx, Sy, Sz) to either of these two spin states
results in

S · ẑ |±〉 = ±~
2 |±〉 . (2.28)

Sz = S · ẑ is an observable, physical quantity the states |±〉 are constructed to be
orthonormal and form the basis of the two component spinor space. A general wave
function of a Fermion or neutron with an arbitrary spin state can be written as

|Ψ(x)〉 =
(
ψ+(x)
ψ−(x)

)
, (2.29)
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obeying the normalization equation

〈Ψ|Ψ〉 =
∫
|ψ+(x)|2 + |ψ−(x)|2dx . (2.30)

Having introduced the basic concept of the spinor space, which allows to describe
any spin state in terms of a 2D vector, it is necessary to relate these states to the spin
operator in the Cartesian laboratory frame. The link between the two representations is
given by the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.31)

and the relation Si = ~
2σi. The fact that σz is a diagonal matrix arises from the initial

choice of the quantization axis. In a different setting (as in chapter 3.2.1), where |±〉x
would the eigenstates with reference to x̂, the operators Sx, σx would be represented by
the diagonal matrix [40, 41].
The spinor formalism allows to calculate the behavior of a neutron’s spin state

propagating through an experimental setup and how the state evolves under influence of
polarizing devices and magnetic guide fields. The later can be treated by solving the
Schrödinger equation for a static magnetic potential given by

i~
∂

∂t
|Ψ(x, t)〉 =

(
~2∇2

2mn
I2 + µBσ ·B

)
|Ψ(x, t)〉 . (2.32)

I2 is the identity matrix of a 2D vector space.
As an example, a neutron, described by a plane wave traveling in y direction with

polarization along x

|Φ〉 = 1√
2
e−i(k0y−ω0t)

(
1
1

)
(2.33)

starts to evolve in time through the potential of a magnetic guide field B = Bzẑ dictated
by equation 2.32. In classical terms this evolution is known as Lamor precession with a
modified neutron wave function

|Φ〉 = 1√
2
e−i(k0y−ω0t)

(
e−iωzy/v

eiωzy/v

)
, (2.34)

which represents a precession motion in the x-y-plane with an angular frequency ωL =
2ωz = 2µBBz/~ [42].

A polarization analysis device projects the full wave function into the analyzed direction
|x〉 〈x|Φ〉, here the polarization in x is chosen and only allows this part of the wave
function to propagate further. The analyzed wave function behind the polarization
analyzer reads

|Φx〉 = 1
2
√

2
e−i(k0y−ω0t)

(
e−iωzy/v + eiωzy/v

)(1
1

)
. (2.35)
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As anticipated, depending on the Lamor frequency and the position of the polarization
analyzer a different neutron polarization 〈Φx|σx|Φx〉 = cos(ωLy/v) would be measured.
This phenomenon of Lamor precession is the basis of all polarization manipulating
techniques in neutron scattering and therefore the fundamental principle behind high
energy resolution neutron spin echo techniques, one of which will be discussed in section
3.2 in greater detail.



3. Instrumentation - At the heart of experiments

The experimental work performed for this thesis was concerned with studying the
magnetic properties of the itinerant ferromagnet nickel and the low-dimensional magnet
Cu(C4H4N2)2(H2O)2Cr2O7 (Cu-pyz) on the microscopic and on the bulk scale. The
microscopic measurements employed different neutron scattering techniques namely
triple-axis spectrometry (TAS) and modulation of intensity with zero effort (MIEZE).
In chapter 2 the general theory of neutron scattering has been laid out, whereas this
chapter addresses how the TAS and MIEZE techniques are implemented to acquire data
of scattering processes between sample and neutrons. For the bulk properties of Cu-pyz
measurements of the magnetization and the magnetic susceptibility were performed
with a standard physical property measurement system (PPMS). In the following, the
working principles will be addressed and the instruments used for data acquisition will
be described in detail.

3.1. Triple-axis spectrometry
Triple-axis spectrometry is one of the oldest neutron scattering techniques invented
by Brockhouse and Shull [43, 44], which allows systematic investigation of inelastic
neutron scattering (INS) over a large domain in reciprocal space (RS). TAS completely
determines the state of incoming and scattered neutrons, which is achieved by scattering
the neutrons at the three, name giving, scattering axis of the instrument. Each axis is
aligned perpendicular to the horizontal plane (ground) and is the pivoting axes of the
rotational motors of the instrument. These motors are used to adjust the scattering
angles at which neutrons traveling through the instrument are measured.
The reference book on triple-axis spectroscopy by Shirane et al. summarizes com-

prehensively the main equations of neutron scattering, TAS components, instrument
resolution calculation and presents fitting examples for each topic under discussion
[35]. Less comprehensively, this section will introduce the basic instrument layout and
components of a triple-axis spectrometer and operational details in subsection 3.1.1 and
3.1.2, respectively.

3.1.1. A neutron’s journey through a triple-axis instrument
When working with neutron scattering techniques, an important factor in experiment
planing is the optimal neutron energy or wavelength to work with. Usually three regimes
of energies are considered in the context of condensed matter research, which are dubbed
hot, thermal and cold in reference to the temperature of the moderating material from
which the neutrons are emitted. Example values of temperature Tmod, wavelength λ,
wavevector k and energy E of each regime are summarized in table 3.1. These quantities

15
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are related by

E = kBT −→ E [meV] = T [K]/11.605 (3.1)

E = ~2k2

2mn
−→ E [meV] = 2.072 · (k [Å−1])2 (3.2)

k = 2π/λ −→ k [Å−1] = 6.283/λ [Å] . (3.3)

Tmod (K) λ (Å) k (Å−1) E (meV)

hot 2300 0.642 9.780 198.2
thermal 300 1.779 3.532 25.85
cold 25 6.162 1.020 2.154

Table 3.1.: Energy regimes of neutrons accessible in modern neutron sources with secondary
sources. Approximate values of the sources at the FRM II research reactor [45, 46].

Due to the strong variability of the interaction cross section between neutrons and
matter, which depend on the neutron’s energy, beam lines and instruments are typically
tailored towards a restricted range of neutron energies. As IN12 and RESEDA both
employ a cold neutron spectrum, only components and setups performing well in this
energy range will be discussed.

In figure 3.1 the fundamental components of a TAS setup are depicted with neutrons
(orange) entering from the left side through the neutron guide (pale blue). Neutrons
encounter the first instrument component the monochromator, which reflects them
towards the sample. The next sections describe the monochromator and the subsequent
components the neutrons encounter.

The monochromator

At the first scattering axis, a narrow band of neutrons, coming from the source, is
selected with a known wavelength λi, or in context of TAS a known wavevector ki,
bandwidth ∆λ/λi (∆ki/ki), and with a finite divergence αn via Bragg scattering

nλi = n
2π
|ki|

= 2dM sin (θM) (3.4)

from a well known single crystal, the monochromator. The equation 3.4 is known as
Bragg’s law and gives a relation between neutron wavelength λi, the angle θM enclosed
by neutron flight path and the reflecting crystal planes and the distance dM between
those planes. Therefore, all neutrons with a wavevector are scattered under the angle
2θM from their initial trajectory, which is double the θ angle determined by Bragg’s law.
Hence, the direction and magnitude of ki is known and initial state |ki〉 is almost fully
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Figure 3.1.: Sketch depicting a common TAS setup. Starting left, the neutron beam (orange)
travels along the guide from the source entering the monochromator assembly. At the
monochromator (red) neutrons of the selected wavevector are scattered into the instrument,
passing a filter (yellow), a intensity monitor (light blue) and a collimator (black lines) before
interacting with the sample (green). Downstream of the sample, the analyzer assembly is
placed in the desired position (2θS) with an additional collimator in between. Finally, the
neutron is detected in a 3

2He proportional counter (dark blue), if it satisfies the energy selection
of the analyzer (red).

defined1.

The higher order filter

However, Bragg’s law allows neutrons with any integer fraction n of the selected wave-
length to enter the instrument under the exact same scattering angle 2θM. The most
dominant contribution to the higher order contamination arises from λi/2 and needs
to be removed to obtain a well characterized neutron beam. Otherwise additional
excitation peaks appear in inelastic neutron data or diffraction pattern making the
analysis substantially more complicated. Filters eliminate higher order neutrons by
absorption and elastic or inelastic scattering processes. In the thermal and cold neutron
energy regime, Bragg scattering filters made from polycrystalline pyrolitic graphite (PG)
and beryllium are employed. Based on Bragg’s law 3.4 it becomes evident that neutrons
with a wavelength λ > λc = 2dmax do not scatter elastically in the filter material, while

1 The spin state is conveniently omitted. It is possible to use polarizing monochromators or special
polarizing devices in conjunction with a guide field if spin dependent scattering is investigated. Here,
this is not the case.
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neutrons with λ ≤ λc do. Thus, higher order neutrons (λ/2 etc.) are scattered and thus
removed by the randomly oriented domains in the filter material, whereas the neutrons
possessing the desired wavelength are transmitted [35, 47, 48].

The intensity monitor

Following the monochromatizing components, intensity monitoring devices are often
utilized as a reference for counting time during the experiment. As an example, reactor
power, moderator efficiency or upstream instruments change the neutron over time
making constant counting time inadequate. These monitors are required to be non-
invasive regarding the incoming neutron beam, meaning they must not moderate or
absorb neutrons to a noticeable degree. Fission chamber detectors with low detection
efficiencies 10−7 to 10−3 can be used for this propose [49].
It is important to have a good understanding of the wavelength dependence of the

detection efficiency, which comes down to the underlying absorption or conversion
reaction used for neutron detection. Aforementioned fission chambers contain thin layers
with trace amounts of 235

92U, which capture neutrons before splitting in a general fission
reaction like

235
92U + 1

0n −→
A′

Z′X + A′′

Z′′Y + ν · 1
0n +Q . (3.5)

Within the energy region of cold neutrons, the absorption cross section σA of 235
92U follows

the ∝ 1/v - law well [50, 51]. Erratic changes in σA from nuclear resonances are mainly
present at significantly higher neutron energies. Hence, even if energy of the incoming
neutrons vary, monitors allow to account for intensity differences in the neutron flux by
counting the correct number of incoming neutrons per measurement point. Extensive
cross section and scattering length data on the reactions between neutrons and any
isotope are investigated, archived and maintained e.g. by the National Institute of
Standards and Technology (NIST) [52], the International Atomic Energy Agency (IAEA)
[51] and the Brookhaven National Laboratory (BNL) [53].

The collimator

A collimator, also called Soller collimator, is a divergence control component used in
X-ray and neutron scattering instrumentation. It consists of several parallel, radiation
absorbing blades and removes all neutrons from the passing beam if their angle to the
geometric beam axis αn exceeds α = w/l, where w is the distance between individual
blades and l is the length of the blades. The transmission function of a Soller collimator
[54, 55] has a triangular shape [56]

Tcoll(αn|α) = T0

{
1− |αn|/|α|, |αn| < |α|.
0, otherwise. (3.6)

Shaping the neutron beam in this manner achieves higher momentum resolution and
lower neutron background for the instrument at the cost of neutron intensity, as expected
from Liouville’s theorem. Starting from the neutron source, in a TAS there are four
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standard positions, in front of and behind the monochromator and the analyzer, to
insert collimators depending on experimental requirements. The implications of this kind
of beam preparation on a TAS resolution function have been investigated thoroughly,
because of its importance in data analysis for dynamic systems with a multitude of
excitation bands and high resolution measurements [35, 57–60].

The sample

The second scattering event happens in the sample, during which the neutrons change
their state according to the DDCS, which describes the partial currents of neutrons in
dΩ dEf . The aim is to measure the DDCS for specific points of interest in Q-E-space,
meaning the rate of neutrons needs to obtained at certain scattering angles θS, 2θS and
neutron energies Ef . The scattering angle is defined by placing the neutron detector with
respect to the sample position, but energy analysis is hard to implement in a neutron
detector. With such a two-axis instrument that lacks energy resolution, only the energy
integrated DCS can be measured.

The analyzer

For this reason, the third scattering axis adds an energy analyzing component, short
analyzer, again consisting of another well known single crystal and operating exactly the
same way as the monochromator. The instrument can be operated in two ways when
investigating inelastic scattering signals. Evidently, the monochromator and analyzer
need to be set to different neutron energies to measure a finite energy transfer. For a
scan of energy transfer ∆E = Ei − Ef either the incident energy or the selected final
energy needs to be varied. Both options are possible, but external constraints such as
the available space or sharing the neutron guide with a downstream instrument might
single out one option. To ensure consistent measurement results, it is preferable to fix
the analyzer position because it operates with constant efficiency. In that configuration
a monitor counter behind the monochromator can be used to ensure equal numbers of
neutrons impinge the sample for each scan point. In contrast, if the constant ki mode
is chosen, the reflectivity RA (kf) and the resolution volume of the analyzer changes
with magnitude of the final wavevector |kf | and scattering angle 2θA, which has to be
accounted for via the factor

F (kf) = RA (kf) k3
f / tan(θA) . (3.7)

The detector

The research and operation of neutron detectors in itself justifies an entire thesis
document, but in triple-axis spectrometry, simple He-3 proportional counters are used
for detection of thermal to cold neutrons. The (n, p) reaction occurring upon neutron
capture by He-3:

3
2He + 1

0n −→
1
1H + 3

1H +Q . (3.8)

has a large cross section of 5330 b [52].
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The charged reaction products inside the He-3 gas filled volume depose their energy
via ionization of the surrounding gas. Arising charge pulses are picked up and processed
by the electronics discriminating neutron interaction from secondary γ−radiation and
other background events. Typically, He-3 detectors with a cylindrical detection volume
are used. This includes IN12’s detector with a height h = 12 cm and diameter d = 5 cm
[61, 62].

Final remarks

While this concludes the introduction of the main TAS components, even aside from
sample environment many more parts which expand the instruments capabilities. Those
are polarizing devices, guide fields and spin flipper for polarization analysis [62–65],
velocity selectors [62, 64] as an alternative to filters, apertures and beam stops [35]. This
list is not exhaustive as there are many instruments with a plethora of experimental use
cases.

3.1.2. TAS - Exploring reciprocal space step by step
Performing an experiment at a triple-axis spectrometer equates to studying the DDCS of
a sample for different momentum and energy transfer values Q and ∆E. From sketch 3.1
it is evident, that the control of the neutron wave vector is confined to a plane parallel
to the floor. The perpendicular component Qz is not resolved and neutrons with large
vertical divergence are suppressed. This plane is called scattering plane and a single
crystal sample needs to be aligned such that the plane of interest in reciprocal space is
parallel to this scattering plane.

If this prerequisite is met, on the instrument operation level, the experiment reduces
to driving six rotation stages for the angles θM, 2θM, θS, 2θS, θA, 2θA and waiting a
preset amount of time for the detector to count the arriving neutrons. By convention
positive angles mean counter-clockwise rotation.

In the following it will be shown how the spectrometer angles connect to the reciprocal
space position (Q,∆E) of the crystal under investigation. The presented formalism is
follows the covariant vector formulation used by T. Weber 2 for the TA spectrometry
planing software Takin [66, 67]. Another useful resource regarding the UB-matrix ap-
proach to inelastic neutron scattering calculations is the paper by Lumsden et al. [68].

We choose the coordinate system of the laboratory frame (LF) to be a right-handed,
orthogonal system. In full generality, the unit cell, which builds up a single crystal,
has lattice constants a, b, c and associated angles α, β, γ, as depicted in figure 3.2 (a).
Further it is assumed that the vector a, one of the basis vectors of the crystal coordinate
system, is aligned parallel to the laboratory coordinate system. With this information,
any point in the crystal can be expressed in the LF coordinates by

2 The details of the calculations have been presented as part of the HERCULES School 2019.
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Figure 3.2.: Sketch depicting a general crystal system, a simplified TAS setup and a reciprocal
space lattice with a scattering vector construction. In (a) the most general version of a
crystal’s unit cell is depicted with the lattice constants a, b, c and the angles α, β, γ, which
define the basis of the crystal coordinate system and its reciprocal counterpart. (b) shows a
TAS configuration with the three scattering axis that are passed by neutrons entering from
the guide G and getting absorbed in the detector D. The three scattering angles 2θi at the
monochromator M, sample S and analyzer A determine the point (Q,E). (c) visualizes the
scattering plane of a hexagonal crystal structure in reciprocal space. The vectors ki,kf and Q
are drawn together with the angles 2θS, Ψ and ξ for elastic Bragg scattering from the (210)
reflection. The known reference vector in the scattering plane to calculate θS for all other
positions is H = (100).

a = a ·

1
0
0

 (3.9)

b = b ·

cos(γ)
sin(γ)

0

 (3.10)

c = c ·


cos(β)

cos(α)−cos(γ) cos(β)
sin(γ)√

1− cos2(β)−
(

cos(α)−cos(γ) cos(β)
sin(γ)

)2

 . (3.11)

Arranged into a matrix form A =
(
a b c

)
the A matrix transforms real space fractional

coordinates of the crystal into the LF. Subsequently, we define the B-matrix B, which is
the transposed inverse of A leading to

B = 2π
(
A−1

)T
. (3.12)

B transforms reciprocal space coordinates of the crystal in relative lattice units (rlu) to
the LF with units of Å−1. Using the B-matrix, the length of any reciprocal space vector
G and the angle between two vectors in RS can be simply calculated, as they are seen
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from the LF, via

|G| =
√
GTBTBG (3.13)

](G,H) = arccos
(
GTBTBH

|G| · |H|

)
. (3.14)

In both equations, BTB is the metric tensor and accounts for the fact that the crystal
coordinate system as well as its reciprocal counterpart are not necessarily orthogonal
and the basis vectors have different magnitudes.
With this tool set the angles of a TAS, as the are shown in subplot (b) of figure

3.2, to reach a specific point in reciprocal space can be determined as follows. The
monochromator and analyzer angles are given by Bragg’s law (see equation 3.4) such
that θM and θA satisfy the reflection condition for the required wavelength. Provided
that the rotation stages for 2θM,A are properly aligned with the monochromator crystals,
2θM,A = 2 · θM,A.

Next, the scattering angle at the sample 2θS can be computed from the crystals lattice
constants, the selected wavevectors |ki,f | = 2π

λi,f
and the chosen momentum transfer vector

Q in the LF (Å−1) via the cosine theorem

2θS = ± arccos
(
k2

i + k2
f −Q2

2|ki||kf |

)
, (3.15)

where ± depends on the scattering sense of the instrument. The angle is positive, if 2θS
is measured counter-clockwise.

Finally, the θS angle is not calculated by taking half of 2θS, because the crystal is not
necessarily perfectly aligned with the laboratory frame and angular offsets need to be
considered. In its simplest form, θS is given in reference to a known Bragg reflection
H in the scattering plane, which has to be determined and indexed in the experiment.
Then θS is given by

θS = 90°− (Ψ + ξ) (3.16)

Ψ = ](Q,ki) = ± arccos
(
k2

i − k2
f +Q2

2|ki||Q|

)
(3.17)

ξ = ](Q,H) = σQH arccos
(
QTBTBH

|Q| · |H|

)
(3.18)

in which Ψ is the angle between ki and Q in the LF (Å−1) and ξ is the angle between
Q and the known vector H . For Ψ, the sign is the same as for 2θS and the sign σQH of
ξ depends on the alignment of Q with H. σQH is positive (negative), when the cross
product Q ×H is parallel (antiparallel) to the out of plane vector of the scattering
plane coordinate system. The 90° offset in θS follows the convention of T. Weber in his
implementation of the experiment planing software Takin and can take values like 180°
depending on the source.

The derivation above neglects any misalignment between the crystal and the laboratory
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frame thus presenting an idealized representation of an experiment. When accounting
for tilts and rotational offset of the crystal, rotations need to be applied to align the
crystal and laboratory coordinate system. For the inclined reader the paper by Lumsden
et al. [68] is recommended for further study.

3.1.3. Scanning modes of triple-axis spectrometer
During a TAS experiment, several scanning modes have been established to systematically
study neutron scattering around points of interest in reciprocal space. For elastic
scattering modes, where ki = kf two modes of operation are particularly useful. Starting
from a reciprocal lattice pointG (Bragg scattering), the ’θ−2θ− scan’ probes momentum
transfer (anti)parallel to G meaning that the reduced momentum transfer vector q =
Q−G is (anti)parallel to G. This scan direction is achieved, by incrementing θS by θ
while adding adding 2 · θ to 2θS between each measurement point. Powder diffraction
patterns and thin film reflectivity curves are obtained in this scanning mode as well.

Scanning reciprocal space perpendicular to a reference reciprocal lattice point is done
by ’rocking’ the sample around its vertical rotation axis with a fixed 2θS angle. Especially
in single crystal diffraction the ’rocking−scan’ is utilized, because the integrated intensity
of the observed Bragg peak follows a known relation . From the acquired diffraction
data, atomic positions within the crystals unit cell can be refined for crystallographic
studies.
For inelastic neutron scattering either the Q position in RS is varied at a constant

energy transfer or the momentum transfer vector Q is held constant and the energy
transfer is scanned. Both modes require a combined movement of θS, 2θS and either the
monochromator or analyzer angles depending on the fixation of ki or kf , which has been
elaborated on in section 3.1.1.

The non-uniform shape of the instrument resolution, in conjunction with the form of
the dispersion surface, makes one of the scanning modes more applicable in comparison,
depending on the specific experiment. Examples discussing the importance and influence
of the instrument resolution on INS studies are ubiquitous. Educational ones can be
found in [35, chapter 5] or more recent studies of the non-reciprocal spin waves in the
chiral magnet MnSi [59, 60]

3.1.4. Triple-axis spectrometer IN12
The inelastic neutron scattering experiments were performed on the cold triple-axis
spectrometer IN12 located at the Institute Laue-Langevin (ILL), that has been upgraded
to its current state in 2016. A 115 m long ’S’ shaped neutron guide section connects IN12,
at the end position of the guide, to the in-pile vertical cold source of the ILL’s reactor.
Upstream of IN12, a velocity selector is employed, to mitigate higher order reflections
from the vertically and horizontally focusing PG(002) monochromator. The end section
of the neutron guide is laid out to utilize the virtual source concept by tapering down
the neutron guide to create a focal area prior to the monochromator. Together with
the double bending monochromator this arrangement maximizes neutron flux for small
samples at the sample position while minimizing background events detected in a 3

2He
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detector (d = 5 cm and h = 12 cm). In conclusion, IN12 is exceptionally suited to study
magnetic and lattice excitations in single crystals even more due to its polarization
analysis capabilities, which have not been used for the experiments (chapter 5.3) discussed
in this thesis. A detailed description of IN12, its components and performance, has been
published in Nuclear Instruments and Methods A by Schmalzl [61].
For the experiment performed at IN12 from the 9th Sept. to 15th Sept. 2020, the

instrument was set up in unpolarized measurement mode with horizontal collimation
of 80′ behind the monochromator, fixed analyzer position at kf = 1.5Å−1 and a cooled
Be-filter for higher order filtering behind it. The sample environment consisted of a
cryostat with dilution insert achieving temperatures as low as Tmin = 38 mK, at which
all inelastic neutron data was gathered.

3.2. Modulation of intensity with zero effort (MIEZE)
Compared to long established neutron spectrometry techniques, such as the above
discussed TAS, time-of-flight spectrometry, neutron backscattering or the interferometer
like neutron spin echo technique (NSE) [69], the modulation of intensity with zero effort
technique [70], abbreviated as MIEZE, is in its infancy. While initial concepts have been
envisioned around 1992 during the further development of NSE to the neutron resonant
spin echo method (NRSE) [71], fully functional MIEZE instruments have only come
operational over the last decade [72, 73].

The motiviation behind this effort becomes clear if e.g. TAS is compared to spin echo
techniques. Constrained by the Liouville’s theorem, TAS gains resolution on the cost of
neutron intensity, by restricting the divergence with collimators or using crystals with
low mosaicity for its monochromator and analyzer. As a result, the energy resolution is
limited to about ≈ 20 µeV [61, 63], beyond which the loss of neutron intensity becomes
severe.

Spin echo methods circumvent this limitation by decoupling the energy resolution from
the neutron intensity. To achieve this, the neutron spin or collectively the polarization
of the neutron beam is used as an internal clock to determine minuscule changes to the
energy of a neutron. However, this requires a well defined magnetic field environment
that needs to be shielded from environmental factors like the earth’s magnetic field,
uncompensated stray fields, magnetized components and even the sample itself. Therefore
considerable effort has to be undertaken in instrument design and experiment planing
to mitigate these problems [74].

Utilizing resonant spin flippers at specific locations of the instrument for polarization
manipulation, MIEZE is able to compensate for environmental factors such as stray fields.
Even more importantly, depolarizing conditions at the sample position become tolerable,
because the manipulation of the spin is performed only in the primary spectrometer
arm, before interaction at the sample position occur. Similarly to NSE, a large neutron
bandwidth can be used in a MIEZE instrument. These factors result in MIEZE being a
versatile and capable method in studying weak and low energy magnetic dynamics [75].
The next chapters aim to elucidate the working principle of MIEZE, motivate the basic
equation for the analysis of MIEZE data and introduce the instrument RESEDA [73].
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3.2.1. Working principle
The MIEZE method uses two resonant spin flippers, which are tuned to different
frequencies, to create a temporally periodic signal at an interference point downstream of
the investigated sample. The ratio of the amplitude and the mean value of this oscillating
intensity signal is called contrast. The contrast is the analogue to the polarization in
a standard N(R)SE measurement. Perturbations in the flight time of the neutrons,
e.g. through a transfer of energy at the sample, result in decoherence and subsequent
reduction of the contrast signal.
The following paragraphs will give a rundown of the mathematical description for

the MIEZE technique and motivate the relationship between sample properties and the
observed contrast signal. Due to the large scope of the mathematical framework, the
reader will be guided along the main points.
In addition, the sketch in Figure 3.3 shows the sequence of components a neutron

encounters, as well as the reference coordinate system. The unpolarized neutron beam
enters from the left side and is polarized at the polarizer P1 [35, chapter 8] [76, 77]
with its polarization vector pointing along the y direction. Due to the alignment of
the guide field along the x direction, the spin rotates adiabatically to this direction as
well. The π/2 flipper flips polarization by 90° away from x and starts its precession in
the y − z−plane. Within the first resonant flipper the neutrons encounter a static field
B = B0ex generated by the outer Helmholtz coils. At the center a rotating magnetic
field is produced by a radio frequency coil, which gives a total magnetic field

B(t) =

B0
0
0

+

 0
Br cos (ωst)
Br sin (ωst)

 . (3.19)

Understanding the time evolution of a neutron spin subjected to a time varying

LSD

P1 P2ωA ωB D

ki

S

kf

F2F1

LABx

z
y

Figure 3.3.: Sketch depicting a reduced version of a MIEZE setup. From left to right,
the components are the first polarizer (P1), a π/2-spin flipper (F1), the first resonant spin
flipper (ωA), the second resonant spin flipper (ωB), which are separated by distance lAB, a
second π/2-spin flipper (F2) and the final polarizer (P2). At the detector position (D) the
separated spin states interfere and create an intensity signal oscillating in time with a frequency
ωM = 2(ωB − ωA). Any perturbation to the kinetic energy of the neutrons at the sample
position (S) reduces the contrast of this oscillation, which is defined as ratio of its amplitude
to its mean value.
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magnetic field is essential for the development of the NRSE and MIEZE technique.
Several frameworks have been solving this problem in terms of a classical vector model
[78], a quantum mechanical [79] or a plane wave propagation model [80], as well as
a time evolution operator approach to the Heisenberg equation of the neutron’s spin
density operator [41]. In the following, the plane wave approach from [42] will be used
to describe the time evolution of a neutron spin and the resulting intensity variation in
a MIEZE spectrometer.
Utilizing the spinor notation introduced in section 2.2, the time evolution of a spin,

which we express as the wave function

|Ψ(x, t)〉 =
(
a+
a−

)
ei(k0x−ω0t) (3.20)

is governed by the Schrödinger equation with the time dependent potential introduced by
the rotating magnetic field V (t) = −µnσ ·B(t). The prefactors a± are complex numbers
and adhere to the normalization |a+|2 + |a−|2 = 1. The Schrödinger equation with the
time dependent potential in the Hamiltonian can be expressed as a two component
vector equation for the general spin state (see equation 3.20). Then the Schrödinger
equation reads

i~
∂

∂t
|Ψ〉 = − ~2

2mn

∂2

∂x2 |Ψ〉+
(

ωx ωre
−iωst

ωre
iωst −ωx

)
|Ψ〉 . (3.21)

Here, ωx = µnB0/~ is the Lamor frequency of the static field, µn the product of the
nuclear magneton µN and the g-factor of the neutron gn. ωr is the Lamor frequency of
the rotating field and ωs is the angular frequency of the rotating field.
The problem formulated in equation 3.21 is known as Krüger’s problem [42, 80] and

has a known, analytical solution, which allows to transform the set of second order
partial differential equations into algebraic ones. The used ansatz is given by

|Ψ(x, t)〉 =
(
Ane

−iωst/2

Bne
+iωst/2

)
ei(knx−ωnt) , (3.22)

which is essentially equal to a transformation into a coordinate system rotating at the
same angular frequency as the time dependent field ωs, and leads to

(
0
0

)
=
(

[(k2
n + ωx)− (ωn + ωs/2)] · An

[(k2
n − ωx)− (ωn − ωs/2)] ·Bn

)
+ ωr

(
Bn
An

)
. (3.23)

This equation is the basis for explicitly calculating the wave function of the spin states
of a neutron in a region of space with static and rotating magnetic fields. Determination
of the constants An, Bn, kn and ωn is possible via the initial, boundary and continuity
conditions placed on the wave function by a specific magnetic field arrangement. Golub
et al. calculated the solution for a scenario, which is depicted in figure 3.4. In regions I
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and III the potential is due to the static magnetic field B0, whereas in a comparably
small region II the rotating magnetic field is superimposed. In each region, the total
wave function is given by a linear combination of incoming, reflected and transmitted
waves for each spin component, with coefficients determined by the boundary conditions.

