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Abstract

A sequential computational procedure for the efficient and reliable predic-
tion of combustion instabilities in future gas turbine generations is developed
in the present thesis. Special focus is put on the accurate inclusion of damp-
ing mechanisms. Essentially, the procedure consists of the creation of a lin-
ear computational model, a subsequent linear stability analysis and finally
an investigation of nonlinear saturation mechanisms. A particularly efficient
linear computational approach is the combination of spatially resolved fi-
nite element method approaches based on the Helmholtz equation with one-
dimensional network models to account for acoustic losses. To increase the
accuracy of the Helmholtz approach, a methodology to include the advection
of sound waves in arbitrary mean flow fields is developed. Similar to the reg-
ular Helmholtz equation, this approach requires the development of a trans-
formation procedure for the combination with network models to avoid ener-
getic errors at the coupling interfaces. Using this linear computational model
for a modal stability analysis with established flame driving models allows to
identify potentially unstable oscillation states. The corresponding modal re-
sults can subsequently be exploited to investigate nonlinear damping mech-
anisms by means of reduced order models. Therefore, a universal method-
ology coupled with nonlinear resonator models is developed. Finally, the effi-
ciency of the approach and thus its applicability to industrial setups is demon-
strated on the basis of a geometrically complex configuration representative
for a commercial gas turbine combustor. This highlights the significance of
nonlinear damping mechanisms for limit-cycle oscillations.
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Kurzfassung

Zur effizienten und zuverlässigen Vorhersage von Verbrennungsinstabili-
täten zukünftiger Gasturbinengenerationen wird in der vorliegenden Ar-
beit ein sequentielles Berechnungsverfahren entwickelt. Besonderes Au-
genmerk wird dabei auf die akkurate Erfassung von Dämpfunsgmecha-
nismen gelegt. Die Prozedur besteht im Wesentlichen aus der Erstellung
eines linearen Berechnungsmodells, der nachfolgenden linearen Stabili-
tätsanalyse sowie einer abschließenden Untersuchung nichtlinearer Sätti-
gungsmechanismen. Ein besonders effizienter linearer Berechnungsansatz
ergibt sich aus der Kombination der räumlich mittels Finite Elemente
Methoden aufgelösten Helmholtz-Gleichung mit eindimensionalen Netz-
werkmodellen zur Integration akustischer Verluste. Zur Verbesserung der
Genauigkeit bei gleichbleibender Effizienz wird der Helmholtz-Ansatz erwei-
tert, um die Advektion akustischer Wellen durch beliebige zeitgemittelte Strö-
mungsfelder abzubilden. Wie auch bei der herkömmlichen Helmholtzglei-
chung erfordert dies die Entwicklung einer Transformation des angekop-
pelten Netzwerkansatzes, um energetische Fehler an den Schnittstellen der
beiden Methoden zu vermeiden. Mittels des so erstellten linearen Modells
inklusive etablierter Flammenantriebsmodelle können potentiell instabile
Schwingungszustände durch eine modale Stabilitätsanalyse bestimmt wer-
den. Die Ergebnisse können anschließend zur Untersuchung nichtlinearer
Dämpfungsmechanismen in Modellen reduzierter Ordnung genutzt werden.
Hierfür wird eine universelle Methode zur Kopplung mit nichtlinearen Re-
sonatormodellen entwickelt. Die Effizienz und damit die Anwendbarkeit der
Prozedur auf industrielle Anwendungen sowie die Signifikanz nichtlinearer
Dämpfungsmechanismen für den Grenzzyklus wird anhand einer für kom-
merzielle Gasturbinen-Brennkammern repräsentativen komplexen Konfigu-
ration demonstriert.
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1 Introduction

In a world with an expanding wealth of a simultaneously rapidly increasing
population [3] also the demand of energy considerably increases [4–7]. Still
in 2020, approximately 80% of the overall global energy was supplied in the
form of fossil energy carriers [7]. Their chemical energy is transformed into
heat via combustion to power the electricity production, transportation or in-
dustrial processes. A wide range of emissions and pollutants such as CO, CO2

or NOx are produced in the process. Not only does this air pollution have a
negative health effect [8] but it is also considered the main driver of anthro-
pogenic, irreversible climate change [9, 10]. Since the share of electricity in
the overall energy demand is expected to grow from 20% in 2020 to 50% by
2050 [7], the production of electricity has the highest potential to reduce the
emission of greenhouse gases. In the international effort of limiting the mean
global temperature rise to 1.5 ◦C relative to the pre-industrial time [11], the
expansion of electric power generation based on renewable energies (mainly
wind and solar technologies) thus came into focus [12, 13]. Major challenges
of these technologies are their natural power output intermittency and uncer-
tainty as well as their integration into existing electric power systems main-
taining a stable grid [14, 15]. With their high operational flexibility [16] and
reduced greenhouse gas emissions compared to coal-fired power plants [17],
gas turbines play a crucial role to counterbalance those issues in the transi-
tion to a power grid solely driven by renewable energies. But even beyond
that, gas turbines fueled with synthetic fuels produced from renewable en-
ergies might be a long-term supplement to a carbon-neutral and stable power
production [16, 18, 19]. A key to further enhance the significance of gas tur-
bines for the energy transition is to steadily increase their efficiency. Notable
potential for an efficiency increase lies in the optimization of thermoacous-
tic damping concepts. By providing a numerical framework to reliably pre-
dict thermoacoustic instabilities, the present thesis aims to support the devel-
opment of novel gas turbine combustion chambers with increased efficiency,
further mitigating their climate impact already in the near future.
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1.1 Thermoacoustics in Gas Turbines

To cap the emission of pollutants and greenhouse gases from gas turbines, nu-
merous industrialized nations implemented strict emission regulations [20].
Particularly NOx emissions with their detrimental environmental impact were
put into focus by governmental limits [21]. In contrast to the production of
CO2, which is exclusively determined by the used fuel and the machine ef-
ficiency, the formation of NOx , CO and other pollutants is significantly im-
pacted by the combustion process [20]. To comply with the strict regulations,
gas turbine manufacturers established the lean premixed combustion, also re-
ducing the emission of unburnt hydrocarbons and soot [22]. However, this
lean premixed operation of modern gas turbine combustion chambers fea-
tures an increased susceptibility to self-excited thermoacoustic instabilities
[23–25]. These are a result of complex interactions between the chemical re-
actions in the flame region, acoustics, aerodynamics and the fuel feed system
as schematically represented in Fig. 1.1. Herein, the stochastic turbulent mo-
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Figure 1.1: Signal flow diagram of a closed-loop thermoacoustic system.

tions of the fluid u′
st and an unsteady fuel feed causing equivalence ratio fluc-

tuations φ′ lead to initially stochastic heat release fluctuations q̇ ′. The instan-
taneous fluid expansion related to these perturbations of the flame causes the
propagation of acoustic waves u′

a. At the system boundaries, large portions of
the acoustic waves and the inherent acoustic energy are reflected. Apart from
a direct impact of the reflected acoustic waves on the local rate of combustion,
also an indirect impact is caused by the interaction with shear layers and the
fuel feed system. The latter interaction may cause a modulation of the equiv-
alence ratio fluctuations also being the root-cause of entropy fluctuations s ′,
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mainly emerging within the heat release zone [26, 27]. These entropy waves
manifest as temperature fluctuations and are therefore also referred to as hot-
spots. Acoustic waves passing area discontinuities and interacting with shear
layers lead to coherent vortical fluctuations u′

v [28–32], which (when being
created upstream of the flame) may impact the combustion processes. Sim-
ilar to entropic fluctuations, also vortical fluctuations are transported convec-
tively with the flow. When interacting with the system boundaries, the energy
related to those fluctuations may be transformed back into acoustic energy.
This is referred to as indirect combustion noise. Since the combustion cham-
ber is not entirely confined by solid walls, considerable portions of the energy
related to acoustic, vortical and entropic fluctuations may simply leave the
combustor as fluctuating energy fluxes F′ at open boundaries such as the tur-
bine inlet.
An essential prerequisite for the occurrence of thermoacoustic instabilities is a
positive net energy gain fed into the pure acoustic part of the dynamic system.
Assessing this net energy gain requires the balance of all driving and damping
mechanisms included in the thermoacoustic system. Most conveniently, this
is achieved by means of the generic integral energy conservation equation∫

V

∂E

∂t
dV =

∫
V

S dV −
∫
∂V

F ·n dA

{
> 0 unstable,

< 0 stable .
(1.1)

Equation (1.1) states that the rate of change of energy content E within the
system of volume V is determined by volumetric sources and sinks S and
the energy flux F across the system boundaries ∂V with the outward point-
ing normal vector n. If the energy content changes at a positive rate, the sys-
tem is unstable, whereas it is labeled stable for negative rates of change. In a
thermoacoustic system, the unsteady combustion is considered the primary
supplier of acoustic energy, cf. Fig. 1.1. Already in the late 19th century, Lord
Rayleigh [33] found that a flame may act as a heat engine generating acoustic
energy, when adding heat at a state of increased pressure [34]. On the contrary,
the flame is a heat pump, when the heat is added at decreased pressure lev-
els. For periodic fluctuations of heat release and pressure, the instantaneous
driving or damping is not very meaningful. Instead, it is more significant to
evaluate the temporal average over an oscillation period Ts . Rayleigh’s crite-
rion may thus be formulated in terms of a time-averaged volumetric source
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term as per

〈S ′
q̇〉t

= 1

Ts

∫ t

t−Ts

S ′
q̇ dt ∝ 1

Ts

∫ t

t−Ts

p ′q̇ ′ dt

{∣∣∠p ′−∠q̇ ′∣∣< 90 ◦ driving,

else damping .
(1.2)

A constructive interaction between the heat release of the flame and the com-
bustion chamber acoustics is thus only obtained if the phase shift between the
fluctuations of pressure and heat release rate is less than 90 ◦. Further acous-
tic energy sources and sinks are founded on the interaction between acoustic,
vortical and entropic fluctuations. For a comprehensive energy analysis, these
sources and the corresponding energy fluxes across the boundaries must be
accurately captured, which is a classic discipline of aeroacoustics.
An unstable thermoacoustic system typically exhibits a characteristic pressure
trace as schematically shown in Fig. 1.2. At sufficiently low amplitudes, it fea-

Figure 1.2: Schematic pressure trace (black curve) of a linearly unstable sys-
tem with exponential growth at low amplitudes (red dashed curve)
and nonlinear amplitude saturation (blue curve).

tures exponentially growing pressure amplitudes indicated by the red dashed
curve. Like in any natural dynamic system, these amplitudes can not grow in-
finitely. Instead, the system is either destroyed or nonlinear mechanisms lead
to an amplitude saturation (blue curve) before damage is inflicted on the sys-
tem. To avoid the first scenario, it is crucial for manufacturers of gas turbines
to identify potentially unstable oscillation states and the maximum pressure
amplitudes they may reach. This implies two consecutive steps: first, the sta-
bility of the system must be evaluated at low amplitude levels. With the pro-
cesses involved being of linear nature, this step is also referred to as linear
stability analysis. Secondly, the mechanisms at elevated amplitudes must be
investigated. These are predominantly nonlinear and lead to an equilibrium
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of driving and damping effects. In turn, this results in oscillations at constant
amplitude, also referred to as limit-cycle.
According to the universal energy conservation equation (1.1), an unstable
system may be stabilized by either reducing the flame’s driving or by increas-
ing the acoustic damping within the system. Common stabilization methods
are summarized in the following section.

1.2 Control Strategies and Damping Devices

Most generally, thermoacoustic control strategies may be classified into active
and passive measures [35–38]. Since this work focuses on passive damping
devices, these are reviewed in a little more detail after giving a coarse overview
of the active counterpart.

1.2.1 Active Control

Actively controlling combustion dynamics requires an actuator, being an es-
sential part of a controller in classic control theory. Depending on the input
signal of the controller, one may distinguish between open-loop and closed-
loop control.
Open-loop controllers impact a dynamic system independently of the sys-
tem’s response. An example of such open-loop control strategies in the field
of thermoacoustics is the modulation of the fuel feed at specific operation
points of the gas turbine prone to instabilities. With an active fuel staging
concept, the equivalence ratio is spatially modulated to impact the flame re-
sponse and thus its driving capabilities. Particularly an azimuthal staging con-
cept has been shown to stabilize transversal thermoacoustic instabilities in
annular combustion chambers [39–41]. Also the temporal modulation of the
equivalence ratio has been observed to have a stabilizing effect on the com-
bustion dynamics [42–44]. A commonality of both concepts is the potentially
negative impact on the pollutant emissions, particularly NOx .
A more versatile and efficient active control approach is to include the system’s
feedback into a closed-loop controller. In addition to actuators, this requires
sensors to measure the system’s response. Obviously, the open-loop concepts
can also be used for closed-loop controllers. Additionally, active noise cancel-
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lation techniques, which recently also gained increased popularity in the con-
sumer audio market, have been investigated to control combustion dynam-
ics [45, 46]. Depending on the measured pressure fluctuations, loudspeakers
introduce ‘antisound’ to the system, being the anti-cyclic excitation of the dy-
namic system. Although this methodology requires an additional energy feed
into the system, the anti-cyclic character of the energy actually contributes
to the acoustic damping of the system. The greatest challenge of closed-loop
concepts is the accurate measurement of the system’s state under the extreme
thermodynamic conditions present in combustion systems.
For more detailed information regarding the active control of combustion dy-
namics the interested reader is referred to [37, 47–49].

1.2.2 Passive Control

Also the passive control strategies seek to either reduce the flame driving or to
introduce further acoustic energy losses into the system. A notable procedure
for the former approach involves design modifications of the burner, the fuel
injector or the combustion chamber [50, 51]. In accordance with the Rayleigh
integral, eq. (1.2), the acoustics-flame interactions may then be shifted from
a constructive (i.e. driving) to a desctructive (i.e. damping) regime for certain
unstable frequencies. However, such alleged design improvements may then
destabilize other formerly stable oscillation states [34]. Furthermore, this pro-
cedure is impracticable for gas turbines with flexible fuel operation, since the
fuel type was observed to have a strong impact on thermoacoustic instabili-
ties [52, 53].
In practice, increasing the dissipation of acoustic energy is a more viable strat-
egy. This may be achieved by installing passive damping devices1 to the com-
bustion chamber walls. A great overview of common damper designs and im-
plementations in combustion systems is provided by Culick [54] and by Zhao
et al. [55]. Baffles are frequently applied in rocket engines and will not be fur-
ther addressed here. Instead, more emphasis is put on resonators and perfo-
rated liners, which are more commonly applied in gas turbine combustors.
All damping devices are based on the same working principle: acoustic energy
is transformed either into internal energy via viscous dissipation or into coher-

1For brevity, such damping devices are henceforth also simply referred to as dampers.
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ent vortical energy [29]. Both mechanisms are very pronounced close to the
resonance frequency of resonators such as Helmholtz resonators or quarter-
wave tubes [38, 56–60]. This is due to the considerable oscillation amplitudes
observed in the resonator mouth at resonance [61], also leading to nonlinear
damping mechanisms [62–64]. To avoid damage of the resonators from hot
flue gases entering the resonators, they are usually purged with small mass
flow rates of compressed air [65]. This bias flow and the associated shear lay-
ers are known to enhance the damping by means of an energy transfer from
acoustic to vortical energy [66]. Similarly, perforated liners providing cooling
air for the combustion chamber walls exhibit great acoustic damping capabili-
ties [61]. Combining the benefits of resonators and perforated liners with bias
flow lead to the development of honeycomb resonators [67, 68], single-layer
perforated resonators [69] and multi-layer perforated resonators [70, 71].
With the transition from non-premixed to the cleaner lean premixed combus-
tion, gas turbine manufacturers were forced to significantly increase the air
mass flow in the burners. This was achieved at the expense of cooling air to
still obtain sufficiently high turbine inlet temperatures [35]. This is a major cri-
terion for a high machine efficiency [72] being desirable in the course of the
energy transition. Therefore, optimized damping concepts must be tailored
for future gas turbine generations with the goal of further reducing the purge
air flow. This requires elaborate computational tools being capable of accu-
rately capturing the linear and nonlinear mechanisms of damping devices to
support the development process. An overview of some established computa-
tional approaches is provided subsequently.

1.3 Thermoacoustic Modeling Classification

The occurrence of thermoacoustic instabilities is highly sensitive to geomet-
ric parameters as well as the operating conditions of the combustor and the
attached components. As a consequence, a combustor’s stability must ulti-
mately be evaluated by testing in the final machine setup. At this stage, design
modifications are normally unfeasible to implement. Also at earlier develop-
ment stages, machine tests for the design iterations are highly expensive and
hard to realize. Instead, reliable, accurate and robust numerical methods are
required to aid throughout the entire design process.
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Generally, computational approaches can be classified regarding their com-
plexity [73]: High-order mathematical models come at high computational
cost but are also expected to represent the underlying physics with high ac-
curacy. The purpose of low-order approaches is to considerably reduce the
computational complexity of the mathematical model. A common practice
for an order reduction is to disaggregate the underlying physics into different
mechanisms. Only one or few mechanisms are then resolved with an elevated
accuracy, whereas the remaining mechanisms and their interaction are mod-
eled and normally highly simplified. Consequently, the required spatial and
temporal resolution reduces to the expected length and time scales inherent
to the mechanisms considered in detail.
Thermoacoustic phenomena are governed by a wide range of physical mech-
anisms such as the propagation, refraction and scattering of acoustic waves,
heat and mass diffusion, chemical reactions, vortex shedding or viscous dissi-
pation. A mathematical model capturing all of these mechanisms is provided
by the compressible Navier-Stokes equations (NSE) in conjunction with the
conservation of mass and energy as well as one additional conservation equa-
tion for each species of a suitable reaction mechanism to account for chemi-
cal reactions. They form the origin of various numerical methods in the field
of thermoacoustics. In the modeling cascade illustrated in Fig. 1.3 the most
common methods are arranged according to their degree of modeling, which
is normally inversely proportional to their computational cost.
Brute force approaches like Direct Numeric Simulation (DNS) and Large Eddy
Simulation (LES) numerically solve the NSE without notable simplifications.
The high spatio-temporal resolution associated with the various length and
time scales of the individual flow phenomena come at high computational
cost [74–80]. They are therefore reserved for academic purposes or as an alter-
native to late-stage testings.
Decomposing the instantaneous field quantities of the NSE into an a priori
known time-averaged mean part and transient fluctuations around that mean
field forms the basis of hybrid methods. The resulting Nonlinear Reactive Per-
turbation Equations (NLRPE) still include all physical mechanisms of the orig-
inal equations and are thus of the same complexity as the brute force ap-
proaches. Therefore, to the author’s best knowledge, such a set of equations
has not been applied to study thermoacoustic phenomena (denoted by ∗ in
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Figure 1.3: Modeling Cascade of suitable computational approaches to pre-
dict thermoacoustic instabilities with decreasing computational
cost and increasing degree of modeling.

Fig. 1.3). However, the disturbance ansatz paves the way for the lineariza-
tion of the equations, which reduces the computational complexity. The linear
counterpart of the NLRPE is the Linearized Reacting Flow (LRF, cf. e.g. [81,82]).
A significant reduction of the computational cost for both, linear and nonlin-
ear hybrid approaches, can be achieved by introducing further simplifications
and thus increasing the degree of modeling. Dropping the reaction mecha-
nism yields the Nonlinear Disturbance Equations (NLDE, [83]) and its linear
counterpart, the Linearized Navier-Stokes Equations (LNSE, cf. e.g. [84–86]).
To still account for acoustics-flame interactions, it is common practice to em-
ploy a nonlinear Flame Describing Function (FDF) or a linear Flame Response
Function (FRF), which may be obtained from experiments, numerical simu-
lations or analytic models. Furthermore neglecting heat and mass diffusion
as well as viscous dissipation yields the Perturbed Nonconservative Nonlinear
Euler (PENNE) equations [87, 88] and after linearization the Linearized Euler
Equations (LEE, cf. e.g. [89–91]). For low Mach-number flows it is reasonable
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to assume a stagnant mean flow field. Then, the set of perturbation equations
can be merged to a single wave equation. An application of a Nonlinear Wave
Equation (NLWE) in the field of thermoacoustics is only known to the au-
thor in terms of an acoustic analogy: Here, the widely-used linear Wave Equa-
tion (WE) or its counterpart in the frequency-domain, the Helmholtz Equa-
tion (HE), are solved while the nonlinear terms are exclusively considered as
sources or sinks for the linear wave propagation, cf. [92]. With the negligence
of the mean flow velocity, the WE/HE describe pure irrotational acoustic wave
propagation preventing the formation of vortical structures. While the acous-
tic wave propagation in complex three-dimensional geometries normally re-
quires the numerical solution of the WE/HE, analytical solutions exist for sim-
ple geometries such as cylindrical ducts. Particularly in the low-frequency (LF)
regime, the acoustic wave propagation in ducted geometries represented by
this solution can virtually be considered as one-dimensional (1D). This paves
the way for network models as similarly used to describe electric circuits. For
this purpose, the real geometry under consideration is split and abstracted in
terms of smaller acoustic network elements. The single elements are acousti-
cally characterized either by analytic solutions of the WE/HE or by 1D pertur-
bation equations. Depending on whether the selected equations to describe
the individual elements are nonlinear or linearized, also the network methods
can be classified as nonlinear or linear.
Each of the elements normally represents an acoustic two-port, which natu-
rally enables the serial connection of multiple elements. Also the acoustics-
flame interactions can be described by a two-port and can thus be included
in the network. With fork elements, also the parallel connection of elements
can be realized. This yields a modeling approach with very low computational
cost, which allowed Bade [93] to model a lab-scale combustor. In conjunction
with quasi 2D analytical solutions of the WE/HE, Evesque et al. [94, 95] even
reproduced the transversal modes in annular combustors.
Still, this methodology is limited to simple geometries without local bound-
ary conditions or distributed volume sources, e.g. as a result of non-compact
flames (cf. chapter 3). For industrial combustors with complex geometries and
local acoustic damping devices, these requirements are not satisfied in the
high-frequency (HF) regime, which necessitates the employment of one of the
more expensive and elaborate numerical approaches.

10



Introduction

1.4 Scope and Structure of the Thesis

The thesis at hand targets the development of a numerical procedure for the
investigation of thermoacoustic instabilities with the following specifications:

• High efficiency: A major objective is the applicability of the procedure
to industrial systems. Fully resolving the corresponding complex, large-
scale geometries is normally related to tremendous computational cost.
Reducing this cost while still being capable of resolving complex three-
dimensional processes requires a combination of suitable approaches.

• Accuracy/Consistency: Combining different approaches for an increased
efficiency necessitates a careful assessment of the assumptions made
within the individual approaches. Accurate results can only be obtained
when ensuring consistent assumptions in the combined approaches.

• Completeness: Generally, there are two important aspects for the evalu-
ation of thermoacoustic stability. Firstly, all potentially unstable oscilla-
tion states must be identified at low acoustic amplitudes. They are the
origin of exponential amplitude growth dominated by linear processes.
Secondly, the nonlinear saturation mechanisms need to be considered
to evaluate the maximum pressure amplitudes expected at a specific op-
eration point of the investigated configuration. A complete numerical
framework comprises both aspects, i.e. the linear and the nonlinear sta-
bility.

• Numerical robustness: The aspired methodology should not be prone to
numerical instabilities and spurious modes, independently of the inves-
tigated geometry and operation points.

A procedure complying with these requirements is proposed according to the
workflow depicted in Fig. 1.4. The sequential character of the procedure stems
from the individual computations that need to be performed consecutively
with different tools. To keep the overall computational complexity low, the in-
dividual computational steps are limited to the lower end of the modeling cas-
cade in Fig. 1.3.
Steps 1 to 3 represent the creation of a hybrid computational model. In the
first step, the overall domain subject to the thermoacoustic investigation is
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Linear 3D-FEM set-up (ch. 4)

Figure 1.4: Workflow of the proposed sequential linear and nonlinear ther-
moacoustic stability analysis.

split into subdomains. Depending on the local thermodynamic and geometric
parameters, only parts of the domain are resolved using three-dimensional Fi-
nite Element Methods (3D-FEM, step 2). Due to its numerical robustness, high
availability in commercial solvers and low computational cost, the Helmholtz
equation is predestined to describe the acoustic field in the 3D-FEM compo-
nents. For an even further increased computational efficiency, the remaining
components are characterized using 1D network models (step 3). These may,
for instance, be used to couple spatially disconnected 3D-FEM domains or to
include the damping mechanisms of resonators and perforated liners.
Such a 3D-Helmholtz approach coupled with 1D network elements is not a
new concept: The group of Camporeale [96, 97] demonstrated this procedure
for a simple annular combustion chamber. It was later similarly applied by
Ni et al. [98, 99] to investigate the impact of flow-acoustic interactions on the
thermoacoustic stability in an elaborate, industrial combustor. Discrepancies
between the basic assumptions of the Helmholtz equation and 1D networks
and their implications on the energy balance of the approach have not been
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addressed in these works. This is investigated in-depth in the present work.
Additionally, a methodology to include the mean flow advection of acoustic
waves into the Helmholtz approach is developed. Ultimately, this yields an
energetically consistent and highly accurate computational approach.
Steps 4 and 5 are the center core of the actual stability analysis. Using the
afore developed model, a linear modal stability analysis is at first performed
in step 4. The combined 3D-Helmholtz and 1D network approach includ-
ing the major mechanisms contributing to the overall system’s energy bal-
ance represents a nonlinear eigenvalue problem. Accurate eigenvalues are
obtained when implementing a suitable linearization procedure. Using the
linear modal results, a modal model order reduction procedure for the effi-
cient computation of nonlinear saturation mechanisms in the time-domain is
conducted. This combination of linear modal analysis and nonlinear reduced
order models (ROM) in the field of thermoacoustics has been implemented
by Hummel et al. [100–102] and was later also used by Hofmeister [103]. In
their studies, the nonlinear saturation mechanisms are exclusively ascribed
to a nonlinear acoustics-flame interaction. To also account for nonlinear res-
onators and dampers, a novel modified model order reduction procedure is
developed.
Based on the results obtained from steps 4 and 5, design iterations of the ther-
moacoustic system may be performed to improve its stability. This will not be
further addressed within this work.
Roughly following the proposed sequential numerical procedure, this thesis
is structured as follows: After reviewing the most relevant mathematical mod-
els to describe aeroacoustic and thermoacoustic phenomena in chapter 2, the
employed 1D network modeling procedure is introduced in chapter 3. The de-
velopment of the entire linear modeling procedure (steps 1 to 4 of Fig. 1.4)
is subject to chapter 4. In chapter 5 the nonlinear ROM procedure including
nonlinear damping mechanisms of resonators is derived. Ultimately, the en-
tire procedure is deployed to a geometrically complex configuration similar to
a commercial SIEMENS ENERGY gas turbine combustor in chapter 6. This chap-
ter is also meant to proof the significance of nonlinear damping for the ampli-
tude saturation observed in combustors and to demonstrate the capability of
the developed methodology to predict the impact of nonlinear dampers.
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2 Thermoacoustic Fundamentals

The mathematical and physical fundamentals of the theoretical and numeri-
cal analysis of combustion dynamics are presented in this chapter. In accor-
dance with the modeling cascade of Fig. 1.3, this phenomenon is governed by
reactive flow equations, which are discussed first in section 2.1. The deriva-
tion of some perturbation equations commonly used in the fields of aero-
and thermoacoustics from the general reactive flow equations is subsequently
presented in section 2.2. Some of these equations describe a superposition of
acoustic, vortical and entropic fluctuations (cf. section 2.2.3) and their inter-
action with each other. When solving them numerically for specific setups, it
might be difficult to distinguish between the three types of fluctuations. To fa-
cilitate a more theoretical analysis of the impact of different flow mechanisms
(e.g. turbulence) on the pure acoustic wave propagation, acoustic analogies
have been established. In section 2.3 two important acoustic analogies are
derived from the general flow equations. Transforming the governing equa-
tions into the frequency-domain as presented in section 2.4 is beneficial for
both, analytical and numerical analysis of combustion dynamics. This also al-
lows for a more pragmatic determination of the acoustic energy contained in
a system, being subject of section 2.5. The acoustic energy balance of a sys-
tem according to eq. (1.1) is significantly impacted by the energy flux across
the system’s boundaries. It is thus vital to specify boundary conditions suit-
able to the considered problem. The most common boundary conditions in
the frequency-domain are discussed in section 2.6. Finally, a review on com-
mon methodologies to model the acoustics-flame interactions is provided in
section 2.8. A closer look is taken at the coherent movement of the flame under
acoustic excitation and its impact on the thermoacoustic stability.

2.1 Governing Reactive Flow Equations

A mathematical model for the unsteady combustion being the root-cause of
thermoacoustic phenomena is provided by the conservation principles of a
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2.1 Governing Reactive Flow Equations

reactive gas mixture consisting of N species. More specifically, these are the
conservation of mass, momentum, energy and species. In a non-conservative,
lagrangian form without any volume sources, they may be written as (cf. e.g.
[86, 104, 105])

Dρ

Dt
=−ρ∇·u , (2.1a)

ρ
Du

Dt
=−∇p +∇·τ , (2.1b)

ρ
DB

Dt
= q̇ +∇· (λ∇T )+ ∂p

∂t
+Q̇+∇· (u ·τ)+∇·

(
ρ

N∑
k=1

hs,kDk∇Yk

)
, (2.1c)

ρ
DYk

Dt
=∇· (ρDk∇Yk

)+ Ω̇k , (2.1d)

with the material derivative D/Dt = ∂/∂t + u · ∇ containing the convective
transport with the velocity u. Although only the momentum conservation
equations (2.1b) represent the Navier-Stokes Equations in classical fluid me-
chanics, the whole set of conservation equations (2.1) will be referred to as re-
active Navier-Stokes Equations (reactive NSE) for the sake of simplicity. The
density ρ, pressure p and temperature T are related via a thermodynamic
equation of state, commonly the ideal gas law

p = ρRT (2.2)

employing the specific gas constant R of the mixture. Viscous, thermal and
species diffusion are represented by the viscous stress tensor τ, the thermal
conductivity λ and the species diffusion coefficients Dk . The non-chemical
stagnation enthalpy B = hs+(u·u)/2 is the sum of the sensible enthalpy hs and
the kinetic energy. Its rate of change is impacted by external volumetric heat
sources or sinks Q̇ (e.g. ignition sparks) and by the volumetric heat release
rate due to chemical reactions q̇ . The latter term is determined according to

q̇ =−
N∑

k=1

h0
f ,kΩ̇k , (2.3)

where h0
f ,k and Ω̇k are the enthalpy of formation and the mass production rate

of species k within the chemical reaction. This rate of species formation also
determines the rate of change of the mass fraction of each species in the fluid
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mixture Yk . The number of considered species and their corresponding pro-
duction rate is normally preset by a chemical kinetic mechanism suitable for
the individual combustion parameters. For the closure of the system of equa-
tions, a caloric equation of state is required. For ideal gases, this equation may
be stated as [106, 107]

dhs(T ) = cp(T ) dT = T ds + 1

ρ
dp (2.4)

with the specific heat capacity at constant pressure cp . It is related to the spe-
cific gas constant via the the specific heat capacity at constant volume cv via
R = cp −cv . All three quantities are determined from the mass average over the
species, e.g. cp = ∑N

k=1 Ykcp,k . The caloric equation of state (2.4) also allows to
express the energy equation in terms of the temperature, the entropy s or the
pressure. The latter representation can be simplified by assuming equal heat
capacities for all species cp,k = cp yielding

Dp

Dt
=−κp∇·u+ (κ−1)

(
q̇ +∇· (λ∇T )+Q̇+τ : (∇u)

)
, (2.5)

with the ratio of specific heats κ = cp/cv . Although the assumption of equal
heat capacities is an oversimplification in the presence of combustion, it is
still often used [104]. Furthermore, for the derivation of acoustic equations in
the following section, this form of the energy equation is an excellent starting
point.

2.2 Perturbed Equations

The formation, propagation and decay of sound waves is a major subject in
the field of acoustics. Exploiting the characteristics of sound waves allows for
the derivation of equations for the specific description of acoustic phenomena
in compressible media, which is subject of the present section.

2.2.1 Decomposition Approach

To describe dynamic processes such as acoustic wave propagation, all state
and process variables may be split into a time-averaged mean part (̄·) and a
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2.2 Perturbed Equations

fluctuating part (·)′. For a generic quantity φ the local, instantaneous value
can then be expressed via

φ(x, t ) = φ̄(x)+φ′(x, t ). (2.6)

Inserting eq. (2.6) into the compressible, reactive NSE (2.1) yields a set of non-
linear, reactive perturbation equations (NLRPE). The perturbation approach
(2.6) results in a duplication of unknown variables, making the resulting set
of perturbed equations unclosed. To overcome this issue, solving for the tran-
sient quantities is performed in two steps, constituting the basis of hybrid ap-
proaches: The steady-state quantity is determined first using Computational
Fluid Dynamics (CFD) simulations, measurements or analytically. The latter
is limited to simple, academic applications and sets of equations, whereas the
comprehensive measurement of various spatially resolved field quantities is
not feasible for applications with practical relevance. With CFD simulations,
on the other hand, various field sizes can be calculated also for complex ge-
ometries. With their low computational cost due to the modeling of turbulent
eddies, Reynolds-Averaged Navier-Stokes (RANS) simulations are particularly
suitable for the use in cost-effective hybrid approaches. After determining the
required mean flow quantities with CFD, the perturbed equations can finally
be solved for the transient fluctuations around the steady-state by means of
Computational Acoustics (CA), constituting the hybrid CFD/CA approaches.
Generally, the transient fluctuations resolved by the NLRPE still comprise the
full spectrum of spatio-temporal scales. In fact, the perturbed equations do
not constitute a simplification compared to the original reactive NSE. A sep-
aration of the fluctuations into stochastic turbulent or periodic and coher-
ent (such as acoustic) disturbances as discussed by Hummel [102] can only
be achieved by introducing further assumptions and simplifications. Some of
those simplifications of the NLRPE and the resulting sets of equations as per
Fig. 1.3 are discussed in the subsequent sections.

