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Abstract

Single-anchor positioning has been identified as a promising solution for fifth generation (5G)
wireless networks, easing the requirement for multi-anchor connectivity and resource allocation,
leveraging the large bandwidths available at millimeter-wave (mm-Wave) frequencies and the large
number of antennas that can be packed in mm-Wave transceivers. In this work, we investigate
single-anchor positioning with multi-antenna transceivers in sparse mm-Wave channels, focusing
on the effect of imperfect time synchronization between the transmitter and the receiver. We study
how single-bounce non-LOS (NLOS) paths can be used to jointly estimate the target’s position
and the synchronization error and improve positioning accuracy. The study includes the analysis
of the theoretical performance bounds, as well as the development of a novel Cramér-Rao lower
bound (CRLB)-achieving single-anchor localization algorithm that exploits the information about
the synchronization error offered by NLOS multipath components. Furthermore, we propose ref-
erence signal optimization strategies using prior information about the target and the environment
and investigate the effect of the synchronization error in the resulting optimized reference signals.
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1. Introduction

Radio-based positioning, that is the estimation of the location of a target by transmission, reception
and processing of radio frequency (RF) signals, is a problem that has been studied for decades. The
first wireless direction finding system was patented in 1902 by Stone and the first ranging system,
i.e., a system that estimates the distance of a target from a reference location, was patented in 1904
by de Forest [1]. Initially and for a long time, positioning techniques were developed for military
and safety applications [2]. A big leap forward was the introduction of the Global Positioning
System (GPS), which was originally developed for use by the United States (US) military and was
the first global navigation satellite system (GNSS). GPS made positioning services available to
and easily accessible by the public, as anybody could use it by just employing a GPS receiver, and
unlocked a vast spectrum of new use cases.

Safety-related services were also the main driver for adoption of positioning technologies in
cellular systems. Although positioning methods were already used in the first generation (1G) of
cellular systems, their standardization efforts in the Third Generation Partnership Project (3GPP),
the standardization body developing cellular network standards, started some years later in 2G and
were intensified after the release of accuracy requirements by the US Federal Communications
Commission (FCC) for positioning devices on 911 emergency calls [3]. 2G standardized tech-
niques were based on time difference of arrival (TDOA), cell identity (CID) and GPS (autonomous
or assisted) [4]. Since then, a lot of progress has been made regarding the support of positioning
services by 3GPP standards. With Release 17 (the third release of 5G) a variety of positioning tech-
niques, based on measurements from the cellular network, other wireless technologies and sensors,
as well as combinations thereof [5], have been incorporated.

5G has already been deployed in many countries worldwide, with the vision of providing un-
precedentedly high data rates, massive connectivity and reduced latency, among others, which can
be enabled by the large bandwidth available at millimeter-wave (mm-Wave) frequencies, massive
number of antennas and dense deployment of base stations. Coincidentally or not, these enablers
provide fertile ground for a radical improvement of the positioning capabilities of wireless com-
munication networks [6]. The expected improvement of localization1 accuracy of communication
networks can be a key driving force in the realization of scenarios such as assisted living [7], smart
factories [8] and automated driving [9], where GNSS and other existing technologies may not be
able to guarantee the desired positioning accuracy under all conditions. Moreover, it is anticipated
that position information will be used as an input to communication-related tasks, such as proactive
resource allocation [10], beamforming [11] and beam-alignment [12].

1The terms "localization" and "positioning" are used interchangeably throughout the document
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In an effort to unlock the great potential of wireless networks to provide accurate position-
ing, numerous works on the topic have been published. Theoretical analyses of the achievable
positioning accuracy under a multi-anchor setup have been presented in [13]–[17]. The achiev-
able positioning accuracy is evaluated in these works using the Cramér-Rao lower bound (CRLB),
which is a bound on the variance of the error of any unbiased estimator and is based on Fisher in-
formation (FI), which quantifies the amount of information about a parameter that can be extracted
by observation of a random variable, whose probability distribution is parameterized by the said
parameter. Despite promising high accuracy, multi-anchor positioning might not always be possi-
ble at millimeter-wave (mm-Wave) frequencies due to the lack of significantly strong links to two
or more anchors. In mm-Wave frequencies the path loss between isotropic antennas2 is increased
as a consequence of their decreased effective area/aperture and beamforming gains are required to
compensate for it.

On the other hand, the fact that, in mm-Wave frequencies, more antennas can be packed in
the same physical area allows for transceivers with a large number of antenna elements, both on
the netowrk and the user equipment (UE) side, which in turn enable accurate angle of departure
(AOD) and angle of arrival (AOA) estimation. Also, the large bandwidth available at mm-Wave
frequencies enables accurate time of arrival (TOA) or TDOA measurements. Apart from higher
accuracy, the large bandwidth and number of antennas provide superior temporal and spatial res-
olution. Therefore, multipath components are more likely to be resolved and exploited for the
localization task. Hence, reliable position estimation is possible with a single anchor. In this thesis,
we focus on single-anchor positioning, by studying its theoretical performance bounds, develop-
ing a single-anchor positioning algorithm and optimizing the reference signal for single-anchor
positioning.

1.1 Related Works

In recent years, single-anchor localization, which is the focus of this thesis, has received increasing
attention. In [18] the CRLB for single-anchor line-of-sight (LOS)-only positioning was presented,
deriving a necessary condition on the reference signal for a non-singular Fisher information matrix
(FIM). Single-anchor localization performance bounds were derived in [19] for arrays with differ-
ent beamforming strategies, considering multipath propagation and taking synchronization errors
and quantization errors of beamforming weights into account. The authors of [20] provided asymp-
totic expressions for the position error bounds in sparse mm-Wave channels with large bandwidth
and large number of antennas, exploiting the asymptotic orthogonality of multipath components,
and conducted a comparison between downlink and uplink positioning. In [21] it was shown that
the FIM provided by single-bounce non-LOS (NLOS) paths is rank-1 and analytic expressions
for the direction and intensity of position and orientation information were obtained. In [22], the
single-anchor localization error bounds with a multicarrier waveform were derived and an algo-
rithm approaching these bounds for sufficiently high signal-to-noise ratio (SNR) was presented.
Apart from [19], the aforementioned works assume no synchronization errors, which is difficult
to obtain in practical communication systems. Although [19] considered imperfect synchroniza-
tion and multipath propagation, the potential exploitation of multipath components to estimate the
synchronization errors was not considered.

2Isotropic antennas are only assumed as a theoretical tool; in practice, antenna elements with potentially similar
properties are used.
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As far as single-anchor localization algorithms are concerned, relevant works in the literature
can be classified into two categories: one-shot schemes without tracking [22]–[29], and approaches
with tracking [30]–[36]. While the latter mainly focus on positon estimation and tracking given the
channel parameter measurements, the former also deal with the estimation of the channel parame-
ters, as done in this work. A three-stage algorithm for the estimation of the UE state (position and
orientation) with a multiple-input multiple-output (MIMO)-orthogonal frequency-division multi-
plexing (OFDM) system was proposed in [22], where in the first stage a compressed sensing-based
algorithm is used to obtain coarse estimates of the multipath parameters (number of paths, TOAs,
AODs, AOAs and gains), with the coarse estimates refined in the second stage. In the third stage,
the refined estimates are mapped to the receiver (Rx) position and orientation and the positions
of the points of incidence (POIs), which correspond to scattering or reflection, using the extended
invariance principle (EXIP). A similar approach is followed in [23], with the main difference being
the mapping from channel parameters to position parameters, where an iterative Gibbs sampling
method is employed. In [24] range-free angle-based approaches are developed assuming prior map
information. A downlink (DL) positioning algorithm for a single-antenna Rx, based on TOA and
AOD measurements is proposed in [28]. The work is extended in [29], where a two-step pro-
cess is used, with the coarse parameter estimates obtained in the first step used for adaptation of
the transmitter (Tx) beamforming matrix in the second step. Additionally, in [37] an iterative Tx
beamforming refinement and position estimation algorithm is developed.

Similar to [29], [37], many works have considered the use of prior knowledge of the Rx posi-
tion at the Tx to design beamformers that improve the Rx’s localization accuracy. In [38] CRLB-
optimal precoders for tracking the AOD and AOA of a path were designed, taking the uncertainty
about their value into account. In [39], assuming a LOS channel and a multicarrier system, beam-
formers minimizing the TOA and AOA error bounds were proposed, based on the current estimate
of the Rx position. Using a similar setup, but additionally considering multiple users, the authors
of [40] designed beamformers maximizing a weighted sum of Fisher information on delay, AOD
and AOA. Although in a different context, the algorithms and conclusions of [41] and [42] are
relevant to our Tx beamforming problem. In [41] and [42], robust beamformers under angular un-
certainty were designed and it was concluded that the Rx steering vector and its derivative contain
all the localization information. Again in a different but still relevant setup, the authors of [43]
and [44] computed the optimal power allocation among multiple anchors for ranging-based local-
ization by solving a semidefinite program (SDP). The power allocation problem was formulated
as the computation of either the optimal sharing of a fixed available total power budget among
the network anchors so as to minimize the squared position error bound (SPEB) of a target or the
power allocation vector with the minimum sum power that satisfies a set of predefined positioning
accuracy constraints.

1.2 Outline and Main Contributions
In Chapter 2, we introduce the signal model for two-dimensional (2D) single-anchor position-
ing with a MIMO-OFDM system in sparse mm-Wave channels, where only single-bounce NLOS
paths are assumed strong enough for reception [45]–[47]. Through asymptotic FI analysis for large
bandwidth and number of antennas, we extend prior works showing that the direction of position
information offered by single-bounce reflections is parallel to the reflecting surface, independent of
the Tx and Rx locations and study the effect of prior environmental knowledge at the Rx, expressed
as knowledge about the location of virtual anchors (VAs) corresponding to multipath components,
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on the achievable positioning accuracy. Furthermore, we study the impact of synchronization er-
rors on the achievable positioning accuracy and their joint estimation with position and orientation
exploiting multipath components. Additionally, considering a mobile Tx or Rx, we study the effect
of the Doppler shift on the Fisher information and prove that the FIM corresponding to the infor-
mation contribution of each single-bounce NLOS path is rank-2. We also compare DL and uplink
(UL) positioning under device-specific Tx/Rx constraints and show that the link with the highest
Rx SNR offers the highest accuracy.

In Chapter 3, we propose a novel algorithm for single-anchor position, orientation and clock
offset estimation in a static setup. The first stage consists of an off-grid channel parameter estima-
tion method, based on [48]. For the required on-grid potential path search step, we consider both a
full dimensional (three-dimensional (3D)) search, as well as a lower-complexity 2D search, based
on a lower bound on the objective. For the required local refinement step, which enables the off-
grid path parameter estimation, we employ a modified Newton step approach. The second stage
maps the channel parameter estimates to position parameters. The information about the clock off-
set offered by NLOS paths in combination with the LOS path is exploited, so as to discard false
alarms, i.e. to reject detected NLOS paths from the first stage of the algorithm which are unlinkely
to correspond to a single-bounce. Numerical results, including comparison with the state of the
art (SotA) are presented to show the importance of off-grid channel parameter estimation and path
rejection.

In Chapter 4, we consider the problem of optimized reference signal transmission under per-
fect or imperfect prior knowledge of the positioning-related parameters at the Tx. For a LOS-only
channel and perfect prior knowledge at the Tx, i.e., uncertainty about the Rx location not consid-
ered in the design, we compute the optimal beamforming directions and their corresponding energy
allocation, as well as the optimal energy allocation over a fixed set of beams, which we refer to
as a beam codebook. For a multipath channel, we consider a fixed beam codebook and propose
energy allocation strategies under perfect and imperfect prior knowledge. Different optimization
approaches with varying complexity are proposed and evaluated in terms of their resulting posi-
tion error bound (PEB), as well as their root mean square error (RMSE) performance using the
algorithm proposed in Chapter 3. The effect of imperfect synchronization and LOS illumination
are studied and taken into account in the proposed designs.

1.3 Notation and List of Frequently Used Symbols
We use bold lowercase for column vectors, bold uppercase for matrices, non-bold for scalars and
calligraphic letters for sets. Depending on its argument, |·| denotes the absolute value of a scalar, the
determinant of a matrix or the cardinality of a set. The operators (·)T and (·)H denote the transpose
and the conjugate transpose of a vector or matrix, ∥ · ∥2 denotes the Euclidean norm of a vector
and ℜ{·} and ℑ{·} denote the real and imaginary part of a complex number. The 𝑖-th element of
a vector x and the (𝑖, 𝑗)-th element of a matrix X are denoted by 𝑥𝑖 and 𝑋𝑖, 𝑗 , respectively. The
expectation operator is denoted by E[·] and the sets of real and complex numbers are denoted by
R and C. A multivariate (circularly symmetric complex) Gaussian distribution with mean µ and
covariance matrix C is denoted by N(µ,C) (NC(µ,C)). A list of frequently used symbols is
provided in Table 1.1.
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Table 1.1: List of frequently used symbols

aR,𝑝 (·) Rx steering vector at the 𝑝-th subcarrier

aT,𝑝 (·) Tx steering vector at the 𝑝-th subcarrier

𝑐 speed of light

𝑑R,s,𝑙 distance of the 𝑙-th POI (scatterer/reflector) from the Rx

𝑑T,s,𝑙 distance of the 𝑙-th POI (scatterer/reflector) from the Tx

𝐸RE average transmit energy per resource element

𝐸tot total transmit energy

F , f𝑘 beam codebook and its 𝑘-th beamforming vector

𝑓s sampling rate

𝑓c carrier frequency

H [𝑝] channel matrix at the 𝑝-th OFDM subcarrier

ℎ𝑙 complex gain of the 𝑙-th path

Jν FIM of the parameter vector ν

𝐿 number of propagation paths

𝑀T number of beamforming vectors in the beam codebook

𝑁 number of OFDM subcarriers

𝑁B number of OFDM symbols

𝑁P number of used OFDM subcarriers

𝑁R number of Rx antennas

𝑁T number of Tx antennas

P set of used OFDM subcarriers

𝑃fa probability of false alarm

ps,𝑙 position of 𝑙-th POI corresponding to scatterer or reflector

pR Rx position

pT Tx position

pVA,𝑙 position of 𝑙-th VA

𝑞𝑘 fraction of 𝐸tot allocated to the 𝑘-th beamforming vector in the beam
codebook

R resource grid

R𝑘 set of resource elements allocated to the 𝑘-th beamforming vector of
the beam codebook

𝑆R(\̃) Rx squared array aperture function (SAAF)

𝑆T(\̃) Tx SAAF

Continued on next page
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Table 1.1: List of frequently used symbols (Continued)

𝑡rms,𝑙 root mean square duration of the signal propagated through the 𝑙-th
path

𝑇s sampling period

u(\), u⊥(\) 2D unit vectors at angles \ and \ − 𝜋/2
vR Rx velocity

vT Tx velocity

WR Rx analog beamforming matrix

WT Tx analog beamforming matrix

x[𝑝, 𝑏] reference signal at the 𝑝-th subcarrier of the 𝑏-th OFDM symbol

y[𝑝, 𝑏] received signal at the 𝑝-th subcarrier of the 𝑏-th OFDM symbol

𝛼R Rx orientation

𝛼T Tx orientation

𝛽 effective baseband bandwidth

𝛾𝑘 [𝑝, 𝑏] fraction of 𝑞𝑘 allocated to the 𝑝-th subcarrier of the 𝑏-th OFDM sym-
bol

𝛿R,T pseudo SNR

𝜖clk clock synchronization error

\̃T,𝑙 , \T,𝑙 , AOD of the 𝑙-th path relative to the array’s and the global frame of
reference

\̃R,𝑙 , \R,𝑙 , AOA of the 𝑙-th path relative to the array’s and the global frame of
reference

𝜌𝑙 transverse velocity component of the 𝑙-th path

𝜎2
clk clock synchronization error variance

𝜎2
[,R noise variance

𝜏𝑙 TOA of the 𝑙-th path

b𝑙 intensity effect of Doppler shift on path 𝑙

�̄�𝑐 effective carrier angular frequency

𝜔𝑝 angular (baseband) frequency of the 𝑝-th OFDM subcarrier
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2. Performance Limits of Single-Anchor Millimeter-Wave
Positioning

2.1 System Model
In this section we present the signal model when both the transmitter and the receiver are static,
and then we extend the model to the dynamic scenario, where either the transmitter or the receiver
is moving.

2.1.1 Static Scenario

2.1.1.1 Geometry

The Tx consists of an array with 𝑁T antennas, with its reference point located at pT =[
𝑝T,x, 𝑝T,y

]T ∈ R2 and orientation 𝛼T. The Rx consists of an array with 𝑁R antennas, a refer-
ence point located at pR =

[
𝑝R,x, 𝑝R,y

]T ∈ R2 and orientation 𝛼R. The position of the 𝑗-th element
of the Tx array is given by

pT, 𝑗 = pT + 𝑑T, 𝑗u(𝜓T, 𝑗 + 𝛼T) ∈ R2, 𝑗 = 0, . . . , 𝑁T − 1, (2.1)

where u
(
𝜓
)
=

[
cos

(
𝜓
)
, sin

(
𝜓
) ]T and 𝑑T, 𝑗 and 𝜓T, 𝑗 are its distance and angle from the Tx array’s

reference point, as shown in Fig. 2.1. Accordingly, the position of the 𝑖-th element of the Rx array
is given by

pR,𝑖 = pR + 𝑑R,𝑖u(𝜓R,𝑖 + 𝛼R) ∈ R2, 𝑖 = 0, . . . , 𝑁R − 1. (2.2)

We assume that for all Tx-Rx antenna pairs there are 𝐿 discrete propagation paths. The first
of these 𝐿 paths (𝑙 = 0) is either the LOS path or a single-bounce NLOS path and the rest
(𝑙 = 1, . . . , 𝐿 − 1) are single-bounce NLOS paths. The POI of the 𝑙-th single-bounce path, which
corresponds either to scattering or reflection, is ps,𝑙 =

[
𝑝s,𝑙,x, 𝑝s,𝑙,y

]T.
The arrays’ dimensions are assumed to be small compared to the distance between the Tx and

Rx, as well as the distance between each of the scatterers/reflectors and the Tx or Rx, i.e.,

𝐷max ≪ min
(∥pR − pT∥2,min

𝑙
∥ps,𝑙 − pT∥2,min

𝑙
∥pR − ps,𝑙 ∥2

)
, (2.3)

where

𝐷max = max(𝐷max,T, 𝐷max,R) (2.4)
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pT

pT, 𝑗 𝜓T, 𝑗

𝑑T, 𝑗

pR

𝛼R

\T,0 = \̃T,0
𝛼T = 0

ps,1 \̃R,1

\R,1

ps,2

Fig. 2.1. Geometric model, example with uniform linear arrays (ULAs) at the Tx and Rx.

and

𝐷max,T = max
𝑗 , 𝑗 ′
∥pT, 𝑗 − pT, 𝑗 ′ ∥2, (2.5)

𝐷max,R = max
𝑖,𝑖′
∥pR,𝑖 − pR,𝑖′ ∥2 (2.6)

are the largest dimensions of the Tx and Rx arrays. Using this assumption, the delay of the 𝑙-th
path from the 𝑗-th Tx element to the 𝑖-th Rx element can be approximated by

𝜏𝑙,𝑖, 𝑗 ≈ 𝜏𝑙 − 𝜏T, 𝑗 (\̃T,𝑙) − 𝜏R,𝑖 (\̃R,𝑙), 𝑙 = 0, . . . , 𝐿 − 1, (2.7)

where

𝜏𝑙 =
1
𝑐
·
{
∥pR − pT∥2, 𝑙-th path is LOS,
∥ps,𝑙 − pT∥2 + ∥pR − ps,𝑙 ∥2, otherwise,

(2.8)

𝜏T, 𝑗 (\̃T,𝑙) =
𝑑T, 𝑗

𝑐
uT(𝜓T, 𝑗 )u(\̃T,𝑙) =

𝑑T, 𝑗

𝑐
cos(\̃T,𝑙 − 𝜓T, 𝑗 ), (2.9)

𝜏R,𝑖 (\̃R,𝑙) =
𝑑R,𝑖

𝑐
uT(𝜓R,𝑖)u(\̃R,𝑙) =

𝑑R,𝑖

𝑐
cos(\̃R,𝑙 − 𝜓R,𝑖), (2.10)

and 𝑐 is the speed of light. 𝜏𝑙 represents the time of flight (TOF) of the signal propagated through
the 𝑙−th path from the Tx reference point to pT to the Rx reference point to pR. The AOD relative
to the orientation of the Tx array and the AOA relative to the orientation of the Rx array for the
𝑙-th path are defined as

\̃T,𝑙 =


atan2

(
𝑝R,y − 𝑝T,y, 𝑝R,x − 𝑝T,x

)
− 𝛼T, 𝑙-th path is LOS,

atan2
(
𝑝s,𝑙,y − 𝑝T,y, 𝑝s,𝑙,x − 𝑝T,x

)
− 𝛼T, otherwise,

(2.11)

\̃R,𝑙 =


atan2

(
𝑝T,y − 𝑝R,y, 𝑝T,x − 𝑝R,x

)
− 𝛼R, 𝑙-th path is LOS,

atan2
(
𝑝s,𝑙,y − 𝑝R,y, 𝑝s,𝑙,x − 𝑝R,x

)
− 𝛼R, otherwise,

(2.12)

with atan2
(
𝑦, 𝑥

)
being the four-quadrant inverse tangent function. The absolute AOD \T,𝑙 and AOA

\R,𝑙 are computed as

\T,𝑙 = \̃T,𝑙 + 𝛼T, 𝑙 = 0, . . . , 𝐿 − 1, (2.13)
\R,𝑙 = \̃R,𝑙 + 𝛼R, 𝑙 = 0, . . . , 𝐿 − 1, (2.14)

and for 𝑙 = 0 being the LOS we have \R,0 = \T,0 + 𝜋.
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2.1.1.2 Signal Model

An OFDM waveform with subcarrier spacing Δ 𝑓 , 𝑁 subcarriers and cyclic prefix (CP) duration
𝑇CP = 𝑁CP𝑇s is considered, where 𝑇s = 1/(𝑁Δ 𝑓 ) and 𝑓s = 1/𝑇s are the sampling period and fre-
quency, respectively. The reference signal is transmitted on 𝑁B OFDM symbols and 𝑁P subcarri-
ers, whose indices are P = {−𝑁P/2, . . . ,−1, 1, . . . , 𝑁P/2}, while the rest of the subcarriers are left
empty, where, without loss of generality we assume that 𝑁P is even and 𝑁P < 𝑁 . The edge subcar-
riers with indices −𝑁/2, . . . ,−𝑁P/2 − 1, 𝑁P/2, . . . , 𝑁 form the so called guard bands, which are
commonly introduced in practical OFDM systems to ease the requirements on the analog filtering
after the digital-to-analog conversion (DAC). We note that here we have assumed, without loss of
generality, that all occupied subcarriers carry reference signals. The reference signal resource grid
R comprises all resource elements at the time-frequency points (𝑝, 𝑏), 𝑝 ∈ P, 𝑏 = 0, . . . , 𝑁B − 1.

In mm-Wave systems with potentially large number of antennas, in order to keep the power
consumption at acceptable levels, the Tx might be equipped with only 𝑁RF,T ≤ 𝑁T RF chains. The
transmitter uses a digital beam codebook F ′ ∈ C𝑁RF,T×𝑀T

F ′ = [f ′1, . . . , f ′𝑀T
], (2.15)

{f ′𝑘 }𝑀T
𝑘=1, where f ′𝑘 ∈ C𝑁RF,T is the 𝑘 − 𝑡ℎ beamforming vector of the codebook, with ∥f ′𝑘 ∥2 = 1,∀𝑘 ,

and 𝑀T is the number of beamforming vectors in the codebook. The 𝑘-th beamforming vector
is used on a subset R𝑘 of resource elements (REs) (𝑝, 𝑏), with R𝑘 ∩ R𝑘 ′ = ∅ for 𝑘 ≠ 𝑘′ and
∪𝑘R𝑘 = R. The digital Tx signal vector s[𝑝, 𝑏] ∈ C𝑁RF, T at the 𝑝-th subcarrier, 𝑝 ∈ P, of the 𝑏-th
OFDM symbol, 𝑏 = 0, . . . , 𝑁B − 1, then is

s[𝑝, 𝑏] = _𝑘 [𝑝, 𝑏]f ′𝑘 , (𝑝, 𝑏) ∈ R𝑘 , (2.16)

where

_𝑘 [𝑝, 𝑏] =
√︁
𝐸tot𝑞𝑘𝛾𝑘 [𝑝, 𝑏] ej 𝛽𝑘 [𝑝,𝑏] (2.17)

is the symbol assigned to f ′𝑘 at the 𝑝-th subcarrierof the 𝑏-th OFDM symbol, 𝐸tot is the total Tx
energy of the reference signal, 𝑞𝑘 is the fraction of 𝐸tot allocated to f ′𝑘 , with

∑𝑀T
𝑘=1 𝑞𝑘 = 1, 𝛾𝑘 [𝑝, 𝑏]

is the fraction of 𝑞𝑘 allocated to the RE (𝑝, 𝑏), with
∑
(𝑝,𝑏)∈R𝑘

𝛾𝑘 [𝑝, 𝑏] = 1, and 𝛽𝑘 [𝑝, 𝑏] is the
phase of _𝑘 [𝑝, 𝑏].

The digital signal vector is then multiplied with the analog beamforming matrix WT to get the
Tx signal vector x[𝑝, 𝑏]:

x[𝑝, 𝑏] = W ∗
Ts[𝑝, 𝑏]

= _𝑘 [𝑝, 𝑏]f𝑘 , (𝑝, 𝑏) ∈ R𝑘 , (2.18)

where

f𝑘 = W ∗
Tf
′
𝑘 , 𝑘 = 1, . . . , 𝑀T, (2.19)

are the beamforming vectors of the effective beam codebook F = W ∗
TF
′. When no analog pre-

coding is applied, 𝑁T = 𝑁RF,T and WT = I𝑁T . We note that the average Tx energy per resource
element is

𝐸RE =
𝐸tot

𝑁P𝑁B
(2.20)
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and the average Tx energy per time-domain sample (disregarding the energy spent on the CP) is

𝐸T = 𝐸RE
𝑁P

𝑁
. (2.21)

Similar to the Tx, the Rx might be equipped with only 𝑁RF,R ≤ 𝑁R RF chains, applying
an analog receive combiner W H

R , with WR ∈ C𝑁R×𝑁RF, R , to obtain an 𝑁RF, R-dimensional signal
that is fed to the analog-to-digital conversions (ADCs). When no analog Rx combiner, is applied
𝑁R = 𝑁RF,R and WR = I𝑁R .

Assuming high resolution ADC and DAC, such that the system is practically linear, the pulse
�̃�(𝑡) models all the Tx and Rx processing steps, namely upsampling, digital Tx filtering/pulse
shaping, DAC, analog Tx filtering, upconversion and amplification, downconversion, Rx filtering,
ADC, digital Rx filtering/pulse shaping and downsampling. The time support of �̃�(𝑡) is included
in [0, 𝜏𝑔]. The pulse �̃�(𝑡) is also assumed to be essentially band-limited, with its Fourier transform
being essentially non-zero in [− 𝑓𝑠/2, 𝑓𝑠/2], which is an approximation, as a pulse can only be
either time-limited or band-limited.

The Tx and Rx are assumed to be imperfectly time-synchronized, with a clock synchronization
error 𝜖clk, which is assumed to be a zero-mean Gaussian distributed random variable with variance
𝜎2

clk. We note that 𝜎2
clk = 0 corresponds to perfectly time-synchronization and 𝜎2

clk → ∞ to asyn-
chronous operation, i.e., to the case when the Rx has no knowledge about the time of transmisssion
(TOT).

The received signal at the 𝑝-th subcarrier of the 𝑏-th OFDM symbol is

y[𝑝, 𝑏] = m[𝑝, 𝑏] +W H
R η[𝑝, 𝑏], (2.22)

where

m[𝑝, 𝑏] = W H
R H [𝑝]x[𝑝, 𝑏], (2.23)

H [𝑝] =
𝐿−1∑︁
𝑙=0

ℎ𝑙 e− j𝜔𝑝𝜏
′
𝑙 aR,𝑝 (\̃R,𝑙)aT

T,𝑝 (\̃T,𝑙) (2.24)

aT,𝑝 (\̃T,𝑙) =
[
𝑒j(𝜔c+𝜔𝑝)𝜏T,1 (\̃T,𝑙) , . . . , ej(𝜔c+𝜔𝑝)𝜏T,𝑁T (\̃T,𝑙) ]T ∈ C𝑁T (2.25)

𝜏′𝑙 = 𝜏𝑙 + 𝜖clk. (2.26)

We note that the Tx array steering vector aT,𝑝 (\̃T,𝑙) depends not only on the angle, but also
on the subcarrier index. The Rx steering vector aR,𝑝 (\̃R,𝑙) is defined accordingly. Also, 𝜔𝑝 =
2𝜋𝑝Δ 𝑓 , 𝜔c = 2𝜋 𝑓c, 𝑓c is the carrier frequency, ℎ𝑙 is the gain of the 𝑙-th path and η[𝑝, 𝑏] ∼
NC(0, 𝜎2

[,RI𝑁R) is the additive white Gaussian noise (AWGN). The derivation of the signal model
can be found in Appendix A1.

Through (2.22)-(2.25), we can see that the observations y[𝑝, 𝑏] depend on the channel param-
eter vector ν̃, defined as

ν̃ = [𝜏′0, \̃T,0, \̃R,0,h
T
0 , . . . , 𝜏

′
𝐿−1, \̃T,𝐿−1, \̃R,𝐿−1,h

T
𝐿−1]T ∈ R5𝐿 , (2.27)

with h𝑙 = [|ℎ𝑙 |, arg(ℎ𝑙)]T. For Rx localization, the position parameter vector ν is defined as

ν =

{
[pT

R, 𝛼R, 𝜖clk,h
T
0 ,p

T
s,1,h

T
1 , . . . ,p

T
s,𝐿−1,h

T
𝐿−1]T ∈ R4𝐿+2, 0-th path is LOS,

[pT
R, 𝛼R, 𝜖clk,p

T
s,0,h

T
0 ,p

T
s,1,h

T
1 , . . . ,p

T
s,𝐿−1,h

T
𝐿−1]T ∈ R4𝐿+4, otherwise,

(2.28)

and is related to ν̃ as described by (2.8), (2.11)-(2.12) and (2.26). We can similarly define the
position parameter vector for Tx localization by replacing pR and 𝛼R with pT and 𝛼T in (2.28).
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2.1.2 Dynamic Scenario

We extend the signal model to the dynamic scenario, with the receiver moving with constant ve-
locity vR = [𝑣R,x, 𝑣R,y]T ∈ R2. Let 𝑛0𝑇s be the TOA of the first sample of the received signal fed
to the discrete Fourier transform (DFT) and pR be the receiver’s position at that time instant. The
position of the receiver at time 𝑛𝑇s is pR(𝑛𝑇s) = pR + vR · (𝑛 − 𝑛0)𝑇s. As in the static scenario,
we make use of the far field assumption and also assume that the angles and the channel gains are
approximately invariant during the observation interval 𝑁B𝑀𝑇s, with 𝑀 = 𝑁 + 𝑁CP. The received
signal at the 𝑝-th subcarrier of the 𝑏-th OFDM symbol after Rx combining is

y[𝑝, 𝑏] ≈
∑︁
𝑞∈P

W H
R H [𝑝, 𝑞, 𝑏]x[𝑞, 𝑏] +W H

R η[𝑝, 𝑏], (2.29)

where

H [𝑝, 𝑞, 𝑏] =
𝐿−1∑︁
𝑙=0

ℎ𝑙 e− j
(
𝜔𝑞𝜏

′
𝑙−

𝜔c+𝜔𝑞
𝑐 𝑣𝑙𝑏𝑀𝑇s

)
aR,𝑞 (\̃R,𝑙)aT

T,𝑞 (\̃T,𝑙)𝑄𝑁

((
𝜔𝑝 − 𝜔𝑞 −

𝜔c + 𝜔𝑞
𝑐

𝑣𝑙

)
𝑇s

2

)
,

(2.30)

with 𝑣𝑙 = vT
Ru

(
\R,𝑙

)
being the speed of the receiver in the direction of the AOA and

𝑄𝑁 (𝑥) = e− j(𝑁−1)𝑥 sin(𝑁𝑥)
𝑁 sin(𝑥) . (2.31)

The derivation of the signal model is provided in Appendix A1.2. The Doppler shift 𝑣𝑙
(
𝜔c + 𝜔𝑞

)/𝑐
is subcarrier-dependent and an increasing function of the subcarrier index. Similar to [17], we
assume that the observation interval is much smaller than the channel coherence time 𝑇co ∝
𝑐/( 𝑓c∥vR∥2

)
[49]. When the transmitter is moving with velocity vT and the receiver is static, the

signal model (2.29) is still valid with 𝑣𝑙 = vT
Tu

(
\T,𝑙

)
.

The channel parameter vector in the dynamic scenario reads as

ν̃ = [𝜏′0, \̃T,0, \̃R,0, 𝑣0,h
T
0 , . . . , 𝜏

′
𝐿−1, \̃T,𝐿−1, \̃R,𝐿−1, 𝑣𝐿−1h

T
𝐿−1]T ∈ R6𝐿 , (2.32)

and the position parameter vector reads as

ν =

{
[pT

R, 𝛼R, vR, 𝜖clk,h
T
0 ,p

T
s,1,h

T
1 , . . . ,p

T
s,𝐿−1,h

T
𝐿−1]T ∈ R4𝐿+4, 0-th path is LOS,

[pT
R, 𝛼R, vR, 𝜖clk,p

T
s,0,h

T
0 ,p

T
s,1,h

T
1 , . . . ,p

T
s,𝐿−1,h

T
𝐿−1]T ∈ R4𝐿+6, otherwise.

(2.33)

2.2 Fisher Information and Cramér-Rao Lower Bound (CRLB)
2.2.1 Static Scenario

The achievable positioning accuracy of the Rx can be characterized in terms of the hybrid
CRLB [50]. We assume that the parameter vector ν contains both deterministic and random pa-
rameters and denote the latter as ν𝑟 . Let 𝑝(ν𝑟) be the prior probability density function (pdf) of ν𝑟
and 𝑝(Y |ν) be the likelihood of the observations Y given ν, according to (2.22), with

Y = [Y T
0 , . . . ,Y

T
𝑁B−1]T ∈ C𝑁R𝑁B×𝑁P , (2.34)

Y𝑏 = [y[𝑝1, 𝑏], . . . , y[𝑝𝑁P , 𝑏]] ∈ C𝑁R×𝑁P . (2.35)



12 2. Performance Limits of Single-Anchor Millimeter-Wave Positioning

Under the regularity conditions

Eν𝑟

[
𝜕 ln 𝑝(ν𝑟)

𝜕ν

]
= 0, (2.36)

EY ,ν𝑟

[
𝜕 ln 𝑝(Y |ν)

𝜕ν

]
= 0, (2.37)

the hybrid CRLB states that, for a parameter vector ν containing both deterministic and random
parameters, the covariance matrix C of any unbiased estimator ν̂ of ν satisfies [50], [51]

C − J−1
ν ⪰ 0, (2.38)

where ⪰ 0 denotes positive semi-definiteness and Jν is the hybrid FIM of ν. Jν is defined as

Jν = J
(p)
ν + J (o)ν , (2.39)

where

J
(p)
ν = Eν𝑟

[
𝜕 ln 𝑝(ν𝑟)

𝜕ν

𝜕 ln 𝑝(ν𝑟)
𝜕νT

]
= −Eν𝑟

[
𝜕2 ln 𝑝(ν𝑟)
𝜕ν𝜕νT

]
(2.40)

accounts for the prior information and

J (o)ν = EY ,ν𝑟

[
𝜕 ln 𝑝(Y |ν)

𝜕ν

𝜕 ln 𝑝(Y |ν)
𝜕νT

]
= −EY ,ν𝑟

[
𝜕2 ln 𝑝(Y |ν)
𝜕ν𝜕νT

]
(2.41)

accounts for the observation-related information, with ν𝑟 representing the random parameters in
ν. The last equality in (2.40) and (2.41) follows from the regularity conditions (2.36) and (2.37).
When the LOS path exists, Jν ∈ R(4𝐿+2)×(4𝐿+2) , otherwise Jν ∈ R(4𝐿+4)×(4𝐿+4) . Intuitively, Fisher
information quantifies the amount of information on ν carried by the observations and the prior
and is equal to the variance of the score function 𝜕 ln 𝑝(ν𝑟 )

𝜕ν . In the following, we derive the Fisher
information matrix and the CRLB for single-anchor positioning for a MIMO-OFDM system.