Of interest is the part of the wave function in region III, which represents the time
dependent spin components transmitted through the resonance flipper coil, and for an
initial spin state a+ = 1, a− = 0 can be written as

|ΨIII(x,t)〉 =
(

T0e
iωxx/v

T1e
−i(ωs−ωx)x/v

)
ei(k0x−ω0t). (3.24)

The quantities k0, ω0 and v are the wavevector, angular frequency and velocity of the
unperturbed neutron, respectively. T0 and T1 are transmission amplitudes given by

T0 = eiεd/v
[
cos (ωPd/v) + i

ε

ωP
sin (ωPd/v)

]
(3.25)

T1 = −i ωr

ωP
e−iεd/v sin (ωPd/v) (3.26)

with ε = (ωs/2− ωx) and ω2
P = ω2

r + (ωs/2− ωx)2 being shorthand notations for clarity
purpose.

Having derived this general result, Golub et al. [42] discussed several use cases such as

Figure 3.4.: Sketch of a single LNRSE coil showing the regions used in the calculation of
Golub et al.. In region I (x < 0), the potential is given by the static magnetic field leading
to a precession with ωx = µnB0/~. The rotating field is superimposed on the static field in
region II (0 ≤ x ≤ d). Downstream in region III (x > d) the potential is again only due to the
static field. The transition between all regions is assumed to be infinitely sharp. A solution of
the Schrödinger equation needs to fulfill continuity at the boundaries between all regions.
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the propagation of a neutron through two resonant coils tuned to two different frequencies
ωx → ωA, ωB separated by a distance LAB. In addition, we go from the general treatment
to a case reflecting an actual experimental setup. First, we assume the resonance case
ωs = 2ωx ≡ ωR → ωP = ωr , second we assume the energy of the potential is small
compared to the kinetic energy of the neutron ωr, ωx, ωs � ω0 and third we assume
that the static magnetic field is confined to region II. The last assumption hold up,
because the effect of the static field in front of and behind region II cancel out as the
spin is flipped by the rotating field. The self correction effect is an inherent property of
a longitudinal B0 field configuration [81]. These assumptions simplify the calculation
significantly and reproduce well known results. Hence, the wave function passing through
a resonance flipper reads

|Ψ(x, t)〉 = −i√
2
ei(k0x−ω0t)

(
a−e

+iΦ(x,t)

a+e
−iΦ(x,t)

)
, (3.27)

where

Φ(x, t) = ωA

[
x− d/2

v
− t

]
(3.28)

and ωA is the Lamor frequency of the first coil. Equation 3.27 is the input for the
second resonant flipper coil B (ωB), but requiring a transform of the space coordinate x
such that the new origin lies at the entry point of coil B. Shifting the wave function by
x′ = x − LAB gives the input for the calculation at coil B. Finally, the wave function
behind coil B is

|Ψ(x′, t)〉 = −i√
2
ei(k0x′−ω0t)

(
a+e

+iΘ(x′,t)

a−e
−iΘ(x′,t)

)
(3.29)

Θ(x′, t) = ∆ωx′ − ωA(LAB − d)− Ωd
v

−∆ωt (3.30)

∆ω = (ωB − ωA), Ω = (ωB + ωA)/2 (3.31)

with d being the length of the resonance flipper coil (see figure 3.4). As seen from
equation 3.30 there is a point behind the the second coil, where all velocity dependent
terms cancel out. Without dephasing of neutrons with differing wavelength, at x′ = LBD
a detector can measure a sinusoidally modulated neutron intensity signal oscillating with
frequency ωM ≡ 2∆ω in time. Fixing the distance between the resonance coil B and the
detector, puts a constraint, known as the MIEZE condition, on the resonance flipper
coils to create a measurable signal

ωB

ωA
= LAB + LBD − d/2

LBD − d/2
. (3.32)

By putting a spin analyzing device before the sample, one polarization direction (〈σy〉)
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is selected and a signal of the form

I(t) = A cos (ωMt) + y0 = I0

2 (1 + cos (ωMt)) (3.33)

can be extracted. Having mentioned the contrast during the high level introduction of
the MIEZE technique, we formalize this definition. The contrast C of the MIEZE signal,
which is the MIEZE equivalent of the polarization for the N(R)SE [71, 78] techniques is
defined as the ratio of the amplitude A and the mean value y0 of the oscillating intensity
signal on the detector. For the idealized undisturbed signal as described in equation
3.33 the contrast yields

C = A

y0

eq 3.33−−−−→ I0/2
I0/2

= 1. (3.34)

The maximum contrast value of 1 is indicative of the neutrons not changing their kinetic
energy while traversing a MIEZE instrument and can be observed in the direct neutron
beam or with a sample scattering the neutrons elastically. With the MIEZE technique
being a spectrometry method, a understanding is needed how the measured contrast
changes due to finite energy transfers between neutrons and sample. The next subsection
will elucidate the connection of contrast and dynamical structure factor.

3.2.2. Imprints of energy transfer in the MIEZE signal
Extensive literature has been written on the relationship of N(R)SE polarization and
the dynamical structure factor often in terms of the spin echo approximation, which
includes two assumptions on the scattering process [78, 82].

• The energy transfer is small compared to the neutron energy ∆E � Ei

• The dynamical structure factor S(q, ω) is symmetric in ω

However, the MIEZE technique has been applied to systems that do not satisfy these
conditions. An example might be the non-reciprocal spin waves observed in the conical
and skyrmion phase of MnSi [59, 60]. Especially in low temperature environments
the Bose factor introduces asymmetry in S(q, ω) since scattering in conjunction with
the annihilation of excitation quanta in the sample becomes suppressed. Furthermore,
highly dispersive systems, which require large energy transfers [83], violate the spin echo
approximation as well.

Therefore, we want to present a more explicit approach, which has already been used
by Säubert et al. in the analysis of spin wave scattering in Fe [83, 84] and has been
further refined by Jochum and Bender [85]. Starting from equation 3.33 the normalized
signal at the detector

I(tD)/I0 = 〈σy〉~ω = 1
2〈cos(ωMtD) + 1〉~ω (3.35)

is influenced by the energy transfer with the sample. Here 〈...〉~ω denotes the average
over all possible energy transfers. Any delay or premature arrival of the neutrons by ∆tD
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compared to the unperturbed flight time leads to a dephasing and subsequent reduction
in the contrast signal with ∆tD being computed as

∆tD = LSD

1
v
− 1√

v2 − 2~ω/mn

 . (3.36)

The intensity observed at the detector depends on DDCS, which describes the number
of neutrons scattered from the sample into the solid angle dΩ and energy dEf normalized
to the total number of incoming neutrons, as has been introduced in section 2.1.1.
Including the DDCS, as the distribution of energy transfer to the neutrons, into equation
3.35 to expand the average over ~ω, and applying the contrast definition in equation
3.34 results in

C(2θ, ϕ, ωM) =
∫∞
−∞

d2σ
dΩd(~ω) cos(ωM∆tD) d(~ω)∫∞
−∞

d2σ
dΩd(~ω) d(~ω)

. (3.37)

Rewriting the DDCS in terms of the more commonly used dynamical scattering function
and setting E = ~ω this becomes

C(2θ, φ, ωM) =
∫∞
−∞

kf
ki
S(2θ, φ, E) cos(ωM∆tD) dE∫∞
−∞

kf
ki
S(2θ, φ, E) dE

. (3.38)

At this point, it becomes necessary to account for instrumental details influencing the
measurement in a real world setting. These corrections include the

• modification of the observed energy spectrum due to the energy dependent detection
efficiency

• finite energy transfer from a neutron’s kinetic energy

• bandwidth of incoming neutrons

• asymmetry of the measured double differential cross section

Finally, this leads to a description of the measured contrast signal

C(q, ωM) =
∞∫
0

f(λ) N
E(λ)∫
−∞

Pdet(λ,E) · kf

ki
S(2θ, φ, E) cos(ωM∆tD) dE dλ. (3.39)

Pdet is the generally energy dependent detector efficiency function of an instrument. The
cut-off in the energy integral represents the fact that a neutron can not transfer more
than its kinetic energy, while the factor N comes from the denominator in equation
3.37 and ensures that the energy spectrum is normalized. The integration over the
wavelength λ with the wavelength distribution function f(λ) accounts for the signal
produced from neutrons with varying incident energy.

This formalism allows comprehensive analysis of MIEZE experiments beyond the spin
echo approximation on the cost of extensive numerical computation. In the following,
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the differences in the calculation’s results prove the necessity of a framework beyond
the Fourier transform approach. As an example, the simple magnon model will be
revisited, which was derived in section 2.1.3. Thereby, the dynamical scattering function
for magnetic inelastic scattering is given by

S(q, E) ∝
∑
G,q

δ(Q−q−G)δ(Eq−E) 〈nq + 1〉+ δ(Q+q−G)δ(Eq +E) 〈nq〉 . (3.40)

For simplicity, we restrict this discussion to a fixed Q position in reciprocal space,
reducing the problem to the energy spectrum. It is represented by two Dirac-δ peaks
at the values of positive and negative energy transfer. Infinitely sharp excitation peaks
correspond to infinite lifetimes, which represent an unrealistic scenario in the physical
world. In INS experiments, where the instrumental resolution often dominates the
observed linewidth of an inelastic signal, the Dirac-δ peak model is sufficient. On the
contrary, for a high resolution method such as MIEZE, it is inadequate and a line shape
function has to be introduced. A Lorentzian peak shape

L(E) = 1
π

Γq
(E − Eq)2 + Γ2

q

(3.41)

has proven to be suitable, while more elaborate line shape function can be derived
depending on the system under investigation and will be discussed later in more detail
(see section 4.1).

In figure 3.5 four S(q, E) models are depicted and analyzed. It is shown how the
inclusion of the corrections above change the numerically calculated contrast. All models
use an initial wavelength λi = 6.0Å, energy transfer of Eq = 2.0 meV and linewidth
Γq = 0.25 meV and differ in:
• having Dirac-δ peaks

• being symmetric with respect to energy transfer

• being asymmetric due to inclusion of the Bose factor (T = 15 K)

• being ’one-sided’, an extreme version of a non-reciprocal spectrum
From (b) to (d) corrections are introduced, which are firstly the energy-cutoff and

kf/ki factor, secondly the efficiency correction of the detector and lastly the average
over the incoming wavelength spectrum, respectively. For clarity, (d1) and (d2) show
two spectra with differing energy cut-offs. The subplots correspond to λd1 = 4.5Å and
λd2 = 5.0Å, where the cut-off point is indicated by the vertical, dotted lines. In the
wavelength averaging process, several of these spectra are transformed and the results
are averaged according to the weights of a triangular wavelength distribution.
Each correction reshapes the spectrum and improves the modeling of the neutron

signal observed in the detector. Belonging to each S(q, E) the prime labeled subplots
(a’) to (d’) show the contrast curves, which are normalized to 1 and shifted for better
visibility. With exception of (a’) the contrast has been calculated via equation 3.39,
while (a’) was determined by numerical Fourier transform, as it would be appropriate
for the SE approximation.
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Figure 3.5.: The evolutionary steps in the MIEZE contrast calculation. On the left-hand
side different f(q,E) models are shown, including an increasing number of corrections from
(a) to (d), while the primed plots on the right-hand side show the corresponding contrast
curves. The blue lines show the Dirac-δ peak for the analytical spin wave model, the orange
one is a symmetric excitation spectrum with finite linewidth, the green one depicts asymmetry
introduced by the Bose factor and the red line shows a simple non-repciprocal model with only
one peak. From (a) to (d) the kf/ki factor and the energy cut-off, the detector efficiency and
the triangular wavelength distribution is introduced.
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Comparing (a’) with (b’), (c’), (d’) it becomes clear, that the SE approximations falls
short in the description of MIEZE data with large energy transfers. Even though the
model parameters have been chosen to highlight the differences, these energy transfers
can be seen in real world samples and are of interest in context of critical dynamics in
ferromagnets close to TC as it will be explained in 4. This concludes the part discussing
the theory behind the MIEZE technique and the contrast calculation required for data
analysis.

3.2.3. MIEZE spectrometer RESEDA
The critical and spin wave scattering addressed in chapter 4 has been investigated with
the MIEZE technique at the NRSE/MIEZE spectrometer RESEDA [73] located in the
neutron guide hall of the Neutron Research Source Heinz Maier-Leibnitz (FRM II). Since
the theoretical details of MIEZE have been discussed above, the instrument and the
utilized setup will be introduced briefly.

For the study conducted in 2019, RESEDA was configured for MIEZE operation and
equipped with a high temperature furnace (HTF-3 / TOF-TOF furnace), which uses
resistive niobium heating elements. This setup provided access to the parameter set
listed in table 3.2. RESEDA is connected to the curved cold neutron guide NL5-S with
a m = 2 coating and r = 1600 m radius. As an entry point to the instrument, the
velocity selector provides a triangular shaped wavelength band with nominal wavelength
λ0 = 3.5− 22Å and a bandwidth ∆λ/λ0 = 8.8− 17.2 %. Passing through the primary

Figure 3.6.: RESEDA setup around the sample position. The image shows a cut-out of the
RESEDA beamline with the upstream primary spectrometer arm on the right side, with the
spin analyzer P and the subsequent second beam shaping slit (SLIT 2). The high temperature
furnace (HTF-3), in which the single crystalline sample is mounted, is placed on the rotating
goniometer table. After passing through the sample, neutrons enter the evacuated flight tube
between sample and detector avoiding any further interaction, predominantly air scattering.
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spectrometer arm, the neutron beam will be polarized and manipulated as described in
subsection 3.2.1. Additionally, the beam divergence is restricted by means of a collimator
and two aperture devices with rectangular window. The collimator, with exchangeable
divergence acceptance of 20′, 40′ and 80′, suppresses double reflected neutrons coming
from the neutron guide system. Both apertures have an individually adjustable width
and height from 1 - 50 mm for beam shaping prior to the sample. Further neutron guide
parts between all components in the primary arm reduce transport losses downstream.

Behind the sample position neutrons enter an evacuated flight tube up to the detector
position. In between a circular beam stop (dBS = 2.5 cm) is mounted to block the direct
beam from impinging on the detector. Together, the positioning of the detector with
respect to the primary beam and the detector’s active area, determine the scattering angle
2θ solid angle window dΩ = Adet/l

2
SD. The maximum scattering angle is 2θmax = 55°.

A comprehensive account of the available operation parameters of RESEDA can be
found in publications of Franz et al. [73, 86] and online [87] A multitude of articles
address the use cases of RESEDA [75], instrument specific derivation of the MIEZE
signal with subtraction coils [88] and sample geometry dependent resolution effects
[89–91], proving the capabilities and increasing maturity of RESEDA and the MIEZE
technique in general.

Parameter Value / Range

λ0 6.0Å
∆λ
λ0

0.12
LSD 3.43 m
τM 1.5× 10−4 - 8.0× 10−1 ns
T 300 - 700 K
Adet (20× 20) cm2

αcol 40′

Aap (10× 10) mm2

2θ −1.5°
LAB 1.864 m
Lap 4.35 m

Table 3.2.: Instrument parameters and accessible ranges for the measurement of magnetic
dynamics in Ni at RESEDA.
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3.3. Magnetization and magnetic susceptibility measurements
Material properties on the macroscopic scale, are the result of the intrinsic electronic
states on the atomic scale. While the individual electrons can hardly be investigated,
bulk measurements of the magnetization and magnetic susceptibility already indicate the
character of electron spins inside. Being fairly standard, non-destructive and non-invasive
both methods allow insight in properties readily and exclusively predicted by the laws
of quantum mechanics.

Magnetization and static susceptibility

The magnetization of any material can be inferred from the stray fields produced by a
magnetized sample. A convenient method to measure these fields is vibration sample
magnetometry, which is based on Farady’s law of induction

Uind = − d
dt

∫
B · dA , (3.42)

where B is the magnetic stray field of the sample integrated over the area dA of a
pick-up coil called the magnetic flux Φm. A change in the magnetic flux over time induces
a measurable voltage in the pick-up coil, which directly depends on the magnetization of
the sample. In a vibrating sample magnetometer (VSM) [92] the time variation of Φm is
produced by an oscillatory movement of the sample compared to a static pick-up coil.
Similarly, the same induction is achieved if the coil setup is moved compared to a fixed
sample in a vibrating coil magnetometer (VCM) [93]. However, VCM has an operational
advantage in case additional sample environment is involved in the measurement such
as pressure cells or sub-Kelvin temperature devices [84, 94].

For the exploration of a sample’s magnetizationM (T,H) as a function of temperature
and external magnetic field it is convenient to define the static magnetic susceptibility

χstat
ij (T,H) = ∂Mi(T,H)

∂Hj

for simplicity−−−−−−−→ M(T,H)
H

(3.43)

which generally is a tensor, but can be simplified to the ratio of the magnetization of the
sample to field strength. Regarding systems with anisotropy or chirality, the off-diagonal
terms are of great importance, however they will not be of interest in the context of this
thesis.

AC-susceptibility

The static susceptibility represents the response of the magnetization of the sample to a
unchanging, external magnetic field, meaning the frequency of the the field ω = 0. This
concept can be expanded straightforwardly, by adding a small additional magnetic field
oscillating in time such that the sample is exposed to

H = H0 + hAC cos(ωt) . (3.44)
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Following this notion, it is expected, that the magnetic system responds at the same
frequency, which is expressed in terms of the AC-susceptibility χAC

ij (T,H , ω). It is linked
to the measured induction voltage

Uind(t) = −Ns
dΦm

dt = µ0H0ωAN sin(ωt) · (1 + χijf) , (3.45)

where µ0 is the magnetic permeability, N the number of windings and A the cross
section area of the pick-up coil. f is the volume fraction occupied by the sample in
comparison to the air. Generally, other filling media besides air are possible e.g. pressure
transmitting fluids for AC-susceptibility measurements on samples under hydrostatic
pressure. The suscepptibility contribution of such a filling medium χfm needs to be
considered in the sum (χfm(1− f) +χijf), which for air and small filling factors f breaks
down to equation 3.45.

Since f > 1 and typical susceptibility values are small (|χij| � 1) the induction signal
is dominated by the non-sample contribution. For this reason, the mutual induction
method, a mitigation technique, is employed to minimize the background signal. Parallel
to the sample encapsulating pick-up coil, a second empty, structurally identical one is
measured. Except for small systematic deviations, a significant part of the background
signal can be accounted for [95]. Such an AC-measurement assembly is sketched in figure
3.7, which shows a sample holder and sample being inserted into a reference coil and
a pick-up coil. The external driving field hAC cos (ωt) is created by the excitation coil,
which encloses the other two coils.

For the acquired induction voltage from an empty pick-up coil, a phase shift of π/2
in relation to the sinusoidal driving field hAC is expected. In contrast, the sample’s
contribution can be split into an in-phase and an out-of-phase signal in a way that the
full susceptibility can be expressed as

χ = χ′ + iχ′′ = <(χ) + i=(χ) . (3.46)

Figure 3.7.: Sketch depicting a mutual induction χAC measurement setup. The large excitation
coil encloses the reference coil and pick-up coil to induce an induction voltage via a small
driving field hAC cos (ωt). The difference in the measured voltage of both coils arises from the
magnetic susceptibility of the sample. Thus the environmental background can be subtracted
out.
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The real part, in-phase with the time dependent magnetization, of the susceptibility is
related to reversible dynamics of the magnetization of the sample at the probed frequency.
However, the imaginary part =(χ) = χ′′ is related to non-reversal or energy dissipating
processes such as domain wall motion, spin-lattice relaxation, phase transitions or flux
creep in superconductors [96].

Physical property measurement system

The static susceptibility and magnetization data of the metal-organic compound Cu-pyz
(abbreviation for Cu(C4H4N2)2(H2O)2Cr2O7), which is discussed in chapter 5.2, was
acquired with a physical property measurement system (PPMS) from the Quantum Design
AG in the 9 T configuration [97] by means of VSM method [98]. The measurements were
performed in collaboration with G. Benka of the chair for the Topology of Correlated
Systems (E51) at the Department of Physics of the Technische Universität München.



4. Spin waves and critical fluctuations in nickel - A
high resolution study using MIEZE

The study of solid state magnetism has always been strongly linked to phase transitions
and their properties, hence the amount of papers published on the critical behavior
around the phase transition temperature is, for practical purposes, uncountable. They
discuss the key concepts of critical scaling and the categorization of systems based on
universality classes. This approach to investigate magnetic materials has advanced the
field substantially. A universality class is a set of critical exponents, which determine the
power law behavior of the order parameter or response functions of a system. Within
each class the exponents are interconnected via scaling laws allowing categorization and
predictions of the other physical properties of any system [99].

More importantly, universality classes group systems together, which are according to
their microscopic interactions, quite different only sharing commonality in few general
parameters. Still, as only few of universality classes can be distinguished, it raises the
question: Which features of these microscopic inter-particle forces are important for
determining critical-point exponents and scaling functions, and which are unimportant?
[99]
Naturally, this question is no less relevant for dynamic critical phenomena, which

extend all of these concepts to time-dependent properties and their anomalous evolution
close to the critical point. Bridging the world of theoretical consideration and experi-
mental reality, physical systems and appropriate instrumentation has to be combined
to test the predictions of idealized models. In recent years renewed interest in the
critical dynamics of ferromagnetic systems arose from advances in inelastic neutron
scattering techniques, which are uniquely qualified to probe these dynamic phenomena.
Compared to other viable methods such as Brillouin light scattering or nuclear magnetic
resonance, neutron scattering is well applicable in the long-wavelength regime q & 0.
The high energy resolution required at the same time has been achieved with the MIEZE
measurement technique.
The ferromagnet nickel has a long history of studies investigating its spin wave and

critical, paramagnetic scattering over a large range in temperature [29]. The current
improvements in momentum and energy resolution of MIEZE enable the study of
long-range dipolar interactions between the electrons in the system. Such a deviation
from the prominent isotropic Heisenberg system has successfully been observed in the
ferromagnetic systems Fe [83, 100, 101], EuO [102–104], EuS [103–105] and LiTbF4 [106].
For this reason, we investigated the magnetic scattering in the vicinity of the ordering
phase transition at TC with energy and momentum transfers a factor of 10 lower then
previously reported [107, 108].
In the following, the physics of critical dynamics of ferromagnets will be introduced,

emphasizing the difference in behavior originating from dipolar coupling (section 4.1).

38
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Section 4.2 is dedicated to the presentation of the MIEZE data describing the mea-
surement, data reduction, physical parameter extraction and instrument resolution
corrections. The acquired data will be compared to the theoretical models and the
appropriate description will be discussed in section 4.3. Finally, a summary of the
present and outlook on future studies will be given, cf. section 4.4.

4.1. Physics of dipolar ferromagnets
Fundamental to the theory of critical phenomena and scaling is a correlation function
CAξ (r, t) of the operator A and its unique correlation length ξ, which approaches infinity
at TC and simultaneously is a measure of the deviation of the temperature from TC such
that ξ = |t|ν(ν′) with t = (T − TC)/TC and ν, ν ′ being the associated critical exponents
above and below TC [109]. With regard to ferromagnetism, this abstract definition
becomes more relatable, when specifying that CA is related to the spin-spin correlation
function

〈
Sαi S

β
j

〉
. Since the range of temperatures TC in real-world ferromagnets ranges

over several orders of magnitude, it is not surprising that the reduced temperature t as
defined before is the appropriate variable to describe those systems in context of critical
phenomena.
In momentum and temperature space, the inverse correlation length κ = ξ−1 defines

three separate regions in the vicinity of TC. Figure 4.1 shows the separation into the
spin wave region (q < κ, T < TC), the transition region (q � κ) and the hydrodynamic
region (q < κ, T > TC). Within each region, the investigated system exhibits differing
dynamical behavior. Associating TC with the Curie temperature and calling one region
the spin wave region already specifies our interest on dynamic critical phenomena in
magnetic materials, even though the formalism is applicable to a plethora of systems.
The dynamical behavior of a ferromagnet deep in the ferromagnetic state (T � TC)

and far in the paramagnetic phase (T � TC) and consequently its observed response to
NS is known from spin wave theory and statistical mechanics, respectively. Dynamical
scaling theory (DST) extends this description and allows to predict the renormalization
of the spin wave dispersion and the lifetime of paramagnetic fluctuations close to TC.
For each of the three distinct regions, the expected behavior will be presented for the
subsequent comparison with high resolution neutron spectroscopy data of nickel.

4.1.1. Spin wave region
The basis for discussing the spin waves in nickel is a microscopic model describing a
system of exchange coupled spins with dipolar anisotropy in an external magnetic field
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Figure 4.1.: Wavevector transfer vs temperature diagram in the vicinity of the critical
temperature TC. The red lines given by q = κ(T ) separate the space into three regions in
which a system displays different, characteristic behavior. Corresponding to their names, in the
spin wave region a magnetic system exhibits collective excitations, whereas spin diffusion is
dominant in the hydrodynamic region. According to dynamical scaling theory, the asymptotic
forms of two neighboring regions are assumed to merge at the boundaries. Both the inverse
wavevector q−1 and correlation length ξ(T ) = ξ0|1 − T/TC|ν are large compared to inter
atomic distances.

H along the z axis. It is expressed by the Hamiltonian

H = Hex + Hdip + HZeeman

= −1
2

N∑
l,m

2JlmSl · Sm

+ 1
2

N∑
l,m

4µ2
B

R5
lm

(
R2
lmSl · Sm − 3Sl ·RlmSm ·Rlm

)

+
N∑
l

2µBHS
z
l .

(4.1)

Here, N is the total number of atoms, with l and m being summation indices from
1 to N omitting the case l = m. Rlm = Rl − Rm and Rlm = |Rlm| are the vector
connecting the position of the atoms l,m and its magnitude, respectively. Sl denotes
the spin angular momentum operator in units of ~ with Jlm being the exchange coupling
constant of nearest neighbors.