2.2.2 PENNE and LEE

In the broad spectrum of spatio-temporal scales covered by the NLRPE, acous-
tic waves may be assigned to the larger spatial scales for a wide range of fre-
quencies and thus temporal scales. This is in contrast to the random turbu-
lent motions. According to the energy cascade, the corresponding stochastic
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motions may be found throughout the entire spectrum of length-scales. For
the specific investigation of coherent acoustic waves it is therefore not suffi-
cient to filter the overall fluctuations in the relevant spatial spectrum, as the
acoustic waves would be superimposed by turbulent fluctuations. Instead, it
is beneficial to distinguish between random turbulent and coherent distur-
bances. This may be achieved by making use of the diffusive character of tur-
bulent motions. Neglecting any diffusion within the disturbed equations thus
eliminates the turbulent part in the fluctuation quantities. Similarly, diffusion
is also an essential feature of combustion processes: without the diffusion of
reactive radicals and heat from the reaction zone into the cold flow of reac-
tants, a flame can not propagate. Dropping any diffusion mechanisms thus
also prevents the disturbed equations from the resolution of transient com-
bustion processes. Therefore, also the reaction mechanism and the species
transport equations become obsolete. Instead, the transient heat release rate
fluctuations due to chemical reactions q̇ ′ must be modeled (cf. section 2.8).
This yields the Pertubed Nonconservative Nonlinear Euler (PENNE) equa-
tions [87, 88]:

∂ρ′

∂t
+ (

ū+u′) ·∇ρ′+u′ ·∇ρ̄+ (
ρ̄+ρ′)∇·u′+ρ′∇· ū = 0 (2.7a)

∂u′

∂t
+ (

ū+u′) ·∇u′+u′ ·∇ū+ 1

ρ̄+ρ′

(
∇p ′− ρ′

ρ̄
∇p̄

)
= 0 (2.7b)

∂p ′

∂t
+ (

ū+u′) ·∇p ′+u′ ·∇p̄ +κ(
p̄ +p ′)∇·u′+κp ′∇· ū = (κ−1) q̇ ′ . (2.7c)

Note that the ratio of specific heats κ has been assumed to be spatially uni-
form, which is a commonly applied oversimplification in the context of ther-
moacoustics. The nonlinearity in terms of the fluctuation quantites within the
PENNE (2.7) reproduces amplitude-dependent saturation mechanisms that
may ultimately lead to limit-cycle oscillations. However, for most applications,
the amplitude levels of fluctuating quantities and their gradients are much
smaller than their mean flow counterpart, i.e. |φ′|, |∇φ′|¿ φ̄.1 This justifies the
linearization of the perturbed equations by neglecting second order fluctua-

1Normally, the acoustic velocity fluctuations are compared to the speed of sound. The condition for small
amplitude levels would then read |u′|, |∇ ·u′| ¿ c̄. However, at this point, no assumption regarding the mean
flow velocity is made at all. And while terms of order O (ūφ′) are considered whereas terms of order O (u′φ′) are
dropped, it is implicitly also required, that the velocity fluctuations are much smaller than the mean flow velocity
|u′|, |∇ ·u′|¿ ū, cf. chapter 4.
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tion terms. Note that this step precludes the fluctuating quantities from cap-
turing significant deviations from the mean flow field at small temporal scales
such as a flame contraction induced by large amplitude acoustic waves ob-
served by Hofmeister [103,108].2 In fact, the mean flow field must be regarded
as an average in a temporal section not being impacted by the small ampli-
tude fluctuations subject to the linearization. For the PENNE the linearization
procedure gives the Linearized Euler Equations (LEE), which read

∂ρ′

∂t
+ ū ·∇ρ′+u′ ·∇ρ̄+ρ′∇· ū+ ρ̄∇·u′ = 0 , (2.8a)

∂u′

∂t
+ ū ·∇u′+u′ ·∇ū+ ρ′

ρ̄
ū ·∇ū+ 1

ρ̄
∇p ′ = 0 , (2.8b)

∂p ′

∂t
+ ū ·∇p ′+u′ ·∇p̄ +κp ′∇· ū+κp̄∇·u′ = (κ−1) q̇ ′ . (2.8c)

It must be highlighted that terms being pure functions of mean flow field
quantities have been dropped in eqs. (2.7) and (2.8). This is a common step
in the derivation of perturbed equations, which requires the mean flow field
to satisfy the equivalent set of basic equations, i.e. the Euler equations in the
case of the PENNE and the LEE. This constitutes an inconsistency when apply-
ing those sets of equations to mean flow fields with chemical reactions. This
inconsistency is inherent to most hybrid approaches used for the investiga-
tion of thermoacoustic phenomena.3 Still, hybrid methods are a standard tool
for the prediction of thermoacoustic stability.

2.2.3 APE

It has been demonstrated that the LEE (2.8) inherently comprise acoustic, vor-
tical and entropic oscillation states [109]. Those oscillation states may interact
with each other and exchange energy. This energy transfer is considered a ma-
jor acoustic damping mechanism. However, indirect combustion noise due to
the acceleration of hot spots [110] or whistling due to vortices interacting with
rotational mean flow fields may in turn cause acoustic excitation [111, 112].
Consequently, the impact of vortical and entropic fluctuations may be con-
sidered as sources and sinks of acoustics. This is the principle of the source

2In contrast to the NLRPE, also the nonlinear PENNE are not capable of reproducing this particular mecha-
nism due to the neglected reaction mechanism.

3Exceptions are the NLRPE and LRF when using mean flow fields determined using consistent assumptions.
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term filtering for the LEE (2.8) as introduced by Ewert and Schroeder [109]
and demonstrated in Appendix A. By filtering out convectively transported
vortical and entropic components, the Acoustic Perturbation Equations (APE,
(A.11)) result. Therefore, the APE describe pure acoustic wave propagation
in arbitrary mean flow fields, whereas the interactions with the convectively
transported vorticity and entropy are represented by the sources Sv,s

i . The in-
significant drop in mean pressure common to most technical combustion sys-
tems may be exploited to further simplify the APE: from the mean momentum
conservation equation, a constant pressure gives ∇p̄/ρ̄ = ū ·∇ū = 0. Then, the
continuity equation is decoupled from the momentum and energy conserva-
tion equations4 and the closed set of the simplified APE read

∂u′

∂t
+ 1

ρ̄
∇p ′+∇(

ū ·u′)= Sv,s,∇p̄=0
u , (2.9a)

∂p ′

∂t
+κp̄∇·u′+ ū ·∇p ′+κp ′∇· ū = (κ−1) q̇ ′ . (2.9b)

The momentum source Sv,s,∇p̄=0
u excites vortical and entropic modes for iso-

baric mean flow fields. Therefore, it is equivalent to the first two terms of eq.
(A.12b). To accurately reproduce the interactions between acoustics and vor-
ticity or entropy, it needs to be modeled or obtained from high-fidelity simu-
lations. Simply dropping the source prohibits any interaction between the os-
cillation modes and the fluctuation quantities. Then, the acoustic waves rep-
resented by the fluctuation quantities are neither excited nor attenuated by
those interactions. Regarding its computational cost, solving the APE (2.9) is
advantageous over the LEE, since not resolving the rather small-scale vortical
and entropic modes also allows for coarser meshes. However, this comes at
the drawback of either the complex modeling of the interaction between the
oscillation modes or the inaccuracy by dropping this mechanism.

2.2.4 Convective Wave Equation

A rather academic simplification of the governing acoustic equations is ob-
tained from the assumption of a uniform mean flow velocity. This only applies
to flows in straight ducts or channels without any diffusion or heat release,

4This does not only apply to the APE but also to the LEE.
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which does not apply to technically relevant applications. Still, this simplifi-
cation gives a good insight into the propagation of acoustic waves subject to
mean flow and forms the basis for acoustic analogies (cf. section 2.3) or one-
dimensional acoustic network models (cf. section 3.1).
A uniform mean flow velocity implies zero gradients of the mean density and
pressure. Assuming pure acoustic fluctuations, the corresponding terms in the
APE5 including the momentum source Sv,s,∇p̄=0

u and the volumetric heat re-
lease rate fluctuations q̇ ′ thus vanish. This is a prerequisite to eliminate the
velocity fluctuations by subtracting the divergence of eq. (2.9a) multiplied by
ρ̄c̄2 = κp̄ from the material derivative D̄/Dt = ∂/∂t + ū · ∇ of eq. (2.9b). This
yields the convective wave equation for uniform mean flow fields:

∂2p ′

∂t 2
+2ū ·∇∂p ′

∂t
+ ū (ū ·∇) ·∇p ′− c̄2∇2p ′ = 0 . (2.10)

Reducing this convective wave equation to one dimension denoted by the
x-coordinate, a solution can be found analytically using an exponential ap-
proach. The solution may be expressed as

p ′(x, t ) = ρ̄c̄
(
| f | ei(ωt−k+x) +|g | ei(ωt+k−x)

)
, (2.11)

where ω is the angular frequency and k is the wave number. It may be ob-
served that the two components of this solution represent downstream and
upstream traveling waves f and g , respectively. Those characteristics propa-
gate at the mean speed of sound c̄ altered by the mean flow velocity ū becom-
ing manifest in the individual wave numbers

k± = ω

c̄ ± ū
, (2.12)

for the downstream (k+) and the upstream (k−) traveling waves. Making use
of the linearized momentum equation for uniform mean flow velocities, a so-
lution equivalent to eq. (2.11) may be found for the acoustic velocity:

u′(x, t ) = | f | ei(ωt−k+x) −|g | ei(ωt+k−x) . (2.13)

2.2.5 Wave Equation

Describing the propagation of sound waves in stagnant fluids (ū = 0) is a typ-
ical discipline in classical acoustics. This simplification is also a widespread

5The derivation can equivalently be performed using the LEE.
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approximation to describe the sound propagation in low Mach-number flows
[104, 105]. A stagnant fluid is not limited to uniform mean flow densities and
may thus comprise temperature gradients. In the context of combustion, the
variable temperature field plays a crucial role for the propagation of acoustic
waves [113, 114]. While the uniform mean flow assumption was required to
eliminate the velocity fluctuations for the derivation of the convective wave
equation, this can be equivalently achieved for stagnant fluids with variable
mean temperature fields. The corresponding wave equation is then obtained
from the stagnant APE by subtracting the divergence of eq. (2.9a) multiplied
by ρ̄c̄2 from the time-derivative of eq. (2.9b):

∂2p ′

∂t 2
− ρ̄c̄2∇·

(
1

ρ̄
∇p ′

)
= (κ−1)

∂q̇ ′

∂t
. (2.14)

As mean field temperature gradients are explicitly allowed, also a volumetric
heat release rate q̇ ′ is included as acoustic source. This equation is similar to
the one proposed by Cummings [114]. In contrast to his explication, eq. (2.14)
is not homentropic (ds = 0) and does include entropy fluctuations in regions
with non-vanishing mean flow entropy gradients. However, as such entropy
fluctuations may only propagate advectively, they remain at their point of cre-
ation for quiescent fluids. For uniform stagnant mean fields, the 1D solution
of the convective wave equation (2.11) also applies to the wave equation. In
this case the characteristics propagate at the speed of sound yielding an equal
wave number k =ω/c̄ for both characteristics.

2.3 Acoustic Analogies

For many technical systems with turbulent flow fields, the emergence of aero-
dynamically induced sound is of high relevance. This mechanism is subject to
the field of aeroacoustics and is inherently included in the basic conservation
principles of fluid mechanics, eqs. (2.1). However, the identification of aeroa-
coustic sources and the analysis of their impact on the sound field from these
equations is not trivial. One possible approach to facilitate such an analysis
is the source term filtering developed for the APE in section 2.2.3. However,
with the negligence of diffusion mechanisms also the impact of turbulence
on the emergence of sound waves is dropped in the APE. Furthermore, the
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set of four equations does not allow for an intuitive analytic description of
the sound propagation. This last backdraw is in contrast to the (convective)
wave equation discussed in sections 2.2.4 and 2.2.5. Therefore, transforming
the NSE (2.1) into the form of the wave equation allows for a more intuitive
analysis of aeroacoustic sources, including turbulence. This is the basic idea
of acoustic analogies, first introduced by Lighthill [115]. Since then, further
acoustic analogies have been derived. Delfs [116] gives a great overview on
the most relevant ones. In the present thesis, the principle of acoustic analo-
gies will be exploited in chapter 4 to derive an exact convective wave equation
from the APE. For this purpose, it is sufficient to introduce the analogies of
Lighthill as well as Moehring, which are summarized below.

2.3.1 Lighthill’s Analogy

In 1952, Lighthill [115] derived an acoustic analogy from the exact equations
of fluid mechanics. Similar to the derivation of the wave equation (2.14),
Lighthills’s analogy is based on a cross-differentiation of the conservation of
mass and momentum according to ∂/∂t (2.1a) −∇· (2.1b). Subsequent intro-
duction of the disturbance approach (2.6) and reshaping yields the following
form:

∂2ρ′

∂t 2
− c̄2∆ρ′ =∇·∇· (ρuu+ (p ′− c̄2ρ′)I−τ)

. (2.15)

The left-hand side (LHS) of this equation equals the wave equation for stag-
nant fluids in terms of density fluctuations. In the fashion of an analogy, the
right-hand side (RHS) constitutes sources of the turbulent flow field on sound
waves virtually propagating in a quiescent environment. While the Reynolds
stress ρuu may be relevant in turbulent flow regimes, the viscous stressesτ are
normally completely neglected. The second source term represents entropy
fluctuations, which can be demonstrated by transforming the caloric equa-
tion of state (2.4) into

ρ̄

cp
c̄2s ′ = p ′− c̄2ρ′ . (2.16)

Using this relation, eq. (2.15) can also be transformed into an analogy in terms
of the pressure fluctuations. It has to be noted that Lighthill’s analogy is limited
to mean flow fields with a uniform speed of sound c̄ and is thus not imme-
diately applicable to thermoacoustics. Furthermore, the convection and re-
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fraction (e.g. in boundary layers or temperature gradients) of acoustic waves
are considered part of the sources, although being an essential feature of the
sound propagation. On the other hand, analytic solutions of the sound pres-
sure field can be obtained for given aeroacoustic sources using the framework
of Green’s function (cf. section 2.7).

2.3.2 Moehring’s Analogy

To overcome the issues of Lighthill’s analogy, Moehring [117] derived an anal-
ogy for acoustic wave propagation in non-reacting, single-species potential
flows. This is achieved by using the stagnation enthalpy B , which is the native
transport quantity of the energy conservation (2.1c). To obtain a compatible
form of the momentum equation (2.1b), it is first transformed into Crocco’s
form by using the vector identity u · ∇u = 1/2 ∇ (u ·u)+Ω×u and the caloric
equation of state (2.4) to give

ρ
∂u

∂t
+ρ∇B = ρu×Ω+∇·τ−Tρ∇s . (2.17)

Here, Ω = ∇× u denotes the vorticity, i.e. the rotation of the velocity field.
Equivalent to the derivation of the convective wave equation, an analogy
for the stagnation enthalpy is now obtained via ρ D

Dt
1
ρc̄2 (2.1c)−∇·(2.17). Fur-

ther transformations exploiting the continuity equation (2.1a) and the caloric
equation of state (2.4) ultimately leads to Moehring’s analogy as per

ρ
D

Dt

1

c̄2

DB

Dt
−∇· (ρ∇B

)= ∂

∂t

(
ρ

c̄2
T

Ds

Dt

)
∇·

(
u
ρ

c̄2
T

Ds

Dt

)
−∇· (ρu×Ω)

. (2.18)

This analogy does not contain any simplifications and is thus generally appli-
cable to thermoacoustic analyses. Although the wave operator on the LHS is
similar to the one of the convective wave equation (2.10), using the stagna-
tion enthalpy results in an anology for potential flows [29, 30, 118] instead of
uniform flows. The RHS represents sources due to the unsteady transport of
entropy and vorticity. Still, this equation is of minor practical use as Green’s
function (cf. section 2.7) can not be applied to obtain an analytical solution.
Furthermore, the formulation in terms of the stagnation enthalpy B impedes
the formulation of intuitive boundary conditions for numeric simulations (cf.
section 2.6).

25



2.4 Frequency-Domain Analysis

2.4 Frequency-Domain Analysis

The perturbed equations and analogies discussed in the previous sections 2.2
and 2.3 describe the evolution of disturbance quantities over time, which may
be solved numerically for complex geometries. However, the computation in
the time-domain (TD) comes at a number of drawbacks:

• Hybrid linear methods like the LRF, LNSE or LEE still include acoustic,
vortical and entropic fluctuations comprising multiple time scales. Par-
ticularly their interaction may cause fast changes in the acoustic field
[119]. To obtain reliable results, these scales must be resolved with suf-
ficiently small time step sizes correlated with high computational cost.

• The LEE also include Kelvin-Helmholtz instabilities, which may grow in-
finitely due to the lack of nonlinear terms and dissipation mechanisms.
Then, these instabilities may obliterate the solution of the acoustic wave
propagation [120].

• Boundary conditions representing acoustic liners or resonators exhibit
a frequency-dependent behavior [67, 119, 121, 122]. Similarly, the flame
response to acoustic excitation strongly depends on the oscillation fre-
quency, as can be seen from the low-pass filter characteristic of laminar
flames (cf. e.g. [123]). Transforming this frequency-dependency into the
TD is a very complex task (cf. e.g. [122, 124]).

• The solution in the TD prevents a comprehensive modal stability analysis
as pursued in the present thesis.

All of the above issues may be overcome by transforming the equations un-
der consideration into the frequency-domain (FD). A common hypothesis for
the transformation is the time-periodic character of the fluctuation quantities.
Then, exploiting the Fourier-series theory, the disturbances can be expressed
as a series of time-harmonic oscillations with fixed frequencies [24, 125].
This is particularly advantageous for linear sets of equations, as the single
harmonic frequencies can then be considered individually. Making use of
the time-harmonic character, each disturbed quantity can be expressed as
Φ′(x, t ) = Φ̂(x)eiωt . Here, the hat denotes the (complex-valued) spatial oscil-
lation field and ω is the angular frequency. This approach corresponds to a
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Fourier-transformation of the equations under consideration, which is limited
to real-valued angular frequencies. However, in the context of stability analysis
in the linear regime, the oscillation signals are expected to exponentially grow
or decay in time due to flame-acoustic interactions and dissipation mecha-
nisms. Such quasi-harmonic oscillations require the transformation using the
Laplace transform according to

L
{
Φ′ (t ,x)

}= ∫ ∞

0
Φ′ (t ,x)e−st dt = Φ̂ (s,x) . (2.19)

This is equivalent to expressing each disturbed quantity as

Φ′(x, t ) = Φ̂(x)est . (2.20)

Note that this procedure is limited to linear acoustic equations since non-
linear terms are transformed into convolutions in the FD, which are unfea-
sible to resolve. The Laplace variable s is related to a commonly used com-
plex angular frequency via s = iωc = α+ i2πf, being a function of the growth
rateα and the oscillation frequency f. Important features of the Laplace trans-
form are the differentiation property L

{
∂
∂tΦ

′(t )
} = s Φ̂(s) and the integration

property L
{∫ t

0 Φ
′(t )dt

} = 1
s Φ̂(s). Exemplarily applying this transformation to

the inhomogeneous wave equation (2.14) and making use of the assump-
tion κp̄ = ρ̄c̄2 = const. suitable for stagnant media yields the inhomogeneous
Helmholtz equation for variable mean temperature fields

s2p̂ −∇· (c̄2∇p̂
)= s (κ−1) ˆ̇q . (2.21)

This equation is also referred to as Sturm-Liouville Eigenvalue Problem. As this
name also indicates, the transformation into the FD paves the way for eigen-
value (or modal) analyses.

2.5 Acoustic Energy

The stability of any confined (thermo-) acoustic system may be determined by
evaluating the rate of change of acoustic energy content E within the system
according to the generic energy conservation eq. (1.1). Similar to the source
term based on the Rayleigh criterion, eq. (1.2), it is also more meaningful to
evaluate the acoustic energy content and the acoustic energy fluxes as a tem-
poral average. Suitable expressions for these quantities can not be found on
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the basis of linear energy correlations, since the integral over an oscillation
period of the corresponding time-harmonic energy oscillations vanishes. To
overcome this issue, Cantrell and Hart [126] first analyzed the acoustic energy
using second order fluctuations, which are neglected when using linear dis-
turbed equations. They ultimately arrive at formulations for the acoustic en-
ergy and the energy flux as a function of first order fluctuations according to

E v,s=0 = p ′2

2ρ̄c̄2
+ 1

2
ρ̄u′2 +ρ′ū ·u′ , (2.22a)

Fv,s=0 =
(

p ′

ρ̄
+ ū ·u′

)
︸ ︷︷ ︸

=B ′

(
ρ̄u′+ ū

c̄2
p ′

)
︸ ︷︷ ︸

=ṁ′

. (2.22b)

The derivation of Cantrell and Hart [126] was limited to homentropic poten-
tial flows (no vorticity and entropy fluctuations, superscript v, s = 0), which
do not contain any volumetric acoustic sources or sinks S. Later, Morfey [127]
introduced sink terms S accounting for energy losses resulting from viscosity
and heat conduction. Myers [128] finally derived a general formulation for ar-
bitrary mean flow fields. For the specific application to thermoacoustics, Brear
et al. [129] expressed Myers’ energy corollary as

E = p ′2

2ρ̄c̄2
+ 1

2
ρ̄u′2 +ρ′ū ·u′+ ρ̄T̄

2cp
s ′ , (2.23a)

F =
(

p ′

ρ̄
+ ū ·u′

) (
ρ̄u′+ ū

c̄2
p ′

)
+ ρ̄ūT ′s ′ , (2.23b)

D =
(
ρ̄u′+ ū

c̄2
p ′

)
· (Ω′× ū+Ω̄×u′− s ′∇T̄

)+ ρ̄ū · (s ′∇T ′)+ q̇ ′T ′

T̄
−

¯̇q

T̄ 2
T ′2 .

(2.23c)

All of the terms in eqs. (2.22) and (2.23) are of second order in the fluctuation
quantities. To obtain the more meaningful periodic average of the product of
two quasi-harmonically quantities Φ′

1 and Φ′
2, the following identity can be

exploited

〈Φ′
1 ·Φ′

2〉t =
1

Ts

∫ t

t−Ts

Φ′
1 ·Φ′

2 dt ≈ 1

2
R

{
Φ̂1 · Φ̂2

}
, |α|¿ f , (2.24)

where Ts is the oscillation period and R and (·) denote the real part and the
complex conjugate of a complex valued quantity, respectively. This means that
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the temporal average of quadratic fluctuation terms can be expressed in terms
of their corresponding Laplace transforms. Note that eq. (2.24) is only valid
for small absolute values of the growth rate α in comparison to the oscillation
frequency f.

2.6 Boundary Conditions

The acoustic equations discussed in section 2.2 are partial differential equa-
tions (PDE) with the solution functions depending on time and the three
spatial coordinates. In order to obtain unique solutions, suitable initial and
boundary conditions need to be specified. Therefore, such PDEs are also re-
ferred to as initial-boundary value problems. The initial values are not re-
quired for equations in the FD such as the Sturm-Liouville problem (2.21),
making it a pure boundary value problem (BVP). The initial or boundary con-
ditions of a partial differential equation of order n may be specified up to
the order n − 1. Representative for a second order PDE, the inhomogeneous
Sturm-Liouville problem may be written as a well-posed BVP according to

s2p̂ −∇(
c̄2∇p̂

)= s(κ−1) ˆ̇q in V , (2.25a)

ap̂ +b∇p̂ ·n= h on ∂V . (2.25b)

If the overall boundary ∂V is split into multiple sub-boundaries, a boundary
condition in the form of eq. (2.25b) must be specified for each sub-boundary.
Depending on the parameters a and b, different types of boundary conditions
may be realized [130]:

• a 6= 0, b = 0 is a Dirichlet boundary condition (first type),

• a = 0, b 6= 0 is a Neumann boundary condition (second type),

• a 6= 0, b 6= 0 is a Robin boundary condition (third type).

Common physical boundary conditions and their characterization with the
above listed types are introduced subsequently.
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2.6.1 Open End Boundary

An open end boundary is connecting the domain V to the atmosphere. Simi-
lar to pressure outlet boundary conditions commonly applied in CFD simula-
tions, the atmospheric pressure is assumed to be constant. Therefore, for an
ideal open end boundary condition, the pressure fluctuations must vanish, i.e.

p̂ = 0 . (2.26)

This corresponds to a frequency-independent, homogeneous (h = 0) Dirichlet
boundary condition.

2.6.2 Slip Wall Boundary

The slip wall boundary for acoustic equations can be formulated analogously
to fluid mechanics. While tangential fluid motion is permitted, the normal ve-
locity components must vanish at sound hard slip walls:

û ·n =− 1

sρ̄
∇p̂ ·n = 0 . (2.27)

The first equality is a consequence of the linearized momentum equation for
quiescent media in the FD. It reveals that the slip wall is a homogeneous Neu-
mann type boundary condition.

2.6.3 Impedance Boundary

The concept of the acoustic impedance was borrowed from electrical engi-
neering. There, it relates the complex valued signals of voltage drop to cur-
rent flowing through a circuit element. The acoustic counterpart is referred to
as transfer impedance ztr and relates the acoustic pressure difference across
an acoustic element to the acoustic velocity (cf. chapter 3). It can also be ex-
pressed as a local quantity to describe the local acoustic field and may thus
serve as a boundary condition as per

Z = p̂

û ·n
= R+ iX . (2.28)

The real and imaginary parts of the complex valued impedance are referred to
as resistance R and reactance X, respectively. A normalized representation may
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be obtained by means of the characteristic impedance ρ̄c̄ of a medium:

z = p̂

ρ̄c̄ û ·n
. (2.29)

Using the relation between the boundary normal velocity and the pressure
used for the wall boundary condition (2.27) and comparing the impedance to
the general boundary condition representation (2.25b) discloses the homoge-
neous Robin type of the impedance boundary.
While the implementation of a slip wall boundary and an open end boundary
may be equally achieved for acoustic equations in TD, this is not as straight-
forward for the general impedance as this would imply a temporally varying
boundary condition (see e.g. [118, 131]). Further difficulties for the TD imple-
mentation are caused by the general frequency dependent behavior of the
impedance (cf. the damper models in section 3.3), which was addressed by
Morgenweck [124].
In the case of 1D sound propagation, the primitive variables p̂ and û can be
related to the characteristic waves found in the solution of the convective wave
equation (2.11) and (2.13) as per(

p̂
ρ̄c̄

û

)
=

(
1 1
1 −1

)(
f̂
ĝ

)
. (2.30)

The complex valued characteristics f̂ and ĝ are also called Riemann Invari-
ants [132]. They may be used to transform the specific impedance to

z = p̂

ρ̄c̄û
= f̂ + ĝ

f̂ − ĝ
= 1+R

1−R
, (2.31)

R = ĝ

f̂
=−1− z

1+ z
. (2.32)

The reflection coefficient R relates the complex amplitudes of a (normally scat-
tered) upstream traveling wave ĝ and a (normally incident) downstream trav-
eling wave f̂ .

2.6.4 Energetically Neutral Boundaries

As shown in 2.5, the energy content of a system is significantly impacted by
the energy fluxes at its boundaries. For the pure investigation of the driving or
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damping potential of specific sources it might be useful to prohibit any ener-
getic flux at the boundary. Such energetically neutral boundary conditions are
specifically useful for systems, which are not restricted to quiescent fluids as
the BVP (2.25). Assuming a homentropic acoustic field, energetical neutrality
of the boundaries can be achieved according to eq. (2.22b) by two different
requirements, which can be reformulated into impedance representations:

1. Zero stagnation enthalpy fluctuations (B̂ = 0):

B̂ =
(

p̂

ρ̄
+ ū · û

)
!= 0 → z B̂=0 =−ū ·n

c̄
=−M ·n . (2.33)

Here, M = ū
c̄ is the mean flow Mach number vector representing the lo-

cal relation between the mean flow velocity and the speed of sound.
To obtain this simplified impedance formulation, the velocities of mean
flow and fluctuating field are required to be parallel to the outward
pointing normal vector n. Otherwise, the velocity fluctuation vector can-
not be eliminated from this expression. This assumption is reasonable,
if the flow field downstream of the boundary can be assumed one-
dimensional, which will be discussed in more detail in chapter 3. It may
be noted that for vanishing mean flow velocities, the stagnation enthalpy
reduces to the open end boundary. This corresponds to z B̂ ,M=0 = 0 and
R B̂ ,M=0 = 1, which is only energetically neutral for quiescent fluids.

2. Zero mass flow fluctuations ( ˆ̇m = 0):

ˆ̇m = ρ̄û+ ū

c̄2
p̂

!= 0 → z
ˆ̇m=0 =− c̄

ū ·n
=− 1

M ·n
. (2.34)

This impedance formulation is not subject to the restriction of one-
dimensionality and is therefore more versatile. It reduces to the slip wall
boundary condition when assuming a stagnant mean flow field, which
corresponds to z ˆ̇m,M=0 =−∞ and R ˆ̇m,M=0 =−1.

A very useful quantity to assess the energy reflected at an arbitrary boundary
with mean flow is the energetic reflection coefficient6 [133], which will not be
further addressed here.

6This is not to be confused with the ‘classic’ reflection coefficient of eq. (2.32) relating the complex amplitudes
of reflected and incident waves.
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2.7 Green’s Function of the Sturm-Liouville Problem

For the analysis of a system’s response to arbitrary volumetric or boundary
sources, Green’s function is of great use. It is a common methodology to in-
vestigate the influence of aerodynamic sources on the acoustic field (cf. e.g.
[134–138]). Culick adapted the method for the investigation of thermoacous-
tic phenomena. A thorough description of his work is provided in [54]. In the
course of the present thesis, Green’s function approach will be exploited to de-
rive a methodology for the coupling of unstable thermoacoustic systems with
nonlinear damper models leading to limit-cycle oscillations (cf. chapter 5). To
begin with, the general framework is presented in this section, roughly follow-
ing the explications of Culick [54] and Schuermans [49].
Green’s function G represents the unit impulse response of a system. Regard-
ing the Sturm-Liouville BVP (2.25), it is defined as the solution of

s2Ĝ(x|x0)−∇(
c̄2∇Ĝ(x|x0)

)= δ(x−x0) in V , (2.35a)

aĜ(x|x0)+b∇Ĝ(x|x0) ·n= h on ∂V . (2.35b)

The argument of Green’s function for an eigenvalue problem Ĝ indicates the
system’s response in space x as a result of a point source at the location x0. This
point source is given by the Dirac delta with the important property

〈δ(x−x0),φ(x)〉 =φ(x0) , (2.36)

where the chevrons 〈·〉 denote the inner product of two square-integrable,
complex-valued functions φ1 and φ2:

〈φ1,φ2〉 =
Ñ

V
φ1(x)φ2(x) dV. (2.37)

The complex conjugate of continuous functions represented by an overline is
equivalent to the conjugate transpose required for dot products, which is the
inner product for complex vector spaces (e.g. as a result of spatial discretiza-
tion).
Before discussing how Green’s function may be used to find a solution of the
original BVP, an equation to describe Green’s function is initially pursued. For
this purpose, Green’s function is expressed in terms of the series expansion

Ĝ(x|x0) =
∞∑

n=0
ηn(x0)ψ̂n(x) , (2.38)
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with the entirety of ψn forming a basis of the solution space. They satisfy the
homogeneous BVP as per

s2
nψ̂n(x)−∇(

c̄2∇ψ̂n(x)
)= 0 (2.39)

and are thus also referred to as eigenfunctions of the system. To find the coef-
ficients of the series expansion ηn, the series expansion (2.38) is inserted into
the partial differential equation (2.35a) resulting in

s2
∞∑

n=0
ηn(x0)ψ̂n(x)−∇

(
c̄2∇

∞∑
n=0

ηn(x0)ψ̂n(x)

)
= δ(x−x0) . (2.40)

For converging series the order of summation and differentiation may be
flipped. In addition, the coefficients η may be factored out since they are not
subject to the spatial differentiation, which leads to

∞∑
n=0

ηn(x0)
(
s2ψ̂n(x)−∇(

c̄2∇ψ̂n(x)
))= δ(x−x0) . (2.41)

Exploiting the definition of the system’s eigenfunction (2.39) then gives
∞∑

n=0
ηn(x0)

(
s2 − s2

n

)
ψ̂n(x) = δ(x−x0) . (2.42)

To determine the individual coefficients, the adjoint (or left) eigenfunctions
χm are required. These are related to the right eigenfunctions via

〈χ̂m,ψ̂n〉 =
{

En , m = n,

0 , otherwise,
(2.43)

and are thus bi-orthogonal. Forming the inner product of the adjoint eigen-
function with eq. (2.42) yields

∞∑
n=0

ηn(x0)
(
s2 − s2

n

)〈χ̂m,ψ̂n〉 = χ̂m(x0) . (2.44)

Here, the property of the Dirac distribution (2.36) and the convergence of the
series to interchange the summation and the inner product have been ex-
ploited. Ultimately, making use of the bi-orthogonality according to eq. (2.43)
gives a relation for the individual coefficients

ηn(x0) = χ̂n(x0)

En

(
s2 − s2

n

) , (2.45)
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and thus for Green’s function

Ĝ(x|x0) =
∞∑

n=0

χ̂n(x0)ψ̂n(x)

En

(
s2 − s2

n

) . (2.46)

After obtaining a universal expression for Green’s function, it may now be used
to find a solution for the original BVP. Formally, this requires the use of the ad-
joint Green’s function Ĝ∗ as elaborated by Bleistein [139]. It is the unit impulse
response of the adjoint BVP and is related to the original Green’s function via
the reciprocity relation Ĝ(x|x0) = Ĝ∗(x0|x). However, since Green’s PDE (2.35a)
is self-adjoint, the original function Ĝ could be used instead of its adjoint in
this particular case. Multiplying eq. (2.35a) with p̂ and subtracting eq. (2.25a)
multiplied by Ĝ∗ and then integrating over the domain volume yieldsÑ

V

{
p̂(x)

(
s2Ĝ∗(x|x0)−∇(

c̄2∇Ĝ∗(x|x0)
))−Ĝ∗(x|x0)

(
s2p̂(x)−∇(

c̄2∇p̂(x)
))}

dV

=
Ñ

V

{
p̂(x)δ(x−x0)−Ĝ∗(x|x0)s(κ−1) ˆ̇q(x)

}
dV

= p̂(x0)−
Ñ

V
Ĝ∗(x|x0)s(κ−1) ˆ̇q(x)dV .

(2.47)

Making use of some universal properties of inner products, the LHS can be
simplified as some terms cancel out according toÑ

V

{
p̂(x)

(
s2Ĝ∗(x|x0)

)−Ĝ∗(x|x0)
(
s2p̂(x)

)}
dV = 〈p̂, s2Ĝ∗〉−〈Ĝ∗, s2p̂〉

= s2 〈p̂,Ĝ∗〉− s2 〈p̂,Ĝ∗〉 = 0 .
(2.48)

Finally, eq. (2.47) can be reshaped into a formulation for the pressure fluctua-
tions. Additionally interchanging x and x0 as well as exploiting the reciprocity
relation gives

p̂(x) =
Ñ

V
Ĝ(x|x0)s(κ−1) ˆ̇q(x0)dV0

+
Ñ

V

{
Ĝ(x|x0)∇0

(
c̄2∇0p̂(x0)

)− p̂(x0)∇0

(
c̄2∇0Ĝ(x|x0)

)}
dV0 .

(2.49)

As a result of interchanging x and x0, the integration and differentiation has to
be performed regarding the source position x0, denoted by an additional in-
dex 0 for the nabla operator and the integration variable. This final equation
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(2.49), just like eq. (2.48), also holds for general, non self-adjoint second order
BVPs as may be concluded from [140]. A severe issue of eq. (2.49) is that the
second integral on the RHS still depends on the solution variable, i.e. the pres-
sure fluctuations. Independently of the self-adjointness of the problem, this
integral is associated with the boundary conditions of the BVP [139]. For spe-
cific boundary conditions of the Sturm-Liouville problem, the corresponding
transformation is addressed in section 5.2. Then, eq. (2.49) allows to include
the effect of variable boundary impedances on the solution as required for the
consideration of nonlinear damper patches.