We assume that 𝜖clk is the only random parameter in ν, i.e., ν𝑟 = 𝜖clk, and it is zero-mean
Gaussian distributed with variance 𝜎2

clk. It is straightforward to find that the only non-zero entry of
J
(p)
ν is [

J
(p)
ν

]
4,4

= E

[
− 𝜕

2 ln 𝑝(𝜖clk)
𝜕𝜖2

clk

]
=

1
𝜎2

clk

, (2.42)

where 𝑝(𝜖clk) is the pdf of 𝜖clk.
As already explained above, the observations are only indirectly related to ν through ν̃. To

facilitate computations, but also to quantify how much position information each TOF, AOD, AOA
and Doppler measurement offers, we first compute the (observation-related) FIM J (o)ν̃ of channel
parameters ν̃ and use the following transformation to obtain the observation-related part of the
FIM J (o)ν̃ of the position parameters ν [52]:

J (o)ν = TJ (o)ν̃ T T, (2.43)
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where

[T ]𝑖, 𝑗 = 𝜕ã 𝑗/𝜕a𝑖 . (2.44)

Since ν̃ is observed under Gaussian noise, the (𝑖, 𝑗)-th entry of J (o)ν is [53, Sec. 3.9][
J (o)ν̃

]
𝑖, 𝑗

=
2
𝜎2
[,R

𝑁B−1∑︁
𝑏=0

∑︁
𝑝∈P
ℜ

{
𝜕mH [𝑝, 𝑏]

𝜕ã𝑖

(
W H

R WR

)−1 𝜕m[𝑝, 𝑏]
𝜕ã 𝑗

}
. (2.45)

The required derivatives of m[𝑝, 𝑏] are provided in Appendix A2 and the entries of T are given
in Appendix A3.

We use the notion of the equivalent FIM (EFIM) [15] to focus on the available information on
the position and orientation parameters. The EFIM can have much lower dimensions (3 × 3) than
Jν , but still fully describes the available information on the parameters of interest. The CRLB of
the position and orientation parameters is obtained by the 3 × 3 upper left block of J−1

ν and the
EFIM Jpo for the position and orientation parameters is its inverse

Jpo = ( [J−1
ν ]1:3,1:3)−1. (2.46)

Splitting T as T =
[
T T

po, T
T
np

]T, with Tpo consisting of the first three rows of T , which correspond
to the position and orientation parameters, and Tnp containing the rest, and using (2.43) and block
matrix inversion, Jpo can be expressed as

Jpo = TpoJν̃T
T
po − TpoJν̃T

T
np

(
TnpJν̃T

T
np +

1
𝜎2

clk

e1e
T
1

)−1

TnpJν̃T
T
po, (2.47)

where e𝑖 is the vector of appropriate size whose 𝑖-th entry is equal to 1 and the rest of its entries
are 0.

The measures we use for characterizing the achievable position and orientation estimation ac-
curacy are the PEB and the orientation error bound (OEB) defined as [18]

PEB =

√︂[
J−1

po

]
1,1
+

[
J−1

po

]
2,2
, (2.48)

OEB =

√︂[
J−1

po

]
3,3
. (2.49)

2.2.2 Dynamic Scenario

In the dynamic scenario we are also interested in the velocity of the target. We can, therefore,
compute the position, orientation and velocity EFIM Jpov in a similar fashion

Jpov = TpovJν̃T
T
pov − TpovJν̃T

T
np

(
TnpJν̃T

T
np +

1
𝜎2

clk

e1e
T
1

)−1

TnpJν̃T
T
pov, (2.50)

where Tpo consists of the first five rows of T , which correspond to the position, orientation and
velocity parameters, and Tnp contains the rest. In addition to the PEB and the OEB, we use the
velocity error bound (VEB) for the characterization of the achievable estimation accuracy of the
velocity:

VEB =

√︂[
J−1

pov

]
4,4
+

[
J−1

pov

]
5,5
. (2.51)
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2.3 Downlink Versus Uplink Comparison

In the following, we discuss the positioning and orientation estimation of a UE in a communication
system, assuming the position and orientation of the base station (BS) are known. In contrast
to [20], we assume that the devices (BS or UE) use the same set of beamforming vectors for
transmission and reception, e.g., WR in the DL is equal to WT in the UL. We consider this setup
because the presence of WT and WR usually results from some hardware constraints, which are
device-specific and independent of whether the device is in Tx or Rx mode. For example, due to the
limited number of RF chains, a UE might only be able to process a signal in Tx and Rx mode with
a set of analog beamforming vectors. We consider here the static scenario, but a similar analysis
can be conducted in the dynamic scenario. With known BS position and orientation, positioning
of a UE in the DL corresponds to receiver localization, whereas positioning of a UE in the UL
corresponds to transmitter localization. Thus, by replacing the subscripts ’T’ and ’R’ with ’BS’
and ’UE’ in (2.22)-(2.24) for the DL and vice-versa for the UL, we obtain the signal model for the
DL and the UL, respectively:

(DL) : y (DL) [𝑝, 𝑏] = W H
UEH

(DL) [𝑝]W ∗
BSs

(DL) [𝑝, 𝑏] +W H
UEη[𝑝, 𝑏] (2.52)

(UL) : y (UL) [𝑝, 𝑏] = W H
BSH

(UL) [𝑝]W ∗
UEs

(UL) [𝑝, 𝑏] +W H
BSη[𝑝, 𝑏], (2.53)

where we have that

H (UL) [𝑝] =
(
H (DL) [𝑝]

)T
(2.54)

and that the BS and UE use the same beamforming vectors for transmission and reception, as
mentioned above. We note that (2.54) holds exactly only for arrays with isotropic radiators and
the distance between each element pair being a multiple of _c/2, where _c = 𝑐/ 𝑓c is the carrier
wavelength. If this is not the case, (2.54) does not hold due to mutual coupling among the antenna
elements and it is used as an approximation. For further details on the topic the reader is referred
to [54]. Both in the DL and UL the position parameter vector is

ν =

{
[pT

UE, 𝛼UE, 𝜖clk,h
T
0 ,p

T
s,1,h

T
1 , . . . ,p

T
s,𝐿−1,h

T
𝐿−1]T ∈ R4𝐿+2, 0-th path is LOS,

[pT
UE, 𝛼UE, 𝜖clk,p

T
s,0,h

T
0 ,p

T
s,1,h

T
1 , . . . ,p

T
s,𝐿−1,h

T
𝐿−1]T ∈ R4𝐿+4, otherwise,

(2.55)

We now compare the positioning accuracy between the DL and the UL, under the following
assumptions:
1) WUE and WBS have orthonormal columns.
2) The signals transmitted through different analog beamforming vectors on each subcarrier are

uncorrelated and have equal energy, i.e.,

𝑀BS∑︁
𝑘=1

𝑁B−1∑︁
𝑏=0

s(DL) [𝑝, 𝑏] (s(DL) [𝑝, 𝑏])H =
𝑀BS∑︁
𝑘=1

𝑁B−1∑︁
𝑏=0

𝐸tot,BS𝑞𝑘𝛾𝑘 [𝑝, 𝑏]f ′𝑘f ′𝑘H

= 𝐸tot,BS

𝑀BS∑︁
𝑘=1

𝑞𝑘𝛾𝑘 [𝑝]f ′𝑘f ′𝑘H

= I𝑁RF,BS𝛾 [𝑝]
𝐸tot,BS

𝑁RF,BS
, (2.56)
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where

𝛾𝑘 [𝑝] =
𝑁B−1∑︁
𝑏=0

𝛾𝑘 [𝑝, 𝑏] (2.57)

is the fraction of 𝑞𝑘 allocated on the 𝑝-th subcarrier and

𝛾 [𝑝] = 𝑁RF,BS

𝑀BS∑︁
𝑘=1

𝑞𝑘𝛾𝑘 [𝑝] | 𝑓 ′𝑘, 𝑗 |2, ∀ 𝑗 ∈ {1, . . . , 𝑁RF,BS} (2.58)

is the fraction of the total energy used on the 𝑝-th subcarrier and 𝐸tot,BS is the total Tx energy
of the BS. Similarly

𝑀UE∑︁
𝑘=1

𝑁B−1∑︁
𝑏=0

s(UL) [𝑝, 𝑏] (s(UL) [𝑝, 𝑏])H = I𝑁RF,UE𝛾 [𝑝]
𝐸tot,UE

𝑁RF,UE
, (2.59)

where 𝐸tot,UE is the total Tx energy of the UE.
We define Z as the matrix which has the same dimensions as Jν and its (𝑖, 𝑗)-th element is

[Z]𝑖, 𝑗 = tr
(
ℜ

{ 𝑁B−1∑︁
𝑏=0

∑︁
𝑝∈P

𝜕GH [𝑝]
𝜕a𝑖

𝜕G[𝑝]
𝜕a 𝑗

})
, (2.60)

where G[𝑝] = W H
UEH

(DL) [𝑝]W ∗
UE. From (2.39), (2.42), (2.45), (2.52) and taking the expectation

over s(DL) [𝑝, 𝑏] we can compute J (DL)
ν as

J (DL)
ν =

2𝐸tot,BS

𝜎2
[,UE𝑁RF,BS

Z + e4e
T
4

1
𝜎2

clk

, (2.61)

where 𝜎2
[,UE is the noise variance at the UE in the DL. Given that H (UL) [𝑝] = (

H (DL) [𝑝])T, we
can show by using simple properties of the trace operator that

J (UL)
ν =

2𝐸tot,UE

𝜎2
[,BS𝑁RF,UE

Z + e4e
T
4

1
𝜎2

clk

, (2.62)

where 𝜎2
[,BS is the noise variance at the BS in the UL. Using the Sherman-Morrison formula we

invert J (DL)
ν and J (UL)

ν and after a few steps we find that the ratio of the DL and UL PEB (see
(2.48)) is given by

PEB(DL)

PEB(UL) =

√√√√√
𝛿UL

𝛿DL

Z − 1
𝛿DL𝜎

2
clk+[Z−1]4,4

Z − 1
𝛿UL𝜎

2
clk+[Z−1]4,4

, (2.63)

where

Z =
(
[Z−1]1,1 + [Z−1]2,2

)
/( ([Z−1]1,4

)2
+

(
[Z−1]2,4

)2)
, (2.64)

𝛿DL = 2𝐸tot,BS𝑁RF,UE/𝜎2
[,UE, (2.65)

𝛿UL = 2𝐸tot,UE𝑁RF,BS/𝜎2
[,BS. (2.66)
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We refer to 𝛿DL and 𝛿UL as the DL and UL pseudo-SNRs. It follows from (2.63) that the link with
the highest pseudo-SNR will provide the best positioning performance. For perfectly synchronized
(𝜎2

clk = 0) or asynchronous (𝜎2
clk →∞) clocks we have

PEB(DL)

PEB(UL) =
√︂
𝛿UL

𝛿DL
. (2.67)

From (2.63) and (2.67) we see that DL and UL positioning have different accuracy, owing to differ-
ent pseudo-SNR. When 𝛿DL = 𝛿UL, again from (2.63), we find that PEB(DL) = PEB(UL) . We stress
that (2.63) and (2.67) hold when each of the devices (BS or UE) employs the same set of orthonor-
mal beamforming vectors for transmission and reception. In the case that the sets of beamforming
vectors for transmission and reception are not the same, there is a mismatch between the subspaces
spanned for transmission and reception. Although an analytic result has not been derived for this
case, in Section 2.6, we compare DL and UL positioning using random beamforming matrices for
transmission and reception.

2.4 Asymptotic Analysis
The expressions for the FIMs and their entries provided in Section 2.2, although useful for nu-
merical evaluation of the achievable accuracy, do not provide much intuition about the positioning
information that is available in the considered single-anchor MIMO-OFDM setup. Our aim is to
obtain a geometric interpretation of the Fisher information, as in [17], [21]. Following [20]–[22],
we will consider asymptotic expressions for the position and orientation EFIM for large band-
width1 ( 𝑓s →∞) and large number of transmit and receive antennas (𝑁T, 𝑁R →∞). The accuracy
of the asymptotic expressions will be evaluated in Sec. 2.6 and has also been investigated in [20],
where it was shown that they can provide a very accurate approximation of the exact PEB, even
for moderate bandwidth and number of transmit and receive antennas.

Since for arrays with a fixed aperture the asymptotic orthogonality/favorable propagation con-
dition [55], [56] may not be satisfied [57], we consider arrays whose aperture grows with increasing
number of elements. In addition to the standard favorable propagation condition

lim
𝑁T→∞

aH
T,𝑝 (\̃T,𝑙)aT,𝑝 (\̃T,𝑙′)/𝑁T = 0, (2.68)

we also assume

lim
𝑁T→∞

𝜕

𝜕\̃T,𝑙
aH

T,𝑝 (\̃T,𝑙)aT,𝑝 (\̃T,𝑙′)/𝑁2
T = 0, (2.69)

lim
𝑁T→∞

1
𝑁3

T

𝜕aT,𝑝 (\̃T,𝑙)/𝜕\̃T,𝑙
2

2 > 0, (2.70)

implying that asymptotic orthogonality holds also for the inner product of the derivative of the
array steering vector and the array steering vector at any angle. Similar assumptions are made for
the Rx array. We verify that these conditions hold for ULAs and uniform circular arrays (UCAs)
in Appendix A5.

In order to focus on the characteristics of the channel and obtain geometrically intuitive ex-
pressions for the Fisher information, we also use the following simplifying assumptions:

1In an OFDM system with a given number of subcarriers and a fixed set of occupied subcarriers, the occupied
bandwidth increases linearly with the sampling rate. Hence, equivalently to writing that the bandwidth goes to infinity,
we write 𝑓s →∞
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1) WT = I𝑁T and WR = I𝑁R , i.e., fully digital beamforming is used and the whole transmit and
receive spaces can be sensed. This assumption holds for the rest of the thesis.

2) Similar to (2.56)-(2.59), we assume

𝑁B−1∑︁
𝑏=0

x[𝑝, 𝑏]xH [𝑝, 𝑏] = I𝑁T𝛾 [𝑝]
𝐸tot

𝑁T
. (2.71)

To make the following expressions more compact we set

𝑑T,s,𝑙 =

{
∥pR − pT∥2, 𝑙-th path is LOS,ps,𝑙 − pT


2, otherwise,

(2.72)

𝑑T,s,𝑙 =

{
∥pR − pT∥2, 𝑙-th path is LOS,pR − ps,𝑙


2, otherwise.

(2.73)

As before, we distinguish between the static and dynamic scenario.

2.4.1 Static Scenario

Before presenting the main results, we define a few useful quantities.
Definition 1. The effective baseband bandwidth 𝛽 of the signal is defined as

𝛽 =

√︄∑︁
𝑝∈P 𝛾 [𝑝]𝜔

2
𝑝 −

(∑︁
𝑝∈P 𝛾 [𝑝]𝜔𝑝

)2
. (2.74)

□

Definition 2. The effective angular carrier frequency �̄�c of the signal is defined as

�̄�c =

√︂∑︁
𝑝∈P 𝛾 [𝑝]

(
𝜔c + 𝜔𝑝

)2
. (2.75)

□

The definitions in (2.74) and (2.75) are the multi-carrier counterparts of the effective baseband
bandwidth and the effective carrier frequency defined in [17] for single-carrier systems.
Definition 3. The squared array aperture function (SAAF) of the Tx array is defined as [17]

𝑆T(\̃T,𝑙) = 1
𝑁T

𝑁T∑︁
𝑗=1

(
𝑑T, 𝑗u

T
⊥
(
𝜓T, 𝑗

)
u(\̃T,𝑙)

)2
, (2.76)

where u⊥
(
𝜓
)
= u

(
𝜓 − 𝜋/2) , with the array’s centroid chosen at its reference point. The SAAF of

the Rx array is defined accordingly. The Tx (Rx) SAAF fully describes the effect of the Tx (Rx)
array structure on the AOD (AOA) information. □

Theorem 2.1. (Static receiver localization) The EFIM for the position pR and orientation 𝛼R
of an imperfectly synchronized static receiver, when the position pT and orientation 𝛼T of the
transmitter are known, can be asymptotically expressed as

J (s)po →
{
J (s)LOS +

∑𝐿−1
𝑙=1 J (s)NLOS,𝑙 − J

(s)
𝜖clk , if LOS exists,∑𝐿−1

𝑙=0 J (s)NLOS,𝑙 − J
(s)
𝜖clk , otherwise.

(2.77)
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The information from the LOS path is given by

J (s)LOS = 𝑖𝜏0z𝜏0z
T
𝜏0 + 𝑖\T,0z\T,0z

T
\T,0
+ 𝑖\R,0z\R,0z

T
\R,0
, (2.78)

where

z𝜏𝑙 = [−uT (
\R,𝑙

)
, 0]T, (2.79)

z\T,𝑙 = [uT
⊥
(
\R,𝑙

)
, 0]T, (2.80)

z\R,𝑙 = [uT
⊥
(
\R,𝑙

)
, −𝑑R,s,𝑙]T, (2.81)

and

𝑖𝜏𝑙 = 𝛿R,T |ℎ𝑙 |2 𝛽
2

𝑐2 , (2.82)

𝑖\T,𝑙 = 𝛿R,T |ℎ𝑙 |2
�̄�2

c𝑆T(\̃T,𝑙)
𝑐2𝑑2

T,s,𝑙

, (2.83)

𝑖\R,𝑙 = 𝛿R,T |ℎ𝑙 |2
�̄�2

c𝑆R(\̃R,𝑙)
𝑐2𝑑2

R,s,𝑙

, (2.84)

for 𝑙 = 0, . . . , 𝐿 − 1, with 𝛿R,T = 2𝑁R𝐸tot/𝜎2
[,R being the pseudo-SNR. The information from the

𝑙-th NLOS path is described by

J (s)NLOS,𝑙 = 𝑖𝑙z𝑙z
T
𝑙 , (2.85)

where

𝑖−1
𝑙 = cos2 (Δ\𝑙/2) ( 1

𝑖\T,𝑙

+ 1
𝑖\R,𝑙

) + sin2 (Δ\𝑙/2) 1
𝑖𝜏𝑙
, (2.86)

z𝑙 = [uT
⊥
(
\ref,𝑙

)
, − cos(Δ\𝑙/2)𝑑R,s,𝑙]T, (2.87)

with \ref,𝑙 = (\T,𝑙 + \R,𝑙)/2 and Δ\𝑙 = \R,𝑙 − \T,𝑙 . For single-bounce reflections u(\ref,𝑙) is the
normal vector to the reflecting surface. The information loss due to the synchronization error is
described by

J (s)𝜖clk = z𝜖clkz
T
𝜖clk
/𝐾𝜖clk , (2.88)

where

z𝜖clk =

{
𝑖𝜏0z𝜏0 +

∑𝐿
𝑙=1 sin

(
Δ\𝑙/2

)
𝑖𝑙z𝑙 , if LOS exists,∑𝐿

𝑙=0 sin
(
Δ\𝑙/2

)
𝑖𝑙z𝑙 , otherwise,

(2.89)

𝐾𝜖clk =

{
𝑖𝜖clk + 𝑖𝜏0 +

∑𝐿−1
𝑙′=1 sin2 (

Δ\𝑙′/2
)
𝑖𝑙′ , if LOS exists,

𝑖𝜖clk +
∑𝐿−1
𝑙′=0 sin2 (

Δ\𝑙′/2
)
𝑖𝑙′ , otherwise,

(2.90)

with 𝑖𝜖clk =
1

𝑐2𝜎2
clk

. □

Proof: See Appendix A6.
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Some interesting remarks are to be made based on Theorem 2.1. Similar to [21], we find that the
EFIM of each of the single-bounce NLOS paths is rank-1. The intensity of position information is
given by (2.86), whereby we can conclude that

𝑖𝑙 ≤ min
(

𝑖𝜏𝑙

sin2(Δ\𝑙/2)
,

𝑖\T,𝑙

cos2(Δ\𝑙/2)
,

𝑖\R,𝑙

cos2(Δ\𝑙/2)

)
. (2.91)

We can also see from (2.85) and (2.87) that the direction of the position information offered by a
single-bounce NLOS path is determined solely by the geometry and is independent of the system
parameters. The direction is orthogonal to the average of the AOD and AOA of the path, which in
the case of single-bounce reflections is parallel to the reflecting surface. A geometric interpretation
of this result is provided in Sec. 2.5

We observe that, in the LOS-only case, where the derived expressions (2.77),(2.78), (2.88)-
(2.90) are exact, for an imperfectly synchronized system (0 < 𝜎2

clk < ∞) positioning is pos-
sible. However, the ranging information provided by the TOA of the LOS path decreases with
increasing 𝜎clk and the achievable positioning accuracy is lower bounded by the synchronization
error-induced ranging error 𝜎clk𝑐. Hence, large values of 𝜎clk may lead to poor position estimation
accuracy. For an asynchronous system (𝜎2

clk → ∞), the ranging information from the TOA of the
LOS path vanishes entirely and at least one NLOS path in addition to the LOS path is required. The
NLOS path(s), combined with the LOS path, enables us to resolve the clock offset and compute
the position.

When there is no LOS path, at least three NLOS paths are required for positioning [21]. Sim-
ilarly to the LOS-only case, the achievable accuracy is lower bounded by 𝜎clk𝑐 and for an asyn-
chronous system an additional NLOS path is required for positioning.

Similar results can be obtained for unknown Tx position and orientation:
Theorem 2.2. (Static transmitter localization) The EFIM for the position pT and the orientation
𝛼T of an imperfectly synchronized transmitter, when the position pR and orientation 𝛼R of the
receiver are known, can be asymptotically expressed as in (2.77), (2.78), (2.85) and (2.88), with
z𝜏0 = [−uT (

\T,0
)
, 0]T ∈ R3, z\T,0 = [uT

⊥
(
\T,0

)
, −𝑑T,R]T, z\R,0 = [uT

⊥
(
\T,0

)
, 0]T, and z𝑙 =

[uT
⊥
(
\ref,𝑙

)
, − cos

(
Δ\𝑙/2

)
𝑑T,s,𝑙]T. □

Proof: Similar to the proof of Theorem 2.1.
Theorems 2.1 and 2.2 can be used for the analysis of the effect of the geometry and the system
parameters on the DL and UL positioning accuracy, respectively. Theorem 2.2 can also be used for
the analysis of sidelink (SL) positioning, where a UE estimates another UE’s relative position.

2.4.2 Dynamic Scenario

We are interested in the EFIM Jpov of the position, orientation and velocity parameters:

Jpov = TpovJϕT
T
pov − TpovJϕT

T
np

(
TnpJϕT

T
np

)−1
TnpJϕT

T
pov, (2.92)

where we have split T as T =
[
T T

pov, T
T
np

]T, with Tpov consisting of the first 5 rows of T .
In order to keep the expressions relatively simple and gain insight on the effect of the movement

of the receiver or the transmitter, apart from the assumptions made for the static scenario, we
additionally assume that
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1) the signal vectors on different subcarriers are (approximately) uncorrelated:

𝑁B−1∑︁
𝑏=0

x[𝑝, 𝑏]xH [𝑞, 𝑏] ≈ 0, 𝑝 ≠ 𝑞. (2.93)

2) 𝐵/ 𝑓c ≪ _c/𝐷max, where 𝐵 ≈ Δ 𝑓 (max(P) −min(P)) is the signal bandwidth and 𝐷max is the
largest of the Tx and Rx array apertures, in other words, that the system under consideration is
narrowband.

Again, before presenting the results, we define a couple of useful quantities.
Definition 4. The effective baseband bandwidth of the signal arriving from the 𝑙-th path is

𝛽𝑙 =

√︄∑︁
𝑞∈P b𝑙,𝑞𝛾 [𝑞]𝜔

2
𝑞/b𝑙 −

(∑︁
𝑞∈P b𝑙,𝑞𝛾 [𝑞]𝜔𝑝/b𝑙

)2
, (2.94)

where

b𝑙,𝑞 =
∑︁

𝑝∈P
��𝑄𝑁

(
Φ𝑝,𝑞,𝑙

) ��2 (2.95)

describes the intensity effect of the Doppler shift for the 𝑙-th path on the 𝑞-th subcarrier and b𝑙 =∑
𝑞∈P 𝛾 [𝑞]b𝑙,𝑞, with Φ𝑝,𝑞,𝑙 =

(
𝜔𝑝 − 𝜔𝑞 − 𝑣𝑙𝜔c/𝑐

)
𝑇s/2. Similar to what is reported in [17], the

intensity effect for mm-Wave systems with large bandwidth is very small and can be neglected, i.e.
b𝑙,𝑞 ≈ 1, ∀𝑙, 𝑞. Then, (2.94) falls back to (2.74) ∀𝑙. □

Definition 5. The root mean square (rms) duration of the reference signal arriving from the 𝑙-th
path is

𝑡rms,𝑙 = 𝑇s

√︂
𝑀2

(
𝑁2

B − 1
)
/12 + 𝑛2

B,rms,𝑙 , (2.96)

where

𝑛2
B,rms,𝑙 =

∑
𝑞∈P 𝛾 [𝑞]

∑
𝑝∈P

��𝑄𝑁
(
Φ𝑝,𝑞,𝑙

) ��2𝑋2
𝑝,𝑞,𝑙

b𝑙
− ©«

∑
𝑞∈P 𝛾 [𝑞]

∑
𝑝∈P

��𝑄𝑁
(
Φ𝑝,𝑞,𝑙

) ��2𝑋𝑝,𝑞,𝑙
b𝑙

ª®¬
2

, (2.97)

with 𝑋𝑝,𝑞,𝑙 =
(
cot

(
Φ𝑝,𝑞,𝑙

) − 𝑁 cot
(
𝑁Φ𝑝,𝑞,𝑙

) )/2. It can be shown that for practical scenarios with
∥vR∥2/𝑐 ≪ 1

𝑛2
B,rms,𝑙 ≈ 𝑛2

B,rms =
1
4

∑︁
𝑞∈P

𝛾 [𝑞]
∑︁

𝑝∈P, 𝑝≠𝑞
sin−2

(
𝜋
(
𝑝 − 𝑞)/𝑁)

. (2.98)

□

We now present the main result for the dynamic scenario:
Theorem 2.3. (Mobile receiver localization) The EFIM for the position pR, orientation 𝛼R and
velocity vR of an imperfectly synchronized mobile receiver, when the position pT and orientation
𝛼T of the static transmitter are known, can be asymptotically expressed as

J (d)pov →
{∑𝐿−1

𝑙=1 J (d)NLOS,𝑙 − J
(d)
𝜖clk + J (d)LOS, if LOS exists,∑𝐿−1

0=1 J (d)NLOS,𝑙 − J
(d)
𝜖clk , otherwise,

(2.99)



2.4 Asymptotic Analysis 21

where the information from the LOS path is described by

J (d)LOS = 𝑖𝜏0z𝜏0z
T
𝜏0 + 𝑖\T,0z\T,0z

T
\T,0
+ 𝑖\R,0z\R,0z

T
\R,0
+ 𝑖𝑣0z𝑣0z

T
𝑣0 , (2.100)

with

z𝜏𝑙 = [−uT (
\R,𝑙

)
, 0, 0, 0]T ∈ R5, (2.101)

z\T,𝑙 = [uT
⊥
(
\R,𝑙

)
, 0, 0, 0]T ∈ R5, (2.102)

z\R,𝑙 = [uT
⊥
(
\R,𝑙

)
, −𝑑R,s,𝑙 , 0, 0]T ∈ R5, (2.103)

z𝑣𝑙 = [−uT
⊥
(
\R,𝑙

)
, 0, 𝑑R,s,𝑙u

T (
\R,𝑙

)/𝜌𝑙]T ∈ R5, (2.104)

and 𝜌𝑙 = vT
Ru⊥

(
\R,𝑙

)
, 𝑙 = 0, . . . , 𝐿 − 1, being the transverse velocity component. The information

from the 𝑙-th NLOS path neglecting its coupling with other paths is described by

J (d)NLOS,𝑙 = 𝑓𝜏,\,𝑙z𝜏,\,𝑙z
T
𝜏,\,𝑙 + 𝑓\,𝑣,𝑙z\,𝑣,𝑙zT

\,𝑣,𝑙 + 𝑓𝜏,𝑣,𝑙z𝜏,𝑣,𝑙zT
𝜏,𝑣,𝑙 , (2.105)

where

z𝜏,\,𝑙 = [uT
⊥
(
\ref,𝑙

)
, − cos

(
Δ\𝑙/2

)
𝑑R,s,𝑙 , 0, 0]T ∈ R5, (2.106)

z\,𝑣,𝑙 = [0, 0, −𝑑R,s,𝑙 , 𝑑R,s,𝑙u
T (
\R,𝑙

)/𝜌𝑙]T ∈ R5, (2.107)
z𝜏,𝑣,𝑙 = z𝜏,\,𝑙 − cos

(
Δ\𝑙/2

)
z\,𝑣,𝑙 , (2.108)

and

𝑓𝜏,\,𝑙 =
𝑖𝜏𝑙 𝑖\R,𝑙 𝑖\T,𝑙

𝜒𝑙
, (2.109)

𝑓\,𝑣,𝑙 =
𝑖\R,𝑙 𝑖𝑣𝑙
𝜒𝑙

(
𝑖𝜏𝑙 cos2 (Δ\𝑙/2) + 𝑖\T,𝑙 sin2 (Δ\𝑙/2) ) , (2.110)

𝑓𝜏,𝑣,𝑙 =
𝑖𝜏𝑙 𝑖𝑣𝑙 𝑖\T,𝑙

𝜒𝑙
, (2.111)

𝜒𝑙 = cos2 (Δ\𝑙/2)𝑖𝜏𝑙 (𝑖\T,𝑙 + 𝑖\R,𝑙 + 𝑖𝑣𝑙
)
+ sin2 (Δ\𝑙/2)𝑖\T,𝑙

(
𝑖\R,𝑙 + 𝑖𝑣𝑙

)
, (2.112)

with

𝑖𝜏𝑙 = 𝛿R,T |ℎ𝑙 |2b𝑙
𝛽2
𝑙

𝑐2 , 𝑖\T,𝑙 = 𝛿R,T |ℎ𝑙 |2b𝑙
𝜔2

c𝑆T(\̃T,𝑙)
𝑐2𝑑2

T,s,𝑙

,

𝑖\R,𝑙 = 𝛿R,T |ℎ𝑙 |2b𝑙
𝜔2

c𝑆R(\̃R,𝑙)
𝑐2𝑑2

R,s,𝑙

, 𝑖𝑣𝑙 = 𝛿R,T |ℎ𝑙 |2b𝑙
𝜔2

c𝜌
2
𝑙 𝑡

2
rms,𝑙

𝑐2𝑑2
R,s,𝑙

. (2.113)

The information loss due to the synchronization error is described by

J (d)𝜖clk = z𝜖clkz
T
𝜖clk
/𝐾𝜖clk , (2.114)

where

z𝜖clk =

{∑𝐿
𝑙=1 sin(Δ\𝑙/2)

(
𝑓𝜏,\,𝑙z𝜏,\,𝑙 + 𝑓𝜏,𝑣,𝑙z𝜏,𝑣,𝑙

) + 𝑖𝜏0z𝜏0 , if LOS exists,∑𝐿
𝑙=0 sin

(
Δ\𝑙/2

) ( 𝑓𝜏,\,𝑙z𝜏,\,𝑙 + 𝑓𝜏,𝑣,𝑙z𝜏,𝑣,𝑙), otherwise,
(2.115)

𝐾𝜖clk =

{
𝑖𝜖clk + 𝑖𝜏0 +

∑𝐿−1
𝑙′=1 sin2 (

Δ\𝑙′/2
) (
𝑓𝜏,\,𝑙 + 𝑓𝜏,𝑣,𝑙

)
, if LOS exists,

𝑖𝜖clk

∑𝐿−1
𝑙′=0 sin2 (

Δ\𝑙′
) (
𝑓𝜏,\,𝑙 + 𝑓𝜏,𝑣,𝑙

)
, otherwise.

(2.116)

□



22 2. Performance Limits of Single-Anchor Millimeter-Wave Positioning

Proof: Similar to the proof of Theorem 2.1.
Some remarks on the theorem above should be made. From (2.104), we see that the Doppler shift
of the LOS offers velocity information in the radial direction. In addition, it provides position in-
formation in the transverse direction, which corresponds to angle information. The intuition behind
this is that, as an antenna array provides angle information by sampling the space at different lo-
cations simultaneously, the movement of the receiver also provides angle information by allowing
every single antenna element to sample the space at different locations over time. The intensity
of the position information is proportional to 𝜌2

0𝑡
2
rms,0. As explained in [17], 𝜌0𝑡rms,0 can be inter-

preted as the synthetic array aperture for the LOS path, which is generated by the movement of
the receiver.

For the 𝑙-th single-bounce NLOS path the synthetic array aperture is 𝜌𝑙𝑡rms,𝑙 . From (2.105)-
(2.108) we conclude that, from rank-1 EFIM in R3 in the static scenario, the single-bounce NLOS
paths now offer a rank-2 EFIM in R5. This results from the fact that z𝜏,𝑣,𝑙 is a linear combination
of z𝜏,\,𝑙 and z\,𝑣,𝑙 . The EFIM from the 𝑙-th path is composed by the three rank-1 matrices deter-
mined by z𝜏,\,𝑙 , z𝜏,𝑣,𝑙 and z\,𝑣,𝑙 . Only the first two matrices offer position information, in the same
direction as in the static scenario. More specifically, the first matrix offers position and orientation
information and the second matrix position and velocity information. The third matrix contains
information only about the orientation and the velocity of the receiver.

In case the LOS path exists, at least one NLOS path is additionally required to have a full
rank Jpov, i.e., in order to be able to estimate the position, orientation and velocity. When only
the LOS path is available, the transverse velocity cannot be estimated. Writing vR = 𝑣ru

(
\R,0

) +
𝑣⊥u

(
\R,0

)
, where 𝑣𝑟 and 𝑣⊥ are the radial and transverse velocity components, and plugging it into

the dynamic signal model (2.29), (2.30), we can see that only the radial velocity is observable. This
could also be seen from (2.104), where we observe that the LOS path offers velocity information
only in the radial direction. Therefore, the LOS path allows us to estimate the position and the
radial velocity 𝑣𝑟 , but the NLOS paths enable us to obtain the missing orthogonal component 𝑣⊥
of the velocity vector. This could be very important in the prediction step of position tracking
algorithms. In the NLOS-only case three paths are required to obtain the position, orientation and
velocity of the receiver, even in asynchronous operation.

Similar results, which are omitted for brevity, can be obtained in the case with a moving trans-
mitter with unknown orientation and a static receiver (mobile transmitter localization).

2.5 Geometric Interpretation of Position Information from Single-Bounce
Non-Line-of-Sight (NLOS) paths With and Without Prior Information

For paths corresponding to reflections, the path and its parameters 𝜏′𝑙 , \T,𝑙 and \R,𝑙 can be equiv-
alently described using the concept of VAs [58]. The VAs have a physical interpretation, as they
are mirror images of the physical anchor (PA) with respect to the reflecting surfaces, where the PA
is the device whose position is considered to be known. In Fig. 2.2, which is the same as that of
Fig. 2.1, but including also VAs. With u(\ref,𝑙) denoting the normal vector to the reflecting surface
corresponding to the 𝑙-th path, the position of the VA is

pVA,𝑙 = pT + 2u(\ref,𝑙)uT(\ref,𝑙)
(
ps,𝑙 − pT

)
. (2.117)

(𝜋 − \T,𝑙) + 2𝜙 + \R,𝑙 − 𝜋 = 𝜋 ⇒ 𝜙 = 𝜋−Δ\𝑙
2 , where 𝜙 is the angle between the AOD line and the

surface line. Then, \ref,𝑙 = \R,𝑙 − 𝜋 + 𝜙 + 𝜋/2 = \T,𝑙+\R,𝑙
2 . With simple geometric arguments we can
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Fig. 2.2. Geometric model, example with ULAs at the Tx and Rx.

see that for a single-bounce path

\ref,𝑙 =
\T,𝑙 + \R,𝑙

2
. (2.118)

Given that \T,𝑙 and \R,𝑙 can be expressed as functions of pT, pR and ps,𝑙 via (2.11), (2.12), (2.13)
and (2.14), the concept of the virtual anchor can be used also in the case of a single-bounce scat-
tered path, although without having a physical interpretation in this case. In fact, while for a re-
flected path 𝑝VA,𝑙 is fixed, as it depends on the position of the PA and the reflecting surface, for
a scattered path it can change as the UE moves. Hence, in this case, the term "anchor" is slightly
abused, but it serves the purpose of having an alternative common mathematical description of
single-bounce paths.