Similar to the derivation of spin wave dispersion for a standard Heisenberg Hamiltonian
(see subsection 2.1.3), Holstein and Primakoff [110] applied a technique now known
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as Holstein-Primakoff transformation to express the Hamiltonian in terms of magnon
creation and annihilation operators a∗q and aq, respectively. As a result, the Hamiltonian
takes the form

H = C +
∑
q

Aqa
∗
qaq +

∑
q

(1
2Bqaqa−q + 1

2B
∗
qa
∗
qa
∗
−q). (4.2)

Aq = 2SJq2 + 2µBH + 4πµBM0 sin2 (θq) = A−q (4.3)
Bq = 4πµBM0 sin2 (θq) e−2iΦq = B−q (4.4)

In these equations, q represents the reduced wavevector, which is required to be small
compared to the total wavevector transfer in order for the expressions of Aq and Bq
to be valid. M0 is the saturation magnetization. The angles θq,Φq parameterize the
direction of the wavevector transfer q with respect to the magnetization (external field)
direction. The spin wave dispersion deduced by determination of the eigenvalues of the
Hamiltonian for a ferromagnetic state is given as:

~ωq =
√
Aq

2 − |Bq|2 = EHP(q) (4.5)

Changing to SI units and generalizing the magnetic moment of a spin to include the
Landé-factor g the Holstein-Primakoff dispersion relation becomes

EHP(q) =
√

(Dq2 + gµ0µBH) · (Dq2 + gµ0µBH + gµ0µBM(T,H) sin2 (θq))

=
√

(Eex + EH) · (Eex + EH + Edip) .
(4.6)

Three terms contribute to the spin wave energy. Eex = Dq2 goes back to the exchange
coupling, with the material specific spin wave stiffness D = 2a2JS, where a is the lattice
parameter of a cubic lattice. It leads to the well known ∝ q2 spin wave behavior of a
ferromagnet for small q values. The Zeeman gap EH = gµ0µBH is introduced by an
external magnetic field. Lastly, the dipolar term Edip = gµ0µBM(T,H) sin2 (θq) reflects
the strength of dipolar interactions and is related to the spin wave stiffness via the
dipolar wavevector qD via

Edip = D(T ) · q2
D . (4.7)

In the special caseH = 0, the Zeemann term vanishes and without intentional preparation
the magnetic domains can be assumed to be randomly oriented. Then the average of
θq over all domains yields 〈sin2 θq〉 = 2

3 . Therefore, the dispersion becomes isotropic
and the measured spin wave energy only depends on the magnitude of the wavevector
transfer q.
The treatment of spin waves in a ferromagnetic material assumes an (almost) fully

ordered magnetic state, such that spin wave stiffness D0 and magnetization Msat essen-
tially represent the quantities at T = 0. However, dynamical scaling theory addresses
the temperature dependence of these quantities close to TC postulating a power law
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relation and the appropriate critical exponents. Hence,

M (T ) = M ′ ·
(
TC − T
TC

)β
(4.8)

D (T ) = D′ ·
(
TC − T
TC

)µ
(4.9)

with β being the critical exponent of the magnetization and µ = ν ′ − β being the
exponent for the spin wave stiffness [109, 111] as derived from dynamical scaling theory.
ν ′ is the critical exponent of the correlation length for T < TC. Here, the introduction
of the primed quantities M ′ and D′ highlights that they do not correspond to the T = 0
values, because the scaling behavior is only valid close to TC.

The exact numerical value of any critical exponent needs to be calculated from
microscopic theories for subsequent comparison with measurements. However, a variety
of models lead to the same set of critical exponents and are subsequently grouped in
universality classes. In this sense the critical exponents are denoted universal. Therefore,
the numerical values of the critical exponents does not depend on the details of the
microscopic interaction, but on fundamental properties such as the dimension of space
and the dimension of the order parameter, which is here usually referred to as the spin
dimensionality. Further important parameters are the range of the magnetic interactions
and whether the order parameter is conserved.
The n-vector model covers many cases of microscopic model Hamiltonians [99] and

using the results of Guillou et al. as an example we take ν ′ = 0.7054 and β = 0.3647 to
arrive at µ = 0.3407 [112]. Instead of using elaborate renormalization group calculations
for the 3D isotropic nearest neighbor Heisenberg model, Halperin estimated µ ≈ 1/3 from
mean-field exponents [111]. Accordingly, a slight temperature dependence of q2

D ∝ tβ−µ

would be expected.
Furthermore, deep in the spin wave region dynamical scaling theory predicts the

dependency of the inverse lifetime or rather linewidth Γ(q) of the spin waves on the
correlation length ξ and the wavevector transfer q to be

Γ(q) ∝ ξ2q2 . (4.10)

This differs somewhat from the result of Harris [113], who derived a q4 ln(1/q2) depen-
dency for a Heisenberg system in the long wavelength limit. In the case of small q the
behavior approximately follows the expression

Γ(q) = Λq5/2 , (4.11)

which is often referred to in spin wave damping studies [83, 114]. Consequently, the
line shape function, which appears in the DDCS of INS from spin waves, can no longer
be regarded as two symmetric Dirac-δ distributions in reciprocal space, but rather the
function

fqξ(s) = 1
π

ηq
(s2 − 1)2 + η2

q

. (4.12)
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with s = ω/ωc being the ratio of scanned frequency ω and the characteristic frequency
ωc of a fluctuation mode of the system and ηq being the width parameter of the function.
At this point it should be reiterated that the dynamical scaling theory predictions are
ignorant regarding microscopic details of the model Hamiltonian. Therefore, experimental
studies on dipolar ferromagnetic systems, where long range interactions are present, are
of interest to test the limits and capabilities of dynamical scaling theory.

4.1.2. Transition region
Revisiting the definition above, the transition region as shown in figure 4.1 corresponds
to q > κ and T ≈ TC. Occasionally, it is also referred to as the critical region, which
is more broadly used to describe a region where critical phenomena are pivotal to the
behavior of the correlation function. Using this terminology, critical region corresponds
to all portions in (q, T ) space, where the length scales ξ and q−1 are macroscopic in
relation to inter atomic or interaction distances.
As assumed in the framework of dynamical scaling, a system is fully characterized

by its behavior in the three regions, which are depicted in figure 4.1. Any dominating
mode, such as collective exciations in spin wave region, will continue arbitrary close
to the critical temperature TC without changing its fundamental character. However,
when approaching TC at fixed q, corrections on the order (qξ) become important.
These correction terms can be suppressed by performing measurements at long enough
wavelength. At the critical point, ξ diverges and the so far valid description breaks
down. Besides this singularity, the dynamical scaling hypotheses rests on the assumption
that anywhere else in the (q, T ) plane (q 6= 0), the correlation function varies smoothly.
At the boarders q = κ = ξ−1 separating the regions, the mathematical description
of the system asymptotically matches. Therefore, if the asymptotic behavior of the
characteristic frequency ωc(q) in the spin wave region is known, it coincides with the
characteristic frequency in the transition region [111]. Hence, the characteristic frequency
of the magnetization, often interpreted as the inverse lifetime of the fluctuation of the
order parameter, is expected to follow

ωc(q) = Γ(q) = Λ · q(5−η)/2 +O

(
κ

q

)
T→TC−−−→ Λ · q5/2 . (4.13)

The critical exponent η = 0.034 is essentially negligible for a 3D Heisenberg system.
In contrast to the spin wave region (see equation 4.12), the scaling hypotheses does

not specify the shape function fqξ(x). Possible line shapes can be found in figure 3 of
the publication by Halperin et al. [111]. Beyond that, renormalization group theory
allows calculation of this very function in the limit of T = TC (ξ →∞). The analytical
representation given by

fqξ=∞(q, ω) = 1
π · Λq5/2<

{
1

is+ α [1 + i(α/a)s]−0.6

}
, (4.14)

where <{· · · } returns the real part of a complex function, s = ω/ωc, α = 0.78 and
a = 0.46 [107, 115].
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4.1.3. Hydrodynamic region
The hydrodynamic region (see figure 4.1) of a ferromagnet largely coincides with its para-
magnetic state and describes the dynamical and transport properties of spin fluctuations.
Here, the inverse lifetime of the critical fluctuations are slightly modified compared to
the case of T = TC by introducing the dynamical scaling function (DSF) γ(κ/q). Thus,
the linewidth of an isotropic Heisenberg ferromagnet can be expressed as

Γ(q) = Λγ(κ/q)q5/2 , (4.15)

where Λ again determines the frequency scale of the decaying fluctuations and in case of
magnetic systems contains the strength of the exchange interaction J .

Exploiting the fact that at the Curie temperature γ(κ/q) = 1, it is possible to extract
the dynamical scaling function, by normalizing equation 4.15 to the linewidth at TC (see
equation 4.13) such that

ΓT+(q)
ΓTC(q) = γ(κ/q) , (4.16)

which encapsulates the entire temperature dependence in terms of the inverse correlation
length κ. T+ indicates a temperature just above TC. While dynamical scaling theory
constraints the properties of γ(κ/q) by requiring it to be a homogeneous function, which
allows the determination of its asymptotic behavior, the form at any value of the scaled
variable x = κ/q is not known.

Using a mode-coupling (MC) approach for the treatment of the time dependent spin
correlation function, Résibois and Piette deduced an integral equation for γ(x) of an
isotropic Heisenberg system that satisfies the asymptotic scaling behavior

γ(x)→ 1 for x→ 0 (4.17)
γ(x) ∝ x1/2 for x→∞ , (4.18)

but can only be computed numerically [116]. Studying the critical dynamics in iron,
Mezei [100] proposed a useful analytic approximation of γ(x) expressed as

γ̃(x) = 0.4284x1/2 + exp
(
−0.4284x1/2 − 2.4x+ 0.7x2 − 0.2x4

)
. (4.19)

Similarly, Iro found a solution for γ(x) via renormalization group theory calculations,
which also yielded an expression for the dynamical shape function fqξ(s) explaining the
difference between measured neutron scattering intensity distribution and a Lorentzian
peak used in the analysis. Since the expressions for γ(x) and fqξ(s) require a set of
numerous equations, these have been put in appendix B.1 for clarity.

Increasing number of experimental results gathered on typical ferromagnets Fe [100],
Co, Ni [107, 114], EuS [117] and EuO [118, 119] supported the general notion of the
dynamical scaling hypotheses and the prediction of the dynamical scaling function by
Résibois and Piette. Discrepancies however were especially dominant in systems EuO
[103] and EuS [103, 117], which are known to harbor significant dipolar coupling besides
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the dominant exchange interaction [105]. To resolve these issues, a theoretical framework
for calculating the dynamical scaling function in the presence of dipolar interaction was
developed by Frey and Schwabl on the basis of a mode-coupling ansatz.
The result, alike the ones before, can not be summarized in an analytical form, but

only calculated numerically. The starting point is a set of two coupled integral equations,
which express the inverse lifetime for longitudinal and transversal fluctuations ΓL(x)
and ΓT(x) respectively, as a sum over all possible decay modes [120, 121]. In essence
Frey and Schwabl predict, that the dipolar wavevector enters into the dynamical scaling
function such that linewidth [101, 122] of the critical fluctuations (α = L, T ) is given by

Γα(q) = Λγα(κ/q, qD/κ)q5/2 . (4.20)

The ratio qD/κ introduces a temperature dependence such that one obtains an array of
curves, which reflects the observed critical dynamics well [101, 117, 122]. In the isotropic
limit, meaning vanishing dipolar interactions, the theory of Frey and Schwabl reproduces
the Résibois-Piette scaling function.

4.2. MIEZE measurements of Ni
Treating nickel as an isotropic Heisenberg type ferromagnet and subsequent interpretation
of experimental results with the above introduced theoretical framework has produced
good agreement over a large range of momentum and energy transfers above and below
the Curie temperature [107, 108]. Given the fact that EuS, EuO and especially Fe
clearly indicate the presence of dipolar contributions influencing their static and dynamic
properties, Ni is expected to behave similarly. The lack of a pronounced signature could
be explained by the comparably small value of qD = 0.013Å−1 [123], which is on the
limit of the instruments used in past measurements.

With increasing capabilities of modern neutron spectrometers, energy and momentum
resolution became sufficient to reexamine the influence of dipolar interactions in nickel
by MIEZE spectrometry. This chapter is concerned with presenting the measurements
performed at the MIEZE spectrometer RESEDA at the Research Neutron Source Heinz
Maier-Leibnitz (FRM II).

4.2.1. Nickel sample
The sample used in the presented study was a pure 64Ni single crystal shaped like a
droplet. The sample is 20 mm long with a diameter of about 13 mm for the thicker part
of the drop shaped part, allowing for a 10× 10 mm2 beam spot. The sample is a single
crystal, but it has been mounted in an arbitrary orientation. Isotopic analysis shows
98.15 % purity of 64Ni with any Ni isotope being less abundant than 0.85 % and any
contamination of other elements < 0.2 %. An isotopically pure sample was chosen to
minimize the isotope dependent absorption and nuclear coherent scattering cross section
[52].
The sample holder, connecting crystal and high temperature sample environment,

consisted of two stainless steel plates and four screws. A hole in the center of each
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plate fixed the lateral movement of the sample after tightening the screws clamping it in
place. The thicker, upper plate had an M8 inner thread to screw the sample holder onto
the ceramic sample stick of the furnace. Being hollow, a thermocouple (type C) [46],
which was 3 mm longer then the stick itself, was inserted through the sample stick to
contact the sample. Since the thermocouple is rigid, fastening the sample tightly ensures
thermal contact between sample and temperature sensor. A picture of the sample inside
its holder is shown in figure 4.2 (a) and a sketch, which depicts the holder attached
to the sample stick, is shown in figure 4.2 (b). A gray scale image taken by a neutron
camera, which displays the sample in the neutron beam, is put beneath the sketch.

4.2.2. Experimental setup and data acquisition
RESEDA is set up in its standard SANS configuration, in which the primary spectrometer
arm defines the geometry of the beam with two square slits, separated by 4.4 m. Both
were set to 10× 10 mm2. A 40′ collimator was used to remove the double reflection of
the neutron guide.
For the experiment, pre-tuned MIEZE times τM could be used ranging from 10−4 ns

to 1 ns. The triangular wavelength distribution of the velocity selector is centered at
λ0 = 6.0Å and has an acceptance window of ∆λ

λ
= 0.12.

The fast, time resolving position sensitive detector (PSD), also referred to as CAS-
CADE, is located 3.43 m behind the sample position with an active detection area
of 200× 200 mm2. High neutron count rates can induce faulty signal in neighboring
detector pixels, which is why the direct beam (DB) is blocked by a circular beam stop.
The sketch in figure 4.3 shows the scattering geometry of the experiment. Neutrons
scattered by a small angle 2θS pass the beam stop and get registered by the time resolving
PSD. The colors indicate different values of the transverse momentum transfer q⊥ with
respect to the direct beam.
Experimental determination of TC was done by observing the critical magnetic scat-

tering integrated in a region of interest (ROI) around the direct beam spot on the
CASCADE detector. As a function of temperature the intensity exhibits a maximum,
as the magnetic susceptibility χ(T ) diverges at TC. The temperature was ramped with
a rate of 0.2 K/min and a neutron counting time of 30 s per point. One cycle of cooling
and heating through the Curie point is depicted in figure 4.4, as well as the ROI used for
integration. While the signal is weak, but still unambiguous, no hysteresis was observed
over several temperature sweeps confirming temperature stability.

The absolute value of the Curie temperature was 21.4 K lower then TNi
C = 358.28(4) ◦C =

631.39(4) K reported recently [124]. This discrepancy is attributed to the thermocouple
being not properly contacted to the sample, but instead contacting the inner thread of
the sample holder. The sample holder lies outside of the volume experiencing optimal
heating3. Due to the small contact area with the sample heat is not well transported
between sample and the holder. Since heat is transferred exclusively via radiation, it is
plausible that the sample holder has a significantly lower temperature.

3 Private communication with sample environment responsible M. Antic.
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Figure 4.2.: The Ni sample has a drop like shape with a height of 20 mm and a diameter of
13 mm at the widest point. Depicted in (a), the sample was fixed in place by tightening four
screws and clamping two plates with the sample in the middle together. Each plate had a hole
in the center preventing lateral movement. The hole in the upper plate had an M8 inner screw
thread, which could be connected to the ceramic sample stick of the furnace. This is indicated
by the sketch in (b), where the type C thermocouple inside the sample stick is visualized as
well. When screwing the sample to the stick, the thermocouple is pressed on top of the sample
reading its temperature. In (b) the gray shaded areas show the sample inside the holder as
seen by a neutron camera in transmission geometry.
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Figure 4.3.: Sketch of the experiment geometry. RESEDA is set up in a small-angle scattering
geometry. After passing through beam preparation and collimation elements, the scattered
neutrons, which experience a small transverse momentum transfer are detected by the PSD.
Different q⊥ values are indicated as colored rings on the detector area. Neutrons not deflected
from the incoming beam direction are absorbed at the beam stop.
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Repeated observations, which did not reveal any temperature drift over time, when
changing temperature with small ramping speeds, indicated that the offset is constant
and temperature independent in the narrow range around TC relevant for the study.

In total, MIEZE data was acquired after adjusting the sample’s temperature to a value
T = TC + ∆T with ∆T ∈ [−2 K,−1 K, 0 K, 1 K, 2 K, 4 K] and TC is the experimentally
detected temperature value by critical scattering. For each T and τM the counting time
was set to 1 h, which achieves high enough counting statistics for a reliable contrast
determination at large q values. Additionally, background data was recorded at T =
TC +30 K, at which no magnetic dynamics could be observed and changes in the contrast
originate from the geometry of the sample and the high temperature setup. Lastly, the
time resolution of the instrument was measured with a graphite reference sample.

4.2.3. Data reduction
While being a powerful and versatile measurement technique, raw MIEZE data is
significantly less intuitive to analyze than three-axis or diffraction data. At RESEDA,
data acquisition for one τM value produces a four-dimensional data set, with one time
dimension from binning the periodic intensity signal. Two dimensions correspond to the
x and y coordinate of the PSD and the fourth dimension arises from the fact that within
the detector 8 thin, boron coated foils are used to register the neutrons individually.
Generally, it is necessary to measure a sample at many values τM to reconstruct its
contrast function C(τM) adding one additional dimension. Transforming this space and
time information into the more approachable momentum and energy domain requires
four major processing steps to arrive at an interpretable result:

(i) The selection of ROIs on the detector area in which data processing should occur

(ii) The contrast C(q, τM) determination from the time modulated neutron intensity
signal within these ROIs

(iii) The calculation of the associated wavevector transfer q.

(iv) The extraction of relevant physical quantities by fitting appropriate models to the
C(q, τM) curves.

In the following paragraphs, the data reduction scheme for the performed experiment is
elaborated on, as it encompasses a few non-standard steps for intricate data sets.

Regions of interest

The software package MIEZEPY [125] is a dedicated tool for processing the data
contained in the .tof files, which are generated by the NICOS instrument operation
software [126] from the raw data of the CASCADE detector. Therefore, MIEZEPY
addresses the steps (i) and (ii) in the data reduction scheme. It groups a number of
single files, classified by the same set of external parameter, such as temperature, B-field,
etc., in addition to the underlying five-dimensional data set, which are the MIEZE time
τM, index of the detection foil, index of the time bin and pixel coordinates in x, y.
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Figure 4.4.: Determination of the Curie temperature via critical, magnetic small angle
scattering around the direct beam. With the static magnetic susceptibility χ diverging at
the Curie temperature TC critical scattering peaks at T = 609.95 K. Observed by varying
temperature with a rate of 0.2 K/min and integrating all scattered neutrons in the region
shown in the insert and over 30 s, normalized to monitor. No hysteresis is apparent over
multiple temperature cycles.

After organizing the data either manually in a graphical user interface (GUI) or
scripting in the Python programming language, ROIs, also referred to as (q-)masks, are
chosen. These ROIs generally serve two purposes. They are used to group pixels on the
detector for phase correction calculations and also to integrate neutron counts prior to
the contrast calculation. A graphical representation is shown in figure 4.5, which shows
an exemplary 2D neutron distribution measured with the CASCADE detector. The
data is overlaid with a set of circle segments, q-masks, utilized for the aforementioned
integration of neutron counts. Each mask represents a different, average scattering angle
or rather q value, which can be calculated via

qel = 4π
λ

sin
(

2θ
2

)
, (4.21)

where the subscript ’el’ expresses the assumption of strictly elastic scattering. As
introduced in chapter 2, λ is the wavelength of the incoming neutrons and 2θ the
scattering angle. In INS studies the energy transfer is per definition not negligible, which
is why the correct momentum transfer can be determined after extracting the energy



50 4. Spin waves and critical fluctuations in nickel - A high resolution study using MIEZE

transfer value. We will revisit this in step (iii).
The selection of ROIs is not a standardized procedure and needs to satisfy various

constraints, which depend on the particular experiment and sample. Having nickel as a
sample, where INS due to spin waves is expected below TC, a mask corresponding to
a q value should contain a signal corresponding to an energy transfer dictated by the
dispersion relation. A broad ROI averages over a broad band of q values, which results
in measuring an increasingly smeared out energy spectrum, and thus counterproductive
for a high resolution measurement. In opposition, ROIs with a small area contain a less
intense neutron signal, adversely affecting the contrast determination and extraction of
physical parameters from the final C(q, τM) curves. Thus, a compromise between these
inverse effects on signal analysis needs to be found. Lastly, the geometric shape of ROIs
needs to reflect the symmetry of the measured system.

For that reason, the ROIs, depicted as colored areas in figure 4.5, are arcs of increasing
radius with their center coinciding with the center of the DB. They describe areas
of equal, total wavevector transfer q and take advantage of the isotropic scattering
from randomly oriented magnetic domains (T < TC) or unordered spins (T ≥ TC), by
integrating the signal over a large area. The increasing width of the ROIs is owed to the
decreasing neutron count rate further from the DB center.

Constrast fitting

Step (ii), the determination of the contrast in each ROI begins with a phase correction
procedure. The phase correction is necessary to mitigate instrument dependent reduction
in the contrast from flight time differences of the neutrons, which are solely determined
by the instruments geometry and its components. Two main reasons, the flight path
difference originating from a planar PSD and the height profile of the detection foils
inside the CASCADE detector, have been identified. A detailed explanation of the
correction techniques is given in [125].
At this point, a superficial description of these techniques should suffice. The ROI

under investigation is subdivided into groups of multiple pixels, to which the phase
correction scheme will be applied. The grouping needs to balance the number of pixels
per group, which ensures higher counting statistics and thus improved reliability of the
correction algorithm, against the inaccuracy of the correction result, which increases
with the integration area on the detector. Therefore, in the high intensity regions on the
detector 5-10 pixels per group are sufficient, while 30 or more pixels are required far
from the beam center. As for the ROI selection, the exact grouping also depends on the
individual experimental setup and sample. The correction is calculated and applied to
each data set corresponding to τM individually. As a result, the time signal in each pixel
is shifted, such that the time modulated signal everywhere has the same phase.
Subsequent to the phase correction of every data set, including background and

resolution, the background is subtracted from the data, for each point in the 5D (τM,
foil index, time bin index, x, y) parameter space. This procedure ensures that only the
sample signal remains for further analysis.

In the next step, the contrast C(ROI, τM) is calculated using the phase corrected and
background subtracted data as well as the resolution data set. After the phase correction
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Figure 4.5.: Active detection zone of the CASCADE detector. The background shows a
neutron distribution obtained by scattering from the Ni sample. The black, circular area
represents an area, where no data reduction is performed and the direct neutron beam is
blocked by a physical beam stop in front of the detector. The colored, concentric rings
correspond to the ROIs (q-masks) utilized in the data reduction. The associated qel values are
calculated with equation 4.21.

the neutron data can be integrated over all pixels within one ROI, without averaging
out the contrast signal in the process. This increases the neutron counts in each time
bin significantly allowing a reliable fit of

Nn(ti) = A · sin
(
π

8 ti + φ
)

+ y0 (4.22)

to the data. A is the amplitude of the oscillation, y0 the mean value and φ the phase.
The frequency is fixed to π/8 because the detector was set up to record one period of
the signal in 16 bins. As introduced in equations 3.33, 3.34 the ratio A/y0 yields the
contrast. Exemplarily, this process is shown in figure 4.6 for a simulated C(τM) curve in
subplot (b). The contrast points colored red and blue in (b) correspond to the cosine
signal in subplot (a), where the amplitude A and average value y0 are drawn in.
The obtained contrast captures the dynamics of the sample, but is damped by the

instrumental resolution, which is a function of (q, τM) and needs to be measured alongside
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Figure 4.6.: Simulated MIEZE signal and data reduction visualization. (a) Shows the time
binned MIEZE signal for two τM and the fitted cos curve. (b) Simulated C(τM) curve where
the red and blue data points correspond to the contrast extracted in (a).

the actual sample to correct for the damping

Csample(ROI, τM) = Cmeasured(ROI, τM)
Cresolution(ROI, τM) . (4.23)

As mentioned above, the resolution data were taken with a graphite reference, which
scatters the neutrons elastically in forward direction and illuminates the detector ho-
mogeneously. This means, the energy spectrum is infinitely sharp at ∆E = 0, which
translates to a horizontal line (C(ROI, τM) = 1) in the time domain measured with
MIEZE. Every deviation from this behavior is a result of instrument performance that
is corrected for by normalizing each contrast curve to the reference. All these steps are
performed using MIEZEPY returning a C(τM) for each detection foil and ROI.

However, problems regarding the data acquisition in a particular foil or contrast fitting
needed to be identified manually and the data of the affected detector foils is excluded
if the error is not recoverable. The reliable contrast curves for each detector foil are
averaged according to the total number of neutrons and the uncertainties are determined
with inverse-variance weighting. The contrast curves C (ROI, τM |T,H , p, ...) gained by
the reduction process are ready to be analyzed to extract the physical parameters of
interest.

Calculation of momentum transfer

Having touched on the determination of the momentum transfer q associated with a
ROI, we will discuss the process in more detail, including a correction, which accounts
for the deviations occurring for a planar detector rotatable around the sample position.
The sketch in figure 4.7 serves as support for the explanation. It shows a top view of
the scattering geometry behind the sample, where the dotted black line represents the
DB passing through the sample, the blue line represents the planar detector surface and
the green line a possible neutron flight path after scattering with angle 2θ. The orange
line indicates the normal of the detection plane connecting its center with the sample
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position. The sample-detector-distance is fixed to lSD = 3.43 m under rotation of the
secondary spectrometer arm by angle α. Finally, δ is the distance of any pixel on the
detector to the DB center within the detection plane.
The wavevector transfer for a SANS-like instrument with a PSD can be computed

as follows. Each pixel of a flat neutron detector can be associated with a scattering
angle 2θ = arctan (δ/lSD). With the assumption of |ki| = |kf | the wavevector transfer
is given by 4.21. Once α 6= 0, δ is no longer perpendicular to the DB, which makes
the arctangent relationship invalid. Instead simple geometric considerations yield a
cumbersome determination equation for 2θ, which reads(

δ

lSD

)2

= Z2 − Z cos(2θ)
cos(α) + 1

cos2 (α) , (4.24)

with the Z being a representation for

Z = (cos (2θ) cos (α) + sin (2θ) sin (α) cos (Φ))−1 . (4.25)

Except for special cases, equation 4.24 can not be solved analytically, but numerically, for
the scattering angle 2θ and subsequently the wavevector transfer can be computed for each
pixel on the detector. At that point, the average wavevector transfer q̄ and its variance σ2

q

can be calculated for each ROI, which is now also indicated by C(ROI, τM)→ C(q, τM),
where we omit the bar indicating the average. The interested reader will find a derivation
of equation 4.24 in appendix B.3
Since we are measuring inelastic scattering from spin waves, it is necessary to go

α

2θ

y

z x

DBΦ

δ
lSD

Φ

Figure 4.7.: Sketch of the secondary spectrometer arm of RESEDA for qel calculation. The
incoming neutrons from the left side are scattered at the sample position (dark grey circle) by
an angle 2θ (and Φ) or transmitted before hitting the detector (blue line). The transmitted
neutrons in the DB are indicated by the broken, black line. The distance δ between a neutron
registered by the detector and the direct beam is used to calculate 2θ or rather qel geometrically.
As the center of the detector is rotated around the sample (grey curve), meaning α 6= 0 and δ
is no longer perpendicular to the DB, 2θ has to be a solution of equation 4.24 and needs to
be calculated numerically. This gives small corrections to q computed from a simple arctan
relation.
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beyond the elastic limit and consider finite energy transfer. As a result, the final
wavevector of a scattered neutron is calculated via

kf =

√√√√2mn

~2 ·
(
~2k2

i
2mn

−∆E
)
. (4.26)

Therefore, the wavevector transfer follows from the law of cosines

qinel =
√
k2

i + k2
f − kikf cos (2θ) . (4.27)

At this point, it is has to be noted, that for inelastic scattering step (iii) and step (iv),
as defined at the beginning of section 4.2.3, are no longer independent of each other and
a self consistent treatment might be necessary.

