
Cloud-based cross-platform
collaborative augmented reality
in flutter

Lars Carius, Christian Eichhorn*, Linda Rudolph,
David A. Plecher and Gudrun Klinker

FAR Augmented Reality Research Group, TU Munich, Munich, Germany

Augmented Reality (AR) as a technology in the business area is utilized in new

frontiers such as collaborative real-time experiences and cloud-based

solutions. However, there is still a strong tendency towards game engines,

which hinders widespread adoption for businesses. We present a collaborative

AR framework (Flutter plugin) aimed at lowering the entry barriers and operating

expenses of AR applications. A cross-platform and cloud-based solution

combined with a web-based content management system (cloud) is a

powerful tool for non-technical staff to take over operational tasks such as

providing 3Dmodels or moderating community annotations. To achieve cross-

platform support, the AR Flutter plugin builds upon ARCore (Android) and ARKit

(iOS) and unifies the two frameworks using an abstraction layer written in Dart.

In this extensive description we present an in-depth summary of the concepts

to realize the framework and prove its performance being on the same level as

the native AR frameworks. This includes application-level metrics like CPU and

RAM consumption and tracking-level qualities such as keyframes per second

used by the underlying SLAM algorithm, detected feature points, and area of

tracked planes. Our contribution closes a gap in today’s technological

landscape by providing an AR framework with the familiar development

process of cross-platform apps. Building upon on a content management

system (cloud) and AR can be a game changer to achieve business

objectives, while being not restrained to stand-alone single-purpose apps.

This will trigger a potential paradigm shift for previously complex-to-realize

applications relying on AR, e.g., in production and planning. The AR Flutter

plugin is fully open-source, the code can be found at: https://github.com/

CariusLars/ar_flutter_plugin.

KEYWORDS

augmented reality, collaboration, cross-platform, cloud, flutter

1 Introduction

Recent advances in Augmented Reality (AR) technology such as Google’s cloud

anchors allow for a fundamentally new means of communication: Anchoring digital

information in the real world, retrievable by anyone visiting the respective location.

On-demand 3D scans using the smartphone camera overcome the need for hand-built

OPEN ACCESS

EDITED BY

Kiyoshi Kiyokawa,
Nara Institute of Science and
Technology (NAIST), Japan

REVIEWED BY

Francesco De Pace,
Polytechnic University of Turin, Italy
Ralf Doerner,
Hochschule RheinMain, Germany

*CORRESPONDENCE

Christian Eichhorn,
christian.eichhorn@tum.de

SPECIALTY SECTION

This article was submitted to
Augmented Reality,
a section of the journal
Frontiers in Virtual Reality

RECEIVED 17 August 2022
ACCEPTED 07 November 2022
PUBLISHED 21 November 2022

CITATION

Carius L, Eichhorn C, Rudolph L,
Plecher DA and Klinker G (2022), Cloud-
based cross-platform collaborative
augmented reality in flutter.
Front. Virtual Real. 3:1021932.
doi: 10.3389/frvir.2022.1021932

COPYRIGHT

© 2022 Carius, Eichhorn, Rudolph,
Plecher and Klinker. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Virtual Reality frontiersin.org01

TYPE Original Research
PUBLISHED 21 November 2022
DOI 10.3389/frvir.2022.1021932

https://www.frontiersin.org/articles/10.3389/frvir.2022.1021932/full
https://www.frontiersin.org/articles/10.3389/frvir.2022.1021932/full
https://www.frontiersin.org/articles/10.3389/frvir.2022.1021932/full
https://github.com/CariusLars/ar_flutter_plugin
https://github.com/CariusLars/ar_flutter_plugin
https://crossmark.crossref.org/dialog/?doi=10.3389/frvir.2022.1021932&domain=pdf&date_stamp=2022-11-21
mailto:christian.eichhorn@tum.de
https://doi.org/10.3389/frvir.2022.1021932
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://doi.org/10.3389/frvir.2022.1021932


3D environment models and make this technology widely

applicable. These are just some examples of the tremendous

progress of AR over the past few years that cumulate in the

increasingly widespread adoption of the technology by both

private consumers and business users. While increasingly

powerful smartphones are an ideal medium for applications

aiming at large user groups, heavy reliance on game engine-

based development toolchains like Unity has left behind

developers of business applications and has created a

technological landscape dominated by the entertainment

industry. We discovered that the technology can create

considerable value once it is used as a tool in operative

business and not primarily as a means of entertainment.

Marking drop-off locations for deliveries to chaotic

construction sites using AR is one of many examples that

proved to be a profitable business case. To utilize this

potential, AR functionality needs to be embedded—as just

one of many features—into applications that serve a larger

purpose. With the frameworks currently available, this is not

sufficiently possible. Furthermore, this could help to convert

demanding research into applications for the end user, e.g.,

environment specific AR realized through machine learning

(Marchesi et al., 2021). There are a plethora of approaches

trying to solve this challenge, but they either lack the inclusion

of cutting-edge features such as anchoring objects to real-

world places or heavily restrict generality and thus

applicability by focusing development on game scenarios

only. A go-to AR framework for cross-platform app

development is still missing.

Hence, we aimed to fill this gap in today’s technological

landscape by developing an AR framework with the following key

characteristics:

• Familiar Environment: Our framework takes the form of a

plugin for an established cross-platform app development

toolchain and is not based on a game engine SDK to

facilitate the use of AR as a tool in non-game apps and

allow developers to utilize the technology of AR in their

existing apps.

• Cross-Platform: Our framework is agnostic to the

operating system the app will be compiled to. Android-

and iOS-specific implementations are handled behind the

scenes, hence a single codebase can be used for the

integration of AR features.

• Open-Source: This guarantees low entry barriers for

businesses and developers looking to utilize the potential

of AR.

• Collaboration: Our framework supports the latest features

such as objects anchored in real-world locations that are

viewable from multiple devices. The integration of

location-based anchoring for collaborative AR

experiences, including a flexible networking backbone, is

key for the commercial usage of AR.

This AR framework tries to answers to previously defined

framework concepts for Mixed Reality such as Scalability,

Interoperability, Extensibility, Convenience and Quality

Assurance with the greater picture of Integrability in mind

(Weber et al., 2022).

As a result, the plugin will contribute a valuable tool to the

AR developer community and enable more businesses and app

developers to utilize the potential of location-based AR without

having to renounce technical possibilities and performance

advantages that originate from using an established cross-

platform app development toolchain. With our work, we aim

to facilitate the development of complex AR-based workflows

such as facility design and management in production and

planning scenarios while, at the same time, alleviating the

need for excessive computing power and pre-defining the

territory of deployment. For example, in the case of Horst

et al. (2021) it was necessary to develop two applications for

the online continuing medical education. A Unity app provided

the AR capability, while the learning management system was

web-based and relied on a Flutter implementation. Having to

look after two completely different systems makes the

development and future maintenance difficult.

2 Related work

To lay a solid foundation for choosing a suitable technology

stack, we reviewed AR applications from various fields and

analyzed currently available AR frameworks as well as

persistent anchor technologies. We focused especially on

collaborative AR in which multiple users are located in a

shared physical space and interact with the same virtual

objects, often from different points of view (Kaufmann, 2003).

