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Abstract

This dissertation is motivated by the challenges arising in the formal verification and
control of (unknown) continuous-time stochastic hybrid systems (SHS). Over the past
two decades, stochastic SHS have gained significant attention as a beneficial model-
ing framework for a wide range of engineering systems with safety-critical applications
including automotive, robotics, transportation systems, energy, healthcare, and criti-
cal infrastructures. Most SHS are heterogeneous in nature: discrete dynamics model
computation parts including hardware and software, and continuous dynamics model
control systems. Developing a formal verification and control framework for these com-
plex systems to enforce some high-level logic specifications, e.g., those expressed as linear
temporal logic (LTL) formulae, is inherently very challenging. This is primarily due to
(i) the tight interaction between physical and cyber components, (ii) the stochastic na-
ture of dynamics, (iii) the large dimension of state and input sets, (iv) the complexity
of logic requirements, and (v) the absence of mathematical closed-form models in some
real-world applications.

To address the aforementioned challenges, one potential solution is to employ finite ab-
stractions as approximate descriptions of continuous-space systems in which each finite
state represents a collection of continuous states of the original system. These con-
structed finite abstractions can then serve as suitable substitutes for original systems in
the controller synthesis procedure. By ensuring that the probabilistic distance between
output trajectories of the original systems and their finite abstractions remains within
a guaranteed error bound, one can guarantee that the original systems also satisfy the
desired property of interest as finite abstractions with a quantified probabilistic error.
The first part of this dissertation focuses on the construction of finite abstractions for
continuous-time SHS. Given that abstraction-based techniques involve the discretization
of state and input sets, they are susceptible to the curse of dimensionality. To mitigate
this issue, we also develop compositional abstractions-based techniques for formal anal-
ysis of continuous-time SHS. These techniques are based on small-gain and dissipativity
approaches, which enable more efficient and scalable analysis despite the challenges posed
by the curse of dimensionality.

Another promising approach for the formal analysis of SHS is to employ control barrier
certificates (CBC), as a discretization-free technique. Intuitively speaking, barrier cer-
tificates are Lyapunov-like functions defined over the state space of the system, aiming
to enforce a set of inequalities on both the function itself and the infinitesimal generator
along the system’s flow or one-step transition. An appropriate level set of a barrier cer-
tificate can separate an unsafe region from all system trajectories starting from a given
set of initial conditions. Consequently, the existence of such a function offers a formal
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Abstract

probabilistic certificate for system safety. On the downside, finding CBC for complex
dynamical systems is computationally very expensive, particularly for complex dynam-
ical systems with high dimensions. Motivated by this critical difficulty, the second part
of the dissertation is dedicated to develop compositional techniques in the context of
control barrier certificates for formal verification and controller synthesis of large-scale
SHS to enforce high-level logic properties, expressed by LTL formulae. By leveraging the
compositional approach, we aim to tackle the computational complexity and scalability
issues that arise when dealing with control barrier certificates for complex systems.

Although SHS have become increasingly prevalent in different real-world applications
in recent years, closed-form mathematical models for these complex systems are either
unavailable or equally complex to be practically useful. Consequently, model-based tech-
niques cannot be employed to analyze and design such complex unknown systems. Ex-
isting literature includes indirect data-driven techniques that offer analysis frameworks
for unknown dynamical systems by learning approximate models through identification
approaches. However, obtaining an accurate mathematical model is always challenging,
time-consuming, and expensive, particularly when dealing with complex dynamics, as
is often the case in many real-world applications. As a result, direct data-driven tech-
niques have recently garnered significant attention for the formal analysis of unknown
SHS, bypassing the system identification phase altogether. Since guaranteeing safety
and reliability of physical systems based on data is currently very challenging, which
is of paramount importance in many safety-critical applications, the final part of this
dissertation focuses on the verification and synthesis of SHS using direct data-driven
techniques with formal guarantees.

To showcase the effectiveness of the proposed findings, we apply the techniques devel-
oped in this dissertation to various real-world physical applications. These applications
encompass a wide range of systems, including room temperature networks, Kuramoto
oscillators, Moore-Greitzer jet engine, and DC motor. Through these real-world case
studies, we can assess the effectiveness and robustness of the proposed approaches and
their potential for addressing the challenges posed by different physical systems.
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Zusammenfassung

Bei der Formalen Verifikation und Regelung von (unbekannten) zeitkontinuierlichen
stochastischen Hybridsystemen (SHS) ergeben sich zahlreiche Herausforderungen, die
in dieser Dissertation behandelt werden. In den letzten zwei Jahrzehnten haben SHS
beachtliche Aufmerksamkeit erhalten, da sie sich besonders zur Modellierung zahlre-
icher technischer Systeme eignen. Dazu zählen sicherheitskritische Anwendungen, z.B.
in den Bereichen Automobil, Robotik, Transportsysteme, Energie, Gesundheitswesen
und kritische Infrastrukturen. SHS sind heterogener Natur: Diskrete Berechnungsele-
mente einschließlich Hardware und Software, und kontinuierliche Regelungssysteme. Die
Entwicklung eines Frameworks zur formalen Verifikation und Regelung komplexer Sys-
teme dieser Art zur Einhaltung logischer high-level Spezifikationen, z.B. in Form von
Formeln der linearen temporalen Logik (LTL), stellt eine große Herausforderung dar.
Dies beruht insbesondere auf (i) der engen Interaktion zwischen physischen und Cyber-
Komponenten, (ii) der stochastischen Dynamik, (iii) der hohen Dimension der Zustands-
und Eingangsgrößen, (iv) der Verarbeitung komplexer logischer Anforderungen und (v)
dem Mangel geschlossener mathematischer Modelle für zahlreiche reale Anwendungen.

Ein möglicher Lösungsansatz zur Bewältigung der oben genannten Herausforderun-
gen ist die Verwendung endlicher Abstraktionen zur näherungsweisen Beschreibung kon-
tinuierlicher Systeme. Dabei repräsentiert jeder diskrete Zustand eine Menge kontinuier-
licher Zustände des Ursprungssystems. Zur Reglersynthese können die ursprünglichen
Systeme durch die endlichen Abstraktionen ersetzt werden. Da der probabilistische Ab-
stand zwischen den Ausgangstrajektorien der Originalsysteme und ihrer endlichen Ab-
straktionen innerhalb einer garantierten Fehlergrenze liegt, kann sichergestellt werden,
dass die Originalsysteme die gewünschte Eigenschaft ebenso erfüllen wie die endlichen
Abstraktionen. Dabei ist der probabilistische Fehler quantifizierbar. Der erste Teil
dieser Arbeit widmet sich der Konstruktion endlicher Abstraktionen für zeitkontinuier-
liche SHS. Da abstraktionsbasierte Ansätze auf der Diskretisierung des Zustands- und
Eingangsraums beruhen und folglich erheblich unter dem Fluch der Dimensionalität lei-
den, entwickeln wir zudem kompositionelle abstraktionsbasierte Ansätze für die formale
Analyse von zeitkontinuierlichen SHS, die auf Small-Gain- und Dissipativitätsansätzen
basieren.