2.8 Flame Dynamics

A fundamental difference between the fields of aeroacoustics and thermoa-
coustics lies in unsteady combustion. While heat release fluctuations are in-
herently included in the NLRPE and LRF, they are dropped together with the
reaction mechanism and the species transport equations for all other per-
turbed equations discussed in 2.2. To still account for acoustic driving caused
by a fluctuating chemical conversion, a source term representing the un-
steady volumetric heat release rate must be provided for the energy equa-
tion. Although mainly dealing with damping mechanisms, the consideration
of acoustics-flame interactions still plays a crucial role in the present thesis.
Adequate models reproducing their driving potential are essential for a com-
plete energy balance. This allows for the pursued identification of linearly un-
stable oscillation states and their evolution over time as well as a subsequent
optimization of the system’s damping capabilities. For this purpose, various
mechanisms of unsteady combustion are presented within this section. Spe-
cific emphasis is put on the contributions to the linear stability behavior of
acoustic modes together with their mathematical modeling.

2.8.1 Fluctuating Heat Release Contributions

In general, three individual contributions to the overall volumetric heat re-
lease fluctuations related to turbulent flames may be identified [102, 141]:

q̇ ′(x, t ) = q̇ ′
st (x, t )+ q̇ ′

l i n(x, t )+ q̇ ′
nl (x, t ) . (2.50)
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The stochastic part q̇ ′
st stems from turbulent velocity fluctuations in the chem-

ical reaction zone producing broadband combustion noise [26, 136]. Such
a broadband acoustic radiation was also found for unbounded, turbulent
flames [26,136,142,143]. In confined geometries, these stochastic heat release
fluctuations excite the acoustic modes of the combustor and can thus be con-
sidered the starting point of thermoacoustic instabilities. Assuming a negligi-
ble feedback from linear acoustic oscillations to turbulence (cf. Fig. 1.1), the
related stochastic heat release fluctuations may be neglected for linear stabil-
ity analyses of acoustics-flame couplings [141].
The linear coupling between the flame and the combustor acoustics is repre-
sented by the term q̇ ′

l i n. It constitutes a closed feedback loop between acous-
tics and combustion and is therefore often described in terms of a flame re-
sponse function (FRF)7 in the FD. Modeling of this linear part is subject of the
next section 2.8.2.
Finally, a nonlinear contribution q̇ ′

nl may become relevant at large acoustic
oscillation amplitudes. This nonlinear term is commonly assumed to cause
a saturation of the flame driving and therefore leading to limit-cycle oscilla-
tions. This has been analytically demonstrated using a time-lag flame model
by Dowling et al. [144]. Since this type of model may be used to capture equiv-
alence ratio fluctuations (cf. section 2.8.2), it is suitable to investigate nonlin-
ear meachnisms inherent to non-premixed combustion [141]. However, the
applicability of this concept to premixed combustion is limited to flame sur-
face changes due to convectively transported disturbances like vortices. It is
questionable though, whether this mechanism leads to the heat release satu-
ration as investigated by Dowling et al. [144]. Instead, the potentially nonlinear
acoustic damping mechanism related to vortex shedding is investigated as a
main driver of limit-cycle oscillations in the present thesis.

2.8.2 Linear Acoustics-Flame Interactions

Linear interaction mechanisms between acoustics and combustion are highly
dependent on the operating conditions (e.g. premixed or non-premixed com-
bustion). Identifying and modeling the relevant mechanisms for a specific
setup is thus very challenging. One of the first models to describe an exper-

7Although typically being computed or measured for purely real valued frequencies, the FRF is mostly referred
to as flame transfer function (FTF) in literature.
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imentally observed acoustics-flame coupling dates back to the early 1950’s.
From theoretical considerations, Crocco [145, 146] identified acoustically in-
duced mixture inhomogeneities as a source of heat release fluctuations. Such
mixture disturbances are essentially related to velocity fluctuations at the
burner mouth. A major finding of Crocco’s work is the time lag τ associated
with the convective transport of the mixture inhomogeneities into the flame,
leading to the n-τ model [34, 147]. Time lags are also a feature of coherent
flame wrinkling, i.e. acoustically induced fluctuations in the flame surface
area [34, 148] also observed for premixed combustion. Due to their versatility,
those time-delay models are often employed in analytic studies or within net-
work models (cf. chapter 3) and 3D-Helmholtz solvers [97, 149–151]. In these
applications, they can accurately reproduce acoustics-flame interactions of
technical combustors when taking time-lag distributions into consideration
[152].
A fundamental feature of the n-τ model is its limitation to the low-frequency
(LF) regime. In this case, the flame can be assumed to be acoustically com-
pact with length scales much smaller than the characteristic acoustic wave
length. This allows for the use of the Rankine-Hugoniot description of discon-
tinuities [153, 154]: Therein, the flame is considered a lumped element with
concentrated heat release fluctuations equivalent to the volume-integrated
acoustics-flame interactions of the real flame. The corresponding FRF is re-
ferred to as global FRF. Instead of using the n-τ model, global FRFs can also
be identified from measurements or high-fidelity CFD. Being in line with the
lumped element theory, the global FRF is commonly mapped onto the spatial
mean heat release rate field without any spatial phase distribution for the us-
age in acoustics solvers. However, this methodology postulates a static flame
(i.e. a flame sheet or flame brush at rest), which is deficient in the context of
thermoacoustics. Neglecting flame movement in linearized approaches leads
to a considerable production of entropy across perfectly premixed flames.
This was first elaborated by Strobio Chen et al. [155] using one-dimensional
jump conditions and later confirmed by Meindl et al. [82] who applied a global
FRF to the LNSE. Since the lack of mixture inhomogeneity lacks a physical jus-
tification of significant temperature and corresponding entropy fluctuations
downstream of the premixed flame, this is considered unphysical or spuri-
ous. Reconsidering Myers’ energy corollary, eq. (2.23), spurious entropy may
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severely falsify the results of a stability analysis (cf. [156, pp. 189-192]).
This issue may be overcome by using a locally resolved FRF, which incorpo-
rates the effect of flame movement via a spatial phase distribution [82]. Lo-
cal FRFs were previously reserved for thermoacoustic analysis in the high-
frequency (HF) regime. Here, the compactness assumption is not valid any-
more. Analytical models like the n-τmodel with distributed time lags account
for the resulting local acoustics-flame interactions [34, 157]. However, this
model normally requires some tuning regarding the interaction index n. Fur-
thermore, it is generally not designed to incorporate an acoustically induced
flame movement.
As proposed by Meindl et al. [82], a consistent local FRF may be obtained from
NLRPE/LRF or high-fidelity reactive CFD simulations, which inherently in-
clude a consistent flame movement but come at tremendous computational
effort. Also measurements with optical techniques allow for a local resolution
of the FRF. However, optical access can normally not be provided in indus-
trial applications. It may be concluded that there is no reliable and compu-
tationally efficient methodology available to account for flame movement in
common hybrid models and thus prevent for errors due to spurious entropy
generation. This also prevents the employment of global FRFs, independently
of the considered frequency regime.
To overcome this issue for linear perturbed approaches, the author of this
thesis developed a novel decomposition approach. Using the Arbitrary La-
grangian Eulerian (ALE) methodology [158, 159], Heilmann et al. [160] per-
formed a transient coordinate transform of the Euler equations to establish
an intrinsically consistent mean field movement of all flow variables. After
perturbation, cf. eq. (2.6), and subsequent linearization, they arrive at ALE
transformed LEE. These are equivalently obtained, when introducing a triple
decomposition into the Euler equations according to

φ(x, t ) = φ̄(x)−∆′ ·∇φ̄+φ′ ,

where ∆′ = ∆′(x, t ) is the local and instantaneous field deflection. When this
deflection is assumed to be exclusively driven by acoustic fluctuations, a sim-
ple kinematic relation to describe the mean field deflection can be used:

∆′(x, t ) =
∫ t

0
u′(x, t̃ ) dt̃ ; ∆̂= û

s
. (2.51)
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Integrating the acoustic velocity over time represents the acoustically induced
particle displacement, which is more easily represented in the FD. This par-
ticle displacement (2.51) also constitutes a closure relation for the unclosed
ALE transformed LEE, ultimately yielding the Moving Flame Linearized Euler
Equations (MF-LEE). The quite complex form of these equations prevents for
an intuitive interpretation of their actual significance. Such an intuituve in-
terpretation is provided for stagnant flows, which yields the following set of
linear equations in the FD [160]

s ρ̂+ ρ̄∇· û = 0 , (2.52a)

s ρ̄û+∇p̂ = 0 , (2.52b)

s p̂ +κp̄∇· û− (κ−1) ˆ̇q = (κ−1)
1

s

[
¯̇q∇· û︸ ︷︷ ︸

ˆ̇qρ

− û ·∇ ¯̇q︸ ︷︷ ︸
ˆ̇q∆

]
. (2.52c)

While the linearized mass and momentum balance equations (2.52a) and
(2.52b) equal those of the LEE (2.8) for quiescent fluids, the linearized energy
balance (2.52c) contains two additional source terms. They stem from the gen-
erally inconsistent assumption of a stationary, stagnant mean flow field with
heat release. Based on early experimental and analytical studies on HF driving
mechanisms due to coherent flame movement from Schwing et al. [161, 162]
and Zellhuber et al. [163], those source terms were referred to as flame de-
formation ˆ̇qρ and displacement ˆ̇q∆ by Hummel et al. [164]. It may be noted
that Hummel et al. [164] further modified the deformation source assuming
homentropicity, which is invalid in regions with heat release.
The mechanisms of displacement and deformation are in fact adequate to
consistently account for flame movement in quiescent fluids. However, they
do not solve the issue of spurious entropy generation when simply being
added to approaches taking mean flow velocities into account, like the LEE
[160]. In this case, a complex 3D distortion of the flame is expected, which can
only be reproduced by the full set of MF-LEE.
To summarize, the MF-LEE solve the issues of spurious entropy of common
hybrid approaches by establishing a consistent field movement. They inher-
ently include the linear driving mechanisms associated with a complex dis-
tortion of the flame shape induced by acoustic and vortical fluctuations. Ad-
ditional heat release oscillations (e.g. due to equivalence ratio fluctuations in
non-premixed combustion) can still be included by means of an additional
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source term ˆ̇q . Being deduced from the MF-LEE, eqs. (2.52) illustrate that the
mechanisms of flame deformation and displacement indeed represent the
consistent driving associated with flame movement for quiescent fluids. Al-
though originally derived as HF driving mechanisms, their identification on
the basis of the MF-LEE also justifies their validity in the LF regime. Conse-
quently, they are perfectly suitable for the universal 3D-Helmholtz framework
pursued in the present thesis and presented in chapter 4.
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3 One-Dimensional Network Models

Sound waves propagate in all three spatial dimensions, which is of particu-
lar interest for the analysis of the acoustic near and far field in unbounded
media, i.e. in an acoustic free field.1 Although not being subject to an acous-
tic free field, the three-dimensional character of the wave propagation also
plays a crucial role in confined geometries at high frequencies. The framework
for the analysis of the sound propagation in space is provided by the mathe-
matical models discussed in section 2.2. Particularly for complex 3D system
boundaries and mean flow fields, all of the corresponding BVPs lack an an-
alytic solution. This is circumvented under the condition of purely 1D wave
propagation. An indicator for the 1D propagation of acoustic waves in con-
fined geometries is the Helmholtz number

He = l ω

c̄
= l k . (3.1)

For He ¿ 1, the acoustic wave length is much larger than a characteristic
length l of the considered geometry, which is then labeled as acoustically com-
pact. If this criterion is satisfied for the hydraulic diameter of a duct or chan-
nel, the wave propagation is considered one-dimensional along the axial co-
ordinate of the geometry. Acoustic compactness is a common assumption in
the LF spectrum and forms the basis for the acoustic network modeling as
discussed in section 3.1. Hereafter, some readily available acoustic network
elements are presented in section 3.2. Since acoustic liners can normally be
described using 1D models, they can also be integrated into network models,
which will be subject of section 3.3. A methodology to combine the 1D models
discussed in this chapter with 3D-CA tools is developed in chapter 4, yielding
the highly efficient linear, hybrid numerical approach pursued in the present
thesis.

1Since the distinction between an acoustic near and far field can normally not be transferred to confined
geometries subject to the present thesis, these concepts are not further detailed here. Instead, the interested
reader is referred to standard literature for acoustics such as [118, 134].
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3.1 Network Modeling Concept

3.1 Network Modeling Concept

The simplified one-dimensional approach to describe acoustic propagation
in compact elements facilitates the analysis of acoustic systems analogously
to electrical as well as mechanical systems [165]. Particularly the basic the-
ory regarding electrical networks pioneered by Helmholtz and Kirchhoff can
be made use of to describe a sequence of compact elements [166]. A clas-
sic field of application is the sound propagation within a series of connected
ducts with different cross-sections. Such a system may be represented by a
network of lumped elements as sketched in Fig. 3.1. In accordance with elec-

1 2 3 4

Figure 3.1: Schematic network representation of a series of ducts with differ-
ent cross-sections and solid termination on both ends.

trical network theory, the acoustic elements may generally be characterized
regarding their number of terminals connecting to neighboring elements. For
the network of Fig. 3.1 these are one-ports (elements 1 and 4) and two-ports
(elements 2 and 3). At each port, a complete set of state variables needs to
be transferred. While this set of state variables is normally formed by the cur-
rent and voltage for electrical systems, it may be represented by the velocity
and the force applied to a mass point in mechanical systems (cf. [165]). Anal-
ogously, a complete characterization of the acoustic field is obtained by two
state variables. These may be the acoustic pressure and velocity fluctuations
or alternatively, making use of eq. (2.11) and (2.13), the Riemann Invariants.
Depending on the selected set of acoustic state variables, acoustic one-ports
may then be represented by an impedance (2.31) or a reflection coefficient
(2.32). As these elements terminate a network, the boundary conditions as dis-
cussed in section 2.6 may be applied.
Similarly, different representations for two-ports may be specified. Fischer
[167] gives a great overview over common acoustic two-port representations
and their electrical counterparts. Of practical relevance is the classic transfer
matrix TM. It relates the primitive acoustic variables, i.e. pressure and velocity
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fluctuations, downstream (index d) of a lumped element to those upstream
(index u) according to(

p̂
ρ̄c̄

û

)
d

= TM

(
p̂
ρ̄c̄

û

)
u

=
(

TM11 TM12

TM21 TM22

)(
p̂
ρ̄c̄

û

)
u

. (3.2)

A more intuitive two-port representation in terms of system identification is
provided by the scattering matrix SM as it relates scattered waves ( f̂d , ĝu) to
incident waves ( f̂u, ĝd ):(

f̂d

ĝu

)
= SM

(
f̂u

ĝd

)
=

(
Tu Rd

Ru Td

)(
f̂u

ĝd

)
. (3.3)

While the coefficients of the transfer matrix are not easy to interpret, the scat-
tering matrix elements can be intuitively identified as reflection and trans-
mission coefficients. This is illustrated in Fig. 3.2 where the characteristic f̂d

leaving the two-port on the downstream side consists of the transmitted part
f̂d ,t = Tu · f̂u and the reflected part f̂d ,r = Rd · ĝd of the incident waves. On the

ĝu

f̂u

ĝd

f̂d
SM

ĝd

f̂d ,r
Rd

f̂u f̂d ,t
Tu

(a) (b) (c)

Figure 3.2: Schematic of a scattering matrix two-port. (a) Superposed scatter-
ing of incident waves. (b) Exclusive reflection of the incident wave
at the downstream port. (c) Exclusive transmission of the incident
wave at the upstream port.

other hand, the transfer matrix representation allows for a more straightfor-
ward interconnection of two-ports. For a serial network of N two-ports, an
overall transfer matrix TMtot may then be obtained by matrix multiplication
of the single element transfer matrices as per

TMtot = TMN ·TMN−1 · . . . ·TM1 . (3.4)

Exploiting the advantages of both representations requires mutual conversion
rules, which are provided by Fischer at al. [168].
Finally, it may be noted that the network modeling framework also allows for
more complex system analysis. For instance, parallel connections of elements
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can be established by multi-port elements such as trijunctions [93, 132]. Fur-
thermore, the network modeling framework is not necessarily limited to 1D
acoustic analysis. It was also employed to investigate 3D modes in axisym-
metric annular combustors [94, 169].

3.2 Network Elements

The networks considered in the course of this thesis will exclusively be of serial
character. A large range of acoustically compact geometries may simply be ab-
stracted by a series of interconnected ducts [135]. This requires only two types
of network elements to reproduce the acoustic transfer behavior of the corre-
sponding real geometries with reasonable accuracy. These are ducts with con-
stant cross sections and sudden area changes to connect the individual ducts.
A mathematical model for both elements will be discussed subsequently.

3.2.1 Duct with Constant Cross Section

Within a duct of constant cross-sectional area (graphically represented by ele-
ment 2 in Fig. 3.1) the acoustic characteristics f̂ and ĝ propagate at the speed
of sound modified by a constant mean flow velocity ū. Making use of the 1D
solution of the convective wave equation (2.11), a duct of length l thus con-
stitutes a time-lag of k±l for the characteristics. In terms of the primitive vari-
ables, a corresponding transfer matrix may be written as [93]

TMpu,duct =
(

e−i k+l +e i k−l e−i k+l −e i k−l

e−i k+l −e i k−l e−i k+l +e i k−l

)
. (3.5)

3.2.2 Sudden Area Change

Ducts of different cross sections are connected via sudden area changes
(graphically represented by element 3 in Fig. 3.1), also referred to as backward
or forward facing steps. The three-dimensional processes at such area dis-
continuities are projected on an infinitesimally thin lumped element. A one-
dimensional model was first derived by Gentemann et al. [170] and Schuer-
mans [49]. While their derivation was limited to linear mechanisms, this sec-
tion pursues the goal to highlight nonlinear mechanisms, in particular regard-
ing acoustic damping. The basis to describe the nonlinear transfer behavior of
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area discontinuities is formed by the continuity and the momentum conser-
vation equations. The continuity equation in integral form reads

∂

∂t

∫
V
ρ dV +

∫
∂V
ρu ·n dA = 0 . (3.6)

Introducing the perturbation ansatz (2.6) and exploiting the one-
dimensionality of the flow as well as the compactness of the element (He ¿ 1),
the perturbed nonlinear continuity equation is obtained:

∂ρ′
u

∂t

∫ xd

xu

A(x) dx + [
(ρ′ū + ρ̄u′+ρ′u′)A

]d
u =O (He)2 . (3.7)

The integration of the cross-sectional area along the infinite length of the sud-
den area change is mathematically not easy to justify. From a physical point of
view, however, the integral is related to a compression capacity in the vicinity
of the sudden area change. The control volume corresponding to the capaci-
tance of the compact element may be expressed by defining a reduced length
lr ed = ∫ xd

xu

A(x)
Ad

dx. This quantity may be determined experimentally or numeri-
cally to fit the model to the specific setup. Assuming small Mach number mean
flows with constant mean density along the streamlines and isentropic pertur-
bations, the nonlinear mass conservation yields

Ad

ρ̄c̄2
lr ed

∂p ′
u

∂t
+

(
Ad

(
p ′

d

ρ̄c̄
Md +u′

d

)
− Au

(
p ′

u

ρ̄c̄
Mu +u′

u

))
+

(
Ad

p ′
d

ρ̄c̄2
u′

d − Au
p ′

u

ρ̄c̄2
u′

u

)
=O (He)2 .

(3.8)

This equation may be further simplified by also neglecting mixed terms of
higher order in the Helmholtz and Mach number, which ultimately gives

Ad

ρ̄c̄2
lr ed

∂p ′
u

∂t
+ (

Ad u′
d − Auu′

u

)+(
Ad

p ′
d

ρ̄c̄2
u′

d − Au
p ′

u

ρ̄c̄2
u′

u

)
=O (He)2 . (3.9)

The momentum conservation is described in detail by the Navier-Stokes
equations. For pure acoustic investigations at low Mach numbers, dissipation
due to viscosity, heat conduction and acoustic-vortex interaction may be ne-
glected. This leads to the incompressible Bernoulli equation for homentropic,
irrotational flow. In the case of area discontinuities, these assumptions fail as
the flow irrotationality leads to infinitely large flow velocities at the rim of the
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sudden area change. In these regions, vortices are formed, which are advected
by the mean flow and are ultimately dissipated. Due to these complex dissi-
pation mechanisms, which are described by the full Navier-Stokes equations,
an irreversible drop in the total pressure is observed. For low Mach numbers,
this total pressure drop may simply be added to the Bernoulli equation, which
then reads

∂∇ϕ
∂t

+ 1

2
∇(u ·u)+ 1

ρ
∇p = 1

ρ
∇pl , (3.10)

with the irrotational velocity being replaced by the gradient of the scalar po-
tential field ϕ. Considering this equation along a streamline yields a one di-
mensional formulation. Introducing the perturbation ansatz (2.6) and inte-
grating along the streamline gives

∂

∂t

∫ xd

xu

∇ϕ′dx +
[

ūu′+ 1

2
u′2

]xd

xu

+ 1

ρ̄

[
p ′]xd

xu
= 1

ρ̄

[
p ′

l

]xd

xu
. (3.11)

The total pressure loss on the RHS is usually expressed as
[
pl

]xd

xu
=−1

2ρζ |uu|uu

with the pressure loss coefficient ζ and the upstream velocity uu. The cor-
responding perturbed term reads

[
p ′

l

]xd

xu
=−1

2 ρ̄ζ
(∣∣ūu +u′

u

∣∣(ūu +u′
u

)−|ūu| ūu

)
.

The velocity potential may be transformed by exploiting the incompressibil-
ity with regard to the mass conservation u(x) = Au

A(x)uu. In conjunction with
the compactness of the element, the first term on the LHS of eq. (3.11) thus
becomes

∂

∂t

∫ xd

xu

∇ϕ′ dx = ∂

∂t

∫ xd

xu

u′ dx = ∂u′
u

∂t

∫ xd

xu

Au

A(x)
dx = ∂u′

u

∂t
le f f . (3.12)

Similar to the reduced length, the effective length le f f =
∫ xd

xu

Au
A(x)dx was intro-

duced to circumvent the mathematical issues regarding the integration of the
cross sectional area. It corresponds to the volume related to the inertial mass
oscillating within the compact element. Finally, the momentum conservation
equation becomes

∂u′
u

∂t
le f f + ūuu′

u

((
Au

Ad

)2

−1

)
+ 1

ρ̄

(
p ′

d −p ′
u

)+ 1

2

(
u′

d
2 −u′

u
2
)

+ 1

2
ρ̄ζ

(∣∣ūu +u′
u

∣∣(ūu +u′
u

)−|ūu| ūu

)= 0 .

(3.13)

The nonlinear loss term particularly becomes relevant when the acoustic ve-
locity fluctuations take values greater than the mean flow velocity (cf. chapter
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5). Below that limit, the acoustic processes are assumed to behave in a linear
manner and the equations simplify to the ones proposed by Gentemann et
al. [170], which ultimately yields the linear transfer matrix of a sudden area
change

TMpu,AC =
 1 −i ωc̄ le f f −Mu

[(
Au
Ad

)2 +ζ−1

]
−i ωc̄ lr ed

Au
Ad

 . (3.14)

Note that the T21 element slightly deviates from the formulation of Gente-
mann et al. [170], which may be ascribed to their inconsistent transformation
step of the continuity eqs. (3.8) and (3.9).
Generally, a nonlinear counterpart of this linear transfer matrix representa-
tion can be included into the nonlinear framework developed in chapter 5
analogously to the nonlinear resonator models. However, since the geomet-
rically complex configuration investigated in chapter 6 is not expected to be
significantly impacted by nonlinear damping mechanisms of transfer matrix
couplings, the present thesis is limited to the application of eq. (3.14).

3.3 Acoustic Liner Models

As already outlined in section 1.2, all common passive damping devices rely
on the principle of the energy transfer from acoustics to vorticity. This is
mostly observed at sudden area changes. Since the acoustic velocity is com-
monly assumed to be a potential field (cf. section 2.3.2 and [29,30,118,171]), it
would become infinitely large at the edges of such area discontinuities. In this
case, viscous diffusion creates rotational components constituting the energy
transfer between acoustics and vorticity [49].
In the presence of mean flow, the coherent formation of vortices is even en-
hanced due to the interaction of the acoustic fluctuations with the mean flow
shear layer. This mechanism has been investigated by Howe in 1979 [28] and
forms the basis for the Howe model discussed in section 3.3.2. While he as-
sumed a single aperture of infinitesimal thickness for his analysis, his results
can also be applied to perforated plates or liners. Normally, the thickness t of
such liners or apertures is acoustically compact. As a consequence, the acous-
tic velocity is considered constant across the plate thickness, whereas only the
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pressure may exhibit remarkable changes. This promotes the introduction of
a transfer impedance ztr relating the difference in acoustic pressure on both
sides of the plate to the normal velocity

ztr = p̂u − p̂d

ρ̄c̄û
, (3.15)

which in fact represents the difference of the local impedances upstream and
downstream of the compact element. The transfer impedance and its applica-
tion to perforated liners is explicated by Hua [172]. It can be reformulated in
terms of a transfer matrix according to:(

p̂
ρ̄c̄

û

)
d

=
(

1 −ztr

0 1

)
︸ ︷︷ ︸

TMtr

(
p̂
ρ̄c̄

û

)
u

. (3.16)

Multi-layer perforated resonators as sketched in Fig. 3.3 may then be charac-
terized by using the network framework of section 3.1. The cavities separating

zBC

l1 l2

TMtot ,l i ner

ze

Figure 3.3: Sketch of the procedure to characterize a multi-layer perforated
resonator.

the single compact perforated plates may be represented by the duct transfer
matrix (3.5). Since the purge mass flow is normally quite low, the mean flow
velocities can be neglected in the cavities, simplifying the wave numbers to
k+,ū=0 = k−,ū=0 = k. Alternately multiplying the transfer matrices of the duct
elements and the still unknown transfer impedances according to (3.4) then
gives an overall transfer matrix of the multi-layer resonator TMtot ,l i ner . De-
pending on the termination boundary impedance zBC , the overall impedance
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ze at one end of the resonator can be expressed as

ze = p̂e

ρ̄c̄ûe
= TMtot ,l i ner,11zBC +TMtot ,l i ner,12

TMtot ,l i ner,21zBC +TMtot ,l i ner,22
. (3.17)

This procedure can be exemplified by means of a resonator with a solid termi-
nation (zBC =∞), a cavity of length l and a perforated liner with the transfer
impedance ztr flush mounted to the combustion chamber. This yields the end
impedance of the resonator at the combustion chamber wall

ze,r es = icot(kl )− ztr . (3.18)

With suitable models for the transfer impedances of perforated liners, this
framework allows for the 1D characterization of technically relevant res-
onators. They may then be included as impedance boundary conditions in
a linear 3D-CA concept (cf. chapters 4 and 6). The impedance is then even
further evolved into a nonlinear resonator model for the use in reduced or-
der models in section 5.4.2. To do so, the mechanical analogy of a damped
system by means of a mass-spring-damper model as discussed subsequently
is of great use. The remainder of the present section is then used to summa-
rize selected acoustic models to describe the transfer impedance of perforated
liners. For a more comprehensive and sound overview over the broad range
of models available in literature, the interested reader is referred to Lahiri et
al. [121, 173].

3.3.1 Mass-Spring-Damper Model

An analogy to gain useful insight into the damping capabilities of acoustic
dampers is the rectilineal damped mechanical oscillator (cf. e.g. [165, 174]).
With reference to Fig. 3.4, this mass-spring-damper model consists of a mass
m with a rectilineal motion in the x-direction. It is connected to a solid, sta-
tionary wall via a spring with the spring constant k and a damper with the
damping factor d . Additionally, a transient external force F (t ) may be applied.
The dynamics of such a system with a single degree of freedom can be con-
verted into the ordinary differential equation

mẍ +d ẋ +kx = F (t ) . (3.19)
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k

d

m

x

F (t )

Figure 3.4: Sketch of a damped mechanical oscillator.

Here, the movement of the mass is assumed to be damped proportional to its
velocity ẋ. The properties of this system can be analyzed using the definition
of the mechanical impedance

Zmech = F̂

û
= s2m + sd +k

s
= sm +d + k

s
. (3.20)

For a purely harmonic force (s = iωF ), the real and imaginary part representing
the resistance and reactance, respectively, can be identified according to

Rmech = d ; Xmech =ωF m − k

ωF
. (3.21)

While the mass and the spring constant both contribute to the reactance,
the resistance is exclusively formed by the damping factor. The mechanical
impedance (3.20) can be normalized with the mass and the angular eigen-
frequency of the undamped system ω0 =

p
k/m. Depending on the values of

the normalized damping factor d/(m ω0), one can distinguish between three
damping regimes [175]: normally damped (d/(m ω0) < 1), optimally damped
(d/(m ω0) = 1) and overdamped (d/(m ω0) > 0). Making use of eq. (2.32),
these three regimes are plotted in Fig. 3.5 by means of the mechanical re-
flection coefficient Rmech over the normalized forcing frequencyω f /ω0. At the
eigenfrequencies of the undamped system ω0, the absolute value of the re-
flection coefficient takes smallest values, indicating maximum energy dissipa-
tion. It can be observed that the damping capabilities of a normally damped
system increases with increasing damping factor until reaching an optimally
damped state. Further increasing the damping factor results in a more broad-
band damping characteristic with decreasing energy dissipation in the vicin-
ity of the undamped eigenfrequency ω0. This attribute will be exploited when
designing resonators for an industrial-scale combustor in section 6.2.2.
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Figure 3.5: Reflection coefficient over normalized forcing frequency for differ-
ent normalized damping factors d/(m ω0).

3.3.2 Howe Model

A major mechanism for the attenuation of acoustic energy in compact aper-
tures subject to bias flow is the interaction of the acoustic fluctuations with the
shear layer of the steady jet flow. Howe [28] derived a model for the Rayleigh
conductivity CR of an infinitesimal thin aperture with a low Mach number
mean flow for small Helmholtz numbers He = ω

c̄ r ¿ 1. The Rayleigh conduc-
tivity can be expressed as

CR,a = iωρ̄A
û0

p̂u − p̂d
= iA

k

ztr,a
, (3.22)

with the index 0 denoting area-averaged velocities through the cross-sectional
area A of the aperture. With the assumption of circular apertures, Howe arrives
at

CR,a,Howe = 2r
(
γ+ iδ

)
, (3.23)
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with the real and imaginary components γ, δ

γ= I1(Sr)2
(
1+ 1

Sr

)+ (
2
π

)2
e2 Sr cosh(Sr)K1(Sr)2

(
cosh(Sr)− sinh(Sr)

Sr

)
I1(Sr)2 + (

2
π

)2
e2 Sr cosh(Sr)2K1(Sr)2

δ= Sr 2
π

I1(Sr)K1(Sr)e2Sr

I1(Sr)2 + (
2
π

)2
e2 Sr cosh(Sr)2K1(Sr)2

.

The modified Bessel functions of order m, Im and Km are characteristic for
the assumption of a cylindrical coordinate system. Howe’s solution is mainly
depending on the Strouhal number Sr =ωr /ū0 with the radius of the aperture
r and the area-averaged bulk velocity across the aperture ū0.

3.3.3 Jing and Sun Model

A major drawback of Howe’s model is the assumption of the infinitesimal
thickness of the apertures leading to a lack of oscillating inertia within the
aperture. Such an inertia creates an additional phase shift between pressure
and velocity oscillations and does thus alter Rayleigh’s conductivity. Jing and
Sun [176, 177] experimentally investigated the impact of the thickness of per-
forated plates on their acoustic characteristics with low Mach-number mean
flows. They used Howe’s model to analytically reproduce their findings in
terms of a specific transfer impedance ztr . To account for the impact of the in-
ertia within a plate of finite thickness t , Jing and Sun added a reactance term
to the formalism of Howe, which resembles the reactance of a single duct of
length t . Consequently, they obtain a modified Howe model in terms of the
transfer impedance in the form

ztr,a,Ji ng = πr kδ

2(γ2 +δ2)
− i

[
πr kγ

2(γ2 +δ2)
+kt

]
. (3.24)

3.3.4 Bellucci Model

Bellucci et al. [56, 178, 179] merge different effects into a single transfer
impedance model to characterize Helmholtz resonators and perforated lin-
ers. The overall transfer impedance derived by Bellucci essentially takes the
following form:

ztr,Bel lucci = 1

ρ̄c̄σ

[
Φ̂

û0
+ iωρ̄

(
tΓ+ t ′

)]
. (3.25)
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Note that this equation is applicable to perforated plates and not only to single
apertures. This is indicated by the porosity σ in the denominator of eq. (3.25).
The three terms in the bracket may be interpreted as follows:

• The first term represents the external flow resistance due to pressure
losses in the vicinity of the apertures. The losses are caused by the trans-
formation of acoustic energy into rotational vortical energy at the sharp
aperture edge.

• The second term comprises inertia effects and viscous losses in the single
apertures, which are based on acoustic wave propagation in a cylindrical
duct at low Helmholtz numbers.

• The last term comprises semi-empirical correction factors. Especially the
inertia of the air mass in the apertures is not limited to the thickness of
the plate and requires thus a correction.