In recent years, handheld AR has been used for

entertainment and also in a serious context (Plecher et al.,

2022). In research we could identify trends in the area of AR

multi-user applications such as (Serious) Games like Oppidum

(Plecher et al., 2019) or AR-Escape (Plecher et al., 2020). Another

trend evolves around the idea of utilizing AR for sports to

augment the human body and allowing the user to receive

superhuman abilities. The Superhuman Sports genre provided

game concepts such as Catching the Drone (Eichhorn et al.,

2020) or League of Lasers (Miedema et al., 2019). Early research

in the area of collaborative AR has provided a rich foundation for

today’s diversification of concepts (Schmalstieg et al., 2002).

With the advances of machine learning AR will in the future

be merged with this technology to form context sensitive AR

which has a better understanding of the surroundings like surface

types or objects (Marchesi et al., 2021).

The 2020 XR Industry Insight report by VR Intelligence,

however, indicates that a majority of AR companies see the

largest potential in industrial use cases (Bonasio, 2019). The

scenarios in which businesses can use AR are manifold, Figure 1

Frontiers in Virtual Reality frontiersin.org02

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


illustrates several examples of the technology’s potential to

increase productivity and facilitate communication in

asynchronous work processes.

2.1 The field of collaborative augmented
reality

In recent academic research, technological advances have

pushed the boundaries of collaborative AR. In their paper

CARS, Zhang et al. (2018) present a method for leveraging the

physical vicinity of users in a collaborative AR session for

reducing latency through peer-to-peer sharing of annotation

data. Egodagamage and Tuceryan (2018) introduce a

framework for distributed monocular SLAM that identifies

matching features between the camera feeds of different

devices and constructs a shared map of the environment.

They showcase a collaborative AR application based on

their method and introduce a benchmarking dataset. A

different approach to creating collaborative AR sessions on-

the-fly is manifested in SynchronizAR (Huo et al., 2018), a

system based on ultra-wide bandwidth distance measurement

units that allows to orchestrate multiple independent SLAM

devices without having to share feature maps or employ

external trackers by calculating transformations between the

coordinate system of the involved devices. In an approach to

decrease latency and mitigate the effect of battery drain in AR

applications, Ren et al. (2019) employ edge computing to

offload processing steps from the cloud backend to an edge

layer, for example, for faster feature matching using intelligent

caching. A well-known example for a state-of-the-art network

architecture for edge-based collaborative augmented and

virtual reality applications is ArenaXR (Pereira et al., 2021).

It operates on a combination of REST and PubSub network

patterns to allow interactive virtual spaces. It has a heavy focus

on scalability. However, due to its system architecture it cannot

be integrated with small effort in existing applications but

demands re-implementations. Additionally, due to its

dependency on WebXR, currently it is not supported in iOS

Safari Browsers and is therefore not applicable for iOS devices.

Aside from novel frameworks, recent publications also

showcase the opportunities cloud-based collaborative AR

creates. Using real-time spatial reconstruction methods,

Piumsomboon et al. (2017) demonstrate collaboration

between an AR user and a remote collaborator joining in

VR. Zillner et al. (2018) present another comprehensive AR

remote collaboration system between AR users and remote

maintenance experts based on dense scene reconstructions

streamed from the AR user. Their system allows remote

staff to freely explore the scene and place real-world-

anchored annotations and animations into the AR user’s

environment to create intuitive instructions. Further

examples for the digital collaboration opportunities AR

creates are Mourtzis et al. (2020) AR-based product design

framework that enables interdisciplinary engineering teams to

co-develop and visualize product concepts in a natural way and

HoloCity (Lock et al., 2019), an application to collaboratively

analyze the cityscapes dataset using AR visualizations for

overlaying data from different sources and visually detecting

trends. In the production and planning sector, localization-

based AR collaboration has largely been approached within

pre-defined boundaries: Baek et al. (2019), for example, present

an AR system for indoor facility management based on

comparing images from the user’s camera view with an

existing BIM model of the building using a server-side

GPU-accelerated deep.

FIGURE 1
Examples for AR-based industrial process optimization: Dropsite marking (left), fault management (middle), delivery instructions (right).

Frontiers in Virtual Reality frontiersin.org03

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


2.2 Mobile augmented reality frameworks
and the path towards collaboration

Common mobile AR frameworks gradually incorporate

novel approaches from academia and make them available to

a wide variety of devices. We provide an overview in Table 1,

focusing on development for mobile devices as most modern

smartphones support AR functionality and mobile apps are a

highly flexible solution suitable for most use cases. Recently VR

to experience entertainment (immersive VR, fills the complete

visual area) is combined with the sensation of physical presence

(AR) to enrich virtual immersive environments (Augmented

Virtuality). Therefore even if AR and VR are still used

separately, the option to change realities provides a useful

foundation for multi-user shared environments (SEs). In

terms of realization of truly mixed reality applications, where

e.g., a person is interacting in VR with a person who using an AR

view, game engines such as Unity are still the norm (Oriti et al.,

2021; Kumar et al., 2021). In a similar context Keshavarzi et al.

(2020) build a solution to find a common accessible virtual

ground for remote multi-user interaction scenarios (AR-VR).

Early examples of the idea to build AR-VR frameworks date back

to the MORGAN project (Ohlenburg et al., 2004), where

requirements such as scalability and platform independence

for multi-user applications were still major challenges.

Considering the compatibility with widely used cross-platform

app development frameworks and the extensive functionality,

ARCore, ARKit, ViroReact, and Wikitude AR SDK were

potential candidates for our framework. While ARCore and

ARKit share most of their features, they take different

approaches to collaboration. ARCore’s cloud anchors allow

the synchronization of feature descriptors over the cloud

while ARKit’s collaborative sessions build on offline

processing of anchor data shared between devices. Automatic

multi-device AR experiences are possible in ARKit as well, but

require the involved devices to be in physical vicinity during the

entire duration of the AR experience, persistent augmentations in

the form of location anchors rely on pre-recorded location

imagery which is currently only available in a selection of US

cities1. Through later adoption ARCore’s cloud anchors were

brought on iOS devices so users can share AR experiences2.

Therefore the cloud anchor API allows to develop for both

platforms. ViroReact is based on the commonly used React

framework, includes viromedia’s own renderer, and supports

ARKit and ARCore. Due to its lack of collaborative features and

the end of viromedia in 2019, ViroReact was deemed unsuitable

in the context of our work. Finally, the Wikitude AR SDK is an

all-in-one development platform for AR applications and

supports the broadest choice of app development frameworks

TABLE 1 Comparison of commonly used AR frameworks.

Supported cross-platform development
frameworks

Supports
Android and iOS

f: Free o: Open
source

Markerless cloud AR

ARCore Unity, Unreal Engine, React Nativea, Fluttera iOS only partly f, o Yes

ARKit Unity, Unreal Engine, React Nativea, Fluttera iOS only f Yes

AR Foundation Unity Yes Yes

Vuforia AR SDK Unity Yes Yes

ViroReact React Native Yes f, o

EasyAR Sense Unity Yes Yes

Wikitude AR SDK Unity, Flutter, Cordova, Xamarin, NativeScript, Ionic, React
Native

Yes Yes

MAXST AR SDK Unity Yes

Onirix AR Studio Unity Yes

ARToolkit+ Unity Yes f, o

ARToolkitX Yes f, o

Xzimg Unity Yes

Kudan AR SDK Unity Yes

NativeScript AR Plugin NativeScripta iOS only f, o

Amazon Sumerian JS-based Frameworks Yes

DroidAR Android only f, o

VisionLib Unity Yes

Placenote Unity Android only f Yes

aCommunity plugins of the AR framework exist for the cross-platform development kit.