We can rewrite the relations connecting the parameters of the NLOS paths with the underlying
geometry (2.8), (2.11) and (2.12) using pVA,𝑙 instead of ps,𝑙 . The delay of the 𝑙-th NLOS path can
be expressed as

𝜏𝑙 = ∥pR − pVA,𝑙 ∥2/𝑐. (2.119)

The expressions for the AOD and AOA depend on the scenario. When the Tx is the PA and the Rx
is the UE, i.e., in a DL scenario, we have

\̃R,𝑙 = atan2
(
𝑝VA,𝑙,y − 𝑝R,y, 𝑝VA,𝑙,x − 𝑝R,x

)
− 𝛼R. (2.120)

From (2.118), (2.120) and

\ref,𝑙 = atan2(𝑝VA,𝑙,y − 𝑝T,y, 𝑝VA,𝑙,x − 𝑝T,x), (2.121)

we get the following expression for the AOD

\̃T,𝑙 = 2 atan2(𝑝VA,𝑙,y − 𝑝T,y, 𝑝VA,𝑙,x − 𝑝T,x) − atan2(𝑝VA,𝑙,y − 𝑝R,y, 𝑝VA,𝑙,x − 𝑝R,x) − 𝛼T. (2.122)

In this section, we consider the case when no prior knowledge on the VAs’ locations is avail-
able, as in Sec. 2.4, but we also extend the analysis to the case of perfect and imperfect prior
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pT

pR

ps,1
\ref,1

pVA,1

p′R

p′s,1

p′VA,1

Fig. 2.3. Potential solutions for 𝑝R, 𝑝s,𝑙 and 𝑝VA,𝑙 explaining the measurements for a single-bounce reflec-
tion.

knowledge on the VAs’ locations. The parameter vector now contains the location of the VAs
instead of the locations of the POIs:

ν =

{
[pT

R, 𝛼R, 𝜖clk,h
T
0 ,p

T
VA,1,h

T
1 , . . . ,p

T
VA,𝐿−1,h

T
𝐿−1]T ∈ R4𝐿+2, 0-th path is LOS,

[pT
R, 𝛼R, 𝜖clk,p

T
VA,0,h

T
0 ,p

T
VA,1,h

T
1 , . . . ,p

T
VA,𝐿−1,h

T
𝐿−1]T ∈ R4𝐿+4, otherwise.

(2.123)

In the case of no knowledge on the VAs’ location, the intensity and direction of position infor-
mation from a single-bounce reflection are given by (2.86) and (2.87), respectively. As discussed
in Sec. 2.4, the direction of position information is always parallel to the reflecting surface and in-
dependent of the Tx and Rx location. At first glance, this is a surprising result, since for LOS paths
the direction of position information depends on pR and pT. A geometrically intuitive explanation
of this result can be obtained from Fig. 2.3. In Fig. 2.3 we consider a single-bounce reflection and
plot two potential geometries {pR,p𝑠,1,pVA,1} and {p′R,p′𝑠,1,p′VA,1} that would produce the same
TOA, AOD and AOA. In fact, there are infinitely many such geometries, parametrized as

pR = pT + _u(\T,𝑙) − (𝑐 · 𝜏𝑙 − _)u(\R,𝑙)
= pT − 𝑐 · 𝜏𝑙u(\R,𝑙) + 2_ cos(Δ\𝑙/2)u(\ref,𝑙), (2.124)

pVA,𝑙 = pT + 2_ cos(Δ\𝑙/2)u(\ref,𝑙), (2.125)
ps,𝑙 = pT + _u(\T,𝑙), (2.126)

with 0 < _ < 𝑐 · 𝜏𝑙 . As can be seen in (2.124), the locus of pR is a line segment normal to the
reflecting surface. Hence, the NLOS path associated with the reflection provides position informa-
tion only in the direction that is perpendicular to this line segment, i.e., in the direction parallel to
the reflecting surface. An implication of this result is that information from single-bounce paths
from parallel (or close to parallel) reflecting surfaces may not suffice for target localization.

We then examine the case where the Rx has prior information on the VAs’ location. Here, we
derive the EFIM and corresponding CRLB treating ν as a deterministic parameter vector, for the
estimation of which two sources of information are used: the received signal and the prior informa-
tion [32]. In this case the FIM is defined as in (2.39), but for the observation-related FIM, instead
of averaging over the prior pdf, we use the true value of ν, as usual for the FIM of deterministic
parameter vectors:

J (o)ν = EY |ν𝑟

[
𝜕 ln 𝑝(Y |ν)

𝜕ν

𝜕 ln 𝑝(Y |ν)
𝜕νT

]
= −EY |ν𝑟

[
𝜕2 ln 𝑝(Y |ν)
𝜕ν𝜕νT

]
(2.127)
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We note that the results in the previous section would remain unchanged, regardless of whether
ν is treated as a deterministic or random vector, as the observation-related part of the FIM is
independent of the value of 𝜖clk.

The prior information on the location of the 𝑙-th VA is encoded by the pdfs N(pVA,𝑙 ,𝚺VA,pr,𝑙).
We express the covariance matrix ΣVA,pr,𝑙 as

𝚺VA,pr,𝑙 = [u
(
\R,𝑙

)
u⊥

(
\R,𝑙

)] [ 𝜎2
𝑙,∥ 𝑠𝑙𝜎𝑙,∥𝜎𝑙,⊥

𝑠𝑙𝜎𝑙,∥𝜎𝑙,⊥ 𝜎2
𝑙,⊥

] [
uT (

\R,𝑙
)

uT
⊥
(
\R,𝑙

) ] . (2.128)

The FIM then reads as

Jν = TJ (o)ν̃ T T +
[
0 0
0 JVA,pr

]
+ 1
𝜎2

clk

e4e
T
4 , (2.129)

where in the case where the LOS path exists

JVA,pr =



02×2 02×2 02×2 . . . 02×2 02×2
02×2 𝚺−1

VA,pr,1 02×2 . . . 02×2 02×2
02×2 02×2 02×2 . . . 02×2 02×2
...

...
...

. . .
...

...
02×2 02×2 02×2 . . . 𝚺−1

VA,pr,𝐿−1 02×2
02×2 02×2 02×2 . . . 02×2 02×2


∈ R2+4(𝐿−1)×2+4(𝐿−1) . (2.130)

If the LOS path does not exist, (2.130) is adjusted accordingly.
The position and orientation EFIM has the form of (2.77), with J (s)NLOS,𝑙 and J (s)𝜖clk given by

J (s)NLOS,𝑙 = [z𝜏𝑙 , z\T,𝑙 , z\R,𝑙 ]M𝑙 [z𝜏𝑙 , z\T,𝑙 , z\R,𝑙 ]T, (2.131)

J (s)𝜖clk = z𝜖clkz
T
𝜖clk
/𝐾𝜖clk , (2.132)

z𝜖clk = 𝑖𝜏0z𝜏0 +
∑︁
𝑙

[z𝜏𝑙 , z\T,𝑙 , z\R,𝑙 ]M𝑙,:,1, (2.133)

𝐾𝜖clk = 𝑖𝜏0 + 𝑖𝜖clk +
∑︁
𝑙

𝑀𝑙,1,1, (2.134)

with the entries of M𝑙 given in Appendix A7. The obtained expressions are quite involved, but are
useful in examining how the position and orientation information from single-bounce NLOS paths
changes when the prior information on the locations of the VAs changes from perfect to none. With
perfectly known VAs’ locations, i.e., 𝜎𝑙,∥ , 𝜎𝑙,⊥ → 0, we have

J (s)NLOS,𝑙 = 𝑖𝜏𝑙z𝜏𝑙z
T
𝜏𝑙 + 𝑖\T,𝑙z\T,𝑙z

T
\T,𝑙
+ 𝑖\R,𝑙z\R,𝑙z

T
\R,𝑙
, (2.135)

z𝜖clk = 𝑖𝜏0z𝜏0 +
∑︁
𝑙

𝑖𝜏𝑙z𝜏𝑙 , (2.136)

𝐾𝜖clk = 𝑖𝜏0 + 𝑖𝜖clk +
∑︁
𝑙

𝑖𝜏𝑙 . (2.137)

It is evident that, when their locations are perfectly known, the VAs act as PAs, offering rank-3
position and orientation information. In other words, the single-bounce NLOS paths behave as
LOS paths between the corresponding VA and the Rx. We also note that, for 𝜎𝑙,∥ , 𝜎𝑙,⊥ → ∞,
(2.135)-(2.137) fall back to (2.85)-(2.90). In Sec. 2.6 we examine how the transition from no to
perfect prior knowledge affects the ability of the Rx to localize itself.
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2.6 Numerical Results

In this section, we numerically evaluate the expressions derived above. After defining the sim-
ulation parameters, we first conduct a comparison of DL and UL positioning with orthonormal
and random beamformers. We then evaluate the accuracy of the asymptotic expressions derived
in Sec. 2.4. We also study the effect of synchronization errors on the achievable positioning accu-
racy. Furthermore, we investigate the impact of mobility on the PEB for different channel types
(LOS-only, NLOS-only, LOS + NLOS) and different levels of synchronization error variance.

2.6.1 Simulation Parameters

We consider a setup where the transmitter and the receiver are equipped with UCAs with _c/2-
spaced elements, where _𝑐 = 𝑐/ 𝑓c with 𝑓c = 38 GHz. The orientation of the arrays is irrelevant as
the SAAF of a UCA is independent of the angle. Unless otherwise specified, we set 𝑁T = 32, 𝑁R =
16 and fix the position of the transmitter at pT = [0 m, 0 m]T. The receiver lies in a 60 m×60 m area
with the transmitter at its center, i.e., −30 m ≤ 𝑝R,𝑥 ≤ 30 m, −30 m ≤ 𝑝R,𝑦 ≤ 30 m. The sampling
frequency is set to 𝑓s = 122.88 MHz, the number of subcarriers is 𝑁 = 64 and 𝑁B = 10 OFDM
symbols are transmitted. The set of loaded subcarriers is P = {−31,−30, . . . ,−1, 1, 2, . . . , 31} and
𝛾 [𝑝] = 1/|P|, ∀𝑝 ∈ P, with |P | = 62. We set the average transmit energy per time domain sample
𝐸T to be such that 𝐸T 𝑓s = 37 dBm. The noise spectral density is 𝑁0 = −174 dBm Hz−1 and the Rx
noise figure is NF = 13 dB, with the variance of the discrete time noise being 𝜎[,R = 𝑁0 · NF.

For the path gains we follow [21]: the magnitude of the coefficient of the LOS path is |ℎ0 | =
_c/(4𝜋𝑑T,R), the magnitude of the NLOS paths is

|ℎ𝑙 | = _c

4𝜋


√
Γrefl,𝑙

𝑑T,s,𝑙+𝑑R,s,𝑙
, for a reflector,√︃

𝜎2
RCS,𝑙
4𝜋

1
𝑑T,s,𝑙𝑑R,s,𝑙

, for a scatterer
(2.138)

and the phase of all the paths is uniformly distributed.

2.6.2 Accuracy of the Asymptotic Expressions

We evaluate the accuracy of the asymptotic expressions derived in Sec. 2.4 for the FIM and, con-
sequently, for the position and orientation CRLB, comparing them with the exact expressions from
Sec. 2.2. The Tx’s reference point is located at the origin, i.e., pT = [0, 0]T. The receiver and
two POIs, which correspond to scattering events, with 𝜎2

RCS,𝑙 = 50 m2, are randomly placed in a
60 m × 60 m square area according to a uniform distribution, with the following two restrictions:
• The Rx is in the far field of the Tx and the POIs are in the far field of the Tx and the Rx, i.e.,{

𝑑T,s,𝑙
}𝐿−1
𝑙=0 > 𝑑f,T and

{
𝑑R,s,𝑙

}𝐿−1
𝑙=0 > 𝑑f,R, where 𝑑f, T = 2𝐷2

max,T/_c and 𝑑f, R = 2𝐷2
max,R/_c are

the Fraunhofer distances of the Tx and Rx arrays.
• The angular separation of the resulting propagation paths both at the transmitter and the re-

ceiver is above a minimum value Δ\min. The threshold is chosen so as to let the asymptotic
orthogonality "kick in" for a reasonable number of antennas; the smaller the minimum angular
separation is, the more antennas are required for the asymptotic bounds to approach the exact
bounds.



2.6 Numerical Results 27

Referring to the exact PEB as PEBex and to the asymptotic PEB as PEBas, we define the relative
error Yas of the asymptotic expressions as

Yas =
PEBas − PEBex

PEBex
. (2.139)

We assume no time synchronization between the Tx and Rx. In Fig. 2.4 we plot Yas as a function of
𝑁T and 𝑁R, for minimum angular separation Δ\min = 5◦ (Fig. 2.4(a)) and Δ\min = 1◦ (Fig. 2.4(b))
averaging over 10000 random realizations of the geometry and the reference signal, whose en-
tries are chosen as random quadrature phase shift keying (QPSK) symbols. In order to keep the
geometry fixed with varying number of antennas and satisfy the far field assumption, we use the
Fraunhofer distance of the largest considered array, i.e., UCA with 50 elements, which is equal to
0.25 mm, to obtain valid geometry realizations according to the aforementioned restrictions. We
can see in Fig. 2.4 that, as the number of Tx and Rx antennas increases, the relative error of the
asymptotic expressions decreases as well. Comparing Figs. 2.4(a) and (b) we observe that the rel-
ative error for minimum angular separation is slightly larger for the same number of antennas. As
explaned above, this is due to the fact the further apart the angles (AOD and/or AOA) of the paths
are, the more accurate the asymptotic orthogonality conditions (2.68)-(2.70) are.

2.6.3 Comparison of Uplink and Downlink Positioning

In Section 2.3, we studied the relation of the PEB in the DL and the UL when the same set of
orthonormal beamforming vectors are used by each device for transmission and reception. We
found that, under the same pseudo-SNR, DL and UL positioning are equivalent. Here, we conduct
a numerical comparison of DL and UL positioning when the devices employ random beamforming
vectors for transmission and reception. We consider the same setup as before: the BS is located
at the origin and the UE and POIs are randomly placed in a 60 m × 60 m square area according
to a uniform distribution, with restrictions stated in Sec. 2.6.2 and minimum angular separation
3◦. We set 𝑀BS = 16, which is 𝑀T in the DL and 𝑀R in the UL. Similarly, we set 𝑀UE = 4,
which is 𝑀R in the DL and 𝑀T in the UL. For each geometry realization, a random realization
of the analog beamforming matrix of the BS (UE) is obtained, with its elements having constant
modulus 1/√𝑁BS (1/√𝑁UE) with random phase uniformly distributed in [−𝜋, 𝜋). The available
transmit energy is uniformly allocated to the beamforming vectors and the subcarriers, i.e.,

𝑁B−1∑︁
𝑏=0

x[𝑝, 𝑏]xH [𝑝, 𝑏] = 𝐸tot

𝑁P

I𝑀T

𝑀T
. (2.140)

To conduct a realistic and fair comparison between the DL and the UL, we refer to [59, Ta-
bles 6.1.1-1 and 6.1.1-4] to set appropriate values for the Tx and the noise figure of the BS and the
UE. For 𝑓c = 38 GHz, which corresponds to frequency range (FR) 2 of 3GPP standards, and an
urban micro scenario we set the Tx energy of the BS and the UE such that 𝐸T,BS 𝑓s = 37 dBm
and 𝐸T,UE 𝑓s = 23 dBm and for their corresponding noise figures we use NFBS = 7 dB and
NFUE = 13 dB.

In Fig. 2.5, using the expressions for the exact CRLB (2.39)-(2.45), we plot the cumulative
distribution function (cdf) for the PEB in the DL and UL for 𝛼UE = 180◦ for perfect synchroniza-
tion and imperfect synchronization with 𝜎clk = 0.5𝑇s. We can see in Fig. 2.5 that the positioning
accuracy in the DL is higher than in the UL. With perfect synchronization, the PEB at the 95-th
percentile being 0.04 m in the DL and 0.11 m in the UL. With imperfect synchronization the PEB
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Fig. 2.5. DL and UL positioning comparison with random beamforming vectors for transmission and re-
ception.

at the 95-th percentile is 1.07 m and 1.12 m for 𝜎clk = 0.5𝑇s and 2.05 m and 2.44 m for 𝜎clk = 2𝑇s
in the DL and the UL, respectively. The superior performance of the DL is attributed to its higher
pseudo-SNR, as 𝛿DL/𝛿UL = 2 dB. Furthermore, we can observe that the synchronization accu-
racy has a significant impact on the achievable positioning accuracy, due to the drastic decrease
of range information obtained from the LOS path. Nevertheless, we can see that the presence of
the single-bounce NLOS paths allows us to obtain good positioning accuracy under imperfect syn-
chronization compared to the LOS-only case, where the PEB would be lower bounded by 𝜎clk𝑐0,
which is equal to 1.22 m and 4.88 m for 𝜎clk = 0.5𝑇s and 𝜎clk = 2𝑇s, respectively. In the following
section, we examine the effect of synchronization in more detail.

2.6.4 The Importance of Synchronization

As seen in the last section, we saw that the time synchronization error can have a significant impact
on the achievable localization accuracy. In this section, we have a closer look at the impact of the
synchronization error and how the exploitation of single-bounce NLOS paths can help to mitigate
it.

We first consider a setup with parameters as described in Sec. 2.6.1, with one POI with fixed
position at ps,1 = [10 m, 0 m]T, and compute the asymptotic PEB for all possible Rx locations
in the considered rectangular area. In Fig. 2.8 we plot the asymptotic PEB for a receiver with
perfect synchronization (Fig. 2.8(a)) and with imperfect synchronization with 𝜎clk = 0.5𝑇s ≈ 4 ns
(Fig. 2.8(b)). In Fig. 2.6 we see that, under perfect Tx-Rx synchronization, the PEB is below 4 cm
for all considered Rx locations. In addition, since the contour lines are concentric circles with the
Tx at their center, the PEB depends only on the Tx-Rx distance. In this case, the range and angle
Fisher information from the LOS path are dominant compared to the Fisher information provided
by the NLOS paths. With the Tx being equipped with a UCA, the Fisher information on the AOD is
independent of the AOD and depends on the Tx-Rx distance through the SNR. This, together with
the fact that the range information also depends only on the distance through the SNR, explains
the shape of the contour lines.
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(b) Imperfect synchronization: 𝜎clk = 0.5𝑇s ≈ 4 ns.
Fig. 2.6. PEB in m for Rx localization with pT = [0 m, 0 m]T,ps,1 = [10 m, 0 m]T under different levels
of synchronization error variance. The position of the Tx is shown with a square and the position of the POI
with a circle.

We can see in Fig. 2.6(b) that clock synchronization errors with standard deviation as small as
0.5𝑇s ≈ 4 ns, corresponding to 𝑐𝜎clk = 1.22 m, can severely degrade the achievable positioning
accuracy, compared to the case with perfect synchronization. It is evident that the shape of the
contour lines is different and the PEB depends not only on the range, but also on the angular
component of the Rx’s position. When the receiver lies near the line between the Tx and the POI
(𝑝R,x close to 0) the PEB reaches its maximum value (𝑐 ≈ 𝜎clk = 1.22 m), which is approximately
that of a LOS-only setup (see also the discussion after Theorem 2.1). To better understand this
result and link it to our theoretical analysis in Sec. 2.4 we consider two regions near the line
𝑝R,x = 0 separately:
• 𝑝T,x < 𝑝R,x < 𝑝s,1,x: In this area the Rx lies between the Tx and the POI. Since \R,1 ≈ \T,1,

from (2.87) we conclude that the path offers information in the direction which is orthogonal to
the radial direction, hence it offers information only on the angular component of the position.
Thus, it cannot counteract the loss of range information due to imperfect synchronization.

• 𝑝R,x < 𝑝T,x or 𝑝R,x > 𝑝s,1,x: In this area the POI lies between the Tx and Rx, with \R,1 ≈
\T,1 ± 𝜋. In this case, the path offers information in the radial direction, with intensity 𝑖1 = 𝑖𝜏1 .
Nevertheless, from (2.89) and (2.90), with sin(Δ\1/2) ≈ 1 much of this information is lost due
to imperfect synchronization. As 𝜎clk → ∞ all available range information is lost. Intuitively,
this result makes sense, as the single-bounce NLOS path is almost indistinguishable from the
LOS path, when the Rx lies in this area. It is, therefore, difficult for the Rx to extract any
additional information from it that would help resolving the synchronization error.
To also examine the effect of the synchronization error on the orientation estimation accuracy,

in Fig. 2.7 we plot the OEB for the same setup with 𝜎clk = 0.5𝑇s. It is evident that the OEB
depends only on the Tx-Rx distance and not on the angular component of the Rx’s position. The
information from the LOS path is sufficient for the Rx to reliably estimate the orientation and it
is not affected by the synchronization error. For example, the Rx can get an estimate �̂�R of the
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Fig. 2.7. OEB in ◦ for Rx localization with pT = [0 m, 0 m]T,ps,1 = [10 m, 0 m]T with 𝜎clk = 0.5𝑇s. The
position of the Tx is shown with a square and the position of the POI with a circle.

orientation by �̂�R = \̃T,0 + 𝛼T + 𝜋 − \̃R,0. The additional information on the orientation offered by
the NLOS path is insignificant compared to that of the LOS path. Hence, the contour plots for any
level of synchronization are almost identical and therefore not shown here.

We then consider an additional POI at ps,2 = [−8 m, 12 m]T and in Fig. 2.8 we plot the asymp-
totic PEB for a receiver with imperfect synchronization with 𝜎clk = 0.5𝑇s ≈ 4 ns (Fig. 2.8(b)) and
𝜎clk = 2𝑇s ≈ 16 ns (Fig. 2.8(c)), and without synchronization (Fig. 2.8(d)). For perfect synchro-
nization the result is identical to Fig. 2.6(a) We can see in Fig. 2.8(a) that the PEB is significantly
improved compared to Fig. 2.8(b) due to the information offered by the additional POI, especially
near the line 𝑝R,x = 0, and it is much lower than that of the LOS-only setup almost for the entire
considered region. Furthermore, the PEB reaches its maximum value in the areas behind the POIs.
As explained in the discussion of Fig. 2.8(b), in the area behind a POI, this POI can hardly help
resolving the synchronization error and the Rx relies mainly on the other POI, whose information
intensity naturally decreases with increased propagation distance. This explains the curvature of
the contour lines in these regions. Also, the PEB is much lower than that of the LOS-only setup
(≈ 4.88 m) for the entire considered region.

In Fig. 2.8(c) we see that an increase of 𝜎clk results in deterioration of the achievable posi-
tioning accuracy, mainly in the regions which are far from the POIs (close to the corners of the
box). With increasing 𝜎clk, the system relies more on the weak NLOS components to obtain range
information and, therefore, the PEB is increased. This effect is even more pronounced in the asyn-
chronous case shown in Fig. 2.8(d). Nevertheless, we can conclude that, even in the asynchronous
case, the exploitation of single-bounce NLOS allows us to obtain good positioning accuracy.

In order to further study the effect of synchronization on positioning accuracy, in Fig. 2.9 we
plot the PEB as a function of 𝜎clk/𝑇s with the receiver’s position fixed at pR = [25 m, 10 m]T.
To also evaluate the performance of NLOS-only positioning, which requires at least 4 paths in the
asynchronous case, we add extra reflectors at ps,3 = [12 m, 8 m]T and ps,4 = [7 m, −6 m]T. The
following 5 cases are considered: (i) LOS-only: only the LOS path is available; (ii) 3 NLOS-only:
only 3 NLOS paths (corresponding to ps,1,ps,2 and ps,3) are available; (iii) LOS + 3 NLOS: the
LOS and the 3 NLOS paths are available; (iv) 4 NLOS-only: only 4 NLOS paths are available; (v)



32 2. Performance Limits of Single-Anchor Millimeter-Wave Positioning

D
ra

ft
:S

ep
te

m
be

r7
,2

02
2

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

0.050.050.050.050.05

0.05

0.05

0.
05

0.05

0.10

0.10

0.10
0.

10

0.10

0.10 0.10

0.20

0.
20

0.
20

0.20

0.2
0

0.2
0

0.20 0.20

0
.40

0.40
0.40

0.40

0.40

0.40

0.4
0

0
.40 0.4

0

0.60

0.
60

0.
60

0.60

0.6
0

0.
60

0.80

0.8
0

0.80

0.
80

0.
80

1.
00

𝑝R,x in m

𝑝
R
,y

in
m

(a) Imperfect synchronization: 𝜎clk = 0.5𝑇s ≈ 4 ns.
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(b) Imperfect synchronization: 𝜎clk = 2𝑇s ≈ 16 ns.
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(c) No synchronization.
Fig. 2.8. PEB in m for Rx localization with pT = [0 m, 0 m]T,ps,1 = [10 m, 0 m]T and ps,2 =
[−8 m, 12 m]T under different levels of synchronization error variance. The position of the Tx is shown
with a square and the positions of the POIs with circles.
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LOS + 4 NLOS: the LOS and the 4 NLOS paths are available. In the LOS-only case and in the
NLOS-only case with 3 NLOS paths, the accuracy is significantly degraded with increasing 𝜎clk,
as the performance of these cases is lower-bounded by the standard deviation of the ranging error
caused by the synchronization error. On the other hand, with 4 NLOS paths, the PEB of NLOS-
only positioning saturates with increasing 𝜎clk, as the synchronization error can be resolved using
the paths. Similarly, when both LOS and NLOS paths are present, the PEB saturates, with the
saturation value improving with increasing number of paths.

We note here that this result is relevant even for two-way localization schemes [60], which
lift the requirement for tight Tx and Rx synchronization by employing transmission and reception
of reference signals from both devices. In such schemes, each device has to measure and report
to the position estimating entity the time difference between reception and transmission. These
measurements include timing errors, which are induced by the time delay from the time when the
signal is generated/digitized at baseband and the time when the RF signal is transmitted/received
at the Tx/Rx antenna [5, Sec. 3.1]. The effect of these timing errors on the positioning accuracy is
the same as that of the synchronization errors considered in this work and their values in cellular
positioning accuracy studies are assumed to be in the order of a few nanoseconds [61], which,
as shown by numerical results in Chapter 2, have a severe impact on accuracy. Therefore, such
schemes would also benefit from exploiting NLOS paths and even optimize the reference signal to
this end, as demonstrated in Chapter 4.

2.6.5 The Effect of Doppler Shifts

We consider the setup described in Section 2.6.1, with two POIs at ps,1 = [10 m, 0 m]T and ps,2 =
[−8 m, 12 m]T, and 𝜎clk = 2𝑇s. The receiver is now moving with velocity vR = u(𝜋/2)100 km h−1.
The number of CP samples is set to 𝑁𝐶𝑃 = 12, so that the CP duration can accommodate
the maximum delay spread for the given setup. Instead of 𝑁B = 10 OFDM symbols, we now
transmit 𝑁B = 200 OFDM symbols to make the synthetic array aperture comparable to the
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Fig. 2.10. Mobile Rx localization with pT = [0 m, 0 m]T,ps,1 = [10 m, 0 m]T and ps,2 = [−8 m, 12 m]T,
Rx velocity vR = u(𝜋/2)60 km h−1 and 𝜎clk = 2𝑇s ≈ 16 ns. The position of the Tx is shown with a square
and the positions of the POIs with circles.

physical aperture of the Rx antenna array, with the corresponding transmission duration being
𝑇Tx = 𝑁𝐵 (𝑁 + 𝑁𝐶𝑃)𝑇s ≈ 0.12 ms and an rms duration of 𝑡rms = 0.036 ms. The distance trav-
eled by the Rx during transmission is ∥vR∥2𝑇T = 3.4 mm, which is smaller than the wavelength
_c = 7.9 mm. The maximum synthetic array aperture is ∥vR∥2𝑡rms ≈ 1 mm, while the physical
array aperture is

√︁
𝑆R(\𝑅,𝑙) = 7.1 mm2. To keep the total transmit energy the same as in the last

section, we scale down the Tx energy such that 𝐸T 𝑓s = 37 dBm − 10 log10(200/10) ≈ 24 dBm, so
as to observe the effect of the Rx’s movement for the same Rx SNR.

In Fig. 2.10(a) we plot the PEB and in Fig. 2.10(b) the VEB for the considered rectangular area.
It is evident from Fig. 2.10(a) that in the considered setup the additional information offered by the
movement of the Rx through the Doppler shifts is insignificant compared to the information offered
by other channel parameters. The same result is obtained when assuming known Rx velocity. We
note here that a longer transmission duration would make the impact of the Doppler shifts stronger,
but in such a case the Rx displacement during transmission might exceed the wavelength and
the assumption that the channel parameters, more particularly the channel gains, remain constant
becomes rather unrealistic. A possible remedy for this situation would be to assume that all other
parameters remain constant during the transmission and the channel gains remain constant only for
a given number of OFDM symbols. One could then consider a parameter vector including a series
of gains for each path (instead of one channel gain for each path), but this is out of the scope of
this work.

Although mobility does not have a significant impact on the achievable positioning accuracy,
the estimation of the velocity itself is of interest. In addition, an accurate estimate of the velocity
might be very useful in the prediction step of tracking methods. We can see in Fig. 2.10(b) that
the presence of NLOS single-bounce paths makes the estimation of the instantaneous velocity
possible, unlike the LOS-only case, where only the radial velocity can be estimated. Nevertheless,

2Not to be confused with the largest dimension of the Rx array (2.6), which in this case is 𝐷max,R ≈ 2 cm.
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Fig. 2.11. PEB vs speed for LOS and NLOS receiver localization for imperfect synchronization (𝜎clk = 2𝑇s)
with pT = [0 m, 0 m], pR = [18 m, 3 m]T, ps,1 = [10 m, 0 m]T and ps,2 = [−8 m, 12 m]T, ps,3 =
[12 m, 8 m]T, velocity direction vR/∥vR∥2 = u(𝜋/2).

we can observe that the attained is VEB quite high for a large fraction of the considered area and
it is lower than 5 km h−1 only for an area close to the Tx and POIs.

To gain further insight on the effect of velocity, in Fig. 2.11 we plot the PEB as a function
of the speed, i.e., ∥vR∥2, for a system with imperfect (𝜎clk = 2𝑇s) synchronization, considering
the cases where the velocity is known or unknown. Again, we fix the receiver’s position at pR =
[25 m, 10 m]T and add an extra reflector at ps,3 = [12 m, 8 m]T. We consider three different cases:
(i) LOS-only: only the LOS path is available; (ii) NLOS-only: only the 3 NLOS paths are available;
(iii) LOS+NLOS: the LOS and the 3 NLOS paths are available. A few interesting observations can
be made from Fig. 2.11. The accuracy of the LOS-only case is lower bounded by the standard
deviation 𝑐𝜎clk ≈ 2.44 m of the ranging error induced by the synchronization error. From the
LOS+NLOS curves, we first observe that the information from the NLOS paths is very important
as it allows the receiver to resolve the synchronization error, as discussed before. Similarly to
Fig. 2.10, we can see that the movement of the receiver has a small impact on the PEB, when
the LOS path is present. On the contrary, in the NLOS-only case, mobility has a strong impact,
with the PEB decreasing significantly with increasing speed. This can be understood by comparing
(2.85)-(2.87) with (2.105)-(2.108): the additional sources of position and orientation information
(2nd and 3rd matrices in (2.105)), whose intensities are proportional to 𝜌2

𝑙 , allow the receiver to
better resolve the synchronization error, while in the static scenario its accuracy is lower bounded
by 𝑐𝜎clk.

2.6.6 The Effect of Prior Information on Single-Bounce NLOS Paths

In this section, we study the effect of prior information on single-bounce NLOS paths, more par-
ticularly on the location of their corresponding VAs. To this end, we consider the setup depicted in
Fig.2.12, where the Tx lies at the origin and the Rx at pR = [12.5, 5]Tm. The VAs resulting from
single-bounce reflections at the room’s walls are located at pVA,1 = [0, 25]Tm, pVA,2 = [0,−25]Tm
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Fig. 2.12. Geometric setup for the evaluation of the effect of prior information on the location of VAs.

and pVA,3 = [60, 0]Tm. In order to concentrate on the potential implications of the results presented
in Sec. 2.5, we assume that the Rx orientation 𝛼R is known and the Tx and Rx are perfectly syn-
chronized. We consider two NLOS-only cases:

• case A: the paths corresponding to the 1st and 2nd VAs are received;

• case B: the paths corresponding to the 2nd and 3rd VAs are received.

The amplitude of the complex path gain of the 𝑙-th path is |ℎ𝑙 | = √𝛾𝑙_/(4𝜋𝑑𝑙), where 𝛾𝑙 = 0.1 ∀𝑙,
is the reflection coefficient, and the phase is uniformly distributed.

From the analysis in Sec. 2.5 we have a clear picture about the position information offered
by single-bounce NLOS paths under perfect or no prior knowledge of their corresponding VAs
locations. To gain more insight about the intermediate cases, setting 𝑠2 = 0 and 𝜎2,∥ = 𝜎2,⊥ =
𝜎ref/
√

2, we plot the eigenvalues and the directions of the eigenvectors for varying 𝜎ref in Fig. 2.13.
We see that, as expected, when knowledge about the VA’s position is accurate (𝜎ref → 0), for
known orientation and perfect synchronization (in this case z\T,𝑙 = z\R,𝑙 = uT

⊥(\R,𝑙)), J2 has
two strong eigenvalues, with the eigenvectors pointing in the radial and the tangential direction.
As 𝜎ref increases, the strongest eigenvalue decreases, starting from 𝐽𝜏2/𝑐2 and converges to 𝑗2,
while the second eigenvalue vanishes, resulting in a rank-1 J2. The direction of the eigenvector
corresponding to the strongest eigenvalue gradually changes from \R,2 + 𝜋 (radial direction), to
\ref,2 + 𝜋/2, that is parallel to the reflecting surface.
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Fig. 2.14. Rx and VA 2 PEB as function of the prior VA position error 𝜎ref.

In Fig. 2.14 we plot the PEB of the Rx and VA 2 for the two considered cases as functions
of 𝜎ref. We set again 𝑠𝑙 = 0 and 𝜎𝑙,∥ = 𝜎𝑙,⊥ = 𝜎ref/

√
2, 𝑙 = 1, 2, 3. We see that for 𝜎ref → 0

the PEB of VA 2 converges to 0, while the Rx PEB converges to its lowest value as the two
paths behave as LOS paths, providing position information in independent directions. In case A,
as 𝜎ref increases, the two paths provide position information in almost the same direction, as they
arise from parallel reflecting surfaces, with the available information in the orthogonal direction
decreasing with increasing 𝜎ref. As a result, for high values of 𝜎ref (i.e., less accurate prior) the
PEB of the Rx and VA 2 grows linearly with 𝜎ref. For moderate values of 𝜎ref (< 1 m), good
positioning accuracy is achievable, as the directions of the strongest eigenvectors of J1 and J2 are
sufficiently distinct. On the contrary, in case B, the PEB of the Rx and VA 2 saturates for high
values of 𝜎ref, as the two paths provide position information in different directions, resulting from
the two perpendicular walls. Therefore, combining the two NLOS paths, the Rx and VA positions
can be resolved.
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3. Parameter Estimation for Single-Anchor Positioning

In this chapter we present a novel algorithm for Rx position, orientation and clock offset estimation.
We consider a static setup and a narrowband signal model, with WT = I𝑁T and WR = I𝑁R , i.e., no
analog precoding or Rx combining applied. In the first step of the algorithm an off-grid parameter
estimation algorithm based on [48] is employed to recover the number paths and their respective
TOAs, AODs and AOAs. In the second step, the recovered channel parameters are mapped to the
position parameter vector ν.