In the following, these three terms are discussed in more detail and the corre-
sponding constitutive equations are provided.
In the TD, the external flow resistance may simply be described by the per-
turbed, nonlinear pressure drop of a single aperture

Φ′ = 1

2
ρ̄ζ

(
|ū0 +u′

0|
(
ū0 +u′

0

)−|ū0|ū0

)
, (3.26)

with the pressure loss coefficient ζ. Note that this nonlinear expression is
equivalent to the pressure drop in the momentum equation (3.13) to describe
the sudden area change. Transforming eq. (3.26) into the FD yields

Φ̂= ρ̄ζ g

(
ū0

û0

)
|û0|û0 . (3.27)

The function g (φ) is the result of the transformation of the nonlinearity in the
pressure drop equation. It is defined as

g (φ) =


2
π

[
φsin−1(φ)+

(p
1−φ2

3

)(
2+φ2

)]
, |φ| ≤ 1

|φ|, |φ| > 1 ,
(3.28)

and reveals a nonlinear flow resistance once the acoustic velocity û0 exceeds
the mean flow velocity ū0. For the calculation of the pressure loss coefficient,
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Bellucci introduces a distinction of cases for the values of the mean flow ve-
locity and the acoustic Strouhal number Sra =ωr /|û0|:

ζ=



1

C 2
d

= 1

2
(1−σ)+ (1−σ)2 := ζ0,1, for ū0 = 0, Sra ≤ (Sra)qs (3.29a)

1

2

3π

4
Sr1/3

a := ζ0,2, for ū0 = 0, Srac > (Sra)qs (3.29b)

π

2

δ ·Sr

γ2 +δ2
:= ζl i n, for ū0 ≥ |û0| (3.29c)

ζ0(1− g )+ζl i n

(
g − 4

3π

)
1− 4

3π

, for 0 ≤ ū0 ≤ |û0| . (3.29d)

The Strouhal number threshold for quiescent mean flow fields, eq. (3.29a) and
(3.29b), is given by the quasi-steady Strouhal number (Sra)qs = 0.61

C 6
D

with the

discharge coefficient CD . Due to the stagnant mean flow, the corresponding
losses are a result of nonlinear processes. In the linear regime, the acous-
tic flow velocity does not exceed the mean flow velocity. This is covered by
Howe’s model of the Rayleigh conductivity (3.23) with the coefficients γ and
δ, which is adopted by Bellucci in eq. (3.29c). Nonlinear losses are again ex-
pected, once the acoustic velocity exceeds the non-vanishing mean flow ve-
locity. This is represented by eq. (3.29d), which can be interpreted as an inter-
mediate regime between the stagnant mean flow and the linear regime.
The inner pressure loss due to viscous effects inside an aperture and the re-
lated inertial mass represents the second term in eq. (3.25). A suitable expres-
sion for this pressure loss is found from simplifications of the incompressible
Navier-Stokes equations in polar coordinates yielding the following expres-
sion [179]

∆pi nner = ∆p̂

û0
= iρ̄ωtΓ(Sh) , (3.30)

where the propagation constant Γ is a function of the Shear number

Sh =
√
− iω

ν
· r according to

Γ= 1− 2J1(Sh)

Sh J0(Sh)
. (3.31)

It uses the Bessel functions of the first kind Jm of order m and is directly ap-
plied to the transfer impedance of eq. (3.25).
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The modeling of ∆pi nner exclusively incorporates viscous effects of the
medium inside an aperture of thickness t . However, the oscillating mass
within an aperture also accelerates an additional portion of mass outside of
the aperture. This additional inertial mass alters the reactance of the perfo-
rated plate. This effect is accounted for by Bellucci using an end-correction
term t ′ in the form

t ′ =ϕ1(He)ϕ2(σ)ϕ3(Sr)ϕ4(Sra) . (3.32)

The individual semi-empirical terms of this end-correction term are given by

ϕ1(He) = 2 ·0.8216r

[
1+ (0.77He)2

1+0.77He

]−1

; ϕ2(σ) = 1−
√
σ

2

ϕ3(Sr) = 0.3(6/Sr2)+1

6/Sr2 +1
; ϕ4(Sra) = 1−0.3/Sr0.6

a .

Inserting Bellucci’s transfer impedance model of eq. (3.25) into the end
impedance of a single-layer perforated resonator (3.18) gives insight into the
contributions of the individual terms to the transfer resistance and reactance:

Re,Bel lucci =− 1

σ

[
Φ̂

û0
−ωρ̄t I(Γ)

]
, (3.33)

Xe,Bel lucci = ρ̄c̄ cot(kl )− iωρ̄

σ

(
t R(Γ)+ t ′

)
. (3.34)

Particularly the resistance formulation of eq. (3.33) will be exploited to derive a
nonlinear damper model in the TD in section 5.4.2, whereas the original Bel-
lucci model in the FD is used to model the resonators of the geometrically
complex test configuration in section 6.2.2.
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4 Linear Hybrid Numerical Strategy

The development of a linear hybrid numerical strategy with low computa-
tional complexity while still assuring a high degree of accuracy is subject of
this chapter. It is based on prior publications of the author [180, 181]. Note
that the term hybrid is henceforth no longer limited to a combined CFD/CA
approach. Instead, the 3D-CA part is expanded to additionally incorporate 1D
network models. The general procedure to set up such a hybrid methodology
is discussed in section 4.1. For an accurate and yet efficient modeling of the
3D-CA part, section 4.2 provides an exact formulation of the convective wave
equation. Its discretization with finite element methods (FEM) is elaborated
in section 4.3. It will be demonstrated that the correct use of this equation for
arbitrary mean flow fields requires the energetically consistent boundary con-
ditions of the regular Helmholtz equation, being subject of section 4.4. Section
4.5 deals with the linearization of the resulting nonlinear eigenvalue problem.
Finally, the accuracy and efficiency of the developed methodology is demon-
strated in section 4.6 using a simple test case.

4.1 General Modeling Procedure

The computational cost of a linear hybrid numerical approach is mainly de-
termined by the spatial resolution of the 3D-CA part. In order to keep costs
low, the computational domain needs to be limited to the geometric entities,
which substantially impact the system’s thermoacoustic stability. It is addi-
tionally desirable to not resolve components of small dimensions with high
degrees of geometric detail. Such components are normally characterized by
low Helmholtz numbers and might thus be characterized by adequate net-
work models, cf. chapter 3. To identify the components to be resolved with
3D-CA, the thermoacoustic system is split into subdomains. Each subdomain
is characterized by its geometry, the flow regime within the confined geometry
as well as the targeted frequencies. The procedure will be discussed by means
of the gas turbine as sketched in Fig. 4.1.
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US:
He < 1

(a)

(b)

(c)

ZC ZTTMB

He > 1 He > 1

He < 1

US:
He < 1

DS:
He < 1

Compressor Plenum
Combustion
chamber Turbine

Burner +
Swirler

He < 1

He > 1 He > 1

DS:
He < 1

Figure 4.1: Workflow to model a gas turbine. (a) The complete gas turbine is
characterized regarding the local Helmholtz number He. (b) The
compressor, the burner and swirler as well as the turbine are char-
acterized by 1D networks. (c) The plenum and combustion cham-
ber are resolved with 3D-CA using the boundary conditions and
transfer matrix from the 1D networks as termination and coupling
of the disconnected resolved domains, respectively.

The combustion chamber enclosing the flame, cf. Fig. 4.1 (a), is the focal
point for the thermoacoustic stability analysis. Also the burners including the
swirlers play a crucial role: the interaction of sound waves with the highly
turbulent flow in these components as well as the sudden area change con-
necting the burner and the combustion chamber constitute losses of acous-
tic energy. Accurately capturing these losses is crucial for a reliable stability
analysis and is thus of major interest for the present thesis. The complex and
small-scale geometry of the swirlers normally requires high spatial resolution.
However, the acoustically compact diameter of the burner yielding a small
Helmholtz number (He < 1) allows for an acoustic characterization as two-
port (e.g. a burner transfer matrix TMB ) using 1D networks. Via the burner,
the adjacent plenum can acoustically couple with the combustion chamber
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and therefore impact its potentially unstable oscillation states. Being located
far upstream (US) of the combustion chamber, the compressor is expected to
be only weakly coupled with the thermoacoustic oscillations originating from
the combustor. Similarly, the turbine section can be assumed to be virtually
uncoupled from the combustor on the downstream (DS) end due to the ac-
celeration of the hot gases in the high-pressure turbine stage.1 Both, the com-
pressor and the turbine sections do thus not need to be resolved in great de-
tail. Instead, they can be cut off at the plenum inlet (i.e. the compressor outlet)
and the combustor outlet (i.e. the turbine inlet), respectively. These interfaces
are usually compact (He < 1), which allows to describe the compressor and
the turbine sections in terms of end impedances Z , again using 1D networks.2

The components subject to 1D network modeling are highlighted in Fig. 4.1
(b). The large volume of the remaining plenum and combustion chamber in
conjunction with a lack of symmetry common to many industrial combustors
limits the 1D network methodology to the LF regime. In the HF regime, the
Helmholtz number takes large values (He > 1) requiring a resolution with 3D-
CA. The disconnected resolved plenum and combustion chamber are finally
coupled with the 1D networks as visualized in Fig. 4.1 (c).
The local Helmholtz number being the main indicator for this modeling pro-
cedure also gives a rough idea on the flow regimes in the individual com-
ponents: large Helmholtz numbers correspond to large cross-sectional ar-
eas, which in turn imply small Mach numbers and vice versa. Therefore, the
plenum and the combustion chamber are often modeled using the zero Mach
number assumption for stagnant fluids. This simplification may be justified
globally but fails locally in regions with non-negligible Mach numbers like
in the vicinity of the turbine inlet. Here, the advection of the characteristic
waves has significant impact on the eigenfrequencies of the system. There-
fore, a modification of the well-established Helmholtz equation including the
wave advection is highly desirable for the 3D-CA part, which will be discussed
in the next section.

1At locations with Mach numbers exceeding unity, no sound waves created or reflected downstream of this
location can travel upstream. In the case of the turbine section, this also means that aerodynamically induced
sound of the turbine can not enter the combustor via the supersonic flow regime in the rotor blades.

2Most notably for deriving a 1D model for the acoustic response of accelerated acoustic and entropy waves
(e.g. in the first turbine guide vane row) is the work of Marble and Candel [110]. More recent works to model
the acoustic response of the compressor and turbine section were presented by Leyko et al. [182], Duran and
Moreau [183] and Silva et al. [184], just to mention some.
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4.2 Exact Convective Wave Equation

4.2 Exact Convective Wave Equation

Apart from the domain size resolved with 3D-CA, the complexity of the math-
ematical model representing the sound propagation, amplification and dis-
sipation has significant impact on the computational cost. Solving multiple
coupled equations like the APE, LEE or LNSE is in general computationally
more demanding than solving a single equation. The acoustic analogies dis-
cussed in section 2.3 are exact formulations to describe acoustic propaga-
tion. The mechanisms, which are not intrinsically included on the LHS are
shifted to the RHS as sources. The equation most suitable to include the ad-
vection of acoustic waves in arbitrary mean flow fields is Moehring’s equation
(2.18). However, being a function of the stagnation enthalpy, this equation is
highly impractical. Therefore, an exact convective wave equation in terms of
the acoustic pressure is derived and discussed in this section.
Since the APE (2.9) represent pure acoustic wave propagation in arbitrary, iso-
baric mean flow fields, they form an ideal basis for the derivation of a universal
convective wave equation. Following the procedure of Kotake [185] and Can-
del et al. [186] the divergence of eq. (2.9a) multiplied by ρ̄c̄2 = κp̄ is subtracted
from the material derivative of eq. (2.9b). This leads to the acoustically consis-
tent, inhomogeneous convective wave equation:

∂2p ′

∂t 2
+2ū ·∇∂p ′

∂t
+ ū ·∇(

ū ·∇p ′)− ρ̄c̄2∇·
(

1

ρ̄
∇p ′

)
=−κ∂p ′

∂t
∇· ū− ū ·∇(

κp ′∇· ū
)−κp̄ (ū ·∇)

(∇·u′)+κp̄∆
(
ū ·u′)

−κp̄∇·Sv,s,∇p̄=0
u + (κ−1)

∂q̇ ′

∂t
+ (κ−1) ū ·∇q̇ ′ .

(4.1)

Here, the LHS is reshaped into that of eq. (2.10), whereas the RHS contains all
remaining terms. These terms are considered as sources and sinks for acoustic
waves advected by the flow velocity ū and only take nonzero values in regions
with flow inhomogeneities. This is easily proven by assuming a uniform mean
flow field leading to a vanishing RHS of eq. (4.1). Then, the homogeneous con-
vective wave equation (2.10) is obtained. Recall that with the assumption of a
uniform mean flow velocity in eq. (2.10) mean density gradients and thus also
combustion processes are precluded. Equation (4.1) further reduces to the in-
homogeneous wave equation (2.14) for stagnant fluids with unsteady heat re-
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lease.
Laplace transforming eq. (4.1) yields its counterpart in the FD

s2p̂ +2sū ·∇p̂ + ū ·∇(
ū ·∇p̂

)− ρ̄c̄2∇·
(

1

ρ̄
∇p̂

)
=− sκp̂∇· ū− ū ·∇(

κp̂∇· ū
)−κp̄ (ū ·∇) (∇· û)+κp̄∆ (ū · û)

−κp̄∇· Ŝv,s,∇p̄=0
u + s(κ−1) ˆ̇q + (κ−1) ū ·∇ ˆ̇q .

(4.2)

For uniform mean flow fields, a homogeneous convective wave equation in
the FD results

s2p̂ +2sū ·∇p̂ + ū ·∇(
ū ·∇p̂

)− c̄2∇2p̂ = 0 , (4.3)

whereas the inhomogeneous Helmholtz equation (2.21) is obtained for stag-
nant fluids with unsteady heat release. In order to attain an intelligible
nomenclature, the convective wave equation in the FD will henceforth be re-
ferred to as convective Helmholtz equation despite being well aware that it
does not satisfy the classic definition of the Helmholtz equation.
The acoustically consistent equations (4.1) and (4.2) are unclosed due to the
terms depending on the velocity fluctuations on the RHS. Instead of modeling
these terms, a procedure to account for the volumetric sources with modi-
fied boundary conditions is developed. This requires the consideration of the
equations in a volume-integrated sense, which is also an essential feature of
FEM discretization. The corresponding procedure including the transforma-
tion of the equations for the use with FEM is presented in the following sec-
tion.

4.3 Finite Element Methodology

The basic idea of FEM is to satisfy the employed BVP multiplied by a weighting
function within the entire computational domain in an integral sense. Spa-
tial discretization is obtained by introducing a weighting function for each
node of the finite element mesh, also referred to as test functions. These test
functions only take nonzero values in the immediate vicinity of their corre-
sponding node locations. For further information on the spatial discretization
in FEM, the reader is referred to Donea and Huerta [187].
It is easy to prove that the convective Helmholtz equation, similar to the
Helmholtz equation for stagnant flows, is of elliptic type for subsonic mean
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flow fields. Particularly these types of partial differential equations are ro-
bustly solved by the widespread Galerkin FEM discretization scheme and offer
a great advantage over mixed-type PDEs like the LNSE or LEE: while the latter
require numerical diffusion in order to give stable results (cf. e.g. [156, 187]),
the Helmholtz equations of elliptic type are not prone to numerical instabili-
ties and do thus not require any stabilization schemes.
For the discretization with FEM, the equations need to be provided in the
weak formulation. This form intrinsically requires the specification of bound-
ary fluxes, which may be exploited for the formulation of adequate boundary
conditions. The derivation of the weak form and suitable boundary conditions
will be discussed subsequently.

4.3.1 Weak Form Equation

Finding a solution to the exact convective Helmholtz equation (4.2) requires
the specification of suitable boundary conditions. The equation including the
boundary conditions is thus a boundary value problem, whereas the corre-
sponding wave equation (4.1) additionally requires initial values for the prob-
lem closure. Due to their natural frequency-dependency, acoustic boundary
conditions are more straightforward to implement in the FD than in the TD.
Therefore, the following derivation is performed for the inhomogeneous con-
vective Helmholtz equation (4.2). It may be noted that the derivations can be
performed equivalently for the TD equations.
First, eq. (4.2) is multiplied by the weighting function p̃ and then integrated
over the domain volume V . Subsequently, terms subject to second order spa-
tial derivatives are integrated by parts. The detailed procedure is demon-
strated in Appendix B, which ultimately yields the weak form of the inhomo-
geneous convective Helmholtz equation (iCHE)Ñ

V

{
s2p̂ p̃ + s

(
ū ·∇p̂

)
p̃ − sp̂ū ·∇p̃ − (

ū ·∇p̂
)

ū ·∇p̃ + c̄2∇p̂ ·∇p̃
}

dV

+
Ï

∂V
F ·n p̃ dA =

Ñ
V

SiC HE p̃ dV .
(4.4)

This weak form resembles the acoustically consistent inhomogeneous
Helmholtz equation’s (4.2) character of an acoustic analogy: the entire LHS
describes the propagation of acoustic waves in a uniform mean flow field and
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equals thus the weak formulation of the homogeneous convective Helmholtz
equation. This also includes the flux F across the boundary ∂V , which reads

F = sūp̂ + ū
(
ū ·∇p̂

)− c̄2∇p̂ . (4.5)

It is important to highlight that this weak form flux is a result of the partial in-
tegration performed in Appendix B and is not to be confused with the acoustic
energy flux of eq. (1.1). Interactions of the advected waves with mean flow in-
homogeneities are described by the RHS volume sources SiC HE in eq. (4.4):

SiC HE =−s(κ−1) p̂∇· ū−κp̂ (ū ·∇) (∇· ū)− (κ−1)
(
ū ·∇p̂

)
(∇· ū)

+κp̄∆ (ū · û)−κp̄ (ū ·∇) (∇· û)

−κp̄∇· Ŝv,s,∇p̄=0
u + s(κ−1) ˆ̇q + (κ−1) ū ·∇ ˆ̇q ,

(4.6)

When applying the homogeneous convective wave equation to arbitrary mean
flow fields, the overall source SiC HE is neglected. The corresponding source
terms can be used to quantify the errors resulting from this procedure.
Consistently exploiting the consideration of eq. (4.4) as an acoustic analogy
allows for the derivation of a natural Neumann boundary condition from the
flux terms. This is detailed in Appendix C also providing a universal weak
form of the homogeneous convective Helmholtz equation (hCHE) for uniform
mean flow fields and the Helmholtz equation (HE) for quiescent fluids. In the
presence of flow inhomogeneities, this procedure requires the proper reso-
lution of the source SiC HE . However, this is not straightforward since some
source terms depend on the velocity fluctuations. They are not solved for with
the iCHE, which is thus unclosed. To prevent an extensive resolution of all
source terms, a procedure to account for them via a boundary flux transfor-
mation is developed in the following.

4.3.2 Volume Source Treatment

The acoustically consistent inhomogeneous convective Helmholtz equation
(4.2) was derived from the APE (2.9) in the FD. Consequently, those two sets
of equations are physically equivalent although taking a different mathemati-
cal form. Specifying the same boundary conditions and properly resolving the
source terms of the iCHE, the two sets of equations are thus expected to give
the same solutions. Instead of resolving the unclosed source terms, the cor-
responding terms are compared to the boundary flux terms. This requires to
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consider the source terms SiC HE as an integral part of the wave propagation
instead of sources for an acoustic analogy as in Appendix C. Then, a general
formulation of the boundary flux is obtained by using the APE momentum
equation (2.9a) in the FD leading to

F =sūp̂ + ū
(
ū ·∇p̂

)− c̄2∇p̂

=sūp̂ + ū
(
ū ·∇p̂

)+ sκp̄û+κp̄∇ (ū · û)−κp̄Ŝv,s,∇p̄=0
u .

(4.7)

Under the assumptions of a uniform mean flow and acoustically compact sub
boundaries allowing for a 1D characterization, all terms but the third term
vanish (cf. Appendix C). As all of those terms are functions of the mean flow
velocity, they naturally vanish for stagnant fluids. This can be exploited by
requiring the flux to comply with the boundary conditions of the Helmholtz
equation for stagnant fluids

FM=0 = sκp̄ûM=0 , (4.8)

which creates an erroneous flux for the iCHE with mean flow. The error de-
noted by εM=0

F becomes manifest in the four terms depending on the mean
flow velocity:

εM=0
F = sūp̂ + ū

(
ū ·∇p̂

)+κp̄∇ (ū · û)−κp̄Ŝv,s,∇p̄=0
u . (4.9)

They can be related to the volume sources SiC HE (4.6) by applying Gauss’s the-
orem to the surface integral in eq. (4.10). This gives the overall volumetric RHS
source SM=0

iC HE when applying zero Mach number boundary conditions:Ñ
V

SM=0
iC HE dV =−

Ï
∂V
εM=0

F ·n dA+
Ñ

V
SiC HE dV

=−
Ñ

V

{
sκp̂∇· ū+ sū ·∇p̂ +κp̂ū ·∇ (∇· ū)+κ(

ū ·∇p̂
)

(∇· ū)

+ ū ·∇(
ū ·∇p̂

)− s(κ−1) ˆ̇q − (κ−1) ū ·∇ ˆ̇q
}

dV .

(4.10)

Note that for the pursued energetic comparison of the erroneous flux terms
and the volume sources, the test function introduced for the weak formulation
common to FEM discretization schemes is dropped. The procedure above is
depicted in Fig. 4.2 for the combustion chamber of Fig. 4.1: Solving the full
iCHE with the overall boundary flux F = FM=0 +εM=0

F at the interfaces to the
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εM=0
F

iCHE

SiC HE

hCHE + FM=0

F FM=0

SM=0
iC HE

SiC HE

Figure 4.2: Left: full iCHE with flux F and sources SiC HE . Center: hCHE (with-
out sources) and reduced flux FM=0. Right: resulting overall vol-
umetric source SM=0

iC HE from erroneous fluxes εM=0
F and dropped

sources SiC HE .

burner and the turbine (highlighted in green) requires the resolution of the
sources SiC HE (Fig. 4.2 left). These are particularly dominant in the flame re-
gion outlined in red due to large gradients of the mean flow field. Instead, the
hCHE can be solved without sources and only considering the fluxes corre-
sponding to zero Mach number domains FM=0 (Fig. 4.2 center). This yields an
overall volumetric source SM=0

iC HE formed by the dropped sources SiC HE and the
erroneous fluxes εM=0

F (Fig. 4.2 right).
Taking a closer look on the overall volume source terms SM=0

iC HE in eq. (4.10),
they may be expressed in the following condensed form

SM=0
iC HE =− D̄

Dt̂

{
ū ·∇p̂ +κp̂∇· ū− (κ−1) ˆ̇q

}
. (4.11)

The material derivative in the FD is denoted as D̄/Dt̂ = s+ū ·∇. Employing the
APE’s energy equation (2.9b) in the FD, the remaining overall volume source
term may also be expressed as

SM=0
iC HE = D̄

Dt̂

{
sp̂ +κp̄∇· û

}
, (4.12)

which just represents the material derivative of the acoustic energy equation
for stagnant fluids without heat release. Supposing that a low Mach num-
ber mean flow does not significantly affect the pressure field, the solution
of the iCHE approximately satisfies the linearized energy conservation of the
Helmholtz equation. As a result, the overall resulting source term SM=0

iC HE (cf.
right part of Fig. 4.2) vanishes. The assumption of source terms only having
a marginal effect on the acoustic solution field was made before by Culick
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[54] for investigating sources and their impact on the wave equation using
Lighthill’s analogy.
Under the common assumption of negligible impact of the mean flow on the
mode shape it may indeed be concluded that the erroneous flux approxi-
mately compensates for the interaction mechanisms between acoustics and
non-uniform mean flows. This may be interpreted with the help of the Gauss
theorem: neglecting the interaction between acoustics and mean flow non-
uniformity yields an erroneous excitation or attenuation of the waves. This
energetic discrepancy is simply transported out of the domain advectively due
to the inconsistent Helmholtz boundary conditions for stagnant fluids. This
concept also works for a straight duct with uniform mean flow velocity, being
the typical application of the homogeneous CHE: Due to the lack of acoustic
sources, the spurious energy advectively introduced at the inlet boundary is
advected through the domain ultimately leaving it via the outlet boundary.
Also the impact of a fluctuating heat release ˆ̇q can be included using the cor-
responding source terms of eq. (4.6). With the errors due to the application of
the Helmholtz boundary conditions, the overall remaining source term then
becomes

SM=0, ˆ̇q 6=0
iC HE = D̄

Dt̂

{
sp̂ +κp̄∇· û− (κ−1) ˆ̇q

}
. (4.13)

This is the energy equation for zero Mach number flows including heat release
fluctuations. Again following the argument of eq. (4.12), this term is approxi-
mately satisfied for ˆ̇q 6= 0 when assuming that the mean flow does not signifi-
cantly alter the solution field.
In conclusion, the convective Helmholtz equation may be consistently ap-
plied to arbitrary mean flow fields including heat release rate fluctuations by
solving the following consistent weak form:Ñ

V

{
s2p̂ p̃ + s

((
ū ·∇p̂

)
p̃ − p̂ū ·∇p̃

)
− (

ū ·∇p̂
)

ū ·∇p̃ + c̄2∇p̂ ·∇p̃
}

dV

+
Ï

∂V
sρ̄c̄2ûM=0 ·n p̃ dA =

Ñ
V

(κ−1)
D̄ ˆ̇q

Dt̂
p̃ dV .

(4.14)

Similar to the explication in Appendix C, the boundary flux in eq. (4.14) corre-
sponds to an acoustic Neumann boundary condition. However, this formula-
tion requires the adequate and energetically consistent boundary conditions
for zero Mach number domains as would be required for the Helmholtz equa-
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tion. Before elaborating on energetically consistent Helmholtz boundary con-
ditions in section 4.4, the Neumann boundary flux is first transformed into
more useful acoustic boundary conditions subsequently.

4.3.3 Acoustic Boundary Conditions for the Weak Form

The boundary flux term of the iCHE (4.14) is a function of the velocity fluctu-
ation, representing an acoustic Neumann boundary condition (cf. Appendix
C). It can be further generalized for the application of frequency dependent
acoustic boundary conditions. The most general representative of acoustic
one-ports as discussed in section 2.6 is the specific impedance z. Using its
definition of eq. (2.29), the boundary flux becomes a function of the state vari-
able p̂ and the specific impedance

F ·n = s ρ̄c̄2û ·n = s c̄
p̂

z
, (4.15)

which represents a boundary condition of the third kind. Note that the super-
script (M = 0) has been dropped for this transformation of a general acoustic
Neumann boundary condition.
For the coupling of two spatially disconnected domains like the plenum and
the combustion chamber in Fig. 4.1, acoustic two-ports such as transfer matri-
ces can be employed. They may be obtained from measurements or from 1D
network models. The network elements presented in section 3.2 are derived
from equations subject to restrictive assumptions like homentropic and irro-
tational flows. The consistent integration of the network models into the nu-
meric model of the (convective) Helmholtz equation requires a consistent im-
plementation of restrictions at the boundaries. Since the transfer matrix for-
mulation is based on the assumption of 1D acoustic propagation, the coupling
boundaries are required to be acoustically compact. This is also a prerequisite
for the derivation of the natural Neumann boundary condition in Appendix C.
Then, the native formulation of the transfer matrix (3.2) is very useful for the
implementation of a coupling boundary condition. However, the discrepancy
of the 1D formulation of the transfer matrix and its application to boundaries
with arbitrary spatial orientation needs to be accounted for by only using the
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boundary normal velocity component as per(
p̂
ρ̄c̄

−û ·n

)
d

= TM

(
p̂
ρ̄c̄

û ·n

)
u

=
(
TM11 TM12

TM21 TM22

)(
p̂
ρ̄c̄

û ·n

)
u

. (4.16)

Note that the two opposite coupling boundaries have differently oriented nor-
mal vectors. Using the convention of the upstream boundary normal vec-
tor being oriented in positive velocity direction, a negative signum must be
added to the downstream velocity. This equation explicitly provides the acous-
tic velocity to specify the flux at the downstream boundary Fd as a function
of the primitive variables at the upstream boundary. Additionally employing
eq. (C.3), the velocity fluctuation at the upstream side can exclusively be ex-
pressed as a function of the solution variable p̂. The weak form flux at the
downstream coupling boundary Fd then yields

Fd ·n =−
Ï

∂Vu

{
sc̄ TM21p̂ +TM22

(
sūp̂ + ū

(
ū ·∇p̂

)− c̄2∇p̂
) ·n

}
p̃ dAu . (4.17)

Recalling the modeling workflow of Fig. 4.1, the downstream boundary corre-
sponds to the interface between burner and combustion chamber. To obtain
an equivalent formulation for the upstream boundary, i.e. the interface be-
tween plenum and burner in Fig. 4.1, the transfer matrix definition (4.16) is
inverted first:(

p̂
ρ̄c̄

û ·n

)
u

= TM−1

(
p̂
ρ̄c̄

−û ·n

)
d

= 1

|TM|
(

TM22 −TM12

−TM21 TM11

)(
p̂
ρ̄c̄

−û ·n

)
d

. (4.18)

Again, the second equation gives direct access to the required velocity fluctu-
ation at the upstream coupling boundary. The corresponding weak form flux
reads

Fu ·n =− 1

|TM|
Ï

∂Vd

{
sc̄ TM21p̂ +TM11

(
sūp̂ + ū

(
ū ·∇p̂

)− c̄2∇p̂
) ·n

}
p̃ dAd ,

(4.19)

which is an exclusive function of the solution variable at the downstream cou-
pling boundary.
At this point, no distinction was made between boundary conditions for do-
mains with moving media and the suitable counterparts employing the stag-
nant Helmholtz approximation. This is discussed in the next section.
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4.4 Energetical Consistency

Reconsidering the acoustic energy flux equation for homentropic potential
flows, eq. (2.22b), reveals an advective energy transport across the boundaries
of a system with mean flow. At the boundaries of a substitute system neglect-
ing the mean flow, also the advectively transported energy flux is dropped.
This implies an energetic inconsistency between the system with mean flow
and its quiescent substitute when presuming equal values of pressure and
velocity fluctuations at the boundaries. Although not representing energetic
fluxes, this is similarly indicated in Fig. 4.2: the energetic discrepancy at the
boundaries between the iCHE (left image) and the hCHE (center image) man-
ifests in the energy adherent to the advective flux terms represented by the
green arrows (right image). The consistent use of the CHE with arbitrary mean
flow fields requires the negligence of advective energy fluxes, just as in do-
mains with quiescent flow fields. However, the identification of the energy
flux components subject to advection is not straightforward for impedance
boundary conditions or transfer matrix couplings. To still reestablish energetic
consistency between a system with mean flow and its substitute system with
a zero Mach number assumption, suitable transformation procedures are de-
sired for such boundary conditions. While a simple energetic transformation
rule for impedance boundary conditions has been presented in the literature
(cf. e.g. [188]), an equivalent transformation is lacking for transfer matrix cou-
plings. To overcome this issue, the impedance transformation is first analyzed
in detail. Afterwards, the findings are used to derive a transformation proce-
dure for transfer matrices to provide an energetically consistent coupling of
zero Mach number domains. Regarding the overall modeling workflow in Fig.
4.1, this also allows to consistently connect the transfer matrix of the burner
when using the CHE formulation for the plenum and the combustion cham-
ber.

4.4.1 Impedance Transformation for Zero Mach Number Domains

Apart from the local Mach number, the amplitudes of the pressure and veloc-
ity fluctuations govern the acoustic energy flux, cf. section 2.5. The specific
impedance z relates the local pressure and velocity fluctuations and is thus
also a measure for the energy flux. Applying the same impedance boundary
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condition to a system considering mean flow and the substitute system ne-
glecting mean flow yields energetic discrepancies as demonstrated by Moth-
eau et al. [188]. To compensate for the missing advective flux, they recom-
mend to use a modified impedance zM=0 in the substitute system. Following
the notation of section 4.3.2, quantities of an energetically consistent sub-
stitute system without mean flow are henceforth denoted by the superscript
(·)M=0. The modified consistent specific impedance may be calculated accord-
ing to

zM=0 = z +M

M z +1
, (4.20)

only being a function of the original specific impedance and the scalar Mach
number M . Obviously, for a system without mean flow, M = 0, the substitute
impedance is equal to the original impedance.
Further insight into the impedance transformation by Motheau et al. is gained
by analyzing the temporal average of the flux eq. (2.22b), also referred to as
acoustic intensity I . Making use of eq. (2.24), this intensity may be expressed
in terms of the fluctuating variables in the FD as

I = 〈F ·n〉t =
∫ t

t−Ts

F ·n dt ≈ 1

2
R

{
B̂ ˆ̇m

}
, |α|¿ f (4.21)

For simplicity, the generally 3D intensity was reduced to one dimension in eq.
(4.21), with the velocities pointing in the direction of the unit surface normal
vector n. To get a handle on the general problem, the primitive variables are
now replaced by the acoustic characteristics, i.e downstream and upstream
traveling wave components f̂ and ĝ , which are related to the primitive acous-
tic variables through relation (2.30). Now the complex amplitudes of total en-
thalpy and mass flow fluctuations may be written as

B̂ = p̂

ρ̄
+ ū · û = c̄

(
(1+M) f̂ + (1−M) ĝ

)
(4.22)

ˆ̇m = ρ̄û + ū

c̄2
p̂ = ρ̄ (

(1+M) f̂ − (1−M) ĝ
)

. (4.23)

Using the definition of the reflection coefficient Rd = ĝ

f̂
relating the complex

amplitudes of upstream to downstream traveling waves at a given downstream
boundary, eq. (4.21) becomes

I = 1

2
ρ̄c̄ (1+M)2

∣∣ f̂
∣∣2

(
1− (1−M)2

(1+M)2
|Rd |2

)
. (4.24)
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The equivalent intensity of the substitute system at rest (M = 0) is

I M=0 = 1

2
ρ̄c̄

∣∣ f̂ M=0
∣∣2

(
1− ∣∣RM=0

d

∣∣2
)

. (4.25)

Using the relation between the specific impedance and the reflection coeffi-
cient (2.31), eq. (4.20) can be written as∣∣RM=0

d

∣∣= (1−M)

(1+M)
|Rd | . (4.26)

Substituting eq. (4.26) into eq. (4.25) and comparing with eq. (4.24) it becomes
apparent that equal intensities of original and substitute system require an
additional condition:

1

2
ρ̄c̄ (1+M)2

∣∣ f̂
∣∣2 != 1

2
ρ̄c̄

∣∣ f̂ M=0
∣∣2

. (4.27)

Equation (4.27) results from the choice of Rd = ĝ

f̂
. Instead using Ru = f̂

ĝ for an

upstream boundary with the transformation∣∣RM=0
u

∣∣= (1+M)

(1−M)
|Ru| (4.28)

equivalently yields
1

2
ρ̄c̄ (1−M)2

∣∣ĝ ∣∣2 != 1

2
ρ̄c̄

∣∣ĝ M=0
∣∣2

. (4.29)

Since both results stem from the same intensity eq. (4.21) it can be concluded
that conditions (4.27) and (4.29) must be fulfilled simultaneously to maintain
the correct intensity in the substitute M = 0 system. Satisfying these condi-
tions is more restrictive than the requirement of equal total intensity for the
real and the substitute system: the two conditions also imply the same inten-
sities of purely upstream and purely downstream traveling waves for both sys-
tems. It can be shown that the conditions stated in eqs. (4.27) and (4.29) equal
a requirement for the mass flow fluctuation in a root mean square sense [180]:

〈ṁ′2〉M=0 != 〈ṁ′2〉M 6=0
. (4.30)

This yields an additional requirement for energetically equivalent boundary
conditions: equal intensities are established if the root mean square of the
mass flow fluctuations is equal. In conjunction with eq. (4.21), also the root
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mean square of the total enthalpy fluctuations must thus be equivalent for
both systems.
The transformation rule (4.26) is an exclusive function of the absolute values
of the reflection coefficients and the Mach number. The phase information of
the reflection coefficient is eliminated during the time averaging of the flux
and does not affect the intensities of eqs. (4.24) and (4.25). The phase of the
reflection coefficient represents the phase difference between upstream and
downstream traveling waves, which are propagating at different speeds due to
mean flow (cf. the solution of the 1D convective Helmholtz equation in sec-
tion 2.2.4). This discrepancy in propagation speeds of the acoustic character-
istics reduce the eigenfrequency of a system proportional to M 2 [105, p. 159].3

When the reflection coefficient’s phase of the system considering mean flow
is retained for the substitute system at rest, i.e.