1 Apple Inc. ARKit Documentation, 2021.

2 https://developers.google.com/ar/develop/ios/cloud-anchors/
quickstart.

Frontiers in Virtual Reality frontiersin.org04

Carius et al. 10.3389/frvir.2022.1021932

https://developers.google.com/ar/develop/ios/cloud-anchors/quickstart
https://developers.google.com/ar/develop/ios/cloud-anchors/quickstart
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


and operating systems. It allows for cloud-based marker

synchronization and augmentation based on geographical

location information such as GPS, but is ruled out by many

small businesses due to its hefty price tag.

2.3 Summary

When conceptualizing our AR framework, we were faced

with a choice of cross-platform app development toolkits

presented in Table 2. While Unity is most commonly used for

AR and VR applications, it contradicts our requirement of using

environments familiar to non-game app developers. Besides

Unity, Flutter and React Native are the most popular

platforms for app development. Both pursue the goal of

targeting multiple operating systems using a single codebase

and are well-suited for professional cross-platform

applications. While Flutter utilizes an embedder layer to run

the Flutter engine on the device and ships with its own UI

elements, React Native relies on a bridge between the

application’s Javascript code and the operating system’s native

UI functionalities. In direct comparison, the different approaches

cause Flutter to have the upper hand in terms of performance

(Coninck, 2019; InVerita, 2020), while React Native is the more

mature framework and thus easier to find developers for (Skuza

et al., 2019).

In general, the current AR landscape is fragmented into a

plethora of frameworks with limited applicability. Some lack the

inclusion of collaborative features, others are incompatible with

app development frameworks familiar to business developers.

Flutter is an uprising framework that continues to gain

popularity, but except for some single-platform plugins

without collaborative features (Leuschenko, 2021; Francesco,

2022), there are no competitive solutions for the creation of

AR applications. With the creation of our AR Flutter plugin for

collaborative AR experiences, we intend to solve the

aforementioned problems. Choosing Flutter as the underlying

platform brings cross-platform support while preventing

companies from having to hire game developers. We build

upon on ARCore and ARKit and unify both frameworks

using an overarching layer in Dart (cross-platform

programming language) to ensure continuous access to

cutting-edge functionality. For maximum flexibility, we aim to

build the plugin in a cloud-agnostic fashion, with the small

exception of cloud anchors for the distribution of visual

feature representations, for which we use Google’s Cloud

Anchor API.

3 AR flutter plugin

In Figure 2 a high-level overview of the AR Flutter plugin’s

software architecture is shown, which is structured into two

main parts: A unified, cross-platform API providing an

interface to applications that use the plugin, and platform-

specific implementations for Android and iOS that perform

logic that cannot be abstracted to the Flutter level. The

exposed section of the framework contains widgets that can

be included in a client app’s widget tree to enhance the UI and

AR managers that handle all functionality and logic related to

AR and serve as the control instruments of the plugin.

Communication with the platform-specific

implementations happens only via the plugin’s API. In this

structure, Flutter’s platform channel and platform view

system can be viewed as an implementation of the adapter

pattern. The ARView, for example, makes use of the platform

view adapters to expose functionalities of the underlying

ARActivity on Android or the ARUIViewController on iOS

TABLE 2 Comparison of commonly used cross-platform app development frameworks.

React
native

Flutter Ionic Xamarin Unity3D NativeScript

Owner Facebook Google Community Microsoft Unity Technologies Community

Open-Source Yes Yes Yes Yes No Yes

Language JS Dart HTML5, JS C# C# TS, JS, HTML, CSS

GitHub Statistics 92.600 stars 110.000 stars 42.800 stars 5.100 stars — 19.600 stars

20.400 forks 15.600 forks 13.300 forks 1.900 forks 1.400 forks

Free (Commercial Use) Yes Yes Yes No No Yes

Developer Share 2020
(Statista Inc., 2021)

42% 39% 18% 14% 11% 5%

Trend Compared to 2019
(Statista Inc., 2021)

±0% +9% −10% −12% −1% −6%

Supported AR Toolboxes ViroReact,
Wikitude

Wikitude,
ARCorea, ARKita

Wikitude,
AR.js

Wikitude AR-Foundation, Vuforia, EasyAR, Xzimg,
Wikitude, MAXST, Onirix, ARToolkit+, Kudan
AR SDK, Visionlib, Placenote

NativeScript AR
Plugina

aCommunity plugins of the AR framework exist for the cross-platform development kit.

Frontiers in Virtual Reality frontiersin.org05

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


to the outside world. Different low-level implementations are

unified into an easy-to-use and platform-independent API.

The same holds for the AR managers: They abstract the

interactions with highly platform-specific features like

tracking or rendering into a unified interface by using

platform channel functionality as an adapter between the

Flutter API and the Swift or Kotlin code sectors of the

plugin. The following sections further elaborate on the

individual building blocks of the AR Flutter plugin.

3.1 Augmented reality view

The ARView class is the core UI element of the AR Flutter

plugin. On instantiation, the class returns a widget that can be

included in the client app’s widget tree to use the AR

functionality provided by the plugin.

The inner structure of the ARView class is visualized in

Figure 3. ARView inherits from Flutter’s Widget class. Its main

objectives are providing a wrapper around PlatformARView to

FIGURE 2
High-level software architecture of the AR Flutter plugin (Carius et al., 2022).

Frontiers in Virtual Reality frontiersin.org06

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


ensure permissions such as camera access and returning a

widget by instantiating a PlatformARView and invoking its

build method. The class PlatformARView implements the

factory pattern (Gamma et al., 1994). Using the factory

constructor provided by Dart, the abstract class can be used

as a common interface to external code while separate

subclasses for each supported OS provide concrete

implementations in the form of subclasses. AndroidARView

and IosARView are the classes which implement the

PlatformARView interface for their respective operating

systems Android and iOS. The classes provide wrappers

around Flutter’s widgets AndroidView and UiKitView which

embed native view elements into the Flutter widget tree. For

AR applications, this is necessary because there are no suitable

rendering and tracking systems available in the Flutter

framework itself. In the context of the MVC pattern, the

concept can be pictured as outsourcing the view component

to the native platforms while the components controller and

model remain in Flutter’s responsibility. The implementations

of PlatformARView also override the function

onPlatformViewCreated. The function is used to instantiate

all required managers shown in Figure 2 and return references

to them to the Flutter application initially calling ARView.

3.2 Session management

All settings and functionalities regarding the AR session

running on the underlying OS are orchestrated by the plugin’s

ARSessionManager. Some, like tracking configuration, platform

channel identifiers, and function callbacks are supposed to persist

throughout the entire session, so they are passed to the initializer.

Other options might be subject to changes during a running

session, for example, as a result of user interaction. These include

debugging options like plane visualization and toggles to start or

stop handling gesture events and can be updated at any time

during the session. Tracking visual features of the user’s

environment is essential for the creation of realistic AR

experiences (Bostanci et al., 2013). We focus on tracking

planes as collaborative AR requires environment features to

persist both long periods of time and highly varying points of

view to ensure stable reconstruction of virtual scenes attached to

real-world features. The AR Flutter plugin introduces a simple

PlaneDetectionConfig data type which can be set to none,

horizontal, vertical, or horizontalAndVertical when

instantiating the ARSessionManager which sets the search

focus for planes in the frame. Aside from configuring the

tracking setup, the session manager is also responsible for

FIGURE 3
UML diagram of the ARView structure (incomplete).