3.1 Off-grid Compressed Sensing-based Channel Parameters Estimation
We first rewrite the signal model (2.22) by stacking the observations over subcarriers P =
{𝑝1, . . . , 𝑝𝑁P} = {−𝑁P/2, . . . ,−1, 1, . . . , 𝑁P/2}

Y𝑏 =
𝐿−1∑︁
𝑙=0

ℎ𝑙aR(\̃R,𝑙)aT
T(\̃T,𝑙)X𝑏 diag(a𝜏 (𝜏′𝑙 )) +N𝑏

=
𝐿−1∑︁
𝑙=0

ℎ𝑙C𝑏 (𝜏′𝑙 , \̃T,𝑙 , \̃R,𝑙) +N𝑏, (3.1)

where

C𝑏 (𝜏′, \̃T, \̃R) = aR(\̃R)aT
T(\̃T)X𝑏 diag(a𝜏 (𝜏′)) ∈ C𝑁R×𝑁P , (3.2)

a𝜏 (𝜏′) = [e− j𝜔𝑝1𝜏
′
, . . . , e− j𝜔𝑝𝑁P

𝜏′]T ∈ C𝑁P , (3.3)
Y𝑏 = [y[𝑝1, 𝑏], . . . , y[𝑝𝑁P , 𝑏]] ∈ C𝑁R×𝑁P , (3.4)
X𝑏 = [x[𝑝1, 𝑏], . . . ,x[𝑝𝑁P , 𝑏]] ∈ C𝑁T×𝑁P , (3.5)
N𝑏 = [η[𝑝1, 𝑏], . . . ,η[𝑝𝑁P , 𝑏]] ∈ C𝑁R×𝑁P . (3.6)

By stacking the observations over 𝑁B OFDM symbols, we get

Y =
𝐿−1∑︁
𝑙=0

ℎ𝑙C (𝜏′𝑙 , \̃T,𝑙 , \̃R,𝑙) +N (3.7)

where

Y = [Y T
0 , . . . ,Y

T
𝑁B−1]T ∈ C𝑁R𝑁B×𝑁P , (3.8)

C (𝜏′, \̃T, \̃R) = [CT
0 (𝜏′, \̃T, \̃R), . . . ,CT

𝑁B−1(𝜏′, \̃T, \̃R)]T ∈ C𝑁R𝑁B×𝑁P , (3.9)

N = [NT
0 , . . . ,N

T
𝑁B−1]T ∈ C𝑁R𝑁B×𝑁P . (3.10)
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For our positioning purposes, we would like to recover the number of paths, along with their
respective gains, TOAs, AODs and AOAs. Hence, we aim to solve the following optimization
problem

min
𝐿′,{𝜏′

𝑙
,\̃T,𝑙 ,\̃R,𝑙 ,ℎ𝑙}𝐿′−1

𝑙=0

Λ(R({𝜏′𝑙 , \̃T,𝑙 , \̃R,𝑙 , ℎ𝑙}𝐿′−1
𝑙=0 )), (3.11)

where

Λ(R) = 1
2
∥R∥2𝐹 (3.12)

is the loss function and

R({𝜏′𝑙 , \̃T,𝑙 , \̃R,𝑙 , ℎ𝑙}𝐿′−1
𝑙=0 ) = Y −

𝐿′−1∑︁
𝑙=0

ℎ𝑙C (𝜏′𝑙 , \̃T,𝑙 , \̃R,𝑙) (3.13)

is the residual. The problem (3.11) is non-convex in all optimization variables. Furthermore, with
noisy observations Y , in order to minimize the objective, the number of detected paths 𝐿′ can
grow arbitrarily large. Therefore, a constraint or a penalty term to limit 𝐿′ is required to make
the representation more parsimonious. As usual in sparse recovery setups, instead of using the
L0 norm ∥h∥0 of h = [ℎ0, . . . , ℎ𝐿−1]T, which is non-convex, we use the convex L1 norm ∥h∥1.
Hence, we set up the following optimization problem:

min
𝐿′,{𝜏′

𝑙
,\̃T,𝑙 ,\̃R,𝑙 ,ℎ𝑙}𝐿′−1

𝑙=0

Λ(R({𝜏′𝑙 , \̃T,𝑙 , \̃R,𝑙 , ℎ𝑙}𝐿′−1
𝑙=0 )) + 𝜒∥h∥1, (3.14)

where 𝜒 is the regularization parameter. Larger values of 𝜒 promote sparser solutions, i.e., smaller
values of 𝐿′ at the expense of less accurate explanation of the measurements.

We solve problem (3.14) using the algorithmic framework of [48], termed as Alternating De-
scent Conditional Gradient Method (ADCGM), which is described in Alg. 1. Alg. 1 takes the
following inputs:
• The reference signal X = [XT

1 , . . . ,X
T
𝑁B
]T.

• The observations Y .
• The noise variance 𝜎2

[,R.
• The maximum number of detected paths 𝐿max, which limits the amount of algorithmic itera-

tions that can be performed.
• The probability of false alarm 𝑃fa, which describes the probability that noise is falsely detected

as a path of the channel. Given 𝑃fa, along with X and 𝜎2
[,R, we can compute the appropriate

value of the threshold Z1 that results in the desired 𝑃fa. The choice of probability of false alarm
controls a trade-off between false alarms and missed detections. For our numerical results, we
avoid an analytic computation of Z1, as it is rather complicated for an arbitrary reference signal
X , and compute it numerically.

• The parameter Z2 which is used in the path pruning step, to discard paths whose gain is effec-
tively zero. We provide more details in Sec. 3.1.4.2.

• The number of inner coordinate descent iterations 𝑁cd.
The output of the algorithm is the rank of the channel 𝐿′ and the path parameters
{𝜏′𝑙 , \̃T,𝑙 , \̃R,𝑙 , ℎ𝑙}𝐿′−1

𝑙=0 . The number of detected paths at the start of the 𝑖-th iteration is denoted
as 𝐿 (𝑖) . The TOAs of the detected paths at the start of the 𝑖-th iteration are stacked in the sequence
τ ′(𝑖) = (𝜏′0 (𝑖) , . . . , 𝜏′𝐿 (𝑖)−1

(𝑖))T ∈ R𝐿 (𝑖) and θ̃(𝑖)T , θ̃(𝑖)R and h(𝑖) are defined accordingly. In the follow-
ing, we describe the steps of the algorithm in detail.
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Algorithm 1 Channel parameter estimation with ADCGM

Input: {X𝑏}𝑁B
𝑏=1, Y , 𝜎

2
[,R, 𝐿max, 𝑁cd, 𝑃fa, Z2

Initialize: τ ′(0) , θ̃(0)T , θ̃(0)R ,h(0) = ( ), 𝑖 = 0
do

1. Compute residual R𝑖

2. Detect next potential path according to (3.18) or (3.21) and (3.22) to get 𝜏′(𝑖) , \̃ (𝑖)T and \̃ (𝑖)R
if

�� tr(RH
𝑖 C (𝜏(𝑖) , \̃ (𝑖)T , \̃

(𝑖)
R )

�� < Z1(X , 𝜎2
[,R, 𝑃fa) then

stop program
end if
3. Update support, adding the new potential path to the existing ones according to (3.23)-

(3.25) to obtain τ ′(𝑖+1) , θ̃(𝑖+1)T , θ̃(𝑖+1)R
4. Coordinate descent on non-convex objective:
for 𝑗 = 1 to 𝑁cd do

(a) Compute gains:

h(𝑖+1) = argminhΛ(R({𝜏′(𝑖+1)𝑙 , \̃ (𝑖+1)T,𝑙 , \̃ (𝑖+1)R,𝑙 , ℎ𝑙}𝐿 (𝑖)𝑙=0 )) + 𝜒∥h∥1
(b) Prune support:

τ ′(𝑖+1) , θ̃(𝑖+1)T , θ̃(𝑖+1)R ,h(𝑖+1) ← prune(τ ′(𝑖+1) , θ̃(𝑖+1)T , θ̃(𝑖+1)R ,h(𝑖+1); Z2)

(c) Locally improve support:

τ ′(𝑖+1) , θ̃(𝑖+1)T , θ̃(𝑖+1)R ,h(𝑖+1) ← local_descent(τ ′(𝑖+1) , θ̃(𝑖+1)T , θ̃(𝑖+1)R ,h(𝑖+1))

end for
𝑖 = 𝑖 + 1

while 𝑖 < 𝐿max
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3.1.1 Step 1: Residual Computation

In the first step of the algorithm, the current residual R𝑖 is computed according to (3.13) employing
τ ′(𝑖) , θ̃(𝑖)T , θ̃(𝑖)R and h(𝑖) , with

R𝑖 = [RT
𝑖,0, . . . ,R

T
𝑖,𝑁B−1]T, (3.15)

R𝑖,𝑏 = [r𝑖 [𝑝1, 𝑏], . . . , r𝑖 [𝑝𝑁P , 𝑏]] = Y𝑏 −
𝐿 (𝑖)−1∑︁
𝑙=0

ℎ𝑙C𝑏 (𝜏′𝑙 (𝑖) , \̃ (𝑖)T,𝑙 , \̃
(𝑖)
R,𝑙) ∈ C𝑁R×𝑁P . (3.16)

3.1.2 Step 2: Detection of a New Potential Path

In order to get the next potential path, we have to solve the following optimization problem

𝜏′(𝑖) , \̃ (𝑖)T , \̃
(𝑖)
R = argmax

(𝜏′,\̃T,\̃R)∈Ω

�� tr(RH
𝑖 C (𝜏′, \̃T, \̃R))

��, (3.17)

where Ω = [0, 𝑇CP] × [−𝜋, 𝜋) × [−𝜋, 𝜋) is the 3D parameter space.
A detailed mathematical justification of this step can be found in [48] and in Appendix A8,

but we briefly provide an explanation here: Conditional gradient descent methods are based on
successive linearizations of the convex objective and minimization of the linearized objective over
the feasible set. Problem (3.14) can be expressed as a convex optimization problem with respect
to the sparse atomic measure ` =

∑𝐿−1
𝑙=0 ℎ𝑙𝛿𝜏′,\̃T,\̃R

. The solution of (3.17) corresponds to the mini-
mization of the linearized objective. Intuitively, for our specific choice of the loss function, in this
step we identify the potential path whose contribution to the observations C (𝜏′, \̃T, \̃R) has the
maximum correlation with the current residual R𝑖.

The problem at hand (3.17) is non-convex with respect to (w.r.t.) all optimization variables. It
can be solved approximately by discretizing the 3D parameter space Ω to get an 𝑁𝜏 × 𝑁\T × 𝑁\R-
dimensional grid ΩG = G𝜏 ×G\T ×G\R , where G𝜏, G\T and G\R are the TOA, AOD and AOA grids
and 𝑁𝜏, 𝑁\T and 𝑁\R are their corresponding sizes. We maximize the objective over ΩG as

𝜏′(𝑖) , \̃ (𝑖)T , \̃
(𝑖)
R = argmax

(𝜏′,\̃T,\̃R)∈ΩG

�� tr(RH
𝑖 C (𝜏′, \̃T, \̃R))

��, (3.18)

At this point, it is instructive to consider the computational complexity that such a solution entails.

3.1.2.1 Computational Complexity of New Potential Path Detection

As a measure of computational complexity, we consider the number of complex multiplications,
which is sufficient for an approximate evaluation. Although we do not consider optimal algorithms
for matrix multiplications, we do avoid obvious repetitions of computations where appropriate.
The first step is to rewrite the objective of (3.17) as

𝑔𝑠 (𝜏′, \̃T, \̃R) =
�� tr(RH

𝑖 C (𝜏′, \̃T, \̃R))
��

(𝑎)
=

��� tr (∑︁𝑁B−1

𝑏=0
RH
𝑖,𝑏C𝑏 (𝜏′, \̃T, \̃R)

)���
(𝑏)
=

��� tr (∑︁𝑁B−1

𝑏=0
RH
𝑖 aR(\̃R,𝑙)aT

T(\̃T,𝑙)X𝑏 diag(a𝜏 (𝜏′𝑙 ))
)���

(𝑐)
=

���aT
T(\̃T)

(∑︁𝑁B−1

𝑏=0
X𝑏 diag(a𝜏 (𝜏′))RH

𝑖,𝑏

)
aR(\̃R)

���, (3.19)
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where (a) follows from (3.9) and (3.15), (b) follows from (3.2) and (c) follows from the property
of the trace operator tr(AB) = tr(BA).

For a given value 𝜏′ on the defined grid, we count the complex multiplications required for the
computation of the matrix in the parentheses. The product of X𝑏 and diag(a𝜏 (𝜏′)) requires 𝑁T𝑁P.
For the product of the resulting matrix with R𝑖,𝑏, 𝑁T𝑁R𝑁P multiplications are required. Hence, for
the computation of the matrix in the parentheses, 𝑁B𝑁T𝑁P(𝑁R + 1) multiplications are required.
For our purposes, considering only the dominant term 𝑁B𝑁T𝑁P𝑁R is sufficient. Then, the product
of the resulting 𝑁T × 𝑁R matrix with aT

T(\̃T) for all values \̃T on the grid is computed, requiring
𝑁\T𝑁T𝑁R. Each of the 𝑁\T resulting vectors is multiplied with aR(\̃R) for each value \̃R on the
grid, resulting in 𝑁\T𝑁R𝑁\R multiplications Therefore, for a single value 𝜏′, 𝑁R(𝑁T𝑁P𝑁B+𝑁\T𝑁T+
𝑁\T𝑁\R) multiplications are required. Hence, the computational complexity for detecting the new
potential path is O(𝑁𝜏𝑁R(𝑁T𝑁P𝑁B+𝑁\T𝑁T+𝑁\T𝑁\R)). The resulting expression corresponds to a
specific order of computation and slightly different expressions may be obtained for an alternative
computation order, but the conclusions remain intact.

3.1.2.2 Reduction of the Computational Complexity of New Potential Path Detection

The computational complexity of the search on the 3D grid is high, and, in fact, it is the one
dominating the computational complexity of Alg. 1. It is possible to reduce the 3D search to a 2D
and a one-dimensional (1D) search as follows

𝑔𝑠 (𝜏′, \̃T, \̃R) =
���aT

T(\̃T)
( 𝑁B−1∑︁
𝑏=0

X𝑏 diag(a𝜏 (𝜏′))RH
𝑖,𝑏

)
aR(\̃R)

���
=

����� 𝑁B−1∑︁
𝑏=0
[aT

T(\̃T)x[𝑝1, 𝑏], . . . ,aT
T(\̃T)x[𝑝𝑁P , 𝑏]]

×

e− j𝜔𝑝1𝜏

′
. . . 0

...
. . .

...

0 . . . e− j𝜔𝑝𝑁P
𝜏′



rH
𝑖 [𝑝1, 𝑏]aR(\̃R)

...
rH
𝑖 [𝑝𝑁P , 𝑏]aR(\̃R)


���������

=
��� ∑︁
𝑝∈P

𝑁B−1∑︁
𝑏=0

rH
𝑖 [𝑝, 𝑏]aR(\̃R)aT

T(\̃T)x[𝑝, 𝑏] e− j𝜔𝑝𝜏
′
���

(𝑎)≤
∑︁
𝑝∈P

��� 𝑁B−1∑︁
𝑏=0

rH
𝑖 [𝑝, 𝑏]aR(\̃R)aT

T(\̃T)x[𝑝, 𝑏] e− j𝜔𝑝𝜏
′
���

=
∑︁
𝑝∈P

��� 𝑁B−1∑︁
𝑏=0

rH
𝑖 [𝑝, 𝑏]aR(\̃R)aT

T(\̃T)x[𝑝, 𝑏]
���

=
∑︁
𝑝∈P

���aT
T(\̃T)X𝑝R

H
𝑖,𝑝aR(\̃R)

���, (3.20)

where X𝑝 = [x[𝑝, 0], . . . ,x[𝑝, 𝑁B−1]] ∈ C𝑁T×𝑁B , R𝑖,𝑝 = [r𝑖 [𝑝, 0], . . . , r𝑖 [𝑝, 𝑁B−1]] ∈ C𝑁R×𝑁B

and (a) follows from the triangle inequality. The upper bound (3.20) depends only on the AOD and
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AOA and can be used instead as a surrogate function for the detection of a new potential path as

\̃ (𝑖)T , \̃
(𝑖)
R = argmax

(\̃T,\̃R)∈G\T×G\R

∑︁
𝑝∈P

���aT
T(\̃T)X𝑝R

H
𝑝aR(\̃R)

���. (3.21)

After obtaining \̃ (𝑖)T and \̃ (𝑖)R , we plug them in (3.19) and maximize it over the TOA grid

𝜏′(𝑖) = argmax
𝜏′∈G𝜏

���aT
𝜏 (𝜏′)

(∑︁𝑁B−1

𝑏=0
diag(XT

𝑏aT(\̃ (𝑖)T ))RH
𝑏 aR(\̃ (𝑖)R )

)���. (3.22)

Using similar arguments as those for the 3D search, the complexity of this approach is
O(𝑁P(𝑁T𝑁R𝑁B+𝑁\T𝑁T𝑁R+𝑁\T𝑁T𝑁\R)). Naturally, the complexity reduction comes with a cost.
From (3.21) it is evident that the observations on different subcarriers are processed incoherently.
This should incur an SNR loss in the detection of paths, which we will quantify in the numerical
results. Finally, we note that a similar procedure can be followed to conduct the 2D search over
TOA-AOA or TOA-AOD.

3.1.3 Step 3: Update Support

After computing the new potential path, we add it to the existing ones:

τ ′(𝑖+1) = (𝜏′(𝑖)0 , . . . , 𝜏
′(𝑖)
𝐿 (𝑖)−1, 𝜏

′(𝑖)), (3.23)

θ̃(𝑖+1)T = (\̃ (𝑖)T,0, . . . , \̃
(𝑖)
T,𝐿 (𝑖)−1, \̃

(𝑖)
R ), (3.24)

θ̃(𝑖+1)R = (\̃ (𝑖)R,0, . . . , \̃
(𝑖)
R,𝐿 (𝑖)−1, \̃

(𝑖)
R ). (3.25)

3.1.4 Step 4: Coordinate Descent

The aim of this algorithmic step is two-fold, namely to refine the parameters of detected paths and
to remove potentially redundant paths. We iteratively perform 3 sub-steps for a fixed number of
𝑁cd iterations.

3.1.4.1 Path Gain Computation

We update the gains solving (3.26), keeping the other path parameters fixed:

h(𝑖+1) = argminhΛ(R({𝜏′(𝑖+1)𝑙 , \̃ (𝑖+1)T,𝑙 , \̃ (𝑖+1)R,𝑙 , ℎ𝑙}𝐿 (𝑖)𝑙=0 )) + 𝜒∥h∥1. (3.26)

The regularization parameter 𝜒 determines the accuracy-sparsity trade-off. Due to the presence of
the L1-norm penalty, the gain of previously detected paths, which may have become redundant
after the subsequent detection and refinement of other paths, may be set to (approximately) zero.

3.1.4.2 Prune Support

In this step we prune the paths that have become redundant according to their gain computed
in (3.26). We consider a path to be redundant when its gain is much smaller than the gain of the
strongest path. More formally, the 𝑙-th path is pruned if

|ℎ(𝑖+1)𝑙 |2

max𝑙=0,...,𝐿 (𝑖)−1 |ℎ(𝑖+1)𝑙 |2
< Z2, (3.27)



3.1 Off-grid Compressed Sensing-based Channel Parameters Estimation 45

where 0 < Z2 ≪ 1 and the resulting sequence of TOAs if the 𝑙-th path is pruned is

τ ′(𝑖+1) ← (𝜏′(𝑖+1)0 , . . . , 𝜏′(𝑖+1)𝑙−1 , 𝜏′(𝑖+1)𝑙+1 , . . . , 𝜏′(𝑖+1)
𝐿 (𝑖)
), (3.28)

with the resulting AODs and AOAs sequences obtained accordingly. The threshold Z2 quantifies
how low the gain of a path must be for it to be considered essentially zero. We use the ratio of
the gain of a path to the maximum gain, because this is what decides whether a path is significant
or essentially non-existent. For example, when the LOS path exists, an NLOS path with a gain
35 dB lower than that of the LOS may be irrelevant, whereas the same path might be relevant in
the absence of LOS.

3.1.4.3 Local Descent

We perform local descent over all parameters of all detected paths, for each path and each param-
eter sequentially, as follows

𝜏′𝑙
(𝑖+1) ← 𝜏′𝑙

(𝑖+1) − sgn(𝜕Λ/𝜕𝜏′𝑙 (𝑖+1))𝑠(𝑖+1)𝜏,𝑙 , (3.29)

\ (𝑖+1)T,𝑙 ← \ (𝑖+1)T,𝑙 − sgn(𝜕Λ/𝜕\ (𝑖+1)T,𝑙 )𝑠
(𝑖+1)
\T,𝑙

, (3.30)

\ (𝑖+1)R,𝑙 ← \ (𝑖+1)R,𝑙 − sgn(𝜕Λ/𝜕\ (𝑖+1)R,𝑙 )𝑠
(𝑖+1)
\R,𝑙

, (3.31)

ℎ(𝑖+1)𝑙 ←
tr

(
CH(𝜏′𝑙 (𝑖+1) , \̃

(𝑖+1)
T,𝑙 , \̃ (𝑖+1)R,𝑙 )

(
Y −∑

𝑙′≠𝑙 ℎ
(𝑖+1)
𝑙′ C (𝜏′𝑙′ (𝑖+1) , \̃

(𝑖+1)
T,𝑙′ , \̃

(𝑖+1)
R,𝑙′ )

) )
∥CH(𝜏′𝑙 (𝑖+1) , \̃

(𝑖+1)
T,𝑙 , \̃ (𝑖+1)R,𝑙 )∥2𝐹

, (3.32)

where

𝑠(𝑖+1)𝜏,𝑙 = min
(���(𝜕2Λ/(𝜕𝜏′𝑙 (𝑖+1))2

)−1
𝜕Λ/𝜕𝜏′𝑙 (𝑖+1)

���, 𝑁CP𝑇s

2(𝑁𝜏 − 1)

)
, (3.33)

𝑠(𝑖+1)\T,𝑙
= min

(���(𝜕2Λ/(𝜕\ (𝑖+1)T,𝑙 )2
)−1
𝜕Λ/𝜕\ (𝑖+1)T,𝑙

���, 𝜋

𝑁\T−1

)
, (3.34)

𝑠(𝑖+1)\R,𝑙
= min

(���(𝜕2Λ/(𝜕\ (𝑖+1)R,𝑙 )2
)−1
𝜕Λ/𝜕\ (𝑖+1)R,𝑙

���, 𝜋

𝑁\R−1

)
(3.35)

are the step sizes. We note that, for the geometry-related parameters, we use truncated Newton
steps, where, instead of just using Newton steps, we limit the maximum step size to be equal to
half of the corresponding grid bin size so as to avoid convergence problems near inflection points
of the loss function. The steps are always in the negative gradient direction. For the update of
the path gains, (3.32) provides the loss-minimizing ℎ(𝑖+1)𝑙 with all other parameters fixed to their
current value.

As pointed out in [48], the local refinement of the parameters of all detected paths is very im-
portant for the convergence of the algorithm and the identification of sparse solutions. The effective
off-grid parameter estimation enables the algorithm to avoid detecting artificial paths arising due
to grid mismatch. Also, through the refinement of the parameters of all paths, some of them may
become obsolete and be removed, leading to sparser solutions.

A slight difference compared to [48] is that we also update the path gains in the local descent
step, a choice also made in [62], where it is shown that this step is essential to prove convergence
of the algorithm in a finite number of iteration.
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3.1.5 Termination Condition

The algorithm is terminated either when the maximum number of paths is detected or when the
following condition is satisfied�� tr(RH

𝑖 C (𝜏(𝑖) , \̃ (𝑖)T , \̃
(𝑖)
R )

�� < Z1(X , 𝜎[,R, 𝑃fa). (3.36)

Intuitively, this condition means that any new path is not (sufficiently) correlated with the residual,
namely it corresponds to noise. Therefore, it should be ignored and the process should stop.

3.1.6 A Note about Global Optimality

A natural question that arises is whether we have any guarantees about the recovery of the true
parameters from Alg. 1. There are two points to consider here:
• Whether the solution of (3.14) recovers the true parameters.
• Whether Alg. 1 recovers the globally optimal solution of (3.14).
Regarding the first point, in the noiseless case and given a minimum angular separation, the true
parameters are the unique solution of (3.14) [62], [63]. In the noisy case, under the non-degenerate
source condition [64] (roughly speaking, sufficiently separated paths), the unique solution of (3.14)
has the same number of paths as the true channel, provided that 𝜒 and ∥h∥2/𝜒 are small enough,
and with decreasing noise the solution converges to the true parameters.

Regarding the second point, Alg. 1 is based on ADCGM [48] and, regardless of the imple-
mentation details of the individual steps, the algorithmic framework of ADCGM does not provide
guarantees about the recovery of the true parameters. Nevertheless, it has been shown to provide
state of the art performance in a wide range of sparse inverse problems [48], [65].

3.2 Channel to Position Parameters Mapping with Path Rejection
Let ˆ̃ν be the estimate of the channel parameter vector ν̃, defined as

ˆ̃ν = [𝜏′0, ˆ̃\T,0,
ˆ̃\R,0, ℎ̂0, . . . , 𝜏

′
�̂�−1,

ˆ̃\′
T,�̂�−1,

ˆ̃\R,�̂�−1, ℎ̂�̂�−1]T, (3.37)

where �̂� is the estimated number of paths. We would like to obtain an estimate ν̂ of the position
parameter vector ν. In the following, we assume that the LOS path exists and we identify it as
strongest path. We note that this is a simplistic choice, as LOS detection is out of the scope of
this work. More details on LOS/NLOS detection can be found in [66]. We estimate the position
parameter vector ν employing the EXIP as in [22], with a slight modification to include the prior
information on the clock offset. To this end, we intend to solve

ν̂ = argmin
ν

(
( ˆ̃ν − 𝑓 (ν))TJ ˆ̃ν ( ˆ̃ν − 𝑓 (ν)) + (𝜖clk/𝜎clk)2

)
, (3.38)

where J ˆ̃ν is the channel parameter FIM, which is computed using the estimated channel param-
eters, and 𝑓 : R4�̂�+2 → R5�̂� is the mapping from position to channel parameters, determined
by (2.8), (2.11)-(2.12) (or (2.119), (2.120) and (2.122) with a VA parametrization of NLOS com-
ponents).

We note that false alarms, that is, falsely detected paths, can have severe impact on position
estimation, as the additional erroneous terms in the optimization (3.38) may drive the position
estimate away from the true value. Therefore, we apply the following two criteria to filter them
out:
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• A single-bounce NLOS path and a LOS path always form a triangle, as can be seen in Fig. 2.1.
Therefore, for the formation of a triangle to be possible, a single-bounce NLOS path must
satisfy

Δ ˆ̃\T,𝑙 · Δ ˆ̃\R,𝑙 < 0, 𝑙 = 1, . . . , �̂� − 1, (3.39)

where Δ ˆ̃\T,𝑙 = ˆ̃\T,𝑙 − ˆ̃\T,0 and Δ ˆ̃\R,𝑙 = ˆ̃\R,𝑙 − ˆ̃\R,0, with Δ ˆ̃\T,𝑙 and Δ ˆ̃\R,𝑙 ∈ [−𝜋, 𝜋). Hence, if the
𝑙-th path, 𝑙 = 1, . . . , �̂� − 1, does not satisfy (3.39), it is dropped.

• Combined with the LOS path, each NLOS path can provide an estimate 𝜖clk,𝑙 of 𝜖clk as

𝜖clk,𝑙 =
𝜏′𝑙 sin(Δ ˆ̃\R,𝑙 − Δ ˆ̃\T,𝑙) − 𝜏′0(sin(Δ ˆ̃\R,𝑙) − sin(Δ ˆ̃\T,𝑙))

sin(Δ ˆ̃\R,𝑙 − Δ ˆ̃\T,𝑙) − (sin(Δ ˆ̃\R,𝑙) − sin(Δ ˆ̃\T,𝑙))
. (3.40)

With Z3,𝑎 > 0 and Z3,𝑏 > 0 being predefined probability thresholds for 𝜖clk values, if

𝑝(𝜖clk,𝑙) < Z3,𝑎 or 𝑝(𝜖clk,𝑙) < Z3,𝑏𝑝clk,max, (3.41)

the path is filtered out, with 𝑝clk,max = max𝑙=1,...,�̂�−1 𝑝(𝜖clk,𝑙).
Replacing ˆ̃ν with ˆ̃ν′, which contains only the remaining paths, we solve (3.38) with the

Levenberg-Marquardt algorthm [67], [68]. For the initial point ν (0) we compute

𝜖 (0)clk =

∑
𝑙 | ℎ̂𝑙 |2𝜖clk,𝑙∑
𝑙 | ℎ̂𝑙 |2

, (3.42)

p̂(0)R = 𝑐(𝜏′0 − 𝜖 (0)clk )u( ˆ̃\T,0), (3.43)

�̂�(0)R = ˆ̃\T,0 + 𝜋 − ˆ̃\R,0, (3.44)

p̂(0)s,𝑙 =
tan( ˆ̃\R,𝑙 + �̂�(0)R )𝑝

(0)
R,𝑥 − 𝑝

(0)
R,𝑦

tan( ˆ̃\R,𝑙 + �̂�(0)R ) cos ˆ̃\T,𝑙 − sin ˆ̃\T,𝑙

u( ˆ̃\T,𝑙), 𝑙 = 1, . . . , �̂�′, (3.45)

where �̂�′ is the number of remaining estimated paths.

3.3 Numerical Results
The geometric setup used for the evaluation of the positioning algorithm is depicted in Fig. 3.1.
We consider a 60 m × 50 m room. The Tx is located at the left wall of the room, at origin of the
coordinate system, i.e., pT = [0, 0]T m and is equipped with a ULA with 𝑁T = 32 elements.
The Rx is located at pT = [25, 10]T m and has a UCA with 𝑁R = 16. There is a LOS path
between the Tx and Rx, as well as three single-bounce reflections from the wall’s room, with ps,1 =
[15.63, 25]T m, ps,2 = [10.42, −25]T m and ps,3 = [60, 6.32]T m. The path gains are computed
according to (2.138), with Γrefl,𝑙 = −10 dB,∀𝑙. The carrier frequency is set to 𝑓c = 38 GHz, the
sampling frequency is 𝑓s = 122.88 MHz, the number of subcarriers is 𝑁 = 64 and 𝑁B = 10
OFDM symbols are transmitted. The entries of the reference signal X are QPSK symbols. The
set of loaded subcarriers is P = {−31,−30, . . . ,−1, 1, 2, . . . , 31} and 𝛾𝑝 = 1/|P|, ∀𝑝 ∈ P, with
|P | = 62. The noise spectral density is 𝑁0 = −174 dBm and the Rx noise figure is NF = 13 dB.
The Tx and Rx are imperfectly synchronized with 𝑐𝜎clk = 2𝑐𝑇s ≈ 4.88 m.

The algorithm is parameterized as follows: the number of iterations in the coordinate de-
scent step is set to 𝑁cd = 3 and the false alarm rate to 𝑃fa = 0.05, with the appropriate value
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Fig. 3.1. Geometric setup for evaluation of the position estimation algorithm.

of Z1 for the desired 𝑃fa being computed numerically using 10000 random noise and reference
signal realizations. The pruning threshold is Z2 = 30 dB. The grid parameters are 𝑁𝜏 = 64,
𝑁\T = 32 and 𝑁\R = 64 and we consider both 2D and 3D grid search in step 2 (new poten-
tial path detection). The maximum number of paths is 𝐿max = 10, the regularization parameter
𝜒 = 𝜎[

√︁
2(𝑁T + 𝑁R) |P|𝑁B𝐸RE/𝑁T (chosen according to [69]) and the path filtering thresholds

Z3,𝑎 = 10−4 and Z3,𝑏 = 10−2.
For the comparison, we consider the single-anchor positioning algorithm from [22], which, due

to its performance, is taken as the benchmark in many related works, and is the most cited single-
anchor positioning algorithm. In the first stage of the approach proposed in [22], a compressed
sensing-based algorithm, called distributed compressed sensing-simultaneous orthogonal matching
pursuit (DCS-SOMP) is used to obtain coarse estimates of the multipath parameters (number of
paths, TOAs, AODs, AOAs and gains), with the coarse estimates refined in the second stage using
space-alternating generalized expectation maximization (SAGE). In the third stage, the refined
estimates are mapped to the Rx position and orientation and the scatterer/reflector positions using
the EXIP. The parameterization of the algorithm is as follows: false alarm rate 𝑃fa = 0.05, 3
SAGE iterations, and the number of Tx and Rx angular domain bins (analogous to 𝑁\T and 𝑁\R) is
64 and 32, respectively. As will become evident with the following results, in the medium to high
SNR region, this algorithm overestimates the model order. Therefore, for the maximimum number
of detected paths 𝐿max, we will consider different values to gain insight on the influence of the
different characteristics of the algorithm on its performance. In addition, similar to our approach,
we will study the effect of path filtering after the refinement of the paths’ parameters with SAGE.

We list the algorithmic variations that will be considered in the following results with their
corresponding label:
1) "3D + F": the method proposed in the current work with a 3D grid search;
2) "2D + F": the method proposed in the current work with a 2D grid search;
3) "2D - F": the method proposed in the current work with a 2D grid search, but without the path

filtering step in (3.39) and in the sentence after (3.41), before the mapping from channel to
position parameters;

4) "B": the algorithm proposed in [22];
5) "B + F": the algorithm proposed in [22], but applying the path filtering step proposed in our

work after refinement of the path parameters with SAGE;
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Fig. 3.2. Position RMSE of the proposed algorithm with 2D and 3D grid search as a function of 𝐸RE.

3.3.1 The Effect of Grid Search Dimensionality

In order to evaluate our proposed approach, we plot in Fig. 3.2 the position RMSE RMSE(pR) of
the proposed algorithm with 2D and 3D grid search for path detection as a function of the average
energy per resource element 𝐸RE, where the RMSE of a parameter a is defined as

RMSE(a) =
√︁
Eâ [(â − a)2] (3.46)

and â is the estimated parameter. For each 𝐸RE value, we average over (the same) 1000 random
noise and reference signal realizations. The PEB is also plotted for the evaluation of the algorithm’s
performance. Furthermore, to more effectively explain and better understand the trends of the
RMSE curves as functions of 𝐸RE, we also plot in Figs. 3.3, 3.4, 3.5 and 3.6 the RMSE of the
parameters of all paths (TOA, AOD and AOA) as a function of 𝐸RE. For the NLOS components,
we also plot the RMSE of the corresponding POI and detection rate for each path. For these, as
well as the following figures in the chapter, each data point is generated by averaging over 2000
noise realizations.

At this point, it is necessary to mention that their computation is not as straightforward as
RMSE(pR), due to the fact that it inherently involves a data association problem: an estimated
path might correspond to any of the true paths or even to none of them (false alarm), while a
true path might result in zero, one or multiple path detections. Data association is a well-studied
problem within the framework of multi-target tracking [70]. Since tracking is out of the scope
of this work and we deal with the data association problem only for the evaluation of multipath
parameter estimation, we use a simple Euclidean distance-based rule to associate estimated and
true paths. For the 𝑙-th true path and its corresponding POI we find the index of the potentially
associated estimated path by

𝑚 = argmin
𝑙′=1,...,�̂�′

∥p̂s,𝑙′ − ps,𝑙 ∥2. (3.47)

We then associate the 𝑙-th true path with the 𝑚-th estimated path if

∥p̂s,𝑚 − ps,𝑙 ∥2 < 𝑎th, (3.48)
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Fig. 3.3. Estimation performance for the LOS (0-th path) as a function of 𝐸RE.
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Fig. 3.4. Estimation performance for the 1st NLOS path as a function of 𝐸RE.
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Fig. 3.5. Estimation performance for the 2nd NLOS path as a function of 𝐸RE.
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Fig. 3.6. Estimation performance for the 3rd NLOS path as a function of 𝐸RE.
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Fig. 3.7. RMSE(𝜖clk) · 𝑐 of the proposed algorithm with 2D and 3D grid search as a function of 𝐸RE.

where 𝑎th is the association threshold which we set as 𝑎th = 5 m. If (3.48) does not hold, we count
a missed detection.

We can now go back to the discussion of Fig. 3.2. We can see that for the lower SNR (i.e.,
𝐸RE) considered in the plot, RMSE(pR) is lower bounded by 𝑐𝜎clk ≈ 4.88 m. In particular for "2D
+ F", there is a wider rage of 𝐸RE values for which improvement of the SNR does not result in
improvement of the RMSE. This can be understood by examining the estimation performance of
the multipath parameters. In Fig. 3.3 we observe that both "3D + F" and "2D + F" attain the CRLB
for all considered 𝐸RE values, that is, the parameters of the LOS path are estimated accurately.
On the other hand, in Fig 3.4 we observe that the RMSE of the parameters of the 1st NLOS path
approaches the root CRLB (RCRLB) for 𝐸RE ≥ 4 dBm with "3D + F" and for 𝐸RE ≥ 9 dBm
with "2D + F". From Figs. 3.5 and 3.6 we can see that, for the other two paths, the estimators
converge to the bound for higher 𝐸RE values, due to their higher attenuation, which results from
their larger propagation distance. Hence, we can conclude that until the parameters of an NLOS
path can be reliably estimated, RMSE(pR) is driven by 𝑐𝜎clk. Due to the synchronization error, the
distance component of pR−pT cannot be accurately estimated using the TOA of the LOS path. As
the detection rate of the 1st NLOS path increases, the performance of the estimators converges to
the bound, as the NLOS path allows the estimators to resolve the clock offset and obtain accurate
distance information of the Rx.