∠R =∠RM=0 , (4.31)

also the characteristic’s modified propagation speed within the subsystem
represented by the reflection coefficient is preserved. The phase relation of
eq. (4.31) conforms to the transformation eq. (4.20) and its effect can be il-
lustrated by means of Fig. 4.1: The eigenfrequencies of the real system are
lower than the corresponding eigenfrequencies of the system entirely com-
puted with the zero Mach number assumption. Alternatively, the eigenvalue is
calculated only resolving the combustion chamber comprising the zero Mach
number assumption, while all other components are represented by a reflec-
tion coefficient transformed with eq. (4.26) and (4.31). The resulting eigenfre-
quency is expected to be much closer to the value of the real system as it is the
case for the substitute system entirely neglecting mean flow.

4.4.2 Transfer Matrix Transformation for Zero Mach Number Domains

The analysis of the energetically consistent transformation of acoustic one-
ports in the preceding section revealed an explicit relation between the Rie-
mann Invariants of a system with mean flow and its substitute system neglect-
ing mean flow. For the derivation of an equivalent transformation procedure
for acoustic two-ports, the consideration of the scattering matrix (3.3) is thus

3Note that [105, p. 159] contains typos in Tab. 6-1. The factor (1−M 2) in the equations for the axial frequency
belongs to the numerator instead of the denominator.
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beneficial. In this way, two domains approximated by the zero Mach num-
ber assumption may be consistently coupled by a scattering matrix includ-
ing mean flow as illustrated in Fig. 4.3 (a). Following the discussion related to
Fig. 3.2, Fig. 4.3 highlights the scattered wave at the downstream port f̂d being
composed of a reflected (Fig. 4.3 (b)) and a transmitted (Fig. 4.3 (c)) compo-
nent of the incident waves. The linear time-invariant properties of the scat-

ĝu

f̂u

ĝd

f̂d

SM

M ≈ 0 M ≈ 0M > 0

ĝd

f̂d ,r
Rd

f̂u f̂d ,tTu

Helmholtz HelmholtzNetwork

0

(a)

(b)

(c)

u d l

x

Figure 4.3: Schematic of a scattering matrix element connecting two low
Mach number domains. (a) Complete scattering of characteristics.
(b) Exclusive reflection of incident wave at downstream port. (c)
Exclusive transmission of incident wave at upstream port.

tering matrix allow to derive its transformation to the M = 0 substitute matrix
by transforming the individual coefficients separately. This is done by requir-
ing that the intensity transfer across the boundaries caused by the respective
coefficient is preserved from the original to the substitute system.
The overall intensity at the two coupling interfaces from pure transmission of
the incident wave fu, cf. Fig. 4.3 (c), is given by:

Ig=0
u ·nu + Ig=0

d ·nd = 1

2
ρ̄u c̄u (1+Mu)2

∣∣ f̂u

∣∣2 − 1

2
ρ̄d c̄d (1+Md )2

∣∣ f̂d ,t

∣∣2

= 1

2
ρ̄u c̄u (1+Mu)2

∣∣ f̂u

∣∣2
(
1− ρ̄d c̄d

ρ̄u c̄u

(1+Md )2

(1+Mu)2
|Tu|2

)
.

(4.32)
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Equivalently, the intensity of the substitute system at rest becomes(
Ig=0

u ·nu

)M=0 +
(
Ig=0

u ·nd

)M=0 = 1

2
ρ̄u c̄u

∣∣ f̂ M=0
u

∣∣2
(
1− ρ̄d c̄d

ρ̄u c̄u

∣∣T M=0
u

∣∣2
)

. (4.33)

For the real system transmitting an equal intensity as the substitute system,
eq. (4.32) is equated with eq. (4.33). Comparing the prefactors of the equa-
tions immediately reveals the similarity to eq. (4.27). As discussed in the pre-
vious section, the equality of the prefactors constitute equal intensities of the
waves exclusively traveling out of the upstream Helmholtz domain and an
equal mass flow fluctuation in a mean square sense at the upstream port. With
the same thermodynamic state of the real system and the substitute system at
rest, the terms in the brackets of eqs. (4.32) and (4.33) are equal, if the trans-
formation relation ∣∣T M=0

u

∣∣= (1+Md )

(1+Mu)
|Tu| , (4.34)

between the transmission coefficients of the real system Tu and the substitute
system T M=0

u is satisfied. The transformation relation again only affects the
absolute value of the transmission coefficients. The phase is kept constant

∠T M=0
u =∠Tu . (4.35)

The transformation of the other coefficients is carried out likewise, yielding∣∣T M=0
d

∣∣= (1−Mu)

(1−Md )
|Td | ; ∠T M=0

d =∠Td , (4.36)∣∣RM=0
u

∣∣= (1−Mu)

(1+Mu)
|Ru| ; ∠RM=0

u =∠Ru , (4.37)∣∣RM=0
d

∣∣= (1+Md )

(1−Md )
|Rd | ; ∠RM=0

d =∠Rd . (4.38)

Similar to the phase of the reflection coefficient discussed in the previous sec-
tion, the phases of the scattering matrix coefficients determine the phase dif-
ference between incoming and scattered waves. Keeping the phase of the co-
efficients constant within the energetic transformation for the use in a consis-
tent substitute system at rest causes an equal convection of the characteristics
within the regions represented by the 1D network. This leads to the conclusion
that the eigenfrequency reduction proportional to M 2 due to the advection of
1D characteristics is captured in these regions, even if the adjacent systems
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are subject to the zero Mach number assumption. Recall that the boundary
condition transformations are also required for the consistent CHE framework
(4.14), which additionally includes the wave advection in the 3D-CA domains
discretized with FEM.

4.5 Linearization of the Nonlinear Eigenvalue Problem

A major drawback of the modal analysis based on the convective Helmholtz
equation is its nonlinearity in terms of the Laplace variable s, cf. eq. (4.2). The
most practical way to handle such a nonlinear eigenvalue problem is its lin-
earization at a given linearization point. This procedure does not have an im-
pact on the computational complexity. However, it comes with severe draw-
backs:

1. The eigenvalues are only valid in the close vicinity of the linearization
point.

2. The linearization point is normally specified as a pure function of the
oscillation frequency.

The second drawback is related to the first drawback, as the eigenvalues are
in general complex valued. Consequently, the errors of the modal analysis in-
crease with increasing damping/growth rates. Computing eigenvalues for a
large range of frequencies requires the adaption of the linearization point to
obtain satisfying results.
A solution to these issues is provided by the conversion of the overall numer-
ical setup into a linear state-space representation, which takes the following
explicit form in the Laplace domain:

s x̂(s) = A x̂(s)+B û(s) (4.39a)

ŷ(s) = C x̂(s)+D û(s) . (4.39b)

The first equation (4.39a) is referred to as state equation with the state vector
x̂, the system matrix A, the input matrix B and the input vector û. In the output
equation (4.39b), the system’s output vector ŷ depends on the output matrix C
and the feedthrough matrix D.
In simple words, the state-space formalism may be used to transform a single
differential equation of order m to a system of m differential equations of first
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order. For the second order convective wave equation (4.2) this yields a linear
state equation system of two equations:

s

(
0 1
1 0

) (
p̂
ϕ̂

)
=

(
−ū ·∇p̃ (ū ·∇)+ ρ̄c̄2∇·

(
1
ρ̄
∇

)
−2ū ·∇

0 1

) (
p̂
ϕ̂

)
+

(
SV

0

)
,

(4.40)

with the substitution variable ϕ representing the first time-derivative of the
pressure fluctuations. The RHS volumetric sources of eq. (4.2) are abbreviated
with SV . It needs to be highlighted that the spatial discretization of the system
of equations (4.40) in the context of FEM simulations leads to a duplication of
the degrees of freedom in comparison to the nonlinear eigenvalue problem.
While eq. (4.40) exclusively represents the linearization of the convective wave
equation, additional nonlinearities are introduced if frequency dependent
boundary conditions and flame transfer functions are used.4 Their lineariza-
tion is discussed subsequently.

4.5.1 Linearization of Frequency-Dependent Boundary Conditions

An output equation in the fashion of eq. (4.39b) for a state-space system is
mainly required if the system is coupled to other independent state-space sys-
tems. This may be the case when emplyoing frequency-dependent boundary
conditions in the weak formulation of a linearized eigenvalue problem such
as eq. (4.40). As described in section 4.3.3, the impedance boundary condi-
tion and the transfer matrix coupling are most suitable for the weak form of
the (convective) Helmholtz equation. In general, those one- and two-ports are
nonlinearly depending on the frequency and thus also require a suitable lin-
earization procedure. Their characterization using measurements or 1D net-
work models commonly results in discrete transfer function data for exclu-
sively real valued frequencies. By linearizing the nonlinear system at a lin-
earization point, the transfer functions are simply extruded to the complex
frequency plane, cf. Fig. 4.4 (left). This extrusion, however, does not reflect the
physics and the general conventions for the attenuation of the waves in time
correctly. This may be illustrated by a duct element representing a time-lag

4The nonlinearities in terms of the Laplace variable discussed in the present section are not to be confused
with the nonlinear mechanisms occurring at high acoustic amplitudes covered in chapter 5.
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for a downstream traveling characteristic entering the duct at a given ampli-
tude: for pure harmonic oscillations, the traveling wave exits the duct at the
same amplitude. This is in contrast to a temporally damped or excited wave,
which will exit the duct at a decreased or increased amplitude, respectively.
With the basic assumption of exponential growth (or damping), also an ex-
ponential extrapolation to the complex plane as depicted in Fig. 4.4 (right) is
required. Schmid et al. [1] discuss different extrapolation methods and refer
to the exponential extrapolation as filter.

0
f4

f3

f2

f1

α

|F |

0
f4

f3

f2

f1

α

|F |

Figure 4.4: Schematic of different approaches for the extrapolation of transfer
functions F specified for real valued frequencies f to the complex
plane with growth rateα following Schmid et al. [1]: extrusion (left)
and filter (right).

A procedure to linearize frequency dependent boundary conditions has been
presented by Jaensch et al. [189] for measured transfer functions. In particular,
they consider a frequency dependent reflection coefficient as a function of the
Laplace variable s

R(s) = ĝ

f̂
≈ bno sno +·· ·+b1s+b0

sni +ani−1sni−1 +·· ·+a1s+a0
. (4.41)

The reflection coefficient is approximated by a rational function fit with an
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output polynomial in the numerator and the input polynomial in the denom-
inator. To satisfy the causality condition5 of real systems, the order of the out-

put polynomial has to be lower than that of the input polynomial no
!< ni . Us-

ing the Laplace variable in the polynomials naturally expands the measured
transfer function (here the reflection coefficient) from real valued frequencies
to the complex plane. Therefore, the exponential extrapolation as depicted in
Fig. 4.4 (right) is naturally included in this procedure. Reshaping eq. (4.41) and
applying the inverse Laplace transform leads to

g [ni ] +ani−1g [ni−1] +·· ·+a1g [1] +a0ĝ = bno f [no] +·· ·+b1 f [1] +b0 f , (4.42)

where the superscript in brackets (·)[ j ] denotes the j -th temporal derivative.
This equation may directly be translated to a state-space system in the shape
of eq. (4.39). This is explicated in more detail in Appendix D including the cou-
pling of the linearized boundaries with the state-space representation of the
convective Helmholtz equation’s weak fromulation.

4.5.2 Linearization of Flame Driving

After linearizing the boundary conditions, the only remaining nonlinear con-
tribution may stem from the RHS volumetric sources SV of the convective
Helmholtz equation, cf. eq. (4.40). Since most of those terms are dropped
when using the consistent weak formulation with Helmholtz boundary condi-
tions, eq. (4.14), only the remaining heat release fluctuations need to be con-
sidered. It has been demonstrated with eq. (4.13) that the same driving mecha-
nisms suitable for stagnant fluids must also be applied to the framework of the
convective Helmholtz equation with Helmholtz boundary conditions. As ex-
plicated in section 2.8, flame driving mechanisms suitable for the Helmholtz
equation are the flame displacement and deformation, which may thus also
be applied to the convective Helmholtz equation. Then, the RHS source of eq.
(4.14) becomes

(κ−1)
D̄

Dt̂

(
ˆ̇qρ+ ˆ̇q∆

)= (κ−1)

(
¯̇q∇· û+ 1

s
ū ·∇(

¯̇q∇· û
)− û ·∇ ¯̇q − 1

s
ū ·∇(

û ·∇ ¯̇q
))

.

(4.43)
5The response of a causal system is only determined by past and present input signals. Regarding the reflec-

tion coefficient this means that any reflected wave is the result of a previously incident wave.
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The source depends on the velocity fluctuations, which can only be expressed
in terms of the pressure fluctuations under the very restrictive assumption of
1D wave propagation in uniform mean flows, cf. Appendix C. As those as-
sumptions are not satisfied in the flame region, an alternative closure is re-
quired. A suitable closure may be obtained by identifying the pure acoustic
velocity as the main driver for a coherent local flame displacement and the
corresponding flame deformation. With the wave distortion due to the mean
flow already included in the resolved pressure field, simply using the velocity
fluctuations for stagnant flows, i.e. û =− 1

sρ̄∇p̂, accurately represents the pure
acoustic velocity fluctuations. Then, the individual FRF source terms for the
convective Helmholtz equation become

(κ−1)
D̄

Dt̂
ˆ̇qρ ≈−(κ−1)

(
1

s
¯̇q∇2p̂ + 1

s2
ū ·∇(

¯̇q∇2p̂
))

, (4.44a)

(κ−1)
D̄

Dt̂
ˆ̇q∆ ≈ (κ−1)

(
1

s
∇p̂ ·∇ ¯̇q + 1

s2
ū ·∇(∇p̂ ·∇ ¯̇q

))
. (4.44b)

Again, these sources are nonlinear in terms of the Laplace variable s. Its in-
corporation into the state-space representation of the convective Helmholtz
equation, eq. (4.40), would yield another duplication of degrees of freedom.
However, this contradicts the desired low-cost numerical approach. Further-
more, the flame region normally only represents a small zone of the entire
computational domain. Duplicating the number of solved equations at ev-
ery spatial location is therefore not reasonable. Instead, the volumetric FRF
source is linearized using a Taylor approximation at a linearization point s0.
This yields the final linearized sources, exemplarily shown for the displace-
ment FRF

(κ−1)
D̄

Dt̂
ˆ̇q∆

∣∣∣∣
s0

≈ (κ−1)

((
2

s0
− 1

s2
0

s

)
∇p̂ ·∇ ¯̇q +

(
3

s2
0

− 2

s3
0

s

)
ū ·∇(∇p̂ ·∇ ¯̇q

))
. (4.45)

Equivalently, the Taylor linearized deformation FRF is obtained. For small
mean flow velocities and high frequencies, the convection term is expected
to vanish and may thus be neglected. As a linearization point, the frequency
shift for the numerical eigenvalue solver may be used. The solver uses this
shift value to transform the eigenvalue problem to find only eigenvalues clos-
est to this frequency. As the linearized flame displacement source eq. (4.45)
is a function of the state variable p̂, it can be directly incorporated into the
system matrix A of eq. (4.40).
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4.6 Simple Test Case

To validate the linearized weak formulation framework of the convective
Helmholtz equation including the coupling boundary conditions, a compara-
tive modal analysis of a simple test case is performed. The test case should also
be suitable to investigate the energetically transformed Helmholtz boundary
conditions in combination with the convective Helmholtz equation and the
Helmholtz equation for stagnant mean flow fields. A test case satisfying these
requirements is sketched in Fig. 4.5 and consists of two connected straight
ducts of increasing cross-section with a mean flow from left to right, normally
forming a jet downstream of the backward facing step. Such a setup has al-

1 2

0 l LlT M1 lT M2

x

m̂1 = 0 m̂2 = 0

3

Figure 4.5: Cross-sectional sketch of the simple test case.

ready been widely investigated in the 1980’s [31] regarding the interactions
between acoustic waves and free shear layers of turbulent flows. The geomet-
ric and thermodynamic specifications of the present setup are listed in Tab.
4.1.

Table 4.1: Geometric and thermodynamic properties of the simple test case.

A1 [m2] A2 [m2] l [m] lT M1 [m] lT M2 [m] L [m]

0.01 0.02 0.5 0.45 0.55 1.1

T [K] p [Pa] γ R
[

J
kg K

]
300 101,325 1.4 287
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4.6.1 Numerical Model

The geometry is split in three parts as indicated in Fig. 4.5. First, part 3 rep-
resenting the area change is replaced by a transfer matrix TM resulting from
1D network modelling with mean flow. Then, this transfer matrix is used to
couple parts 1 and 2, which are resolved as FEM domains.
Characterizing the intermediate part 3 of Fig. 4.5 in terms of a 1D network
model has the advantage that the exact interaction mechanisms between
acoustics and the mean flow shear layers do not need to be resolved. Instead,
the network accounts for the losses and phase shifts associated with these
interactions. An appropriate representation of this part consists of a duct of
constant cross section and a subsequent sudden area change again followed
by a duct. This sequence of basic network elements is depicted in Fig. 4.6. Us-

f̂1 f̂2

ĝ1 ĝ2

D1 AC D2

Figure 4.6: Network model of the sudden area change connected to ducts of
constant cross-sectional areas on both sides.

ing the network modeling procedure as elaborated in section 3.1, the overall
transfer matrix of part 3 can be characterized with the transfer matrices of the
three individual elements. The ducts are represented by eq. (3.5) whereas a
low Mach number approximation for the area change transfer matrix (3.14) is
employed according to:

TMpu,AC =
 1 Mu

(
1−

(
Au
Ad

)2
)
−Muζ

0 Au
Ad

 . (4.46)

The overall transfer matrix TM depends on the mean flow Mach number and
the pressure loss at the sudden area change. These parameters are varied for
the individual setups as described in the subsequent section 4.6.2. An ener-
getically consistent counterpart of the transfer matrix for Helmholtz domains
with stagnant mean flows TMM=0 can be calculated using the transformation
rules derived in section 4.4.
The remaining cylindrical parts 1 and 2 are resolved in three dimensions us-
ing the commercial FEM software COMSOL MULTIPHYSICS®. Figure 4.7 displays

83



4.6 Simple Test Case

the mesh of the two cylindrical parts consisting of approximately 14500 tetra-
hedral Lagrangian elements. The coupling between the state-space represen-

M1

M2

Figure 4.7: Mesh, axial Mach number field and coupled surfaces (grey) of the
FEM setup.

tations of the two FEM domains and the transfer matrix of part 3 is imple-
mented in accordance with section 4.5 and Appendix D employing a COMSOL

MULTIPHYSICS® feature called Average Operator at the grey surfaces. At the left
end of part 1 and the right end of part 2 energetically neutral zero mass flow
fluctuations are imposed (cf. Fig. 4.5). This may be expressed in terms of a
specific impedance according to eq. (2.34). The remaining surfaces are spec-
ified as sound hard wall boundaries. Since the jet and therefore the flow in-
homogeneities are covered by part 3, a uniform and purely axial mean flow is
employed in the parts 1 and 2. A modal analysis of the resulting model is per-
formed using the eigenvalue solver of COMSOL MULTIPHYSICS® for different
configurations and equations as explicated subsequently.

4.6.2 Investigated Configurations

Four different setups are investigated, summarized in Tab. 4.2. As a reference
configuration with mean flow, the APE (2.9) are solved in the FD constituting
setup I. With the acoustic velocity being a solution variable of the APE, transfer
matrix couplings are straightforward to implement for these equations. Due to
the inclusion of mean flow in the two FEM domains, the original transfer ma-
trix TM from the network model also incorporating mean flow must be applied
to couple them. For setup II and III the Helmholtz equation for stagnant flows
according to eq. (C.6) is solved. To prove the necessity of energetically consis-
tent boundary conditions, the two FEM domains of setup II are coupled with
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Table 4.2: Setups for eigenfrequency computations of the simple test case.

Setup Equation Mean flow
assumption

Transfer Matrix
formulation

Legend

I APE ((2.9), FD) ū = (ū,0,0)T TM —
II HE (C.6) ū = 0 TM - -
III HE (C.6) ū = 0 TMM=0 ♦♦♦
IV CHE (4.14) ū = (ū,0,0)T TMM=0 ◦

the original transfer matrix TM. Due to the inconsistent assumptions in the
FEM domains and the network model, this configuration is expected to give
erroneous results. In contrast, the results of setup III using the energetically
consistent transfer matrix for zero Mach number flows TMM=0 are expected
to reproduce the results of the reference setup I. Finally, in setup IV the con-
sistent convective Helmholtz equation for arbitrary mean flow fields (4.14) is
solved in the FEM domains with mean flow. For the sake of consistency, the
transfer matrix for zero Mach number domains TMM=0 must be utilized. This
configuration is expected to deliver the highest accuracy in the reproduction
of both, oscillation frequencies and damping rates of the reference setup I.
The mean flow Mach number M1 in part 1 of the setups I and IV as well as
for the calculation of the transfer matrices is varied between 0.05 and 0.3. The
mean flow in part 2 is adjusted according to the area ratio. The pressure loss
at the area change of the network model ∆pL takes values of 0 and 2% of the
incompressible stagnation pressure in part 1:

∆pL =β
(

p1 + ρ̄

2
ū2

1

)
, β ∈ {0, 0.02} . (4.47)

While the wall boundaries as well as the zero mass flux inlet and outlet bound-
ary conditions are energetically neutral for all considered setups, this is not the
case for the transfer matrix TM. It may incorporate acoustic dissipation due to
the pressure loss and is thus the only physical mechanism contributing to the
energy balance of the reference setup I. The eigenfrequencies resulting from
the four different setups as described above are discussed in the following sec-
tion, using the legend as provided in Tab. 4.2.
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4.6.3 Results

Within the spectrum between 0 and 1000Hz, six eigenfrequencies are identi-
fied for all configurations and parameters. For the selected cross sectional ar-
eas and thermodynamic properties, this range is below the cut-on frequency
and only longitudinal waves propagate. Selected spatial fluctuation distribu-
tions, also referred to as mode shapes, are presented for setup I in Fig. 4.8 in
terms of velocity fluctuation magnitudes. Figure 4.9 displays the frequency f

|û|
|û|maxmin 1

(a)

(b)

(c)

Figure 4.8: Mode shapes in terms of velocity fluctuations of the first (a), sec-
ond (b) and sixth (c) eigenmode of setup I for M = 0.1, β= 0.02.

and the damping rate δ = −α (i.e. the negative growth rate) of the first eigen-
mode over the Mach number in part 1 (M1) for zero pressure loss. As can be
seen in the left graph, the frequency of the reference setup I is decreasing pro-
portionally to M 2 as expected. The frequencies of setups II and III remain al-
most constant at the zero Mach number frequency. The oscillation frequency
seems not to be affected by the transfer matrix transformation, as the frequen-
cies of setup II and III closely match. While the zero Mach number assump-
tion of setups II and III can not reproduce the frequency drop of the refer-
ence setup, the CHE of setup IV excellently agrees with the reference. As ex-
pected, the damping rate is zero in the reference setup I for β= 0 for all Mach
numbers. This result is reproduced with the consistent transformation of the
transfer matrix in setups III and IV. Using the original transfer matrix with
the zero Mach number assumption (setup II), however, introduces linearly in-
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Figure 4.9: Frequency and damping rate of the first eigenfrequency over the
Mach number for β= 0 (cf. Tab. 4.2 for the legend).

creasing excitation to the system. This excitation reaches values up to 100 rad
s

at M1 = 0.3. Only for M = 0, all four setups yield identical values of frequency
and damping rate. Introducing a pressure loss of 2% at the area change as ad-
dressed in Fig. 4.10 still results in a slight frequency drop of the reference setup
I over the Mach number. Again, only the consistent CHE setup IV correctly
captures this frequency drop of setup I. Due to the pressure loss, high damp-
ing rates are obtained for all four setups. They start at approximately 300 rad

s for
M1 = 0.05 and are then monotonically decreasing. The deviation between the
reference setup I and the energetically inconsistent setup II again increases
with increasing Mach number. While the reference setup gives a damping rate
of 50 rad

s for M1 = 0.3 the inconsistent substitute setup predicts excitation of
the same absolute value. The consistent configurations III and IV are again
capable of accurately reproducing the reference setup’s damping rates.
The second eigenfrequency for a vanishing pressure drop is shown in Fig. 4.11.
The frequency qualitatively resembles the results of the first eigenfrequency,
but the damping rate is equally increasing for the reference setup and for the
consistent setups III and IV. Although this result is physically questionable,
it may be explained by the low Mach number assumption within the trans-
fer matrix derivation of the sudden area change, eq. (4.46). The energetically
inconsistent setup II falsely predicts excitation for the considered Mach num-
ber range. The damping rate of the consistent Helmholtz setup III deviates
slightly from the reference setup for the second eigenfrequency when intro-
ducing 2% pressure drop, cf. Fig. 4.12. The absolute deviation is still very small
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Figure 4.10: Frequency and damping rate of the first eigenfrequency over the
Mach number for β= 0.02.
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Figure 4.11: Frequency and damping rate of the second eigenfrequency over
the Mach number for β= 0.

and comparable to the first eigenfrequency with 2% pressure drop (cf. Fig.
4.10). However, the relative deviation is increased due to the overall lower level
of damping. Examining the mode shapes corresponding to the first and sec-
ond eigenfrequencies of the reference setup in Fig. 4.8 reveals a velocity fluc-
tuation antinode for the first and a velocity fluctuation node for the second
eigenfrequency at the position of the area change. According to the transfer
matrix representation of the area change in eq. (4.46), losses are introduced
proportional to the absolute value of velocity fluctuations. At the same time,
the gradients of fluctuation variables are largest at node locations. Small devi-
ations in the mode shape and eigenfrequency due to the zero Mach number
assumption may thus have high relative impact on the damping rate of the
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Figure 4.12: Frequency and damping rate of the second eigenfrequency over
the Mach number for β= 0.02.

substitute system. This theory is confirmed by the CHE setup IV, which excel-
lently reproduces the wave advection and thus the mode shape and eigenfre-
quency of the reference setup I. This manifests in an equal frequency drop of
setups I and IV with matching damping rates. For the third eigenfrequency as-
sessed in Fig. 4.13, an antinode of velocity fluctuations is situated close to the
area change, again resulting in excellent agreement of damping rates between
the reference setup I and the consistent setups III and IV.
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Figure 4.13: Frequency and damping rate of the third eigenfrequency over the
Mach number for β= 0.02.

Finally, the validity of the transformation procedure is investigated for higher
frequencies. Figure 4.14 exhibits the sixth eigenmode for β = 2%. At higher
Mach numbers the deviation in terms of damping rates between the consis-
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tently transformed Helmholtz and the reference system again increases. How-
ever, the damping rates remain qualitatively correct in contrast to the incon-
sistent setup II. Again, setup IV excellently resembles the results of the APE.
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Figure 4.14: Frequency and damping rate of the sixth eigenfrequency over the
Mach number for β= 0.02.

In conclusion, this simple test case demonstrates the significance of energetic
consistency when performing stability analyses with the Helmholtz equation.
This also proves the validity of the transformation procedure to obtain en-
ergetical consistency presented in section 4.4. In accordance with eq. (4.14),
the same boundary conditions are also used for the consistent CHE. Since
this setup involves a further increased accuracy of the stability predictions,
the results above validate the corresponding mathematical framework of sec-
tion 4.3. It may be observed that this increased accuracy only becomes rel-
evant at larger Mach numbers. Since the overall Mach numbers in techni-
cally relevant combustors as investigated in chapter 6 are usually in the order
of 0.1, the benefits of the CHE in terms of accuracy are thus expected to be
marginal compared to the HE. Still, the slightly increased accuracy of the CHE
comes at no additional computational cost. Therefore, the consistent convec-
tive Helmholtz equation presented in section 4.3.2 is a very cost-efficient and
accurate approach to compute the acoustic stability in the presence of mean
flow. Furthermore, its application with the well-established FEM framework
is highly robust without the need of artificial damping. It does thus repre-
sent a promising alternative to more expensive and numerically less robust
approaches like the APE or LEE.

90



5 Modal Model Order Reduction Methods

The linear hybrid numerical strategy presented in the previous chapter is per-
fectly suitable for a comprehensive modal stability analysis. Being based on
linear acoustic equations, the methodology is by nature limited to the repro-
duction of linear processes. Growth rates obtained in that way are a measure
of the exponential rise in pressure amplitudes at the onset of an instability. At
elevated amplitudes, however, nonlinearities become relevant leading to limit
cycle oscillations in real thermoacoustic systems.
For nonlinear thermoacoustic analyses, the chemical reaction and thus the
flame is normally assumed to nonlinearly saturate [144, 190]. In these consid-
erations, pure acoustic nonlinearities are normally disregarded. In the pres-
ence of mean flow, one may identify two different types of nonlinear acous-
tic mechanisms. Using the magnitude of velocity fluctuations as an indicator,
they may be distinguished according to

1. O (|u′|) ≈O (c̄) and

2. |u′| ≥ |ū|.
At considerably high acoustic velocity amplitudes in the order of the mean
speed of sound, the general linearity assumption fails. This is expressed by
the first type of nonlinearities. As a consequence, the wave propagation speed
becomes a function of the spatial pressure field ultimately leading to a steep-
ening of the originally harmonic wave (cf. e.g. [118, 191]). Even in the limit
cycle, such high amplitude levels are normally not reached in thermoacoustic
systems. Consequently, this effect is of minor relevance and will not be consid-
ered in the present thesis. The second mechanism can already be observed at
much lower amplitude levels. If the acoustic velocity exceeds the local mean
flow velocity, periodic flow reversal occurs. This is of particular significance
for sound propagation along jet flows as it may appear across apertures and
thus also in perforated liners [112, 192, 193]. In the framework of linearized
acoustic equations, the relevance of the nonlinearity may be mathematically
substantiated by the fact that terms of the order O (ūφ′) are included, whereas
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terms of the order O (u′ φ′) are dropped. However, this is only valid for u′ < ū.
Particularly in the vicinity of perforated liners with small purge air mass flows,
this condition may be violated. This is further substantiated by the g -function
(3.28) in Bellucci’s nonlinear pressure drop, eq. (3.27): the transition from lin-
ear to nonlinear behavior occurs as soon as the acoustic velocity amplitude
exceeds the mean flow velocity. It is easy to see that only the first nonlinear
mechanism can emerge in quiescent fluids.
By nature, none of the nonlinear mechanisms discussed above can be repro-
duced by linear methodologies in the FD. Instead, nonlinear equations need
to be solved in the TD. To circumvent the high computational cost of con-
ventional nonlinear TD solvers for the full thermoacoustic system, Reduced
Order Models (ROMs) are an attractive alternative. Making use of the results
of a linear modal stability analysis, modal model order reduction is a highly ef-
ficient methodology to include nonlinear mechanisms in the TD. Using a Di-
rect Modal Reduction (DMR) procedure as described in section 5.1, Hummel
et al. [100–102] include an empirical, nonlinear volumetric flame saturation
source to reproduce thermoacoustic limit-cycles. However, the corresponding
saturation function is hard to physically justify. Therefore, the present thesis
targets the consideration of nonlinear acoustic damping mechanisms instead.
More specifically, a reduced order model to include the well-investigated non-
linear damping capabilities of perforated liner patches is pursued. Since the
DMR does not provide an intuitive way of including the effect of nonlinear
boundary patches, an alternative reduction method limited to the Helmholtz
equation and referred to as Modal Amplitude Equations (MAE) is reviewed
in section 5.2. Both established approaches, the DMR and the MAE are com-
pared with each other in section 5.3 to identify synergies. This ultimately al-
lows to develop a combined, universal reduced order approach, particularly
suitable for the convective Helmholtz equation. The approach can be cou-
pled with nonlinear volumetric flame driving models as well as with nonlinear
damper models at the boundaries as demonstrated in section 5.4.

5.1 Direct Modal Reduction

In principle, the DMR (also known as modal truncation) is based on a simi-
larity transformation of the state-space system matrices. More precisely, the
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canonical normal form with a diagonal system matrix is desired. An in-depth
explication of the methodology is provided in [194, 195].
The basis of the DMR is formed by linear state-space system, eqs. (4.39). In the
TD it reads

Eẋ = Ǎx+ B̌u (5.1a)

y = Cx+Du , (5.1b)

which may be created for any thermoacoustic system according to the lin-
earization procedure of section 4.5. In contrast to eq. (4.39a), a descriptor (or
mass) matrix E is included to form a more general implicit state-space sys-
tem. As can be seen from the state-space representation of the convective
Helmholtz equation (4.40), the descriptor matrix is generally not a unity ma-
trix. If it is not singular, multiplying the state-equation (5.1a) by the inverse of
the mass matrix again leads to an explicit state equation:

ẋ = Ax+Bu , (5.2)

with A = E−1Ǎ and B = E−1B̌. The basis of the system can be changed by trans-
forming the state vector by any square transformation matrix V according to
x(t ) = Vξ(t ). Introducing this relation into the state equation (5.2) and multi-
plying it with V−1 yields

ξ̇= V−1AVξ+V−1Bu . (5.3)

The canonical normal form is obtained, if the transformation matrix V is a
(N × N ) matrix with the columns being the right eigenvectors of the system
matrix A, also referred to as right eigenvector matrix. As a result, the state
space system becomes

ξ̇=Λξ+V−1Bu (5.4a)

y = CVξ , (5.4b)

with the diagonal eigenvalue matrix Λ = diag(sn). This result may simply be
illustrated by the definition of a right eigenvalue problem:

Avn = snvn . (5.5)

This equation is satisfied for each eigenvalue sn and its related eigenvector vn.
Hence, a system of equations may be established for all eigenvalues in matrix
notation leading to

AV = VΛ , (5.6)
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with the right eigenvector matrix V = (v1 v2 . . . vN ). Multiplying this equation
by the inverse of the right eigenvector matrix finally yields the identity V−1AV =
Λ exploited to obtain eq. (5.4a). Since its rows are the left eigenvectors of the
system, the inverse matrix V−1 is referred to as left eigenvector matrix.
From a system theory point of view, the state-space system in eq. (5.4) gives
the same outputs y for given input signals u as the original state-space system
(5.1). This makes both systems equivalent. However, the state vector ξ does
not represent a thermodynamic quantity anymore. A descriptive interpreta-
tion of the transformed state quantity is delivered in section 5.3.
The state-space system (5.4) still has full order N and does thus not involve
an accelerated solution process. Considerable reduction of the system order
may be achieved by projecting the system on a subspace spanned by a signif-
icantly reduced number of eigenvectors Nr ed ¿ N . The reduced right and left
eigenvector matrices as well as the eigenvalue matrix then become

V(N ×N ) → Vr ed (N ×Nr ed ) (5.7a)

V−1(N ×N ) = W(N ×N ) → Wr ed (Nr ed ×N ) (5.7b)

Λ(N ×N ) →Λr ed (Nr ed ×Nr ed ) , (5.7c)

with the dimensions of the corresponding matrices appended in parenthe-
ses. In order to avoid confusion with an inverted non-square reduced right
eigenvector matrix, the left eigenvector matrix is now referred to as W = V−1.
Due to this reduction procedure, also the transformed state vector is reduced
ξ→ ξr ed . For an accurate projection, the reduced system needs to capture the
fundamental dynamics of the system. However, there is no universal guideline
on an a priori determination of the most relevant oscillation states [194]. If the
relevant spectrum with distinct instabilities is known from measurements, it
is best practice to project the system on the eigenmodes in this spectrum.
For large-scale systems, the inversion of the mass matrix E to obtain the ex-
plicit input matrix B may be problematic. Based on restrictive assumptions,
Hummel [102] proposes to replace the projected input matrix by the relation

WE−1B̌ = (WEV)−1WB̌ , (5.8)

and therefore massively simplify the inversion procedure for the reduced sys-
tem. A universal confirmation of this relation is provided in Appendix E. The
input matrix B can be used to include sources or sinks of the PDE subject to the
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state-space model (e.g. heat release fluctuations of the Helmholtz equation)
in the DMR.1 This allowed Hummel et al. [100–102] to include stochastic, lin-
ear and nonlinear volumetric flame driving models in DMR computations as
summarized in section 5.4.1. However, it is not straightforward to express the
nonlinearity of damper patches using the input matrix in terms of a boundary
source. For this reason, an alternative modal reduction methodology naturally
containing boundary terms is presented in the subsequent section.