Frontiers in Virtual Reality frontiersin.org07

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


exposing a set of debugging options such as showWorldOrigin,

showFeaturePoints and showPlanes to help developers test their

AR applications, check the tracking quality, or aid end-users in

understanding how certain AR functionalities work. To interact

with a three-dimensional scene through a two-dimensional

interface such as a smartphone screen, gestures like screen

taps have to be translated into meaningful actions. When a

user taps on a 2D screen location at which the plane is

rendered in the current frame, the AR Flutter plugin has to

project the screen position into 3D space and return the plane

that intersects with the virtual ray cast from the user’s tap

location, a process referred to as hit testing and handled by

the plugin’s ARSessionManager. The AR Flutter plugin

differentiates between node taps, which indicate the intention

to interact with a virtual object in the scene, and taps on

trackables such as detected planes or feature points from the

environment. We adapted the AR hit result class from Oleksandr

Leuschenko’s ARKit Flutter Plugin (Leuschenko, 2021) for use in

a multi-platform setting aiming to facilitate collaborative AR

experiences. The ARSessionManager interprets the incoming hit

testing data from the platform-specific implementations and

instantiates a Flutter object of the custom class

ARHitTestResult to avoid having to pre-define the behavior of

the AR Flutter plugin when tap gestures are recognized. Instead,

callbacks can be used to let the users of the plugin decide what

actions are to be triggered.

3.3 Object management

The core feature of any AR application is the placement and

observation of virtual objects in the scene. Object management in

the AR Flutter plugin consists of two main modules: The

ARNode class representing a Flutter abstraction of AR objects

along with its corresponding platform-specific handlers and the

ARObjectManager that exposes all functionalities regarding AR

objects as a cross-platform Flutter API.

In the context of AR, nodes represent hierarchically

structured scene objects that are defined by their

transformation relative to a local or world coordinate system

and their renderable, which in turn can be a 3D model or any

other visual representation (MacWilliams et al., 2003). The

plugin’s ARNode is an adaption of the class ARKitNode from

Oleksandr Leuschenko’s ARKit Flutter Plugin (Leuschenko,

2021) and has five key properties: Name, type, URI,

transformation, and data. On instantiation, an ARNode is

named with a unique key used for user reference and

association of rendering and gesture events on the platform

side. To convey renderable loading information to the

ArModelBuilder, each node has a type, which is an instance

of the plugin’s data type NodeType, and a URI containing a path

to a local 3D model file or a URL pointing to an online resource.

The ARNode’s transformation, which is stored as a four-

dimensional affine transformation matrix, defines its pose

relative to its parent. Finally, the member variable data of type

map provides a convenient location to store any object-related

information required by an application such as visibility state or

on-tap text. Following the single source of truth principle, the

ARNodes in Flutter are the main node objects, the

representations on the platform level are dependent on their

Flutter counterpart and cannot be explicitly called or modified

using the plugin’s API. To prepare an ARNode object for being

sent through a platform channel or to be uploaded for sharing, it

is serialized into the JSON format. Any updates made to an

ARNode’s transformation trigger a call to the platforms to update

the nodes rendered on the screen.

The ARObjectManager handles all functionality related to

ARNodes. Its key functions are adding and removing nodes to

the AR scenes of the underlying platforms by attaching or

detaching them to plane anchors or the parent scene and

keeping the platform’s node representations in synchrony with

their counterparts on the Flutter side. In addition, the object

manager handles node taps by invoking callback set by users of

the AR Flutter plugin.

While the ARObjectManager provides a consistent

interface for node handling to the user, the actual

functionality is implemented on each platform to account

for the differences on Android and iOS. On both systems, the

data contained in the platform channel messages is

deserialized, yielding a four-dimensional affine

transformation matrix on iOS and a triple of position

vector, scale vector, and rotation quaternion on Android.

The ARObjectManager’s addNode function is handled

asynchronously by the AR Flutter plugin by unpacking the

data sent through the platform channel, requesting a

renderable from the ArModelBuilder according to the

node’s type and attaching it to the root scene of the AR

session or an anchor. Loading of GLTF2 and GLB models

from the app bundle, the device’s file system, or the internet is

supported for maximum flexibility. Assets required for all

users can be included by developers, models needed for

flexible AR experiences can be managed separately in a

cloud system, sparing businesses from having to update the

codebase. We describe a content management system utilizing

the flexible model loading capabilities to provide a desktop

GUI in Section 4. Both Sceneform (ARCore) and SceneKit

(ARKit) allow recursively searching the scene tree for objects

matching a specified name, allowing the plugin to handle

transformationChanged and removeNode requests.

To summarize, the heavily different requirements and APIs

of Sceneform (ARCore) and SceneKit (ARKit) result in the AR

Flutter plugin having to perform rather complex operations

behind the scenes. By moving all these platform-specific

implementations behind common data structures and

consistent, platform-independent Flutter methods, however,

our framework provides an easy-to-use interface for

Frontiers in Virtual Reality frontiersin.org08

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


developers using AR without requiring knowledge about which

platform their app is eventually used on.

3.4 Anchor management and cloud
synchronization

Anchors allow interweaving virtual content with real-world

environments. Instead of describing poses in the digital scene,

anchors encapsulate a position and orientation in the physical

space, thus being constantly updated to keep their relative

position to real-world objects after initial placement using

world coordinate transformations. Due to their ability to

persist over time and viewpoint changes, we focus on plane

anchors for creating collaborative AR experiences in the AR

Flutter plugin.

Similar to the handling of nodes, the AR Flutter plugin

introduces an abstraction of AR anchors to create a unified

Flutter wrapper around the implementation of anchors in

ARCore and ARKit. Derived from the factory pattern

architecture of Oleksandr Leuschenko’s ARKit Flutter Plugin

(Leuschenko, 2021), we use an abstract ARAnchor class and

separate subclasses for each anchor type. When users request a

specific type of anchor, e.g., a plane anchor at the location of a hit

test result, subclasses can be directly instantiated. For automatic

anchor creation by the plugin, the factory method

ARAnchor.fromJson acts as a constructor to instantiate a

suitable subtype from a serialized platform channel object.

To offer a central handler for AR anchors, the

ARAnchorManager exposes a set of cross-platform functions

such as addAnchor and removeAnchor to the API of the AR

Flutter plugin. To add or remove anchors, serialized

representation in the JSON format are sent through Flutter’s

platform channels. While on Android, the platform-level

implementation of adding and removing anchors

programmatically is straightforward, on iOS, we had to

implement custom extensions of ARKit and SceneKit’s

rendering loop to externally manage anchors and therewith

achieve the level of abstraction required by the cross-platform

AR Flutter.

To enable collaborative AR experiences (Kaufmann,

2003), the AR Flutter plugin contains functionality to

upload and download anchor objects from a cloud service

using the Google Cloud Anchor API. Local 3D scans used to

define anchors can be stored in a cloud system and the current

scene can be compared to already uploaded anchors in order

to download content previously placed in the scene. To enable

the storage of anchors for up to 365 days, the AR Flutter

plugin implements keyless authentication. On Google’s

Android OS, the process is well integrated and

straightforward to implement, a novel library for JWT-

based authentication was developed to add the functionality

on the iOS side of the plugin.