Physical parameter extraction

Analysis of the contrast curves C(q, τM) acquired by reduction of the raw MIEZE data
can be done in various ways, e.g. having an appropriate description of the investigated
system in the time domain allowing a direct comparison. It is equally possible to
transform the contrast data into the (q, E) space achieving high resolution measurement
of the dynamical structure factor S(q, E). Here, we apply a third strategy, resembling
the analysis of TAS data. Assuming a basic model for the dynamical structure factor
S(q, E) for the different temperature regimes discussed in 4.1, we extract the linewdith
and excitation energy by transforming S(q, E) −→ C(q, τM), which is introduced in
section 3.2.2, and fit the obtained contrast curve to the measured contrast data.

For the spin wave measurements at temperatures below TC, the Lorentzian line shape
was chosen, since it was repeatedly employed for similar investigations in ferromagnetic
systems. Thus, comparability for the data analysis and subsequent discussion is assured.
The line shape derived by Iro on the basis of asymptotic renormalization group theory
(ARG) has been successfully employed by Böni et al. [107] in the analysis of paramagnetic
scattering in Ni, therefore it is reasonable to utilize it here as well instead of the Lorentzian
line shape. The ARG expression is valid for T > TC. To visualize the difference between
these shape functions in figure 4.8, the approximation of equation B.1, which was
proposed by Iro in [127] and the analytical expression for T = TC (see equation 4.14)
are compared to the Lorentzian distribution (see equation 3.41). All functions have a
characteristic frequency ωc = Γ = 20 µeV. Adequate for the study presented here, the
temperature T = TC + 1 K, wavevector transfer q = 0.01Å−1, inverse correlation length
κ(T ) = 0.009Å−1 and the frequency scale Λ = 350 meVÅ2.5 were chosen in compliance
with the values published by Böni et al. [114] for nickel. This comparison demonstrates
the importance of the suitable shape function to correctly extract the linewidth parameter.
Even though each function was calculated with the same linewidth, the exact shape in
the energy domain fundamentally changes the decay behavior observable in the time
domain. The long tail of the Lorentzian shape function results in a more gradual decline
in the corresponding contrast curve, compared to the two other functions, whose intensity
of S(q, E) drops to 0 exponentially.
While the theoretically calculated curves in the time and energy domain in figure
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Figure 4.8.: Comparison of commonly used Lorentzian lineshape function with a lineshape
derived by Folk [115] and Iro [127] based on renormalization group theory. Subplot (b) shows
the (dynamical) line shape functions in energy space, as they would be observed in constant-Q
scans on a TAS. The corresponding contrast curve in (a) can supposedly be measured at
RESEDA, was calculated according to equation 3.39. All curves were calculated with the
same characteristic frequency ωc = Γ = 20 µeV. The temperature T = TC + 1 K, wavevector
transfer q = 0.01Å−1, inverse correlation length κ(T ) = 0.009Å−1 and the frequency scale
Λ = 350 meVÅ2.5 were chosen in compliance with the values published by Böni et al. [114]
for nickel. The integral of each curve in the depicted energy interval was normalized to 1.

4.8(a) and 4.8(b) respectively, can easily be distinguished visually if the number of
calculated points is large enough, this is not necessarily the case when data is taken at
an instrument. An observed signal is reliable, where the neutron intensity is large and
thus the relative error low. For a MIEZE instrument this means small τM, where the
contrast is high, whereas for TAS this region is around the peak center. That is why the
MIEZE technique is sensitive to the tails of the dynamic structure factor, which can
be associated with the onset of the decay of the contrast curve. At these high energy
transfers, the counting statistics in a TAS experiment would make a distinction between
the line shapes challenging. Converse to that, TAS might be better suited to resolve the
peak shape close to the center. Due to the contrast value being similar to its uncertainty
at large τM, this might be unfeasible with the MIEZE technique.

Figure 4.9 shows the results of fitting the linewidth and spin wave energy, if applicable,
for three distinct temperatures T − TC ∈ [−2 K, 0 K, 1 K], providing an example for
each dynamical regime. The left column shows the MIEZE contrast data with the
best fit acquired for equation 3.39 using the line shape functions described above. For
the T = TC − 2 K, the peak position (±)ωq and the linewidth Γq were taken as free
parameters, while for T ≥ TC only the characteristic frequency ωc = Γq was fitted.
Similar to the example shown in figure 4.8, Λ and κ(T ) have been taken from literature,
whereas q was determined as explained in section 4.2.3. Since the Lorentzian line shape
function, which is used for the analysis of the spin wave data, in itself is not directly
dependent on q, no self consistent determination of qinel is required.

The same procedure was used for the analysis of the remaining data at temperatures
T − TC ∈ [−1 K, 2 K, 4 K, 8 K]. Their visualizations have been put in the appendix
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Figure 4.9.: Six panels showing the extraction of characteristic frequencies ωc and spin wave
excitation energies ~ωq. On the left side, panels (a1), (b1) and (c1) show the contrast data
for the temperature values TC − 2 K, TC and TC + 1 K, respectively, as examples. The solid
lines within these plots show the best fit to the data and were calculated as described in 3.2.2
using the appropriate shape function, which was elaborated on in the text. The corresponding
line shape functions are shown to the right. The color scheme of the curves match the one
chosen in figure 4.5.
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section B.4 together with tables listing all the numerical values of the fitted parameters
and their uncertainties.

The code used to calculate the transformation from S(E) to C(τM) and to subsequently
fit the contrast data has been made publicly available over the GitHub repository:
https://github.com/LukasBeddrich/modelmiezelb.git

Statistical analysis and uncertainty estimation

Considering the fact, that the analysis of MIEZE involves several steps of numerical
fitting it seems inevitable to discuss the associated uncertainties and their propagation
through the analysis. In general, the uncertainty of any measurement is of statistical
or systematic nature. While the first is based on the statistics of the observable, the
latter is the result of insufficient calibration, ignored external parameters influencing the
measurement but also biases introduced by the observer / analysis [128].

Systematic uncertainties are notoriously hard to quantify, but we will give arguments
at which points of the analysis biases are introduced, which influence the values of the
determined contrast values. Easier to handle are the statistical uncertainties, which can
be captured more easily by numerical estimates.
Each determination of a physical parameter is done by fitting an appropriate model

function f(xi |a) to the experimental data. Here xi represents a set of measurement
conditions under which the observation yi is made. a is the parameter vector, whose
entries are optimized such that the χ2 cost function is minimized.

χ2 =
N∑
i=1

wi · [f(xi |a)− yi]2 −→ min (4.28)

also includes a weight factor wi, which expresses the reliability of the observation yi.
For every fit performed here, the optimal set of parameters has been determined by
minimization of the χ2 function in equation 4.28 using the a Python wrapper iminuit2
of the Minuit2, which is part of the ROOT data analysis framework developed at CERN
[129, 130]. The specific minimization algorithm is MIGRAD.
In theory, the weight of independent observations is equal to wi = k/σ2

i , where σi is
the standard uncertainty of the distribution from which an observation yi is drawn. In
case the distribution is known k = 1, otherwise the σi express only a relative uncertainty
between the observations. The least squares procedure yields an estimate of this factor
k in terms of the goodness-of-fit measure

gfit = χ2

ndof
= 1
ndof

N∑
i=1

wi [f(xi |a)− yi]2 , (4.29)

where ndof is the number of degrees of freedom, meaning the number of observations is
subtracted by the number of fitted parameters in a [128].
The fitting procedure returns the estimate â of the optimal model parameters. The

fitting algorithm MIGRAD also yields the uncertainties of the parameters σaj , which

https://github.com/LukasBeddrich/modelmiezelb.git
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are calculated as square root of the diagonal elements of the Hessian matrix H

σaj = H
1/2
jj . (4.30)

If the uncertainty in the observations are underestimated and need to be adjusted by
the factor

√
k ≈ √gfit, the parameter uncertainties need to be scaled by the same factor.

This summarizes the uncertainty treatment regarding the fitted parameters starting
with the parameter extraction from the contrast curves. Prior to this point, uncertainty
calculation is performed by the MIEZEPY software. In the following we will describe
the uncertainty estimation alongside the analysis steps.
The neutron intensity in each time bin is given by the square root of the detected

neutrons
√
Nn and follows from the variance of the Poisson statistics. These are included

in the fitting of the contrast and is done by MIEZEPY. However, besides the statistical
uncertainty, the contrast determination is subject to systematic uncertainty arising
from the phase correction procedure, which is explained in section 4.2.3. Summarized
briefly, the phase of the intensity oscillation varies more rapidly from pixel to pixel with
increasing MIEZE time. Due to the fact that firstly, the time binning is limited to 16
channels and secondly the phase correction requires averaging over multiple pixels results
in a slightly reduced contrast. While this systematic damping is corrected for by the
resolution measurement, the exact contribution to the uncertainty is not quantifiable.

When fitting the contrast curves to determine linewidth and possibly spin wave energy,
the uncertainty of each parameter is taken from the Hessian matrix and scaled by √gfit
of the corresponding fit. Depending on the data set, the further treatment varies. In
case of the dynamical scaling function, the square of the relative uncertainty is equal
to the sum of the squared relative uncertainty of the individual linewidth parameters
leading to

∆γ = γ ·

√√√√(∆Γ(T )
Γ(T )

)2

+
(

∆Γ(TC)
Γ(TC)

)2

. (4.31)

When further analyzing the spin wave dispersion an additional fit is performed, where
the uncertainty is calculated exactly as described in the previous paragraph. In addition,
we can estimate the uncertainty of such a fitted model f(x |a) via

σf =

√√√√√∑
j

σ2
aj
·
(
∂f

∂aj

)2

+ 2
∑
j,k

σ2
aj ,ak
·
(
∂f

∂aj

)
·
(
∂f

∂ak

)
, (4.32)

where σ2
aj ,ak

expresses the covariance between the parameters aj and ak.
This concludes the general account of the uncertainty treatment. Wherever necessary,

systematic influences, biases and limitations of this broad approach will be discussed in
adequate detail.
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4.3. Is Ni a dipolar ferromagnet?
Having extracted the spin wave energies and linewidths for the different temperatures,
the results will be analyzed with respect to signatures consistent with the behavior of a
dipolar Heisenberg ferromagnet. Hence, we use the Holstein-Primakoff theory to describe
the observed spin wave dispersion for T < TC and deduce the influence attributed to the
dipolar coupling in terms of the dipolar wavevector qD.
As derived by Frey and Schwabl, it is to be expected that the dynamical scaling

function is modified by dipolar coupling compared to the isotropic function put forward
by Résibois and Piette or Iro. These predictions will be tested against the long wavelength
or rather low-q measurements in the critical regime for T ≥ TC.

4.3.1. Spin wave dispersion of nickel in the long wavelength regime
An exact comparison to theory needs to incorporate the q resolution of the instrument,
which for a SANS geometry is well established by analytic formulas found in Hammouda
et al. [131]. According to their derivation, the resolution function is given by a Gaussian
distribution

R(q) =
(

1
2πσ2

q

)1/2

exp
(
− q2

2σ2
q

)
, (4.33)

where the resolution defining standard deviation σq includes uncertainty due to a finite
wavelength spread ∆λ of incoming neutrons, a contribution from geometric collimation
in front of the sample and the size of pixels on the detector. The divergence is determined
by two apertures of radii r1, r2, which are separated by the length Lap. LSD is the
distance between sample and the detector. From these parameters σq was calculated
using equation (5) in the paper published by Hammouda and Mildner. In their paper
the nomenclature slightly differs, meaning Lap = L1 and LSD = L2.
Since the ROIs used for the MIEZE data reduction do not cover equal intervals of

the scattering angle 2θ and therefore a larger spread in q, the resolution calculation was
amended to take this fact into account. For each pixel within a ROI, the corresponding
q value was calculated and the resulting distribution was binned into 4 to 15 bins of
equal width depending on the with of the ROI. Using equation 4.33 the q resolution
function was computed for each bin and averaged by the bins weight to acquire the
final resolution function associated with the q value of a particular ROI. Based on
the geometric parameters of RESEDA (see table 3.2) the FWHMq of the Hammouda
resolution function is around 0.01Å−1 and inclusion of the width of the ROI changes
the result only by a few percent.

Ultimately, the measured dispersion relation for Ni is expected to match the convolution
of the Holstein & Primakoff theory with the resolution function leading to

EHP(q) =
∞∫
0

R(q′) · EHP(q − q′) dq′. (4.34)
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Figure 4.10.: Spin wave dispersion of nickel extracted from MIEZE data for T = TC − 1 K
and T = TC − 2 K. The dispersion data is shown on top of two models, which differ by
inclusion of dipolar interactions (M4, red line) or by their neglection (M6, blue, broken line).
A detailed description of methodology and nomenclature of the models is given in the text.
The results of each model is underlaid with their 1σ uncertainty band in the appropriate colors.
Model M4 with Edip 6= 0 achieves a much lower goodness-of-fit value gfit strongly indicating
the contribution of dipolar coupling in the system. However, the data is only consistent with
a dipolar wavevetor qD,exp = 0.007Å ≈ qD,lit/2 smaller than reported previously. The gray
shaded area indicates the region inaccessible for INS due to constraints from momentum and
energy conservation.

In total, the theory is determined by three parameters, D′, qD and µ. Because only
two distinct temperatures had been investigated, deviations from the power law behavior
in terms of the critical exponent µ could not be studied thoroughly. The variation
observed in the spin wave dispersion (equation 4.6) due to temperature should be fully
accounted for by the power laws in equations 4.9 and 4.8. In this analysis µ and β
were fixed either to their mean-field values or the renormalization group values for a
3D Heisenberg model [112]. Therefore, it seemed reasonable to fit all data for T < TC
simultaneously. The associated χ2 function was calculated as

χ2(D′, qD) =
∑

∆T,q

(
E∆T,q −EHP(q|D′, qD)

σE

)2

. (4.35)

E∆T,q represent the extracted energy values of the spin waves for a certain temperature
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∆T and wavevector transfer q with its respective standard deviations σE. The resolution
convoluted, theoretical dispersion relation EHP(q|D′, qD) only depends on the spin wave
stiffness D′ and the dipolar wavevector qD.

Figure 4.10 visualizes the measured spin wave dispersions at T − TC = −2 K,−1 K as
filled and empty circles respectively. The difference in q for two data points extracted
from the same ROI on the detector is owed to the corresponding energy transfer, which in
consequence changes kf and q. As usual, the errorbar of the ordinate is the 1σ uncertainty
of E as determined from the covariance matrix in the least-square optimization. In the
abscissa, the error bar does indicate the standard deviation of the q distribution within a
ROI. As σq is already considered in the resolution calculation, it is not directly included
in the χ2 computation e.g. via orthogonal distance regression [132].
The Holstein-Primakoff theory is plotted for two cases, with the red solid line rep-

resenting the resolution convoluted dispersion including dipolar interaction, whereas
the dotted blue line neglects the dipolar coupling. Drawing the 1σ confidence interval
for both cases leads to the red and blue shaded areas beneath the curves. The grey
shaded area on the left side of the graphic indicates the region on (q, E)-space not
accessible to INS because in this region momentum and energy transfer can not be
satisfied simultaneously.
Both models yield a different value for the spin wave stiffness D′ amounting to

(431.1± 10.0) meVÅ2 and (475.4± 16.1) meVÅ2, if dipolar interactions are included or
neglected, respectively. The critical exponent was fixed at µ = 0.3407. In the case where
dipolar coupling is considered, the dipolar energy term equates to Edip(∆T =−2 K) =
3.15 µeV and Edip(∆T =−1 K) = 1.56 µeV. Visually, both models seem equally plausible,
describing the low q section of the dispersion sufficiently well. However, they have the
tendency to overestimate the spin wave energy for ∆T = −1 K in a systematic manner,
with the model, which has set Edip = 0 performing worse at larger q values. Overall, the
data taken at ∆T = −2 K appears to be captured better by the Edip 6= 0 model.
As already introduced in section 4.2.3, a proven figure of merit to compare the

descriptive power of competing models is the goodness-of-fit value gfit = χ2/ndof . By
dividing the χ2 value by the number of degrees of freedom ndof , which is the number of
data points minus the number of fitted parameters, we correct for the potential increase
in χ2 for more data points, while simultaneously punish overfitting with arbitrary, non
descriptive parameters. The model achieving a smaller gfit is more likely to be an
adequate description of the data [128]. As a side note, the definition of gfit makes it
equal to the reduced chi-square value χ2

red. The applicability of gfit = χ2
red, utilized for

the statistical χ2-test, as a meaningful measure can be argued about, since the calculated
values are significantly larger than 1, which is the value expected for data with Gaussian
uncertainty and an appropriate model. It suffices as a qualitative indicator.
For a comprehensive analysis of the Holstein-Primakoff theory and temperature

dependence as predicted by dynamical scaling theory, we created various models differing
in the determination method of the dipolar energy contribution to the dispersion. In
total, six models (MX) have been fitted to the data, with D′ always being a fit parameter
and qD being treated as follows.

M1 The dipolar wavevector was taken from literature qD = 0.013Å−1 [123] and the
contribution to the dispersion was calculated according to equation 4.7.
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M2 qD and D′ were treated as free fit parameters accounting for the dipolar energy as
Edip = D(T )q2

D.

M3 qD was determined according to the power law in equation 4.8 and Edip =
gµ0µBM(T ) sin2 (θq). The constant M ′ was set to the value of the saturation
magnetization Msat = 4.91× 105 A m−1 [133].

M4 qD was fixed by experimentally determined magnetization curves from Neugebauer
[134] and again Msat = 4.91× 105 A m−1. Further information is given in appendix
B.5.

M5 qD(∆T =−1 K), qD(∆T =−2 K) and D′ were fitted independently.

M6 Simple quadratic dispersion using ESW = D(T ) · q2 neglecting dipolar interaction
entirely.

Each model has been fitted to the data fixing the critical exponent µ (and β if
contained in the model) to either the mean-field values or the renomalization group
values. A summary of all fit parameters, their uncertainty estimates and gfit are given
in table 4.1. The assembled values allow to conjecture general trends and to draw
conclusions on the validity of Holstein-Primakoff theory for dipolar ferromagnets.

To establish a baseline model, M4 was chosen to be the most representative one in this
analysis, because it utilizes proven experimental knowledge in form of the temperature
dependence of the magnetization. Simultaneously, M4 shows good agreement with the
data based on its gfit value. Regarding the gfit value, M4 performs better compared
to M3, in which qD is determined via the power law of the magnetization as predicted
by scaling theory. Notably, the values of qD in model M4 are by a factor of 2 smaller
than in M3 and the relative difference between qD(∆T = −2 K) and qD(∆T = −1 K)
is larger because the experimental magnetization decreases slower then the power law
with β = 0.3647. As a consequence, D′ is significantly smaller for M3 since the dipolar
contribution is considerably larger and the penalty to the χ2 function is larger if the
low q data is fitted insufficiently. In the comparison between M3 and M4, a lower qD is
supported by the data.

These observations extend to M1, which fixes qD to its literature value 0.013Å−1 and
performs similar as M3. Comparing M1 and M2, M2 achieves better agreement with
qD(M1) > qD(M2) by again almost a factor of 2. Considering that model M5, puts the
least constraints on its fit parameters, because qD(∆T = −1 K) and qD(∆T = −2 K) are
assumed to be independent from each other, it is plausible that M5 achieves the best
overall gfit value. Somewhat expected, qD for ∆T = −1 K is smaller than for ∆T = −2 K
and both are smaller than the literature value.
Model M6, neglecting qD entirely, returns D′ values, which are slightly larger then

those of the other models. The deviation from the dipolar behavior is best detectable at
low q for the first 2 - 3 data points for each temperature. Crucially, this discrepancy
results in the highest gfit value for any dispersion model, making the inclusion of dipolar
interactions favorable. Regardless of the model, we find that a larger µ leads to a smaller
gfit value indicating that the critical exponents as obtained by field-theoretical methods
describe the data marginally better than the mean field values.
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Model D0 (meVÅ2) qD (10−3 Å−1) µ gfit

M1 333.2± 8.7 13.0 0.3333 4.9
13.0

348.6± 8.0 13.0 0.3407 4.6
13.0

M2 382.8± 20.8 9.02± 1.50 0.3333 3.7
9.02± 1.50

400.6± 21.3 9.02± 1.47 0.3407 3.5
9.02± 1.47

M3 343.5± 10.9 12.29± 0.20 0.3333 4.4
12.29± 0.20

378.1± 10.4 10.75± 0.15 0.3407 3.5
10.85± 0.15

M4 412.1± 9.7 5.70± 0.07 0.3333 3.2
7.22± 0.08

431.1± 10.0 5.71± 0.07 0.3407 3.1
7.21± 0.08

M5 381.6± 16.3 7.28± 0.81 0.3333 2.3
10.66± 1.07

399.5± 16.9 7.33± 0.81 0.3407 2.2
10.59± 1.06

M6 454.4± 15.6 0.0 0.3333 8.1
0.0

475.4± 16.1 0.0 0.3407 7.9
0.0

Table 4.1.: Parameters obtained by fitting the data using the Holstein & Primakoff theory.
Each model has been evaluated with µ = 1/3 and 0.3407 separately. Within one cell, the
upper and lower qD value corresponds to ∆T = −1 K and ∆T = −2 K respectively. In model
M2 & M5 qD was a fit parameter and its uncertainty could be estimated directly from the
covariance matrix. For the models M3 & M4 the uncertainty ∆qD arises from ∆D′ and was
calculated via Gaussian error propagation. In model M1 & M6 qD was fixed to 0.013Å−1 and
0.0Å−1, respectively.



64 4. Spin waves and critical fluctuations in nickel - A high resolution study using MIEZE

Discussion of the dipolar contribution

In literature, the discussion of the influence of dipolar coupling on the critical dynamics
has been focused on the temperature regime above TC, with a limited amount of published
experiments directly addressing the spin wave regime [83, 105]. Especially Ni has been
disregarded in the past, because the combination of a large spin wave stiffness and an
apparently small dipolar wavevector makes observations of qD challenging. Instead it was
regarded as a good testing ground for a purely isotropic ferromagnet when discussing
spin wave dynamics and critical fluctuations from small to intermediate q values [29].
Nevertheless, measuring the spin wave energy below qD should show a clear imprint
leading to an approximately linear dispersion EHP ≈ D(T )qD · q. For this reason, the
study is a novelty, as it directly probes inelastic scattering processes at q values smaller
than in previous SANS studies [135, 136]. A linear contribution to the dispersion is not
easily recognizable in figure 4.10, even though the lowest q value is a factor of 2 smaller
then the reported qD = 0.013Å−1.

Figure 4.11 shows qD and gfit for the models M1 to M6. It is apparent that the measured
dispersion is consistent with 0.006Å−1

< qD < 0.011Å−1. Looking at the performance of
M4 and M5, it is reasonable to assume a significant temperature dependence of qD, which
has already been pointed out be Böni et al. [105]. However, this dependence is more
pronounced than expected from dynamical scaling theory with q2

D ∝M/D ∝ |t|β−µ (β−
µ = 0.024) for a 3D Heisenberg system [112]. Since only 2 different temperatures could
be measured, a reliable analysis of the temperature dependence is not possible and
requires a more comprehensive data set.

The evidence for dipolar interactions in nickel is circumstantial and additional measure-
ments at even lower q could substantiate the understanding of related effects. Two routes
for future experiments can be imagined. Firstly improvement of momentum transfer
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Figure 4.11.: Overview of the performance of Holstein-Primakoff models M1 - M6 employing
various strategies to include the dipolar wavevector. The graphic depicts the qD(∆T ) and gfit
for M1 to M6 using µ = 0.3407 as a fixed value. The data suggests qD ≈ 0.007Å−1, which
is half of the literature value 0.013Å−1, but simultaneously rejects neglection of the dipolar
contribution.
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resolution could be achieved by using a longer wavelength e.g. λ0 = 8.0Å or adjustment
of the collimation apertures and beam stop. Of course this needs to be planed correctly
to prevent drastically longer measurement times. Secondly, temperatures closer to TC
flatten the dispersion branch. While it does not simplify the observation of qD itself,
because the dipolar contribution also decreases closer to TC, as established before, the
temperature dependence of qD should become more apparent.

Discussion of the spin wave stiffness

Having decided to parameterize the temperature dependence close to TC in terms of
the power law D(T ) = D′ · (1− T/TC)µ with a fixed critical exponent instead of fitting
D for each temperature individually, requires special care when comparing the result
to literature. This is owed to the fact that the multitude of methods to determine the
spin wave stiffness, e.g. TAS [108, 137, 138], SANS [135, 136] but also magnetization
[139] and resonant inelastic X-ray scattering [140] measurements, have been applied to
different regimes in T and q.

Over decades, spin wave measurements have been performed on nickel from T = 4.2 K
to TC. Up to now, there is no theoretical framework capable of unifying all the results
from first principle calculations. The magnetization data published by Aldred et al.
shows good agreement with spin wave theory and a D(T ) = D0 −D1T

2 relation from
5 K to 300 K, when itinerant effects are included in their analysis procedure. The
observed difference from pure spin wave theory was accounted for by single-particle
Stoner excitations and the resulting holes induced in the spin-down bands. The gray
shaded area with the black line in figure 4.12 (a) represents the 1σ band of this quadratic
temperature dependence. The light gray line beneath is the best fit of Aldred’s data
neglecting Stoner single particle excitations [139].
Likewise, the D(T ) values of several neutron scattering studies have been visualized

in the same figure (4.12 (a)) providing a remarkably consistent picture over the entire
temperature regime from T = 0 K up to T = TC. In their investigations, Pickart [135]
and Stringfellow [136] used small angle neutron scattering to observe inelastic spin wave
scattering down to q = 0.02Å−1. Their ingenious method required no direct energy
transfer detection, but only a measurement of the neutron intensity as a function of
the scattering angle 2θ, when the sample was offset by an angle ∆θS from the Bragg
scattering condition. The angular width of the neutron signal as a function of ∆θS is
related to the spin wave stiffness D(T ). A detailed description of this method can be
found in the publication by Alperin et al. [141]. In case of Stringfellow, D(T ) does
not decrease down to 0 at the Curie temperature, which was not in line with related
measurements, and at the time it was argued that the non-zero value of D(T ) originates
from external magnetic fields.

More compatible with the understanding of dynamical scaling and spin wave theory is
a TAS study by Minkiewicz [108] tracking spin wave dispersions from room temperature
to TC. Because their measurements were performed at a thermal TAS, the smallest
wavevector transfer amounts to q ≥ 0.05Å−1, which is about a factor of 2 larger than
the largest value acquired in the present study. From graph 4.12 can be seen that our
results for D(T ) fit well to the previously reported experiments and extend them to
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Figure 4.12.: Overview of the temperature dependent spin wave stiffness D(T ) combining
the present and previously published results. The determination of the spin wave stiffness
in nickel has been performed with a variety of techniques putting together a comprehensive
picture of its temperature dependence from T = 0 K up to TC (see subplot (a)). The results
of this study are remarkably consistent, support the notion of dynamical scaling theory that
D(T )→ 0 at TC and extend the extensive study of Minkiewicz et al. to temperatures closer to
TC. Uniquely, our data proves, at the currently lowest measured q and significantly increased
accuracy, that the Heisenberg model with isotropic exchange coupling remains valid and the
additional dipolar interactions do not fundamentally change this outcome. This can be inferred
from the zoomed view in (b), where the results of models M4 and M6 are shown.

smaller q.
In the zoomed in view (figure 4.12(b)), the results of model M6 (Edip = 0) are drawn

as well, unambiguously confirming the temperature behavior detected by Minkiewicz
et al.. On the one hand, it successfully proofs the validate of high resolution MIEZE
measurements of dispersive spin wave modes at very small momentum transfer. On the
other hand, in the investigated q range, the simple, quadratic dispersion is an acceptable
description such that D(T ) does not noticeably differ from prior measurements due to
the smallness of Edip.