Ein weiterer vielversprechender Ansatz für die formale Analyse von SHS ist die Ver-
wendung sogenannter Control Barrier Certificates (CBC) als diskretisierungsfreie Lösung.
Intuitiv gesprochen, sind Barrier Certificates Lyapunov-ähnliche Funktionen, die über
den Zustandsraum des Systems definiert werden und eine Reihe von Ungleichheiten
sowohl für die Funktion selbst als auch für den infinitesimalen Generator entlang des
Flusses (oder des schrittweisen Übergangs) des Systems vorgeben. Eine geeignete Lev-
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Zusammenfassung

elmenge eines Barrier Certificates kann eine unsichere Region von allen Systemtrajek-
torien abgrenzen, die von einer gegebenen Menge von Anfangsbedingungen ausgehen.
Die Existenz einer solchen Funktion stellt somit ein formales probabilistisches Zertifikat
für die Sicherheit des Systems dar. Der Nachteil ist, dass die Identifizierung von CBC
für komplexe dynamische Systeme sehr rechenintensiv ist, insbesondere wenn die Di-
mension der zugrundeliegenden Systeme hoch ist. Aus diesem Grund widmet sich der
zweite Teil dieser Arbeit der Entwicklung kompositioneller Methoden im Kontext von
Control Barrier Certificates für die formale Verifikation und Synthese von Reglern für
hochdimensionale SHS und logische high-level Eigenschaften.

Obwohl SHS in den letzten Jahren durch diverse praktische Anwendungen allge-
genwärtig geworden sind, stehen geschlossene mathematische Modelle für diese kom-
plexen Systeme entweder nicht zur Verfügung oder sind so komplex, dass sie keinen
praktischen Nutzen haben. Folglich können modellbasierte Methoden nicht für die Anal-
yse und den Entwurf dieser Art komplexer unbekannter Systeme eingesetzt werden. In
der Literatur werden indirekte datengetriebene Ansätze beschrieben, die die Analyse
unbekannter dynamischer Systeme durch das Lernen näherungsweiser Modelle mit Hilfe
von Identifikationsverfahren ermöglichen. Allerdings ist die Ermittlung eines genauen
Modells immer äußerst schwierig, zeitaufwändig und teuer, insbesondere wenn die zu-
grundeliegende Dynamik zu komplex ist, was bei vielen realen Anwendungen der Fall
ist. Kürzlich haben direkte datengetriebene Ansätze, die die Identifikation des Systems
umgehen, erhebliche Aufmerksamkeit für die formale Analyse von unbekannten SHS er-
halten. Da die Gewährleistung des sicheren und zuverlässigen Betriebs physischer Sys-
teme auf der Grundlage von Daten derzeit eine große Herausforderung darstellt, beson-
ders für sicherheitskritische Anwendungen, konzentriert sich der letzte Teil dieser Arbeit
auf die Verifikation und Synthese von SHS mittels direkter datengesteuerter Methoden
mit formalen Garantien.

Um die Leistungsfähigkeit der entwickelten Methoden zu demonstrieren, wenden wir
sie auf verschiedene realistische physische Anwendungen an, darunter Raumtemperatur-
netzwerke, Kuramoto-Oszillatoren, Moore-Greitzer-Düsentriebwerke und Gleichstrom-
motoren.
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1 Introduction

1.1 Motivations, Research Goals and Original Contributions

Stochastic hybrid systems (SHS) are complex networked models that combine both cy-
ber (computation and communication) and physical components, which tightly interact
with each other in a feedback loop. In the past two decades, SHS have received remark-
able attentions as a beneficial modeling framework spanning a wide range of engineering
systems with real-life safety-critical applications such as automotive, robotics, trans-
portation systems, energy, healthcare, and critical infrastructures, to name a few. Most
SHS are of heterogeneous nature: discrete dynamics model computation parts includ-
ing hardware and software, and continuous dynamics model control systems. Providing
formal verification and analysis framework for this type of complex systems to enforce
some high-level logic specifications, e.g., those expressed as linear temporal logic (LTL)
formulae, is inherently very challenging [Pnu77]. In particular, the ability to handle the
interaction between continuous and discrete dynamics under the influence of uncertain
factors is a prerequisite to provide a rigorous mathematical framework for the formal
verification and synthesis of SHS.

To deal with the above-mentioned difficulties, the verification and policy synthesis for
complex SHS are often addressed by methods of (in)finite abstractions. In particular,
since the closed-form solution of synthesized policies for SHS is not available in general,
a promising approach is to approximate original models by simpler ones with possibly
lower dimensional state spaces (a.k.a., infinite abstractions) or with finite state spaces
(a.k.a., finite abstractions). Given that the probabilistic distance between output tra-
jectories of original systems and their (in)finite abstractions lives within a guaranteed
error bound, one can ensure that original systems also fulfill the intended property with
a quantified probabilistic error. The first part of this dissertation is dedicated to the
construction of finite abstractions for continuous-time SHS. In order to deal with the
curse of dimensionality as the main challenge in the construction of finite abstractions,
we also develop the compositional abstractions-based techniques for formal analysis of
continuous-time SHS based on small-gain and dissipativity approaches.

The second part of the dissertation is concerned with developing compositional tech-
niques in the context of control barrier certificates (CBC) for formal verification and
controller synthesis of large-scale SHS to enforce high-level logic properties. In particu-
lar, control barrier certificates have received significant attentions in the past few years
as a discretization-free approach for formal analysis of SHS. On the downside, finding
CBC for complex dynamical systems is computationally very expensive, especially if one
is dealing with high-dimensional systems. Then compositional techniques are essential
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1 Introduction

to alleviate the encountered computational complexity. In our proposed setting, we
consider the large-scale SHS as an interconnected system composed of several smaller
subsystems, and develop compositional frameworks for the construction of CBC for the
complex interconnected SHS using control barrier certificates constructed for smaller
subsystems.

In the last part of the dissertation, we develop data-driven techniques for the verifica-
tion and synthesis of SHS while providing formal guarantees. In particular, closed-form
mathematical models for some complex SHS are either not available or equally complex
to be of any practical use. Accordingly, one cannot employ model-based techniques
to analyze and design this type of complex unknown systems. Then data-driven tech-
niques have received significant attentions in the past few years for the formal analysis of
unknown SHS enforcing complex control missions. However, guaranteeing safety and re-
liability of physical systems based on data is currently very challenging, which is of vital
importance in many safety-critical applications. The last part of the dissertation is to
develop model-free data-driven verification and synthesis techniques for formal analysis
of SHS.

It should be noted that throughout the dissertation, to demonstrate the effectiveness
of our results, we apply the proposed techniques to different real-world applications
including “room temperature networks”, “Kuramoto oscillators”, “Moore-Greitzer jet
engine”, and “DC motor”.

1.2 Outline of the Dissertation

This dissertation is divided into 6 chapters, the first of which is the current introduction.
The rest is structured as follows:

Chapter 2 presents some mathematical notations and preliminaries, and also basic
notions from control theory that will be widely employed throughout the dissertation.

Chapter 3 studies compositional (in)finite abstractions with different composition-
ality techniques including small-gain and dissipativity approaches. The results of this
chapter are respectively presented based on [NSZ19, NSZ21, NZ20].

Chapter 4 discusses compositional construction of control barrier certificates to en-
force high-level logic properties over SHS. The results of this chapter are respectively
presented based on [NSZ20b, NSZ20a, NSZ22, NZ22].