5.2 Modal Amplitude Equations

Being based on a modal series expansion, the Green’s function approach as
described in section 2.7 is predestined for a modal reduction procedure. Fur-
thermore, under certain conditions this methodology allows for the coupling
of thermoacoustic systems with nonlinear boundaries. A similar approach
was presented by Noiray and Schuermans [196] for the Helmholtz equation. In
this section, their procedure is adapted for the Sturm-Liouville PDE and gen-
eralized for a non-orthogonal base and more general boundary conditions.
Adopting the naming of Lieuwen [105], this procedure will finally result in the
MAE.
To start with, the Sturm-Liouville BVP (2.25) is reformulated for a specific set
of boundary conditions. Therefore, the overall boundary is divided into sub-
boundaries of three types, ∂V = ∂V1 ∪∂V2 ∪∂V3, whereas now only homoge-
neous boundary conditions are permitted:

s2p̂ −∇(
c̄2∇p̂

)= s(κ−1) ˆ̇q in V , (5.9a)

p̂= 0 on ∂V1 , (5.9b)

∇p̂ ·n= 0 on ∂V2 , (5.9c)

sp̂ + c̄z(s)∇p̂ ·n= 0 on ∂V3 . (5.9d)

Making use of the relation sρ̄û =−∇p̂ for quiescent fluids, the homogeneous
Robin boundary condition, eq. (5.9d), has been expressed in terms of the spe-
cific impedance (2.31). This formulation is particularly useful at boundary

1Purely linear sources and sinks can alternatively be directly included in the modal analysis, cf. eq. (4.40). This
yields modified eigenvalues and corresponding linear growth rates. The temporal evolution of the oscillation
amplitudes is then expected to be equivalent to including the source terms in TD via the input matrix.
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patches connected to acoustic liners or resonators. Hereinafter, Green’s func-
tion is assumed to satisfy the same boundary conditions. This is opposed to
the procedure of Noiray and Schuermans [196] who only consider homoge-
neous Neumann boundary conditions. Still, the treatment of the second in-
tegral on the RHS of eq. (2.49) remains similar: integration by parts regarding
the source location x0 yields

p̂(x) =
Ñ

V
Ĝ(x|x0)s(κ−1) ˆ̇q(x0)dV0

+
Ï

∂V

{
Ĝ(x|x0,s)c̄2∇0p̂(x0,s)− p̂(x0,s)c̄2∇0Ĝ(x|x0,s)

}
·n dA0 .

(5.10)

In addition to the first volume integral, an additional volume integral would
normally emerge from the partial integration. Since this additional volume in-
tegral vanishes, only a surface integral remains, which is denoted by the coor-
dinates x0,s . Making use of the homogeneous Dirichlet and Neumann bound-
ary conditions, only contributions from the subdomains of the third boundary
type contribute to the solution of the pressure as per

p̂(x) =
Ñ

V
Ĝ(x|x0)s(κ−1) ˆ̇q(x0)dV0

−
Ï

∂V3

c̄ Ĝ(x|x0,s)
s p̂(x0,s)

z(s)
dA0 −

Ï
∂V3

c̄2p̂(x0,s)∇0Ĝ(x|x0,s) ·n dA0 .
(5.11)

Since Green’s function also satisfies the boundary condition (5.9d), the third
integral on the RHS of eq. (5.11) does not vanish as it does for homoge-
neous Neumann boundary conditions used in [196]. With the frequency-
dependency of the impedance violating the self-adjointness of the BVP, the
(right) eigenfunctions of the system are not orthogonal anymore. In the for-
mulation of Green’s function (2.46) this is accounted for by using the bi-
orthogonal basis formed by the left and the right eigenfunctions. Inserting the
corresponding expression into eq. (5.11) first yields

p̂(x) =
Ñ

V

(
∞∑

n=0

χ̂n(x0)ψ̂n(x)

En

(
s2 − s2

n

) )
s(κ−1) ˆ̇q(x0)dV0

−
Ï

∂V3

c̄

(
∞∑

n=0

χ̂n(x0,s)ψ̂n(x)

En

(
s2 − s2

n

) )
s p̂(x0,s)

z(s)
dA0

−
Ï

∂V3

c̄2p̂(x0,s)∇0

(
∞∑

n=0

χ̂n(x0,s)ψ̂n(x)

En

(
s2 − s2

n

) )
·n dA0 .

(5.12)
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Similar to Green’s function, also the pressure can be expanded in a series as
per

p̂(x) =
∞∑

n=0
µn(s)ψ̂n(x) , (5.13)

with the coefficients µn representing the amplitudes of the corresponding
right eigenfunctions, also referred to as modal amplitudes. They can be de-
termined by a comparison of coefficients with eq. (5.12) leading to(

s2 − s2
n

)
µn(s) = 1

En

[Ñ
V
χ̂n(x0)s(κ−1) ˆ̇q(x0)dV0

−
Ï

∂V3

c̄ χ̂n(x0,s)
s p̂(x0,s)

z(s)
dA0 −

Ï
∂V3

c̄2p̂(x0,s)∇0χ̂n(x0,s) ·n dA0

]
.

(5.14)

These are the MAE in the FD. Inverse Laplace transformation leads to the cor-
responding equations in the TD:

d2

dt 2
µn(t ) = s2

nµn(t )+ 1

En

[Ñ
V
χ̂n(x0) (κ−1)

∂q̇ ′(x0)

∂t
dV0

+
Ï

∂V3

c̄2ρ̄ χ̂n(x0,s)
∂u′(x0,s)

∂t
dA0 −

Ï
∂V3

c̄2p ′(x0,s)∇0χ̂n(x0,s) ·n dA0

]
.

(5.15)

Note that the specific impedance has been replaced by the surface normal
velocity fluctuation u′ = u′ ·n for the TD formulation. It may be obtained from
the coupling with suitable damper models as discussed in section 5.4.
The volumetric source due to a potentially nonlinear heat release rate fluctu-
ation is accounted for in the first integral. Other nonlinear volumetric sources
such as an acoustic-vortex interaction mechanism could be additionally in-
cluded. Boundary sources as expected from nonlinear damper patches can
be incorporated via the two surface intergals. It may be noted that for self-
adjoint problems, i.e.ψn =χn, the temporal fluctuation of one boundary inte-
gral corresponds to the modal quantity of the other integral. Therefore, those
two boundary terms compensate each other in the linear regime. This is not
necessarily the case for the general bi-orthogonal basis.
Particularly in the HF regime, source fields are generally not covered by the
compactness assumption. Hummel et al. [100, 101] tackle this issue by divid-
ing the volumetric source region into M compact subvolumes. Similarly, the
overall boundary portion of the third type can be split into K compact sub-
boundaries. In both cases, the integration can then be replaced by domain-
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averaged quantities multiplied with the volume or the surface area of the sub-
domain, respectively:

d2

dt 2
µn(t ) = s2

nµn(t )+ 1

En

[ M∑
m=1

dq̇ ′
m

dt
Vm

(
χ̂n(x0) (κ−1)

)
V ,m

+
K∑

k=1

du′
k

dt
Ak

(
c̄2ρ̄ χ̂n(x0,s)

)
S,k

−
K∑

k=1

p ′
k Ak

(
c̄2∇χ̂n(x0,s) ·n

)
S,k

]
,

(5.16)

where the indexed parentheses denote domain-averaged quantities. In anal-
ogy to the DMR, a model order reduction with the MAE is ultimately achieved
by limiting the series expansion (5.13) to a finite number of eigenfunctions.
The proposed MAE (5.14) to (5.16) have some major advantages over other
established modal expansion approaches for the investigation of thermoa-
coustic stability. Most commonly, the modal expansion of the Green’s function
approach is based on orthonormal eigenfunctions obtained from self-adjoint
problems with purely rigid-wall boundaries. This yields a discrepancy be-
tween the basis spanned by those eigenfunctions and the actual acoustic field
obtained from the equivalent system with frequency dependent impedance
boundaries [54]. Laurent et al. [197] tackle this issue by establishing an over-
complete frame consisting of two sets of eigenmodes: similar to the com-
mon MAE approach the first set exclusively relies on rigid-wall boundaries
whereas the actually frequency-dependent boundaries are replaced by open-
end boundary conditions for the second set. The actual acoustic field is then
assumed to be some intermediate, linearly interpolated state. While this inter-
polation is also just an approximation of the actually expected acoustic field,
a more severe drawback is the ill-conditioned reduced system matrix Λ due
to the over-complete frame. This requires complex and computationally ex-
tensive inversion procedures. Unlike those approaches, the MAE with its bi-
orthogonal basis introduced in this section does not involve such numerical
difficulties. Furthermore, the bi-orthogonal basis spanned by the eigenfunc-
tions χn andψn accurately reproduces the actual acoustic field at low acoustic
amplitudes. Therefore, a slight misrepresentation of the actual acoustic field
by the bi-orthogonal basis is only expected once the boundary characteris-
tics change due to nonlinear mechanisms at high amplitude levels. Despite
the advantages of the MAE, it still comes at some drawbacks such as its limi-
tation to the Sturm-Liouville problem. To overcome these drawbacks, a more
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universal approach is developed by combining the MAE with the DMR in the
following section.

5.3 Comparison of the Two Modal Reduction Approaches

Although one may perceive certain analogies between the DMR and the MAE,
they differ considerably as summarized in Tab. 5.1. The purpose of the present

Table 5.1: Comparison of the Direct Modal Reduction (DMR), the Modal Am-
plitude Equations (MAE) and the combined Generalized Discrete
MAE.

DMR MAE Generalized
Discrete MAE

Temporal Order: 1st Order 2nd Order 1st Order
Spatial Resolution: Discrete Continuous Discrete
Input Domains: Unspecific Volume & Boundary Volume & Boundary
Applicability: General

linearized PDEs
Helmholtz/
Sturm-Liouville

General
linearized PDEs

section is to investigate these differences for the development of a novel ap-
proach combining the benefits of DMR and MAE. For a universal applicabil-
ity to general linearized PDEs, particularly the convective Helmholtz equation
(4.40), the pursued approach should be equivalent to the DMR. More specifi-
cally, it should be of first temporal order with a discrete spatial resolution for
the use with discretized numerical state-space models. Additionally, explicit
nonlinear volume and boundary source input terms equivalent to the MAE
are desired. For this purpose, the MAE are transformed into the shape of the
DMR. The resulting approach is labeled Generalized Discrete MAE.
In a first step, the MAE (5.16) is expressed in vectorial form for a reduced set of
N eigenfunctions:

d2

dt 2
µ(t ) = diag(s2

n)µ(t )+diag

(
χn

En

){
BV

∂q̇′

∂t
+BS1

∂u′

∂t
−BS2 p′

}]
, (5.17)

where the length of the column vectors µ = (
µ1, · · · ,µN

)T
, q̇′ = (

q̇ ′
1, · · · , q̇ ′

M

)T
,

p′ = (
p ′

1, · · · , p ′
K

)T
and u′ = (

u′
1, · · · ,u′

K

)T
equals the number of eigenfunc-
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tions, subvolumes or sub-boundaries, respectively. Particularly the latter vec-
tor must not be confused with the directional velocity vector. The left eigen-
functionχn has been extracted from the subvolume and subdomain averaging
as well as from the nabla operator. Instead, these operations are included in
the B matrices. In accordance with eq. (5.16), the (N × M)-matrix BV can be
used to include volumetric sources (e.g. due to acoustic-flame interactions)
whereas the (N × K )-matrices BS1 and BS2 account for temporally varying
boundary impedances. Recall that the two boundary input terms compensate
for damper patches in the linear amplitude regime, provided that the problem
at hand is self-adjoint. Then, an effective boundary source is only established
in the nonlinear amplitude regime.
Equation (5.17) facilitates the reduction of the MAE’s temporal order by a lin-
earization in terms of a state-space formalism as proposed by Schuermans
[49] and discussed in section 4.5. This linearization is again obtained by intro-
ducing the temporal derivative of the state variable µ̇n = dµn/dt as an addi-
tional state variable. This yields the linear state-space representation

d

dt

(
0 I
I 0

) (
µ

µ̇

)
=

(
diag(s2

n) 0
0 I

) (
µ

µ̇

)
+Bµ uµ

Bµ =
(

0 diag
(
χn/En

)
BV diag

(
χn/En

)
BS1 −diag

(
χn/En

)
BS2

0 0 0 0

)
uµ =

(
0 ∂q̇′

∂t
∂u′
∂t p′

)T
.

(5.18)

For the sake of a better comparability with the state-space formulation of the
convective Helmholtz equation (4.40), the linearized MAE is used to express
the local pressure fluctuations. This is massively simplified by firstly discretiz-
ing the bi-orthogonal base functions such that the left and right eigenfunc-
tions become eigenvectors

ψn(x) →ψn ; χn(x) →χn

satisfying the inner product property similar to eq. (2.37):

〈ψn,χn〉 =ψn ·χn =ψnχn = En . (5.19)

Then, the space-discrete pressure vector p′ can be written as

p ′ =
N∑

n=1
µn(t )ψn → p′ =Ψµ (5.20)
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and, making use of eq. (5.19), its inverse relation

µ= diag

(
1

En

)
X p′ . (5.21)

The eigenvector matrices Ψ and X are spanned by the corresponding eigen-
vectors. Inserting eq. (5.21) into the linearized MAE (5.18) and multiplying
with Ψ yields the desired state-space representation of the discretized pres-
sure fluctuations as per2

d

dt

(
0 I
I 0

) (
p′

ṗ′

)
=

(
Ψ diag(s2

n/En) X 0
0 I

) (
p′

ṗ′

)
+Bp up

Bp =
(

0 BV BS1 −BS2

0 0 0 0

)
up =

(
0 ∂q̇′

∂t
∂u′
∂t p′

)T
.

(5.22)

The Laplace transform of eq. (5.22) is the discretized counterpart of the con-
vective Helmholtz equation in state-space formulation (4.40) with additional
boundary source terms. One can observe that the state variable p′ is also part
of the input vector. It may thus be included into the state matrix. However,
this input is a result of the eigenvector matrices containing the linear contri-
bution of potentially nonlinear boundary impedances and must remain part
of the sources. Then, dropping all sources yields the desired eigenvalue prob-
lem with linearized impedances as discussed in section 4.5. With the results of
a modal analysis, eq. (5.22) can be retransformed into a reduced order model
by means of the DMR methodology discussed in section 5.1. The reduced state
equation then yields the Generalized Discrete MAE:

ξ̇r ed =Λr edξr ed + (Wr ed EVr ed )−1Wr ed Bpup . (5.23)

Apparently, the state variables of the approaches DMR (ξ) and MAE (µ) equiv-
alently represent modal amplitudes, i.e. the amplitudes of the eigenmodes
spanning the basis of the ROM. This is by virtue of the transformation x(t ) =
Vξ(t ) being equivalent to the series expansion of the reduced, discretized MAE
(5.20).

2An easier approach in terms of algebra is to first form the second order PDE for the discretized pressure and
then transform it into a linear state-space system.
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The overall input matrix Bp and vector up of eq. (5.23) equal those speci-
fied in eq. (5.22). As mentioned above, the single input matrices forming the
overall input matrix are assumed to contain the averaging and nabla oper-
ations regarding the original continuous eigenfunctions. For the discretized
and reduced system (5.23), these operations now need to be applied to the left
eigenvector matrix Wr ed . In practice, this allows to circumvent an elaborate
construction of the Bp matrix. Instead, the elements of the combined matrix
Wr ed Bp may be directly obtained from the eigenvalue solver. These elements
include the area or volume-integrated values of the left eigenvectors or its gra-
dient together with mean field quantities. The resulting matrices are provided
in Appendix F.
While the MAE are based on Green’s function for self-adjoint BVPs, eqs. (5.22)
and (5.23) imply a more general applicability of the Generalized Discrete MAE.
This is due to the fact that Green’s ansatz in terms of the eigenfunctions (or
eigenvectors) is only found explicitly in the system matrix of eq. (5.22). Fur-
thermore, the input matrix Bp and vector up are a result of Green’s function
for a Sturm-Liouville problem with boundary conditions suitable to quiescent
fluids. Both aspects can be transferred to the convective Helmholtz equation:
While the system matrix in eq. (5.22) may simply be replaced by the discretized
system matrix of the convective Helmholtz equation (4.40), the consistent
convective Helmholtz equation (4.14) already requires boundary conditions
for stagnant fluids. Consequently, the Generalized Discrete MAE (5.23) form
an ideal basis for ROM simulations in the TD with the consistent convective
Helmholtz equation in chapter 6.

5.4 ROM Coupling with Source Models

The model order reduction as extensively discussed in the previous sections
only concerns the linear acoustic part of a combustor. Potential nonlinear-
ities can be included by means of volumetric or boundary sources. Within
the derivation above, specific emphasis was put on the inclusion of nonlin-
ear acoustics-flame interactions as well as the nonlinear damping behavior of
acoustic resonators. The coupling of the combustor acoustics in terms of the
Generalized Discrete MAE with the partitioned flame volume and the individ-
ual damper patches is schematically depicted in Fig. 5.1. While the flame is as-
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Figure 5.1: Schematic of the Generalized Discrete MAE coupled with the vol-
umetric flame source model and the two boundary sources repre-
senting the damper models.

sumed to only feature stochastic (index st in Fig. 5.1) and linear (index l i n in
Fig. 5.1) components in the present thesis, a nonlinear amplitude saturation is
exclusively ascribed to nonlinear dampers. Consequently, only a brief review
of the implementation of flame sources in the TD is provided. A more elabo-
rate discussion is reserved for the modeling of nonlinear damper patches and
their coupling with the combustor acoustics.

5.4.1 Flame Source

For the investigation of HF thermoacoustics using ROM simulations, Hummel
et al. [100–102] provided a detailed framework to include heat release fluc-
tuations as a driving and saturation mechanism. For HF analysis with non-
compact flames, they propose to split the mean heat release field into com-
pact subvolumes. Each of those subvolumes is considered an independent
volumetric source. Due to the compactness of the individual flame partitions,
subvolume-averaged quantities may be used to create the input and output
matrices (cf. section 5.2).
As discussed in section 2.8.1, the overall heat release fluctuations may be split
into stochastic, linear and nonlinear contributions, irrespective of the fre-
quency regime. Considered an initiator of thermoacoustic instabilities, the
stochastic part q̇ ′

st is essential for ROM computations. Generally, the turbu-
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lence induced combustion noise is colored [143], which may have significant
impact on the overall dynamics of a thermoacoustic system [198, 199]. Still,
this effect is considered negligible when limiting to a narrow spectrum of
eigenfrequencies as done in the test configuration of chapter 6. In this case,
white noise can be used to mimic the turbulence-driven stochastic heat re-
lease fluctuations. Regarding the linear acoustics-flame interactions q̇ ′

l i n, all
types of models discussed in section 2.8.2 can generally be incorporated into
the ROM, including global FRFs from measurements or CFD computations as
well as from analytical models. Since the application of conventional global
FRFs is limited to the LF regime, the linearized flame displacement and defor-
mation models according to eq. (4.44) are employed for the HF analysis pur-
sued in chapter 6. As mentioned in section 5.1, such linear flame driving mod-
els do not necessarily need to be coupled with the ROM in the TD. Alterna-
tively, the linearity in terms of the pressure fluctuations allows to include the
corresponding mechanisms directly in the modal analysis. This yields modi-
fied growth rates directly affecting the system matrix of the ROM, substituting
the closed feedback loops on the left side of Fig. 5.1. In general, also nonlin-
ear contributions to the heat release oscillations q̇ ′

nl can be included into the
ROM by means of a closed-loop coupling. Hummel et al. [101, 102] used a cu-
bic pressure term to model a flame saturation mechanism leading to limit-
cycle oscillations. This resembles a stochastic Van der Pol oscillator [141, 200]
but lacks a physical justification for perfectly premixed flames as discussed in
section 2.8.1. In the framework of this thesis, nonlinear saturation is thus ex-
clusively investigated for nonlinear damper patches being subject of the sub-
sequent section.

5.4.2 Nonlinear Resonator Patches

Perforated liners and multi-layer resonators can be acoustically character-
ized in terms of an impedance using the procedure presented in section 3.3.
The highly sophisticated Bellucci model is suitable to accurately describe the
transfer behavior of single perforated screens. It includes a nonlinear rela-
tion for the pressure drop in the TD, cf. eq. (3.26), which transforms to the
g -function (3.28) in the FD. Other semi-empirical parameters depending on
the oscillation frequencies were included, e.g. to account for hole-to-hole in-
teractions [201]. For varying acoustic amplitude levels, the model is thus ca-
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pable to predict different impedance curves. Similar to a FDF, the different
impedance curves can then be used to investigate the system stability for vir-
tually varying amplitude levels in a linear FD framework. The linearity in the
FD still prevents for modal interactions though, which can only be realized in
the TD. A self-evident approach would thus be to transform Bellucci’s model
back to the TD by means of an inverse Laplace transform. However, the vari-
ous frequency-dependent parameters impedes such a procedure. Further dif-
ficulties arise for multi-layer perforated liners as the overall impedance be-
comes a complex function of the individual layer parameters.
To overcome this deficit, the analogy of the damped mechanical oscillator
(cf. section 3.3.1) is exploited. Its impedance represents a rational transfer-
function of second order. Now, instead of applying an inverse Laplace trans-
form, the overall impedance of a (multi-layer) perforated liner can simply be
approximated by a rational function fit. The corresponding procedure was ex-
plicated for a reflection coefficient in section 4.5.1. While the order of the fitted
polynomials remained indefinite for general transfer functions, it is known a
priori for the specific damper impedance as per

zd (s) ≈ b2s2 +b1s+b0

a1s+a0
. (5.24)

By rewriting the rational function fit using a polynomial division according to

zd (s) = p̂

ρ̄c̄û
≈ b2

a1
s+

b1 − b2a0
a1

a1
+

b0 − a0
a1

(
b1 − b2a0

a1

)
a1s+a0

, (5.25)

the impedance can then be reshaped into a state equation for the velocity fluc-
tuation:

s û =−
(

b1

b2
− a0

a1

)
û −

b0
b2
− a0

a1

(
b1
b2
− a0

a1

)
s+ a0

a1

û + a1

b2

p̂

ρ̄c̄
, (5.26)

still being a nonlinear function of the Laplace variable. Again introducing a
substitute variable ϕ̂= û/(s+ a0

a1
) leads to the linear state-space system

s

(
û
ϕ̂

)
=

(
a0
a1
− b1

b2

a0
a1

(
b1
b2
− a0

a1

)
− b0

b2

1 −a0
a1

) (
û
ϕ̂

)
+

(
a1
b2

0

)
p̂

ρ̄c̄
(5.27)

with the input quantity p̂/(ρ̄c̄). This state-space system can now easily be
transformed into the TD.
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Since the rational function fit still poses a linear relation between pressure
and velocity fluctuations it is generally not capable of reproducing amplitude-
dependent, nonlinear damping characteristics. Still, the shape of eq. (5.25)
and (5.26) now allow for a direct comparison of the individual fitting parame-
ters with the acoustic analogy (3.20) by a comparison of coefficients. The first
term on the RHS of eq. (5.26) is of zeroth order in the Laplace variable and
can thus be attributed to the damping factor, also defining the mechanical re-
sistance. For a single-layer resonator characterized with Bellucci’s model, the
resistance (3.33) and thus the damping factor is composed of two terms:

1. the nonlinear pressure loss due to acoustic-vortex interactions (index v)
exclusively contributing to the resistance and

2. the linear viscous losses (index µ) only contributing to the resistance in
terms of the propagation constant’s imaginary part.

If the acoustic velocity is lower than the bulk velocity, those two mechanism
may be summarized as (cf. section 3.3.4)

Rv =− Φ̂

σû0
=− ρ̄ζl i nū0

σ
, (5.28)

Rµ = ωρ̄

σ
tI(Γ) . (5.29)

Both mechanisms are compared with each other in Fig. 5.2 for selected ori-
fice radii, Mach numbers and liner thicknesses at ambient conditions. The
parameters were selected in accordance with [179]. It may be seen that the
acoustic-vortex interactions dominate the viscous losses for all considered
parameters. Particularly for increasing orifice Mach numbers and increasing
ratios between orifice radius to thickness, the viscous losses are negligible.
Therefore, the entire resistance of the linearized damper may approximately
be attributed to the linear part of the nonlinear acoustic-vortex interactions
Rv . This corresponds to the linear part of the pressure drop in the FD, eq.
(3.27). A comparison with the nonlinear form in the TD, eq. (3.26), reveals the
equivalence of the terms 2ūû in the FD and

(|ū0 +u′
0|

(
ū0 +u′

0

)−|ū0|ū0

)
in the

TD in the case of linear damping characteristics (|û| < |ū|). After transforming
eq. (5.27) by means of an inverse Laplace transform, this can be exploited to
convert the originally linear resistance into a nonlinear loss term yielding the
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Figure 5.2: Ratio of the linear viscous (Rµ) and nonlinear vortical (Rv ) part of
Bellucci’s resistance at ambient conditions (p = 1bar, T = 300K).
Left: r = 1mm, Center: r = 2mm, Right: r = 3mm.

following nonlinear state equation:

d

dt

(
u′

ϕ′

)
=

(
0 a0

a1

(
b1
b2
− a0

a1

)
− b0

b2

1 −a0
a1

)
︸ ︷︷ ︸

Ad

(
u′

ϕ′

)
︸ ︷︷ ︸

xd

+
(

a1
b2

0

)
︸ ︷︷ ︸

Bd

p ′

ρ̄c̄

+
 a0

a1
−b1

b2
2ū
0


︸ ︷︷ ︸

Nd

[(
ū +u′)∣∣ū +u′∣∣− ū |ū|] .

(5.30)

The resistance was extracted from the damper system matrix Ad and now
forms a nonlinearity matrix Nd . It can be considered an input matrix for the
nonlinear velocity fluctuations. The regular input matrix Bd allows for a cou-
pling with the Generalized Discrete MAE of the combustor. A block diagram of
this nonlinear state-equation including the coupling with ROM in terms of the
Generalized Discrete MAE is presented in Fig. 5.3. Selectors (black bars) were
included to only extract the velocity or its temporal derivative from the state
vector xd . At the same time, the selector connected to the combustor can also
be interpreted as the output matrix of the damper, having only a unity flag at
the (1,1) element to extract the velocity fluctuation’s temporal derivative.
Eventually, the nonlinear damper model in conjunction with the Generalized
Discrete MAE and the consistent linear procedure presented in the previ-
ous chapter poses an elegant approach to investigate the effect of nonlinear
damping mechanisms on limit-cycle oscillations.
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Figure 5.3: Signal flow diagram of the nonlinear damper model and its cou-
pling with the ROM of the combustor.
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6 Industrial-Scale Combustor

The methodology to predict the thermoacoustic stability proposed in the
present thesis as summarized in Fig. 1.4 comprises multiple steps. All of those
steps have been theoretically covered in the previous chapters with specific
focus on the novelties presented in this work. A major asset of the entire pro-
cedure is the computational efficiency of each individual step. It is therefore
predestined for the application to large-scale systems, which is demonstrated
on the basis of a geometrically complex configuration representative for an in-
dustrial combustion chamber in this chapter. To begin with, a typical SIEMENS

ENERGY combustor is introduced in section 6.1. A geometrically similar con-
figuration is then used for the linear modeling procedure in section 6.2 includ-
ing a suitable domain split as well as the characterization of the perforated
liners and the burners. For the linear stability assessment, a modal stability
analysis is performed with the results being presented in section 6.3. Using the
modal data for a modal model order reduction in section 6.4 finally allows for
the investigation of nonlinear modal interactions and limit-cycle oscillations.
Due to a lack of validation data and the geometrical abstraction of confiden-
tial details, the corresponding studies may be considered a proof of concept
for the proposed methodology to predict limit-cycle oscillations of large-scale
systems based on nonlinear damping mechanisms.

6.1 Platform Combustion System

Meeting the high regulatory standards regarding NOx and CO emissions at
a wide load range and high efficiency, the products of the 8000H series of
SIEMENS ENERGY are state-of-the-art gas turbines [202]. Depending on the
specific machine, 12 (SGT6-8000H) or 16 (SGT5-8000H) can-annular com-
bustion chambers based on an Ultra Low NOx (ULN, [203]) Platform Com-
bustion System (PCS, [204]) as schematically shown in Fig. 6.1 are installed.
Compressed air is guided through the flow box into the flow sleeve, where it
is directed into the plenum via an annular perforated liner to homogenize the
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Figure 6.1: Sketch of a SIEMENS ENERGY H-Class can-annular combustion
chamber based on Sattelmayer et al. [2].

flow. After a 180◦ flow turn across this flow conditioner, the air passes a central
pilot burner and eight concentrically arranged main burners equipped with
swirlers. The subsequent combustion chamber consists of a nearly cylindrical
basket and a transition section guiding the hot gases to the annular turbine
inlet. To control thermoacoustic oscillations mainly observed at part load,
the basket is equipped with flush-mounted dual-layer perforated resonators.
These are purged with air from the flow box to prevent damage from hot gas
ingestion into the resonator cavities (cf. section 1.2.2). Fuel is added to the
compressed air in five independently operating fuel stages [2, 202, 203]:

• PD: A pilot diffusion stage is realized via a central fuel lance and plays a
crucial role for ignition.

• A/B: The concentrical main burners are divided into two azimuthally al-
ternating groups. The ratio of fuel between the main stages is referred to
as A/B bias.

• C: For increased loads, fuel is added to the flow in the flow sleeve.

• D: A premixed pilot stage is realized via fuel addition through the pilot
swirler vanes.

The specific operating conditions at part load considered in the subsequently
presented numerical analysis are listed in Tab. 6.1.
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Table 6.1: Operating conditions of the industrial-scale configuration.

Pressure [bar] Load [%] Active Stages A/B bias [%] Fuel

12.6 50 PD, A, B, C, D 70 Natural Gas

6.2 Hybrid Model of the Industrial-Scale Combustor

Representing the first three steps in the overall stability analysis procedure of
Fig. 1.4, the present section covers the linear model creation of a configura-
tion similar to the PCS.1 Already at this point, the frequency range subject to
the following stability analysis must be known. For the present demonstra-
tion of the developed analysis strategy, an investigation of HF thermoacoustic
instabilities is pursued. Representative for HF oscillations, a target frequency
f0,PC S in the vicinity of the first transversal combustor mode is thus selected.
This frequency will also be used as the linearization point for the employed
linearized FTFs (s0,PC S = i 2πf0,PC S) according to section 4.5.2.

6.2.1 Domain Split and FEM setup

Following the procedure presented in section 4.1, the PCS is first characterized
using the local Helmholtz number and then split into subdomains. Down-
stream of the combustor, the turbine can be split from the transition right
upstream of the first guide vane row, which features low Helmholtz num-
bers. On the upstream end, the perforated flow conditioner connecting the
flow sleeve with the plenum is predestined to split the compressor side from
the thermoacoustic computational domain. The perforation locally yields low
Helmholtz numbers and considerable acoustic damping. In a simplistic way,
the flow conditioner can then be considered as locally reacting. That is, the
acoustic response of a boundary at a certain position exclusively depends on
the local acoustic field independent of the acoustic field at neighboring po-
sitions. In the case of the flow conditioner, this precludes the coupling with
the upstream components. This applies similarly to the dual-layer perforated
resonators: the acoustic field transmitted into the flow box is considered suf-

1Due to the geometric similarity to the original PCS, the considered abstracted configuration is henceforth
also simply referred to as PCS.
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ficiently low to prevent a coupling between the individual resonators. There-
fore, also the acoustically compact resonators are split from the basket at the
liner mounting plane. Finally, also the burners are acoustically compact and
can be split from the plenum and the basket at the corresponding face plates.
Due to their overall large Helmholtz numbers, the plenum, basket and transi-
tion need to be resolved using 3D-FEM due to their overall large Helmholtz
numbers. Figure 6.2 shows the corresponding disconnected computational
domains including the mesh consisting of approximately 261k tetrahedral el-
ements.

Plenum Burners Basket Transition

A

A B

B

A – A B – B

Inlet Outlet
Perforated Liners

Figure 6.2: Disconnected FEM domains including the unstructured tetrahe-
dral mesh of the investigated complex configuration. The burn-
ers connecting the two domains in terms of transfer matrices are
indicated by double arrows. Top: Top view with the inlet, out-
let and perforated liner patches highlighted in blue. Bottom left:
View on the basket’s face plate with the downstream coupling sur-
faces of the burners highlighted in blue. Bottom right: View on
the plenum’s face plate with the upstream coupling surfaces of the
burners highlighted in blue.
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A prerequisite for the 3D-CA simulations of the targeted hybrid CFD/CA ap-
proach is the mean flow field data for the operation point summarized in Tab.
6.1, which was provided by SIEMENS ENERGY. It stems from a reactive Unsteady
Reynolds-Averaged Navier-Stokes (URANS) simulation using a Burning Veloc-
ity Model. For turbulent closure of the governing equations, a modified SST
model was applied. Figure 6.3 shows cross-sections of the CA domains with
the interpolated mean fields of the temperature and the volumetric heat re-
lease rate obtained from the time-averaged URANS results.

¯̇qmax

0
Burners

Tmax

Tmi n

Figure 6.3: Mean temperature (left) and mean volumetric heat release rate
(right) fields interpolated on the FEM mesh of the investigated
complex configuration. The excluded burner geometries are indi-
cated by double arrows.