4.3.2. Dynamical scaling of critical fluctuations in nickel
In this section, the measurements of the linewidth, or rather inverse lifetime of the critical
fluctuations above and below TC will be presented. With the high energy resolution and
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sensitivity to the line shape of the critical fluctuations, the MIEZE technique allows
precise determination of the dynamical scaling function at very low q values. First, the
fluctuations in the temperature regime T ≥ TC are considered to test the emergence of
a qD/κ dependence indicative of dipolar coupling. Second, the damping of spin waves
will be addressed, in particular their temperature dependence.

Discussion of the dynamical scaling above the Curie-temperature

To elaborate on the conceptual (q, T ) diagram in figure 4.1 and focus on the T ≥ TC side,
the figure 4.13 includes the boundary defined by κ2 + q2 = q2

D separating the regions of
expected isotropic and dipolar critical behavior [117, 120, 123]. We drew boundaries
for the literature values and previously estimated experimental values, neglecting a
potential temperature dependence of qD. In addition, the data points at which the
critical linewidth could be extracted are drawn. The non-linearity of the temperature
scale is dictated by the power law κ = κ0|t|ν ∝ T ν .
We summarize the full results of the measured dynamical scaling function in figure

4.14, where the abscissa designates the dynamical scaling variable x = κ/q and the
ordinate the dynamical scaling function according to the scaling hypotheses γ(κ/q) =
Γ(q, T )/Γ(q, TC). Using the same color scheme of the data points as in figure 4.13, the
results for different temperatures are plotted together with previously published data by
Böni et al. [107]. Visually, the measurements of the dynamical scaling function taken
at ∆T ∈ [1 K, 2 K, 4 K] = [1.0016 TC, 1.0032 TC, 1.0063 TC] fall onto a universal curve.
In regions where the different data sets overlap this holds true, with exception of the
two points corresponding to the lowest q values at ∆T = 1 K, which lie slightly higher
(blue dots near κ/q ' 1.2). At low κ/q ≈ 1 the current measurements are in agreement
with the TAS data of Böni, which diverge to higher γ(κ/q) incompatible within the
uncertainty estimates of the data. Interestingly the same behavior is observed for the
DSF at ∆T = 8 K. However, for two reasons, which will be presented in more detail
shortly, this agreement is most likely coincidental.
In the light of the previous spin wave analysis, that the dipolar wavevector qD is

considerably smaller then expected, we compared the results with the MC and ARG
calculations by Résibois-Piette [116] and Iro [127], which are shown as the black, solid
and broken line, respectively. Importantly, the curves of the theoretical dynamical scaling
function have not been acquired by fitting of the data, but have been directly calculated
from the equations 4.19 (Résibois-Piette) and B.3 (Iro). In general, the agreement is
quite satisfactory. The mode-coupling result seems to approximate the data better at
κ/q < 1, while the asymptotic renormalization group theory calculation fits better at
higher κ/q. On the basis of the available data, it is unreasonable to give preference
of one model over the other. The data up to TC + 4 K indisputably shows dynamical
scaling behavior expected for an isotropic Heisenberg ferromagnet.

This leaves two questions open for debate: (i) Why are the measurements at TC + 8 K
diverging from the otherwise consistent scaling behavior and can the reasoning be
extended to the data of Böni et al.? (ii) Why is there no indication of dipolar coupling,
which could be argued to influence the spin wave dispersion below TC, and has been
observed in other ferromagnetic systems?
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Figure 4.13.: q−T -diagram including the data of the MIEZE measurements in the temperature
regime T ≥ TC. In addition, the sectors with radii qD,exp and qD,lit are marked, within which
the influence of dipolar coupling should be visible. qD,exp ≈ 0.007Å−1 was taken from the
results in section 4.3.1, ignoring any temperature dependence, and severs foremost as an
approximate border. Together with the condition κ = q, this quadrant into the dipolar critical
(blue shaded), dipolar hydrodynamic (red shaded), isotropic critical (violet shaded), isotropic
hydrodynamic (green shaded) regions governed by differing physical behavior, as discussed in
the text.

Regarding (i), the MIEZE data at ∆T = 8 K suffers from low magnetic scattering
intensity introducing systematic uncertainties not captured by the error bars in figure 4.14.
The analysis algorithm extracting the contrast values forces fitting of a sinusodial intensity
distribution in time, even though in some instances, the raw data does not reflect the
expected shape. A closer look at the reliability of this data is required to fully understand
the behavior. The data is shown mostly for completeness. This reasoning, of course,
cannot be extended to the data published by Böni et al.. Here, a different origin for the
deviation from the universal dynamical scaling behavior is suspected. The data of Böni et
al. lies, except for 1 point consistently outside of the critical region, defined by q > κ(T ),
even more though for the lower q value. It has been taken at q ∈

[
0.09Å, 0.12Å

]
and

T ∈ [663.0 K, 694.6 K, 764.0 K, 934.5 K] = [1.05 TC, 1.10 TC, 1.21 TC, 1.48 TC]. The ∆T s
involved are orders of magnitude larger than the ones presented here. Naturally, DST
predicts universal behavior, but DST cannot make a statement about its own range
of validity, which is why comparability with the here presented data is questionable.
While the exact conditions at which the dynamical scaling behavior in Ni breaks down
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Figure 4.14.: Dynamical scaling function measured in nickel. Testing the dynamical scaling
hypotheses, linewidth ratio ΓT+(q)/ΓTC(q) is supposed to lie on a universal curve described by
γ(κ/q). Results acquired for ∆T being 1 K, 2 K and 4 K satisfy this expectation well, while at
∆T = 8 K the deviation for large κ/q > 2 is significant. Comparing the findings with TAS data
from Böni et al. [107] show good agreement for κ/q ≈ 1. Most notably, the measurements
match the dynamical scaling functions, which have been calculated by Résibois & Piette (solid
line) and Iro (broken line) via mode-coupling and asymptotic renormalization group theory,
respectively. Leaving aside the 8 K data, the MC theory fits better for small κ/q, whereas ARG
captures the large κ/q behavior more accurately. The color scheme adheres to the one used in
the (q, T )-diagram of figure 4.13.

is unknown, studies of critical scattering in Co [142] and Fe [143] show, that for κ/q > 4
the characteristic frequency reflects a quadratic relationship ωc(q) = Dq2 with the
spin-diffusion constant D. Hence, it is not inconceivable that the data by Böni et al.
and possibly the MIEZE data at ∆T = 8 K begin to display an intermediate behavior
dubbed ’quasihydrodynamic’ by Parette and Kahn [143]. It is indisputable that further
research would be needed to clarify this hypothesis.

An answer to the lack of evidence for dipolar coupling in the dynamical scaling function
(ii), is provided by theory calculations by Frey and Schwabl [120] and have been backed
up by experimental investigations on ferromagnets with strong dipolar coupling such as
EuO [118] and EuS [117]. In these publications it becomes clear, that the dynamical
scaling function of the transverse spin fluctuations retains an isotropic shape even in the
regime qD/10 ≤ q < qD. Since the smallest q value was on the order of qD determined by
the spin wave measurements, the compatibility with Résibois-Piette and ARG scaling
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functions is plausible.
However, the presented arguments become less consistent considering the recent

MIEZE study by Kindervater et al. on iron [101], who report on the influence of dipolar
interactions on the transverse fluctuations even though they do not achieve wavevector
transfers below qD ≈ 0.033Å. Quantitative agreement with MC computations, which
include dipolar forces, is only achieved assuming a strong temperature dependence of qD
inexplicable by dynamical scaling theory. Damping by conduction electrons was given as
a possible explanation. Following the chain of reasoning given by Kohgi et al. [144] spin
fluctuations in 3d metals are damped by low-q spin-flip excitations in the conduction
band. This leads to two noticeable consequences. First, the lifetime (linewidth) of
spin fluctuations at low q should decrease (increase) compared to a purely localized
system. Second, with increasing temperature this damping effect should become more
prominent and extend to higher q values, due to the larger smearing of the Fermi-Dirac
distribution around the Fermi energy EF. This smearing scales approximately with
kBT and increases the number of accessible quantum states for spin-flip transitions.
Arguably, the dipolar wavevector qD at this point is only a way to parameterize the
observed linewidth of the fluctuations instead a physical meaningful quantity, as was
noted by Kindervater et al.

One step further, a comprehensive publication by Lowde and Windsor [29] concludes
that the generalized dynamical susceptibility χαβ(Q, ω) calculated on the basis of a
random phase approximation treatment of the Hubbard Hamiltonian encompasses all
essential effects of magnetism in nickel. Naturally, this comes with limitations on specific
details. Therefore even though for the here presented study, a quantitative treatment
of the itinerant effects has not been considered it might be worthwhile to use such a
large-scale analysis approach on a more extensive data set in the future.

Discussion of the linewidth of the spin waves

Measuring the spin waves with the high resolution MIEZE method required temperatures
up to TC, since only the renormalization of the spin wave energy at high T made them
observable at low q. Otherwise, the scattering triangle for inelastic spin wave scattering
would not close. Besides the spin wave energy, this investigation revealed a strong
dependence of the linewidth on the wavevector transfer, due to the excellent energy
resolution of the instrument. This fact in itself is not surprising, because at high
temperatures a multitude of magnon and longitudinal fluctuation states are occupied
enabling decay resulting in a reduced lifetime of the excitations. The increase of the
linewidth is a result of the reduced spin wave lifetime, as both quantities are inverse
proportional to each other.
The recorded linewidth data lends itself to a comparison with the predictions of

dynamical scaling theory (see equation 4.10) and the microscopic spin wave calculations
by Harris, which is approximated by equation 4.11. The linewidth data for both
temperatures, as well as the results of the analysis are shown in figure 4.15, whereas
the numerical values for the fit parameters are summarized in table 4.2. The analysis
procedure behind these results is explained in the next section.
As stated in the introduction on critical dynamics in ferromagnets (section 4.1), the



4.3. Is Ni a dipolar ferromagnet? 71

0.6 1 2 3
q (10 2 Å 1)

0.5

2.0

5.0

SW
 (1

0
2
m

eV
)

dyn. scaling:
Harris (1968):

SW(q) 2q2

SW(q) = qz

(a)dyn. scal.: T = 2 K
dyn. scal.: T = 1 K
Harris: z = 2.50

0.0 0.5 1.0 1.5 2.0
/q

0.0

1.0

2.0

SW
=

SW
(T

)
qz

(b)SW = 1.30 ( /q)1/2

T = 2 K
T = 1 K

Figure 4.15.: Linewidth (a) and the dynamical scaling function (b) of the measured spin
waves in nickel. In the log-log plot, the q-Γ points are expected to follow a linear relationship
with a slope being equal to the exponent z if Γ ∝ qz. However, as visualized in (a), neither
the slope of z = 5/2, which is an approximation to Harris spin wave theory calculations
(orange solid line), nor the temperature independence of the frequency scale Λ as observed
in past experiments on Fe [83] and Ni [114] fits the expectations. Understanding of the this
behavior comes again from dynamical scaling theory. While the temperature dependence is
not accounted for by the asymptotic behavior in the hydrodynamic regime, as explained in
the text, the dynamical scaling function for T < TC (see equation 4.38) agrees well with the
re-scaled data for a = 1.30± 0.04.

Λ (meVÅz) z gfit

396.4± 21.4 2.5 15.1
95.02± 47.10 2.14± 0.11 10.8

Table 4.2.: Parameters obtained by fitting the approximate equation of Harris (see equation
4.36) to the linewidth data of the spin waves.
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DST predictions and the calculation by Harris are based on the isotropic Heisenberg
model. Both computations assume long wavelength excitations, however, while DST
is concerned with the temperature dependence close to TC, the prediction by Harris
are strictly speaking solely valid at low temperatures. For the analysis we use an
approximation to the full expression of Harris

ΓSW(q) = Λ · qz | z = 5/2 , (4.36)

which has been shown to describe the q dependence of the linewidth of spin waves in
nickel [114] and iron [83] well, with Λ being a constant independent of T . Coincidentally,
the exponent of z = 5/2 in the equation 4.36 equals the exponent predicted by dynamical
scaling theory, which should apply for q > κ and T < TC. The majority of the data
points of the spin wave measurements fall in this region.

Optimizing the parameter Λ, as a temperature independent quantity, by least-square
fitting of the entire linewidth data, we obtain Λ = (396.4± 21.4) meVÅ5/2. The corre-
sponding visualization can be seen as the orange solid line in figure 4.15 (a). The slope,
which in double logarithmic scaling of the axis, is equal to the exponent z = 5/2, seems
to be slightly too large to describe the data. While the value of Λ is not far from the
value of the diffusion constant Λ = 350 meVÅ5/2 at T ≥ TC as published by Böni et al.
[145], it deviates by almost a factor of 2 from the linewidth of the spin waves reported
in [114]. When relaxing the constraint of the critical exponent z = 5/2, a better fit to
the data is achieved according to the gfit value, but both z and Λ, written in table 4.2,
cannot be reconciled with previously published measurements.
Furthermore, the linewidth of the spin waves exhibit a systematic temperature de-

pendence with Γ(∆T = −2 K) > Γ(∆T = −1 K) for each q, which has not been
observed by TAS in Ni [114] or MIEZE in Fe [83]. This leads to the approach of
including a T -dependence as predicted by DST for the spin wave region. Here, the
temperature dependence of the linewidth is incorporated in the correlation length via
ξ = ξ0 ·(1−T/TC)−ν . Introducing a scaling factor c, in which the constant ξ2

0 is absorbed,
the DST equation 4.10 becomes

ΓSW,DST(q, T ) = c · q2
(

1− T

TC

)−2ν
, (4.37)

with c being the only free parameter in this parameterization. In figure 4.15 (a), the grey
solid line and broken line show the result for ∆T = −2 K and ∆T = −1 K, respectively,
when c = 0.01 meVÅ2 is used. This is not a fit to the data, but solely a visualization
of the incapability of this model to describe the data. Since ξ(T ) diverges at TC, the
linewidth of ∆T = −1 K, at the same q value, should always be larger. This predicted
behavior would also be in agreement with calculations performed by Vaks et al. [146],
but is clearly not consistent with the observation. The most likely explanation is, that
the experimental parameters in q and κ(T ) do not sufficiently comply with the constraint
κ/q � 1 [111].
An explanation to the issue of temperature dependence could be found by again

formulating this dependence in terms of the dynamic scaling function, which has proven
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to be a good descriptor. Thus, we rescaled the linewidth via γSW = ΓSW(T )/Λqz, with
Λ taken from literature, and the result can be seen in figure 4.15 (b). Here, the decision
not to use the experimentally determined value of Λ is deliberate. Due to the finite
energy transfer during spin wave scattering, the average momentum transfer for spin
waves differs from the one for quasielastic critical scattering. For more details refer to
section 4.2.3.
As a viable approach, the treatment by Tarvin et al. [147] seems to be the most

appropriate to fit the data. They argued on the basis of dynamical scaling theory that
γSW should be proportional to the square root of the scaling variable κ/q. Hence, we fit

γSW = a ·
√
κ/q (4.38)

to the data yielding a = 1.30± 0.04 (gfit = 2.2), which is not far from the result of Böni
et al. [114] and serves as a good parameterization of the linewidth data.

4.4. Conclusion and outlook
In this chapter, we have described the theoretical background of dynamical scaling,
followed by explaining the pitfalls and careful considerations required for analyzing
MIEZE data. Our results of the critical fluctuations in Ni were discussed with respect
to theoretical predictions and the literature presenting studies of similar systems. This
section summarizes the findings, points to current gaps in our understanding and
addresses future investigations to resolve them.

We have shown the direct measurement of spin waves and critical fluctuations in nickel
with the smallest wavevector transfer qmin = 6.6× 10−3 Å−1 and best energy resolution
to date. From this data several results could be unequivocally drawn:

• Direct determination of the dipolar wavevector qD ≈ 7× 10−3 Å via measurement
of the spin wave dispersion.

• Good agreement of the spin wave stiffness D(T ) and the dynamical scaling behavior
of the spin wave linewidth γSW(κ/q) with dynamical scaling theory.

• Good agreement between the Résibois & Piette scaling function and the linewidth
of the critical fluctuation.

• Absence of a signature originating from dipolar coupling in the dynamical scaling
behavior above TC

Nonetheless, the investigation was not without challenges. Misguided by initial
literature research and having the benefit of hindsight, the lower limits for wavevector
and energy resolution, which conversely corresponds to the upper limit of τM, have been
chosen too high. This was partly owed to choosing an initial wavelength of λi = 6.0Å for
higher flux compared to 8.0Å. Given the fact, that a considerable amount of the data
reduction and analysis procedure has been developed after performing the measurement,
informed adjustment of the initial measurement plan was difficult. As a result of having
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only conducted one experiment, due to an unforseen shutdown of the neutron source,
the coverage in parameter space (q, T ) lays a good foundation, but is not optimal to
dispel all objections regarding the above presented conclusions.

Two main insights shape the conception process for future experiments on this topic.
Firstly, access to smaller q needs to be achieved to definitively determine qD in Ni.
Secondly, a denser coverage of temperatures between TC−10 K and TC +10 K is required
to address the critical exponents for the spin wave stiffness in detail, as well as ruling
out or rather discovering non-scaling behavior around ∆T = 8 K. The latter could in
principle be studied using paramagnetic NSE, which is why an appropriate proposal
has already been submitted. Due to the depolarizing conditions of a ferromagnetic Ni
sample, the extension of the spin wave data is hopefully conducted at RESEDA in the
not too distant future.



5. Probing the square lattice - Low-dimensional
magnetism in a metal-organic framework

Low dimensional magnetism in historical context

Historically, research on 2D magnetic systems was of theoretical nature. About 80 years
ago, Onsager predicted that an Ising-type magnet on a 2D lattice could harbor a phase
transition to a long range order (LRO) state [148] at a finite temperature. The Ising
model applies to systems with dominating anisotropy, where the spins can only be aligned
parallel or antiparallel to an easy axis. For that reason, Onsager’s prediction is not in
conflict with the findings of Mermin and Wagner (1966), who could rigorously prove
the absence of any ferromagnetic or antiferromagnetic LRO in a purely 2D, isotropic
Heisenberg system [4].

Just a few months after the publication of Mermin’s and Wagner’s paper, one of the
first experimental accounts of a 2D magnetic system came in the form of the compound
K2NiF4 [149–151]. K2NiF4 can be classified as a quasi-2D magnet meaning that the
crystal lattice itself is of three dimensional nature, while the interaction between magnetic
ions within layers is strong compared to the interlayer interaction. This was convincingly
demonstrated by neutron scattering on powder [149, 150] and single crystalline [152]
samples. The study of the paramagnetic susceptibility generally supported neutron
scattering results of Plumier et al. [150] by distinguishing two features at T = 250 K
and T = 110 K, which can be attributed to the emergence of in plane spin correlations
and the onset of an anisotropic contribution [153], respectively. According to Lines [151]
this is well aligned with calculations of a high temperature series expansion, which is
commonly employed for the characterization of 2D magnetic systems. Characterization
of low-dimensional magnetic systems requires the interplay of multiple, complementary
techniques, to unravel the subtle differences between real world and idealized, theoretical
systems. This is the case today, as well as half a century ago.

Nevertheless, having established the existence of low-dimensional magnetic systems, the
field of research attracted broad interest again after the discovery of high temperature
superconductivity in copper oxide materials, first in BaxLa5−xCu5O5(3−y) [154, 155].
Shortly afterwards in 1987, the origin of the high Tc superconductivity was traced back by
a combination of x-ray, susceptibility and resistivity measurements to a layered, K2NiF4-
type structure in La1−xBaxCuO4 [156, 157]. Based on these discoveries, and notably the
relation to K2NiF4, Anderson [18] argued for the applicability of the Resonant Valence
Bond (RVB) model, which describes the emergence of cooper pairs from magnetic singlet
pairs as a result of low dimensionality, low spin magnitude and magnetic frustration in
the system.
These new concepts spurred the investigation of a multitude of physical phenomena

connected to low-dimensional magnetism. Frustration in magnetic systems is a key

75
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ingredient, as it profoundly influences the ground state resulting in strong fluctuations
of the system in order to overcome it. This leads to states such as the Luttinger-liquid
in KCuF3 [158] and Cu(NO3)2 · 2.5D2O [159] (1D), a spin-liquid phase initially thought
to occur in PbVO3 (2D) or a potential spin nematic phase in BaCdVO(PO4)2 (2D) [20].
Yet, to this date and specifically for square lattice arrangements, no J1-J2 model spin
liquid has been found, despite plenty of theoretical predictions.

These novel magnetic states bring about quantum critical points (QCP) [158], provide
insight in general properties in quantum critical phenomena and characterization of
universality classes. Without a doubt, the few examples above are not an exhaustive
list of references, which is why the review by Zhou et al. [160] or the book edited by
Lacroix et al. [161] should provide a good starting point for reading.

Realization of 2D magnetism in metal-organic compounds

Indispensable in the search and study of quantum criticality are real world systems,
which conform to the demanding requirements predicted by theoretical work. This
is particularly true for investigations of low-dimensional magnetism, where samples
are always 3D regarding their crystallography, but show reduced dimensionality in the
magnetic sublattice. This can lead to dominant exchange pathways between the magnetic
ions, which are confined in one layer (2D), along a ladder or chain (1D) [27, 162], or
isolated pairs of ions forming dimers (0D) [163] in the crystal. Metal organic magnets
can adopt relatively large and complex structures due to their unit cell size, with a
variety of elements and molecular complexes involved. The magnetically active ions are
often in the vicinity of not only oxygen ions as in inorganic oxides, but also with other
elements (N, F...). Additionally the subtle role of the hydrogen bond adds yet another
layer of complexity, leading to an enormous potential to host a variety of electronic and
magnetic phases that originate from a strong interplay between the spin, orbital, and
lattice degrees of freedom [164].

Coordination chemistry provides a versatile tool set for synthesizing a broad variety of
low-dimensional magnetic systems connecting magnetic ions in high symmetry lattice po-
sitions with carefully selected complexes and separating the layers with additional ligands.
An almost unlimited set of configurations is possible. While in Cu2(OH)3(C6H13SO3)
the copper lattice planes are separated by long organic carbon chains and magnetic in-
plane exchange is mitigated by (OH) groups [165], in Cu(C4H4N2)2(ClO4)2 the roles are
inverse. Here, the magnetic interaction arises along the organic pyrazine (C4H4N2) (pyz)
constituents and the interplanar isolation is achieved with disordered ClO−4 anions [166].
Therefore, a plethora of metal-organic compounds (MOC) with a diversity of structures,
magnetic interaction pathways and predominantly antiferromagnetic properties can be
acquired. In this loosely defined class of MOC, systems based on Cu2+ ions represent a
prominent group, which brought forth well characterized compounds [160] and will be
in the focus for the rest of this work.
One particular compound of this group, Cu(pyz)F2 ·(H2O)2, is of special interest as

it exhibits a transition from a 2D, planar magnetic coupled system to a 1D spin chain
system under application of isotropic external pressure. The pressure anisotropically
deforms the lattice structure resulting in a reorientation of the Jahn-Teller axis, which
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is initially aligned with the a lattice vector along the pyrazine-copper chains, to be
aligned with c and b depending on the pressure. Hence, the magnetic orbital of the
Cu2+ ions switch orientation such that for p = 6.1 kbar the 1D magnetic coupling was
directly observed as a characteristic spinon continuum via inelastic neutron scattering
by Skoulatos et al. [167]. This is but one example of uniform pressure leading to
well defined deformation of the anisotropic octahedral environment in metal-organic
perovskites [168].
The prospect of tailoring compounds with switchable magnetic dimensionality led

to the effort of studying the MOC Cu(C4H4N2)2(H2O)2Cr2O7 (Cu-pyz) in search of
a 2D to 1D pressure induced dimensionality change within the same crystallographic
plane. First, in section 5.1 the implementation of 2D magnetic systems in the family of
metal-organic systems will be discussed, how these systems can be characterized and
why they are suitable for physical property engineering via external parameters. Section
5.2 addresses the magnetic bulk measurements, which give the base information required
for further neutron scattering studies and modeling of microscopic behavior. Finally,
section 5.3 presents the inelastic neutron scattering studies at sub-Kelvin temperatures
and ambient pressure, as well as analysis of the observed spin wave dispersion by means
of linear spin wave theory simulation with the spinW library.

5.1. Synthesis and structure of Cu(C4H4N2)2(H2O)2Cr2O7

Synthesis of a large portion of Cu2+ based MOC is done via wet chemistry. Generally,
parent compounds in the form of water solvable salts are mixed in the stoichiometric
ratio. The chemical reactions result in immediate precipitation of the wanted product or
requires slow evaporation of the solvent with concurrent formation of crystals. Subsequent
filtration separates solid crystals from the liquid phase and washing with appropriate
cleaning liquids leaves back the intended product. The drying process, if applicable,
is known to alter magnetic properties, as lattice water content can alter the magnetic
behavior of the sample [165, p.1121 red line]. Since water molecules can serve as integral,
structural part, out-diffusion of water changes the lattice internally and needs to be
prevented through correct storage.

This general procedure has been successfully employed for carbon chain separated cop-
per layers Cu2(OH)3(CnH2n+1SO4) [165], pyrazine connected ions in Cu(pyz-d4)2(ClO4)2
[166] and more [169–172], which are just a few selected examples. The crystals of
[Cu(C4H4N2)2(H2O)2]Cr2O7 used in the described studies were grown similar to a
method described in [28]. Pyrazine (0.48 g, 6 mmol) and ammonium dichromate (0.76 g,
3 mmol) were dissolved in 20 mL water. 0.5 g of nitric acid was added. A solution of
copper(II) nitrate hydrate (0.89 g, 3 mmol) in 10 mL water was added. To grow single
crystals, the mixture was heated up to 90 ◦C and slowly cooled down to room tempera-
ture. The crystal growth process yields depending on the amount of reactant a large
variety of samples, with a wide range of sizes from tiny crystallites to single crystals of
(7× 7× 3) mm3, which are well suited for magnetic bulk property measurements and
inelastic neutron scattering, respectively [173].
The crystal structure of Cu(C4H4N2)2(H2O)2Cr2O7 is classified as orthorombic of

space group #33, Pna21, with lattice parameters a = (15.7236± 0.0009)Å, b =
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Figure 5.1.: Crystal structure of [Cu(C4H4N2)2(H2O)2]Cr2O7 in three different orientations.
(a) depicts the conventional unit cell of Cu-pyz, which contains 4 formula units within it, each
consisting of one magnetic Cu2+ ion, two pyrazine rings (C4H4N2), two water molecules and
a dichromate (Cr2O7) complex. In the bc-plane Cu2+ ions are coordinated with the pyrazine
rings bonding to the nitrogen atoms on the opposing sides on the ring. Water molecules attach
along the a direction. Thus the Cu2+ ions are surrounded by six ligands in an octahedral
geometry elongated along the a-axis. (b) View along the crystals b-axis showing the separation
of the Cu2+-pyrazine layers with dichromate complexes in between. (c) View along the a-axis
over 3 unit cells in b and c directions visualizing the copper square lattice with the pyrazine
rings connecting adjacent ions.

(9.7063± 0.0006)Å, c = (9.8112± 0.0006)Å and has first been published by Goddard
et al. [28, 174]. Figure 5.1 shows the structure as reconstructed by single crystal X-ray
diffraction. In panel (a), on the left side, an overview of the whole unit cell is given, which
contains 4 formula units. The magnetic Cu2+ ions are drawn within their respective
coordination octahedra with pyrazine rings connecting the ions in the bc-plane and
neighboring water molecules attached with the oxygen atom towards the copper ion
along the a-axis. In between the copper layers, dichromate complexes (Cr2O7) serve as
spacers. In the ac-plane, as depicted in figure 5.1 (b), the copper layers are well visible
and the difference in distance between Cu2+ in the bc-plane in comparison to the a-axis
becomes evident. Subplot (c) visualizes the square lattice arrangement of the copper
ions over multiple unit cells, where the dichromate anions have been removed for clarity.