Chapter 5 provides model-free techniques based on data-driven optimization for
formal analysis of SHS. The results of this chapter are presented based on [NLSZ21,
NLSZ22, NLJ+23, NZCZ22, LNSZ21, LNJZ21].

Chapter 6 summarizes the results of this dissertation and outlines potential directions
for the future research.

It should be noted that Chapters 3, 4, 5 follow a common structure for the sake of
clarity. In particular, they start with an introduction including a description of the
problem addressed, a brief literature review, and a statement of the contributions made.
The developed techniques are detailed in subsequent sections, followed by a section
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illustrating their efficiency on different case studies. Finally, the chapters are concluded
with a summary section.
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2 Mathematical Notations, Preliminaries
and Basic Notions in Control Theory

2.1 Notations

The following notations are employed throughout the dissertation. The sets of nonneg-
ative and positive integers are denoted by N := {0, 1, 2, . . .} and N≥1 := {1, 2, 3, . . .},
respectively. Moreover, the symbols R, R>0, and R≥0 denote, respectively, the sets of
real, positive and nonnegative real numbers. Given N vectors xi ∈ Rni , ni ∈ N≥1, and
i ∈ {1, . . . , N}, we use x = [x1; . . . ;xN ] to denote the corresponding column vector of
dimension

∑
i ni. Given a matrix P ∈ Rn×n with diagonal entries a1, . . . , an, we define

Tr(P ) =
∑n

i=1 ai. Given a symmetric matrix P , the minimum and maximum eigenvalues
of P are respectively denoted by λmin(P ) and λmax(P ). We denote by ‖ · ‖∞ and ‖ · ‖
the infinity and Euclidean norms, respectively. For any matrix P ∈ Rm×n, we have
‖P‖ :=

√
λmax(P>P ). We also denote by ‖P‖F :=

√
Tr(P>P ) the Frobenius norm of

any matrix P ∈ Rm×n. Given any a ∈ R, |a| denotes the absolute value of a. Symbols
In, 0n, and 1n denote the identity matrix in Rn×n and the column vector in Rn×1 with
all elements equal to zero and one, respectively. The identity function and composition
of functions are denoted by Id and symbol ◦, respectively. We denote the indicator
function of a subset A of a set X by 1A : X → {0, 1}, where 1A(x) = 1 if and only if
x ∈ A, and 0 otherwise.

For any setX we denote by 2X the power set ofX that is the set of all subsets ofX. For
any set X, |X| and Int(X) represent, respectively, the cardinality and interior of the set.
The empty set is denoted by ∅. Given a set X and P ⊂ X, the complement of P with re-
spect to X is denoted by X\P = {x

∣∣x ∈ X,x /∈ P}. We denote the disjunction (∨) and
conjunction (∧) of a Boolean function f(α) over an index set Γ by ∨

α∈Γ
f(α) and ∧

α∈Γ
f(α),

respectively. We denote by diag(a1, . . . , aN ) and blkdiag(a1, . . . , aN ), respectively, a diag-
onal matrix in RN×N with diagonal scalar and matrix entries a1, . . . , aN starting from the
upper left corner. We denote the spectral radius of a matrix P ∈ Rn×n by ρspc(P ) which
is defined as ρspc(P ) = max{|eig1|, . . . , |eign|}, where eig1, . . . , eign are eigenvalues of
matrix P . Given functions fi : Xi → Yi, for any i ∈ {1, . . . , N}, their Cartesian product∏N
i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi is defined as (

∏N
i=1 fi)(x1, . . . , xN ) = [f1(x1); . . . ; fN (xN )].

Given a measurable function f : N → Rn, the (essential) supremum of f is denoted by
‖f‖∞ := (ess)sup{‖f(k)‖, k ≥ 0}. A function γ : R≥0 → R≥0, is said to be a class K
function if it is continuous, strictly increasing, and γ(0) = 0. A class K function γ(·)
is said to be a class K∞ if γ(r) → ∞ as r → ∞. We denote the factorial of a non-
negative integer n by n! as the product of all positive integers less than or equal to n,
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i.e., n! = n× (n− 1)× (n− 2)× · · · × 3× 2× 1. We define the regularized incomplete
beta function as [Cal10]

Ir : (c, a, b) 7→Ir(c, a, b)=

∫ c
0 ta−1(1−t)b−1dt∫ 1
0 ta−1(1−t)b−1dt

, ∀a, b, c ∈ R>0.

2.2 Preliminaries

We consider a probability space (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a
sigma-algebra on Ω comprising subsets of Ω as events, and PΩ is a probability measure
that assigns probabilities to events. We assume that triple (Ω,FΩ,PΩ) is endowed
with a filtration F = (Fs)s≥0 satisfying the usual conditions of completeness and right
continuity. Let (Ws)s≥0 be a b-dimensional F-Brownian motion, and (Ps)s≥0 be an
r-dimensional F-Poisson process. We assume that the Poisson process and Brownian
motion are independent of each other. The Poisson process Ps = [P1

s; · · · ;Prs] models
r events whose occurrences are assumed to be independent of each other. Given a
probability space (Ω,FΩ,PΩ), we denote the N -Cartesian product set of Ω by ΩN, and
its corresponding product measure by PN .

We assume that random variables introduced in the dissertation are measurable func-
tions of the form X : (Ω,FΩ)→ (SX ,FX). Any random variable X induces a probability
measure on its space (SX ,FX) as Prob{A} = PΩ{X−1(A)} for any A ∈ FX . We often
directly discuss the probability measure on (SX ,FX) without explicitly mentioning the
underlying probability space and the function X itself. A topological space S is called
a Borel space if it is homeomorphic to a Borel subset of a Polish space (i.e., a separable
and completely metrizable space). Examples of a Borel space are Euclidean spaces Rn,
its Borel subsets endowed with a subspace topology as well as hybrid spaces. Any Borel
space S is assumed to be endowed with a Borel sigma-algebra, which is denoted by B(S).
We say that a map f : S → Y is measurable whenever it is Borel measurable.

2.3 Continuous-Time Stochastic Hybrid Systems

In this dissertation, we consider stochastic hybrid systems in continuous-time (ct-SHS)
defined over a general state space as in the following definition.

Definition 2.3.1. A continuous-time stochastic hybrid system (ct-SHS) is characterized
by the tuple

Σ = (X,U,W,U ,W, f, σ, ρ, Y, h), (2.3.1)

where:

• X ⊆ Rn is the state space of the system;

• U ⊆ Rm̄ is the external input space of the system;

• W ⊆ Rp̄ is the internal input space of the system;
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• U and W are subsets of the sets of all F-progressively measurable processes (see
[KS14] for more details) taking values in Rm̄ and Rp̄;

• f : X × U × W → X is the drift term which is globally Lipschitz continuous:
there exist constants Lx,Lν ,Lw ∈ R≥0 such that ‖f(x, ν, w) − f(x′, ν ′, w′)‖ ≤
Lx‖x − x′‖ + Lν‖ν − ν ′‖ + Lw‖w − w′‖ for all x, x′ ∈ X, for all ν, ν ′ ∈ U , and
for all w,w′ ∈W ;

• σ : Rn → Rn×b is the diffusion term which is globally Lipschitz continuous with
the Lipschitz constant Lσ;

• ρ : Rn → Rn×r is the reset term which is globally Lipschitz continuous with the
Lipschitz constant Lρ;

• Y ⊆ Rq̄ is the output space of the system;

• h : X → Y is the output map.