To ensure a consistent cross-platform experience,

functionality regarding the uploading and downloading of

anchors to or from the Google Cloud Anchor API is

abstracted into the ARAnchorManager on the Flutter side of

the plugin. The ARAnchorManager offers two functions:

uploadAnchor and downloadAnchor. All cloud interactions

are handled asynchronously to avoid blocking the app during

the process, so both functions accept callbacks that are triggered

once the underlying platform notifies the ARAnchorManager of

the completion of the process. As visualized in Figure 4, to upload

an anchor, developers can pass an ARAnchor object to the

upload function and specify the number of days the anchor

should be stored in the cloud. The manager serializes the anchor

object and sends it through a platform channel for further

handling. On completion of the upload process, the

ARAnchorManager’s onCloudAnchorUploaded platform

channel method is called. Downloading a cloud anchor is

implemented in a similar, asynchronous fashion: Developers

can call the downloadAnchor function with a cloud anchor

ID, thus triggering the download process on the underlying

platform. If the features of the requested cloud anchor match

the current scene and the download succeeds, the

ARAnchorManager’s platform channel method

onAnchorDownloadSuccess is executed. The function receives

a serialized anchor from the underlying platform and uses it to

instantiate the corresponding Flutter counterpart. Under the

hood, both the Android and the iOS section of the AR Flutter

plugin contain a CloudAnchorHandler class to deal with the

platform-specific requirements of Google’s cloud anchor

libraries. While the specific implementation varies on the

platforms, they share a common structure consisting of four

key elements: Wrappers around the upload and download

functions of Google’s cloud anchor library, a bookkeeping

logic to track the progress on cloud processes, an update

function used to regularly check for completed cloud anchor

tasks, and listeners to notify on task completion.

The processes described in the previous paragraphs illustrate

a core functionality of the AR Flutter plugin regarding

collaborative AR as defined by Kaufmann (2003): Uploading,

storing, and downloading visual feature data to transfer it

between the local physical scene and the Google Cloud

Anchor Service. To implement individual anchor distribution

systems such as location-based anchor querying using anchors’

GPS coordinates provided by the AR Flutter plugin’s

ARLocationManager, users can reference the cloud anchor ID

to store additional information. All in all, the anchor

management approach of the AR Flutter plugin complements

the abstraction of AR nodes introduced in Section 3.3. Lifting the

functionality to the Flutter interface of the plugin increases the

complexity of platform-level implementations, but provides

developers with a unified cross-platform API and greatly

reduces the know-how required to include AR in one’s

application without foregoing state-of-the-art features.

Frontiers in Virtual Reality frontiersin.org09

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


4 Cloud-based content management
system

Medium-sized businesses often struggle to adopt innovative

technology and sustain the required level of service in everyday

business due to a lack of capital or trained personnel (Lee and

Baek, 2011). We identified content creation and management as

the main reason for recurring workload and present a content

management solution that greatly reduces running costs by

managing all content externally in a cloud backend that ties

into the flexible interface of the AR Flutter plugin, thus covering

the entire value chain of integrating AR into business processes.

While the flexible, cloud-ready API of the AR Flutter plugin

allows for any kind of web-based content management to be

attached, our exemplary architecture satisfies two main

requirements: Providing users with a graphical desktop

interface and allowing both content used in the app’s UI, such

as 3D model files, and data uploaded by users, such as AR

annotations and corresponding text, to be managed remotely.

Instead of being an add-on directly related to the mobile

application, the content management system is a standalone

instance that only interacts with the cloud services the AR

Flutter plugin uses. Content-related data flows include 3D

models stored on a user-defined server, visual feature data

streamed to and from the Google Cloud Anchor Service, and

descriptive annotation data such as GPS coordinates or user

comments.

To provide an intuitive and adaptable UI for managing

content stored in our Firestore Realtime Database, we utilized

the open-source software Firetable3. The web application offers a

spreadsheet-like UI to view, modify, add, or delete data stored in

Firestore collections and can easily be deployed on one’s own

server.

In Figure 5 one of the example applications included in the

AR Flutter plugin is visualised that uses the content management

system for external model management. New 3D models can

easily be added to existing applications in the spreadsheet-like

interface. This content management architecture enables the

operations team to modify the content available to users of

the application without having to task the technical

development team with updates to the source code. Further

examples of the opportunities external content management

provides are making one’s Firetable instance publicly available

to allow users to add 3D models or moderating AR annotations

and on-click texts in an AR-based social network, either

manually or through the utilization of cloud functions for

automatic updates.

The provided examples demonstrate the versatility of content

management systems used in cooperation with the AR Flutter

plugin, especially their contribution to fostering interactive and

distributed multi-user AR experiences based on cloud anchor

technology.

5 Evaluation

The usage of cross-platform app development frameworks

has many benefits, however, it can require additional resources to

achieve performance comparable to native applications due to

additional software layers being introduced. To assess whether or

not the performance of AR applications is significantly impacted

by the user of Flutter and the AR Flutter plugin, apps using our

framework are benchmarked against comparable native

applications.

FIGURE 4
UML sequence diagram of the anchor upload process.

3 FiretableProject. Firetable, 2021.

Frontiers in Virtual Reality frontiersin.org10

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


Ideally, pre-recorded data should be used to achieve perfectly

comparable results in benchmark testing. However, ARCore and

ARKit take into account multiple real-time sensor measurements

such as camera, accelerometer, gyroscope, and light sensor data.

While in ARCore, a session can be recorded and replayed, the

same is not possible in ARKit. Moreover, the two frameworks

process sensor data differently, rendering the creation of a cross-

platform solution for recording and playing back AR session data

a research question that future work could cover. To still provide

comparable data for the performance benchmark tests, we used a

standardized real-world environment. All AR session tests are

performed in the same room using fixed, purely artificial lighting,

a coarsely pre-defined device trajectory, and a constant spatial

setup. We used a MacBook Pro 2020 for compilation and

profiling, a Samsung Galaxy S8 for testing on Android, and

an iPad Pro 2018 for iOS tests.

5.1 Application performance benchmark

The first analysis of our plugin’s performance assesses

application-level metrics in typical AR scenarios. In our

experiments, the user opens the application which initializes

the AR view, scans the room by moving the device in all three

spatial directions, and taps on a predefined surface to place a

renderable virtual object loaded from a glTF file contained in the

application bundle. Finally, the user moves around the AR object

to view it from all sides. During the entire process, tracked planes

are visualized using a custom texture. To generate a performance

baseline measurement to which the Flutter applications are

compared, the test is carried out with three separate

applications which were developed to all provide the same

user experience: A dedicated cross-platform Flutter application

developed using the AR Flutter plugin, a native Android AR

application based on the AR sample app by Google, and a native

iOS AR application based on the ARKit demo app by AppCoda5.

We adapted the native apps to use the same render engines and

model formats as the AR Flutter plugin and visualize tracked

planes using a custom texture. A notable observation made

during the development of the benchmarking applications is

the fact that the Flutter app based on the AR Flutter plugin was,

by far, the most straightforward to set up and required next to no

technical understanding of AR. Aside from import statements

and autogenerated supplementary files and using Visual Studio

Code’s standard code formatting rules, the final application

contains only 53 lines of project code.

We present application-level performance

measurements in two categories: Build metrics and AR

session performance.

Cross-platform applications add a layer of abstraction to the

source code and thus tend to introduce additional build steps and

cause application bundles to take up more disk space. To study

the effect of using Flutter in conjunction with the AR Flutter

plugin instead of native approaches for creating AR applications,

build times and application sizes of the three benchmarking apps

are presented in Table 3 and Table 4. Each build was performed

three times to obtain average values. Before each run, the

project’s build folder and the application on the device were

deleted to produce clean and complete builds without any steps

skipped due to existing pre-compiled fragments from

earlier runs.