5.2. Magnetic bulk properties of Cu(C4H4N2)2(H2O)2Cr2O7

For the characterization of the bulk magnetic properties of Cu-pyz, measurements of the
static susceptibility χDC(T, µ0H) as a function of temperature, magnetizationM(µ0H,T )
as a function of external field as well as the AC-susceptibility χAC(T, µ0H) under varying
field and temperature have been performed. The bulk data is presented in the upcoming
sections and discussed in the context of the properties expected for a 2D quantum
Heisenberg antiferromagnet (QHAF). An important figure of merit for expressing the
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degree of isolation between consecutive layers or the ’low-dimensionality’ of a 2D QHAF
is the ratio of the Néel ordering temperature and the intralayer exchange TN/|J |. The
results establish a baseline model of the magnetic interaction, which will be used for the
analysis of the inelastic neutron data in chapter 5.3. For each data set, a qualitative
description will be given in conjunction with extracted physical parameters via fitting
of appropriate models. The quantitative results will be discussed in the context of
contemporary literature.
All measurements conducted at ambient pressure conditions have been performed

with the PPMS setup described in section 3.3 on instrumentation. A Cu-pyz single
crystal with m = 76 mg was aligned by hand with respect to the magnetic field of the
setup, therefore an uncertainty of a few degrees cannot be ruled out.

5.2.1. Static susceptibility
The static susceptibility χDC was recorded with the external field along each of the
crystal’s main directions a, b, c. The field was fixed at µ0H = 0.05, 0.1, 0.5, 1.0, 5.0 and
9.0 T and simultaneously the temperature T was scanned from 2 K to 300 K.
In the following text the subscripts ’DC’ and ’AC’ might be dropped for simplicity,

unless the distinction is not clear from context.

Experimental data

Following the common presentation of 2D QHAF magnets in the literature, an overview
of the entire χDC = M

H·V data is given in figure 5.2. Here, the unitless χDC is calculated,
by normalizing the measured magnetization M to the external field H and sample
volume V . For each field alignment and strength, the susceptibility χDC follows the same
overall behavior with the susceptibility increasing as the sample temperature decreases.
A clear hierarchy of χDC above µ0H = 0.05 T is visible, with χH‖a > χH‖c & χH‖b. At
the lowest external field value µ0H = 0.05 T the order of χH‖b and χH‖c seems reversed,
but simultaneously, the noise in the signal is significantly larger compared to the data at
higher fields.

The susceptibility curves show a broad maximum peaking at around T ≈ 5 K, sharply
decreasing down to the lowest achievable temperature. The position in temperature
of the maximum χDC value decreases drastically for µ0H ≥ 5.0 T such that is hardly
observable within the 2 K limit of the instrumentation. Additionally, a feature becomes
visible at 50 K in χH‖c. The bump appears at 0.5 T and becomes more pronounced with
increasing external field strength.
An initial analysis and comparison with the Curie-Weiss law is shown in figure 5.3

where the inverse of the susceptibility 1/χDC is depicted as a function of temperature. The
exemplary data set was taken at 1 T with the field alignment along each crystal direction.
In the temperature range from approximately 10 K to 45 K the inverse susceptibility
follows a linear relationship with temperature independent of the alignment of H and
complying with the Curie-Weiss law

χDC = C

T − θ
, (5.1)
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Figure 5.2.: Magnetic susceptibility over temperature for external magnetic fields up to 9 T
along the main crystal axes. Independent of the external field strength µ0H the susceptibility
shows the same overall curve shape. χDC increases with decreasing temperature reaching
a maximum value at T ≈ 5 K. This broad peak feature is indicative for emerging inplane
spin correlations in a 2D QHAF before the system transitions to true magnetic LRO. LRO,
as a result of the minuscule coupling between adjacent planes becomes relevant at T ≈ 0 K.
Furthermore the data shows a clear hierarchy with χH‖a > χH‖c & χH‖b. The two-point
Padé approximation describes such a spin-1

2 Heisenberg system and each curve has been fitted
with equation 5.2, with the results drawn as lines in the respective color. With increasing field,
the susceptibility for H ‖ c exhibits an unexpected bump, discussed in the main text.



5.2. Magnetic bulk properties of Cu(C4H4N2)2(H2O)2Cr2O7 81

which describes the magnetic susceptibility in the paramagnetic phase. Here, C is the
Curie constant and θ is the Curie-Weiss temperature. Below 6 K, the data gradually
diverges from the linear behavior, but not in a discontinuous way.
Fitting the Curie-Weiss law to the data reveals a negative value of θ. Furthermore,

the fit parameters are similar for the data acquired with a field alignment parallel to
the quasi-square plane (bc), but differ quite significantly for the perpendicular field
alignment. Table 5.1 summarizes the fit results depicted in figure 5.3.
We will now attempt to fit an independent and more advanced model, as compared

to the basic equation 5.1.
A theoretical description of 2D QHAF with isolated spins can be based on the isotropic

Heisenberg model, which mathematically represents the spins of the Cu2+ ions (S = 1
2)

and the exchange coupling between them. Early on, a high-temperature series expansion
approach to the spin-1

2 Heisenberg model on a square lattice yielded predictions of
the thermodynamic properties χDC and the specific heat C [164, chapter by Navarro]
[6, 175, 176]. In this context, the two-point Padé approximation

χDC(T ) = C

T

[
1 +

∑5
n=1 an (−J/T )n

1 +∑5
n=1 bn (−J/T )n

]
, (5.2)

being the ratio of two polynomials, is used to describe the magnetic susceptibility of a
2D QHAF as a function of J/T , where J is the coupling constant in units of K [166, 171].
Fitting expression 5.2, with two fit parameters, specifically the coupling constant J and
the Curie constant C, to the susceptibility data shows good agreement as seen in the
solid lines in figure 5.2. The prefactors an and bn have been taken from Woodward et al.
[171] and are listed in table A.1 of appendix A.1.

Evidently the descriptive power of equation 5.2 without adjustment to the coefficients
is best for the low and intermediate field strength values. Figure 5.4 depicts a summary
of the fit results to the χDC(T ) curves. The subplots (a) and (b) show the optimal
parameter values for the exchange constant J and Curie constant C respectively. In
comparison, the results for C and J show an equal trend with increasing µ0H, where the
values hardly change up to 1 T but drop sharply for higher µ0H. In case of the Curie
constant, not only the trend is similar, but numerical values indicate CH‖b ' CH‖c. The
values are tabulated in tables A.2, A.3 and A.4 of the appendix.

H ‖ C · 10−2 (K) ∆C · 10−3 (K) θ (K) ∆θ · 10−1 (K)

a 3.48 0.15 -9.14 0.71
b 2.28 0.17 -5.29 1.04
c 2.47 0.18 -6.28 1.04

Table 5.1.: Fit results of the Curie-Weiss law fit of the 1 T data of Cu-pyz.
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Figure 5.3.: Curie-Weiss plot of Cu-pyz at µ0H = 1 T. The inverse static susceptibility,
recorded for the external field aligned with each crystal axis, decreases linearly with T down to
6 K. The shaded areas correspond to the measurement uncertainties of the identically colored
data points. The Néel temperature for each direction is negative, as expected for a magnetic
system with a dominant antiferromagnetic coupling. A small ferromagnetic component cannot
be ruled out, based only on this data.
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Figure 5.4.: Results from fitting the Padé approximation (equation 5.2) to the χDC data in
figure 5.2. (a) depicts the optimal coupling constant J and (b) the associated Curie constant
C as extracted from the fit for each µ0H value and field alignment to the crystal axes. The
squares indicate the results obtained from fitting the Curie-Weiss law. The colors of the square
markers retain their meaning.



5.2. Magnetic bulk properties of Cu(C4H4N2)2(H2O)2Cr2O7 83

Discussion

Looking at the Curie-Weiss analysis of the paramagnetic susceptibility as depicted in
figure 5.3 and the extracted parameters in table 5.1, negative values of θ are consistent
with the expectation of dominant antiferromagnetic exchange coupling in the system.
With the Curie constant indicating a significant difference between the field alignment
parallel (C‖) and perpendicular (C⊥) to the quasi square bc-plane, this can be explained
in terms of the g-factor anisotropy

C‖(⊥) =
N̄g2
‖(⊥)µ

2
BS(S + 1)

3kB
, (5.3)

which in case of Cu2+ can arise from crystal fields surrounding the ion [177, 178]. In
a crystal lattice, structural constrains introduce an anisotropy potential, which lifts
the degeneracy of the ground state of a magnetic ion and modifies the wave functions
accordingly. The paramagnetic susceptibility of the system depends on the expectation
values of the total angular momentum, which differs due to the new wave functions
compared to the unperturbed magnetic ion.
Hence, g-factor anisotropy can be found in various metal-organic compounds such

as Cu(C4H4N2)2(ClO4)2, described by F. Xiao et al. [179]. C‖(⊥) depends on the
number density of magnetic ions N̄ , the anisotropy inducing g-factor g‖(⊥) and the
spin S. Using equation 5.3 to analyze the fit values of the Curie constant obtained
from the χDC data for |µ0H| ≤ 1 T, the g-factors equate to g‖ = 2.131± 0.006 and
g⊥ = 2.387± 0.016. Comparing again with Xiao’s work, the anisotropy between parallel
and perpendicular field alignment is similar. To put this in numbers, the relative
difference δg = (g⊥ − g‖)/g⊥ = (11± 1) % for this work on Cu-pyz, whereas δg = 9 %
for Cu(C4H4N2)2(ClO4)2 in Xiao et al. Deeper insight into the exact values should be
possible by analyzing the chemical environment of the Cu2+ ions, such as the bond
length to the neighboring constituents. While this could lead to a better understanding
of the electron orbital configuration and thus the exchange coupling pathways between
the ions, it is beyond the scope of the presented work.
The in-plane exchange coupling constant J determines the energy scale of the inter-

action between neighboring Cu2+ ions in Cu-pyz. The ratio of the antiferromagnetic
ordering temperature or Néel temperature TN to J quantifies the ’two-dimensionality’
of a system. In an isotropic, antiferromagnetic material, TN can be identified by the
diverging behavior of the susceptibilities χDC,‖ and χDC,⊥, which denote the suscepti-
bility along and perpendicular to the preferred axis of spin alignment. According to
molecular field theory, χDC,⊥ stays constant down to T = 0 K, χDC,‖ decreases until it
vanishes [180, chapter by F. Keffer]. Misalignment between external field and axis of
the staggered magnetization can lead to mixing of both scenarios. In 2D QHAF, which
inevitably ought to achieve 3D long range order (LRO), the differentiation between χDC,‖
and χDC,⊥ is expected and has been experimentally verified for a plethora of MOCs
[28, 165, 166, 171, 172, 179].
However, χH‖a, χH‖b and χH‖c do not exhibit any indication of transitioning to

antiferromagnetic LRO down to 2 K. Subsequently, the determination of TN and a
distinction between easy and hard axis for the AFM alignment of spins can not be made
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based on the χDC data alone. Therefore, we can only give an upper boundary for the
ratio TN/J ≈ 0.42, which is comparable to other low dimensional, copper based systems
listed by Goddard et al. [28].
Even though, the susceptibility shows no clear transition to 3D antiferromagnetic

LRO, the broad maxima, which are visible in each χDC(T ) curve of figure 5.2, are
associated with the ordering of the strongly coupled Cu2+ ions within the bc-plane,
while the individual planes are disordered with respect to their neighboring ones. This
precedes the attainment of full 3D magnetic order in the sample, because the inter-plane
coupling or potential single ion anisotropy is too small and easily overcome by thermal
fluctuations even at the lowest attainable temperatures reached in our studies.
Further information on the ground state of the system could be discerned in the

dynamic susceptibility χAC or neutron scattering measurements of Cu-pyz, observing
the magnetic Bragg scattering to identify LRO on a microscopic level. Both subjects
will be discussed in more detail in sections 5.2.3 and 5.3.1, respectively.

5.2.2. Magnetization
The bulk magnetization gives further valuable insights in the properties and the quality
of a 2D QHAF system. The curve shape itself allows a unique distinction between
mainly planar or 3D coupling between the magnetic ions.
Distinct features in a magnetization curve allow the determination of characteristic

quantities such as the saturation magnetization msat, the saturation field strength µ0Hc
and the anisotropy field strength HA. While the first two quantities are related to
the high field behavior, the anisotropy field, which is usually much smaller than Hc, is
indicated by a change of slope in the magnetization. At that point, the Zeeman energy
overcomes the internal pinning potential, which is independent of its microscopic origin.
The anisotropy field quantifies the resistance of the magnetization to align with the
external field. Furthermore, the ratio HA/Hc is an important measure to characterize the
divergence from an ideal isotropic 2D Heisenberg model system [166, 171, 179]. In the
following the single crystal magnetization data of Cu-pyz up to 9 T with µ0H parallel
to each crystal axis and for three distinct temperatures T ∈ [2.0 K, 5.0 K, 15.0 K] will be
discussed.

Experimental data

For each temperature value and field alignment, magnetization curves were recorded
starting from a zero-field cooled state. After an initial field sweep from 0 to 9 T, a
complete hysteresis loop was performed going down to −9 T and again up to the 9 T.
Looking at the data in figure 5.5, no saturation of the system is observed up to maximum
available field for any curve. No hysteretic behavior is recognizable for any combination
of external parameters. Similar to the susceptibility there is a hierarchy in the magnitude
of the absolute values of the magnetization, with |mH‖a| > |mH‖c| ≥ |mH‖b|, which is
shown in a more accessible depiction in figure A.1.
Most notable is the change in curve shape and its dependence on the temperature.

While for T ≥ 5.0 K the magnetization is linear, but with differing slopes, as expected
from susceptibility data, the magnetization at T = 2 K deviates from this pattern. It
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increases less steeply for small fields and bends upwards when µ0H becomes larger, with
increasing slope. In figure 5.5 these two, differing field dependencies can be seen in
subplots (a) and (b), when comparing the curve for T = 5 K to T = 2 K. This behavior
is a characteristic feature of 2D QHAF and will be discussed further in the next section.
The fact that the system undergoes a change exactly in this region of temperature is
strongly supported by the peaking susceptibility data (see. figure 5.2).

At exactly µ0H = ±1.0 T each magnetization curve exhibits a jump of the exact same
magnitude and direction. This behavior is attributed to residual, captured flux in the
pick up coil of the measurement setup4. For this mostly qualitative discussion of the
magnetization data, the step is negligible and not further analyzed.

Discussion

The magnetization curves presented in figure 5.5 do not indicate saturation of the system
up to 9 T. According to mean field theory calculations by Bonner and Fisher [5] the
saturation field Hc can be calculated as

µ0Hc = zkBJ

gµB
, (5.4)

where z = 4 for a Heisenberg model system. The other symbols retain their usual
meaning: kB is the Boltzmann constant, J is the coupling constant, g is the Landé factor
and µB is the Bohr magneton. Equation 5.4 is widely used across the literature to estimate
the saturation field of 2D magnets, the derivation by Bonner and Fisher (equation 4.7
in [5]) relates to an antiferromagnetic chain. The parameter z often interpreted to
be the coordination number actually indicates the dimensionality of the spin coupling.
According to Bonner and Fisher z = 2(1 + γ), with γ = 1 and γ = 0 indicating
Heisenberg or Ising-type couplings, respectively. However, no analytical equation for
the 2D case is easily available. Hence, equation 5.4 will be used for further analysis.
Taking the parameters for g and J as determined from the χDC analysis, we arrive
at µ0Hc,b = (13.42± 0.08) T, µ0Hc,c = (12.87± 0.12) T and µ0Hc,a = (12.45± 0.15) T
with an average of µ0H̄c = (13.12± 0.06) T. Considering that according to Goddard et
al. the saturation field determined on a powder sample, has a value of µ0Hc = 13.3 T,
the estimated µ0H̄c is in good agreement and explains why no saturation behavior is
observed up to 9 T.
One of the indicators of a 2D QHAF seen in magnetization data is a concave up

curvature up to the point of saturation, which was experimentally verified in various
systems and is in good agreement with calculations by Zhitomirsky et al. [181] using
a spin-wave expansion approach with second-order corrections. Strictly speaking, the
theory is valid for T = 0, which is why the most fitting comparison is with the lowest
temperature data at T = 2 K.

The upward curvature in the data is subtle and is expected to be largest close to µ0Hc,
because the magnetization is supposed to diverge logarithmically at this point. Since
µ0Hc is about 50 % larger than the available external field magnitude, the divergence

4 Personal discussion with H. Gabold.
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Figure 5.5.: Sample magnetization for different external field alignments and sample temper-
atures. Each panel shows the magnetization along one of the major crystallographic axis. For
temperatures ≥ 5.0 K the relation between magnetization and external field is linear, while for
T = 2.0 K the curve bends steeper with increasing field. This behavior is representative for 2D
magnetism and is discussed in the text. Panel (c) only contains data for T = 2.0 K.

and saturation is barely visible in the data. This distinctive curvature is subtle, but it
becomes recognizable when comparing e.g. the magnetizations recorded at 2 K and 5 K,
as can be seen in panels (a) and (b) of figure 5.5. The magnetizations at 5 K and 15 K
essentially exhibits a linear dependence on external field over the measured range. In
the following, the low and high field characteristics of the magnetization data of a 2D
QHAF will be discussed more quantitatively.
According to the spin wave theory calculations of Zhitomirsky et al., the low field
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approximation yields

M(H) = χH + 2
π

(
H

Hc

)2
, (5.5)

where the second, non-linear term is a characteristic of a 2D QHAF spin system. Within
the framework of Zhitomirsky, the susceptibility χ is expressed as a series up to second
order in 1/(2S) and determined numerically. For intermediate values 0 < H < Hc, no
simple, analytical formula describing the magnetization could be extracted, however in
the high field limit

M(H) = S

[
1− h

2S ln
(
π2

4h

)]
, (5.6)

with h = 1−H/Hc as the reduced field, the aforementioned logarithmically divergent
behavior is obtained at the point of saturation.
Figure 5.6 brings together the low temperature magnetization data of Cu-pyz and

puts it in relation to the theory prediction of Zhitomirsky et al. as well as data
published by Woodward et al. [171], which show the entire magnetization curve of
related compounds (5MAP)2CuBr4 and (5CAP)2CuBr4. The data is scaled with respect
to the saturation magnetization msat and the saturation field µ0Hc. For the present
Cu-pyz data, the literature value of µ0Hc = 13.3 T was used for normalization. Since
the saturation magnetization of Cu-pyz is not known from this measurement, the
qualitative agreement of the magnetization with theory and Woodward’s data was
taken as justification to estimate msat by scaling the data to fit the theory. This
procedure yields msat,H‖b = (5832± 4) emu/mol, msat,H‖c = (5911± 4) emu/mol and
msat,H‖a = (7124± 4) emu/mol, which ought to be verified in future experiments.
Turning towards the low field part of the data, the points for µ0H < 1 T have been

omitted due to the flux capture artifact shifting the curve. Hence, analysis of an existing
anisotropy field, which is hallmarked by a deviation from a quadratic field dependence
[171, 179], was not feasible. For 2D QHAF the anisotropy field in competition with
the out-of-plane coupling are the driving forces of the emergent LRO and therefore of
interest for a complete characterization of the system.
Finally, it is relevant to mention that beyond the theoretical description of idealized

2D QHAF at T = 0 K, quantum Monte-Carlo simulations provide an excellent tool
to study low-dimensional magnetic systems [28]. These models agree in the limit of
T = 0 with analytical approaches, but the Hamiltonian can easily be extended with
out-of-plane interactions, anisotropy and Zeeman terms, while simultaneously yielding
results for finite temperatures.
As an example, promising results from the computational side have been produced

by means of stochastic series expansion (SSE) quantum Monte Carlo methods. The
partition function is calculated by expanding e−βH (β ∝ 1/T ) and decomposing higher
orders of the Hamiltonian into bond operators, which describe the interaction between
two spins Si, Sj , effectively reducing the problem to a sum over products of permutation
operators. Employing optimized update [182, 183] and tempering schemes (for finite T
models), any thermodynamic property, such as heat capacity, magnetization [28, 182],
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Figure 5.6.: Sample magnetization for different external field alignments of Cu-pyz at T = 2 K.
The experimental conditions were not sufficient to saturate the magnetization of Cu-pyz,
therefore the saturation magnetization msat and and saturation field Hc could not be directly
observed. Based on the previously deduced g and C values, the latter can be estimated to
be (13.12± 0.06) T. By normalizing the data to this value and comparing it to the expected
magnetization curve of a 2D QHAF calculated by Zhitomirsky et al., plausible estimates for
msat were extracted. For consistency, we additionally compare our data with measurements
by Woodward et al.. Data points for (5MAP)2CuBr4, (5CAP)2CuBr4 and the theoretical
magnetization curve have been extracted from figure 6(b) in Woodward et al. [171].

susceptibility [182] or spin wave stiffness [183], of a 2D QHAF system can be computed.

5.2.3. Dynamic susceptibility
In parallel to the static susceptibility χDC and magnetization m, the AC-susceptibility
χAC was measured. The χAC data presented in this chapter is of twofold interest. On
the one hand, they contribute to the characterization of Cu-pyz as a 2D QHAF, but
on the other hand, they serve as a baseline for studying the system under hydrostatic
pressure since the AC measurement coils can be fit into large pressure cells. The next
section provides an overview of the measurement.

Experimental data

The AC-susceptibility χAC = χ′ + iχ′′ was recorded at constant temperatures T ∈
[2.0 K, 5.0 K, 15.0 K] over −9.0 T ≤ µ0H ≤ 9.0 T and constant field strengths µ0H ∈
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[0.05 T, 0.1 T, 0.5 T, 1.0 T, 5.0 T, 9.0 T] from 2 K to 300 K.
Introducing the field dependence of χAC first, in some cases, the data is dominated

by noise, which is why the plots are cropped to the range, where useful information
can be extracted. This can be seen in figure 5.7 exemplarily for T = 2 K, in which the
dotted lines mark the point beyond which the χ′ signal increasingly fluctuates. Hence,
we limit our discussion to data within the marked µ0H range, but we try to reflect
on the possible reasons for the increasing noise at large fields. The entire data set is
depicted in the figures A.2 and A.3 of appendix A.2. Regarding the range µ0H in which
noise appears, χ′′ behaves similarly to χ′. However within the measurement uncertainty
χ′′ = 0 for the entire region of interest (see figure A.3 in the appendix A.2).
In figure 5.8 the χ′ measurements are grouped with respect to the alignment of H

for different temperatures. As χAC is related to the magnetization via χAC = ∂M/∂H,
the difference in the magnetization curves is also reflected in the shape of χ′, where for
T ≥ 2 K it is essentially a constant with χ′H‖a > χ′H‖c, except for a small peak at 0 T,
which is also visible at the lowest temperature. Since only 5 measurement points fall in
the peak region, it is hard to determine the shape and width of this peak. In all cases,
the peak height correlates positively with temperature, but not with field direction and
decays completely for |µ0H| > 0.2 T.

In comparison, the curve shape of χ′ at 2 K is far from constant. Except for the peak,
the signal increases with positive curvature up to an inflection point around 1.5 T. From
this point it increases with a decreasing slope, but without leveling out completely up
to 5 T. Beyond that, a trend of further increase of χ′ can be postulated despite of the
noisy signal (see figure 5.7). Lastly, it is notable, that χ′H‖c is slightly larger than χ′H‖b
for low external field strengths.

As mentioned before, the temperature evolution of χAC has been measured for |µ0H| ∈
[0.05 T, 0.1 T, 0.5 T, 1.0 T, 5.0 T, 9.0 T] and is shown in figure 5.9. Consistent with the
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Figure 5.7.: χ′ at T = 2 K for −9 T ≤ µ0H ≤ 9 T along the main crystal axes. Exceeding
|µ0H| ≤ 5 T, as marked by the dotted, vertical lines, the χ′ signal becomes increasingly noisy.
χ′ exhibits a small peak at µ0H = 0 T. For |µ0H| > 0.2 T, the signal flattens and increases
up to an inflection point at ≈ 1.5 T, from where χ′ increases with ever decreasing slope. For
|µ0H| > 5 T, the trend seems to change but the details are hidden in the noise.
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Figure 5.8.: χ′ along all major crystal axes and temperatures T ∈ [2.0 K, 5.0 K, 15.0 K]. For
the lowest |µ0H| values, χ′ spikes sharply, whereby the amplitude of the peak decreases with
decreasing temperature. Furthermore, at the lowest temperature, χ′ behaves differently from
being constant, which is the case for T = 5 K and 15 K. The signal χ′(2 K) increases with
a positive curvature up to an inflection point around 1.5 T. Then, the sign of the curvature
switches and χ′ tends towards leveling out.
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χAC(H) data, it is hard to extract meaningful information from the curves for |µ0H| > 5 T,
but are otherwise mostly congruent to the static susceptibility curves. Conversely,
the bump at T = 50 K is visible also for low fields and interestingly appears in the
configuration H ‖ b for 0.05 T and possibly 0.1 T. For higher fields, the signal is
solely apparent for H ‖ c. At higher temperatures (T > 200 K) a broad feature and
subsequently increased noise is present, almost identical in all curves.

Discussion

The AC susceptibility as a function of temperature is a good indicator of magnetic
ordering phase transitions. Especially in the presence of an additional, small ferromag-
netic exchange coupling, χAC has been successfully employed in identifying spin canting
in antiferromagnetically dominated systems [172]. Even more intricate scenarios like
a Kosterlitz-Thouless transition in a quasi-2D copper based MOC with XY anistropy
were elucidated by determination of the critical exponent γ from χAC data [184–187].
However, the temperature dependent χAC curves in figure 5.9 show no signature of a
phase transition consistent with antiferromagnetic order [179] or with occurrence of a
spin canting resulting from weak, additional ferromagnetic coupling [172].
Therefore it is reasonable to assume that the ordering temperature TN < 1.8 K and

thus gives an updated estimate for the figure of merit as TN/|J | = 0.377± 0.001, which
was introduced in section 5.2.1. Still, for a more accurate categorization of Cu-pyz, the
phase transition needs to be determined precisely with a temperature range extending
below 1.8 K.
Finally, the AC-susceptibility gives a validation for the hypothesized instrument

artifact detected in the magnetization curves at 1 T. Due to its direct relation to the
sample magnetization χAC = ∂M

∂H
, a sudden jump in the magnetization of the sample

would have been registered as a peak in χAC. However, no such feature is visible in the
field dependent data for neither field direction nor sample temperature. Therefore, the
working hypothesis that the jump in the magnetization is a systematic instrument effect
remains unchanged.
The χAC and χDC mutually exhibit a bump at 50 K, which is best visible in the

configuration H ‖ c. A possible explanation are trace amounts of Fe (0.001 %) present
in the dichromate salt used for the synthesis process. Fe is the only magnetically active
impurity listed in the reacants, since within the Cr2O7 complexes the chromium ions
are in the highest oxidation state lacking susceptible, unpaired electrons. However, it is
unclear why the signal is seemingly anisotropic and why it appears at 50 K. Nevertheless,
the fact that the signal becomes more pronounced, in shape and intensity, in the high
field χDC data suggests that it is of non-diamagnetic origin. A spurious signal arising
from trapped, solidifying oxygen, which has two phase transitions at 54 K from liquid to
solid and at 44 K (γ to β phase), does not clearly fit the observed signal either [188, 189].
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Figure 5.9.: χ′ dependence on temperature with H along all major crystal axes and |µ0H| ∈
[0.05 T, 0.1 T, 0.5 T, 1.0 T, 5.0 T, 9.0 T]. The curve shape matches the χDC with a broad
maximum around 4 K to 5 K, the familiar hierarchy of signal strength and a bump at 50 K,
which is visible for low field values and H ‖ b, c configurations. Beyond 200 K all scans exhibit
a broad double peak feature and more dispersed data points. High field values |µ0H| ≥ 5.0 T
lead to a noisy signal.
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5.3. Magnetism in Cu(C4H4N2)2(H2O)2Cr2O7 - A study with
neutron scattering

While bulk measurements at ambient pressure provide a consistent picture of the
magnetic properties, neutron scattering is uniquely qualified to add complementary
information. Therefore, (I)NS has been extensively involved in unraveling the structure
[149, 152, 190] and dynamics [167, 191, 192] of many MOC that exhibit low-dimensional
antiferromagnetism [3].