A continuous-time stochastic hybrid system Σ satisfies

Σ :

{
dξ(t) = f(ξ(t), ν(t), w(t)) dt+ σ(ξ(t)) dWt + ρ(ξ(t)) dPt,
ζ(t) = h(ξ(t)),

(2.3.2)

P-almost surely (P-a.s.) for any ν ∈ U and any w ∈ W, where stochastic processes
ξ : Ω × R≥0 → X and ζ : Ω × R≥0 → Y are called the solution process and the output
trajectory of Σ, respectively. We also employ ξx0νw(t) to denote the value of the solution
process at time t ∈ R≥0 under input trajectories ν and w from an initial condition
ξx0νw(0) = x0 P-a.s., where x0 is a random variable that is F0-measurable. We also
denote by ζx0νw the output trajectory corresponding to solution process ξx0νw. Here, we
assume that the Poisson processes Pzs, for any z ∈ {1, . . . , r}, have the rates λ̄z. We
emphasize that the postulated assumptions on f, σ, and ρ ensure existence, uniqueness,
and strong Markov property of the solution process [ØS05].

Remark 2.3.2. Note that the underlying dynamic considered in (2.3.2) is a class of
stochastic hybrid systems in which the drift and diffusion terms model the continuous
part and the Poisson process models the discrete jump of the system. In particular,
Brownian motions and Poisson processes introduce natively two different sources of un-
certainty: (i) a continuous random walk throughout the state space that is governed by
Brownian motions, and (ii) a discrete random jump with an exponential distribution that
is modelled by Poisson processes.

Remark 2.3.3. In some parts of the dissertation, we consider the class of systems
in Definition 2.3.1 but without the reset term ρ, and call it continuous-time stochastic
control systems (ct-SCS), denoted by

Σ = (X,U,W,U ,W, f, σ, Y, h). (2.3.3)
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Remark 2.3.4. In this dissertation, we are ultimately interested in investigating continuous-
time stochastic hybrid systems with possibly large-state dimensions but without internal
inputs. In this case, the tuple (2.3.1) reduces to (X,U,U , f, σ, ρ, Y, h) with f : X × U →
X, and ct-SHS in (2.3.2) can be re-written as

Σ :

{
dξ(t) = f(ξ(t), ν(t)) dt+ σ(ξ(t)) dWt + ρ(ξ(t)) dPt,
ζ(t) = h(ξ(t)).

2.4 Markov Policy

Given the ct-SHS in (2.3.1), we are interested in Markov policies to control the system
defined as follows.

Definition 2.4.1. A Markov policy for the ct-SHS Σ in (2.3.1) is a map ρ̄ : B(U) ×
X × R≥0 → [0, 1], with B(U) being the Borel sigma-algebra on the external input space,
such that ρ̄(·

∣∣x, t) is a universally measurable stochastic kernel for all t ∈ R≥0 [Ros08].
For any state x ∈ X at time t, the input ν(t) is chosen according to the probability
measure ρ̄(·

∣∣x, t). Stationary policies are a subclass of those Markov policies in which
the mapping at any time t hinges only on the current state x(t) and does not change
over time.

2.5 Continuous-Time Stochastic Hybrid Systems with
Markovian Switching

Definition 2.5.1. A continuous-time stochastic hybrid system with Markovian switching
(ct-SHS-MS) is characterized by the tuple

Σ = (X,U,W,U ,W, P,P, f̂ , σ̂, ρ̂, Y, h), (2.5.1)

where:

• X ⊆ Rn is the state set of the system;

• U ⊆ Rm̄ is the external input set of the system;

• W ⊆ Rp̄ is the internal input set of the system;

• U and W are, respectively, subsets of sets of F-progressively measurable processes
taking values in Rm̄ and Rp̄;

• P = {1, . . . ,m} is a finite set of modes;

• P is a subset of S̄(R≥0, P ) which denotes the set of piecewise constant functions
from R≥0 to P , continuous from the right and with a finite number of discontinu-
ities on every bounded interval of R≥0;
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• f̂ = {f1, . . . , fm}, σ̂ = {σ1, . . . , σm}, and ρ̂ = {ρ1, . . . , ρm} are, respectively, col-
lections of vector fields, diffusion and reset terms indexed by p. For all p ∈ P , the
vector field fp : X × U ×W → X, and diffusion and reset terms σp : Rn → Rn×b,
ρp : Rn → Rn×r are assumed to be globally Lipschitz continuous;

• Y ⊆ Rq̄ is the output set of the system;

• h : X → Y is the output map.

A continuous-time stochastic hybrid system with Markovian switching Σ satisfies

Σ:

{
dξ(t)=fp(t)(ξ(t), ν(t), w(t))dt+σp(t)(ξ(t))dWt+ρp(t)(ξ(t))dPt,
ζ(t) = h(ξ(t)),

(2.5.2)

P-almost surely (P-a.s.) for any ν ∈ U , w ∈ W, and switching signal p(t) : R≥0 → P .
For any p ∈ P , we use Σp to refer to system (2.5.2) with a constant switching signal
p(t) = p for all t ∈ R≥0. We denote the solution process and output trajectory of Σp with,
respectively, stochastic processes ξp : Ω × R≥0 → X and ζP : Ω × R≥0 → Y . We also
employ ξpx0νw(t) to denote the value of the solution process at time t ∈ R≥0 under input
trajectories ν and w, and the switching signal p from an initial condition ξpx0νw(0) = x0

P-a.s., where x0 is a random variable that is F0-measurable. We also denote by ζpx0νw

the output trajectory corresponding to the solution process ξpx0νw.

Given the switching system in (2.5.2) with p, p′ ∈ P , the transition probability between
modes at any time instant t ∈ R≥0 is described using the following Markovian switching:

P
{

(p, p′), t+ δ̃
}

=

{
λ̃pp′(ξ

p(t)(t)) δ̃, if p 6= p′,

1 + λ̃pp(ξ
p(t)(t)) δ̃, if p = p′,

where δ̃ is the time increment and λ̃pp′ : Rn → R is a bounded and Lipschitz continuous
function representing transition rates, where, for all x ∈ Rn, λ̃pp′(x) ≥ 0 if p 6= p′,
and

∑
p′∈P λ̃pp′(x) = 0 for all p ∈ P . The Markovian switching in (2.5.2) implies that

the switching between different modes is governed by a continuous-time Markov chain
(CTMC) [ASSB00].

Remark 2.5.2. Stochastic hybrid systems [BLE+06, CL06], in the form of (2.5.2), have
broad applications in real-life safety-critical systems such as biological networks [MPC+17,
IHM09, ABB+15], communication networks [Hes04], power grids [SGS17, DMKFF18],
health and epidemiology [OP15, NPP16], air traffic networks [GL04], and manufacturing
systems [GAM93], to name a few.