The results indicate that the usage of Flutter and the AR

Flutter plugin incurs overhead in both build times and

application sizes. On Android, both measurements roughly

double when using the cross-platform approach. On iOS, the

build time increases even more drastically, while absolute

FIGURE 5
Managing models with our content management system4: Web interface using Firetable (left); In-app model menu (right).

5 AppCoda. ARKit demo for horizontal planes detection.

Frontiers in Virtual Reality frontiersin.org11

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


application sizes are smaller but also roughly double when

switching to Flutter. While, in absolute terms, even the

Flutter-based application compiles relatively fast, analyzing the

share of the different build steps in the total time yields

interesting insights: Considerable portions of the AR Flutter

plugin’s build times can be traced back to its own

dependencies, for example, the packages used for permission

handling, hinting towards further optimization potential. From

benchmarking tests using the rally application, we deduct that the

more complex an application becomes, the more the difference in

build time and application size diminishes between the native

and the cross-platform approach. At this point, it is worth

mentioning that exact numbers cannot be scientifically

compared between native and Flutter applications because the

exact implementation influences the resulting data.

Demonstrated trends and conclusions drawn in this section,

however, are still representative of the influence of cross-

platform frameworks on build time and application size.

While build time and application size are good indicators for

an app’s code efficiency, it is ultimately judged by users in terms

of responsiveness, running smoothly, and not draining the

battery. To investigate the performance achievable with Flutter

apps using the AR Flutter plugin, a series of measurements were

taken during the benchmark tests described above to evaluate the

AR Session Performance: Average and maximum CPU

utilization, average and maximum RAM utilization, and, on

iOS, average frame time.

The results of the performance benchmark on the Android

device are presented in Table 5. In essence, the cross-platform

application based on the AR Flutter plugin performs on the same

level as the native Android application. On iOS, solely the average

andmaximumRAMutilization exhibit an increase for the Flutter

application since the AR Flutter plugin provides extensive

functionality which, in this specific benchmarking application,

is not required but still takes up memory. In absolute terms,

however, this increase of 100 MB is negligible, especially taking

TABLE 4 Average build times and resulting application sizes of the benchmarking applications on an iOS device.

Average build time
in release mode (s)

Application size on
device (MB)

Flutter AR application 62.64 33.4

Native iOS AR application 17.61 16.8

TABLE 5 Performance measurements during the run of an AR session benchmark of flutter and native apps on android and iOS devices.

Average CPU
utilization (%)

Maximum CPU
utilization (%)

Average RAM
utilization (MB)

Maximum RAM
utilization (MB)

Average frame
time

Flutter AR application on android 29 49 440 492 —

Native android AR application 28 46 428 399 —

Flutter AR application on iOS 16 23 410 450 16.7 ms

Native iOS AR application 16 19 305 323 16.7 ms

TABLE 3 Average build times and resulting application sizes of the benchmarking apps on an android device.

Average build time
in release mode (s)

Application size on
device (MB)

Flutter AR application 23.14 42.80

Native android AR application 10.07 20.76

Flutter virtual campus rally application 32.54 46.23

Native android virtual campus rally application 20.68 24.12

Frontiers in Virtual Reality frontiersin.org12

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


into account that most modern phones have at least 4 GB of

memory.

5.2 Tracking quality benchmark

The performance experiments described in Section 5.1

indicate that cross-platform applications using the AR

Flutter plugin run just as smoothly as modern platform-

specific apps using the native versions of ARCore and ARKit.

However, AR frameworks are highly complex structures, so

appearances can be deceptive. To reduce the processing load

on the device and stop the application from jerking,

incoming sensor readings such as camera frames can be

analyzed less extensively or even skipped entirely,

resulting in worse augmentation quality while superficial

measurements like the device’s frame rate remain

unchanged. Thus, to test the quality of the augmentation

and, therefore, the scene understanding performance offered

by the AR Flutter plugin, we conducted a series of

experiments directly measuring the number of features

processed by the benchmarking applications.

The experiments were performed on the Samsung phone

only as the iPad used in the previous benchmark test would not

produce meaningful results because its processing power exceeds

the demands of the benchmark applications by far, resulting in

the AR frameworks never having to adjust tracking performance

for the sake of retaining UI speed (see constant frame time in

Table 5).

As this experiment highly depends on constant conditions,

we introduced additional boundaries: A static scene is traversed

by the devices at a fixed angle and speed using a rope anchored on

two tripods, each tracked run takes exactly 10 s (see Figure 6).

The benchmarking applications were slightly modified to log the

total number of AR frames (quantity of SLAM updates) and

detected feature points, the number of detected feature points per

AR frame (quality of SLAM updates), and the total detected

plane area.

While we minimized the number of background processes

running on the device, effects of external factors such as CPU

base-load and device temperature cannot be ruled out. Hence,

Table 6 and Table 7 show mean and standard deviation of five

consecutive runs.

The evaluation of low-level tracking features to measure the

AR Flutter plugin’s impact on a SLAM performance level yields a

similar number of AR frames for both applications. While the

total number of feature points, and, consequently, the average

number of feature points per AR frame, is slightly lower in the

cross-platform application, the values’ mean ± standard

deviation intervals still overlap. Based on this data, it can be

concluded that the SLAM algorithm’s performance suffered a

negligible impact through the additional layer of abstraction our

plugin introduces.

The plane area detected by the tracking algorithms directly

translates to the area available for the user to place AR objects

onto, rendering it a valuable criterion for AR performance. The

results in Table 7 reinforce the findings of the previous section:

The differences in the detected plane area of the native and the

cross-platform application are insignificantly small, leading to

the conclusion that cross-platform applications utilizing our

plugin allow for the same level of augmentation quality as

state-of-the-art native apps. While the results obtained using

the applications developed for testing purposes might not reflect

the performance of every possible AR use case, they certainly

provide insights on the overall trends and the general

FIGURE 6
Test setup for the tracking quality benchmark.

TABLE 6 Feature point tracking quality benchmark.

Total number of AR
frames

Total number of
feature points

Feature points per AR
frame

Android native AR application 298 ± 12 41,000 ± 3,107 137 ± 8

Flutter AR application 300 ± 9 38,057 ± 2,324 126 ± 7

TABLE 7 Plane tracking quality benchmark.

Total tracked AR plane
area

Android native AR application 8.19 ± 0.67 m2

Flutter AR application 8.15 ± 0.89 m2

Frontiers in Virtual Reality frontiersin.org13

Carius et al. 10.3389/frvir.2022.1021932

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


performance comparison between realizing an AR use case in a

cross-platform versus a native approach.

5.3 Community reception

Developing the AR Flutter plugin open source led to the

opportunity of generating feedback even before the first

version was published. Community interest in the AR

Flutter plugin continuously grew with the extent of features

increasing and, at the time of writing, is reflected by the

repository having 205 GitHub stars, 109 forks, and ongoing

discussions about future features. On Flutter’s official package

management system, the AR Flutter plugin is currently among

the top 8% of the most used packages over the past 60 days6,

indicating that it is already used in many cross-platform

cloud-based AR applications. The feedback received in this

early phase shows that the framework satisfies a real need in

the AR market and forms the foundation of a community-

supported cross-platform AR framework with a large

userbase.