To better illustrate this, in Fig. 3.7 we plot the RMSE of the estimated clock offset 𝑐𝜖clk as a
function of 𝐸RE, as well as the corresponding RCRLB. It is evident that the curves are almost iden-
tical to those in Fig. 3.2. Therefore, it is verified that the error in the estimation of the clock offset,
and, consequently, the error in the distance component of the estimated Rx position is dominating
RMSE(pR).

Comparing "3D + F" and "2D + F" in all RMSE plots, we can see that the reduction of the
3D grid search to the 2D grid search by non-coherent processing of the observations over different
subcarriers results in an increase of approximately 3 dB of the 𝐸RE value required for convergence
of the estimator to the bound.
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Fig. 3.8. Position RMSE of the proposed algorithm with 2D grid search and SotA approach from [22] with
and without path filtering as a function of 𝐸RE.

3.3.2 The Effect of Path Filtering and Off-Grid Parameter Estimation

We next study the effect of path filtering and off-grid parameter estimation on the performance
of the positioning algorithm. To this end, we consider the SotA approach "B", which employs a
2D grid search and, unlike our work, does not refine the paths’ parameters before searching for
a new path. In addition, we consider "B + F" to examine the effect of path filtering on the SotA
approach. As will become evident in the following, the fact that "B"/"B + F" use on-grid parameter
estimation for the discovery of the paths has a negative impact on the model order estimation, as
well as on the position estimation. Therefore, we consider different 𝐿max values for "B"/"B + F",
including the true model order 𝐿. For a fair evaluation, we compare the aforementioned methods
with our proposed approach using a 2D grid search, with and without path filtering, i.e., "2D + F"
and "2D - F".

In Fig. 3.8 we plot RMSE(pR) of these methods as a function of 𝐸RE. We can observe that "2D
+ F", "B + F with 𝐿max = 4" and "B + F with 𝐿max = 10" achieve the best performance, as their
RMSEs approach the bound at the lowest 𝐸RE value compared to the others. It should be noted
here that "B + F with 𝐿max = 4" achieves this performance by limiting the maximum number of
detected paths to the true model order. We see that "B + F with 𝐿max = 10" has a slight performance
degradation for high SNR. This can be attributed to the false detection of additional paths, caused
by the on-grid parameter estimation during the discovery of new paths. In "B"/"B + F", when a
new path is detected, only a coarse on-grid estimation of the path’s parameters takes place and
the contribution of the path to the observations Y is imperfectly removed (in the computation of
the residual). Therefore, the remaining contribution of the true path on neighboring bins might
be above the detection threshold (which is computed taking only noise into account) and lead to a
false detection, especially in the medium to high SNR region. Such false detections that correspond
to the LOS path may be rejected by the first condition (3.39) in the subsequent path filtering step.
On the contrary, such false detections corresponding to single-bounce NLOS paths are unlikely to
be rejected.
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Fig. 3.9. Estimated model order of the proposed algorithm with 2D grid search and SotA approach from [22]
with and without path filtering as a function of 𝐸RE.

Another source of erroneous paths is noise. When noise is falsely detected as a path of the
channel, additional (erroneous) elements are included in ˆ̃ν, 𝑓 (ν) and J ˆ̃ν in (3.38) and this leads
to accuracy degradation, as the algorithm tries to match the position of the receiver to these false
measurements to minimize the cost function. The number of falsely detected noisy paths is con-
trolled through the probability of false alarm 𝑃fa. Lower values of 𝑃fa result in less false alarms,
but also result in less detections of the true paths.

The approaches that do not employ path filtering exhibit worse performance. "2D - F" con-
verges to the bound 5 dB later than its filtered counterpart "B + F". Owing to off-grid parameter
estimation, it avoids the detection of spurious paths and maintains optimal performance for high
SNR. The absence of path filtering has a more detrimental effect on the SotA approach "B" in the
high SNR region, especially when 𝐿max = 10.

To facilitate understanding, in Fig. 3.9 we plot the estimated model order for the different
approaches as a function of 𝐸RE. We can observe that "B with 𝐿max = 10" and "B + F with
𝐿max = 10" overestimate the model order as 𝐸RE increases, with the path filtering mitigating the
issue, but not completely eliminating it. Looking back to Fig. 3.8, these additional erroneous paths
have a severe impact on the position estimation performance. The proposed approach accurately
estimates the model order at high SNR with or without path filtering.

To sum up, we can make the following observations from Fig. 3.8, which help us understand
the importance of off-grid channel parameter estimation and path filtering proposed in our work:
• Considering our proposed approach, we can see that path filtering results in much faster con-

vergence of the position estimation algorithm to the bound. When not filtered, the noisy paths
result in additional terms in the optimization objective in (3.38), which drive the solution to er-
roneous values. Nevertheless, for sufficiently high SNR both alternatives (i.e., with and without
filtering of the paths) converge to the PEB.

• Considering the approach in [22], we can see that it can also benefit from path filtering. Addi-
tionally, we can observe that even with path filtering, when the true rank of the channel is not
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known (as is practically the case) they do not attain the bound for high SNR. This is attributed
to the gridded path detection and coarse parameter estimation in the first step (DCS-SOMP) of
the algorithm in [22]. Especially in the high SNR region, due to grid mismatch, a real path can
lead to the detection of multiple paths. Unlike random noisy paths, which can be successfully
rejected by the path filtering step, these spurious paths may not be filtered out, as their param-
eters may correspond to a single-bounce path. Therefore, off-grid parameter estimation, which
avoids this issue, is important for accurate multipath-based parameter estimation.
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4. Multi-beam Reference Signal Optimization

In this chapter, we study the optimization of the reference signal with the aim of improving the
Rx’s position estimation accuracy, when the Tx has perfect or imperfect knowledge of the posi-
tion parameters. For the reference signal optimization, we assume a narrowband signal model and
WT = I𝑁T and WR = I𝑁R , as in Chapter 3, and that, with large bandwidth and number of anten-
nas, the paths are asymptotically orthogonal. We note that the SPEB, which is the square of the
PEB (2.48) and will be used in the following for reference signal optimization, is a function of

ν′ = [pT
R, 𝛼R, |ℎ0 |,pT

s,1, |ℎ1 |, . . . ,pT
s,𝐿−1, |ℎ𝐿−1 |]T ∈ R3𝐿+1, (4.1)

that is, it is independent of the values of arg(ℎ𝑙), 𝑙 = 1, . . . , 𝐿 − 1, (due to the asymptotic or-
thogonality of the paths) and 𝜖clk (it depends only on its variance). Also, due to the inner product
of the derivatives in (2.45), we can observe (see (2.18), (2.17) and (2.23)) that Jν is independent
of 𝛽𝑘 [𝑝, 𝑏]. In the following, we write Jν = Jν (F , q, ν′), with q = [𝑞1, . . . , 𝑞𝑀T] ∈ R𝑀T , to
stress that Jν is the hybrid FIM of ν, whose value depends on the beam codebook F , the energy
allocation vector q over the beamforming vectors of the codebook and ν′. Similarly, we write
SPEB = SPEB(F , q, ν′). Under perfect prior knowledge of ν′, we use the SPEB as the perfor-
mance metric and under imperfect prior knowledge the expected SPEB (ESPEB), which is defined
as

ESPEB(F , q) = Eν′ [SPEB(F , q, ν′)] . (4.2)

The following proposed methods can be easily adapted for other objectives, such as
maxν′ SPEB(F , q, ν′).

4.1 Transmit Strategies with Perfect Channel Knowledge
In this section, we study the optimization of the reference signal under the assumption that the Tx
has perfect knowledge of the parameter vector ν′. This is an unrealistic assumption that is never
true in practice, but can provide useful insights about the form of the optimal solutions in the more
practical case of imperfect knowledge of ν′. We first consider the LOS-only channel and then a
multipath channel.

4.1.1 Line-of-Sight-Only Channel

We distinguish between the case where the Tx is allowed to optimize both F and q, and the case
where it uses a fixed set of beamforming vectors F , which we refer to as the beam codebook, and
optimizes only q. In this subsection, we drop the path index in the subscript of involved parameters
as there is a single path.
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4.1.1.1 Optimal Beamforming Vectors

In this case the optimization problem is

min
F ,q

SPEB(F , q, 𝑑, \̃T, |ℎ |) s.t. q ≽ 0, 1Tq ≤ 1,

∥f𝑘 ∥2 = 1, 𝑘 = 1, . . . , 𝑀T, (4.3)

where ≽ denotes element-wise inequality. We have expressed the SPEB as a function of the channel
parameters 𝑑 = 𝑐𝜏 and \̃T, instead of the position parameters. We note that the SPEB is independent
of 𝛼R in the LOS-only case. We define a couple of quantities that are useful for the presentation
of the result: The effective bandwidth 𝛽𝑘 of the signal transmitted through the 𝑘-th beamforming
direction is defined as

𝛽𝑘 =

√︂∑︁
𝑝∈P𝑘

𝛾𝑘 [𝑝]𝜔2
𝑝 −

(∑︁
𝑝∈P𝑘

𝛾𝑘 [𝑝]𝜔𝑝
)2
, (4.4)

where

𝛾𝑘 [𝑝] =
∑︁
𝑏

𝛾𝑘 [𝑝, 𝑏], (4.5)

and the array aperture function ΞT(\̃T) of the Tx array is defined as the square root of the
SAAF (2.76)

ΞT(\̃T) =
√︃
𝑆T(\̃T). (4.6)

Theorem 4.1. The optimal beamforming directions for SPEB minimization are the normalized
array steering vector and its normalized derivative w.r.t. to \̃T:

fopt,1(\̃T) = 1√
𝑁T

a∗T(\̃T), (4.7)

fopt,2(\̃T) = 𝑐

𝜔cΞT(\̃T)
√
𝑁T

D∗T(\̃T)a∗T(\̃T), (4.8)

where DT(\̃T) is a diagonal matrix with
[
DT(\̃T)

]
𝑗 , 𝑗

= − j 𝜔c
𝑐 𝑑T, 𝑗u

T
⊥(\̃T)u(𝜓T, 𝑗 ), 𝑗 = 1, . . . , 𝑁T.

The optimal energy allocation is

𝑞1(𝑑, \̃T) = 𝜔cΞT(\̃T)
𝛽1𝑑 + 𝜔cΞT(\̃T)

, (4.9)

𝑞2(𝑑, \̃T) = 1 − 𝑞1(𝑑, \̃T), (4.10)

and the attained minimum is

SPEBmin(𝑑, \̃T, |ℎ |) = 1
𝑔

(
𝑐

𝛽1
+ 𝑐𝑑

𝜔cΞT(\̃T)

)2

, (4.11)

where 𝑔 = 2𝑁R𝑁TΔ 𝑓 𝐸tot |ℎ |2/𝜎2
[,R is the Rx SNR. □

Proof: See Appendix A9.
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Fig. 4.1. Optimal beamforming directions for a ULA with 32 elements: |aT
T(\̃T)fopt,𝑘 |, 𝑘 = 1, 2, as a func-

tion of \̃T.

Remark 1. In Fig. 4.1 we plot |aT
T(\̃T)fopt,𝑘 |, 𝑘 = 1, 2, as a function of \̃T. As fopt,1 is the

normalized steering vector, it is no surprise that it forms a beam with \̃T at its center. More in-
terestingly, fopt,2(\̃T) forms two equally strong lobes surrounding the beam formed by fopt,1(\̃T)
and has a null at \̃T. Theorem 4.1 tells us that this pair of beamforming vectors, which is used
in monopulse radar for direction tracking [71], is optimal for positioning with a LOS path and
provides the optimal energy allocation between them. □

Remark 2. From (4.11) we can observe that SPEBmin is a monotonically decreasing function of
𝛽1, which depends on the fractions 𝛾1 [𝑝] of 𝑞1 allocated to the subcarriers in P1, that determine the
waveform of the signal transmitted through fopt,1. It can be shown that it is optimal to use only the
edge subcarriers, i.e., P1 = {min𝑝∈P 𝑝, max𝑝∈P 𝑝}, with the energy equally shared. However, as
discussed in [72], this waveform choice results in higher sidelobes of the autocorrelation function
of the signal transmitted through fopt,1, which can degrade the delay estimation accuracy at low
to medium SNR. Since this topic is outside of the scope of the current work, we assume P𝑘 and
𝛾𝑘 [𝑝, 𝑏] to be given. □

As discussed above, the assumption of perfect prior knowledge at the Tx is unrealistic. Neverthe-
less, the resulting solution can be applied in scenarios where the prior knowledge is sufficiently
accurate, i.e., when the uncertainty region about the Rx location, especially in the angular domain,
is covered by the derived optimal beamforming vectors.

4.1.1.2 Fixed Beam Codebook

The Tx has to use a predefined beam codebook F and optimize the energy allocation q
among the beamfrming vectors, which can lead to the selection of just a subset of them. Using
(2.45) and (2.43), we find that Jν (q, 𝑑, \̃T, |ℎ |) depends linearly on q, i.e., Jν (q, 𝑑, \̃T, |ℎ |) =∑𝑀T
𝑘=1 𝑞𝑘Jν (e𝑘 , 𝑑, \̃T, |ℎ |), where e𝑘 is the vector of appropriate size whose 𝑘-th entry is equal to

1 and the rest of its entries are 0. Hence, Jν (q, 𝑑, \̃T, |ℎ |) is a linear transformation of q. The
optimization problem can be expressed as

(G0) : min
q

SPEB(q, 𝑑, \̃T, |ℎ |) s.t. q ≽ 0, 1Tq ≤ 1. (4.12)

(G0) is a convex optimization problem. To see this we write

SPEB(q, 𝑑, \̃T, |ℎ |) = tr(ETJ−1
ν (q, 𝑑, \̃T, |ℎ |)E)

=
2∑︁
𝑖=1

eT
𝑖 J
−1
ν (q, 𝑑, \̃T, |ℎ |)e𝑖, (4.13)
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where E = [e1, e2] ∈ R5×2. The matrix fractional function eT
𝑖 J
−1
ν (q, 𝑑, \̃T, |ℎ |)e𝑖 is a convex

function of J−1
ν (q, 𝑑, \̃T, |ℎ |), hence it is also a convex function of q as a composition of a convex

and a linear function. Therefore, the SPEB is a convex function of q as a sum of convex functions.

Proposition 1. (G0) is equivalent to the following semidefinite program (SDP):

(G1) : min
q,B

tr(B) s.t.

[
B ET

E Jν (q, 𝑑, \̃T, |ℎ|)

]
⪰ 0,

q ≽ 0, 1Tq ≤ 1, (4.14)

where B ∈ R2×2 and tr(·) is the trace operator. □

Proof: We write (G0) in its epigraph form:

min
q
𝑡 s.t. tr(ETJ−1

ν (q, 𝑑, \̃T, |ℎ |)E) ≤ 𝑡,
q ≽ 0, 1Tq ≤ 1. (4.15)

We then replace 𝑡 by the trace of a positive semidefinite matrix B:

min
q,B

tr(B) s.t. tr(ETJ−1
ν (q, 𝑑, \̃T, |ℎ |)E) ≤ tr(B),

q ≽ 0, 1Tq ≤ 1,
B ⪰ 0. (4.16)

Problem 4.16, which is identical to (G0), is not identical to (G1), but it is equivalent: Let (q0,B0)
and (q1,B1) be the solutions of 4.16 and (G1). The feasible region of (4.16) is larger than that
of (G1), as B − ETJ−1

ν (q, 𝑑, \̃T, |ℎ |)E ⪰ 0 ⇒ tr(B) ≥ tr(ETJ−1
ν (q, 𝑑, \̃T, |ℎ |)E), but the re-

verse direction is not necessarily true. Hence, tr(B0) ≤ tr(B1). The first constraint of (4.16) is
necessarily active at the optimum, i.e., tr(ETJ−1

ν (q0, 𝑑, \̃T, |ℎ |)E) = tr(B0). To see this, let us as-
sume that tr(ETJ−1

ν (q0, 𝑑, \̃T, |ℎ |)E) < tr(B0). Then, there is another feasible solution (q0,B
′
0)

with tr(B′0) < tr(B0), e.g., B′0 = 𝑎B0, where 𝑎 = tr(ETJ−1
ν (q0, 𝑑, \̃T, |ℎ|)E)/tr(B0). Fur-

thermore, (q0,E
TJ−1

ν (q0, 𝑑, \̃T, |ℎ |)E) belongs to the feasible set of (G1). Therefore, we have
tr(B1) ≤ tr(ETJ−1

ν (q0, 𝑑, \̃T, |ℎ |) = tr(B0). We can then conclude that tr(B0) = tr(B1) and the
two problems are equivalent.
The formulation (G1) is important as it allows us to find the optimal energy allocation in a compu-
tationally efficient way. The solution of (G0)/(G1) gives the optimal energy allocation q over the
beam codebook, while for the reasons explained in Remark 1 of Theorem 4.1, we assume that P𝑘
and 𝛾𝑘 [𝑝, 𝑏] are given.

4.1.2 Multipath Channel

For the case of a multipath channel, a reasonable conjecture, based on the result about the opti-
mal beamforming vectors for the LOS-only case, would be that the array steering vector and its
derivative, evaluated at the AOD of the path, should be used for each of the paths in the channel. In
fact, work published after our relevant work for the LOS-case [73], proved that this is indeed the
case [74]. Therefore, hereafter, we consider only the case of a fixed beam codebook.

The optimization problem to be solved in order to obtain the optimal energy allocation is almost
identical to (G1), with Jν (q, 𝑑, \̃T, |ℎ |) being replaced by Jν (q, ν′).
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4.2 Energy Allocation for a Fixed Beam Codebook with Imperfect Channel
Knowledge

Under imperfect prior knowledge, we restrict the reference signal optimization to the optimization
of the energy allocation over the beamforming vectors of a fixed beam codebook. We note that,
after the publication of this work [75], the optimization of the reference signal, including codebook
optimization, was studied in [74].

The optimization problem in hand reads as:

min
q
Eν′ [SPEB(q, ν′)] s.t. q ≽ 0, 1Tq ≤ 1, (4.17)

where ≽ denotes element-wise inequality. In order to solve (4.17), one can employ a cubature rule
[76], [77] with positive weights to approximate the expectation integral with a sum:

Eν′ [SPEB(q, ν′)] ≈
∑︁𝑁 ′ν

𝑗=1
𝑝 𝑗SPEB(q, ν′𝑗 ), (4.18)

where ν′𝑗 and 𝑝 𝑗 > 0, 𝑗 = 1, . . . , 𝑁ν′ are the cubature points and their corresponding weights,
with 𝑁ν′ being the number of cubature points. 𝑁ν′ is determined by the dimension of ν′ and the
degree 𝑟 of the cubature1. The cubature points and their weights are determined by the pdf of ν′

and 𝑟. Then, (4.17) becomes

min
q

∑︁𝑁ν′

𝑗=1
𝑝 𝑗SPEB(q, ν′𝑗 ) s.t. q ≽ 0, 1Tq ≤ 1. (4.19)

4.2.1 Optimal Solution

In a similar fashion to (G0), using the epigraph form of (4.19), we can show that it is equivalent to
the following SDP:

min
q,B1,...,B𝑁ν′

∑︁𝑁ν′

𝑗=1
𝑝 𝑗 tr(B 𝑗 ) s.t.

[
B 𝑗 ET

E Jν (q, ν′𝑗 )

]
⪰ 0, 𝑗 = 1, . . . , 𝑁ν′

q ≽ 0, 1Tq ≤ 1, (4.20)

where B 𝑗 ∈ R2×2, 𝑗 = 1, . . . , 𝑁ν are auxiliary variables of the SDP and ⪰ denotes positive
semidefiniteness. The positivity requirement on the cubature weights is imposed to ensure convex-
ity of the objective in (4.20). In the numerical results (Sec. 4.3), we refer to the solution of (4.20)
as "opt. unconstr.", indicating that it corresponds to the optimal solution without any further con-
straints.

The optimal vector q obtained with (4.20) may indicate that very low energy should be allo-
cated in the direction of the LOS path, which may lead to a missed detection of the LOS path at
the Rx. This can be avoided by ensuring that the excitation of directions around the LOS path is at
least a fraction 𝑞th of the excitation in any other direction. To this end, for a given confidence level
^, we define \̃ (^)T,𝑙,min and \̃ (^)T,𝑙,max as the minimum and maximum AODs corresponding to the 2D
Rx locations (𝑙 = 0) or scatterer/reflector locations (𝑙 = 1, . . . , 𝐿 − 1) in the ^-confidence ellipse
of the respective marginal. With a uniform grid of 𝑁\ possible AODs \̃T,𝑙,𝑚 within the interval
[\̃ (^)T,𝑙,min, \̃

(^)
T,𝑙,max]

\̃ (^)T,𝑙,𝑚 = \̃ (^)T,𝑙,min +
𝑚 − 1
𝑁\ − 1

(\̃ (^)T,𝑙,max − \̃
(^)
T,𝑙,min), 𝑚 = 1, . . . , 𝑁\ , (4.21)

1A cubature rule has degree 𝑟 if it is exact for a (multivariate) polynomial of degree 𝑟.
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we define the excitation matrix A𝑙 ∈ R𝑁\×𝑀T for the 𝑙-th path as

[A𝑙]𝑚,𝑘 = |aT
T(\̃ (^)T,𝑙,𝑚)f𝑘 |2. (4.22)

Finally, the vector with the excitation of the possible AODs associated with the 𝑙-th path is A𝑙q.
We augment (4.20) with the following linear constraints:

A0q ≽ 𝑞th∥Aq∥∞1𝑁\ , (4.23)

where A = [AT
0 , . . . ,A

T
𝐿−1]T. We note that the constraints (4.23) can be equivalently expressed as

A0q ≽ 𝑞th𝑒max1𝑁\ , Aq ≼ 𝑒max1𝐿𝑁\ , (4.24)

with 𝑒max being an auxiliary optimization variable. In the numerical results (Sec. 4.3), we refer to
the solution of (4.20) with the additional constraints (4.23) as "opt. constr.".

The main challenge with the approach described above is that 𝑝ν is a multidimensional pdf.
The number of auxiliary matrices B 𝑗 and corresponding positive semidefiniteness (PSD) con-
straints in (4.20) is equal to the number of cubature points. For known cubature rules [76], the
number of points is lower bounded by (3𝐿 + 1) (𝑟−1)/2, which could result in very high complexity
for our optimization task, as the integrand is highly non-linear and a rule with 𝑟 ≥ 5 (as observed
from numerical results) is required for an accurate approximation.

4.2.2 Low-complexity Sub-optimal Solution

4.2.2.1 Dimensionality Reduction

A way to circumvent the dimensionality challenge is to use a surrogate function which involves
the expectation over a smaller set of parameters. To this end, we first note that eT

𝑖 J
−1
ν e𝑖, 𝑖 = 1, 2,

is a convex function of Jν and so is the SPEB as a sum of convex functions. Splitting ν′ into any
couple of vectors ν1 and ν2, we can write

Eν′ [SPEB(q, ν′)] = Eν′
[

tr(ETJ−1
ν (q, ν′)E)

]
= Eν1

[
Eν2 |ν1

[
tr(ETJ−1

ν (q, ν1, ν2)E)
] ]

(𝑎)≥ Eν1

[
tr(ET(Eν2 |ν1 [Jν (q, ν1, ν2)])−1E)] , (4.25)

where (a) follows from Jensen’s inequality. We choose ν1 = [pT
R,p

T
s,1, . . . ,p

T
s,𝐿−1]T and ν2 =

[𝛼R, |ℎ0 |, . . . , |ℎ𝐿−1 |]T, as the position parameters are the ones determining the AODs, which in
turn determine which beamforming vectors are relevant or not. One could optimize the lower bound
on the ESPEB in (4.25)

min
q,B1,...,B𝑁ν1

∑︁𝑁ν1

𝑗=1
𝑝 𝑗 tr(B 𝑗 ) s.t.

[
B 𝑗 ET

E Eν2 |ν1, 𝑗 [Jν (q, ν1, 𝑗 , ν2)]

]
⪰ 0, 𝑗 = 1, . . . , 𝑁ν1

q ≽ 0, 1Tq ≤ 1,
A0q ≽ 𝑞th∥Aq∥∞1𝑁\ . (4.26)

In the numerical results (Sec. 4.3), we refer to the solution of (4.26) with the additional con-
straints (4.23) as "opt. reduced". We note that the number of cubature points 𝑁ν′1 is still lower
bounded by (2𝐿) (𝑟−1)/2.
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4.2.2.2 Energy allocation as a Weighted Sum of Per-Path Energy Allocation Vectors

Our aim is to reduce the complexity of the optimization problem in hand. We accomplish this by
taking the following heuristic approach: we compute a energy allocation vector q𝑙 , 𝑙 = 0, . . . , 𝐿−1,
considering the uncertainty regarding each path separately and then weight the resulting energy
allocation vectors in order to minimize a lower bound on the ESPEB.

More specifically, for the energy allocation vector q0 we consider only the LOS path and ne-
glect the NLOS paths and solve

q0 = argmin
q
EpR

[
tr(ET(E|ℎ0 |,𝛼R |pR [JνLOS (q,pR, 𝛼R, |ℎ0 |)])−1E)]

s.t. A0q ≽ 𝑞th,LOS∥A0q∥∞1𝑁\ ,

q ≽ 0, 1Tq ≤ 1, (4.27)

where JνLOS represents the FIM for the parameter vector νLOS = [pT
R, 𝛼R, 𝜖clk,h

T
0 ]T. Similarly to

(4.23), the first constraint in (4.27) limits the ratio of energy spent among possible LOS directions,
with 𝑞th,LOS being the corresponding minimum ratio. For the gain of the LOS path it is natural
that 𝑝(h0 |pR) = 𝑝(h0 |𝑑0), with 𝑑0 = ∥pR∥2, i.e., the distribution of the gain depends only on the
Tx-Rx distance, and the integration over the radial component 𝑑0 and the angular component \̃T,0
of pR can be carried out separately. Then, as shown in Appendix A10, we can reformulate (4.27)
as an SDP using a 1D quadrature rule for the approximation of the expectation integral over \̃T,0:

min
q,B1,...,B𝑁\T,0

∑︁𝑁\T,0

𝑗=1
𝑝 𝑗 tr(B 𝑗 )

s.t. A0q ≽ 𝑞th,LOS∥A0q∥∞1𝑁\ ,

q ≽ 0, 1Tq ≤ 1,
B 𝑗 ET

E JνLOS(q, 𝑑0(\̃T,0, 𝑗 ), \̃T,0, 𝑗 , �̌�R,
√︃
�̄�0(\̃T,0, 𝑗 ) ej 𝛽𝑔)

 ⪰ 0, 𝑗 = 1, . . . , 𝑁\T,0 , (4.28)

where the definitions of 𝑑0(\̃T,0), �̌�R, �̄�0(\̃T,0, 𝑗 ) and 𝛽𝑔 are provided in Appendix A10.
For the energy allocation vector q𝑙 we consider only the 𝑙-th NLOS path and assume that the

Rx position and orientation are known and equal to their mean values p̄R and �̄�R. This is basically
a bistatic radar setup, where the goal is the estimation of the point of incidence. Therefore, we
obtain q𝑙 by solving

q𝑙 = argmin
q
Eps,𝑙

[
tr(ET(E|ℎ𝑙 | |ps,𝑙 [JNLOS,𝑙 (q,ps,𝑙 , |ℎ𝑙 |)])−1E)] s.t. q ≽ 0, 1Tq ≤ 1,(4.29)

where JNLOS,𝑙 represent the FIM for the parameter vector νNLOS,𝑙 = [pT
s,𝑙 , 𝜖clk,h

T
𝑙 ]T. Prob-

lem (4.29) can be solved employing a 2D cubature on ps,𝑙 .
Finally, we compute the optimal weights w ∈ R𝐿 of q𝑙 , 𝑙 = 0, . . . , 𝐿 − 1, by minimizing an

approximate lower bound on the ESPEB, obtained similarly to (4.25):

w = argmin
w′

EpR [tr(ETJ−1
ν (Qw′, ν̄)E)] s.t. A0Qw′ ≽ 𝑞th∥AQw′∥∞1𝑁\

Qw′ ≽ 0, 1TQw′ ≤ 1, (4.30)

where, in order to further reduce the computational load, we have replaced Eν |pR [Jν (Qw′, ν)]
with its approximation Jν (Qw′, ν̄), with ν̄ = Eν |pR [ν] and Q = [q0, . . . , q𝐿−1]. Finally, the
energy allocation vector is q = Qw.
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4.3 Numerical Results

4.3.1 System Parameters

As in Chapters 2 and 3, for the waveform we set 𝑓s = 122.88 MHz, 𝑓c = 38 GHz, 𝑁 = 64, 𝑁B =
10, P = {−31, . . . ,−1, 1 . . . , 31} and Δ 𝑓 (max(P) − min(P)) ≈ 120 MHz. The noise spectral
density is 𝑁0 = −174 dBm Hz−1 and the Rx noise figure is NF = 13 dB. The average transmit
energy per resource element is set such that 𝐸RE 𝑓s = 10 dBm, unless otherwise specified.

The Tx is equipped with a ULA with 𝑁T = 32 antennas. In order to be able to discriminate
all possible AOAs, the Rx has a UCA with 𝑁R = 16 antennas. With the Rx being equipped with
a UCA, the SPEB is independent of the orientation 𝛼R. Hence, 𝛼R will not be considered in the
optimization of the energy allocation strategies in the following numerical results.

As discussed in Remark 1 of Theorem 4.1, the optimization of the resources R𝑘 assigned to
each beamforming vector is out of the scope of this work and is assumed to be given. The energy
of each beamforming vector is distributed uniformly among its resources, i.e., 𝛾𝑘 [𝑝, 𝑏] = 1/|R𝑘 |
and the resources are assigned to the beamforming vectors in an interleaved and staggered manner,
i.e., R𝑘 = {(𝑘 + 𝑏 + 𝑖𝑀T, 𝑏) |𝑖 ∈ Z, 𝑏 = 1, . . . , 𝑁B : 𝑘 + 𝑏 + 𝑖𝑀T ∈ P}. This choice is made with the
following aspects in mind:

• All beamforming vectors have approximately the same effective bandwidth 𝛽𝑘 .

• Robust TOA estimation performance is ensured for all SNR values. Alternatively, one could
consider allocations 𝛾𝑘 [𝑝, 𝑏], where all energy would be allocated to the edge resources of R𝑘 ,
as dictated by the CRLB. But, this would lead to poor TOA estimation at medium SNR values.

• Given the two aforementioned aspects, we would like to have as large effective bandwidth 𝛽𝑘
as possible. Alternatively, one could consider contiguous subcarrier allocations to the beam-
forming vectors, but this could lead to lower 𝛽𝑘 .

After the optimization of q, very low or even no energy may be allocated to some of the beamform-
ing vectors. In order to avoid leaving empty resources, for the position estimation algorithm, we
reallocate the resources among the activated beamforming vectors in the same manner as described
above. The impact of this reallocation on the resulting effective bandwidths and, consequently, the
PEB is negligible.

We use the DFT codebook

f𝑘 =
[
1, ej 2𝜋

𝑁T
(𝑘−1)

, . . . , ej 2𝜋
𝑁T
(𝑁T−1) (𝑘−1) ]

, 𝑘 = 1, . . . , 𝑀T = 𝑁T, (4.31)

but note that other codebooks could also be considered, like the one in [73]. There, motivated by
Theorem 4.1 and observing that, for a ULA, the 𝑘-th beamforming vector of the DFT codebook
is collinear with a∗T(\𝑘 ), where sin(\𝑘 ) = (𝑘 − 1)/𝑁T, the DFT codebook is augmented with
the unit-norm beamforming vectors that are collinear with the derivative of the steering vector
D∗T(\𝑘 )a∗T(\𝑘 ), 𝑘 = 1, . . . , 𝑁T. Such a codebook was shown in [73] to offer an improved po-
sitioning performance in terms of the PEB. Nevertheless, numerical evaluations not included in
thesis have shown that, when used with optimized energy allocation, it may result in an autocorre-
lation function in the AOD domain with high sidelobes. This, in turn, may impose great challenges
on the position estimation algorithm and it may lead to erroneous AOD estimation and, conse-
quently, poor positioning accuracy, even for high SNR, with this effect not being captured by the
PEB. Therefore, in the following results, we stick to the DFT codebook.
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Fig. 4.2. V2X scenario for beam energy allocation.

4.3.2 Line-of-sight (LOS)-only Channel

We first deal with the simpler case of the LOS-only channel and consider the following setup,
which is depicted in Fig. 4.2. An BS serves vehicles in a 𝑙 = 100 m long road segment with 4
lanes, which have a width of 𝑤𝑙 = 3.5 m. The BS is located midway of the segment, 𝑥min = 20 m
away from its left edge. The vehicles are uniformly distributed on the road, resulting in a 𝑝𝐷,ΘT with
bounded support. The resulting maximum and minimum AOD are \̃T,max = −\̃T,max = 69.2◦. We
use a deterministic relation between the amplitude of the channel gain and the distance, using the
free space path loss model |ℎ |𝑐/(4𝜋 𝑓c𝑑) and discretize 𝑝ΘT using a trapezoidal rule with 𝑁\ = 127.
We assume perfect synchronization between the Tx and Rx, i.e., 𝜎clk = 0, so as to be able to
examine the performance differences between the energy allocation strategies, as in this case, in
the absence of NLOS components, the clock offset cannot be estimated and it would dominate the
estimation error.

For the energy allocation strategies, since only the LOS path is available, we consider the
solution of (4.19), which can be solved as (4.28) (without the constraint on the ratio of energy
spent among possible LOS directions), and refer to it in this section as "minexp". In addition,
with the prior distribution having a bounded support, it is also reasonable to consider a different
objective, where instead of the expected SPEB, the maximum SPEB is minimized. We refer to this
solution as "minmax". Apart from "minexp" and "minmax", we also consider a heuristic scheme
as a baseline ("uni"), where the available energy is uniformly allocated to the subset Buni of the
DFT beamforming vectors maximizing the projection to fopt,1:

Buni = ∪𝑁\

𝑙=1

{
argmax
𝑘=1,...,𝑁T

|fT
opt,1(\̃T,𝑙)f𝑘 |

}
. (4.32)

We note that we do not consider the optimal beamforming directions (4.7)-(4.8), as it would be
meaningless for the wide range of angles involved. The resulting radiation patterns of the different
energy allocation strategies are depicted in Fig. 4.3, along with their corresponding PEB over
the considered road segment. We can see that for both optimization strategies, and especially for
minmax, the edge beamforming vectors get most of the available energy. This is explained as
follows: first, the locations illuminated by the edge beamforming vectors have the largest distance
from the Tx, hence more transmit energy is required to combat the higher path loss. Furthermore,
for a ULA, as the angle to be estimated moves away from the array’s boresight, the accuracy of the
estimation decreases. Therefore, more energy is required to counter the AOD estimation accuracy
loss at these locations.
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Fig. 4.3. Beam patterns |aT
T(\̃T)f𝑘

√
𝑞𝑘 |, 𝑘 = 1, . . . , 𝑀T, of energy allocation strategies "minexp", "min-

max" and "uni" over the DFT codebook and corresponding performance in terms of the PEB over the
considered road segment.

The comparison of the optimized energy allocation with the uniform allocation over useful
directions ("uni") shows that, even in this scenario with coarse prior knowledge about the UE’s
location (the UEs may lie anywhere in the considered 14 m × 100 m road segment), optimization
of the energy allocation over the codebook beamforming vectors can result in performance gains,
especially in terms of the maximum PEB. The largest PEB for "minexp" and "uni" is observed at
the upper left corner of the road segment, whereas, for "minmax", the PEB attains its maximum
value at the center right part of the road segment.