2.6 Discrete-Time Stochastic Switched Systems

We consider stochastic switched systems in discrete-time (dt-SS) defined formally as
follows.
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Definition 2.6.1. A discrete-time stochastic switched system (dt-SS) is characterized
by the tuple

Σ = (X,W,P,P, ς, F, Y, h), (2.6.1)

where:

• X ⊆ Rn is a Borel space as the state set of the system. We denote by (X,B(X))
the measurable space with B(X) being the Borel sigma-algebra on the state space;

• W ⊆ Rp̄ is a Borel space as the internal input set of the system;

• P = {1, . . . ,m} is a finite set of modes;

• P is a subset of S̄(N, P ) which denotes the set of functions from N to P ;

• ς is a sequence of independent and identically distributed (i.i.d.) random variables
from a sample space Ω to a set Vς , i.e.,

ς := {ς(k) : Ω→ Vς , k ∈ N};

• F = {f1, . . . , fm} is a collection of vector fields indexed by p. For all p ∈ P ,
the map fp : X ×W × Vς → X is a measurable function characterizing the state
evolution of the system in mode p;

• Y ⊆ Rq̄ is a Borel space as the output set of the system;

• h : X → Y is a measurable function as the output map that maps a state x ∈ X
to its output y = h(x).

For a given initial state x(0) ∈ X, an internal input sequence w(·) : N → W , and a
switching signal p(k) : N→ P , the evolution of the state of Σ is described as

Σ :

{
x(k + 1) = fp(k)(x(k), w(k), ς(k)),

y(k) = h(x(k)),
k ∈ N. (2.6.2)

We assume that the signal p satisfies a dwell-time condition [Mor96] as defined in the
next definition.

Definition 2.6.2. Consider a switching signal p : N→ P and define its switching time
instants as

Sp := {sk : k ∈ N≥1}.

Then, p : N→ P has dwell-time kd ∈ N [Mor96] if elements of Sp ordered as s1 ≤ s2 ≤
s3 ≤ . . . satisfy s1 ≥ kd and sk+1 − sk ≥ kd,∀k ∈ N≥1.
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3 Discretization-based Techniques based on
(In)Finite Abstractions

3.1 Introduction

Construction of (in)finite abstractions was proposed in the past decade as a promising
approach to alleviate the complexity of controller synthesis problems, in particular for
enforcing complex logical properties. Infinite abstractions are approximated versions
of continuous-space systems whose space is still continuous but with lower dimensions.
Finite abstractions are abstract descriptions of continuous-space systems in which each
discrete state corresponds to a collection of continuous states of the original system.
Since the abstractions are finite, algorithmic approaches from computer science are ap-
plicable to synthesize controllers enforcing high-level logic specifications. A crucial step
is to provide formal guarantees during this approximation phase such that the analysis
or synthesis on abstract models can be refined back over original ones. Stochastic simu-
lation functions are then employed as Lyapunov-like functions defined over the Cartesian
product of state spaces of two systems to relate output trajectories of abstract systems
to those of original ones such that the mismatch between two systems remains within
some guaranteed error bounds. This chapter is concerned with the construction of fi-
nite abstractions for continuous-time SHS. In order to deal with curse of dimensionality
problem as the main drawback in the construction of finite abstractions, we also de-
velop compositional abstractions-based techniques based on small-gain and dissipativity
approaches for formal analysis of continuous-time stochastic SHS.

3.1.1 Related Literature

In the past few years, there have been several results on the construction of finite ab-
stractions for continuous-time stochastic systems. Reachability analysis for continuous-
time stochastic systems is presented in [LAB+17], which constructs finite-state Markov
chain with provable error bounds. Finite bisimilar abstractions for incrementally stable
stochastic control systems without discrete dynamics are presented in [ZMEM+14]. Ab-
straction techniques for randomly switched stochastic systems and incrementally stable
stochastic switched systems are discussed in [ZA14] and [ZAG15], respectively. Al-
though original systems in [ZMEM+14, ZAG15, ZA14] are in the stochastic settings,
their proposed abstractions are finite labeled transition systems whereas in this chapter
we consider finite Markov decision processes (MDPs) as our finite abstractions. An ap-
proximation framework for constructing infinite abstractions for jump-diffusion processes
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is proposed in [JP09]. Compositional construction of infinite abstractions is discussed in
[ZRME17] using small-gain type conditions.

There have been also several results on the construction of (in)finite abstractions
for discrete-time stochastic systems with continuous-state spaces. In this respect, fi-
nite abstractions for formal synthesis of discrete-time stochastic hybrid systems are
initially proposed in [APLS08]. A sequential and adaptive gridding approach is pro-
posed in [SA13, Sou14] with dedicated tools FAUST2 [SGA15], StocHy [CA19] and
AMYTISS [LKSZ20]. Furthermore, formal abstraction-based policy synthesis is dis-
cussed in [TMKA13, KSL13]. Compositional construction of (in)finite abstractions using
small-gain and dissipativity approaches is presented in [LSZ20d, LSZ19a], respectively.
Compositional construction of finite abstractions for discrete-time stochastic control sys-
tems is presented in [SAM17] and [LSZ18] using respectively dynamic Bayesian networks
and dissipativity properties of subsystems and their abstractions.

A notion of disturbance bisimulation relation is proposed in [MSSM17] for composi-
tional construction of finite abstractions. A notion of approximate simulation relation for
stochastic systems is proposed in [HSA17] that is based on lifting probabilistic evolution
of systems to a coupled space. This notion is extended in [LSZ20b] for compositional
abstraction-based synthesis of general MDPs. This notion enables using both model
order reduction and space discretization in a unified framework.Compositional construc-
tion of finite abstractions for a class of stochastic hybrid systems, namely stochastic
switched systems, is proposed in [LSZ20a, LZ22]. Compositional construction of fi-
nite abstractions for stochastic systems that are not necessarily stabilizable is presented
in [LSZ19b, LZ19, LSZ20c]. Compositional construction of (in)finite abstractions for
large-scale discrete-time stochastic systems via different compositionality conditions is
widely discussed in [LSAZ22, Lav19].

3.1.2 Contributions

In the first part of this chapter, we develop a scheme for the construction of discrete-time
finite-space Markov decision processes (MDPs) from continuous-time stochastic control
systems. The proposed framework relies on a relation between the continuous-time
system and its discrete-time counterpart employing the notion of stochastic simulation
functions. This type of relations enables one to compute a probability bound between
continuous-time concrete systems and that of their discrete-time (in)finite abstractions.
We show that if the original stochastic control system possesses some stability property,
the probability bound associated to non-stochastic abstractions is less conservative than
that of stochastic ones. In this respect, we first quantify the probabilistic distance
between the continuous-time stochastic control systems and that of their discrete-time
(finite or infinite) abstractions. We then construct finite abstractions together with
their corresponding stochastic simulation functions for a particular class of stochastic
affine systems. Finally, to demonstrate the effectiveness of the proposed results, we
apply our approaches to a temperature regulation in a building of two adjacent rooms
and construct a discrete-time abstraction from original continuous-time dynamic. We
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employ the constructed discrete-time abstraction as a substitute to synthesize policy
regulating the temperature of rooms for a bounded time horizon.