6 Future work

During our research, we discovered areas worth exploring

further and possibilities for building upon the developed

framework. The most apparent area for future development is

the addition of features to the AR Flutter plugin itself. Building

on the community feedback, preferred features are image

anchors that allow the placement of content relative to a

predefined 2D image, and face anchors, which enable the

dynamic augmentation of people’s faces with digital content.

Additionally, with the help of an early contributor, the

foundation was already built to include anchors into the

plugin that depend solely on GPS data without requiring

visual feature points, allowing for content to be placed in the

far distance.

Another branch of possible improvement is the expansion to

further cloud anchor providers. As some businesses might not be

comfortable with storing data on Google’s servers, offering

developers additional choices of backends for storing

collaborative anchors, e.g., Azure’s spatial anchors, could

further increase the impact of the AR Flutter plugin. If more

providers of cloud anchor functionality emerge, the interaction

with the backends could also be outsourced to the client code

using callbacks and interfaces.

A final suggestion for future research is the development

of a cross-platform AR benchmarking framework. As

mentioned in Section 5, currently, AR sessions cannot be

recorded and replayed uniformly on Android and iOS

devices to obtain standardized testing conditions. A study

on the topic should first examine the exact sensors used by

ARCore and ARKit to establish an environment estimation

and deduct a hardware setup used to record a standardized

benchmarking dataset of AR scenarios. Finally, software to

replay the session data into ARCore- and ARKit-based

applications and record performance metrics should be

developed. A test framework of this kind would benefit

the future development of both tracking algorithms and

higher-level AR frameworks and would help developers

choose the AR software solution best suited to the task

at hand.

Aside from further scientific work, our AR Flutter plugin

allows for the creation of novel applications and games

based on the concept of cloud-based collaborative AR,

ranging from industrial optimization tools to superhuman

sports.

FIGURE 7
Augmentation of an industrial site with the flutter plugin on an android tablet using a life-sized CADmodel of themachinery (Carius et al., 2022).

6 https://pub.dev/packages/ar_flutter_plugin.

Frontiers in Virtual Reality frontiersin.org14

Carius et al. 10.3389/frvir.2022.1021932

https://pub.dev/packages/ar_flutter_plugin
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


7 Conclusion

We introduced a novel cross-platform AR framework

based on the UI development kit Flutter. The framework’s

focus lies on providing state-of-the-art cloud-based

collaborative AR functionality that works seamlessly on

both Android and iOS while exposing a common, intuitive

API that allows non-expert developers to utilize the potential

of AR as a feature of their application. The implementation

consists of the AR Flutter plugin and a web-based content

management system and is designed to achieve flexibility

through a modular approach. Our analyses find that there is

no significant difference in the application-level performance

and the augmentation quality between a native approach and

the cross-platform framework contributed by this work. The

AR Flutter plugin’s versatility could already be proven

through the realization of an industrial machinery

augmentation project (Figure 7).

Our contribution facilitates a paradigm shift in the way

complex location-based AR workflows can be established:

Instead of having to resort to preparation-heavy approaches

involving 3D models of the deployment environment and a

computation backbone (Baek et al., 2019), our plugin allows

to utilize AR annotations for tasks like facility management

in unknown terrain on standard smartphone hardware. Our

approach builds on a modular architecture, which,

combined with a reliance on efficient patterns and the

support of a large community of developers, has the

potential to bundle the technological capabilities of

various frameworks into a powerful single source of AR

functionality.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

supplementary material.

Author contributions

Conceptualization: CE and LC; Software: LC;Writing, review

and editing: CE, LC, LR, and DP; Supervision; CE, DP, and GK;

All authors have read and agreed to the published version of the

manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Baek, F., Ha, I., and Kim, H. (2019). Augmented reality system for facility
management using image-based indoor localization. Automation Constr. 99, 18–26.
doi:10.1016/j.autcon.2018.11.034

Bonasio, A. (2019). Report: XR Industry insight 2019-2020. Available at: https://
medium.com/edtech-trends/report-xr-industry-insight-2019-2020-5-a7a7ed9c63c
(Accessed June 22, 2022).

Bostanci, E., Kanwal, N., Ehsan, S., and Clark, A. F. (2013). User tracking methods
for augmented reality. Int. J. Comput. Theory Eng. 5, 93–98. doi:10.7763/IJCTE.
2013.V5.654

Carius, L., Eichhorn, C., Plecher, D. A., and Klinker, G. (2022). “Cloud-based
cross-platform collaborative ar in flutter,” in 2022 IEEE Conference on Virtual
Reality and 3D User Interfaces Abstracts and Workshops (VRW) (Christchurch,
NZ: IEEE), 682–683.

Coninck, B. D. (2019). Flutter versus other mobile development frameworks: A
UI and performance experiment. Part 2. Available at: https://blog.codemagic.io/
flutter-vs-android-ios-xamarin-reactnative/ (Accessed June 22, 2022).

Egodagamage, R., and Tuceryan, M. (2018). Distributed monocular visual slam as
a basis for a collaborative augmented reality framework. Comput. Graph. 71,
113–123. doi:10.1016/j.cag.2018.01.002

Eichhorn, C., Jadid, A., Plecher, D. A., Weber, S., Klinker, G., and Itoh, Y. (2020).
“Catching the Drone - a tangible augmented reality game in superhuman sports,” in
2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct) (Recife, Brazil: IEEE), 24–29. doi:10.1109/ismar-adjunct51615.
2020.00022

Francesco, G. M. D. (2022). ARCore flutter plugin. Available at: https://github.
com/giandifra/arcore_flutter_plugin (Accessed June 22, 2022).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design patterns:
Elements of reusable object-oriented software. Boston, MA, USA: Addison-Wesley.

Horst, R., Fenchel, D., Retz, R., Rau, L., Retz, W., and Dörner, R. (2021).
“Integration of game engine based mobile augmented reality into a learning
management system for online continuing medical education,” in
INFORMATIK 2020.

Huo, K., Wang, T., Paredes, L., Villanueva, A. M., Cao, Y., and Ramani, K. (2018).
“Synchronizar: Instant synchronization for spontaneous and spatial collaborations
in augmented reality,” in UIST ’18: Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (New York, NY, USA:
Association for Computing Machinery), 19–30. doi:10.1145/3242587.3242595

InVerita (2020). Flutter vs React native vs native: Deep performance comparison.
Available at: https://bit.ly/3nAgpMF (Accessed June 22, 2022).

Kaufmann, H. (2003). Collaborative augmented reality in education. Tech. Rep.

Keshavarzi, M., Yang, A. Y., Ko, W., and Caldas, L. (2020). “Optimization and
manipulation of contextual mutual spaces for multi-user virtual and augmented
reality interaction,” in 2020 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR) (Piscataway, NJ, USA: IEEE), 353–362.

Kumar, T., Sharma, S., Sharma, A., Malhotra, J., and Gupta, V. (2021). “Using
flutter to develop a hybrid application of augmented reality,” in Computational
intelligence for information retrieval (Boca Raton, FL, USA: CRC Press), 141–156.