With the INS experiment conducted at the TAS IN12, we aimed to refine the underlying
model describing the magnetism in Cu-pyz and establish the unknown magnetic structure.
We fixed a Cu-pyz single crystal of approximately (7× 7× 3) mm3 on a sample holder
by entwining it with d = 0.5 mm thin aluminum wire. Figure 5.10 shows one example
of a prepared sample. Two crystals have been prepared for the beam time, one with a
sample holder made of copper and one made of aluminum. In the actual experiment,
the copper sample holder was chosen for better heat conduction at mK temperatures.
Further information on the instrument setup can be found in subsection 3.1.4.
Prior to mounting, the orientation of the crystals was determined via X-ray Laue

measurements at the crystal lab of the Physics Department at the Technical University
of Munich [193]. The geometric shape of the crystal was found to be within 5° to
the microscopic structure. Perpendicular to the larger ’base’ plane of the crystals was
the a-axis, while b- and c- axes were parallel to the edges of the ’base’ plane. The
corresponding Laue patterns are shown in figure 5.10.
When investigating the magnetism of a new system with neutron scattering, the

procedure for studying an antiferromagnet can be summarized as follows. Elastic
neutron scattering is used to determine the transition to the ordered state at the
Néel temperature TN, by measuring the emergence of the order parameter. Under the
assumption that the nuclear structure is known, determination of the propagation vector
is the next step. This alone does not fully describe the magnetic structure of the system,
but it allows to predict the emergence of magnetic scattering signal in reciprocal space.
However, in our case, no magnetic Bragg scattering was detected. This indicates that
3D long range order has not been achieved in the sample, possibly halting further
investigations.
Since in 2D QHAF the magnetic interaction is dependent on the direction of the

exchange pathways in the crystal, long range correlations within planes of strongly
coupled spins arise before 3D order is achieved. These correlations allow spin waves to
propagate in these planes, which can be detected by INS. Requiring a fair amount of
intuition and patience, since the magnetic propagation vector is unknown, the weak spin
wave signal can still be picked up without complete prior knowledge of the magnetic
structure yielding valuable insight unobtainable by diffraction methods.

In the first part of this section, the elastic scattering data will be discussed with respect
to 2D magnetic systems. Subsequent to this, the mapping of the magnetic excitations
along the high symmetry directions [010] and [001], will be analyzed based on linear
spin wave theory applied to an AFM model, combined with the coupling parameters
acquired from magnetic bulk measurements as an initial guess.
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(c)

(b)(a)

Figure 5.10.: Sample holder and preliminary X-ray Laue measurements. (a) shows a Cu-pyz
single crystal mounted onto the sample holder for the INS measurements on IN12. (b) and (c)
present the X-ray Laue images taken along the c axis and in the a-b plane, respectively. The
sample was oriented with the surfaces of the cuboid perpendicular to the X-ray beam indicated
by the red arrows. The red broken lines link them to the associated Laue image. The Laue
data indicates that the macroscopic surfaces are well aligned with the lattice planes of the
microscopic structure. Mismatch correction and distinction of the a and b directions was done
during alignment on IN12.

5.3.1. Search for long range order via magnetic Bragg scattering
Following the general procedure for neutron scattering studies on magnetic materials,
measurements at the cold triple-axis spectrometer PANDA at the FRM II were performed
to determine the magnetic structure of Cu-pyz. A search for magnetic, elastic scattering
signal at integer and half-integer positions was executed for temperatures between
0.06 K and 5 K. These positions correspond to a propagation vector (000) and (1

200),
respectively. During this experiment, we found no evidence of elastic magnetic scattering
contributions on top of the nuclear scattering signal. Two exemplary scans are shown in
figure 5.11 (b) and (c) at the reciprocal lattice positions (011) and (400), respectively.
The graphic 5.11 (a) depicts data taken during a later experiment at IN12. Here,

we show a scan of the (003) position, which is systematically extinct due to the lattice
symmetry. The (003) reflection is especially important because as we will see later, this
is precisely the zone center of inelastic scattering signal, which should exhibit a magnetic
Bragg peak, if we were at absolute 0 temperature. Both data sets recorded at PANDA
and IN12 were normalized to a background level to visualize the difference in intensity
from nuclear scattering at allowed and forbidden Bragg peaks.

Given the unsuccessful attempts of detecting the magnetic structure in elastic scatter-
ing, we opted for directly studying the spin wave signal. Using PANDA in an inelastic
scattering configuration at the lowest temperature setting T = 0.06 K, the signal of a
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Figure 5.11.: Rocking scans of symmetry forbidden and allowed Bragg peak positions at the
triple-axis spectrometers IN12 (a) and PANDA (b), (c). (a) shows a rocking scan around
the (003) Bragg position, which is systematically extinct due to the lattice symmetry, with
negligible signal to noise ratio (SN) of 1.1. In comparison, the Bragg peaks in (011) and
(400) shown in (b) and (c), respectively, are substantially stronger with SN(011) = 11.4 and
SN(400) = 65.7. The ratio of the peak amplitudes in (b), (c) fit well with the nuclear structure
factor calculated from the crystal structure. Each scan was performed at base and elevated
temperatures as indicated in the legend of each plot. In (a), the blue data points lie exactly
behind the red ones, meaning that no additional magnetic scattering was detected in any
case. In particular this should have been visible in panel (a) if the temperature was lowered to
absolute 0.

slowly dispersing excitation originating from the (001̄) position was detected. According
to the nuclear structure 〈001〉 is elastically forbidden, but the emergence of the dispersion
signal at (001̄) requires it to be a putative zone center for magnetic Bragg scattering.
While the inelastic scattering data will be discussed in more detail, this discovery justified
the search for magnetic Bragg scattering at systematically extinct positions using IN12
in the second experiment. Therefore, several positions of potential magnetic peaks were
scanned at 0.038 K and 5 K and the recorded scattering signal is depicted in figure 5.12.
Due to limited beam time, the pair of scans in the upper three plots are incomplete.
The nuclear Bragg peak (011) is shown for reference. Despite the peak shape detected
at a few positions, it is to note that their signal to noise ratio SN < 2. The measured
intensity at these positions is a spurious signal, which is why the Bragg peak at (011) is
substantially more intense.
For each reciprocal lattice position, the difference in sample temperature leads to

a similar signal, whereby the low temperature scans do not contain extra intensity
compared to the high temperature scans. This is not in line with a sought-after long
range ordering transition between 0.038 K and 5 K.
The appearance of background neutron counts at forbidden positions is the result

of a significant portion of hydrogen in the sample, which scatters incoherently across
all directions. Subsequently, a background is expected over all reciprocal space. The
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Figure 5.12.: Rocking scans of symmetry forbidden and allowed Bragg reflections at the
triple-axis spectrometer IN12 at 0.038 K and 5.0 K. Except for (011) in the upper right panel,
no nuclear Bragg scattering is expected for the rest, due to systematic extinction rules. The
measurement at two different temperatures yields no indication of magnetic Bragg scattering
and subsequently magnetic LRO down to 0.038 K. This is why the blue data points lie behind
the red ones in the lower six panels.



5.3. Magnetism in Cu(C4H4N2)2(H2O)2Cr2O7 - A study with neutron scattering 97

peaked, low intensity above background at the investigated Bragg peak positions is
not uncommon, but in general related to spurious effects. While the origin could arise
from the sample itself, double scattering or higher order scattering, which is not entirely
suppressed by the instrument, is also a potential source of the signal. Tying down the
root cause is a complex issue and it is unlikely to yield valuable insight, which could
change the interpretation described in this chapter. On the contrary, the absence of
magnetic Bragg scattering can be reconciled with the observation of systematic inelastic
neutron scattering is discussed in chapter 5.3.3.

5.3.2. Magnetic excitations studied with inelastic neutron scattering
Despite the negative results from the elastic NS study, which has been reported in the
preceding section, INS was employed in the vicinity of (001) to validate the findings
of PANDA and to comprehensively map the inelastic signal around this position. At
the base temperature of 0.038 K, an inelastic scattering signal was observed at a energy
transfer ∆E = 0.3 meV and reciprocal space position Ql = (0.913± 0.003) rlu in a
constant energy scan. Figure 5.13 shows the aforementioned scan with a Gaussian
fitted to the signal. The model consists of one peak on top of a sloped background,
mathematically expressed as

G(x|x0, σ, A,m, b) = A · exp
[
−1

2

(
x− x0

σ

)2
]

+ xm+ b . (5.7)

The blue line represents the model equation evaluated with the optimal set of parameters
and the black, broken line visualizes the sloped background in the scan. These parameters
have been determined by minimization of the associated χ2 function with a Python
wrapper of the Minuit2 algorithm, which is part of the ROOT data analysis framework
developed at CERN [129]. In order to verify the magnetic nature of the signal, the scan
was repeated at a temperature of 1.51 K, yielding an essentially linear slope lacking any
evidence of a comparable signal. The overall neutron count rate increases slightly with
temperature.

This analysis procedure has been applied to all the available INS data gathered at IN12.
While the INS signal of a spin wave excitation is, under ideal circumstances, represented
as a Dirac-δ distribution in Q-E-space (see 2.1.3 for context) the signal measured in
reality is broadened by the resolution of the instrument. In case of a TAS, the resolution
function is approximated by a 4D Gaussian distribution function, which when convolved
with the spin wave signal results in a Gaussian peak [57, 58]. The underlying background
was fitted with a simple linear model extending over the reasonably small interval of the
scanned parameter. In figure 5.13 the assumption provides a reasonable description, but
less so for other cases such as the ∆E = 0.7 meV scans in figures A.4 and A.6 of the
appendix. Therein, the fitting of both peaks required a different linear background for
each peak. Whenever possible the scattering signal recorded at one energy transfer value
was fitted with one slope. Examples of the analysis results are shown in figure 5.14 for
constant-Q scans and figure 5.15 for constant energy scans. All optimal fit parameters
are tabulated and can be found in the appendix A.3.

Looking at the analysis results, the following observation can be made. At low energy
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Figure 5.13.: Constant energy scans along the (00l) direction at the triple-axis spectrometer
IN12 measured at 0.04 K and 1.51 K. A model consisting of a Gaussian peak with a sloped
background has been fitted to the data. At base temperature this procedure yields a signal at
∆E = 0.3 meV and Ql = (0.913± 0.003) rlu in Q-E-space, whereas at 1.51 K no comparable
signal is observed.

values, the spin wave dispersion signal arises fairly symmetric around the (010) and
(001) positions in reciprocal space. The background contributes a significant fraction up
to the majority of the detected neutrons for each data point and changes drastically over
reciprocal space. Close to the BZ center it is almost independent of q for small ∆E, but
shows steep sloping and intensity contributions at intermediate energy transfers. For
the highest ∆Es at the BZ boundary, the q dependence as well as the count rate are
reduced again.
Regarding the intensity of the INS signal, several observations can be made. First,

the intensity decreases with increasing energy transfer. Second, at large energy transfers
and small momentum transfers the signal is not detectable. Third, for symmetric scans
around BZ centers, as seen in the center plots of figure 5.15, the intensity differences
indicate focusing and defocusing configurations of the three-axis spectrometer. This
is related to the complex shape of the resolution function of a TAS, often represented
by an ellipse contouring the half intensity boundary. The orientation and shape of
the resolution function with respect to the dispersion leads to a shift, broadening and
dilution of the true double differential scattering cross section. Fourth, intensity of the
signal for h, k > 1.5 rlu is reduced compared to the case of h, k < 1.5 rlu.
In a magnetic system, the observation of an inelastic signal in a constant-Q scan

is a reliable indicator of a ’true’ dispersing excitation, whereas constant-E scans can
lead to similar signal shape originating from quasi-elastic scattering with a strongly
momentum dependent linewidth instead of collective excitations. Hence, the constant-Q
data presented in figure 5.14 provide good evidence for a collective excitation, the fit
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Figure 5.14.: Constant-Q scans in the range 0.4 meV to 1.6 meV are shown at various
positions in reciprocal space, performed at the triple-axis spectrometer IN12. The six scans
were performed at different positions in reciprocal space for measurement of the associated
spin wave energy, only successful for panels (b), (c), (e) and (f). The spin wave signal was
modeled by a Gaussian peak on top of a linear background, as stated in equation 5.7. In
retrospect, there is no excitation signal visible in (a), because the scan range did not extend
below 0.4 meV. In case of (d) the Q matches the position of a putative magnetic Bragg peak,
where no spin wave excitation is expected in the scanned energy range.

results of which can be seen as green lines. At the positions (001), (002), (0 0 1.2) and
(010) no signal was detectable. The two last data sets depicted in figure 5.14 (a) and (d).

Summarizing the data from the Q-E-positions extracted from the INS scans in one plot,
reveals the dispersion measured in the bc-plane. Figure 5.16 (a) shows the dispersion
along the high symmetry 〈001〉 direction within this plane, whereas 5.16 (b) contains
the excitation signal measured along the [0 ξ 3ξ] direction. The color of each data point
encodes the type of scan, which was used to detect it. Blue is used for constant-Q scans
and red for constant-E scans. Seemingly, dispersions emerge from the (010) and (001)
positions in reciprocal space, indicating a sinusodial relation. At low energy transfer
values down to ∆E = 0.1 meV, no gap of the dispersion is detectable within the energy
resolution of IN12. Similarly, the two separate excitation peaks can not be resolved close
to the elastic line, appearing as one peak around the Brillouin zone center.



100 5. Probing the square lattice - Low-dimensional magnetism in a metal-organic framework

0.75 1.00 1.25

0

20

40

60

n 
co

un
ts

(1
/m

in
)

E = 0.1 meV

0.75 1.00 1.25
(0 0 l) (rlu)

0

50

100
E = 0.3 meV

1.25 1.50 1.75
0

10

20

30 E = 0.9 meV

0.75 1.00 1.25160

180

200

220

240
E = 0.1 meV

0.75 1.00 1.25
400

500

600
E = 0.3 meV

1.25 1.50 1.75

40

60

80
E = 0.9 meV

Figure 5.15.: Constant energy scans along the (00l) direction measured at the triple-
axis spectrometer IN12. Data taken at three different energy transfer values ∆E ∈
[0.1 meV, 0.3 meV, 0.9 meV] are shown together with the fitted Gaussian model (solid line).
The lower three panels show the background subtracted INS signal corresponding to the curves
above. The data at ∆E = 0.1 meV has been measured with kf = 1.1Å−1, the other two data
sets with kf = 1.5Å−1. The small kf value was used to improve the resolution at small energy
transfers.

5.3.3. Inferring structure - Discussion of the neutron scattering results
The neutron data provides information on the spatial and time correlation of the magnetic
moments of the Cu2+ ions. Models of the magnetic structure and coupling parameters
built on the basis of the bulk measurement results can be tested against it. In this
context, the expected magnetic Bragg scattering signal of a 2D magnetic system with
strong intralayer coupling and therefore magnetically ordered planes are discussed and
compared with the Cu-pyz system. Further, the shape of the spin wave dispersion
encapsulates information on the coupling of spins, while the amplitude of the spin wave
signal reflects the static magnetic structure. The simulation software spinW [39] is used
to calculate the dispersion and spin-spin correlation function of a general magnetic
structure and coupling model via linear spin wave theory, to be compared with the
neutron data.
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Figure 5.16.: Summary of the measured inelastic scans along (0 0 l), (0 k 0) and (0 ξ 3ξ). The
color of each data point corresponds to the type of scan it was extracted from, with red points
yielded by constant-E and blue points yielded by constant-Q scans. The latter ones were only
applicable in flat parts of the dispersion, while constant-E scans provided good results for steep
slopes.

Elastic neutron scattering emerging from 2D long range order

First accounts of the 2D character in a layered magnetic system via (quasi)elastic
neutron scattering were presented by Birgeneau et al. in 1969 in the layered perovskite
material K2NiF4 [152]. In K2NiF4, NiF2 planes with strong in-plane coupling between
the Ni2+ ions are separated by two KF sheets, which suppress interlayer interaction
between the Ni2+ ions due to the increase in interatomic distances [194]. A depiction
of the nuclear and magnetic structure of K2NiF4 is shown in figure 5.17 (a). This
suppression of magnetic interaction between two adjacent NiF2 leads to the ordering of
the in-plane spins at T = 180 K, with a transition to 3D LRO at TN = 97.1 K. Within
this temperature region, where only long range spin correlations within the planes are
present, elastic magnetic scattering intensity arises in the shape of rods instead of points
in reciprocal space. These rods extend in the direction of disorder (perpendicular to the
ordered planes) as can be seen from the fundamental equation describing the differential
cross section of neutron scattering. Considering only the static part of the double
differential cross section for magnetic scattering (see equation 2.18)(

dσ
dΩ

)
Bragg

= A(ki,kf)
∑
αβ

(
δαβ − Q̂αQ̂β

)∑
R

eiQ·R〈Sα0 〉〈S
β
R〉 , (5.8)

where A(ki,kf) contains all neutron and sample related prefactors, the rod shaped
intensity distribution in reciprocal space can be deduced by examining ∑R.



102 5. Probing the square lattice - Low-dimensional magnetism in a metal-organic framework

If only in plane correlations exist, spins in the same crystal plane contribute to
the differential cross section via the vector product 〈Sα0 〉〈S

β
R〉, while contribution from

different planes average to zero due to random angles between the spins. Hence,
the differential cross section becomes independent of the value Qz, the component
perpendicular to the planes [194]. Figure 5.17 (b) shows the reciprocal space map of
K2NiF4 in the [001]× [100] scattering plane, where double circled reciprocal lattice points
indicate nuclear scattering and single circles represent magnetic Bragg points appearing
below TN. Above TN magnetic correlations only exists within the the ab-plane, which is
why the magnetic rod and therefore uniform magnetic scattering should appear along
the l direction, designated scan B on the reciprocal space map. In contrast, scanning
across the rods at any constant l value, labeled scan A, yields a localized magnetic
scattering signal. Both scans are shown in figure 5.17 (c1) and (c2), respectively. The
sample temperature was set to 99 K for the open circle data, 95 K for the open triangle
data and 4 K for the filled circle data.

The appearance of this magnetic intensity rods was well demonstrated by Birgeneau
et al. leading to the aforementioned conclusion that K2NiF4 is a good realization of a 2D
AFM. In addition, two intriguing assessments can be made from the results published by
Birgeneau. Even though the diffuse scattering intensity within the strongly coupled planes
is centered around the reciprocal lattice points, the intensity distribution is broadened.
Also, the integrated intensity is two orders of magnitudes smaller compared to the Bragg
scattering arising at these positions after 3D LRO is established. Furthermore, the
indicative rod shaped signal can be tracked over a wide range of temperatures up to the

Figure 5.17.: Structure, reciprocal space map and measurement summary of K2NiF4. (a)
shows the atomic positions of K2NiF4 in one unit cell, as well as the magnetic moments of
the Ni2+ ions. (b) depicts the reciprocal space map of the ac-plane with double and single
circles representing nuclear and magnetic Bragg positions, respectively. Scan A (c2) shows the
scan range across the rod shaped magnetic intensity distribution, while scan B (c1) measures
magnetic intensity along the rod. The graphic was composed from individual plots published
in [152].
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point where the in-plane correlations set in.
Comparing the behavior of the prototypical K2NiF4 system with Cu-pyz, which if

aligned in the scattering plane [010] × [001], would result in the magnetic rods being
perpendicular to the scattering plane, since the uncoupled copper planes are stacked
in the a direction. Therefore, even above the Néel temperature an elastic magnetic
scattering signal originating from the in-plane spin-spin correlations is expected to occur
at the respective Bragg positions. Which is why, the scans presented in figure 5.12
should have picked up the scattering signal of the magnetic rods. Given the fact that
the total magnetic scattering intensity is proportional to the square of the sublattice
magnetization, within a certain temperature interval T & TN, the intensity accumulated
in the point-like Bragg spots is redistributed over the magnetic rods. Using K2NiF4 as
an example again, the expected neutron count rate from the rods is significantly reduced
by a factor of ≈ 70 in comparison to the point-like Bragg scattering [195]. Thus, the
rocking scans presented in figure 5.12, which cut through the intensity rods, collect only
a small amount of the total magnetic scattering intensity. Since the sample contains
non-deuterated molecules, the strong incoherent background signal makes the magnetic
scattering undetectable within the counting time of 14 seconds per point.

Inelastic neutron scattering of 2D long range correlations

The literature on neutron scattering investigations of 2D magnetic systems provides
a solid expectation of the elastic scattering signal to be observed in Cu-pyz. Since
our diffraction data did not yield this sought-after information, we instead lean on the
successfully performed spin wave measurements, which provides a good indication of the
underlying magnetic structure. As the dispersion emerges at the positions (010) and (001)
in reciprocal space these spots ought to be magnetic Bragg points. Conversely, at the
positions (020) and (002) the spin-spin correlation function vanishes as indicated by the
decreasing intensity of the high momentum transfer excitations. Below ∆E = 0.8 meV
the signal was indistinguishable from the background.
In conjunction with the periodicity of the spin wave dispersion, which seems to

complete its arch from BZ center to the next, the magnetic unit cell needs to match
the nuclear unit cell to conform with measured data. Taking this assumption and prior
knowledge obtained from the bulk measurements, a basic model can be set up for the
linear spin wave calculation software library spinW. In summary, the model includes:

• An antiferromagnetic spin structure within the bc-plane

• A spin value S = 1/2 for each Cu2+ ion

• A strong intra-plane exchange coupling of J2D = 5 K · kB ≈ 0.5 meV

• A vanishing inter-plane exchange coupling of J⊥ u 0 meV

At the current state, the magnetic structure is undetermined and the ground state of
the model is degenerate, with the sole assumption that neighboring spins are aligned
anti-parallel. The spin alignment does not influence the form of the dispersion relation,
but alters the relative, measured INS intensities due to the projection of the spin-spin
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correlation function on the momentum transfer vector Q. Therefore, careful analysis of
the intensities of the spin wave signal aids the determination of the magnetic structure
of the underlying ground state.

Since the ground state is not known, it is assumed that the spins are aligned parallel
to the a direction of the crystal structure. Internally, spinW lifts the ground state
degeneracy by adding a negligible energy award for the manually selected structure.
Subsequently, the dispersion relation can be solved without introducing numerical
singularities. Regarding the momentum projection, with the momentum transfer confined
to (0kl), there is no preferential direction as Q is always perpendicular to S. By design,
the spin-spin correlation function has the same magnitude for the directions k and l.
The results of the numerical calculation of the spin wave dispersion based on the

aforementioned model are depicted in figure 5.18. Therein, data are also shown, along
with the dispersion curve as the broken white line on top of the intensity map. The
intensity map is obtained by convolving the spin-spin correlation function with a Gaussian
distribution of ∆EFWHM ≈ 100 µeV in energy space, which estimates an average energy
resolution of IN12. Regarding the spin-spin correlation function, the underlying G-type
antiferromagnetic structure as well as the intra-layer coupling is depicted in the insert
(b) of figure 5.18. It shows a section of two stacked planes of Cu2+ ions as copper colored
circles, which are connected within the planes by a red colored bond that represents the
AFM Heisenberg coupling constant J2D. All non-magnetic ions have been removed in
the abstraction process. The absence of connecting lines between planes signifies the
lack of inter-plane coupling in our model.

With J2D being the only free parameter of this model, an optimization was performed
using the spinW fitspec routine. The best agreement between all data points of the
measured dispersion and the model was achieved for J2D = (0.52± 0.03) meV. Com-
paring the results of this minimum viable model on the one hand already gives a good
description of the observed spin wave spectrum, especially in the l direction. On the
other hand, larger deviations from the simulated dispersion are seen along k, especially
in the high energy transfer region. One possible explanation is the inferior statistics in
the k data due to a factor of 2 difference in the counting time between the scans, owed
to the limited beam time. This can be seen from the comparison of the error bars in the
plots of the raw data A.5 and A.7. In case higher counting statistics confirms systematic
differences between measured and modeled dispersions, additional contributions to the
Hamiltonian of the system would need to be considered. Such corrections could be an
extension of the magnetic square lattice model towards a rectangular system, where in
plane coupling is described by two differing exchange constants. Subsequently, the shape
of the dispersion along k and l would change accordingly. Whether this extension to
the model has merit and can be reconciled with bulk data, the crystal symmetry and
exchange pathways of the structure has yet to be determined. The same considerations
would have to be made in relation to next-nearest neighbor interactions. In the spirit
of Occam’s razor current data are sufficiently explained by the minimum viable model
with solely an intra-plane isotropic Heisenberg interaction.

The fitspec algorithm only accounts for the position of the measured excitations in
Q-E-space but not the intensities of each excitation peak. Therefore, no conclusion can
be drawn regarding the magnetic structure, which needs to be analyzed separately. For
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Cu2+ J2D

Figure 5.18.: Simulated and measured spin wave dispersion in Cu-pyz along (0 0 l), (0 k 0)
in (a) and (0 ξ 3ξ) in (b). The data depicted in (a) and (b) was fitted using a spin wave
simulation of the dispersion of a spin-1

2 2D QHAF yielding a strong in-plane coupling J2D =
(0.52± 0.03) meV, negligible out-of-plane exchange and a G-type antiferromagnetic structure
with spins parallel to c. The inset in (b) shows a graphic representation of this model. The
calculated dispersion is plotted as white dashed lines achieving good agreement with the
measurement. The underlying color map represents the expected neutron intensity from
inelastic scattering and was computed from the spin-spin correlation function convolved with a
Gaussian kernel (σ = 0.1 meV) to mimic the resolution of IN12.

a comprehensive treatment of the intensity, the instrument resolution effects need to
be taken into account to correct for shifts or signal strength, which are introduced by
the complex 4D resolution function of TAS. A combined model involving Monte-Carlo
convolution of the TAS resolution function and the magnetic double differential cross
section is under development.

Although the analysis of the spin wave dispersion can be easily performed, in the face
of the fact that no magnetic LRO can be observed, this apparent discrepancy must be
discussed. One of the first reports on this phenomenon is related to the archetypical 2D
magnetic system K2NiF4 and was authored by Skalyo et al. [196]. On the one hand,
their work unambiguously identifies the characteristic spin wave dispersion of a 2D AFM
system with negligible inter-plane exchange coupling. The sought-after signal consists of
clearly dispersing excitations for momentum transfer within the plane while along the
direction with negligible coupling the excitation energy stays constant. On the other
hand, they track the temperature dependence of the spin wave signal crossing from the
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AFM LRO state below TN = 97.2 K over the phase boundary to approximately 1.1TN,
by means of a constant energy scan. Just from the data presented in their paper, a
different interpretation is possible. For example, paramagnetic fluctuations with strongly
momentum dependent lifetime create a similar peaked signal in the absence of dispersing
spin wave excitations [145].
Still, the first explanation is supported by the findings of Birgeneau et al. in the

related compound K2MnF4, which are well in line with the expected excitation spectrum
of a quadratic anisotropic Heisenberg AFM, where the spin waves can be observed at
T ≥ TN [197]. Up to now, the persistence of magnetic excitations in 2D antiferromagnets
has been observed in MOC (Fe(NCS)2(C4H4N2)2) [198] and tapiolite (FeTa2O6) [199].
Therefore, interpreting the INS measurement in Cu-pyz in terms of propagating spin
waves is put on firm ground.

5.4. Conclusion and outlook
In summary, the presented studies of Cu-pyz by means of magnetic bulk property
measurements and triple-axis spectroscopy substantiate the notion of Cu-pyz being a
two-dimensional antiferromagnet. The static susceptibility matches the expectations of
a 2D QHAF system, as known from experimental and theoretical studies. Similarly, the
magnetization data supports this conclusion and yields predictions for e.g. the critical
field µ0Hc, which ought to be tested in the near future. While the χAC data does not
provide information beyond these prior insights, it is a valuable reference to compare
to ongoing AC magnetometry studies of the properties of Cu-pyz under hydrostatic
pressure. This is due to the fact that a quantitative measurement of χDC or m is hardly
feasible in high pressure setups.

The data obtained by elastic neutron scattering are, as of writing, puzzling. Not only
is the absence of 3D LRO down to 0.038 K observed, the signal expected from in-plane
ordered spins is elusive as well. However, this could be reconciled with the hypothesis,
that the diffusive magnetic scattering is overshadowed by the immense incoherent
background originating from the hydrogen contained in the organic components of Cu-pyz.
Nevertheless, successful mapping of the spin wave dispersion in the [010]×[001] scattering
plane suggests long range correlations of the strongly coupled spins within the bc-plane.
Furthermore, fitting a spin wave model to the three-axis data confirms antiferromagnetic
exchange and determines the strength of the in-plane coupling J2D = (0.52± 0.03) meV
in agreement with the bulk measurements.