In the second part of the chapter, we propose a compositional framework for the
construction of discrete-time finite-space MDPs from continuous-time stochastic hybrid
systems. We leverage sufficient small-gain conditions to provide the compositionality
results which rely on the relation between continuous-time subsystems and their discrete-
time counterparts based on stochastic simulation functions. We apply our approaches
to a temperature regulation in a circular building (presented as a running example)
and construct compositionally a discrete-time abstraction of a network containing 1000
rooms.

In the last part of the chapter, we derive dissipativity-type conditions to propose com-
positionality results for constructing finite MDPs from continuous-time continuous-space
stochastic systems. The provided compositionality conditions can enjoy the structure of
interconnection topology and be potentially fulfilled independently of the interconnec-
tion or gains of subsystems. We then focus on a particular class of stochastic affine sys-
tems and construct their finite abstractions together with their corresponding stochastic
storage functions. Finally, we illustrate the effectiveness of the proposed techniques by
applying them to a temperature regulation in a circular network containing 100 rooms.

3.2 Abstraction-based Synthesis of ct-SCS

In this section, we propose a systematic approach for the construction of discrete-time
finite-space MDPs from continuous-time stochastic control systems (ct-SCS) as in Re-
mark 2.3.3 but without internal input sets W . We establish a relation between the
continuous-time system and its discrete-time counterpart based on stochastic simulation
functions. We then leverage the constructed relation and compute a probability bound
between continuous-time concrete systems and that of their discrete-time (in)finite ab-
stractions. We focus on a particular class of stochastic affine systems and construct finite
abstractions together with their corresponding stochastic simulation functions for this
class of systems. We apply our approaches to a temperature regulation in a building of
two adjacent rooms and construct a discrete-time abstraction from original continuous-
time dynamic.

3.2.1 Discrete-Time Finite Abstractions of ct-SCS

Here, we discuss finite abstractions for continuous-time stochastic control systems. To do
so, we first need to provide a time-discretized version of ct-SCS defined in Remark 2.3.3.
Denote a discrete-time infinite abstraction of ct-SCS Σ as

Σ̃ =
(
X̃, Ũ , ς, f̃ , Ỹ , h̃

)
, (3.2.1)

where:

• X̃ ⊆ Rn is a Borel space as the state space of the system. We denote by (X̃,B(X̃))
the measurable space with B(X̃) being the Borel sigma-algebra on the state space;
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• Ũ ⊆ Rm̄ is a Borel space as the input space of the system;

• ς is a sequence of independent and identically distributed (i.i.d.) random variables
from a sample space Ω to the set Vς ,

ς := {ς(k) : Ω→ Vς , k ∈ N};

• f̃ : X̃ × Ũ × Vς → X̃ is a measurable function characterizing the state evolution of
the system;

• Ỹ ⊆ Rq̄ is a Borel space as the output space of the system;

• h̃ : X̃ → Ỹ is a measurable function that maps a state x̃ ∈ X̃ to its output.

For given initial state ã = ξ̃(0) ∈ X̃ and input sequence ν̃(·) : N→ Ũ , evolution of Σ̃
can be written as

Σ̃ :

{
ξ̃(k + 1) = f̃(ξ̃(k), ν̃(k), ς(k)),

ζ̃(k) = h̃(ξ̃(k)),
k ∈ N. (3.2.2)

We associate to Ũ the set Ũ to be the collection of sequence {ν̃(k) : Ω→ Ũ , k ∈ N}, in
which ν̃(k) is independent of ς(z) for any k, z ∈ N and z ≥ k. For any initial state ã ∈ X̃,
and ν̃(·) ∈ Ũ , the random sequences ξ̃ãν̃ : Ω×N→ X̃, ζ̃ãν̃ : Ω×N→ Ỹ satisfying (3.2.2)
are called, respectively, the solution process and output trajectory of Σ̃ under an input
ν̃, and an initial state ã.

To control the discrete-time stochastic control system presented in (3.2.2), we are
interested in Markov policies similar to Definition 2.4.1 but for discrete-time stochastic
control systems, as the following definition.

Definition 3.2.1. A Markov policy for the discrete-time stochastic control system Σ̃
in (3.2.2) is a sequence ρ̄ = (ρ̄0, ρ̄1, ρ̄2, . . .) of universally measurable stochastic kernels ρ̄n
[BS96], each defined on the input space Ũ given X̃ such that for all ξ̃n ∈ X̃, ρ̄n(Ũ |ξ̃n) = 1.
The class of all such Markov policies is denoted by Πρ̄.

Now we are interested in constructing finite abstractions of the discrete-time stochastic
control systems Σ̃ presented in (3.2.2). The abstraction algorithm in this work is based
on finite partitions of sets X̃ = ∪zXz, and Ũ = ∪zUz, and selection of representative
points ξ̂z ∈ Xz and ν̂z ∈ Uz as abstract states and inputs as in the following definition.

Definition 3.2.2. Given a ct-SCS Σ = (X,U,U , f, σ, Y, h), its finite abstraction Σ̂ can
be represented as

Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ), (3.2.3)

where X̂ = {ξ̂z, z = 1, . . . , nξ̂} and Û = {ν̂z, z = 1, . . . , nν̂} are the sets of selected

representative points. Function f̂ : X̂ × Û × Vς → X̂ is defined as

f̂(ξ̂, ν̂, ς) = Φξ̃(f̃(ξ̂, ν̂, ς)), (3.2.4)
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where Φξ̃ : X̃ → X̂ is the map that assigns to any ξ̃ ∈ X̃, the representative point ξ̂ ∈ X̂
of the corresponding partition set containing ξ̃. The output map ĥ is the same as h̃ with
its domain restricted to finite state set X̂ and the output set Ŷ is just the image of X̂
under h̃. The initial state of Σ̂ is also selected according to ξ̂0 := Φξ̃(ξ̃0) with ξ̃0 being

the initial state of Σ̃.

Abstraction map Φξ̃ presented in (3.2.4) satisfies the inequality

‖Φξ̃(ξ̃)− ξ̃‖ ≤ δ, ∀ξ̃ ∈ X̃, (3.2.5)

where δ is the state discretization parameter defined as δ := sup{‖ξ̃− ξ̃′‖, ξ̃, ξ̃′ ∈ Xz, z =
1, 2, . . . , nξ̃}.

Remark 3.2.3. Note that the proposed bound in (3.2.5) is valid for any type of norms
provided that the state discretization parameter δ is defined based on the corresponding
norm.

In the next subsection, we provide an approach for the synthesis of discrete-time
(finite or infinite) abstractions from ct-SCS. To do so, we first define the notion of sum-
type stochastic simulation functions for quantifying the error in probability between
original continuous-time stochastic control systems and that of their discrete-time (finite
or infinite) abstractions.

3.2.2 sum-Type Stochastic Simulation Functions

Here, we first introduce the notion of sum-type stochastic simulation functions (SSF)
for ct-SCS. We then employ this notion to quantify the probabilistic closeness between
original continuous-time stochastic control systems and their discrete-time (finite or
infinite) abstractions. We slightly abuse the notation and use Σ̂ interchangeably in the
next definition to refer to both infinite abstractions Σ̃ in (3.2.1) and finite abstractions
Σ̂ in (3.2.3).