For further evaluation of the energy allocation strategies, we make use of the position estima-
tion algorithm presented in Chapter 3. In Fig. 4.4 we plot RMSE(pR) and the PEB as functions of
𝐸RE 𝑓s for all considered energy allocation strategies, for a fixed Rx position at pR = [32.25, 0]T
(Fig. 4.4(a)), which corresponds to the center of the rightmost lane of the road segment, and
pR = [21.75, 50]T (Fig. 4.4(b)), which corresponds to the top position of the leftmost lane.
Each RMSE point is generated by averaging over 1000 noise realizations. In Fig. 4.4(a), with the
Rx position fixed at pR = [32.25, 0]T, we can see that, as expected from Fig. 4.3, "uni" results
in the lowest PEB. Its RMSE converges to the PEB for 𝐸RE 𝑓s > −4 dBm, faster than the other
two considered energy allocation strategies. The RMSE has a similar behavior, with the Tx en-
ergy required for convergence to the PEB being approximately 3 dB higher than that of "uni",
which corresponds to the difference in energy allocation to the Rx-illuminating beamforming vec-
tor between the two strategies. Regarding "minmax", although the energy allocated to the Rx-
illuminating beamforming vector is about 10 dB lower than that of "uni", its RMSE converges to
the PEB for 𝐸RE 𝑓s > 12.5 dBm, i.e., 16.5 dB higher than that of "uni". This can be attributed to the
fact that the shape of the autocorrelation function, which is not taken into account in the design,
makes it more difficult for the positioning algorithm to reliably detect the LOS path.
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Fig. 4.5. Empirical cdf of ∥p̂R − pR∥2 for different energy allocation strategies on the road segment of
Fig. 4.2.

The observations from Fig. 4.4(b) are similar. With the Rx position fixed at pR = [21.75, 50]T,
we observe that, as expected, "minmax" offers the best performance and its RMSE converges to the
PEB for 𝐸RE 𝑓s > −9 dBm. The amount of additional energy required for the other two strategies
to converge to their PEBs corresponds approximately to the deficit of energy allocated to the LOS-
illuminating beamforming vector.

Using again the position estimation algorithm of Chapter 3, we compare the performance of
the energy allocation strategies, with the position of the Rx being uniformly distributed over the
road segment. For 2000 random realizations of the Rx position pR, in Fig. 4.5, we plot the empir-
ical cdf of the position error ∥p̂R − pR∥2, where p̂R is the estimated position for the considered
energy allocation strategies and for two different Tx energy values, i.e., 𝐸RE 𝑓s = 10 dBm and
𝐸RE 𝑓s = 15 dBm. A summary of the percentiles of the distribution of the position error is provided
in Table 4.1. For 𝐸RE 𝑓s = 10 dBm, we can see that "minexp" is the best-performing strategy for
cdf values greater than 50%, whereas for lower cdf values, "uni" offers the best performance. We
would expect "minmax" to outperform the other two for higher cdf values, since it is the one min-
imizing the maximum PEB, but this is not the case, as can be observed in Table 4.1, with the 99%
position error being 36.16 m. This is due to the fact that, for some locations, 𝐸RE 𝑓s = 10 dBm is
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Table 4.1. Percentiles of the cdf of the position error in m for different energy allocation strategies.
𝐸RE 𝑓s = 10 dBm 𝐸RE 𝑓s = 15 dBm

50% 90% 95% 99% 50% 90% 95% 99%

minexp 0.023 0.052 0.065 0.098 0.013 0.029 0.036 0.054
minmax 0.029 0.063 0.077 36.16 0.016 0.035 0.041 0.057

uni 0.023 0.065 0.085 0.135 0.013 0.037 0.048 0.076

not sufficient for the position estimation algorithm to detect the LOS path reliably, leading to large
position errors, as can be seen, for example, in Fig. 4.4(a) for pR = [21.75, 50]T.

For 𝐸RE 𝑓s = 15 dBm, "minexp" outperforms "uni" for cdf values higher than 50%, while "min-
max" outperforms "uni" for cdf values higher than 85%, with the LOS path now being reliably
detected, as suggested by the absence of outliers. Interestingly, "minmax" outperforms "minexp"
only for some cdf values greater than 99.5%. As a conclusion, for the given geometric setup and
system configuration, "minexp" seems to be the best strategy, as it offers performance improvement
for the majority of considered locations, while being sufficiently reliable for any location.

4.3.3 Multipath Channel

4.3.3.1 Geometric Setup, Prior Information at the Transmitter (Tx) and Synchronization Accuracy

For the evaluation of the energy allocation algorithm, using also the position estimation algorithm
from Chapter 3, we consider again the geometric setup of Sec. 3.3, shown in Fig. 3.1.

We consider NLOS paths resulting from single-bounce reflections. The phases of the complex
path gains are uniformly distributed over [−𝜋, 𝜋) and their magnitudes are given by

|ℎ𝑙 | =
{
𝑐/(4𝜋 𝑓c∥pR∥2), 𝑙 = 0,√
𝜌𝑙𝑐/(4𝜋 𝑓c(∥ps,𝑙 ∥2 + ∥pR − ps,𝑙 ∥2)), 𝑙 ≠ 0,

(4.33)

where 𝜌𝑙 is the reflection coefficient.
The standard deviation of the clock offset is equal to the 2 sample intervals, i.e., 𝜎clk =

2/(𝑁Δ 𝑓 ), so that 𝑐𝜎clk ≈ 4.88 m.
Regarding prior knowledge at the Tx, we consider two cases, with the first one being an ar-

tifically generated distribution that will allow us to highlight the differences between the various
energy allocation strategies, and the second one resulting from the CRLB, assuming a prior trans-
mission.
1) In the first case, we assume that the prior knowledge about the Rx location is encoded by
N(`pR ,C0,0), with `pR = [25, 10]T and C0,0 = 3/

√
2I2m2. We also assume that the Tx has

imperfect knowledge about the environment encoded by the distributions of the locations of
the VAs pVA,𝑙 , 𝑙 = 1, 2, 3, which are assumed to be N(`pVA,𝑙 ,CVA), with

`pVA,1 = [0, 50]m, (4.34)
`pVA,2 = [0, −50]m, (4.35)
`pVA,3 = [120, 0]m, (4.36)

CVA = 3/
√

2I2. (4.37)

For the reflection coefficient 𝜌𝑙 , 𝑙 = 1, 2, 3, we assume 𝜌𝑙 ∼ N(`𝜌, 𝜎2
𝜌), with `𝜌 = −10 dB

and 𝜎𝜌 = −4 dB. In order to compute the distributions of the POIs ps,𝑙 , 𝑙 = 1, 2, 3, which
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Fig. 4.7. Samples from the distribution of the 2nd case of prior knowledge at the Tx.

are functions of pR and pVA,𝑙 , we draw 2000 random samples from the distributions of pR
and pVA,𝑙 . Using these samples, we compute the mean of ps,𝑙 , as well as its covariance and
cross-covariances with pR and ps,𝑙′ , 𝑙

′ ≠ 𝑙, and assume that pR and ps,𝑙 , 𝑙 = 1, 2, 3, are
jointly Gaussian distributed. Samples from this distribution are depicted in Fig. 4.6. Such a
distribution may result, for example, from information about the Rx location from another
positioning technology (e.g., GNSS) and imperfect knowledge about the location of the walls
from positioning other devices.

2) In the second case, we assume that prior knowledge about the location of the Rx and the POIs
has been obtained through a prior transmission in the UL and the covariance matrix of ν′ is
set according to the CRLB, with its mean set as in the first case. For the computation of the
CRLB, all parameters are set as described in Sec. 4.3.1, except for the transmit energy and the
noise figure at the UL Rx. Similar to Sec. 2.6.3, we set the transmit energy of the UE to be
13 dB lower than that of the BS, i.e., we set 𝐸RE,UE such that 𝐸RE,UE 𝑓s = −3 dBm and the noise
figure is set 6 dB lower, i.e., NFBS = 7 dB. Assuming that the parameters are jointly Gaussian
distributed, samples from the resulting distribution are depicted in Fig. 4.7.
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4.3.3.2 Benchmark for Beam Energy Allocation

In order to fairly evaluate our energy allocation strategies, we set as a benchmark the uniform
energy allocation to beamforming vectors exciting useful directions. For a given confidence level
^ we get a grid of AODs for each path as in (4.21) and compute the set of useful beamforming
vectors as

B (^)uni = ∪𝐿−1
𝑙=0 ∪𝑁\

𝑚=0

{
argmax
𝑘=1,...,𝑁T

|aT
T(\̃ (^)T,𝑙,𝑚)f𝑘 |

}
. (4.38)

The energy allocation vector q is

𝑞𝑘 =

{
1/|B (^)uni |, 𝑘 ∈ B (^)uni ,

0, 𝑘 ∉ B (^)uni .
(4.39)

4.3.3.3 Power Allocation Strategies and Position Estimation Algorithm Parameters

The energy allocation strategies and their corresponding parametrizations that we consider for our
simulation results are as follows:
• opt. unconstr.: The energy allocation is obtained by the solution of (4.20). Assuming that the

amplitude of the gain of the LOS path is deterministically related to the geometry (4.33), the
dimension of the integral that has to be numerically approximated is 𝑛 = 2𝐿+ (𝐿−1) = 11. The
minimum number of points of known cubatures of 5th degree (in order to ensure a sufficiently
dense sampling of the support of the distribution) with positive weights and dimension 𝑛 > 7
is 2𝑛 + 2𝑛 [76], [78]. Therefore, a minimum of 4118 points would be required, which incurs
prohibitive computational complexity. Instead, we draw 𝑁ν′ = 𝑛2 = 121 random samples from
the joint 11-dimensional distribution, which is a lower bound for the number of points of any
known cubature of 5th degree [78].

• opt. constr.: Similar to "opt. unconstr.", the energy allocation is obtained by the solution of
(4.20) with 𝑁ν′ = 𝑛2 = 121 random samples from the joint 11-dimensional distribution and
additional constraints (4.23), with ^ = 0.995, 𝑞th = −10 dB and 𝑁\ = 15.

• opt. reduced: Due to the dimensionality reduction (4.25), in this case 𝑛 = 2𝐿 = 8. Similar
to "opt. unconstr." and "opt. constr.", the energy allocation is obtained by the solution of the
minimization of the lower bound on ESPEB (4.25) with 𝑁ν′ = 𝑛2 = 82 = 64 random samples
from the joint 8-dimensional distribution and additional constraints (4.23), with ^ = 0.995,
𝑞th = −10 dB and 𝑁\ = 15.

• subopt.: The energy allocation is obtained by the solution of (4.27)-(4.30), with 9-point cuba-
tures for the involved 2D marginals, ^ = 0.995, 𝑞th,LOS = −3 dB, 𝑞th = −10 dB and 𝑁\ = 15.

• uni ^: The energy allocation is obtained by uniform energy allocation to useful directions,
according to (4.38)-(4.39), with ^ = {0.50, 0.90} and 𝑁\ = 15. We note that choosing ^ =
0.995 as for the other strategies results in performance degradation; hence, results for this value
are not included.
For the 1st case of prior knowledge, the beampatterns of the energy allocation strategies for the

considered prior knowledge are shown in Fig. 4.8. We observe in Figs. 4.8(a)-(d) that for the opti-
mized energy allocation strategies, most of the available energy is spent on beamforming vectors
illuminating NLOS paths. When 𝜎clk is very small (i.e., when the synchronization error is very
small), having only the delay measurement of the LOS suffices to determine the distance between
the BS and the UE. However, as 𝜎clk increases, neither the LOS nor the NLOS provide individually
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(b) opt. constr.:
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(c) opt. reduced:
E[PEB] = 0.19 m
max PEB = 0.76 m
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(d) subopt.:
E[PEB] = 0.20 m
max PEB = 1.00 m
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(e) uni 0.50:
E[PEB] = 0.28 m
max PEB = 3.13 m
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(f) uni 0.90:
E[PEB] = 0.27 m
max PEB = 2.72 m

Fig. 4.8. Beam patterns |aT
T(\̃T)f𝑘

√
𝑞𝑘 |, 𝑘 = 1, . . . , 𝑀T, for different energy allocation strategies for the 1st

case of prior knowledge.
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information about the BS-UE distance. In these cases, the information about the BS-UE distance
comes from the delay differences, and this implies that several paths (not only one) have to be
illuminated with sufficient energy. If there is a large energy unbalance between rays, then the delay
differences will be estimated less precisely. Comparing Fig. 4.8(a) with Figs. 4.8(b)-(d), we see that
when the constraints (4.23) are not applied, the energy allocation to NLOS components is more
significant, with the energy spent on less likely LOS directions being very low. From Figs. 4.8(b)
and (c), we can see that the impact of the dimensionality reduction (4.25) is the reduction of the
energy spent on the 2nd NLOS path. This is explained by the fact that the fading of the path gains
is not taken into account; hence, for the mean values of the path gains, more energy is spent on the
paths that offer more useful position information. Also, in Fig. 4.8(d) we observe that our subopti-
mal approach allocates almost no energy to the 2nd NLOS path, as in the last step where all paths
are considered jointly, only the receiver’s location uncertainty and the mean positions of scatter-
ers/reflectors are taken into account; for this setup, the information offered by the 1st NLOS path
is more useful and, therefore, most of the available energy is allocated for its illumination. For the
uniform allocation, higher confidence values lead to activation of more beamforming vectors and
spreading of the available energy to more directions.

For the 2nd case of prior knowledge, "opt. unconstr.", "opt. constr." and "opt. reduced" result
in the same energy allocation. Therefore, in the following results about this case, we omit results
about "opt. unconstr." and "opt. constr.". The beampatterns of the energy allocation strategies prior
knowledge are shown in Fig. 4.9. Both optimized energy allocation strategies ("opt. reduced" and
"subopt.") allocate energy only on beamforming vectors illuminating the LOS and the 1st NLOS
path. The difference between them is the energy allocation on the LOS-illuminating beamforming
vectors. Regarding the "uni" energy allocation strategies, we observe that, compared to "uni 0.50",
only one additional beamforming vector is activated for "uni 0.90", due to the shape of the prior
and the width of the beamforming vectors.

Regarding the position estimation algorithm parameters, we set 𝑁𝜏 = 2𝑁P, 𝑁\T = 2𝑁T, 𝑁\R =
2𝑁R, 𝑃fa = 0.05, Z1 is pre-trained for the given 𝑃fa and energy allocation strategy, Z2 = −35 dB,
𝑁cd = 3, 𝐿max = 10, 𝜒 = 𝜎[

√︁
2(𝑁T + 𝑁R) |P|𝑁B𝑃RE/𝑁T (chosen according to [69]), Z3,𝑎 = 10−4

and Z3,𝑏 = 10−2.

4.3.3.4 Performance vs Signal-to-Noise Ratio (SNR) for Fixed Geometry

We fix the geometry and the reflection coefficients to their mean value, as described in Sec. 4.3.3.1,
to examine the performance of the position estimation algorithm as a function of the Tx energy.

Considering the 1st case of prior knowledge, for the energy allocation strategies described in
Sec. 4.3.3.3, in Fig. 4.10, we plot the position RMSE Eη,𝜖clk [∥p̂R − pR∥22] and PEB as functions of
𝐸RE 𝑓s, with p̂R being the position estimate.

We can see that the bound is attained for all energy allocation strategies. Regarding uniform
energy allocation, the distance of the RMSE from the bound for low Tx energy is attributed to the
fact that, although the LOS path is detected, the probability of detection for the NLOS is small.
With only the LOS path being detected, the clock offset cannot be resolved and the resulting
position RMSE approaches the standard deviation of the clock offset 𝑐 ·𝜎clk ≈ 4.88 m. Among the
two considered configurations (^ = 0.60 and ^ = 0.90), the former has slightly better performance,
as the available energy is more concentrated to the true location of the Rx and the reflectors. But, as
we will see later on, this comes with a cost, when the uncertainty about the geometry is considered.
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(a) opt. reduced:
E[PEB] = 0.13 m
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(b) subopt.:
E[PEB] = 0.14 m
max PEB = 0.17 m
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(c) uni 0.50:
E[PEB] = 0.19 m
max PEB = 0.22 m
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E[PEB] = 0.20 m
max PEB = 0.24 m

Fig. 4.9. Beam patterns |aT
T(\̃T)f𝑘

√
𝑞𝑘 |, 𝑘 = 1, . . . , 𝑀T, for different energy allocation strategies for the

2nd case of prior knowledge.



4.3 Numerical Results 77

D
ra

ft
:O

ct
ob

er
22

,2
02

2

−4 −2 0 2 4 6 8 10
10−1

100

101

𝐸RE 𝑓s in dBm

R
M

SE
(p

R
)i

n
m

opt. unconstr.
opt. constr.
opt. reduced
subopt.
uni 0.50
uni 0.90

Fig. 4.10. Position RMSE (solid lines) and PEB (dashed lines) vs Tx energy for different energy allocation
strategies for the 1st case of prior knowledge.

The optimized allocation strategies result in similar PEBs, with the lowest PEB obtained by
"opt. unconstr.", and offer significant improvement compared to the uniform, with a gain of 3 to
4 dB for the same localization accuracy. Their convergence behavior varies and, depending on the
specific strategy, their position RMSE converges to the PEB for lower or higher 𝑃RE values com-
pared to the uniform energy allocation strategies. Before convergence their RMSE is much higher
than that of the uniform strategies and this can be explain as follows. For the RMSE to convergence
to the bound, the LOS path and at least one NLOS path have to be reliably detected. All the opti-
mized energy allocation strategies spent more energy on the 1st NLOS path (see Fig. 4.8), which is
the first path that is detected and (falsely) used as the LOS path in the estimation algorithm. Only
when the transmit energy is sufficiently high, so that the LOS path can be reliably detected, too,
the RMSE converges to the PEB. As can be seen in Fig. 4.8, for "opt. unconstr." and "opt. constr.",
only a small fraction of energy is spent on the LOS direction and the Tx energy required for the
LOS path to be detected is larger. As we will see in subsequent numerical results, this issue is more
pronounced for "opt. unconstr." when the geometry is not fixed, as considered here, but random.
In this case, a slight deviation of the Rx position from its mean may result in much lower energy
spent in the LOS direction.

The RMSE of "opt. reduced" converges slightly faster to the bound compared to "opt. constr.",
as slightly more energy is allocated to the LOS path. The "subopt." allocation exhibits the most
robust performance, as the LOS path can be detected for much lower Tx energy values, with only
a small performance penalty in terms of PEB.

Considering next the 2nd case of prior knowledge, in Fig. 4.11, for the same setup as in
Fig. 4.10, we plot again the position RMSE Eη,𝜖clk [∥p̂R − pR∥22] and PEB as functions of 𝐸RE 𝑓s.
We can see that, compared to the 1st case of prior knowledge, the attained RMSE and PEB are
lower for all considered energy allocations strategies, because the available energy is distributed to
a smaller number of beamforming vectors, due to the shape of the prior. The RMSE of the energy
allocation strategies "subopt.", "uni 0.50", and "uni 0.90" exhibit similar convergence behavior as
for the 1st case of prior knowledge. On the contrary, we observe that the RMSE of "opt. reduced"
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Fig. 4.11. Position RMSE (solid lines) and PEB (dashed lines) vs Tx energy for different energy allocation
strategies for the 2nd case of prior knowledge.

Table 4.2. Percentiles of the cdf of the position error in m for different energy allocation strategies.
50% 90% 95% 99%

opt. unconstr. 0.11 0.35 0.59 58.98
opt. constr. 0.12 0.32 0.42 0.64

opt. reduced 0.13 0.35 0.45 0.68
subopt. 0.12 0.36 0.49 0.77

uni 0.50 0.18 0.71 1.49 32.09
uni 0.90 0.16 0.49 0.61 1.09

converges to the PEB for a much lower energy value than in the 1st case. This is attributed to the
fact that more energy is allocated to the LOS path-illuminating beamforming vectors in this case.

4.3.3.5 Performance with Random Geometry

The results in Fig. 4.10 and the corresponding discussion were useful in examining the behavior
of the position estimation algorithm, but do not provide a complete characterization of the perfor-
mance of the energy allocation strategies. Starting with the 1st case of prior knowledge, to better
evaluate their performance, for 𝐸RE 𝑓s = 10 dBm and the rest of the system parameters as described
in Sec. 4.3.1, we plot in Fig. 4.12 the cdf of the position error ∥p̂R − pR∥2, which is computed by
drawing 2000 random samples of pR, ps,𝑙 , 𝜌𝑙 , 𝑙 = 1, 2, 3, from the prior distribution. A summary
of the percentiles of the distribution of the position error is provided in Table 4.2.

We can observe in Fig. 4.12 and Table 4.2 that "opt. constr." achieves the best performance,
followed by "opt. reduced" and "subopt.", which have similar performance. The fact that "opt.
constr." takes into account the variability of the reflection coefficients leads to allocation of a larger
fraction of energy to beamforming vectors illuminating the 2nd NLOS path and this turns out to
be beneficial for specific realizations. It is worth noting that, in spite of the lower computational
cost of the "subopt." allocation, its performance degradation is small. On the other hand, the "opt.
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Fig. 4.12. Empirical cdf of ∥p̂R − pR∥2 for different energy allocation strategies for the 1st case of prior
knowledge.
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Fig. 4.13. Empirical cdf of ∥p̂R − pR∥2 for different energy allocation strategies.

unconstr." approach, although attaining the same median error as "opt. constr.", has much lower
accuracy for higher percentiles. This is attributed to the low energy spent on the direction around
the LOS path, resulting in low probability of detection of the LOS. Compared to the best of the
uniform allocations, the "opt. constr." energy allocation offers a position error reduction of 25%,
35%, 31% and 41% at the 50%, 90%, 95% and 99% percentile, respectively.

Regarding the uniform allocations, we can see that spreading the energy to a reduced set of
beamforming vectors ("uni 0.50") might result in better positioning accuracy for some geometry
realizations, as seen for example in Fig. 4.10, but it significantly deteriorates the performance for
other possible realizations. This explains the higher values of position errors of "uni 0.5".

In Fig. 4.13, we plot again the cdf of the position error ∥p̂R − pR∥2 for the different energy
allocation strategies, with the random samples drawn from the distribution of the 2nd case of prior
knowledge. We remind here that, in this case, we omit results for "opt. unconstr." and "opt. constr.",
as the resulting energy allocation is identical to that of "opt. reduced". In Table 4.3 we provide a
summary of the percentiles of the distribution of the position error. The optimized energy allocation
strategies ("opt. reduced" and "subopt.") achieve the same performance. Hence, in this case, the
lower complexity of "subopt." comes with no performance penalty. Furthermore, contrary to the
1st case, "uni 0.5" outerforms "uni 0.90", which can be explained as follows. Due to the shape
of the prior and the width of the beams, increasing the required confidence level ^ from 0.50 to
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Table 4.3. Percentiles of the cdf of the position error in m for different energy allocation strategies.
50% 90% 95% 99%

opt. reduced 0.09 0.22 0.26 0.34
subopt. 0.09 0.22 0.27 0.34

uni 0.50 0.12 0.30 0.37 0.47
uni 0.90 0.13 0.31 0.38 0.51

0.90 leads to the activation of only one additional beamforming vector illuminating the 3rd path,
while the beamforming vectors illuminating the rest remain unchanged. Nevertheless, as we can
deduce from the optimized energy allocations, the first two NLOS paths are more important for
Rx localization. The activation of an additional beamforming vector illuminating the 3rd NLOS
path results in less energy used on the beamforming vector illuminating the LOS path and the 1st
and 2nd NLOS paths, leading to worse performance of "uni 0.90". Compared to the "uni 0.50", the
"opt. reduced" energy allocation offers a position error reduction of 25%, 27%, 30% and 28% at
the 50%, 90%, 95% and 99% percentile, respectively.

4.3.3.6 Energy Allocation as a Function of 𝜎clk

We now examine the effect of 𝜎clk on the energy allocation. First, similar to (4.38), we define the
set of LOS-illuminating beamforming vectors as

B (^)LOS = ∪𝑁\

𝑚=0

{
argmax
𝑘=1,...,𝑁T

|aT
T(\̃ (^)T,0,𝑚)f𝑘 | ∪ argmax

𝑘

����𝜕aT
T(\̃ (^)T,0,𝑚)
𝜕\̃T

f𝑘

����} (4.40)

and the fraction of energy spent on them as

𝑞LOS =
∑︁

𝑘∈B (^ )LOS

𝑞𝑘 . (4.41)

For the 1st case of prior knowledge, in Fig. 4.14(a) we plot 𝑞LOS as a function of 𝑐𝜎clk
for the energy allocation strategies "opt. unconstr.", "opt. constr.", "subopt" and "uni 0.90", for
𝑁R = {4, 16}, 𝑃RE = 0 dBm, ^ = 0.995 and the rest of the system parameters as described in
Sec. 4.3.1; in Fig. 4.14(b) we plot the corresponding E[PEB]. We can see in Fig. 4.14(a) that for
very low values of 𝜎clk, equivalent to almost perfect Tx-Rx synchronization, it is optimal to spend
almost all the available energy on LOS-illuminating beamforming vectors. As 𝜎clk increases, 𝑞LOS
decreases rapidly for both optimized allocation strategies, until it saturates at a relatively low value.
This is explained as follows: The clock offset decreases the amount of range information provided
by the LOS path and the larger the standard deviation of the clock offset, the more significant the
decrease. Hence, as 𝜎clk increases, the ranging information provided by the NLOS paths becomes
more significant and, therefore, more energy is spent on them. Nevertheless, the saturation occurs
because the measurement of the LOS AOD offers significant information in the orthogonal direc-
tion, which is reduced when 𝑞LOS is decreased. The saturation value for "opt. constr." is higher due
to the additional constraints on LOS illumination. Also, we observe that the transition from high
to low 𝑞LOS values is slower for 𝑁R = 4. This is attributed to the fact that NLOS paths offer rank-1
position information, whose intensity depends on the quality of the TOA, AOD and AOA measure-
ments combined [79]. For 𝑁R = 4, the quality of the AOA measurement is lower; therefore, the
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(b) Expected PEB E[PEB] as a function of the clock offset standard deviation 𝑐𝜎clk
Fig. 4.14. Fraction of energy allocated to LOS-illuminating beamforming vectors 𝑞LOS and expected PEB
E[PEB] as functions of the clock offset standard deviation 𝑐𝜎clk for the 1st case of prior knowledge.
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intensity of the ranging information from the NLOS paths is smaller, compared to 𝑁R = 16, and it
becomes significant for larger values of 𝜎clk.

In Fig. 4.14(b) we see that E[PEB] increases with increasing 𝜎clk, until it saturates at a value
which depends on the energy allocation strategy and the system configuration (𝑁R = {4, 16}). As
𝜎clk increases the reduction of ranging information from the LOS path cannot be complemented by
ranging information from the NLOS paths (even with optimized energy allocation), resulting in a
larger error. In the saturation region the ranging information from the LOS path becomes negligible
compared to the clock offset-independent part of ranging information offered by the combination
of NLOS paths with the LOS path.

Considering now the 2nd case of prior knowledge, we plot again the fraction of energy allocated
to the LOS path 𝑞LOS and the resulting E[PEB] as functions of 𝑐𝜎clk in Figs. 4.15(a) and (b),
respectively. The observations from Figs. 4.15 (a) and (b) are very similar to those from Figs 4.14
(a) and (b). In addition, we can see that, in this case, 𝑞LOS converges to its asymptotic values for
𝑁R = 16 for lower 𝑐𝜎clk values. Also, compared to the 1st case of prior knowledge, 𝑞LOS is lower,
even for 𝑐𝜎clk → 0.
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(a) Fraction of energy allocated to LOS-illuminating beamforming vectors 𝑞LOS as a function
of the clock offset standard deviation 𝑐𝜎clk.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.2

0.4

0.6

0.8

1

𝑐𝜎clk in m

E
[P

E
B
]i

n
m

(b) Expected PEB E[PEB] as a function of the clock offset standard deviation 𝑐𝜎clk.
Fig. 4.15. Fraction of energy allocated to LOS-illuminating beamforming vectors 𝑞LOS and expected PEB
E[PEB] as functions of the clock offset standard deviation 𝑐𝜎clk for the 2nd case of prior knowledge.
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5. Conclusions and Recommendations for Future Work

5.1 Conclusions

Throughout the thesis, we studied several aspects of single-anchor positioning with multi-antenna
transceivers in mm-Wave channels, investigating its theoretical accuracy limits, developing a
CRLB-achieving positioning algorithm and optimizing reference signals for positioning. A cen-
tral point of the thesis was the practical consideration of imperfect synchronization between the
Tx and Rx and its impact on the three aforementioned aspects.

In Chapter 2, we derived asymptotic expressions for the Fisher information on position, ori-
entation and velocity for single-anchor localization in a MIMO-OFDM setup, considering syn-
chronization errors and mobility of the Tx or Rx, and showed analytically that the direction of
position information from a single-bounce reflection is parallel to the reflecting surface, when
no prior knowledge about the environment is available at the Rx. We studied the impact of syn-
chronization errors and found that even small synchronization errors can significantly degrade the
achievable positioning accuracy. Through analytical and numerical results, we showed that NLOS
paths can help resolve the clock offset and drastically improve the PEB. In addition, we investi-
gated the effect of mobility and proved that each single-bounce NLOS path contributes a rank-2
FIM on position, orientation and velocity. Our numerical results showed that, in the presence of
the LOS path, mobility has no significant impact on the achievable positioning accuracy. However,
for NLOS-only positioning, it can provide valuable information that can drastically improve the
positioning accuracy of an imperfectly synchronized system. Finally, we compared DL and UL
positioning with orthonormal or random beamforming, using 3GPP-compliant assumptions for the
Tx power and the noise figure of BSs and UEs, and found that DL can offer superior performance,
due to its higher SNR.

In Chapter 3, we developed and evaluated a novel single-anchor positioning algorithm for im-
perfectly synchronized Tx and Rx and compared it with a SotA algorithm to gain better insight on
its characteristics that differentiates it from the SotA. We showed that our proposed path filtering
step, where the geometry of single-bounce paths and the known variance of the synchronization
error are exploited to reject falsely detected paths, has a significant impact on the algorithm’s per-
formance. Furthermore, the off-grid parameter estimation allows our approach to avoid detection of
spurious paths and, thus, accurately estimate the model order. This is particularly important in the
high SNR regime, where not only the computational burden of processing falsely detected paths is
avoided, but also the resulting positioning accuracy is improved. Additionally, for the discover of
new potential paths, apart from the full 3D search, we proposed an alternative lower dimensional
(2D) grid search with lower complexity and showed with numerical evaluations that employing it
the algorithm still converges to the CRLB, but at higher Tx energy values.
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In Chapter 4, we discussed how prior knowledge of the Rx position and the position of POIs in
the environment can be used to design the reference signal and enhance the performance of single-
anchor positioning with imperfectly synchronized trasceivers. We analytically showed that under
perfect prior knowledge, the optimal beams for Rx localization with a LOS path are the array steer-
ing vector and its derivative, which are used in monopulse radar, and computed the optimal energy
allocation over them. Under imperfect prior knowledge, we considered a fixed beam codebook and
optimized the energy allocation over the codebook beams. We derived energy allocation strategies
with different levels of computational complexity and evaluated them under two different types of
prior knowledge. both in terms of their theoretical performance and in terms of their performance
using the positioning algorithm of Chapter 3. By comparing with a baseline, where energy is uni-
formly allocated to all relevant directions, we observed that optimization of the energy allocation
can result in significant performance improvement, even if the prior knowledge is coarse. Our eval-
uations showed that our proposed sub-optimal solution, which is based on initially treating each
path separately and computing an intra-path energy allocation vector, followed by an inter-path
energy allocation considering all paths jointly and weighting the intra-path allocations, results in a
small to no performance penalty (depending on the form of the prior), with a substantially lower
computational complexity. We also observed that including constraints enforcing a minimum illu-
mination of the possible LOS directions, despite incurring a small theoretical performance cost in
terms of the ESPEB, results in superior performance when an actual positioning algorithm is used.
This is due to the resulting higher probability of detection of the LOS, which is not captured by
the CRLB and has a strong impact on the positioning accuracy. Finally, we observed that, even for
low values synchronization error variance, most of the available energy is allocated to beams illu-
minating NLOS components to recover necessary range information. This result further confirms
the importance of NLOS paths for single-anchor positioning under imperfect synchronization.

5.2 Recommendations for Future Work
Throughout this work, we have used the CRLB as the tool to analyze theoretical performance and
optimize the reference signal for single-anchor positioning. Nevertheless, as discussed above, our
results in Chapter 4 corroborated the fact that the CRLB, despite being a convenient mathematical
tool, may not accurately represent the performance of an actual estimator, which may be improved
by appropriately constraining the feasible set. The use of alternative performance metrics that bet-
ter capture the behavior of practical estimators, like the Ziv-Zakai lower bound (ZZLB) [80], which
has been used for waveform optimization for ranging [72], [81], is an interesting research direc-
tion. In the same spirit, as discussed in Sec. 4.3.1, a codebook including derivative beams, like the
one proposed in [73], although theoretically offering improved accuracy compared to conventional
DFT codebooks, when used with a practical estimator may result in performance degradation.
Therefore, optimization of energy allocation over such codebooks employing alternative perfor-
mance metrics, may prove beneficial in this case, too.

With research for 6G networks having already started, one of their main foreseen innovations
is joint communications and sensing (JCS), where the objective is the design of signals appropriate
for jointly transmitting data, estimating the location of UEs and sensing objects in the environ-
ment. A possible extension of the work conducted in this thesis would be the signal design for
single-anchor JCS. In addition, in this work, we have assumed that the transmitters can generate
any signals, having an arbitrary form, and, more specifically, an arbitrarily high peak-to-average
power ratio (PAPR). In practice, due to the non-linearity of the PAs and to avoid distortion of the
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signal, a power back-off must be used, so that the signal falls into the linear region of the PA,
leading to reduced PA efficiency. Hence, for energy efficient communication, low-PAPR or even
constant envelope signals are desired. Furthermore, low-PAPR signals are important for sensing, as
they allow for higher estimation SNR for the parameters of interest. We note that traditional radar
systems employ low PAPR waveforms, like frequency modulated continuous wave (FMCW) or
OFDM with specially designed pilot sequences, but such waveforms are not suitable for data trans-
mission. Therefore, an interesting research topic is the design of constant envelope, or, in general,
low-PAPR signals for JCS, with the problem becoming even more interesting when considering
multiplexing of beamformed reference signal transmissions with beamformed data transmissions.

Finally, in this work we have assumed that coupling among the antenna elements of the arrays
can be neglected. As discussed in Sec. 2.3, this is accurate only for isotropic radiators placed at
distances which are multiples of _c/2. Hence, this assumption will in general not hold in practical
systems. In a similar fashion to the analysis conducted in [54] for MIMO communications, it would
be useful to analyze the performance and design signals for positioning, taking mutual coupling
into account. Alongside mutual coupling, one could also consider the effect and joint estimation
of transceiver hardware imperfections.
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A1 Signal Model Derivation
A1.1 Static Scenario

The frequency-domain transmit signal vector at subcarrier 𝑝, 𝑝 ∈ P = {−𝑁P/2, . . . , 𝑁P/2 − 1},
of block 𝑏, 𝑏 = 0, . . . , 𝑁B − 1 is x[𝑝, 𝑏] ∈ C𝑁T , which is assumed to be a reference signal, and,
assuming that the rest of the subcarriers are empty, the corresponding time-domain transmit signal
vector is

x̃[𝑘, 𝑏] = 1√
𝑁

∑︁
𝑝∈P

x[𝑝, 𝑏] ej 2𝜋
𝑁 𝑝(𝑘−𝑁CP) , 𝑘 = 0 . . . , 𝑀 − 1, (A1.1)

where 𝑀 = 𝑁 +𝑁CP. The serialized time-domain transmit signal x̃S [𝑛] is related to the 𝑘-th vector
of the 𝑏-th time-domain OFDM symbol x̃[𝑘, 𝑏] as

x̃S [𝑏𝑀 + 𝑘 + 𝑛T] = x̃[𝑘, 𝑏], (A1.2)

where 𝑛T𝑇s is the time instant when the signal transmission starts, i.e., the TOT.
The discrete time-domain channel from the 𝑗-th transmit antenna to the 𝑖-th receive antenna

𝑐𝑖, 𝑗 [𝑚] =
𝐿−1∑︁
𝑙=0

ℎ′𝑙 �̃�
(
𝑚𝑇s − 𝜏𝑙,𝑖, 𝑗

)
e− j𝜔c𝜏𝑙,𝑖, 𝑗 , (A1.3)

where ℎ′𝑙 ∈ C, 𝑙 = 0, . . . , 𝐿 − 1, are the gains of the propagation paths. Let 𝜏min = min𝑙,𝑖, 𝑗 𝜏𝑙,𝑖, 𝑗
and 𝜏max = max𝑙,𝑖, 𝑗 𝜏𝑙,𝑖, 𝑗 . Then, 𝑐𝑖, 𝑗 [𝑚] = 0 for 𝑚 ≠ ⌈𝜏min/𝑇s⌉, . . . , ⌊(𝜏max + 𝜏𝑔)/𝑇s⌋. The received
signal at the 𝑖-th antenna is

𝑟S,𝑖 [𝑛] =
𝑁T∑︁
𝑗=1

∞∑︁
𝑚=−∞

𝑐𝑖, 𝑗 [𝑚]𝑥S, 𝑗 [𝑛 − 𝑚] + [̃S,𝑖 [𝑛]

=
𝑁T∑︁
𝑗=1

⌊(𝜏max+𝜏𝑔)/𝑇s⌋∑︁
𝑚=⌈𝜏min/𝑇s⌉

𝑐𝑖, 𝑗 [𝑚]𝑥S, 𝑗 [𝑛 − 𝑚] + [̃S,𝑖 [𝑛], (A1.4)

where η̃S [𝑛] ∼ NC(0, 𝜎2
[,RI𝑁R).