Indisputably, there are several open questions left to answer. Foremost, is it possible
to achieve 3D magnetic long range order and more importantly determine the magnetic
structure? Regarding easily available bulk measurement techniques, specific heat could
aid in the detection of a phase transition, while a dedicated neutron diffraction experiment
would be needed for structure determination. In case the phase transition to 3D LRO
stays absent, diffuse magnetic neutron scattering from the internally ordered copper
planes could provide insight on the magnetic structure via neutron Laue diffraction [200].
The emergence and fluctuation of the order parameter could be comprehensively studied
with triple-axis or single crystal diffraction instruments [195]. The energy integrated
structure factor of fluctuating magnetic short range order above TN, as determined by
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time-of-flight spectrometry, contains valuable information on the coupling and structure
of the ground state [201–203].

In addition, a more comprehensive mapping of the spin wave spectrum, especially in
low symmetry directions, would contribute to the determination of weak anisotropy terms
or next nearest-neighbor couplings in the model Hamiltonian. A formidable example for
such an investigation was published by Tsyrulin et al. in 2010 on the related copper
pyrazine compound Cu(C4H4N2)2(ClO4)2 [192]. In this case, INS data was not only
able to confirm the existence of a small XY anisotropy contribution resulting in a gaped
magnon band structure at the Brillouin zone center, but also a next nearest-neighbor
coupling term to be included in the spin wave dispersion calculation.
The endeavor of extensive neutron scattering investigations will be aided by the

ongoing preparation of fully deuterated samples, which are expected to significantly
reduce the background facilitating the study of diffuse and inelastic scattering more
straightforward. However, due diligence is required to characterize a possible isotope
effect and ensure the equivalency to the non-deuterated compound.
Finally, neutron scattering experimentation is going to play a critical part in the

unraveling of the pressure induced variations at the atomic level. Combining high
performance sample environment for hydrostatic pressure at sub-Kelvin temperatures
with any neutron scattering instrumentation is as challenging as the prospect of finding
quantum disordered, superconducting or dimensionality changing phases is enticing.



6. Conclusion and Outlook

Having presented our results of studying two rather different magnetic systems, a short
summary and outlook of future work shall round off this thesis. As dimensionality of
magnetic systems is the overarching theme of this work, we review its influence on the
magnetic properties of the investigated systems Ni and Cu-pyz.
Starting with Ni, which is understood to be an itinerant ferromagnet, its magnetic

properties in the vicinity of the Curie temperature TC and small q can be adequately
modeled using a 3D isotropic Heisenberg Hamiltonian. This is owed to the fact, that
the microscopic details of the exchange interaction become less and less important close
to TC. Here, critical scaling theory describes the properties of Ni in the long wavelength
regime. However, this is precisely where dipolar interactions are supposed to contribute
to the critical dynamics of the system and are expected to modify the pure 3D Heisenberg
behavior.

The inelastic neutron scattering measurements performed at the MIEZE spectrometer
RESEDA, confirmed the validity of a 3D Heisenberg model with additional dipolar
coupling due to the exceptional momentum and energy resolution of the instrument. The
spin wave dispersion in nickel determined just below TC revealed a dipolar wavevector
qD = 7× 10−3 Å, which is at least a factor 2 smaller then previously reported. The
spin wave stiffness D(T |µ) is strongly dependent on temperature, which fits well to the
power law behavior suggested by dynamical scaling theory. In this context, the critical
exponent µ = 0.3407 used in the analysis was derived on the basis of field theory and the
3D Heisenberg Hamiltonian. In comparison, this value of µ leads to better agreement
with the data than the mean field value µ = 1/3. Since the spin wave energies can
be understood with dynamic scaling theory in mind, it was mandatory to verify the
agreement of the linewidth of the spin waves with DST as well. Absorbing the entire
temperature dependence in the inverse correlation length κ and parameterizing the q
dependence of the linewidth of the spin waves in terms of the dynamical scaling function
γSW(κ/q) leads to a successful reconciliation of the data with DST.
Using the same approach, the linewidths of the critical fluctuations of the order

parameter have been investigated for temperatures above TC. When extracting the
linewidth of the quasi elastic scattering signal, meticulous analysis of the lineshape
function, which close to the Curie temperature deviates from the commonly used
Lorentzian distribution, is required. As a result, the renormalized linewidth values
lie on a universal curve confirming a fundamental result of DST. Even more though,
quantitative agreement with the parameter free Résibois-Piette scaling function is readily
achieved. The sole underlying assumption of this prediction is that Ni can be modeled
with the 3D isotropic Heisenberg Hamiltonian. The fact that dipolar interactions
have seemingly no effect on the dynamical scaling behavior could be comprehended
due to mode-coupling computations by Frey and Schwabl that included dipolar forces.
Accordingly, deviations from the Résibois-Piette solution should arise only for wavevector
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transfers of q ≤ qD/10, which are outside of the probed parameter space.
Hence, the dimensionality n = d = 3, as a fundamental input into the equations within

the dynamical scaling theory framework, captures the entirety of the measured critical
behavior of Ni below and above the Curie temperature and consolidates our current
understanding of critical phenomena. Nevertheless, the work presented in this thesis
would benefit greatly from an expansion of the current data set. Regarding the nickel
sample, an extension of the measurement points in temperature would allow a more
comprehensive analysis of the critical exponents µ, β, which has not been feasible so
far. The possibility of reaching wavevector transfers a decade smaller than currently
available is a major challenge for any active neutron spectrometer today. A promising
contender might be the RESEDA instrument once the upgrade for small angle scattering
studies is successfully deployed.

Changing dimensionality either of lattice or of spin degrees of freedom, has profound
consequences for the behavior of magnetic systems. It effects the existence of a transition
from an unordered to a long range ordered state and also the critical exponents associated
with it. This is why a system that exhibits a change of its dimensionality, possibly
controlled by an external parameter, promises an excellent opportunity to address this
field of research. Metal-organic compounds, such as Cu-pyz, are known to deliver on this
promise, but before studying the consequences of varying magnetic dimensionality, a
good understanding of the system is required. The work done on Cu-pyz was dedicated
to gain insight into its baseline, magnetic properties.
Magnetization, static and dynamic susceptibility measurements on single crystals of

Cu-pyz substantially contributed to the characterization of Cu-pyz as a 2D quantum
Heisenberg antiferromagnet. Broad peaks in the magnetic susceptibility data provided
clear evidence of strong in-plane exchange coupling between the Cu2+ ions in a square
lattice arrangement within the bc-plane. In contrast, the out-of-plane coupling is signifi-
cantly weaker leading to an absence of 3D long range order down to 2 K justifying the
classification of Cu-pyz as a 2D system. Magnetization data backs up this interpretation
by showing remarkable agreement with the unique magnetization curve shape predicted
for a 2D QHAF as calculated from second order spin wave theory.
Triple-axis spectroscopy enabled deeper insight into the magnetic interactions on

the atomic scale. Even at the base temperature of the dilution fridge, T = 0.038 K,
magnetic LRO was elusive in the elastic scattering data. However, the expected, strong
in-plane correlation of the spins of the copper ions, could be readily observed in terms
of propagating spin waves. Based on linear spin wave calculations, the data was best
described using antiferromagnetically aligned spins within the square lattice, which are
coupled by an exchange interaction J2D = (0.52± 0.03) meV. Naturally, this result is in
great agreement with the bulk magnetometry data.
Even though knowledge of the properties of Cu-pyz is far from complete, we es-

tablished a baseline model upon which future experiments can be envisioned and to
extend this model according to new findings. A combination of neutron scattering to
uncover information on the magnetic structure and the interactions from diffuse and
inelastic scattering as well as magnetometry techniques to detect phase transitions under
hydrostatic pressure will be essential for future studies. With the affirmed anticipation
of Cu-pyz being a excellent 2D model system, the influence and of dimensionality on
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magnetic properties and its evolution is easily accessible and ought to be comprehensively
investigated.

In the end, the systems, Ni and Cu-pyz, are only two examples in which dimensionality
profoundly affects the magnetic properties and therefore plays an important role in
characterizing them. However, not many systems are well understood in terms of their
dimensionality and how it influences phenomena such as superconductivity, frustration
and quantum disorder or short range order ground states. Therefore we conclude that it
is of major importance to investigate the dimensionality of magnetic systems and its
influence in condensed matter physics, material science and technology.



A. Supplementary data of the low-dimensional
antiferromagnet Cu-pyz

A.1. Padé approximation: Tables of coefficients and fitparameters

n an bn

1 0.998586 -1.84279
2 -1.28534 1.14141
3 0.656313 -0.704192
4 0.235862 -0.189044
5 0.277527 -0.227545

Table A.1.: Coefficients of the Padé approximation used in equation 5.2. These coefficients
are not fit parameters, but are determined separately for each type of lattice. The presented
values are taken from Woodward et al. [171].

µ0H(T) J(K) C · 10−2(K) g µ0Hsat(T) gfit

0.05 5.129± 0.041 3.128± 0.023 2.447± 0.055 12.48± 0.30 6.7× 104

0.1 4.975± 0.029 3.038± 0.016 2.411± 0.037 12.29± 0.20 4.9× 105

0.5 4.952± 0.021 2.953± 0.011 2.377± 0.025 12.41± 0.14 1.1× 108

1.0 4.899± 0.022 2.935± 0.012 2.370± 0.027 12.31± 0.15 2.0× 109

5.0 4.141± 0.055 2.586± 0.031 2.225± 0.066 11.09± 0.36 9.9× 1012

9.0 3.502± 0.056 2.341± 0.032 2.117± 0.065 9.842± 0.340 1.6× 1014

Table A.2.: Results from fitting equation 5.2 to χDC(T ) in figure 5.2 for H ‖ a.
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µ0H(T) J(K) C · 10−2(K) g µ0Hsat(T) gfit

0.05 4.825± 0.030 2.532± 0.015 2.201± 0.031 13.05± 0.20 1.3× 104

0.1 4.766± 0.019 2.463± 0.009 2.171± 0.018 13.07± 0.12 5.4× 104

0.5 4.825± 0.012 2.377± 0.005 2.133± 0.011 13.47± 0.08 8.6× 106

1.0 4.776± 0.012 2.386± 0.006 2.129± 0.012 13.36± 0.08 1.5× 108

5.0 4.082± 0.042 2.133± 0.020 2.020± 0.038 12.03± 0.26 1.6× 1012

9.0 3.448± 0.040 1.921± 0.019 1.917± 0.035 10.71± 0.23 2.6× 1013

Table A.3.: Results from fitting equation 5.2 to χDC(T ) in figure 5.2 for H ‖ b.

µ0H(T) J(K) C · 10−2(K) g µ0Hsat(T) gfit

0.05 4.663± 0.038 2.402± 0.018 2.144± 0.037 12.95± 0.25 1.5× 104

0.1 4.593± 0.028 2.475± 0.014 2.176± 0.030 12.57± 0.19 1.9× 105

0.5 4.537± 0.020 2.334± 0.010 2.113± 0.020 12.79± 0.14 3.9× 107

1.0 4.560± 0.020 2.337± 0.009 2.114± 0.019 12.84± 0.13 4.7× 108

5.0 4.012± 0.043 2.127± 0.020 2.017± 0.038 11.84± 0.26 1.6× 1012

9.0 3.447± 0.044 1.918± 0.021 1.916± 0.038 10.72± 0.25 2.8× 1013

Table A.4.: Results from fitting equation 5.2 to χDC(T ) in figure 5.2 for H ‖ c.

A.2. Additional magnetometry data
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Figure A.1.: Sample magnetization for different external field alignments and sample tem-
peratures. Each panel shows the magnetization at a constant temperature. For temperatures
≥ 5.0 K the relation between magnetization and external field is linear, while for T = 2.0 K
the curve bends with increasing field. Panels (b) and (c) do not contain data for H ‖ b.
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Figure A.2.: χ′ for different external field alignments and sample temperatures.
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A.3. Inelastic neutron data: Tables of fit parameters and plots
The following plots show the entirety of the inelastic neutron data recorded during the
beam time at IN12. For each scan direction (k and l) two plots depict the raw data
of the constant-E scans and the background subtracted data. The green, solid line
represents the Gaussian peak of the fitted spin wave excitation. If the background is not
subtracted, it is indicated by the black, broken line in the plot of the raw data.
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Figure A.4.: (00l) TAS raw data with fit.

The fit parameters gathered by fitting equation 5.7 to the raw data are summarized
in the tables A.5, A.7 for the constant-E scans and A.6 for the constant-Q scans.
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Ql ∆E σQ A m b gfit

(rlu) (meV) (rlu) (min−1) (min−1rlu−1) (min−1)

0.993± 0.004 0.1 0.049± 0.004 4.9± 0.5 −17± 6 193± 6 1.33
1.001± 0.007 0.2 0.081± 0.009 3.7± 0.5 0 62.7± 1.0 1.19
0.913± 0.003 0.3 0.034± 0.003 5.4± 0.5 −472± 8 957± 8 1.35
1.081± 0.005 0.3 0.039± 0.005 3.5± 0.5 −472± 8 957± 8 1.35
0.837± 0.003 0.5 0.030± 0.003 3.7± 0.4 −255± 17 370± 15 1.29
1.154± 0.006 0.5 0.062± 0.007 5.0± 0.8 −64± 11 184± 13 1.08
0.763± 0.002 0.7 0.029± 0.002 1.12± 0.08 −422± 3 454± 3 17.8
1.244± 0.013 0.7 0.053± 0.004 1.82± 0.33 −69± 8 144± 11 35.4
1.281± 0.011 0.8 0.083± 0.012 2.3± 0.4 −20.3± 2.0 75.2± 3.2 0.98
1.712± 0.011 0.8 0.036± 0.010 0.6± 0.2 −20.3± 2.0 75.2± 3.2 0.98
1.341± 0.005 0.9 0.065± 0.006 3.2± 0.4 −16.4± 2.7 68± 4 1.73
1.654± 0.009 0.9 0.035± 0.008 0.8± 0.2 −16.4± 2.7 68± 4 1.73
1.414± 0.016 1.0 0.099± 0.023 2.0± 0.5 −15.7± 1.7 63.0± 2.7 1.14

1.2 0 30.1± 0.5 1.55

Table A.5.: Results from fitting equation 5.7 to the INS data in figure A.4 and A.5.

Q ∆E σE A m b gfit

(rlu) (meV) (meV) (min−1) (min−1meV−1) (min−1)

(010) −42.7± 1.7 95.7± 2.1 2.82
(03

20) 1.050± 0.024 0.113± 0.027 2.3± 0.7 −37.7± 2.5 73.3± 3.4 0.40
(003

2) 1.040± 0.018 0.082± 0.015 1.7± 0.4 −45.8± 2.1 83.2± 2.4 1.68
(006

5) −109± 3 151± 3 11.1
(01

2
3
2) 0.922± 0.025 0.064± 0.022 0.83± 0.33 −34.7± 2.1 67.1± 2.4 1.17

(03
4

9
4) 0.923± 0.030 0.124± 0.027 2.4± 0.8 −35.7± 3.3 67.0± 4.0 1.08

Table A.6.: Results from fitting equation 5.7 to the INS data in figure 5.14.
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Figure A.5.: (00l) TAS raw data with fit and background subtracted.
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Qk ∆E σQ A m b gfit

(rlu) (meV) (rlu) (min−1) (min−1rlu−1) (min−1)

1.074± 0.015 0.2 0.034± 0.019 1.2± 1.3 −13± 6 140± 6 0.82
0.973± 0.019 0.2 0.063± 0.018 5.8± 1.9 −13± 6 140± 6 0.82
0.955± 0.006 0.3 0.039± 0.008 3.3± 0.7 −523± 11 1102± 11 1.08
1.045± 0.006 0.3 0.035± 0.010 1.7± 0.6 −523± 11 1102± 11 1.08
0.835± 0.010 0.5 0.040± 0.012 1.5± 0.6 −173± 16 314± 15 1.14
1.156± 0.009 0.5 0.105± 0.010 7.2± 0.6 −144± 13 279± 20 2.31
1.192± 0.011 0.7 0.108± 0.019 5.2± 2.7 −1± 20 51± 28 0.99
1.235± 0.019 0.8 0.108± 0.019 2.7± 0.5 −12.9± 0.7 63.9± 1.0 0.79
1.840± 0.012 0.8 0.100± 0.021 0.57± 0.33 −12.9± 0.7 63.9± 1.0 0.79
1.309± 0.011 0.9 0.075± 0.016 1.8± 0.5 −13.0± 2.8 61.0± 4.6 0.96
1.626± 0.019 0.9 0.039± 0.018 0.33± 0.19 −13.0± 2.8 61.0± 4.6 0.96

Table A.7.: Results from fitting equation 5.7 to the INS data in figure A.6 and A.7.
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Figure A.6.: (0k0) TAS raw data with fit.
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B.1. Renormalization group equations for isotropic ferromagnets
The dynamical shape function derived by Iro by means of renormalization group theory
is

fqξ(x, s) = 2<

 1
−is+

[
Z(x)Π1

(
x, is Z(x)

X(x)

)]−1

 (B.1)

with Π1 being the self-energy of the dynamic susceptibility and Z(x) is an implicit
function involved in the calculation of the characteristic frequency ωc (linewidth) of
the system. X(x) = (1 + 1/x2)−1 is the scaled magnetic susceptibility defined by
χ(q, ξ) = q−2X(qξ) such that x = qξ. Crucially, x is defined as the inverse compared to
x in the entire section 4.1.
Iro proposed an analytical approximation to Z(x), which otherwise can only be

determined numerically. This yields

Z(x) =
[
1− k arctan

(
a

1 + 1/x2

(1 + b/x2)2

)]−1

·
(

1 + b

x2

)ε/4
, (B.2)

with a = 0.46, b = 3.16 and k = 0.51, being numerical parameters without direct
physical interpretation. a is determined by a relaxation rate calculation performed by
Bhattacharjee et al. [204]. b is chosen such that the dynamical scaling function γ(x),
which will be discussed below, asymptotically fits the behavior of the result of Résibois
and Piette [116]. Subsequently, k takes the value to best approximate Z(x) as defined
by its implicit determination equation. The reader is revered to the original paper
of Iro [205] and references therein. ε = 6 − d = 3 refers to the dimensionality of the
renormalization group, where d = 3 is the dimensionality of space.
Iro also extracted the dynamical scaling function γ(x) from his derivation of the

magnetization correlation function. The scaling function is given by

γ(x) = Z(x)
X(x)Z(∞) . (B.3)

While the numerical values of the constants a, b and k have been chosen with reasonable
assumptions in mind, e.g. asymptotic behavior for x→ 0, Iro argues that they can be
used as fit parameters, when the theory is compared with experimental data.
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B.2. Parametrizations for the Résibois & Piette dynamical
scaling function

Glinka et al. used the approximation of

γ̃(x) = e−1.83x + 0.43x1/2 (B.4)

to parameterize the dynamical scaling function of Résibois & Piette [142].

B.3. Derivation of the correction of the momentum transfer for
planar detectors

Here, we derive the equation 4.24 to determine the correct scattering angle 2θ assuming
the direct beam position on the CASCADE detector of RESEDA is known. Then δ as
defined in 4.2.3 can be calculated using the knowledge of pixel dimensions. Using the
right-handed coordinate system introduced in figure 4.7, the x̂ is parallel to ki, ẑ points
into the plane of the sketch and ŷ is perpendicular to both.

The Hesse normal form of the detector plane, assuming the sample to be at the origin,
is given by

r · n0 − lSD = 0 −→ x cos (α) + y sin (α) = lSD , (B.5)

where n0 is the normal vector of the detector plane and r satisfies equation B.5 if it is
a point in the plane. In the coordinate system, any normalized final wavevector of a
neutron is parameterized by

k̂f = cos (2θ)x̂+ sin (2θ) cos (Φ)ŷ − sin (2θ) sin (Φ)ẑ . (B.6)

The point at which a neutron hits the detector is described by

h = d · k̂f = Z(2θ, α,Φ)lSD · k̂f , (B.7)

where d the distance from the sample to this point is determined by inserting d · kf
in equation B.5. The sample-detector-distance can be factored out leaving the angle
dependent part

Z(2θ, α,Φ) = (cos (2θ) cos (α) + sin (2θ) sin (α) cos (Φ))−1 . (B.8)

As a consistency check, the direct beam (2θ = Φ = 0) intersects the detector plane at
hDB = lSD/ cos (α)x̂.

The distance |h− hDB| = |δ| is known from an observation of the DB position on the
detector or in a less ideal case can be reconstructed if the angle α is known. For the
performed experiment we have the first case. Equation 4.24 is recovered by squaring δ
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leading to

δ2 = l2SD

Z cos (2θ)− cos−1 (α)
Z sin (2θ) cos (Φ)
−Z sin (2θ) sin (Φ)


2

(B.9)

= l2SD

[
Z2 cos2 (2θ) + 1

cos2 (α) − 2Z cos (2θ)
cos (α) + Z2 sin2 (2θ)

(
cos2 (Φ) + sin2 (Φ)

)]
(B.10)

= l2SD

[
Z2 − 2Z cos (2θ)

cos (α) + 1
cos2 (α)

]
(B.11)

and dividing by l2SD. Potentially, this can be reduced to a more concise form, but finding
numerical solutions for 2θ and choosing the result matching a positive angle appropriate
for small angle scattering suffices.

B.4. Extracted parameters from MIEZE data analysis
The following tables summarize the results of the fits of the MIEZE contrast data as it
was described in the paragraph addressing the extraction of physical parameters from
section 4.2.3. Hence, for data measured below TC the analysis yields:

• the mean wavevector transfer qel as calculated under the assumption of elastic
scattering and its standard deviation ∆qel

• the wavevector transfer qinel adjusted for the energy transfer during spin wave
scattering and its standard deviation ∆qinel

• the spin wave energy ~ωq and its uncertainty ∆~ωq

• the linewidth of the spin wave excitations Γq and its uncertainty ∆Γq

In case of data measured at T ≥ TC no propagating spin waves are observed, which
is why only the parameters qel, ∆qel, ωc and ∆ωc are listed in the tables. Here, the
characteristic frequency ωc is essentially the linewidth Γ.
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qel ∆qel qinel ∆qinel ~ωq ∆~ωq Γq ∆Γq
(Å−1) (Å−1) (Å−1) (Å−1) (µeV) (µeV) (µeV) (µeV)
0.0066 0.0003 0.0067 0.0003 4.931 0.044 2.600 0.001
0.0076 0.0006 0.0078 0.0006 6.516 0.067 4.491 0.001
0.0098 0.0007 0.0098 0.0007 7.759 0.007 6.300 0.001
0.0117 0.0007 0.0119 0.0007 10.754 0.002 8.300 0.001
0.0131 0.0007 0.0133 0.0007 11.905 0.002 12.800 0.001
0.0157 0.0008 0.0162 0.0008 19.381 0.002 19.095 0.001
0.0186 0.0008 0.0196 0.0008 28.500 0.002 25.800 0.001
0.0222 0.0012 0.0238 0.0011 39.201 0.002 33.400 0.001
0.0265 0.0012 0.0284 0.0011 47.900 0.001 39.900 0.001

Table B.1.: Parameters extracted for T = TC − 2 K including the correct qinel given the
measured energy transfer.

qel qel qel qinel ~ωq ∆~ωq Γq ∆Γq
(Å−1) (Å−1) (Å−1) (Å−1) (µeV) (µeV) (µeV) (µeV)
0.0066 0.0003 0.0066 0.0003 3.510 0.192 2.000 0.001
0.0076 0.0006 0.0076 0.0006 4.503 0.001 3.062 59.923
0.0098 0.0007 0.0098 0.0007 5.579 0.002 3.810 0.001
0.0117 0.0007 0.0117 0.0007 7.390 0.003 6.000 0.001
0.0131 0.0007 0.0132 0.0007 8.871 0.002 8.400 0.001
0.0157 0.0008 0.0159 0.0008 12.300 0.001 13.400 0.001
0.0186 0.0008 0.0189 0.0008 16.600 0.002 19.500 0.001
0.0222 0.0012 0.0226 0.0012 22.699 0.002 27.800 0.001
0.0265 0.0012 0.0273 0.0012 32.603 0.003 34.500 0.001

Table B.2.: Parameters extracted for T = TC − 1 K.

qel ∆qel ωc ∆ωc

(Å−1) (Å−1) (µeV) (µeV)
0.0066 0.0003 3.650 0.212
0.0076 0.0006 4.662 0.037
0.0098 0.0007 6.540 0.049
0.0117 0.0007 9.569 0.094
0.0131 0.0007 12.509 0.015
0.0157 0.0008 18.326 0.002
0.0186 0.0008 26.156 0.006
0.0222 0.0012 37.461 0.001
0.0265 0.0012 50.000 0.001

Table B.3.: Parameters extracted for T = TC.
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qel ∆qel ωc ∆ωc

(Å−1) (Å−1) (µeV) (µeV)
0.0066 0.0003 2.276 0.015
0.0076 0.0006 2.792 0.110
0.0098 0.0007 —– —–
0.0117 0.0007 5.645 0.066
0.0131 0.0007 7.057 0.132
0.0157 0.0008 10.723 0.021
0.0186 0.0008 16.530 0.004
0.0222 0.0012 23.219 0.001
0.0265 0.0012 35.211 0.002

Table B.4.: Parameters extracted for T = TC + 1 K.

qel ∆qel ωc ∆ωc

(Å−1) (Å−1) (µeV) (µeV)
0.0066 0.0003 2.002 0.018
0.0076 0.0006 2.400 0.007
0.0098 0.0007 3.433 0.003
0.0117 0.0007 4.815 0.031
0.0131 0.0007 6.336 0.003
0.0157 0.0008 9.292 0.003
0.0186 0.0008 13.116 0.004
0.0222 0.0012 19.511 0.002
0.0265 0.0012 34.213 0.001

Table B.5.: Parameters extracted for T = TC + 2 K.

qel ∆qel ωc ∆ωc

(Å−1) (Å−1) (µeV) (µeV)
0.0066 0.0003 2.423 0.047
0.0076 0.0006 3.430 0.018
0.0098 0.0007 —– —–
0.0117 0.0007 —– —–
0.0131 0.0007 —– —–
0.0157 0.0008 9.529 0.003
0.0186 0.0008 12.620 0.007
0.0222 0.0012 17.692 0.001
0.0265 0.0012 24.920 0.001

Table B.6.: Parameters extracted for T = TC + 4 K.
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qel ∆qel ωc ∆ωc

(Å−1) (Å−1) (µeV) (µeV)
0.0066 0.0003 —– —–
0.0076 0.0006 —– —–
0.0098 0.0007 10.163 0.002
0.0117 0.0007 10.997 0.002
0.0131 0.0007 15.609 0.003
0.0157 0.0008 17.352 0.002
0.0186 0.0008 17.383 0.001
0.0222 0.0012 23.094 0.001
0.0265 0.0012 27.552 0.001

Table B.7.: Parameters extracted for T = TC + 8 K.

B.5. Determination of the dipolar wavevector from magnetization
curve

In model M4 of the spin wave analysis, the dipolar wavevector qD is determined by
extracting the magnetization M(∆T ) from experimental data. To evaluate the magneti-
zation curve at arbitrary temperature values, the data points were interpolated using a
power series optimized via linear regression. The full magnetization data set taken from
a publication of Neugebauer [134] and Magnetisierungskurve der Ferromagnetika edited
by Träuble [206]. The full data is shown in figure B.1. The inset of the same plot shows
the result of the fit of the power series to the data close to TC and also indicates the
abscissa position and magnetization value for ∆T ∈ [−2 K,−1 K]. These points yield
M(∆T = −1 K) = 14.75× 103 A m−1 and M(∆T = −2 K) = 29.80× 103 A m−1
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Figure B.1.: Experimentally determined magnetization curves of Ni taken from Neugebauer
[134] and Träuble [206]. The plot shows the magnetization curves from 0 K to the Curie
temperature TC = (631.39± 0.04) K, with the abscissa and ordinate being normalized to the
Curie temperature TC and the saturation magnetization Msat, respectively. The inset shows a
magnified section close to TC, with the red solid line being the result of the fit of the power
series expansion to the data. The vertical, broken lines indicate the position of −1 K and −2 K
from TC at which M(T ) is determined to calculate qD.
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