Definition 3.2.4. Consider ct-SCS Σ = (X,U,U , f, σ, Y, h) and its (in)finite abstraction
Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ). A function V : X × X̂ → R≥0 is called a sum-type stochastic

simulation function (sum-type SSF) from Σ̂ to Σ if

• ∃α ∈ K∞ such that

∀x ∈ X,∀x̂ ∈ X̂, α(‖h(x)− ĥ(x̂)‖) ≤ V(x, x̂), (3.2.6)

• ∀k ∈ N, ∀ξ := ξ(kτ) ∈ X,∀ξ̂ := ξ̂(k) ∈ X̂, and ∀ν̂ := ν̂(k) ∈ Û , ∃ν := ν(kτ) ∈ U
such that

E
[
V(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂]− V(ξ, ξ̂) ≤ −κV(ξ, ξ̂) + ρext(‖ν̂‖) + ψ,

(3.2.7)

for some chosen sampling time τ ∈ R>0, κ ∈ R>0, ρext ∈ K∞, and ψ ∈ R>0.
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We write Σ̂ �sum
S Σ if there exists an SSF V from Σ̂ to Σ, and call the control system

Σ̂ a discrete-time (in)finite abstraction of concrete (original) system Σ. Abstraction Σ̂
could be finite or infinite depending on cardinalities of sets X̂, Û .

Remark 3.2.5. Note that since the concrete system in this work is considered in continuous-
time domain, one can employ Dynkin’s formula [Dyn65] and establish the following equal-
ity:

E
[
V(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ(kτ), ξ̂(k), ν(kτ), ν̂(k)
]

= Eς

[
V(ξ(kτ), ξ̂(k + 1)) + E

[ ∫ (k+1)τ

kτ
LV(ξ(t), ξ̂(k + 1))dt

] ∣∣ ξ̂(k), ν̂(k)
]
,

where LV is the infinitesimal generator of the stochastic process acting on function
V [ZMEM+14], and Eς is the conditional expectation acting only on the noise of the
abstract system.

Condition (3.2.7) roughly speaking guarantees that if the concrete system and its
abstraction start from two close initial conditions (guaranteed by condition (3.2.6)),
then they remain close (in terms of expectation) after one step. This type of conditions
is closely related to the ones in the notions of (bi)simulation relations [Tab09] in the
deterministic case.

Condition (3.2.7) also implies implicitly the existence of a function ν(t) = νν̂(ξ(t), ξ̂(k),
ν̂(k)), kτ ≤ t ≤ (k+ 1)τ, fulfilling inequality (3.2.7). This function is called an interface
function and can be employed to refine a synthesized policy ν̂ for Σ̂ to a policy ν for Σ.

The next theorem shows how SSF can be used to compare output trajectories of
original continuous-time stochastic systems and that of their discrete-time (finite or
infinite) abstractions. We borrowed the theorem from [LSMZ17, Theorem 3.3] with a
slight modification.

Theorem 3.2.6. Let Σ = (X,U,U , f, σ, Y, h) be a ct-SCS and Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ) its
discrete-time (finite or infinite) abstraction. Suppose V is an SSF from Σ̂ to Σ. For any
input trajectory ν̂(·) ∈ Û that preserves Markov property for the closed-loop Σ̂, and for
any random variables a and â as the initial states of the ct-SCS and its discrete-time
abstraction, there exists an input trajectory ν(·) ∈ U of Σ through the interface function
associated with V such that the following inequality holds:

P

{
sup

0≤k≤T
‖ζaν(kτ)− ζ̂âν̂(k)‖ ≥ ε | a, â

}
(3.2.8)

≤

1−(1− V(a,â)
α(ε) )(1− ψ̂

α(ε))T , if α (ε)≥ ψ̂
1−κ ,

(V(a,â)
α(ε) )κT + ( ψ̂

(1−κ)α(ε))(1−κ
T ), if α (ε)< ψ̂

1−κ ,

where constant ψ̂ ≥ 0 satisfies ψ̂ ≥ ρext(‖ν̂‖∞) + ψ.
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3.2.3 Construction of Finite Abstraction

In the previous section, Σ̂ were considered as general discrete-time stochastic control
systems without discussing the cardinality of their state sets. In this section, we consider
Σ as an infinite ct-SCS and Σ̂ as its discrete-time finite abstraction constructed as
in Subsection 3.2.1. We impose conditions on the infinite ct-SCS Σ enabling us to
find an SSF from its finite abstraction Σ̂ to Σ. The required conditions are presented
for a particular class of continuous-time stochastic affine systems as in the following
subsection.

3.2.3.1 Stochastic Affine Systems

Here, we focus on a special class of continuous-time stochastic affine systems Σ and
quadratic stochastic simulation functions V. First, we formally define this class of sys-
tems. Afterwards, we construct their finite MDPs Σ̂ as in Subsection 3.2.1, and then
provide conditions under which a nominated V is an SSF from Σ̂ to Σ.

The class of continuous-time stochastic affine systems is given by

Σ :

{
dξ(t) = (Aξ(t) +Bν(t) + b)dt+GdWt,
ζ(t) = Cξ(t),

(3.2.9)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, G ∈ Rn, and b ∈ Rn. We use the tuple

Σ = (A,B,C,G,b),

to refer to the class of stochastic affine systems in (3.2.9). The discrete-time infinite
abstraction of Σ is described by

Σ̃ :

{
ξ̃(k + 1) = ξ̃(k) + ν̃(k) + R̃ς(k),

ζ̃(k) = C̃ξ̃(k),
k ∈ N,

where R̃ is an arbitrary chosen matrix. Later, we show that R̃ = 0n results in less
approximation errors (cf. Remark 3.2.11). Then we present the discrete-time finite
abstraction of Σ̃ as

Σ̂ :

{
ξ̂(k + 1) = Φξ̃(ξ̂(k) + ν̂(k) + R̃ς(k)),

ζ̂(k) = Ĉξ̂(k),
k ∈ N,

where map Φξ̃ : X̃ → X̂ satisfies inequality (3.2.5). Now we nominate the following
quadratic simulation function

V(x, x̂) = (x− x̂)>M(x− x̂), (3.2.10)

where M is a positive-definite matrix of appropriate dimension. In order to show that
V in (3.2.10) is an SSF from Σ̂ to Σ, we require the following two key assumptions on Σ.
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Assumption 3.2.7. Assume that there exists a concave function γ ∈ K∞ such that V
satisfies

V(x, x′)− V(x, x′′) ≤ γ(‖x′ − x′′‖), (3.2.11)

for any x, x′, x′′ ∈ X.

Note that as shown in [ZMEM+14] and by employing the mean value theorem, As-
sumption 3.2.7 is always satisfied for any differentiable function V restricted to a compact
subset of X ×X.

Assumption 3.2.8. Let Σ = (A,B,C,G,b). Assume that for some constant κ̃ ∈ R>0,
there exist matrices M� 0, K and Q of appropriate dimensions such that the following
matrix (in)equalities hold:

(A+BK)>M+M(A+BK) ≤ −κ̃M, (3.2.12)

BQ = A. (3.2.13)

Note that there exists matrix Q satisfying (3.2.13) if and only if im A ⊆ im B. Now,
we provide one of the main results of this section showing that under some conditions V
nominated in (3.2.10) is an SSF from Σ̂ to Σ.