Frontiers in Virtual Reality frontiersin.org15

Carius et al. 10.3389/frvir.2022.1021932

https://doi.org/10.1016/j.autcon.2018.11.034
https://medium.com/edtech-trends/report-xr-industry-insight-2019-2020-5-a7a7ed9c63c
https://medium.com/edtech-trends/report-xr-industry-insight-2019-2020-5-a7a7ed9c63c
https://doi.org/10.7763/IJCTE.2013.V5.654
https://doi.org/10.7763/IJCTE.2013.V5.654
https://blog.codemagic.io/flutter-vs-android-ios-xamarin-reactnative/
https://blog.codemagic.io/flutter-vs-android-ios-xamarin-reactnative/
https://doi.org/10.1016/j.cag.2018.01.002
https://doi.org/10.1109/ismar-adjunct51615.2020.00022
https://doi.org/10.1109/ismar-adjunct51615.2020.00022
https://github.com/giandifra/arcore_flutter_plugin
https://github.com/giandifra/arcore_flutter_plugin
https://doi.org/10.1145/3242587.3242595
https://bit.ly/3nAgpMF
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932


Lee, J., and Baek, S. I. (2011). Adoption of internet technologies in small business.
Int. J. Digital Manag.

Leuschenko, O. (2021). ARKit flutter plugin. Available at: https://github.com/
olexale/arkit_flutter_plugin (Accessed June 22, 2022).

Lock, O., Bednarz, T., and Pettit, C. (2019). “Holocity – exploring the use of
augmented reality cityscapes for collaborative understanding of high-volume urban
sensor data,” in VRCAI ’19: The 17th International Conference on Virtual-Reality
Continuum and Its Applications in Industry (New York, NY, USA: Association for
Computing Machinery). doi:10.1145/3359997.3365734

MacWilliams, A., Reicher, T., Klinker, G., and Bruegge, B. (2003). Design patterns
for augmented reality systems.

Marchesi, G., Eichhorn, C., Plecher, D. A., Itoh, Y., and Klinker, G. (2021).
Envslam: Combining slam systems and neural networks to improve the
environment fusion in ar applications. ISPRS Int. J. Geoinf. 10, 772. doi:10.3390/
ijgi10110772

Miedema, N. A., Vermeer, J., Lukosch, S., and Bidarra, R. (2019). “Superhuman
sports in mixed reality: The multi-player game league of lasers,” in 2019 IEEE
Conference on Virtual Reality and 3D User Interfaces (VR) (Osaka, Japan: IEEE),
1819–1825.

Mourtzis, D., Siatras, V., Angelopoulos, J., and Panopoulos, N. (2020). An
augmented reality collaborative product design cloud-based platform in the
context of learning factory. Procedia Manuf. 45, 546–551. doi:10.1016/j.promfg.
2020.04.076

Ohlenburg, J., Herbst, I., Lindt, I., Fröhlich, T., and Broll, W. (2004). “Themorgan
framework: Enabling dynamic multi-user ar and vr projects,” in Proceedings of the
ACM symposium on Virtual reality software and technology, 166–169.

Oriti, D., Manuri, F., Pace, F. D., and Sanna, A. (2021). Harmonize: A shared
environment for extended immersive entertainment. Virtual Real. 1–14, 1–14.
doi:10.1007/s10055-021-00585-4

Pereira, N., Rowe, A., Farb, M. W., Liang, I., Lu, E., and Riebling, E. (2021).
“Arena: The augmented reality edge networking architecture,” in 2021 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR) (Bari,
Italy: IEEE), 479–488.

Piumsomboon, T., Dey, A., Ens, B., Lee, G., and Billinghurst, M. (2017). “[poster]
covar: Mixed-platform remote collaborative augmented and virtual realities system

with shared collaboration cues,” in 2017 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR-Adjunct), 218–219. doi:10.1109/ISMAR-Adjunct.
2017.72

Plecher, D. A., Eichhorn, C., Köhler, A., and Klinker, G. (2019). “Oppidum-a
serious-ar-game about celtic life and history,” in International Conference on
Games and Learning Alliance (Berlin, Germany: Springer), 550–559.

Plecher, D. A., Ludl, M., and Klinker, G. (2020). “Designing an ar-escape-room
with competitive and cooperative mode,” in GI VR/AR workshop (Bonn, Germany:
Gesellschaft für Informatik eV).

Plecher, D., Eichhorn, C., and Klinker, G. (2022). Roar-role of augmented reality
in serious games and superhuman sports.

Ren, J., He, Y., Huang, G., Yu, G., Cai, Y., and Zhang, Z. (2019). An edge-
computing based architecture for mobile augmented reality. IEEE Netw. 33,
162–169. doi:10.1109/MNET.2018.1800132

Schmalstieg, D., Fuhrmann, A., Hesina, G., Szalavári, Z., Encarnaçao, L. M.,
Gervautz, M., et al. (2002). The studierstube augmented reality project. Presence.
(Camb). 11, 33–54. doi:10.1162/105474602317343640

Skuza, B., Mroczkowska, A., and Wlodarczyk, D. (2019). Flutter vs. React
native – what to choose in 2021? Available at: https://www.thedroidsonroids.
com/blog/flutter-vs-react-native-what-to-choose-in-2021 (Accessed June 22, 2022).

Statista Inc (2021). Cross-platform mobile frameworks used by software
developers worldwide in 2019 and 2020. Tech. Rep.

Weber, S., Rudolph, L., Eichhorn, C., Dyrda, D., Plecher, D. A., Klinker, G., et al.
(2022). Frameworks enabling ubiquitous mixed reality applications across
dynamically adaptable device configurations. Front. Virtual Real. 36. doi:10.
3389/frvir.2022.765959

Zhang, W., Han, B., Hui, P., Gopalakrishnan, V., Zavesky, E., and Qian, F. (2018).
“Cars: Collaborative augmented reality for socialization,” in HotMobile ’18:
Proceedings of the 19th International Workshop on Mobile Computing Systems
& Applications (New York, NY, USA: Association for Computing Machinery),
25–30. doi:10.1145/3177102.3177107

Zillner, J., Mendez, E., and Wagner, D. (2018). “Augmented reality remote
collaboration with dense reconstruction,” in 2018 IEEE International
Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)
(Munich, Germany: IEEE), 38–39. doi:10.1109/ISMAR-Adjunct.2018.00028

Frontiers in Virtual Reality frontiersin.org16

Carius et al. 10.3389/frvir.2022.1021932

https://github.com/olexale/arkit_flutter_plugin
https://github.com/olexale/arkit_flutter_plugin
https://doi.org/10.1145/3359997.3365734
https://doi.org/10.3390/ijgi10110772
https://doi.org/10.3390/ijgi10110772
https://doi.org/10.1016/j.promfg.2020.04.076
https://doi.org/10.1016/j.promfg.2020.04.076
https://doi.org/10.1007/s10055-021-00585-4
https://doi.org/10.1109/ISMAR-Adjunct.2017.72
https://doi.org/10.1109/ISMAR-Adjunct.2017.72
https://doi.org/10.1109/MNET.2018.1800132
https://doi.org/10.1162/105474602317343640
https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2021
https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2021
https://doi.org/10.3389/frvir.2022.765959
https://doi.org/10.3389/frvir.2022.765959
https://doi.org/10.1145/3177102.3177107
https://doi.org/10.1109/ISMAR-Adjunct.2018.00028
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.1021932

	Cloud-based cross-platform collaborative augmented reality in flutter
	1 Introduction
	2 Related work
	2.1 The field of collaborative augmented reality
	2.2 Mobile augmented reality frameworks and the path towards collaboration
	2.3 Summary

	3 AR flutter plugin
	3.1 Augmented reality view
	3.2 Session management
	3.3 Object management
	3.4 Anchor management and cloud synchronization

	4 Cloud-based content management system
	5 Evaluation
	5.1 Application performance benchmark
	5.2 Tracking quality benchmark
	5.3 Community reception

	6 Future work
	7 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