To keep the presentation simple, and since the multiplication with the analog beamforming
matrix WR and the DFT are linear operations, we swap their order. In order to start processing the
OFDM symbols, the receiver has to synchronize to the arrival of the first symbol. As can be seen
from (A1.4), the symbol to which it should synchronize, i.e., the first symbol that should be fed to
the subsequent DFT operation (discarding also the CP), is r̃S [⌈𝜏min/𝑇s⌉ + 𝑁CP + 𝑛T]. We assume
that a coarse synchronization error 𝑛𝜖 ∈ N exists, therefore the first symbol fed to the DFT will be
r̃S [𝑛0], where

𝑛0 = ⌈𝜏min/𝑇s⌉ + 𝑁CP + 𝑛T − 𝑛𝜖 . (A1.5)

Hence, the synchronized received signal at the 𝑖-th antenna �̃�S,𝑖 [𝑛] is

�̃�S,𝑖 [𝑛] = 𝑟S,𝑖 [𝑛 + 𝑛0] = 𝑟S,𝑖 [𝑛 + ⌈𝜏min/𝑇s⌉ + 𝑁CP + 𝑛T − 𝑛𝜖 ]

=
𝑁T∑︁
𝑗=1

⌊(𝜏max+𝜏𝑔)/𝑇s⌋∑︁
𝑚=⌈𝜏min/𝑇s⌉

𝑐𝑖, 𝑗 [𝑚]𝑥S, 𝑗 [𝑛 + ⌈𝜏min/𝑇s⌉ + 𝑁CP + 𝑛T − 𝑛𝜖 − 𝑚] + [̃′S,𝑖 [𝑛]

=
𝑁T∑︁
𝑗=1

𝐿c−1∑︁
𝑚′=0

𝑐𝑖, 𝑗 [𝑚′ + ⌈𝜏min/𝑇s⌉]𝑥S, 𝑗 [𝑛 + 𝑁CP + 𝑛T − 𝑛𝜖 − 𝑚′] + [̃′S,𝑖 [𝑛], (A1.6)
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where

𝐿c = ⌊(𝜏max + 𝜏𝑔)/𝑇s⌋ − ⌈𝜏min/𝑇s⌉ + 1, (A1.7)
η̃′S [𝑛] = η̃S [𝑛 + ⌈𝜏min/𝑇s⌉ + 𝑁CP + 𝑛T − 𝑛𝜖 ], (A1.8)

and the last equality follows by the change of variables 𝑚′ = 𝑚− ⌈𝜏min/𝑇s⌉. The 𝑘-th sample of the
𝑏-th time-domain received OFDM symbol �̃�𝑖 [𝑘, 𝑏], 𝑘 = 0, . . . , 𝑁 − 1, at the 𝑖-th receive antenna is
obtained as

�̃�𝑖 [𝑘, 𝑏] = �̃�S,𝑖 [𝑏𝑀 + 𝑘]

=
𝑁T∑︁
𝑗=1

𝐿c−1∑︁
𝑚′=0

𝑐𝑖, 𝑗 [𝑚′ + ⌈𝜏min/𝑇s⌉]𝑥S, 𝑗 [𝑏𝑀 + 𝑘 + 𝑁CP + 𝑛T − 𝑛𝜖 − 𝑚′] + [̃′S,𝑖 [𝑏𝑀 + 𝑘] .

(A1.9)

From (A1.9) we can observe that if

𝑛𝜖 ≥ 0 (A1.10)

and

𝑁CP ≥ 𝐿c − 1 + 𝑛𝜖 (A1.11)

the 𝑏-th received OFDM symbol contains only vectors from the 𝑏-th transmitted OFDM symbol.
Hence, using (A1.2) we get

�̃�𝑖 [𝑘, 𝑏] =
𝑁T∑︁
𝑗=1

𝐿c−1∑︁
𝑚′=0

𝑐𝑖, 𝑗 [𝑚′ + ⌈𝜏min/𝑇s⌉]𝑥 𝑗 [𝑘 + 𝑁CP − 𝑛𝜖 − 𝑚′, 𝑏] + [̃′S,𝑖 [𝑏𝑀 + 𝑘] . (A1.12)

Applying now an 𝑁-point DFT, we can obtain the received signal at the 𝑝-th subcarrier of the 𝑏-th
OFDM symbol y′[𝑝, 𝑏] at the 𝑖-th antenna

𝑦′𝑖 [𝑝, 𝑏] =
1√
𝑁

𝑁−1∑︁
𝑘=0

�̃�𝑖 [𝑘, 𝑏] e− j 2𝜋
𝑁 𝑘 𝑝

=
𝑁T∑︁
𝑗=1

𝐿c−1∑︁
𝑚′=0

𝑐𝑖, 𝑗 [𝑚′ + ⌈𝜏min/𝑇s⌉] 1√
𝑁

𝑁−1∑︁
𝑘=0

𝑥 𝑗 [𝑘 + 𝑁CP − 𝑛𝜖 − 𝑚′, 𝑏] e− j 2𝜋
𝑁 𝑘 𝑝 +[𝑖 [𝑝, 𝑏],

(A1.13)

where

η[𝑝, 𝑏] = 1√
𝑁

𝑁−1∑︁
𝑘=0

η̃′S [𝑏𝑀 + 𝑘] e− j 2𝜋
𝑁 𝑘 𝑝 . (A1.14)

From (A1.14) it is straightforward that η[𝑝, 𝑏] ∼ N (0, 𝜎2
[,RI𝑁R). Using (A1.1) we find that

1√
𝑁

𝑁−1∑︁
𝑘=0

x̃[𝑘 + 𝑁CP − 𝑛𝜖 − 𝑚′, 𝑏] e− j 2𝜋
𝑁 𝑘 𝑝 =

1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
𝑞∈P

x[𝑞, 𝑏] ej 2𝜋
𝑁 ((𝑘−𝑛𝜖−𝑚′)𝑞−𝑘 𝑝)

=
1
𝑁

∑︁
𝑞∈P

x[𝑞, 𝑏] e− j 2𝜋
𝑁 (𝑛𝜖 +𝑚′)𝑞

𝑁−1∑︁
𝑘=0

ej 2𝜋
𝑁 (𝑞−𝑝)𝑘

= x[𝑝, 𝑏] e− j 2𝜋
𝑁 (𝑛𝜖 +𝑚′)𝑝, (A1.15)
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where the last equality follows from

𝑁−1∑︁
𝑘=0

ej 2𝜋
𝑁 (𝑞−𝑝)𝑘 =

{
𝑁, 𝑝 = 𝑞,

0, 𝑝 ≠ 𝑞.
(A1.16)

Therefore, we can write (A1.13) as

𝑦′𝑖 [𝑝, 𝑏] = e− j 2𝜋
𝑁 𝑛𝜖 𝑝

𝑁T∑︁
𝑗=1
𝑥 𝑗 [𝑝, 𝑏]

𝐿c−1∑︁
𝑚′=0

𝑐𝑖, 𝑗 [𝑚′ + ⌈𝜏min/𝑇s⌉] e− j 2𝜋
𝑁 𝑚

′𝑝 +[𝑖 [𝑝, 𝑏]

= e− j 2𝜋
𝑁 𝑛𝜖 𝑝

𝑁T∑︁
𝑗=1
𝑥 𝑗 [𝑝, 𝑏]

𝐿−1∑︁
𝑙=0

ℎ′𝑙 e− j𝜔c𝜏𝑙,𝑖, 𝑗

𝐿c−1∑︁
𝑚′=0

�̃�
((𝑚′ + ⌈𝜏min/𝑇s⌉)𝑇s − 𝜏𝑙,𝑖, 𝑗

)
e− j 2𝜋

𝑁 𝑚
′𝑝

+[𝑖 [𝑝, 𝑏] . (A1.17)

With �̃� being time-limited and essentially band-limited and

𝑔[𝑝] =
𝐿c−1∑︁
𝑚′=0

�̃�(𝑚′𝑇s) e− j 2𝜋
𝑁 𝑚

′𝑝 (A1.18)

being the DFT of the sampled pulse, the following approximate non-integer time-shift property of
the DFT can be shown [82]:

𝑔[𝑝] e− j 2𝜋
𝑁

𝜏
𝑇s
𝑝 ≈

𝐿c−1∑︁
𝑚′=0

�̃�(𝑚′𝑇s − 𝜏) e− j 2𝜋
𝑁 𝑚

′𝑝, (A1.19)

where 𝜏 is the time-shift. To show this property, one has to consider the following Fourier transform
pair

�̃�(𝑡 − 𝜏) e− j 2𝜋
𝑁 𝑝 𝑡

𝑇s
F→ 𝐺

(
𝑓 + 𝑝

𝑁𝑇s

)
e− j 2𝜋

(
𝑓 + 𝑝

𝑁𝑇s

)
𝜏 (A1.20)

where 𝐺 ( 𝑓 ) is the Fourier transform of �̃�(𝑡), and apply the Poisson summation formula

∞∑︁
𝑚′=−∞

�̃�(𝑚′𝑇s − 𝜏) e− j 2𝜋
𝑁 𝑝𝑚′ =

1
𝑇s

∞∑︁
𝑙=−∞

𝐺
( 𝑙
𝑇s
+ 𝑝

𝑁𝑇s

)
e− j 2𝜋

(
𝑙+ 𝑝

𝑁

)
𝜏
𝑇s . (A1.21)

From (A1.17), (A1.7) and the fact that the time support of �̃�(𝑡) is [0, 𝜏𝑔), we can see that, for a
time-shift 𝜏 ≤ 𝜏max, the non-zero terms of the sum on the left-hand side (LHS) of (A1.21) are for
𝑚′ = 0, . . . , 𝐿c − 1. Using now the assumption that the pulse is also (approximately) band-limited
in (−1/(2𝑇s), 1/(2𝑇s)), the only non-zero term in the sum on the right-hand side (RHS) of (A1.21)
is for 𝑙 = 0, with 𝑝 = −𝑁/2, . . . , 𝑁/2. Hence, we have

𝐿c−1∑︁
𝑚′=0

�̃�(𝑚′𝑇s − 𝜏) e− j 2𝜋
𝑁 𝑝𝑚′ =

1
𝑇s
𝐺

( 𝑝

𝑁𝑇s

)
e− j 2𝜋 𝑝𝜏

𝑁𝑇s

= 𝑔[𝑝] e− j 2𝜋 𝑝𝜏
𝑁𝑇s , (A1.22)
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where the last equality follows by employing the Poisson summation formula for 𝑔(𝑡) and 𝐺 ( 𝑓 ).
Using this property in (A1.17) we get

𝑦′𝑖 [𝑝, 𝑏] ≈ e− j𝜔𝑝 (𝑛𝜖−⌈𝜏min/𝑇s⌉)𝑇s 𝑔[𝑝]
𝑁T∑︁
𝑗=1
𝑥 𝑗 [𝑝, 𝑏]

𝐿−1∑︁
𝑙=0

ℎ′𝑙 e− j(𝜔c+𝜔𝑝)𝜏𝑙,𝑖, 𝑗 +[𝑖 [𝑝, 𝑏] . (A1.23)

Using (2.7), the definition of the Tx steering vector (2.25) and setting 𝜔𝑝 = 2𝜋𝑝 𝑓s/𝑁 , we can write

𝑦′𝑖 [𝑝, 𝑏] ≈ 𝑔[𝑝]
𝐿−1∑︁
𝑙=0

ℎ′′𝑙 e− j𝜔𝑝 (𝜏𝑙−(⌈𝜏min/𝑇s⌉−𝑛𝜖 )𝑇s) ej(𝜔c+𝜔𝑝)𝜏R,𝑖 (\̃R,𝑙) aT
T,𝑝 (\̃T,𝑙)x[𝑝, 𝑏] + [𝑖 [𝑝, 𝑏],

(A1.24)

where

ℎ′′𝑙 = ℎ′𝑙 e− j𝜔c𝜏𝑙 . (A1.25)

Stacking the signals over different Rx antennas, the frequency-domain received signal vector at the
𝑝-th subcarrier of the 𝑏-th OFDM symbol is

y′[𝑝, 𝑏] ≈ 𝑔[𝑝]
𝐿−1∑︁
𝑙=0

ℎ′′𝑙 e− j𝜔𝑝 (𝜏𝑙−(⌈𝜏min/𝑇s⌉−𝑛𝜖 )𝑇s) aR,𝑝 (\̃R,𝑙)aT
T,𝑝 (\̃T,𝑙)x[𝑝, 𝑏] + η[𝑝, 𝑏]

= 𝑔[𝑝]
𝐿−1∑︁
𝑙=0

ℎ′′𝑙 e− j𝜔𝑝 (𝜏𝑙−(𝑛0−𝑛T−𝑁CP)𝑇s) aR,𝑝 (\̃R,𝑙)aT
T,𝑝 (\̃T,𝑙)x[𝑝, 𝑏] + η[𝑝, 𝑏], (A1.26)

where the last equality follows from (A1.5). We can observe from (A1.26) that the per subcarrier
rotations of the signal that the Rx observes depend, as expected, on the TOAs 𝜏𝑙 +𝑛T𝑇s of the paths,
which in turn depend on the TOT 𝑛T𝑇s. Hence, the Rx requires knowledge of the TOT to convert
the TOAs to TOFs 𝜏𝑙 . We assume that the receiver has imperfect knowledge of the TOT due to
the clock synchronization error, i.e., it operates under the premise that the signal was transmitted
at 𝑛T𝑇s − 𝜖clk, instead of 𝑛T𝑇s. Applying a per-subcarrier rotation by e− j𝜔𝑝 ((𝑛0−𝑛T−𝑁CP)𝑇s+𝜖clk) to
(A1.26) we get

y′′[𝑝, 𝑏] = y′[𝑝, 𝑏] e− j𝜔𝑝 ((𝑛0−𝑛T−𝑁CP)𝑇s+𝜖clk)

= 𝑔[𝑝]
𝐿−1∑︁
𝑙=0

ℎ′′𝑙 e− j𝜔𝑝 (𝜏𝑙+𝜖clk) aR,𝑝 (\̃R,𝑙)aT
T,𝑝 (\̃T,𝑙)x[𝑝, 𝑏] + η[𝑝, 𝑏]

= 𝑔[𝑝]
𝐿−1∑︁
𝑙=0

ℎ′′𝑙 e− j𝜔𝑝𝜏
′
𝑙 aR,𝑝 (\̃R,𝑙)aT

T,𝑝 (\̃T,𝑙)x[𝑝, 𝑏] + η[𝑝, 𝑏], (A1.27)

where 𝜏′𝑙 = 𝜏𝑙 + 𝜖clk. In practical implementations the filter �̃� has a flat frequency response over
the used spectrum, i.e., 𝑔[𝑝] = 𝑔, ∀𝑝 ∈ P. In this case, after multiplication with the analog
beamforming matrix W H

R , we get

y[𝑝, 𝑏] = W H
R y′′[𝑝, 𝑏]

= W H
R

𝐿−1∑︁
𝑙=0

ℎ𝑙 e− j𝜔𝑝𝜏
′
𝑙 aR,𝑝 (\̃R,𝑙)aT

T,𝑝 (\̃T,𝑙)x[𝑝, 𝑏] +W H
R η[𝑝, 𝑏], (A1.28)

with ℎ𝑙 = 𝑔ℎ′′𝑙 .
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A1.2 Dynamic Scenario

As described in Sec. 2.1.2, we define pR to be the Rx’s position at time 𝑛0𝑇s, which is the TOA
of the first sample of the Rx signal fed to the DFT, i.e., the sample to which the Rx synchronizes.
The position of the receiver at time 𝑛𝑇s is pR(𝑛𝑇s) = pR + vR · (𝑛 − 𝑛0)𝑇s. Then, the propagation
delay of the 𝑙-th path from the Tx to the Rx reference point for a signal transmitted at time 𝑛𝑇s can
be approximated as 𝜏𝑙 − (𝑛 − 𝑛0)𝑇s𝑣𝑙/𝑐, with 𝑣𝑙 = vT

Ru
(
\R,𝑙

)
being the speed of the receiver in the

direction of the AOA. The discrete time-domain channel from the 𝑗-th transmit antenna to the 𝑖-th
receive antenna is

𝑐𝑖, 𝑗 [𝑚, 𝑛] =
𝐿−1∑︁
𝑙=0

ℎ′𝑙 �̃�
(
𝑚𝑇s − 𝜏𝑙,𝑖, 𝑗 + 𝑣𝑙 (𝑛 − 𝑛0)𝑇s/𝑐

)
e− j 2𝜋 𝑓c(𝜏𝑙,𝑖, 𝑗−𝑣𝑙 (𝑛−𝑛0)𝑇s/𝑐) . (A1.29)

Then, 𝑐𝑖, 𝑗 [𝑚, 𝑛] = 0 for 𝑚 ≠ ⌈𝜏min/𝑇s − (𝑛 − 𝑛0)𝑣𝑙/𝑐⌉, . . . , ⌊(𝜏max + 𝜏𝑔)/𝑇s − (𝑛 − 𝑛0)𝑣𝑙/𝑐⌋. Since
𝑣𝑙/𝑐 ≪ 1 and in order to keep the notation simple, we assume ⌈𝜏min/𝑇s− (𝑛−𝑛0)𝑣𝑙/𝑐⌉ = ⌈𝜏min/𝑇s⌉
and ⌊(𝜏max + 𝜏𝑔)/𝑇s − (𝑛− 𝑛0)𝑣𝑙/𝑐⌋ = ⌊(𝜏max + 𝜏𝑔)/𝑇s⌋, ∀𝑛, that is, we assume that | (𝑛− 𝑛0)𝑣𝑙/𝑐 | is
smaller than the distance of 𝜏min/𝑇s or (𝜏max+𝜏𝑔)/𝑇s from its next or previous integer. The received
signal at the 𝑖-th antenna is

𝑟S,𝑖 [𝑛] =
𝑁T∑︁
𝑗=1

∞∑︁
𝑚=−∞

𝑐𝑖, 𝑗 [𝑚, 𝑛]𝑥S, 𝑗 [𝑛 − 𝑚] + [̃S,𝑖 [𝑛]

=
𝑁T∑︁
𝑗=1

⌊(𝜏max+𝜏𝑔)/𝑇s⌋∑︁
𝑚=⌈𝜏min/𝑇s⌉

𝑐𝑖, 𝑗 [𝑚, 𝑛]𝑥S, 𝑗 [𝑛 − 𝑚] + [̃S,𝑖 [𝑛] . (A1.30)

The first sample of the transmit signal is transmitted at 𝑛T𝑇s and it arrives at the Rx at 𝜏𝑙 − (𝑛T−
𝑛0)𝑇s𝑣𝑙/𝑐. As in the static case, the Rx synchronizes to

𝑛0 = ⌈𝜏min/𝑇s − (𝑛T − 𝑛0)𝑇s𝑣𝑙/𝑐⌉ + 𝑁CP + 𝑛T − 𝑛𝜖
= ⌈𝜏min/𝑇s⌉ + 𝑁CP + 𝑛T − 𝑛𝜖 , (A1.31)

and following similar steps to the static case, we find that, analogously to (A1.12), using 𝑛 = 𝑏𝑀 +
𝑘 +𝑛0, the 𝑘-th sample of the 𝑏-th time-domain received OFDM symbol �̃�𝑖 [𝑘, 𝑏], 𝑘 = 0, . . . , 𝑁 −1,
at the 𝑖-th receive antenna can be expressed as

�̃�𝑖 [𝑘, 𝑏] =
𝑁T∑︁
𝑗=1

𝐿c−1∑︁
𝑚′=0

𝑐𝑖, 𝑗 [𝑚′ + ⌈𝜏min/𝑇s⌉, 𝑏𝑀 + 𝑘 + 𝑛0]𝑥 𝑗 [𝑘 + 𝑁CP − 𝑛𝜖 − 𝑚′, 𝑏] + [̃′S,𝑖 [𝑏𝑀 + 𝑘] .

(A1.32)

Applying the 𝑁-point DFT we get

𝑦′𝑖 [𝑝, 𝑏] =
1√
𝑁

𝑁−1∑︁
𝑘=0

�̃�𝑖 [𝑘, 𝑏] e− j 2𝜋
𝑁 𝑘 𝑝

=
𝑁T∑︁
𝑗=1

𝐿c−1∑︁
𝑚′=0

𝑐𝑖, 𝑗 [𝑚′ + ⌈𝜏min/𝑇s⌉, 𝑏𝑀 + 𝑘 + 𝑛0] 1√
𝑁

𝑁−1∑︁
𝑘=0

𝑥 𝑗 [𝑘 + 𝑁CP − 𝑛𝜖 − 𝑚′, 𝑏] e− j 2𝜋
𝑁 𝑘 𝑝

+[𝑖 [𝑝, 𝑏] . (A1.33)
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Using (A1.29) and

x̃[𝑘 + 𝑁CP − 𝑛𝜖 − 𝑚′, 𝑏] = 1√
𝑁

∑︁
𝑞∈P

x[𝑞, 𝑏] ej 2𝜋
𝑁 (𝑘−𝑛𝜖−𝑚′)𝑞 (A1.34)

we get

𝑦′𝑖 [𝑝, 𝑏] =
1
𝑁

∑︁
𝑞∈P

e− j 2𝜋
𝑁 𝑛𝜖 𝑞

𝐿−1∑︁
𝑙=0

ℎ′𝑙

𝑁T∑︁
𝑗=1
𝑥 𝑗 [𝑞, 𝑏] e− j 2𝜋 𝑓c𝜏𝑙,𝑖, 𝑗

𝑁−1∑︁
𝑘=0

e− j 2𝜋 𝑓c
𝑣𝑙
𝑐 (𝑏𝑀+𝑘)𝑇s e− j 2𝜋

𝑁 (𝑝−𝑞)𝑘

×
𝐿c−1∑︁
𝑚′=0

�̃�((𝑚′ + ⌈𝜏min/𝑇s⌉)𝑇s − 𝜏𝑙,𝑖, 𝑗 − (𝑏𝑀 + 𝑘)𝑇s𝑣𝑙/𝑐) e− j 2𝜋
𝑁 𝑚

′𝑞 +[𝑖 [𝑝, 𝑏] . (A1.35)

Employing the approximate non-integer time-shift property of the DFT (A1.19) for the last sum
of (A1.35)

𝑦′𝑖 [𝑝, 𝑏] =
∑︁
𝑞∈P

𝑔[𝑞] e− j𝜔𝑞 (𝑛𝜖−⌈𝜏min/𝑇s⌉)𝑇s

𝐿−1∑︁
𝑙=0

ℎ′𝑙 ej(𝜔c+𝜔𝑞) 𝑣𝑙𝑐 𝑏𝑀𝑇s

𝑁T∑︁
𝑗=1
𝑥 𝑗 [𝑞, 𝑏] e− j(𝜔c+𝜔𝑞)𝜏𝑙,𝑖, 𝑗

× 1
𝑁

𝑁−1∑︁
𝑘=0

e− j 2𝜋
𝑁 (𝑝−𝑞− 𝑓c

𝑣𝑙
𝑐 𝑁𝑇s− 𝑣𝑙

𝑐 𝑞)𝑘 +[𝑖 [𝑝, 𝑏] . (A1.36)

With

1
𝑁

𝑁−1∑︁
𝑘=0

e− j 2𝜋
𝑁 (𝑝−𝑞− 𝑓c

𝑣𝑙
𝑐 𝑁𝑇s− 𝑣𝑙

𝑐 𝑞)𝑘 = 𝑄𝑁

((
𝜔𝑝 − 𝜔𝑞 −

𝜔c + 𝜔𝑞
𝑐

𝑣𝑙

)
𝑇s

2

)
, (A1.37)

where

𝑄𝑁 (𝑥) = e− j(𝑁−1)𝑥 sin(𝑁𝑥)
𝑁 sin(𝑥) , (A1.38)

and using (2.7), (A1.25) and the definition of the Tx steering vector (2.25), we write y′[𝑝, 𝑏] as

y′[𝑝, 𝑏] ≈
∑︁
𝑞∈P

𝑔[𝑞]
𝐿−1∑︁
𝑙=0

ℎ′′𝑙 e− j𝜔𝑞 (𝜏𝑙−(⌈𝜏min/𝑇s⌉−𝑛𝜖 )𝑇s) ej(𝜔c+𝜔𝑞) 𝑣𝑙𝑐 𝑏𝑀𝑇s𝑄𝑁

((
𝜔𝑝 − 𝜔𝑞 −

𝜔c + 𝜔𝑞
𝑐

𝑣𝑙

)
𝑇s

2

)
× ej(𝜔c+𝜔𝑞)𝜏R,𝑖 (\̃R,𝑙) aT

T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏] + [𝑖 [𝑝, 𝑏]

=
∑︁
𝑞∈P

𝑔[𝑞]
𝐿−1∑︁
𝑙=0

ℎ′′𝑙 e− j𝜔𝑝 (𝜏𝑙−𝑛0−𝑛T−𝑁CP)𝑇s) ej(𝜔c+𝜔𝑞) 𝑣𝑙𝑐 𝑏𝑀𝑇s 𝑄𝑁

((
𝜔𝑝 − 𝜔𝑞 −

𝜔c + 𝜔𝑞
𝑐

𝑣𝑙

)
𝑇s

2

)
× ej(𝜔c+𝜔𝑞)𝜏R,𝑖 (\̃R,𝑙) aT

T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏] + [𝑖 [𝑝, 𝑏] . (A1.39)

The last equality follows from (A1.31). Finally, as in the static scenario, applying a per-subcarrier
rotation by e− j𝜔𝑝 ((𝑛0−𝑛T−𝑁CP)𝑇s+𝜖clk) to (A1.26), assuming again that 𝑔[𝑞] ≈ 𝑔 for all used subcarri-
ers and multiplying with the analog beamforming matrix W H

R , we get

y[𝑝, 𝑏] = W H
R

∑︁
𝑞∈P

𝐿−1∑︁
𝑙=0

ℎ𝑙 e− j(𝜔𝑞𝜏
′
𝑙−(𝜔c+𝜔𝑞) 𝑣𝑙𝑐 𝑏𝑀𝑇s) 𝑄𝑁

((
𝜔𝑝 − 𝜔𝑞 −

𝜔c + 𝜔𝑞
𝑐

𝑣𝑙

)
𝑇s

2

)
×aR,𝑞 (\̃R,𝑙)aT

T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏] +W H
R [𝑖 [𝑝, 𝑏]

= W H
R

∑︁
𝑞∈P

H [𝑝, 𝑞, 𝑏]x[𝑞, 𝑏] +W H
R [𝑖 [𝑝, 𝑏], (A1.40)
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where

H [𝑝, 𝑞, 𝑏] =
𝐿−1∑︁
𝑙=0

ℎ𝑙 e− j(𝜔𝑞𝜏
′
𝑙−(𝜔c+𝜔𝑞) 𝑣𝑙𝑐 𝑏𝑀𝑇s) 𝑄𝑁

((
𝜔𝑝 − 𝜔𝑞 −

𝜔c + 𝜔𝑞
𝑐

𝑣𝑙

)
𝑇s

2

)
aR,𝑞 (\̃R,𝑙)aT

T,𝑞 (\̃T,𝑙).

(A1.41)
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A2 Derivatives of 𝑚 [𝑝, 𝑏] w.r.t. the Channel Parameter Vector
We provide the required derivatives of m[𝑝, 𝑏] for the dynamic scenario; the required deriva-
tives for the static scenario can be obtained from them by setting vR = 0 (or equivalently
𝑣𝑙 = 0, ∀𝑙), bearing in mind that lim𝑣𝑙→0𝑄𝑁 (Φ̃𝑝,𝑝,𝑙) = 1 and lim𝑣𝑙→0𝑄𝑁 (Φ̃𝑝,𝑞,𝑙) = 0, 𝑝 ≠ 𝑞,
where Φ̃𝑝,𝑞,𝑙 =

(
𝜔𝑝 − 𝜔𝑞 −

(
𝜔c + 𝜔𝑞

)
𝑣𝑙/𝑐

)
𝑇s/2, and 𝑄𝑁 (·) is defined in (2.31). Setting Ψ̃𝑞,𝑙,𝑏 =

𝜔𝑞𝜏
′
𝑙 −

𝜔c+𝜔𝑞

𝑐 𝑣𝑙𝑏𝑀𝑇s, we compute the required derivatives as

𝜕m[𝑝, 𝑏]
𝜕𝜏′𝑙

= − j
∑︁

𝑞∈P 𝜔𝑞ℎ𝑙 e− j Ψ̃𝑞,𝑙,𝑏 𝑄𝑁 (Φ̃𝑝,𝑞,𝑙)W H
R aR,𝑞 (\̃R,𝑙)aT

T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏], (A2.1)

𝜕m[𝑝, 𝑏]
𝜕\̃T,𝑙

=
∑︁

𝑞∈P ℎ𝑙 e− j Ψ̃𝑞,𝑙,𝑏 𝑄𝑁 (Φ̃𝑝,𝑞,𝑙)W H
R aR,𝑞 (\̃R,𝑙)aT

T,𝑞 (\̃T,𝑙)DT
T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏], (A2.2)

𝜕m[𝑝, 𝑏]
𝜕\̃R,𝑙

=
∑︁

𝑞∈P ℎ𝑙 e− j Ψ̃𝑞,𝑙,𝑏 𝑄𝑁 (Φ̃𝑝,𝑞,𝑙)W H
R DR,𝑞 (\̃R,𝑙)aR,𝑞 (\̃R,𝑙)aT

T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏], (A2.3)

𝜕m[𝑝, 𝑏]
𝜕 |ℎ𝑙 | =

∑︁
𝑞∈P earg(ℎ𝑙) e− j Ψ̃𝑞,𝑙,𝑏 𝑄𝑁 (Φ̃𝑝,𝑞,𝑙)W H

R aR,𝑞 (\̃R,𝑙)aT
T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏], (A2.4)

𝜕m[𝑝, 𝑏]
𝜕 arg(ℎ𝑙) = j

∑︁
𝑞∈P ℎ𝑙 e− j Ψ̃𝑞,𝑙,𝑏 𝑄𝑁 (Φ̃𝑝,𝑞,𝑙)W H

R aR,𝑞 (\̃R,𝑙)aT
T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏], (A2.5)

𝜕m[𝑝, 𝑏]
𝜕𝑣𝑙

=
∑︁

𝑞∈P ℎ𝑙 e− j Ψ̃𝑞,𝑙,𝑏 𝑄𝑁 (Φ̃𝑝,𝑞,𝑙)𝑉𝑏,𝑝,𝑞,𝑙W H
R aR,𝑞 (\̃R,𝑙)aT

T,𝑞 (\̃T,𝑙)x[𝑞, 𝑏], (A2.6)

where DT,𝑞 (\̃T,𝑙) is a diagonal matrix with [DT,𝑞 (\̃T,𝑙)] 𝑗 , 𝑗 = − j 𝜔c+𝜔𝑞

𝑐 𝑑T, 𝑗u
T
⊥(\̃T,𝑙)u(𝜓T, 𝑗 ) and

DR,𝑝 (\̃R,𝑙) is defined accordingly. Also

𝑉𝑏,𝑝,𝑞,𝑙 =
(
cot(Φ̃𝑝,𝑞,𝑙) − 𝑁 cot(𝑁Φ̃𝑝,𝑞,𝑙)

)
𝑇s/2 + j(𝑏𝑀 + (𝑁 − 1)/2)𝑇s. (A2.7)
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A3 Entries of Transformation Matrix T

The entries of TT (TR) corresponding to identical parameters in ν̃ and νT (νR) are equal to 1, e.g.,
𝜕ℎ0,ℜ/𝜕ℎ0,ℜ = 1. The rest non-zero entries are computed as follows:

𝜕𝜏𝑙/𝜕pR = −u(\R,𝑙)/𝑐, (A3.1)

𝜕\̃T,𝑙/𝜕pR =

{
u⊥(\R,𝑙)/𝑑T,s,𝑙 , 𝑙-th path is LOS,
0, otherwise,

(A3.2)

𝜕\̃R,𝑙/𝜕pR =
u⊥(\R,𝑙)
𝑑R,s,𝑙

, (A3.3)

𝜕\̃R,𝑙/𝜕𝛼R = −1, (A3.4)
𝜕𝜏𝑙/𝜕pT = −u(\T,𝑙)/𝑐, (A3.5)

𝜕\̃T,𝑙/𝜕pT = u⊥(\T,𝑙)/𝑑T,s,𝑙 , (A3.6)

𝜕\̃R,𝑙/𝜕pT =

{
u⊥(\T,𝑙)/𝑑R,s,𝑙 , 𝑙-th path is LOS,
0, otherwise,

(A3.7)

𝜕\̃T,𝑙/𝜕𝛼T = −1, (A3.8)
𝜕𝜏𝑙/𝜕ps,𝑙 = (u(\T,𝑙) + u(\R,𝑙))/𝑐, (A3.9)

𝜕\̃T,𝑙/𝜕ps,𝑙 = −u⊥(\T,𝑙)/𝑑T,s,𝑙 , (A3.10)
𝜕\̃R,𝑙𝜕ps,𝑙 = −u⊥(\R,𝑙)/𝑑R,s,𝑙 . (A3.11)

For a mobile receiver

𝜕𝑣𝑙/𝜕pR = −𝜌𝑙u⊥(\R,𝑙)/𝑑R,s,𝑙 , (A3.12)
𝜕𝑣𝑙/𝜕vR = u

(
\R,𝑙

)
, (A3.13)

𝜕𝑣𝑙/𝜕ps,𝑙 = 𝜌𝑙u⊥
(
\R,𝑙

)/𝑑R,s,𝑙 , (A3.14)

where 𝜌𝑙 = vT
Ru⊥

(
\R,𝑙

)
. Similar expressions can be obtained for a mobile transmitter.
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Table A1. BS and UE NF and Tx power values reported in 3GPP technical specification (TS) 38.855.
FR 1 FR2

BS NF in dB 5 7
UE NF in dB 9 13
UE Tx power in dBm 23 23
indoor BS Tx power in dBm 24 24
urban micro BS Tx power in
dBm

44 37

urban macro BS Tx power in
dBm

49 –

A4 Choice of Noise Figure and Transmit Power for Base Stations (BSs) and
User Equipments (UEs)

To get a realistic comparison of DL and UL positioning, we have to choose realistic values for the
noise figure (NF) and the Tx power of the BS and the UE. We have identified some relevant values
in the 3GPP technical report (TR) 38.855 [59], which is a study on new radio (NR) positioning
support and describes a set of comment parameters agreed in 3GPP to be used in evaluations. The
parameters for FR 1 (sub-6 GHz) and FR 2 (above 6 GHz) are shown in Table A1.
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A5 Favorable Propagation Conditions for Uniform Linear Arrays (ULAs)
and Uniform Circular Arrays (UCAs)

For ULAs with _c/2-spaced elements we have

𝑑T, 𝑗 =
_c

2
| 𝑗 − (𝑁 + 1)/2| (A5.1)

𝜓T, 𝑗 =

{
𝜋/2, 𝑗 < 𝑁/2
−𝜋/2, 𝑗 ≥ 𝑁/2 (A5.2)

1
𝑁T

aH
T,𝑝 (\̃T,𝑙)aT,𝑝 (\̃T,𝑙′) = psinc𝑁T

(𝑥(\̃T,𝑙 , \̃T,𝑙′)) → 0, (A5.3)

where

psinc𝑁 (𝑥) =
sin(𝑁𝑥)
𝑁 sin(𝑥) (A5.4)

𝑥(\̃T,𝑙 , \̃T,𝑙′) = 𝜋

2
𝜔c + 𝜔𝑝
𝜔c

(sin(\̃T,𝑙) − sin(\̃T,𝑙′)). (A5.5)