The mean flow fields also contain essential information about the local Mach
number, being the major indicator for the mean flow advection of acoustic
waves. As demonstrated in section 4.6, this mean flow advection has a neg-
ligible impact on the results of a stability analysis for low mean flow Mach
numbers (Ma. 0.1). In this case, dropping the mean flow velocity by employ-
ing the energetically consistent Helmholtz equation is expected to accurately
predict the system’s eigenfrequencies and growth rates. In the considered con-
figuration, the mean flow Mach number considerably exceeds values of 0.1
in the combustion chamber. Therefore, the consistent convective Helmholtz
framework of eq. (4.14) yields more accurate results. Since it approximately
comes at equal computational cost as the HE for quiescent fluids, the CHE is
selected for the pursued modal stability analysis.
Using the consistent CHE framework for the 3D-CA part requires the specifica-
tion of boundary conditions suitable for quiescent fluids. Most of the bound-
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6.2 Hybrid Model of the Industrial-Scale Combustor

aries are walls, represented by the gray surfaces in Fig. 6.2. At wall boundaries,
the normal mean flow velocity vanishes, corresponding to the zero mass flow
impedance for quiescent fluids as discussed in section 2.6.4, which reads:

z
ˆ̇m,M=0 =−∞ . (6.1)

The remaining boundaries of Fig. 6.2 are highlighted in blue and require a
more detailed discussion. The turbine inlet resembles the outlet of the com-
putational domain and features high Mach numbers. Making the simplified
assumption of a choked turbine inlet corresponds to a wall boundary (6.1) for
the outlet. To circumvent a complex characterization of the perforated flow
conditioner, it is simply modeled as a sudden area change by means of the cor-
responding transfer matrix representation (4.46). Additionally assuming the
apertures to be non-reflecting yields a suitable inlet impedance formulation
as a function of the flow conditioner’s porosity σFC . For quiescent fluids this
impedance simplifies to

zM=0
i nlet =

1

σFC
= 20 . (6.2)

For the present investigation, eight dampers with equal azimuthal distance
are applied to the basket as indicated in Fig. 6.2. Furthermore, the coupling
surfaces for the burners are highlighted in cross-sectional views. Sophisticated
models are required to characterize those elements in the subsequent sec-
tions.

6.2.2 Resonator Model

Multi-layer perforated resonators combine the benefits of Helmholtz res-
onators and perforated liners (cf. section 1.2.2). At the resonance frequency,
predominantly determined by the cavity volume between the single layers,
the acoustic amplitudes and thus the damping capabilities of the resonator
are considerably amplified. Compared to Helmholtz resonators, multi-layer
resonators exhibit more broadband damping characteristics [71] and provide
uniform wall-cooling when being purged with compressed air [70]. This purge
air is vital to prevent hot gases from entering the resonator cavities potentially
damaging the dampers.
For practical applications, dual-layer perforated resonators are a great trade-
off between the aforementioned benefits, production cost and space de-
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mands. For this reason, such dual-layer resonators as schematically depicted
in Fig. 6.4 are also employed to the PCS. The resonator cavity with solid side
walls is terminated by a perforated plate on each side. One perforated plate
is facing the cold section between flow box and flow sleeve while the second
one is flush-mounted to the combustion chamber. A purge air flow is facili-

Combustion chamber

Flow BoxPurge air

lC

Hot gases

p̄C , T̄C , ρ̄C , νC , κC

σ2, r2, t2

σ1, r1, t1

Figure 6.4: Schematic of a dual-layer resonator employed in the PCS.

tated by the pressure drop between flow box and combustion chamber. While
the flush-mounted perforated plate is designed to obtain the desired damping
characteristics, the upstream perforated plate facing the flow box may be used
to meter the mass flow rate [70].
To determine the overall resonator impedance at the combustion chamber in-
terface, the general framework to characterize multi-layer resonators in sec-
tion 3.3 may be used. It requires the transfer impedances of the individual
perforated plates, which are characterized using the Bellucci model as per sec-
tion 3.3.4. Additionally, a termination boundary condition zBC to represent the
acoustic scattering at the interface between resonator and flow box is sought.
Since the flow box represents a large volume, the transition from the upstream
perforated plate to the flow box may be considered a sudden area change with
a vast area ratio. This may conservatively be approximated by an open end
boundary condition zBC ,r es = 0.
While the geometric parameters of the resonator components may be cho-
sen almost freely to obtain the desired damper characteristic, the thermody-
namic properties are determined by the operating conditions. For low acous-
tic amplitudes, a normally damped resonator with a resonance frequency at
f ≈ 0.9f0,PC S (cf. the results of the modal stability analysis in section 6.3) is
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targeted for the present study. Recall from eqs. (3.27) and (3.33) that at high
acoustic velocity amplitudes exceeding the mean flow velocity, the resonator’s
resistance becomes nonlinear. For a normally damped resonator, this nonlin-
earity leads to increased damping up to an optimally damped state as elab-
orated in section 3.3.1. The targeted damping characteristic of the employed
dual-layer resonator is obtained by using the geometric and thermodynamic
parameters as listed in Tab. 6.2.

Table 6.2: Geometric and thermodynamic properties of the dual-layer perfo-
rated resonators.

Perforated plate σ [ ] r [m] t [m] ū0 [m/s]

1 3.5 × 10−3 4 × 10−4 3.3 × 10−4 35.54
2 5.32 × 10−2 1.2 × 10−3 3.3 × 10−3 2.37

lC [m] p̄C [bar] T̄C [K] ρ̄C [kg/m3] νC [m2/s] κC [ ]

0.046 12.6 650 6.72 4.9 × 10−6 1.37

The resulting end impedance at the interface to the combustion chamber
may be transformed into a reflection coefficient using eq. (2.32). This is more
meaningful, since the reflection coefficient directly correlates with the re-
flected acoustic energy. In Fig. 6.5, the reflection coefficient of the resona-
tor design is plotted for different acoustic amplitude levels. While the nor-
mally damped (ND) characteristic (dashed curves) results for low acoustic
amplitudes, the optimally damped (OD) characteristic (solid curves) is ob-
tained due to nonlinear damping mechanisms at elevated amplitude levels.
The black curves represent the characteristics of the procedure described in
section 3.3 employing the Bellucci model. Based on a rational function fit of
the ND Bellucci curve in the linear amplitude regime, a nonlinear state-space
model has then been created according to the procedure developed in sec-
tion 5.4.2. To recreate the frequency-dependent reflection coefficient, simula-
tions for a wide range of frequencies have been performed with this model in
the TD. Subsequently Fourier-transforming the harmonic TD signals for the
two different amplitude levels then yields the red curves in Fig. 6.5. With the
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Figure 6.5: Comparison of the resonator’s reflection coefficients obtained
from the original Bellucci model (black) and the state-space model
based on a rational function fit of the ND Bellucci curve (red) at dif-
ferent acoustic amplitude levels (ND and OD).

state-space model being fitted to the ND Bellucci curve, it is not surprising
that the reflection coefficients for both approaches are in excellent agreement
at low amplitudes. At elevated acoustic amplitudes, the resonator reaches a
nearly optimally damped state, with the entire incident acoustic energy be-
ing absorbed at the resonance frequency (|R| = 0). In this nonlinear state, the
reflection curves moderately deviate for the original multi-layer characteriza-
tion and the fitted state-space model. While the resonance frequency remains
constant for the state-space model, it shifts to higher frequencies for the Bel-
lucci model. This is due to the nonlinearity of the empirical end-correction
term η(Srac) in eq. (3.32), which can not be captured by the fit. Overall, the
qualitative agreement between both setups is still acceptable. This is also con-
firmed by the amplitude levels at which the two models predict an optimally
damped oscillator as listed in Tab. 6.3. The relative deviation is 13% and stems
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from the inaccurate assumption of the generally linear viscous losses to also
be of nonlinear character (cf. section 5.4.2).

Table 6.3: Acoustic velocity amplitudes for optimal damping of the dual-
layer resonator using the multi-layer characterization and the fitted
state-space model.

|ûBel lucci | [m/s] |ûSt ate−Space | [m/s] Relative Deviation [%]

1.85 1.61 13

6.2.3 Burner Transfer Matrices

Although being complex and small-scale geometric elements, the burners in-
cluding the swirlers of the PCS only slightly impact longitudinal waves pass-
ing those components. This impact is limited to a constriction of the cross-
sectional area, an elongation of the propagation distance according to the
swirler vane’s chord length and a pressure loss due to viscous and turbulent
losses in the swirling flow. These mechanisms can be reproduced by a series
of duct elements and sudden area changes as presented in section 3.2. Re-
garding the burners of the PCS, the cross-sectional area is nearly constant up-
stream and downstream of the swirler section. Essentially, the abstracted net-
work of the burners as depicted in Fig. 6.6 thus consists of three duct elements
connected by sudden area changes. The central duct element D2 exhibits a
smaller cross-sectional area than the remaining ducts. This mimics the con-
striction of the streamlines due to the burner’s swirler vanes. The trailing area
change AC3 is mainly added to include acoustic losses that are expected to
be induced at the interface of burners and face plate due to flow separation.

f̂3 f̂4

ĝ3 ĝ4

f̂1

ĝ1

f̂2

ĝ2

f̂5

ĝ5

D1 D2 D3AC1 AC2 AC3

Figure 6.6: 1D network model of the PCS burners.

The specifications of the individual elements for both, the pilot as well as the
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eight identical main burners, are listed in Tab. 6.4. The geometric parameters
of the burners are normalized by the hydraulic diameter downstream of the
trailing area change AC3. This hydraulic diameter d4 corresponds to the cou-
pling interface of the burners with the combustion chamber. Since the Mach

Table 6.4: Parameters of the 1D network to acoustically describe the pilot and
main burners of the PCS. The naming is in accordance with Fig. 6.6.

Burner Duct
Element

l/d4

[ ]
d/d4

[ ]
AC
Element

Mu

[ ]
Au/Ad

[ ]
∆pl /pt

[%]

Pilot D1 0.4138 0.6962 AC1 0.10 1.61 0
D2 0.1153 0.5482 AC2 0.16 0.68 0.3
D3 0.798 0.6665 AC3 0.11 0.44 0.7

Main D1 0.165 1.042 AC1 0.10 1.29 0
D2 0.420 0.919 AC2 0.13 0.84 0.3
D3 1.454 1 AC3 0.11 1 0.7

number is reasonably low, the low Mach number approximation (4.46) for the
sudden area change can be employed. In accordance with eq. (4.47), the pres-
sure loss over the total pressure ∆pl /pt corresponds to the total pressure loss
coefficient β.
The 1D network model finally yields overall burner transfer matrices for the pi-
lot and the main burners including the mean flow advection of sound waves.
For an energetically consistent coupling of the FEM domains solving the CHE,
the transfer matrices need to be energetically transformed by means of the
procedure presented in section 4.4. In Fig. 6.7, the resulting scattering ma-
trix coefficients are plotted for a single main burner. In addition to the SM
coefficients, also the absolute value of a dissipation coefficient D is plotted.
It originates from the idea that the entire incident acoustic energy is either
reflected, transmitted or dissipated. For the upstream side, this may be ex-
pressed in terms of the upstream reflection and transmission coefficients as
(cf. section 4.4 and [133, 205])

|Du|2 = 1−|Ru|2 − Ad

Au
|Tu|2 , (6.3)

and equivalently for the downstream side. Plots of the scattering matrix coef-
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Figure 6.7: Energetically transformed scattering matrix coefficients of a single
main burner obtained from a 1D network.

ficients for the pilot burner are provided in Appendix G. Additionally, also the
corresponding coefficients for the original scattering matrix without energet-
ical transformation are plotted there.

6.3 Modal Analysis Results

After coupling the 3D-FEM domains with the 1D characteristics and interpo-
lating the mean flow field, the model is ready for linear modal stability anal-
ysis. Three setups as listed in Tab. 6.5 are considered. All of them are com-
puted on the basis of the CHE (4.14) and do thus incorporate the advection
of acoustic waves along the 3D mean flow velocity. However, they differ by
the boundary conditions applied to the perforated liner patches, cf. Fig. 6.2.
Those damper patches are replaced by wall boundary conditions in the setup
No Dampers. Instead, the frequency dependent boundary impedances corre-
sponding to the liner characteristics ‘ND State-Space’ and ‘OD State-Space’
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Table 6.5: Configurations for the modal stability analysis of the PCS.

Setup Acoustic
Equation

Damper Patch BC FTF

No Dampers CHE (4.14) Wall ˆ̇qρ+ ˆ̇q∆ (4.44)

ND Dampers CHE (4.14) ND State-Space
(red dashed line in Fig. 6.5)

ˆ̇qρ+ ˆ̇q∆ (4.44)

OD Dampers CHE (4.14) OD State-Space
(red solid line in Fig. 6.5)

ˆ̇qρ+ ˆ̇q∆ (4.44)

are used as boundary conditions in the setups ND Dampers and OD Dampers,
respectively. In accordance with the consistent CHE framework, the bound-
ary conditions of all three setups are transformed to comply with the zero
Mach number assumption, cf. sections 4.3.2 and 4.4. Furthermore, the driv-
ing mechanisms of flame deformation and flame displacement represented
by eqs. (4.44) are used to model the acoustics-flame interactions. In summary,
four contributions to the acoustic energy balance can be distinguished: while
the contributions from flame driving as well as from damping induced by the
flow conditioner and the burner transfer matrices can be assumed to be equiv-
alent for all three setups, only the contribution from the damper patches is
notably varied. Due to its lowest system damping, the setup without dampers
is expected to predict the least stable eigenmodes, whereas introducing addi-
tional damping via the perforated liner patches will supposedly increase the
stability of the system.
The entire computational model is linearized by means of the state-space
framework elaborated in section 4.5 yielding a duplication of degrees of free-
dom (DOF). In combination with the selected quadratic element order, the
DOF add up to approx. 747k for all setups. The modal stability analysis is per-
formed with the standard Eigenvalue solver of COMSOL MULTIPHYSICS® [206],
which uses the MUMPS software [207]. To increase the solution’s accuracy, the
relative tolerance parameter to determine convergence is reduced to 10−7. For
each of the setups, the ten eigenmodes closest to the target frequency f0,PC S

are computed. The resulting eigenvalues are plotted in the stability map of
Fig. 6.8. It shows the growth rate α over the normalized oscillation frequency
of each eigenvalue with the stability limit being highlighted by a dashed line.
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Figure 6.8: Stability map of eigenmodes computed in the vicinity of the target
frequency f0,PC S .

Each of the ten eigenmodes is assigned an individual symbol, whereas the
different setups are distinguished by different colors. Figure 6.9 exhibits the
mode shapes of all ten eigenmodes in terms of the pressure magnitude, corre-
sponding to their right eigenvectors.
Even in the absence of perforated liners in the setup ‘No Dampers’, six stable
modes with growth rates below zero are identified from the results (+, ◦, ∗,
4, O, /). As can be seen from Fig. 6.9, the corresponding mode shapes are
mainly confined to the plenum, which does not enclose any heat release. For
those modes, the losses at the flow conditioner and within the burners exceed
the overall flame driving. The remaining four eigenmodes are unstable with
positive growth rates (×, 3, ., �). All of the four modes show considerable
oscillation amplitudes in the flame region within the combustion chamber
(cf. the mean volumetric heat release field of Fig. 6.3 with the mode shapes of
Fig. 6.9) and are thus excited by the flame response. The first of those eigen-
modes (×) has the highest growth rate and is thus labeled most unstable. Its
oscillation frequency was targeted as resonance frequency in the design of the
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Figure 6.9: Mode shapes of the PCS without resonators in the vicinity of the
target frequency f0,PC S with the symbols in parentheses referring
to the stability map in Fig. 6.8.

perforated resonator characteristics in section 6.2.2.
Employing the normally damped characteristic of the perforated liner char-
acteristic to the eight damper patches of the PCS is supposed to introduce
additional damping already at low acoustic amplitudes. Indeed, the setup
‘ND Dampers’ yields an increased stability. However, the first (×), third (3)
and nineth (.) modes are still marginally unstable. Only the tenth mode (�)
transitions from marginal instability to stability. In contrast to the other three
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modes, the last mode shape has considerable pressure amplitudes at the liner
patches and is thus severely impacted by the dampers.
Using a transfer function based on nonlinear mechanisms in a linear com-
putational framework mimics the stability prediction at high acoustic ampli-
tudes. This methodology is a common practice when employing an amplitude
dependent flame describing function and was also exploited for the setup ‘OD
Damper’. The corresponding liner characteristic for high amplitudes is opti-
mally damped and has thus maximum damping capabilities. This is also re-
flected in the eigenvalues: all modes of the setup ‘OD Damper’ are predicted to
have negative growth rates and are thus stable. With a value ofα=−0.29rad/s,
the first eigenmode is only marginally stable, though.
Regarding the temporal amplitude evolution, the three unstable modes are
thus supposed to exponentially grow in the linear amplitude regime. As soon
as the acoustic velocity amplitude exceeds the perforated liners’ purge flow ve-
locity, the damping increases nonlinearly. Therefore, the modes are expected
to stabilize in terms of limit-cycle oscillations, which is investigated in the next
section.

6.4 Nonlinear ROM Simulations of the Large-Scale Combus-
tor

Based on the linear modal stability analysis results of the previous section, a
modal model order reduction followed by nonlinear ROM simulations are now
performed with the following objectives:

1. Proving the concept of the Generalized Discrete MAE explicated in sec-
tions 5.3 and 5.4,

2. Demonstrating its applicability to large-scale systems on the basis of the
PCS and

3. Highlighting the significance of nonlinear damping mechanisms for the
limit-cycle oscillations.

Ultimately, the results obtained from the Generalized Discrete MAE are clas-
sified by comparing them to those of comparable studies available from liter-
ature.
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6.4.1 ROM Creation

The centercore of the Generalized Discrete MAE is the bi-orthogonal basis
spanned by the left and right eigenvectors. Recall that those eigenvectors must
incorporate the linear damping mechanisms of potentially nonlinear bound-
ary patches. The ROM is thus expected to accurately reproduce the dynamics
of the combustor at low acoustic amplitudes. At high acoustic amplitudes, the
nonlinear damper model subject to the boundary source S1 (cf. Fig. 5.1) con-
stitutes additional nonlinear losses.
In the case of the PCS, only the setup ‘ND Dampers’ (cf. Tab. 6.5) includes
the required linear damping mechanisms of the resonators. Hence, it forms
the basis for the modal model order reduction. The computation of the cor-
responding right eigenvectors as presented in the previous section is a fun-
damental feature of COMSOL MULTIPHYSICS®. However, an equivalent feature
to compute the left eigenvectors does not natively exist. To circumvent this
issue, the right eigenvalue problem (5.5) is reconsidered, which may also be
written as (A− snI)vn = 0. The corresponding left eigenvalue problem may be
transformed according to

wn (A− sn I) = (A− sn I)wn = (
A− sn I

)
wn = 0 . (6.4)

It becomes obvious that the left eigenvalue problem can be converted into
a right eigenvalue problem by complex conjugation of the explicit system
matrix A (cf. eq. (5.2)) and the eigenvalue sn. A straightforward procedure to
achieve this is to extract the system matrices from COMSOL MULTIPHYSICS®

using the LIVELINK™FOR MATLAB® [208]. After complex conjugation in
MATLAB®, the matrices can be reimported into COMSOL MULTIPHYSICS® to per-
form a modal analysis resulting in the left eigenvectors and the complex con-
jugate eigenvalues.
Applying this procedure to the PCS results in the left eigenvectors correspond-
ing to the right eigenvectors of the setup ‘ND Dampers’ discussed in the previ-
ous section. To check the orthogonality of the eigenvectors, the square Gram
matrix Gm×m is of great use. It represents the elementwise inner product of a
set of spatial functions. In the case of a set of eigenvectorsφ, its elements may
be expressed as

Gi , j = 〈φi ,φ j 〉 . (6.5)

For the present study, this definition is expanded to also compare different

125



6.4 Nonlinear ROM Simulations of the Large-Scale Combustor

sets of eigenvectors, more precisely the right and left eigenvectors, with each
other. The classic Gram matrices of the right and left eigenvectors exclusively
as well as the pseudo Gram matrix of a combination of both eigenvectors are
shown in Fig. 6.10 as heatmaps. Since the eigenvectors are normalized, the
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Figure 6.10: Eigenvector Gram matrices of the setup ‘ND Dampers’. Left: In-
ner product of right eigenvectors V. Center: Inner product of left
eigenvectors W. Right: Inner product of left and right eigenvec-
tors.

inner product with each other equals one by definition. Therefore, the diag-
onal elements of the Gram matrices 〈V,V〉 and 〈W,W〉 show unity flags. If the
solved problem was self-adjoint, all other elements would be zero indicating
the modes to be orthogonal. In this case, the left eigenvector matrix would
equal the right eigenvector matrix. However, the mean flow field as well as
the frequency-dependent boundary conditions break the self-adjointness in
the PCS model. This is substantiated by the numerous non-zero elements
apart from the main diagonal. In contrast to the Gram matrices 〈V,V〉 and
〈W,W〉, the mixed Gram matrix 〈W,V〉 exhibits the desired bi-orthogonality
of left and right eigenvectors. Only slight deviations from the expected unity
matrix shape are observed, which are a result of numerical inaccuracies.
After accomplishing the modal analysis, the reduced system matrix can be
constructed as a diagonal matrix containing the eigenvalues.2 Furthermore,
the bi-orthogonal basis represented by the left and right eigenvector matri-
ces may be used to reduce the input and output matrices of the Generalized

2Recall from eq. (6.4) that the eigenvalues of the right and left eigenvalue problem are identical.
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Discrete MAE. As pointed out in section 5.4, these are required to couple the
combustor acoustics with the flame and the resonator dynamics.
Regarding the flame source, the linear mechanisms of flame deformation and
displacement have already been included in the modal analysis and are thus
part of the system matrix. Since the nonlinear flame driving mechanisms are
neglected, the closed-loop coupling between the Generalized Discrete MAE
and the flame in Fig. 5.1 vanishes. Only a stochastic contribution q̇ ′

st must
be incorporated into the TD simulations to mimic the combustion noise as
an initiator of the combustor dynamics. Despite representing an open-loop
contribution, including a stochastic flame source for HF simulations requires
similar steps as the closed-loop counterparts. First of all, the overall 3D-FEM
domain is split into acoustically compact subdomains. Due to the geometry of
the PCS, a split in cylindrical coordinates with the axial direction being in line
with the pilot burner’s axis is preferred. In the present configuration, the cylin-
drical bounding box is divided into 10×6×30 subdomains in radial, azimuthal
and axial direction, respectively. Most of those 1800 subdomains have a neg-
ligible mean heat release rate and do thus not contribute to the overall flame
driving. They may be removed when the ratio of the subvolume-integrated
mean volumetric heat release to the overall mean heat release rate is below
a threshold value. Here, an arbitrary threshold value of 0.14% was selected,
giving a total of 206 remaining subvolumes. Figure 6.11 highlights the nodes
of all 206 subdomains colored with their corresponding subdomain-averaged
mean heat release rate. For closed-loop systems, the number of subvolumes
essentially determines the computational cost of the nonlinear simulations.
Therefore, the selection of the threshold value as well as the number of split
bins is a trade-off between accuracy and computational cost. This is of mi-
nor relevance for the open-loop stochastic heat release fluctuations consid-
ered here. Independent of the loop-closure, each of the subvolumes is consid-
ered to have a uniform source strength. Regarding the combustion noise, this
source strength is assumed to be proportional to the volume-averaged mean
heat release rate in each subdomain. The input matrix is now constructed as
per eq. (F.2) as a (10×206) matrix. Additionally, every column is weighted by
the corresponding subvolume-averaged heat release rate. A white noise signal
with arbitrary but equal noise power for each of the subdomains is used as the
open-loop input.
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Figure 6.11: Compact subdomains with non-negligible heat release rate.

Each of the eight perforated liners is modeled as an individual and indepen-
dent state-space system coupled to the combustion chamber. Both, the state-
space modeling of the nonlinear dampers as well as the coupling with the
combustor acoustics is established as explicated in section 5.4.2.
The finalized Generalized Discrete MAE of the PCS are implemented in
MATLAB®. For this reason, MATLAB® SIMULINK® is an obvious choice for the
temporal integration of the ROM discussed in the next section.

6.4.2 Time-Domain Results

For the analysis of the nonlinear TD simulations, first the pressure trace is
evaluated. It is the most intuitive quantity since it is easily measurable in
real systems. Depending on the output matrix of the Generalized Discrete
MAE, the pressure can generally be extracted at any spatial location of the dis-
cretized PCS. Since it is already part of the closed-loop coupling between the
combustor acoustics and the nonlinear dampers, the pressure is evaluated at
the perforated liner patches. That comes at the additional advantage of gain-
ing access to an assessment of the dominating oscillation frequencies at the
damper locations. With the eigenmodes considered in the modal model order
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reduction being nearly symmetric regarding to the center plane of the bas-
ket, it is sufficient to only consider four of the eight resonator patches. With
reference to Fig. 6.2, these are the ones on the lower half of the top view, re-
ferring to the top-most resonator as D1. Figure 6.12 shows the temporal evo-
lution of the pressure at the four dampers. Shortly after the start of the simu-
lation, the signal is very noisy as can be observed in the left detail view for the
normalized time interval 100 ≤ t · f0,PC S ≤ 120 and its FFT below. Despite the
white noise excitation in the flame’s subvolumes, the pressure signal is already
slightly colored from the modal oscillations. It may be noted that the ampli-
tude levels of the pressure oscillations are still nearly equal at all four damper
locations. Until t · f0,PC S ≈ 2000, the amplitude levels remain fairly low and be-
gin to significantly increase afterwards. This is followed by a saturation phase
leading to limit-cycle oscillations with a stagnating oscillation amplitude de-
pending on the spatial location. Already in the exponential growth phase, sig-
nificant amplitude discrepancies between the individual considered locations
become obvious. Taking a closer look on the limit-cycle oscillations in the time
interval 6980 ≤ t · f0,PC S ≤ 7000 shows pure harmonic oscillations. A FFT of the
signals reveals the dominance of a single frequency being equal to the most
unstable first eigenfrequency (× in Fig. 6.8) for all four damper positions. The
higher amplitude levels at the second and third resonator positions may now
be explained by the pressure distribution of the corresponding mode shape of
eigenmode 1 (×) in Fig. 6.9 taking maximum values at the positions of those
patches.
Solely considering the overall pressure trace, one may assume that the expo-
nential growth only starts after t ·f0,PC S & 2000 of normalized simulation time.
However, according to theory, the linearly unstable eigenmodes are expected
to show such an amplitude gain immediately after being excited. A more de-
tailed insight into the growth of the individual eigenmodes is attained by di-
rectly examining the temporal evolution of the modal amplitudes ξn, which
are the states of the Generalized Discrete MAE. Recall that analogously to µn

in the series expansion of eq. (5.13), the states ξn quantify the contribution of
the individual eigenmodes within the ROM to the overall pressure signal. In
Fig. 6.13, the magnitudes of all ten modal amplitudes ξn are plotted on a loga-
rithmic scale over time. Exponential growth can thus be identified from curves
with constant positive slopes. Indeed, the most unstable first eigenmode ex-
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Figure 6.12: Temporal pressure evolution at four neighboring resonators in-
cluding detailed views with corresponding FFTs.
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Figure 6.13: Temporal evolution of the modal amplitude’s magnitudes |ξn(t )|
over time.

hibits a distinct exponential growth only approximately t · f0,PC S ≈ 500 after
the start of the simulation. Surprisingly, all other eigenmodes also start to ex-
ponentially grow after a short time delay. This is only expected for the three
linearly unstable modes but is also observed for the linearly stable ones. Their
amplitudes are much rather expected to remain at the level of the stochastic
forcing due to their considerable damping rates. Such an exponential growth
can only be caused by nonlinear modal interactions via the nonlinear resona-
tor patches. However, the exponential growth of the linearly stable modes can
already be observed some time before the nonlinear saturation comes into ef-
fect, flattening the modal amplitude curves at about t · f0,PC S & 2100.
A better comprehension of the mechanisms leading to the nonlinear interac-
tions can be obtained from the temporal evolution of the modal amplitudes’
phases. For better visibility, Fig. 6.14 presents the unwrapped phase over time,
which is not limited to the common range [−π,π]. Particularly at the start of
the simulation, the slope of the individual modes is increasing for increasing
mode numbers and thus increasing eigenfrequencies. This is highlighted in
the left detail view of Fig. 6.14 and can be explained intuitively: a harmonic
wave with a low frequency will exhibit a smaller integrated phase change when
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Figure 6.14: Temporal evolution of the modal amplitude’s phase ∠ξ(t ) over
time with detailed views of the unsynchronized and the synchro-
nized state.

traveling the same distance or time as a harmonic wave with higher frequency.
Within the time interval 900 ≤ t · f0,PC S ≤ 1500, however, the phase traces sud-
denly bend as may be seen from the right detail view of Fig. 6.14. Afterwards,
the phases of all eigenmodes increase at an equal slope as the most unstable
eigenmode 1. This may be interpreted as modal synchronization, which had
been investigated by Bonciolini and Noiray [209] and by Moeck et al. [210]
for only two interacting modes. Both use a generic cubic saturation term to
account for nonlinear modal interactions. Moeck et al. [210] come to the con-
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clusion, that a synchronization is only possible for eigenmodes with narrow
differences in oscillation frequencies and growth rates. While the former con-
dition is satisfied in the present case, the latter one does not apply here.
The key to understanding this unexpected synchronization lies in the bound-
ary sources and their interaction with the combustor acoustics. Recall from
section 5.3 in conjunction with Fig. 5.1 that two boundary sources are in-
cluded in the Generalized Discrete MAE: While the boundary source S1 rep-
resents the acoustic coupling between combustor and nonlinear damper
model, S2 can be interpreted as the purely linear damping part being sub-
tracted from S1. Consequently, a net boundary source represented by the
overall boundary input BSuS is mainly expected at high acoustic amplitudes.
This is confirmed by Fig. 6.15, exhibiting the time trace of the two source terms
for the linearly most unstable eigenmode 1 (× in Fig. 6.8) as well as for the lin-
early stable eigenmodes 2 (+ in Fig. 6.8) and 7 (O in Fig. 6.8). However, exclu-
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Figure 6.15: Comparison of the magnitude of boundary sources S1 and S2 for
the linearly unstable eigenmode 1 (left) as well as the linearly sta-
ble eigenmodes 2 (center) and 7 (right).

sively assessing a source term is normally not adequate to determine its ener-
getic driving capabilities as already indicated by Rayleigh’s criterion, eq. (1.2),
for the flame dynamics. Depending on the phase relation between source term
and system dynamics, the source can be both driving or damping. Similar to
the unsteady volumetric heat release rate q̇ ′ constituting a source term for the
pressure fluctuations p ′ of the CHE’s state-space representation, eq. (4.40), the
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overall boundary source terms BSuS affect the modal amplitudes ξ of the Gen-
eralized Discrete MAE, eq. (5.23). In analogy to Rayleigh’s criterion, the driving
capabilities of the overall boundary source terms for an individual eigenmode
n can thus be evaluated via

〈SS〉t ,n ∝〈ξ ·BSuS〉t ,n ≈ 1

2
R

{
ξ̂ ·BSûS

}
n

. (6.6)

In eq. (6.6), the identity (2.24) is exploited to avoid an error-prone tempo-
ral signal integration. Instead, the period-averaged energetic source SS can
be evaluated in the FD. For this purpose, the total simulation time is first di-
vided into windows of equal temporal length. Within each of the windows, the
temporal signals of the modal amplitudes ξ and the boundary source terms
BSûS are then Fourier-transformed for each eigenmode. Finally, eq. (6.6) is
evaluated in every window using the FFT values of the signals at the domi-
nating frequency. The resulting temporal evolution of 〈ξ ·BSuS〉t ,n is plotted in
Fig. 6.16 for three different eigenmodes with linear (top row) and logarithmic
scale (bottom row). Equivalent to Rayleigh’s criterion, the linearly most unsta-
ble eigenmode 1 (×) experiences an overall negative energetic source for its
stabilization (Fig. 6.16 left). In contrast, the linearly stable eigenmodes 2 (+)
and 7 (O) are subject to a positive energetic source as shown in the center and
right plots of Fig. 6.16. It may be noted that the amplitude levels of the sources
as highlighted with the logarithmic scale of the bottom row plots of Fig. 6.16
correspond to the modal amplitude levels reached at the limit cycle.
Contrary to expectations, the nonlinear resonator patches thus excite the lin-
early stable modes instead of further damping them. This phenomenon may
be interpreted by means of a mechanical analogy, where the resonator ex-
erts a force on the combustor acoustics: Already at an early instance in time
(t · f0,PC S & 800), the combustor acoustics is dominated by the eigenfrequency
of the most unstable first eigenmode (×), which coincides with the target fre-
quency of the dampers. As a result, the damper cavity also exhibits high acous-
tic amplitudes at this resonance frequency. The associated quasi-harmonic
pressure fluctuations of the resonator can be considered a force exerted on all
eigenmodes included in the ROM. Individually considering the eigenmodes
forced at a specific frequency is equivalent to a forced mechanical oscillator,
which generally oscillates at the forcing frequency even if it deviates from the
system’s eigenfrequency. This leads to the conclusion that the resonator’s high
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Figure 6.16: Comparison of the period-averaged sources 〈ξ ·BSuS〉t ,n for the
linearly unstable eigenmode 1 (left) as well as the linearly stable
eigenmodes 2 (center) and 7 (right). Top row: linear scale. Bottom
row: logarithmic scale.

amplitude oscillations forces all eigenmodes of the ROM with the same fre-
quency, resulting in a forced modal synchronization via the damper patches
as observed in Fig. 6.14. Depending on the response of the individual eigen-
modes to that forcing, their amplitudes increase to different levels. For the fi-
nal limit-cycle oscillations, though, the identified synchronization is of minor
relevance. This is due to the fact that the amplitude level of the linearly most
unstable eigenmode 1 exceeds the amplitude levels of the other eigenmodes
by approximately one order of magnitude as shown in Fig. 6.13.
To conclude this chapter, the nonlinear time-domain study with the associ-
ated results presented above are subsequently classified by means of compa-
rable studies from literature.
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6.4.3 Classification of the Time-Domain Results

Only few nonlinear thermoacoustic studies of technically relevant combus-
tion systems based on modal reduction methods are available in the litera-
ture to classify the nonlinear TD results presented in the thesis at hand. Al-
though Laurent et al. [197] investigate thermoacoustic instabilities in an annu-
lar combustor, their modeling procedure is entirely based on network models
preventing their application to HF thermoacoustics in geometrically complex
configurations. This is in contrast to the study based on a DMR performed
by Hummel et al. [100–102] investigating nonlinear flame saturation mecha-
nisms in a lab-scale combustor. The only work known to the author addressing
the coupling between the ROM of a pseudo-thermoacoustic system and non-
linear resonators was conducted by Noiray and Schuermans [196]. However,
the corresponding study is subject to strong limitations:

1. Since the orthonormal basis of the common Green’s function approach
is spanned by eigenfunctions of a self-adjoint problem (i.e. exclusively
employing wall or open-end boundary conditions), the acoustic field is
not correctly represented in the vicinity of the resonator patches.

2. To account for nonlinear saturation mechanisms, they implement an ar-
tificial amplitude limiter instead of using a universal damper model with
a nonlinear resistance term.

3. The simplistic duct-like setup investigated in [196] is not representative
for a large-scale industrial configuration.