We also compute

1
𝑁2

T

𝜕

𝜕\̃T,𝑙
aH

T,𝑝 (\̃T,𝑙)aT,𝑝 (\̃T,𝑙′) = psinc𝑁T
(𝑥(\̃T,𝑙 , \̃T,𝑙′))

(
cot(𝑁T𝑥(\̃T,𝑙 , \̃T,𝑙′)) −

cot(𝑥(\̃T,𝑙 , \̃T,𝑙′))
𝑁T

)
∼ 1
𝑥(\̃T,𝑙 , \̃T,𝑙′)

cos(𝑁T𝑥(\̃T,𝑙 , \̃T,𝑙′))
𝑁T

→ 0 (A5.6) 𝜕

𝜕\̃T,𝑙
aT,𝑝 (\̃T,𝑙)

2

2
=

(
𝜔c + 𝜔𝑝
𝜔c

𝜋 sin(\̃T,𝑙)
)2 (𝑁T − 1)𝑁T(𝑁T + 1)

12
, (A5.7)

where for any functions 𝑓 , 𝑔 of 𝑛, 𝑓 (𝑛) ∼ 𝑔(𝑛) means that 𝑓 is asymptotic to 𝑔(𝑛).
The radius of UCAs with _c/2-spaced elements is _c/

(
4 sin(𝜋/𝑁T)

)
. We then have for large

𝑁T [83]

1
𝑁T

aH
T,𝑝 (\̃T,𝑙)aT,𝑝 (\̃T,𝑙′) ∼ 𝐽0

(
𝜋

sin(𝜋/𝑁T)
𝜔c + 𝜔𝑝
𝜔c

sin
(
\̃T,𝑙 − \̃T,𝑙′

2

))
→ 0, (A5.8)

where 𝐽0(·) is the zero-th order Bessel function of the first kind. We also compute

1
𝑁2

T

𝜕

𝜕\̃T,𝑙
aH

T,𝑝 (\̃T,𝑙)aT,𝑝 (\̃T,𝑙′) ∼ − 𝜋

2𝑁T sin(𝜋/𝑁T)
𝜔c + 𝜔𝑝
𝜔c

cos
(
\̃T,𝑙 − \̃T,𝑙′

2

)
×

𝐽1

(
𝜋

sin(𝜋/𝑁T)
𝜔c + 𝜔𝑝
𝜔c

sin
(
\̃T,𝑙 − \̃T,𝑙′

2

))
→ 0 (A5.9) 𝜕

𝜕\̃T,𝑙
aT,𝑝 (\̃T,𝑙)

2

2
=

1
2

(
𝜔c + 𝜔𝑝
𝜔c

𝜋

2 sin(𝜋/𝑁T)

)2
𝑁T, (A5.10)

where 𝐽1(·) is the first order Bessel function of the first kind.
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A6 Proof of Theorem 2.1
We first have to compute the asymptotic expressions for the entries of the channel parameters
FIM J (o)ν̃ . In order to facilitate readability and understanding, instead of referring to the entries of
J (o)ν̃ by their position in the matrix, e.g. 𝐽 (o)a,1,2, we refer to them by using as indices the variables
they correspond to, e.g., 𝐽𝜏′0 \̃T,0

. Using (2.45), (2.68) and (A2.1)-(A2.5) and the assumptions 1-2 of
Section 2.4, we find that

𝐽𝜏′
𝑙
𝜏′
𝑙
= 𝛿R,T |ℎ𝑙 |2

∑︁
𝑝∈P

𝛾 [𝑝]𝜔2
𝑝, (A6.1)

𝐽\̃T,𝑙 \̃T,𝑙
= 𝛿R,T |ℎ𝑙 |2

(
�̄�𝑐/𝑐

)2
𝑆T(\̃T,𝑙), (A6.2)

𝐽\̃R,𝑙 \̃R,𝑙
= 𝛿R,T |ℎ𝑙 |2

(
�̄�𝑐/𝑐

)2
𝑆R(\̃R,𝑙), (A6.3)

𝐽|ℎ𝑙 | |ℎ𝑙 | = 𝛿R,T, (A6.4)
𝐽arg(ℎ𝑙) arg(ℎ𝑙) = 𝛿R,T |ℎ𝑙 |2, (A6.5)

𝐽𝜏𝑙 arg(ℎ𝑙) = −𝛿R,T |ℎ𝑙 |2
∑︁
𝑝∈P

𝛾 [𝑝]𝜔𝑝, (A6.6)

where with some abuse of notation the equality sign is used to denote that the asymptotic values
are equal. Using the notion of the EFIM, we can show that, as far as position and orientation
information is concerned, we can exclude the channel gains from the parameter vectors, as long as
we include the uncertainty they introduce to the model by replacing the time-related FIM entries{
𝐽𝜏′

𝑙
𝜏′
𝑙

}𝐿−1

𝑙=0
with

{
𝐽′
𝜏′
𝑙
𝜏′
𝑙
,

}𝐿−1

𝑙=0
, where 𝐽′

𝜏′
𝑙
𝜏′
𝑙
= 𝛿R,T𝛽

2 |ℎ𝑙 |2. Using the favorable propagation conditions

(2.68)-(2.70) and following the Bachmann-Landau asymptotic notations1 [84], we can show that
all the diagonal entries of the FIM are Θ(𝑥3), where 𝑥 ∈ 𝑁T, 𝑁R, 𝐹s, e.g., 𝐽𝜏𝑙𝜏𝑙 = Θ(𝑁R𝐹

2
s ), and the

rest of the entries are 𝑜(𝑥3), which means they can be ignored in the computation of the asymptotic
position and orientation EFIM. For brevity, we only present the derivation for the case when the
LOS path is available. In order to make the expressions more compact, when the same variable is
used in both indices we write it only once; e.g., we write 𝐽′

𝜏′0
instead of 𝐽′

𝜏′0𝜏
′
0
. Using the expressions

from Appendix A3 for the entries of the Fisher information transformation matrices, we compute

TpoJν̃T
T
po =

𝐽′𝜏0

𝑐2 z𝜏0z
T
𝜏0 +

𝐽\̃T,0

𝑑2
T,s,0

z\T,0z
T
\T,0
+
𝐽\̃R,0

𝑑2
R,s,0

z\R,0z
T
\R,0
+
𝐿−1∑︁
𝑙=1

(
𝐽′𝜏𝑙
𝑐2 z𝜏𝑙z

T
𝜏𝑙 +

𝐽\̃R,𝑙

𝑑2
R,s,𝑙

z\R,𝑙z
T
\R,𝑙

)
,

(A6.7)

where z𝜏𝑙 = [−uT (
\R,𝑙

)
, 0]T and z\R,𝑙 = [uT

⊥
(
\R,𝑙

)
, −𝑑R,s,𝑙]T. We also write

TnpJν̃T
T
np +

1
𝜎2

clk

e1e
T
1 =

[∑𝐿−1
𝑙=0 𝐽

′
𝜏′
𝑙
+ 1
𝜎2

clk
bT

b C

]
, (A6.8)

where b = [𝐽′
𝜏′1
νT

1 /𝑐, . . . , 𝐽′𝜏′
𝐿−1

νT
𝐿−1/𝑐]T, ν𝑙 = u(\T,𝑙) + u

(
\R,𝑙

)
and C is a block diagonal matrix

with the following 2 × 2 matrices on its diagonal

J𝑠,𝑙 =
𝐽′
𝜏′
𝑙

𝑐2 ν𝑙ν
T
𝑙 +

𝐽\̃T,𝑙

𝑑2
T,s,𝑙

u⊥
(
\T,𝑙

)
uT
⊥
(
\T,𝑙

) + 𝐽\̃R,𝑙

𝑑2
R,s,𝑙

u⊥
(
\R,𝑙

)
uT
⊥
(
\R,𝑙

)
. (A6.9)

1 𝑓 (𝑥) = 𝑜(𝑔(𝑥)) means that lim𝑥→∞
��� 𝑓 (𝑥 )𝑔 (𝑥 )

��� = 0 and 𝑓 (𝑥) = Θ(𝑔(𝑥)) means that 0 < lim inf𝑥→∞
��� 𝑓 (𝑥 )𝑔 (𝑥 )

��� ≤
lim sup𝑥→∞

��� 𝑓 (𝑥 )𝑔 (𝑥 )
��� < ∞
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In order to compute
(
TnpJν̃T

T
np

)−1
using block matrix inversion, we still need to compute C−1,

which in turn, using block diagonal matrix inversion, requires the computation of J−1
s,𝑙 . We compute

J−1
s,𝑙 as [16, Lemma 1]

J−1
s,𝑙 =

1��Js,𝑙
�� [ 𝐽′𝜏′𝑙𝑐2 ν𝑙,⊥ν

T
𝑙,⊥ +

𝐽\̃T,𝑙

𝑑2
T,s,𝑙

u(\T,𝑙)uT(\T,𝑙) +
𝐽\̃R,𝑙

𝑑2
R,s,𝑙

u(\R,𝑙)uT(\R,𝑙)
]
, (A6.10)

with ν𝑙,⊥ = u⊥(\T,𝑙) + u⊥(\R,𝑙) and

��J𝑠,𝑙 �� = 𝐽′
𝜏′
𝑙

𝑐2 (1 + cos(Δ\𝑙))2
( 𝐽\̃T,𝑙

𝑑2
T,s,𝑙

+
𝐽\̃R,𝑙

𝑑2
R,s,𝑙

)
+
𝐽\̃T,𝑙

𝐽\̃R,𝑙

𝑑2
T,s,𝑙𝑑

2
R,s,𝑙

sin2(Δ\𝑙). (A6.11)

Therefore, using (A6.8)-(A6.11), uT(\T,𝑙)u(\R,𝑙) = cos(Δ\𝑙) and uT(\T,𝑙)u⊥(\R,𝑙 = sin(Δ\𝑙),
after some algebraic manipulations we find that

TpoJν̃T
T
np

(
TnpJν̃T

T
np +

1
𝜎2

clk

e1e
T
1

)−1

TnpJν̃T
T
po

=
𝐿−1∑︁
𝑙=1

[ (𝐽′
𝜏′
𝑙
)2

𝑐4
(1 + cos(Δ\𝑙))2��J𝑠,𝑙 �� ©«

𝐽\̃T,𝑙

𝑑2
T,s,𝑙

+
𝐽\̃R,𝑙

𝑑2
R,s,𝑙

ª®¬z𝜏𝑙zT
𝜏𝑙

+
𝐽2
\̃R,𝑙

𝑑4
R,s,𝑙

©«
𝐽′
𝜏′
𝑙

(
1 + cos(Δ\𝑙)

)2

𝑐2
��J𝑠,𝑙 �� +

𝐽\̃T,𝑙
sin2(Δ\𝑙)

𝑑2
T,s,𝑙

��J𝑠,𝑙 �� ª®®¬z\R,𝑙z
T
\R,𝑙

+
𝐽′
𝜏′
𝑙
𝐽\̃T,𝑙

𝐽\̃R,𝑙

𝑐2𝑑2
T,s,𝑙𝑑

2
R,s,𝑙

(
1 + cos(Δ\𝑙)

)
sin(Δ\𝑙)��J𝑠,𝑙 �� (

z𝜏𝑙z
T
\R,𝑙
+ z\R,𝑙z

T
𝜏𝑙

)]
+ 1
�̂�𝜖clk

ẑ𝜖clk ẑ
T
𝜖clk
, (A6.12)

where

�̂�𝜖clk =
𝐽′
𝜏′0
+ 1
𝜎2

clk

𝑐2 +
𝐿−1∑︁
𝑙=1

𝐽′
𝜏′
𝑙
𝐽\̃T,𝑙

𝐽\̃R,𝑙

𝑐2𝑑2
T,s,𝑙𝑑

2
R,s,𝑙

��J𝑠,𝑙 �� sin2(Δ\𝑙), (A6.13)

ẑ𝜖clk =
𝐿−1∑︁
𝑙=1

𝐽′
𝜏′
𝑙
𝐽\̃T,𝑙

𝐽\̃R,𝑙

𝑐2𝑑2
T,s,𝑙𝑑

2
R,s,𝑙

��J𝑠,𝑙 �� sin(Δ\𝑙) [νT
𝑙 , −(1 + cos(Δ\𝑙))𝑑R,s,𝑙]T. (A6.14)

Combining (A6.7), (A6.11) and (A6.12) and using the trigonometric identities

1 + cos(Δ\𝑙) = 2 cos2(Δ\𝑙/2),
sin(Δ\𝑙) = 2 sin(Δ\𝑙/2) cos(Δ\𝑙/2),

we obtain the desired result.
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A7 Entries of M𝑙

The entries of M𝑙 , which is involved in the computation of the position and orientation EFIM
when prior knowledge of the VAs’ locations is available, are given by:

𝑀𝑙,1,1 =
𝑖𝜏𝑙
𝑄𝑙

(
𝑄𝑙 − 𝑖𝜏𝑙

(
(𝑖\T,𝑙 + 𝑖\R,𝑙 )

(𝑑R,s,𝑙

𝑑𝑙

)2
+ 1
(1 − 𝜌2

𝑙 )𝜎2
𝑙,⊥

))
, (A7.1)

𝑀𝑙,2,2 =
𝑖\T,𝑙

𝑄𝑙

(𝑑T,s,𝑙

𝑑𝑙

)2
(
𝑖𝜏𝑙

(
𝑖\R,𝑙

(𝑑R,s,𝑙

𝑑𝑙

)2
+ 1
(1 − 𝜌2

𝑙 )𝜎2
𝑙,⊥

)
+ 1
(1 − 𝜌2

𝑙 )𝜎2
𝑙,∥

(
𝑖\R,𝑙

(𝑑R,s,𝑙

𝑑𝑙

)2
+ 1
𝜎2
𝑙,⊥

))
,

(A7.2)

𝑀𝑙,3,3 =
𝑖\R,𝑙

𝑄𝑙

(𝑑R,s,𝑙

𝑑𝑙

)2
(
𝑄𝑙 − 𝑖\R,𝑙

(𝑑R,s,𝑙

𝑑𝑙

)2
(
𝑖𝜏𝑙 +

1
(1 − 𝜌2

𝑙 )𝜎2
𝑙,∥
+ 𝑖\T,𝑙 tan2(Δ\𝑙/2)

))
, (A7.3)

𝑀𝑙,1,2 = 𝑀𝑙,2,1 =
𝑖𝜏𝑙 𝑖\T,𝑙

𝑄𝑙

𝑑T,s,𝑙

𝑑𝑙

(
tan( Δ\𝑙/2)

(
𝑖\R,𝑙

(𝑑R,s,𝑙

𝑑𝑙

)2
+ 1
(1 − 𝜌2

𝑙 )𝜎2
𝑙,⊥

)
−𝑑R,s,𝑙

𝑑𝑙

𝜌𝑙

(1 − 𝜌2
𝑙 )𝜎𝑙,∥𝜎𝑙,⊥

)
, (A7.4)

𝑀𝑙,1,3 = 𝑀𝑙,3,1 =
𝑖𝜏𝑙 𝑖\R,𝑙

𝑄𝑙

(𝑑R,s,𝑙

𝑑𝑙

)2
(

𝜌𝑙

(1 − 𝜌2
𝑙 )𝜎𝑙,∥𝜎𝑙,⊥

+ 𝑖\T,𝑙 tan(Δ\𝑙/2)
𝑑R,s,𝑙

𝑑𝑙

)
, (A7.5)

𝑀𝑙,2,3 = 𝑀𝑙,3,2 =
𝑖\T,𝑙 𝑖\R,𝑙

𝑄𝑙

(𝑑R,s,𝑙

𝑑𝑙

)2 𝑑T,s,𝑙

𝑑𝑙

(
𝑑R,s,𝑙

𝑑𝑙

(
𝑖𝜏𝑙 +

1
(1 − 𝜌2

𝑙 )𝜎2
𝑙,∥

)
− tan(Δ\𝑙/2) 𝜌𝑙

(1 − 𝜌2
𝑙 )𝜎𝑙,∥𝜎𝑙,⊥

)
,

(A7.6)

where

𝑄𝑙 = 𝑖𝜏𝑙

(
(𝑖\T,𝑙 + 𝑖\R,𝑙 )

(𝑑R,s,𝑙

𝑑𝑙

)2
+ 1
(1 − 𝜌2

𝑙 )𝜎2
𝑙,⊥

)
+

(
(𝑖\T,𝑙 + 𝑖\R,𝑙 )

(𝑑R,s,𝑙

𝑑𝑙

)2
+ 1
𝜎2
𝑙,⊥

)
1

(1 − 𝜌2
𝑙 )𝜎2

𝑙,∥
,

+𝑖\T,𝑙 tan2(Δ\𝑙/2)
(
𝑖\R,𝑙

(𝑑R,s,𝑙

𝑑𝑙

)2
+ 1
(1 − 𝜌2

𝑙 )𝜎2
𝑙,⊥

)
− 2𝑖\T,𝑙

𝑑R,s,𝑙

𝑑𝑙
tan(Δ\𝑙/2) 𝜌𝑙

(1 − 𝜌2
𝑙 )𝜎𝑙,∥𝜎𝑙,⊥

,

(A7.7)
𝑑𝑙 = 𝑑T,s,𝑙 + 𝑑R,s,𝑙 . (A7.8)
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A8 Detection of New Paths

In this section, we provide the justification for the formulation of the optimization problem (3.17)
that is solved to obtain a new potential path in the channel parameter estimation algorithm (Alg. 1).
It can also be found in [48], but we also provide it here for the reader’s convenience.

We introduce the sparse atomic measure `(𝜏′, \̃T, \̃R) over the space Ω = [0, 𝑁CP𝑇s]×[−𝜋, 𝜋)×
[−𝜋, 𝜋), which is supported on a small number of points, i.e.,

`(𝜏′, \̃T, \̃R) =
𝐿′−1∑︁
𝑙=0

ℎ𝑙𝛿𝜏′−𝜏′
𝑙
,\̃T−\̃T,𝑙 ,\̃R−\̃R,𝑙

(A8.1)

where 𝛿𝜏′,\̃T,\̃R
is the Dirac function. We can write the observation model as

Y = C` +N , (A8.2)

where C is the forward operator, defined as

C` =
∫
𝜏′,\̃T,\̃R∈Ω

C (𝜏′, \̃T, \̃R)`(𝜏′, \̃T, \̃R) d𝜏′ d\̃T d\̃R. (A8.3)

Making use of the above mathematical description and utilizing the knowledge that ` is a sparse
measure (otherwise recovery of ` would be impossible), we can now rewrite the original optimiza-
tion problem (3.11) as

min
`

Λ(Y − C`) s.t. | supp ` | ≤ 𝐿max, (A8.4)

where supp ` is the support of `. The problem is non-convex, due to the non-convex constraint.
Finally, we replace the constraint on the cardinality of the support of ` with a (convex) constraint
on its total variation norm [85] of `, which is defined as

∥`∥TV = sup
∥ 𝑓 ∥∞≤1

ℜ
{∫

𝜏′,\̃T,\̃R∈Ω
𝑓 ∗(𝜏′, \̃T, \̃R)`(𝜏′, \̃T, \̃R) d𝜏′ d\̃T d\̃R

}
. (A8.5)

For measures of the form of (A8.1), the total variation norm is

∥`∥TV =
𝐿−1∑︁
𝑙=0
|ℎ𝑙 | = ∥h∥1, (A8.6)

where h = [ℎ0, . . . , ℎ𝐿−1]T. Hence, we can express the problem in a Lagrangian form as

min
`

Λ(Y − C`) s.t. ∥`∥TV ≤ b, (A8.7)

where b > 0 is the regularization parameter. Problem (A8.7) is a convex optimization problem.
Conditional gradient methods are based on successive linear approximations of the convex

objective (using the first order derivative) and minimizations of the resulting linear function over
the bounded convex feasible set Ω. Let 𝑓 (`) = Λ(Y − C`) be the objective function, `(𝑖) the



A8 Detection of New Paths 105

recovered sparse measure at the 𝑖-th iteration and R𝑖 = Y − C`(𝑖) the corresponding residual. The
directional derivative of 𝑓 at `(𝑖) in the direction of the measure 𝑠 is [48]

𝑓 ′(𝑠, `(𝑖)) = lim
𝑡→0

𝑓 (`(𝑖) + 𝑡𝑠) − 𝑓 (`(𝑖))
𝑡

= lim
𝑡→0

Λ(R𝑖 + 𝑡C𝑠) − Λ(R𝑖)
𝑡

= Λ′(C𝑠;R𝑖) = ⟨∇Λ(R𝑖), C𝑠⟩, (A8.8)

where for our problem the inner product ⟨∇Λ(R𝑖), C𝑠⟩ is defined as

⟨∇Λ(R𝑖), C𝑠⟩ = tr(∇Λ(R𝑖)C𝑠) = tr(RH
𝑖 C𝑠). (A8.9)

The linear approximation 𝑓 of 𝑓 at 𝑥 = `(𝑖) + 𝑠 is

𝑓 (`(𝑖) + 𝑠) = 𝑓 (`(𝑖)) + 𝑓 ′(𝑠; `(𝑖)). (A8.10)

The minimization of 𝑓 is achieved by the minimization of the directional derivative 𝑓 ′(𝑠; `(𝑖)).
Hence, interchanging the integration in C with the inner product, we have to solve

min
𝑠

∫
𝜏′,\̃T,\̃R

tr(RH
𝑖 C (𝜏′, \̃T, \̃R))𝑠(𝜏′, \̃T, \̃R) d𝜏′ d\̃T d\̃R s.t. ∥𝑠∥TV ≤ b. (A8.11)

Noting that the objective is lower bounded by −max𝜏′,\̃T,\̃R
| tr(RH

𝑖 C (𝜏′, \̃T, \̃R)) |∥𝑠∥TV, an opti-
mal solution is the point mass −bsgn(tr(RH

𝑖 C (𝜏′(𝑖) , \̃ (𝑖)T , \̃
(𝑖)
R )))𝛿𝜏′−𝜏′ (𝑖) ,\̃T−\̃ (𝑖)T ,\̃R−\̃ (𝑖)R

, where

𝜏′(𝑖) , \̃ (𝑖)T , \̃
(𝑖)
R = argmax

(𝜏′,\̃T,\̃R)∈Ω

�� tr(RH
𝑖 C (𝜏′, \̃T, \̃R))

��. (A8.12)
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A9 Proof of Theorem 4.1
Since we consider the LOS-only case, the channel parameter vector is ν̃ =
[𝜏′, \̃T, \̃R, |ℎ|, arg(ℎ)]T and the position parameter vector is ν = [pR, 𝛼R, |ℎ |, arg(ℎ)]T.
Here, we do not consider the clock synchronization error 𝜖clk. As we have seen in Chapter 2, it
cannot be estimated in the LOS-only case and its effect on the SPEB is an additional term equal to
𝑐2𝜎2

clk, which is independent of the reference signal.
With the Tx array’s centroid p̄T =

∑𝑁𝑇

𝑗=1 pT, 𝑗 chosen as its reference point we have
aH

T (\̃T)DT(\̃T)aT(\̃T) = 0, that is, fopt,1(\̃T) and fopt,2(\T), as defined in (4.7)-(4.8), are or-
thogonal. Hence, we write

x[𝑝, 𝑏] = [
fopt,1(\̃T), fopt,2(\̃T), W (\̃T)

]
ζ [𝑝, 𝑏], (A9.1)

where W (\̃T) ∈ C𝑁T×𝑁T−2 is a set of vectors which span the subspace of C𝑁T that is orthogonal
to fopt,1(\̃T) and fopt,2(\̃T). This imposes no restrictions on the reference signal, as we have just
expressed it as a linear combination of basis vectors of C𝑁T . Computing Jν̃ according to (2.45),
we find that transmission on the subspace spanned by W (\̃T) does not contribute to the Fisher
information. Therefore, all the energy should be allocated to the subspace spanned by fopt,1(\̃T)
and fopt,2(\̃T).

After some computations we get

SPEB =
𝑐2

𝐽′𝜏 −
(
𝐽′𝜏\T

)2/𝐽′\T

+ 𝑑2

𝐽′\T
− (
𝐽′𝜏\T

)2/𝐽′𝜏
, (A9.2)

where

𝐽′𝜏 =
2𝑁R𝑁T |ℎ |2

𝜎2
[,R

©«
∑︁
𝑝∈P

𝑁B−1∑︁
𝑏=0

��Z1 [𝑝, 𝑏]
��2𝜔2

𝑝 −

(∑
𝑝∈P 𝜔𝑝

∑𝑁B−1
𝑏=0

��Z1 [𝑝, 𝑏]
��2)2

∑
𝑝∈P

∑𝑁B−1
𝑏=0

��Z1 [𝑝, 𝑏]
��2 ª®®®¬, (A9.3)

𝐽′\T
=

2𝑁R𝑁T |ℎ |2
𝜎2
[,R

𝜔2
c

𝑐2 Ξ
2
T

(
\̃T

)©«
∑︁
𝑝∈P

𝑁B−1∑︁
𝑏=0

��Z2 [𝑝, 𝑏]
��2 −

���∑𝑝∈P
∑𝑁B−1
𝑏=0 Z1 [𝑝, 𝑏]Z∗2 [𝑝, 𝑏]

���2∑
𝑝∈P

∑𝑁B−1
𝑏=0

��Z1 [𝑝, 𝑏]
��2 ª®®®¬,(A9.4)

𝐽′𝜏\T
=

2𝑁R𝑁T |ℎ |2
𝜎2
[,R

𝜔c

𝑐
ΞT

(
\̃T

) ∑︁
𝑝∈P

𝑁B∑︁
𝑏=0
ℑ{
Z1 [𝑝, 𝑏]Z∗2 [𝑝, 𝑏]

}
�̃�𝑝, (A9.5)

with ℑ{·} denoting the imaginary part, Z𝑖 [𝑝, 𝑏] being the 𝑖-th element of ζ [𝑝, 𝑏] and

�̃�𝑝 =

∑
𝑝′∈P

∑𝑁B
𝑏=0

��Z1 [𝑝′, 𝑏]
��2 (𝜔𝑝 − 𝜔𝑝′ )∑

𝑝′∈P
∑𝑁B
𝑏=0

��Z1 [𝑝′, 𝑏]
��2 .

From (A9.2)-(A9.5) we conclude that in order to minimize the SPEB we have to choose the se-
quences Z1 [𝑝, 𝑏], Z2 [𝑝, 𝑏] such that∑︁

𝑝∈P

𝑁B∑︁
𝑏=0

Z1 [𝑝, 𝑏]Z∗2 [𝑝, 𝑏] = 0, (A9.6)

∑︁
𝑝∈P

𝑁B∑︁
𝑏=0
ℑ{
Z1 [𝑝, 𝑏]Z∗2 [𝑝, 𝑏]

}
�̃�𝑝 = 0. (A9.7)
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A straightforward way to achieve that is to choose

Z𝑘 [𝑝, 𝑏] =
{
_𝑘 [𝑝, 𝑏], (𝑝, 𝑏) ∈ R𝑘 ,
0, otherwise,

(A9.8)

where R𝑘 , 𝑘 = 1, 2, are disjoint subsets of the available resources R and _𝑘 [𝑝, 𝑏] are defined
in (2.17), so that Z1 [𝑝, 𝑏]Z2 [𝑝, 𝑏] = 0, ∀(𝑝, 𝑏) ∈ R. We have, hence, shown that fopt,1(\̃T) and
fopt,2(\̃T) are an optimal codebook for SPEB minimization. Using (A9.8) and (2.17), we write
(A9.2) as

SPEB(𝜎2
1 , 𝑑, \̃T, |ℎ|) = 𝑐2

𝑔𝑞1𝛽
2
1
+ 𝑐2𝑑2

𝑔𝑞2𝜔
2
cΞ

2
T

(
\̃T

) , (A9.9)

where

𝑔 =
2𝑁R𝑁TΔ 𝑓 𝐸tot |ℎ |2

𝜎2
[,R

. (A9.10)

Replacing 𝑞2 = 1 − 𝑞1 in (A9.9), as dictated by the power constraint, we find that the SPEB is a
convex function of 𝑞1. Setting its derivative w.r.t. 𝑞1 to zero gives us (4.9).
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A10 Energy Allocation Optimization for the Line-of-Sight (LOS) Path
Here we show how to formulate (4.27) as an SDP using only a 1D quadrature rule for the approxi-
mation of the expectation over \̃T,0. This is accomplished in two steps:
• In the first step we show that the integration over 𝑑0 and \̃T,0 can be carried out separately;
• in the second step, after averaging over 𝑑0, we exploit the form of the resulting function of \̃T,0

and formulate the problem as an SDP.
We write E𝑑0,\̃T,0

[·] instead of EpR [·]. Also, for notational brevity we write

J̄ = E𝛼R,h0 |𝑑0,\̃T,0
[JνLOS (q, 𝑑0, \̃T,0, 𝛼R,h0)] . (A10.1)

We index the elements of J̄ with the pair of parameters to which they correspond.
First, after some algebra we find that

tr(ETJ̄−1E) = 𝑐2

𝐽𝜏0,𝜏0−
𝐽2
𝜏0 , \̃T,0

𝐽 \̃T,0 , \̃T,0

+ 𝑑2
0

𝐽\̃T,0,\̃T,0
−
𝐽2
𝜏0 , \̃T,0
𝐽𝜏0 ,𝜏0

+ 𝑐2𝜎2
clk,

(A10.2)

where

𝐽a𝑖 ,a 𝑗 = E𝛼R,h0 |𝑑0,\̃T,0
[𝐽a𝑖 ,a 𝑗 ], (A10.3)

𝐽a𝑖 ,a 𝑗 =
2
𝜎2
[

𝑁B∑︁
𝑏=1

∑︁
𝑝∈P
ℜ

{
𝜕mH [𝑝, 𝑏]

𝜕a𝑖

𝜕m[𝑝, 𝑏]
𝜕a 𝑗

}
, (A10.4)

with a𝑖, a 𝑗 ∈ {𝑑0, \̃T,0}. We can show that 𝐽a𝑖 ,a 𝑗 , a𝑖, a 𝑗 ∈ {𝑑0, \̃T,0}, are independent of 𝛼R and the
phase of ℎ0. Hence, they can be expressed as

𝐽a𝑖 ,a 𝑗 = Eh0 |𝑑0,\̃T,0
[𝐽a𝑖 ,a 𝑗 (q, \̃T,0, |ℎ0(𝑑0) |2)]

= Eh0 |𝑑0,\̃T,0
[|ℎ0(𝑑0) |2 𝑗a𝑖 ,a 𝑗 (q, \̃T,0)]

= 𝑔0(𝑑0) 𝑗a𝑖 ,a 𝑗 (q, \̃T,0), (A10.5)

where 𝑔0(𝑑0) = Eh0 |𝑑0 [|ℎ0(𝑑0) |2] and 𝑗a𝑖 ,a 𝑗 (q, \̃T,0) = 𝐽a𝑖 ,a 𝑗 (q, \̃T,0, |ℎ0(𝑑0) |2)/|ℎ0(𝑑0) |2 is a func-
tion of q and \̃T,0. For the second equality in (A10.5), we used the fact that 𝐽a𝑖 ,a 𝑗 can be expressed
as the product of two terms, one dependent on the gain magnitude and the other on q and \̃T,0. We
can then rewrite (A10.2) as

tr(ETJ̄−1E) = 1
𝑔0(𝑑0)

(
𝑐2

𝐼𝜏0 (q, \̃T,0)
+ 𝑑2

0

𝐼\̃T,0
(q, \̃T,0)

)
+ 𝑐2𝜎2

clk, (A10.6)

where

𝐼𝜏0 (q, \̃T,0) = 𝑗𝜏0,𝜏0 (q, \̃T,0) −
𝑗2
𝜏0,\̃T,0

(q, \̃T,0)
𝑗\̃T,0,\̃T,0

(q, \̃T,0)
, (A10.7)

𝐼\̃T,0
(q, \̃T,0) = 𝑗\̃T,0,\̃T,0

(q, \̃T,0) −
𝑗2
𝜏0,\̃T,0

(q, \̃T,0)
𝑗𝜏0,𝜏0 (q, \̃T,0)

. (A10.8)
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It is apparent from (A10.6) that integration of the function over 𝑑0 and \̃T,0 can be carried out
separately.

For the second step, taking the expectation over 𝑑0 and defining

�̄�0(\̃T,0) = 1/E𝑑0 |\̃T,0
[1/𝑔0(𝑑0)], (A10.9)

𝑑0(\̃T,0) =
√︄
E𝑑0 |\̃T,0

[
�̄�0(\̃T,0)
𝑔0(𝑑0) 𝑑

2
0

]
(A10.10)

we get

E𝑑0 |\̃T,0
[tr(ETJ̄−1E)] = 1

�̄�0(\̃T,0)

(
𝑐2

𝐼𝜏0 (q, \̃T,0)
+

(
𝑑0(\̃T,0)

)2

𝐼\̃T,0
(q, \̃T,0)

)
+ 𝑐2𝜎2

clk. (A10.11)

Comparing (A10.11) to (A10.2), we can conclude that, in order to be able to formulate the problem
in a convex form, E𝑑0 |\̃T,0

[tr(ETJ̄−1E)] can be expressed as

E𝑑0 |\̃T,0
[tr(ETJ̌−1E)]

= tr(ETJ−1
νLOS
(q, 𝑑0(\̃T,0), \̃T,0, �̌�R,

√︃
�̄�0(\̃T,0) ej 𝛽𝑔)E), (A10.12)

where �̌�R and 𝛽𝑔 can be chosen arbitrarily, since they do not have an impact on the objective.
Finally, using (A10.12) and the identity

E𝑑0,\̃T,0

[
tr(ETJ̄E)] = E\̃T,0

[E𝑑0 |\̃T,0
[tr(ETJ̄−1E)]], (A10.13)

we can employ a 1D quadrature rule to approximate the expectation integral over \̃T,0 to get the
following SDP

min
q,B1,...,B𝑁\̃T,0

∑︁𝑁 \̃T,0
𝑗=1

𝑝 𝑗 tr(B 𝑗 )

s.t. q ≽ 0, 1Tq ≤ 1,[
B 𝑗 ET

E JνLOS(q, 𝑑0(\T,0, 𝑗 ), \T,0, 𝑗 , �̌�R,
√︁
�̄�0(\T,0, 𝑗 ) ej 𝛽𝑔)

]
⪰ 0,

𝑗 = 1, . . . , 𝑁\̃T,0
. (A10.14)
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Acronyms and Abbreviations

1D one-dimensional.
1G first generation.
2D two-dimensional.
2G second generation.
3D three-dimensional.
3GPP Third Generation Partnership Project.
5G fifth generation.

ADC analog-to-digital conversion.
ADCGM Alternating Descent Conditional Gradient Method.
AOA angle of arrival.
AOD angle of departure.
AWGN additive white Gaussian noise.

BS base station.

cdf cumulative distribution function.
CID cell identity.
CP cyclic prefix.
CRLB Cramér-Rao lower bound.

DAC digital-to-analog conversion.
DCS-SOMP distributed compressed sensing-simultaneous orthogonal matching pursuit.
DFT discrete Fourier transform.
DL downlink.

EFIM equivalent FIM.
ESPEB expected SPEB.
EXIP extended invariance principle.

FCC Federal Communications Commission.
FI Fisher information.
FIM Fisher information matrix.
FR frequency range.

GNSS global navigation satellite system.
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GPS Global Positioning System.

LHS left-hand side.
LOS line-of-sight.

MIMO multiple-input multiple-output.
mm-Wave millimeter-wave.

NF noise figure.
NLOS non-LOS.
NR new radio.

OEB orientation error bound.
OFDM orthogonal frequency-division multiplexing.

PA physical anchor.
PAPR peak-to-average power ratio.
pdf probability density function.
PEB position error bound.
POI point of incidence.
PSD positive semidefiniteness.

QPSK quadrature phase shift keying.

RCRLB root CRLB.
RE resource element.
RF radio frequency.
RHS right-hand side.
rms root mean square.
RMSE root mean square error.
Rx receiver.

SAAF squared array aperture function.
SAGE space-alternating generalized expectation maximization.
SDP semidefinite program.
SL sidelink.
SNR signal-to-noise ratio.
SotA state of the art.
SPEB squared position error bound.

TDOA time difference of arrival.
TOA time of arrival.
TOF time of flight.
TOT time of transmisssion.
TR technical report.
TS technical specification.
Tx transmitter.

UCA uniform circular array.
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UE user equipment.
UL uplink.
ULA uniform linear array.
US United States.

VA virtual anchor.
VEB velocity error bound.

w.r.t. with respect to.

ZZLB Ziv-Zakai lower bound.
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