Particularly the first two limitations are overcome by the Generalized Discrete
MAE coupled to a nonlinear damper model developed in sections 5.3 and
5.4. Its application to the geometrically complex configuration above demon-
strated that it is not limited to academic setups. The prediction of amplitude
saturation as well as synchronization of multiple eigenmodes induced by the
nonlinear damping characteristics of resonators with reduced order method-
ologies is a novelty of the present work. Providing the capability of predicting
the maximum amplitude levels of unstable combustion systems, the Gener-
alized Discrete MAE completes the efficient, accurate and robust numerical
framework pursued in the thesis at hand.
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In the present thesis, a sequential computational procedure for the analysis
of the thermoacoustic stability in gas turbine combustors is developed. Ther-
moacoustic instabilities are governed by an imbalance between driving and
damping mechanisms resulting in an exponential growth of oscillating pres-
sure amplitudes. At considerably high amplitudes, nonlinear mechanisms
eventually promote the balancing of the counteracting forces, which induces
an amplitude saturation (limit-cycle). In the proposed procedure, specific em-
phasis is put on the consideration of linear and nonlinear contributions to the
damping of a system.
Desired properties of the computational procedure are high efficiency and
accuracy, completeness and numerical robustness. Essentially, the proposed
procedure satisfying those requirements consists of three major and consec-
utive steps:

1. Creation of a combined 3D-CA and 1D network model.

2. Full order linear modal stability analysis.

3. Reduced order nonlinear time-domain simulations.

The combination of 3D-CA with 1D network models ensures a high computa-
tional efficiency. Using the popular Helmholtz equation to model the physics
in the 3D-CA part does not only come at low computational cost, but is also
highly robust. One drawback of describing the propagation of acoustic waves
with the Helmholtz equation is the negligence of the mean flow advection.
To account for the wave advection, a consistent, inhomogeneous convec-
tive wave equation is derived and transformed into the frequency-domain. In
the fashion of an acoustic analogy, terms describing the interaction between
acoustics and nonuniform mean flow fields are shifted to the RHS. For the use
with FEM discretization, its weak form including suitable boundary flux ex-
pressions to implement general impedance boundary conditions and trans-
fer matrix couplings is provided. It is proven that the volumetric RHS source
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terms can be accounted for by using boundary conditions suitable for quies-
cent fluids, which are also required for the regular Helmholtz equation. How-
ever, using common 1D network models including mean flow mechanisms
to characterize those boundary conditions yields an inconsistency with the
zero Mach number requirement at the boundaries of the 3D-FEM setup. The
corresponding discrepancies between the energetic fluxes at the interface of
domains with and without mean flow may severely falsify the stability pre-
diction. To reestablish consistency at the interface, an energetically consistent
transformation procedure for the 1D characteristics is derived. Consequently,
a novel framework consistently combining 3D-FEM based on the convective
Helmholtz equation with 1D networks is obtained. This framework represents
a nonlinear eigenvalue problem for the linear modal thermoacoustic stabil-
ity analysis at low oscillation amplitudes. Solving for the eigenvalues of a sys-
tem requires its transformation into a linear eigenvalue problem. For highest
accuracy, a linearization procedure making use of a state-space formalism is
applied to the framework.
The final linearized framework is investigated using a simple test case consist-
ing of two straight ducts subject to mean flow and coupled via a sudden area
change. The central part containing the area change is described by a transfer
matrix obtained from a 1D network model. It is used to couple the remain-
ing disconnected straight ducts resolved with 3D-FEM. As reference, the more
elaborate Acoustic Perturbation Equations (APE) setup is compared to differ-
ent Helmholtz setups. This allows to draw the following conclusions:

• The eigenvalues computed with the consistent convective Helmholtz
equation with energetically transformed boundary conditions exhibits
outstanding agreement with those of the reference APE setup.

• Using the Helmholtz equation instead, but also employing the energeti-
cally consistent boundary conditions still shows good agreement of the
eigenvalues with the reference setup. For increasing mean flow Mach
numbers, an increasing deviation of the eigenfrequencies is observed
due to the neglected mean flow in the 3D-FEM part. This also leads to
slight deviations in the predicted growth rates.

• Dropping the energetical consistency for the Helmholtz setup results in
severe errors in the predicted stability of the system.
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• Although showing an increased accuracy, the consistent convective
Helmholtz equation comes at equal computational cost and robustness
as the regular Helmholtz equation. Compared to the more elaborate APE,
the consistent convective Helmholtz equation comes at decreased com-
putational cost and is more robust while still showing the same level of
accuracy.

The third major step of the proposed stability analysis comprises the inves-
tigation of nonlinear saturation mechanisms in the time-domain. A cost ef-
ficient methodology for this purpose is provided by reduced order models
(ROM). They can be created using modal model order reduction methods,
which make use of the previously computed linear eigenmodes of the com-
bustion chamber. To consistently include the nonlinear damping mechanisms
of acoustic resonators, a novel ROM framework suitable to the convective
Helmholtz equation is developed. It is based on the Green function approach
and the widespread direct modal reduction. The framework allows to include
nonlinear volumetric and boundary sources. The latter are used to couple
the combustor acoustics with nonlinear damper models. Suitable nonlinear
damper models are proposed to be represented by a state-space system with
parameters fitted to the impedances previously computed for the linear sta-
bility analysis.
Eventually, the developed sequential procedure is applied to an industrial-
scale gas turbine combustion chamber. This test case serves as a proof of con-
cept for the newly developed nonlinear ROM framework. For this purpose, a
combined 3D-FEM and 1D network model is created first. Driving is provided
by the linear mechanisms of flame deformation and displacement. They are
suitable for the investigation of high-frequency thermoacoustics of perfectly
premixed flames with the convective Helmholtz equation. Damping is exclu-
sively introduced via the boundaries at the plenum inlet, the transfer ma-
trix representation of the burners and the perforated resonators at the com-
bustion chamber wall. This yields three linearly unstable modes in the vicin-
ity of the first transversal mode. Due to their low purge flow velocities, only
the resonators are expected to exhibit nonlinear damping effects. Since the
acoustics-flame interactions are assumed to be exclusively linear, the dampers
are also the only nonlinearity considered in the subsequent ROM simulations.
From the corresponding results, the following conclusions are drawn:
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• The exponential amplitude growth initially observed for the most unsta-
ble eigenmode is indeed saturated by nonlinear damping mechanisms,
leading to limit-cycle oscillations at a constant amplitude.

• Unexpectedly, also linearly stable eigenmodes exhibited exponential
growth once the most unstable mode reached a certain amplitude level.
Investigating the phase of the modal amplitudes leads to the conclusion
that those modes are synchronized with the dominating, most unstable
mode. In this case, the resonant damper actually excites the linearly sta-
ble eigenmodes.

• Both, the prediction of amplitude saturation as well as the modal syn-
chronization on the basis of ROM coupled with nonlinear resonator
models is a novelty of this thesis. It highlights the necessity of accurately
capturing the linear and nonlinear contributions to system damping for
a reliable stability prediction.

The development of the sequential computational procedure and its applica-
tion to the geometrically complex combustor raises a number of open issues,
which are not in the scope of the present thesis:

• Most notably, the procedure requires an extensive validation. A suitable
validation case exhibits self-excited thermoacoustic instabilities from a
perfectly premixed flame and can be equipped with dampers.

• The only nonlinearity considered in the present thesis stems from
damper impedances. Generally, also the energy losses within the used
transfer matrices can exhibit a nonlinear behavior. With the theoretical
framework developed in this thesis, such a nonlinearity can be easily in-
cluded in the future.

• Along the entire sequential procedure proposed in the present thesis, all
contributions to the overall damping of the system have been included
via boundary conditions described by 1D networks. Therefore, the losses
are spatially concentrated, which is an oversimplification of spatially dis-
tributed source regions found in reality. Capturing this spatial distribu-
tion requires the development of volumetric energy sinks in the future.
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• Ultimately, the considered linear acoustics-flame interaction mecha-
nisms are limited to perfectly premixed combustion. To increase the
technical significance, more elaborate linear and nonlinear models need
to be developed, which also capture equivalence ratio fluctuations in
high-frequency thermoacoustics.

Due to the modular character of the proposed sequential procedure, such
future developments can be included in a straightforward manner. Having
demonstrated its general applicability to large-scale systems might make this
framework attractive for future developments in both, academic and indus-
trial environments.
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A Acoustic Source Term Filtering for LEE

This appendix provides a detailed derivation of the APE discussed in section
2.2.3. It is based on the source term filtering according to [109] for the LEE,
eqs. (2.8), which are reshaped in a first step. Only the purely acoustic terms
remain on the left-hand side (LHS) while the remaining terms are shifted to
the right-hand side (RHS), yielding

∂ρ′

∂t
+ ρ̄∇·u′ =−ū ·∇ρ′−u′ ·∇ρ̄−ρ′∇· ū , (A.1a)

∂u′

∂t
+ 1

ρ̄
∇p ′ =−ū ·∇u′−u′ ·∇ū− ρ′

ρ̄
ū ·∇ū , (A.1b)

∂p ′

∂t
+κp̄∇·u′ =−ū ·∇p ′−u′ ·∇p̄ −κp ′∇· ū+ (κ−1) q̇ ′ . (A.1c)

This system of equations may be written in the vectoral form

∂U

∂t
+ ∂E

∂x
+ ∂F

∂y
+ ∂D

∂z
= S , (A.2)

with the state vector U = (ρ′,u′, v ′, w ′, p ′)T and the flux and source vectors E,
F, D and S. Applying a combined Fourier and Laplace transform then leads to

AŨ = G̃ . (A.3)

Here, Ũ denotes the transformed state vector and G̃ = i
(
S̃+U∗

0 /2π
)

is the
transformed source vector, which incorporates the spatially transformed ini-
tial condition U∗

0 . The system matrix A reads

A =


ω −ρ̄α −ρ̄β −ρ̄γ 0
0 ω 0 0 −α

ρ̄

0 0 ω 0 −β

ρ̄

0 0 0 ω −γ

ρ̄

0 −κp̄α −κp̄β −κp̄γ ω

 , (A.4)

which is a function of mean quantities, the complex angular frequency ω and
the spatial wave numbers in x, y and z direction α, β and γ, respectively. The

172



Acoustic Source Term Filtering for LEE

eigenvalues of this system matrix are

λ1,2,3 =ω ,

λ4,5 =ω± c̄ξ ,

where ξ = √
α2 +β2 +γ2 represents the absolute value of the spatial wave

number. The corresponding eigenvectors x1−5 are combined to form the
eigenvector matrix according to

X = (x1,x2,x3,x4,x5)

=


1 0 0 c̄−2 c̄−2

0 −β −γ − α
ρ̄c̄ξ

α
ρ̄c̄ξ

0 α 0 − β

ρ̄c̄ξ
β

ρ̄c̄ξ

0 0 α − γ

ρ̄c̄ξ
γ

ρ̄c̄ξ

0 0 0 1 1

 .
(A.5)

Note that these are the same eigenvectors that [124] found for the LEE with a
constant mean flow in x-direction. The adjoint eigenvector matrix then reads

X−1 =
((

x−1
1

)T
,
(
x−1

2

)T
,
(
x−1

3

)T
,
(
x−1

4

)T
,
(
x−1

5

)T
)T

=



1 0 0 0 −c̄−2

0 − β

ξ2
α2+γ2

αξ2 − βγ

αξ2 0

0 − γ

ξ2 − βγ

αξ2
α2+β2

αξ2 0

0 − ρ̄c̄α
2ξ − ρ̄c̄β

2ξ − ρ̄c̄γ
2ξ

1
2

0 ρ̄c̄α
2ξ

ρ̄c̄β
2ξ

ρ̄c̄γ
2ξ

1
2

 .
(A.6)

The source term components impacting the single mode types (i.e. acoustic,
vortical or entropic modes) may now be identified by creating a source term
filtering matrix T using the eigenvectors and their corresponding adjoints as
per

T =∑
i

xi

(
x−1

i

)T
. (A.7)
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Consequently, a matrix to filter the source terms purely impacting the acoustic
field results from the acoustic eigenvectors and their adjoints

Ta = x4

(
x−1

4

)T +x5

(
x−1

5

)T

=



0 0 0 0 c̄−2

0 α2

ξ2
αβ

ξ2
αγ

ξ2 0

0 αβ

ξ2
β2

ξ2
βγ

ξ2 0

0 αγ

ξ2
βγ

ξ2
γ2

ξ2 0

0 0 0 0 1

 ,
(A.8)

whereas the pure vortical and entropic filter matrices, respectively, yield

Tv = x2

(
x−1

2

)T +x3

(
x−1

3

)T

=



0 0 0 0 0

0 β2+γ2

ξ2 −αβ

ξ2 −αγ

ξ2 0

0 −αβ

ξ2
α2+γ2

ξ2 −βγ

ξ2 0

0 −αγ

ξ2 −βγ

ξ2
α2+β2

ξ2 0

0 0 0 0 0

 ,
(A.9)

Ts = x1

(
x−1

1

)T

=


1 0 0 0 −c̄−2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
(A.10)

Note that the sum of the filter matrices results in a (5×5) unity matrix. The fil-
tered acoustic part of the transformed source vector G̃a = Ta ·G is then shifted
to the LHS of the equation system (A.1). Subsequently applying the inverse
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combined Fourier and Laplace transform then leads to the form

c̄2∂ρ
′

∂t
+ c̄2ρ̄∇·u′+ ū ·∇p ′+u′ ·∇p̄ +κp ′∇· ū

− (κ−1) q̇ ′ = Sv,s
ρ ,

(A.11a)

∂u′

∂t
+ 1

ρ̄
∇p ′+∇(

ū ·u′)= Sv,s
u , (A.11b)

∂p ′

∂t
+κp̄∇·u′+ ū ·∇p ′+u′ ·∇p̄ +κp ′∇· ū

− (κ−1) q̇ ′ = 0 .
(A.11c)

The remaining source terms on the LHS of eq. (A.11) only excite the vortical
and entropic modes and read

Sv,s
ρ = ū ·∇p ′+u′ ·∇p̄ +κp ′∇· ū

− c̄2 (
ū ·∇ρ′+u′ ·∇ρ̄+ρ′∇· ū

)
,

(A.12a)

Sv,s
u =−(

Ω′× ū
)− (

Ω̄×u′)− ρ′

ρ̄
ū ·∇ū . (A.12b)

The acoustic part of the original source term of the linearized momentum
equation (A.1b) conforms to the formulation of [109], who show that this part
can be described by the gradient of a potential function. Hence, the sought
part of the source exclusively exciting the acoustic modes is the purely irrota-
tional part. It can be identified by exploiting the vector identity ū·∇u′+u′·∇ū =
∇(

ū ·u′)+ (
Ω′× ū

)+ (
Ω̄×u′) with the rotation of the mean and the fluctuating

velocity Ω̄ = ∇× ū and Ω′ = ∇× u′, respectively. Then, the only irrotational
part in the momentum source term is the term ∇(

ū ·u′), which is considered
the acoustic part and was thus shifted to the LHS of eq. (A.11b). The LHS of
the momentum equation (A.11b) is slightly different as the formulation ob-
tained from [109] as the second term does not include the gradient of the
mean flow density. As a result, the acoustic velocity is not necessarily irrota-
tional if density gradients are present. These may constitute baroclinic effects
if the cross product of the density gradient and the acoustic velocity does not
vanish, which is discussed by [103]. This effect may be considered a refraction
of acoustic waves passing density gradients, which is not considered in classi-
cal acoustics but may play an important role in performing stability analyses
of thermoacoustic systems.
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The LHS of eq. (A.11b) and (A.11c) of the APE system are not depending on the
density fluctuations. Therefore they form a closed set of acoustic equations if
the source terms on the RHS are known a priori.
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B Partial Integration for the Weak Form of
the Convective Helmholtz Equation

To discretize the inhomogeneous convective Helmholtz equation (4.2) with
FE methods, its weak form is required in section 4.3.1. For this purpose, eq.
(4.2) is multiplied by the weighting function p̃ and integrated over the entire
domain V first, yieldingÑ

V

{
s2p̂ +2sū ·∇p̂ + ū ·∇(

ū ·∇p̂
)− ρ̄c̄2∇·

(
1

ρ̄
∇p̂

)}
p̃ dV

=
Ñ

V

{
− sκp̂∇· ū− ū ·∇(

κp̂∇· ū
)−κp̄∆ (ū · û)+κp̄ (ū ·∇) (∇· û)

−κp̄∇· Ŝv,s,∇p̄=0
u + s(κ−1) ˆ̇q + (κ−1) ū ·∇ ˆ̇q

}
p̃ dV ,

(B.1)

Then, selected terms (particularly the ones with higher order spatial deriva-
tives) need to be integrated by parts. The procedure of partial integration is
only applied to terms on the LHS of eq. (B.1), which represents the propaga-
tion of acoustic waves subject to a mean flow advection. The RHS representing
the interaction of the advected waves with a non-uniform mean flow remains
unmodified. The corresponding procedure is demonstrated in the following
for each individual term on the LHS, whereas the RHS remains as is. Finally, a
weak formulation of the inhomogeneous Helmholtz equation is presented.

2nd term LHS

The skew symmetry of the second term in the volume integral on the LHS
requires special treatment of the term to ensure energy conservation and nu-
merical stability as initially discussed by Morinishi [211] and later applied and
demonstrated by Kaltenbacher and Hüppe [212] for the homogeneous wave
equation. The desired preservation of the skew symmetry can be ensured by
integrating only half of the term by parts, which givesÑ

V
2sp̃ū ·∇p̂ dV =

Ï
∂V

sp̂ p̃ū ·n dA+
Ñ

V

{
sp̃ū ·∇p̂ − sp̂∇· (ūp̃

)}
dV .

(B.2)
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The vector n denotes the outward pointing normal vector of the domain’s
boundary ∂V . Note that this result is slightly different as the one from
Kaltenbacher and Hüppe [212] due to their limitation to constant and thus
also solenoidal mean flow velocities. Applying those simplifications to eq.
(B.2) resolves the discrepancies.

3rd and 4th terms LHS

The third and fourth terms on the LHS contain second order spatial deriva-
tives of the state variable p̂ and do thus require regular integration by parts.
This is for the third term

Ñ
V

ū ·∇(
ū ·∇p̂

)
p̃ dV =

Ï
∂V

(
ū ·∇p̂

)
p̃ū ·n dA−

Ñ
V

(
ū ·∇p̂

)∇· (ūp̃
)

dV ,

(B.3)

and for the fourth term

−
Ñ

V
ρ̄c̄2∇·

(
1

ρ̄
∇p̂

)
p̃ dV =−

Ñ
V

{
∇· (c̄2∇p̂

)−(
1

ρ̄
∇p̂

)
·∇(

ρ̄c̄2)}p̃ dV

=−
Ï

∂V
c̄2∇p̂ ·np̃ dA+

Ñ
V

c̄2∇p̂ ·∇p̃ dV .
(B.4)

Here, the afore met assumptions of a constant ratio of specific heats at iso-
baric flow conditions, i.e. ∇(

ρ̄c̄2
)=∇(

κp̄
)= 0, are exploited. It is worth noting

that the weak formulation of the fourth term would look the same, if mean
density gradients would have initially been precluded.

Complete Weak Form of the Inhomogeneous Convective Helmholtz Equa-
tion

On the LHS all volume-integrated terms and all boundary-integrated terms
are collected. Note that the product rule is applied to the expression ∇·(ūp̃

)=
ū ·∇p̃ + p̃∇· ū. The emerging terms on the LHS incorporating the mean flow’s
divergence are shifted to the RHS. Ultimately, the quite lengthy weak formu-
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Equation

lation of the inhomogeneous convective Helmholtz equation becomesÑ
V

{
s2p̂ p̃ + s

(
ū ·∇p̂

)
p̃ − sp̂ū ·∇p̃ − (

ū ·∇p̂
)

ū ·∇p̃ + c̄2∇p̂ ·∇p̃
}

dV

+
Ï

∂V

{
sūp̂ + ū

(
ū ·∇p̂

)− c̄2∇p̂
} ·np̃ dA

=
Ñ

V

{
− s(κ−1) p̂∇· ū−κp̂ (ū ·∇) (∇· ū)− (κ−1)

(
ū ·∇p̂

)
(∇· ū)+κp̄∆ (ū · û)

−κp̄∇· Ŝv,s,∇p̄=0
u −κp̄ (ū ·∇) (∇· û)+ s(κ−1) ˆ̇q + (κ−1) ū ·∇ ˆ̇q

}
p̃ dV .

(B.5)
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C Natural Neumann Boundary Condition
for the Convective Helmholtz Equation

The boundary flux terms of eq. (4.5) emerging from the partial integration
within the derivation of the CHE’s weak form in section 4.3.1 can be trans-
formed into universal Neumann boundary conditions. For this purpose, a ba-
sic set of equations complying with the LHS assumption of a constant mean
flow velocity is required. This set is provided by the APE (2.9) for a constant
mean flow velocity with vanishing heat release. In frequency domain they read

sû+ 1

ρ̄
∇p̂ + ū ·∇û = 0 , (C.1a)

sp̂ +κp̄∇· û+ ū ·∇p̂ = 0 . (C.1b)

Combining this linearized momentum and energy equation according to
ū(C.1b)−ρ̄c̄2(C.1a) and exploiting the vector identitiy ∇× (û× ū) = ū · ∇û −
ū (∇· û)+ û (∇· ū)− û ·∇ū, the boundary flux F can be transformed into

F = sρ̄c̄2û+κp̄ (ū ·∇û− ū (∇· û)) = sρ̄c̄2û+κp̄∇× (û× ū) . (C.2)

When introducing the above stated vector identity, consistent use was made of
the constant mean flow velocity presumed for the entire LHS of eq. (4.4). The
newly emerging term containing the rotation of the mean flow and perturba-
tion velocity’s vector product requires further explication. That term vanishes
only if the velocity vectors of perturbation and mean flow are pointing in the
same direction. This applies particularly for flow regimes which may be char-
acterized as one-dimensional. In many practical applications, the assumption
of one-dimensionality is an essential feature. It is for instance used in the well-
established Multi-Microphone Method to measure acoustic characteristics of
components. The same purpose is served by network models, which provide
acoustic characterizations of components based on analytic expressions. Such
network models for one dimensional acoustic propagation are discussed in
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Natural Neumann Boundary Condition for the Convective Helm-
holtz Equation

more detail below. Both approaches are only valid, if the investigated compo-
nent is acoustically compact regarding its hydraulic diameter He ¿ 1, forming
the basis for one dimensional wave propagation.
Normally, an overall system boundary ∂V consists of different types of sub
boundaries ∂V j , which can be classified by their acoustic scattering character-
istics. Common types have been discussed in section 2.6 and include bound-
aries open to the atmosphere and rigid wall boundaries. While the former
boundary type exhibits a constant pressure, the latter type is characterized
by a vanishing surface normal velocity (ū ·n = û ·n = 0). As a consequence, the
weak form flux of eq. (C.2) also vanishes at wall boundaries. If the remaining
sub boundaries ∂V j are acoustically compact, one dimensional approaches
may be applied and the boundary flux simplifies to

F = sūp̂ + ū
(
ū ·∇p̂

)− c̄2∇p̂ ≈ sρ̄c̄2û , (C.3)

which solely depends on the velocity fluctuations. In a pure acoustic sense,
this result directly corresponds to the desired natural Neumann boundary
condition.
To conclude this derivation, the final weak formulation of the acoustically
consistent, inhomogeneous convective Helmholtz equation yieldsÑ

V

{
s2p̂ p̃ + s

((
ū ·∇p̂

)
p̃ − p̂ū ·∇p̃

)
− (

ū ·∇p̂
)

ū ·∇p̃ + c̄2∇p̂ ·∇p̃
}

dV

+
Ï

∂V
sρ̄c̄2û ·n p̃ dA =

Ñ
V

SiC HE p̃ dV .
(C.4)

With the assumptions of a uniform mean flow without heat release, the entire
RHS of the former equation vanishes, leading to the weak formulation of the
homogeneous convective Helmholtz equation (hCHE):Ñ

V

{
s2p̂ p̃ + s

((
ū ·∇p̂

)
p̃ − p̂ū ·∇p̃

)
− (

ū ·∇p̂
)

ū ·∇p̃ + c̄2∇p̂ ·∇p̃
}

dV

+
Ï

∂V
sρ̄c̄2û ·n p̃ dA = 0 .

(C.5)

For stagnant fluids, the iCHE (C.4) simplifies to the weak formulation of the
Helmholtz equation (HE):Ñ

V

{
s2p̂ p̃ + c̄2∇p̂ ·∇p̃

}
dV +

Ï
∂V

sρ̄c̄2û ·n p̃ dA =
Ñ

V
s(κ−1) ˆ̇qp̃ dV . (C.6)
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Note that the second term within the volume integral on the LHS of eq. (C.6)
is equally valid for mean flow fields with and without mean density gradi-
ents. Therefore, eq. (C.6) corresponds to the weak form of the inhomogeneous
Helmholtz equation (2.21).
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D Linear Framework of the Convective
Helmholtz Equation in Weak Form

In section 4.5, the state-space representation of the convective Helmholtz
equation’s strong form was introduced. For the implementation in FEM
solvers, the state-space representation of the corresponding weak form coun-
terpart, eq. (4.14), is of higher relevance though. It may be derived either by
transforming the strong form’s state-space representation into weak form or
by linearizing the weak form using the state-space formalism. Both proce-
dures lead to the following result:Ñ

V
s

(
0 p̃
ϕ̃ 0

) (
p̂
ϕ̂

)
dV

=
Ñ

V

(
ū ·∇p̃ (ū ·∇)− c̄2∇p̃ ·∇ −p̃ (ū ·∇)+ ū ·∇p̃

0 ϕ̃

) (
p̂
ϕ̂

)
dV

+
Ñ

V

(
p̃ (s(κ−1)+ (κ−1) ū ·∇)

0

)
ˆ̇q dV

+
Ï

∂V

(
sρ̄c̄2 p̃

0

)
û ·n dA .

(D.1)

In this general formulation, the heat release fluctuations and the velocity fluc-
tuations in the last two terms are considered unknown and are treated as in-
put quantities. When using the linearized flame displacement to model the
volumetric heat release fluctuations as discussed in section 4.5, the third term
can be directly incorporated into the descriptor and system matrices. The last
term represents the boundary flux and must be treated differently on differ-
ent portions of the overall system boundary. On partitions with a constant
impedance, such as wall or energetically neutral boundary conditions, the
boundary flux may also be directly included into the state-space framework
as a function of the solution variables. In this case, the boundary flux may
be transformed using relation (4.15). On the remaining partitions with more
general frequency dependent characteristics, these characteristics are also lin-
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earized using the state-space formalism (cf. section 4.5). To couple the state-
space systems of the resolved domains and the linearized boundary patches,
output equations for either of the systems must be specified. The output of
one system is then the input of the other system.
The natural formulation of the boundary flux in terms of the velocity fluctu-
ations can be exploited to find a suitable interconnection of the state-space
representations of the convective Helmholtz domains and the frequency de-
pendent boundary conditions. With the velocity fluctuations representing the
input to the discretized domains, this quantity is the desired output quan-
tity of the boundary condition model. To achieve this, the admittance may
be transformed into state-space representation instead of the reflection co-
efficient as described in section 4.5. The admittance is the inverse of the
impedance y = 1

z = 1−R
1+R = ρ̄c̄û

p̂ and can be directly calculated from the reflec-
tion coefficient. In the context of transfer functions it relates the velocity fluc-
tuations as output to the pressure fluctuations as input. Now the interconnec-
tion to the convective Helmholtz domains becomes obvious: the pressure at
the boundaries of the discretized domains serves as input for the admittance
state-space representation, which in turn provides the acoustic velocity at the
boundaries required for the resolved domains.
To finalize the closure of the feedback loop between the Helmholtz equation
(4.40) and the frequency-dependent boundary conditions, the linear state-
space representation of the boundary condition according to eq. (4.39) must
be provided first. To do so, different formulations may be used like the observ-
able canonical form. A more straightforward form for the underlying ordinary
differential equation of the admittance similar to eq. (4.42) is the controllable
canonical form yielding the state vector x, the output quantity y and the sys-
tem matrices A−D

x =


ϕ(1)

ϕ(2)
...

ϕ(ni−2)

ϕ(ni−1)

 , A =


0 1

0 1
. . . . . .

0 1
−a0 −a1 . . . −ani−2 −ani−1

 , B =


0
...
0
1


C = (

b0, b1, . . . , bni−1

)
, D = 0 , y = û , u = p̂ ,

for ni = no +1. In the controllable canonical form, the state variables ϕ( j ) do
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Linear Framework of the Convective Helmholtz Equation in Weak
Form

not have any physical meaning. Ultimately, the output equation of the con-
vective Helmholtz domain’s state-space representation must be constructed.
In the discretized form, the pressure is available at any mesh point. With the
assumption of acoustically compact boundaries, the pressure is supposed to
be nearly constant across that boundary. Therefore, this pressure may be ex-
tracted at a single node point on the discretized boundary or as a boundary
average value. Either way, the output matrix has one row for each nonlinear
boundary condition. In the first case, the output matrix is sparse with only a
single unity flag per row at the position corresponding to the index of the mesh
node. For the second case, an average operator involves multiple node points
in each row.
The boundaries’ output signals are the Helmholtz domain’s input. Again ex-
ploiting the compactness of the boundary, the velocity signal is simply applied
as input to all mesh points on the Helmholtz domain boundary. This yields an
input matrix of the Helmholtz domain with a column per nonlinear boundary
and normally multiple unity flags at each node position index of the individual
boundaries.
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E Simplification of the Projected Input
Matrix

To avoid an expensive inversion of the mass matrix E when performing a
modal model order reduction, the identity (5.8) was provided in section 5.1.
This identity can be easily proven by starting from the implicit state equation
(5.1a). Employing the base transformation and multiplying with the left eigen-
vector matrix yields

V−1EVξ̇= V−1ǍVξ̇+V−1B̌u . (E.1)

Left-multiply this equation by the inverse of V−1EV to get

ξ̇= (V−1EV)−1V−1ǍVξ̇+ (V−1EV)−1V−1B̌u . (E.2)

Making use of the inversion rule (ABC)−1 = C−1B−1A−1, the first term on the
RHS can be written as

(V−1EV)−1V−1ǍVξ̇= V−1E−1 (V−1)−1V−1︸ ︷︷ ︸
=I

ǍVξ̇= V−1 E−1Ǎ︸ ︷︷ ︸
=A

Vξ̇= diag(sn)ξ .

Finally, the state equation can be written as

ξ̇= diag(sn)ξ+ (V−1EV)−1V−1B̌u . (E.3)

Hummel [102] limits his derivation to self-adjoint problems. For systems
which are not self-adjoint, the matrix (V−1EV) is not diagonal. For the reduced
system, inverting (Wr ed EVr ed ) instead of E is still highly beneficial, since the
dimension of the former is significantly reduced compared to the latter ma-
trix.
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F Construction of the Input Matrices for
the Generalized Discrete MAE

For the ROM creation based on the Generalized Discrete MAE, the input ma-
trix Bp needs to be thoroughly constructed. For brevity, a detailed representa-
tion of this matrix has been dropped within the derivation of the Generalized
Discrete MAE in section 5.3. The input matrix has its origin in the discrete
volumetric and boundary sources of the MAE, eq. (5.16). In fact, it is more rea-
sonable to construct a combined matrix Wr ed Bp , since the source terms of eq.
(5.16) also directly include the eigenvectors. For a better overview, the com-
bined matrix Wr ed Bp is first split into the contributions from the single input
matrices according to

Wr ed Bp =
(

0 Wr ed

(
BV

0

)
Wr ed

(
BS1

0

)
Wr ed

( −BS2

0

) )
. (F.1)

The elements of these individual contributions are then analogous to the
source terms of eq. (5.16) and read

Wr ed

(
BV

0

)
=


V1 ((κ−1)w1)V ,1 V2 ((κ−1)w1)V ,2 · · · VM ((κ−1)w1)V ,M

V1 ((κ−1)w2)V ,1 V2 ((κ−1)w2)V ,2 · · · VM ((κ−1)w2)V ,M
...

... . . . ...
V1 ((κ−1)wR)V ,1 V2 ((κ−1)wR)V ,2 · · · VM ((κ−1)wR)V ,M

 ,

(F.2)

Wr ed

(
BS1

0

)
=


A1

(
c̄2ρ̄w1

)
S,1 A2

(
c̄2ρ̄w1

)
S,2 · · · AK

(
c̄2ρ̄w1

)
S,K

A1

(
c̄2ρ̄w2

)
S,1 A2

(
c̄2ρ̄w2

)
S,2 · · · AK

(
c̄2ρ̄w2

)
S,K

...
... . . . ...

A1

(
c̄2ρ̄wR

)
S,1 A2

(
c̄2ρ̄wR

)
S,2 · · · AK

(
c̄2ρ̄wR

)
S,K

 , (F.3)

187



Wr ed

(
BS2

0

)
=


A1

(
c̄2∇w1 ·n

)
S,1 A2

(
c̄2∇w1 ·n

)
S,2 · · · AK

(
c̄2∇w1 ·n

)
S,K

A1

(
c̄2∇w2 ·n

)
S,1 A2

(
c̄2∇w2 ·n

)
S,2 · · · AK

(
c̄2∇w2 ·n

)
S,K

...
... . . . ...

A1

(
c̄2∇wR ·n

)
S,1 A2

(
c̄2∇wR ·n

)
S,2 · · · AK

(
c̄2∇wR ·n

)
S,K

 .

(F.4)

To attain a compact notation, the negative signum has been dropped in eq.
(F.4). Each term in the combined input matrix still requires volume or area av-
eraging denoted by the indexed round brackets as well as a gradient operation.
Note that ∇w is a dyadic product and refers to the Jacobian containing the gra-
dient of every element of w. Both operations, i.e. averaging and spatial deriva-
tion, are easily achieved within the eigenvalue solver such as COMSOL Mul-
tiphysics. In a post-processing step after the left eigenvalue computation, the
corresponding scalar quantities can be extracted. Lastly it may be noticed that
the values of the left eigenvectors required for the input matrices correspond
to the pressure of the right eigenvectors and not to their temporal derivatives.
This is a result of the selected shape of the state-space representation of the
MAE, eq. (5.18) and (5.22), with the non-diagonal descriptor matrices.

188



G Scattering Matrix Coefficients of the
PCS Burners

Complementary to the energetically transformed scattering matrix coeffi-
cients of a single main burner shown in section 6.2.3, further scattering matrix
coefficients obtained from the 1D-network are plotted hereinafter. These in-
clude the energetically transformed scattering matrix coefficients of the pilot
burner in Fig. G.1 as well as the original scattering matrix coefficients of a sin-
gle main (Fig. G.2) and the pilot burner (Fig. G.3) without energetical transfor-
mation.
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Figure G.1: Energetically transformed scattering matrix coefficients of the pi-
lot burner obtained from a 1D network.
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Figure G.2: Original scattering matrix coefficients of a single main burner ob-
tained from a 1D network.
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Figure G.3: Original scattering matrix coefficients of the pilot burner obtained
from a 1D network.
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