Theorem 3.2.9. Let Σ = (A,B,C,G,b) and Σ̂ be its finite Markov decision process with
discretization parameter δ. Suppose Assumptions 3.2.7 and 3.2.8 hold, and Ĉ = C̃ = C.
Then function V nominated in (3.2.10) is an SSF from Σ̂ to Σ.

Proof. We first show that condition (3.2.6) holds. Since Ĉ = C, we have ‖Cx −
Ĉx̂‖2 = (x − x̂)>C>C(x − x̂). Since λmin(C>C)‖x − x̂‖2 ≤ (x − x̂)>C>C(x − x̂) ≤
λmax(C>C)‖x−x̂‖2, and similarly λmin(M)‖x−x̂‖2 ≤ (x−x̂)>M(x−x̂) ≤ λmax(M)‖x−
x̂‖2, it can be readily verified that λmin(M)

λmax(C>C)
‖Cx − Ĉx̂‖2 ≤ V(x, x̂) holds ∀x ∈ X,

∀x̂ ∈ X̂, implying that condition (3.2.6) holds with α(s) = λmin(M)
λmax(C>C)

s2, ∀s ∈ R≥0. We

proceed with showing that condition (3.2.7) holds, as well. Using Assumption 3.2.7, we
have

E
[
V(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ=ξ(kτ), ξ̂= ξ̂(k), ν=ν(kτ), ν̂= ν̂(k)
]
−V(ξ, ξ̂)

= E
[
V(ξ((k+1)τ), ξ̂(k+1))

∣∣ ξ, ξ̂, ν, ν̂]− E[V(ξ((k+1)τ), ξ̂)
∣∣ ξ, ξ̂, ν, ν̂]

+ E
[
V(ξ((k+1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂]−V(ξ, ξ̂)

= E
[
V(ξ((k+1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ ξ̂, ν̂]−V(ξ, ξ̂).

Now by employing Dynkin’s formula [Dyn65], one obtains

E
[
V(ξ((k+1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂]+E[γ(‖ξ̂(k + 1)− ξ̂‖)
∣∣ ξ̂, ν̂]− V(ξ, ξ̂)

= Eς

[
V(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
LV(ξ(t), ξ̂)dt

] ∣∣ ξ̂, ν̂]+ E
[
γ(‖ξ̂(k+1)− ξ̂‖)

∣∣ξ̂, ν̂]−V(ξ, ξ̂).
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Since the abstract system Σ̂ is considered in discrete-time domain, then the infinitesimal
generator LV(x, x̂) here is different from the usual one that was employed in [ZMEM+14]
and is defined as

LV(x, x̂) = ∂xV(x, x̂)f(x, ν) +
1

2
Tr(σ(x)σ(x)>∂x,xV(x, x̂)). (3.2.14)

Then one has

Eς

[
V(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
LV(ξ(t), ξ̂)dt

] ∣∣ ξ̂, ν̂]+E[γ(‖ξ̂(k+1)− ξ̂‖)
∣∣ξ̂, ν̂]−V(ξ, ξ̂)

= Eς

[
V(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
(2(ξ(t)−ξ̂)>M(Aξ(t)+Bν(t)+b)+G>MG)dt

] ∣∣ ξ̂, ν̂]
+ E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂]−V(ξ, ξ̂).

Given any ξ(t), ξ̂(k), and ν̂(k), we choose ν(t) via the following interface function:

ν(t) = K(ξ(t)− ξ̂(k))−Qξ̂(k) +Hν̂(k), (3.2.15)

where kτ ≤ t ≤ (k+ 1)τ , and H is a matrix of an appropriate dimension. By employing
condition (3.2.13), and the definition of the interface function in (3.2.15), we have

Eς

[
V(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
(2(ξ(t)−ξ̂)>M(Aξ(t)+Bν(t)+b)+G>MG)dt

] ∣∣ ξ̂, ν̂]
+ E

[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ξ̂, ν̂]−V(ξ, ξ̂)

= Eς

[
V(ξ, ξ̂)+E

[∫ (k+1)τ

kτ
(2 (ξ(t)−ξ̂)>M((A+BK)(ξ(t)−ξ̂) +BHν̂+b)+G>MG)dt

] ∣∣ ξ̂, ν̂]
+ E

[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ ξ̂, ν̂]− V(ξ, ξ̂).

Using Young’s inequality [You12] as ab ≤ π
2a

2 + 1
2π b

2, for any a, b ≥ 0 and any π > 0,
by employing Cauchy-Schwarz inequality and using condition (3.2.12), one has

Eς

[
V(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
(2 (ξ(t)−ξ̂)>M((A+BK)(ξ(t)−ξ̂) +BHν̂+b)+G>MG)dt

] ∣∣ ξ̂, ν̂]
+ E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ ξ̂, ν̂]− V(ξ, ξ̂)

≤ Eς
[
V(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
(−κ̃V(ξ(t), ξ̂) + π‖

√
MBH‖2‖ν̂‖2+π‖

√
Mb‖2+G>MG)dt

] ∣∣ ξ̂, ν̂]
+ E

[
γ(‖ξ̂(k+1)− ξ̂‖)

∣∣ ξ̂, ν̂]− V(ξ, ξ̂)

= Eς

[
V(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
−κ̃V(ξ(t), ξ̂)dt+τ(π‖

√
MBH‖2‖ν̂‖2+π‖

√
Mb‖2+G>MG)

] ∣∣ ξ̂, ν̂]
+ E

[
γ(‖ξ̂(k+1)− ξ̂‖)

∣∣ξ̂, ν̂]−V(ξ, ξ̂).
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3 Discretization-based Techniques based on (In)Finite Abstractions

Using Grönwall inequality [Gro19], one has

Eς

[
V(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
−κ̃V(ξ(t), ξ̂)dt+τ(π‖

√
MBH‖2‖ν̂‖2+π‖

√
Mb‖2+G>MG)

] ∣∣ ξ̂, ν̂]
+ E

[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ ξ̂, ν̂]−V(ξ, ξ̂)

≤ Eς
[
e−κ̃τV(ξ, ξ̂)+E

[
e−κ̃ττ(π‖

√
MBH‖2‖ν̂‖2+π‖

√
Mb‖2+G>MG)

]∣∣ ξ̂, ν̂]
+ E

[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ ξ̂, ν̂]−V(ξ, ξ̂)

= −(1−e−κ̃τ )V(ξ, ξ̂)+e−κ̃ττπ‖
√
MBH‖2‖ν̂‖2 + e−κ̃ττ(G>MG+π‖

√
Mb‖2)

+ E
[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ξ̂, ν̂].
Since function γ defined in Assumption 3.2.7 is concave, using Jensen inequality one has

E
[
γ(‖ξ̂(k+1)−ξ̂‖)

∣∣ ξ̂, ν̂]=E
[
γ(‖ξ̂(k+1)−(ξ̂+ν̂+R̃ς)+(ξ̂+ν̂+R̃ς)−ξ̂‖)

∣∣ ξ̂, ν̂]
≤ E

[
γ(δ + ‖ν̂ + R̃ς‖)

∣∣ ξ̂, ν̂] ≤ γ((1+%)δ)+E
[
γ((1+

1

%
)‖ν̂+R̃ς‖)

∣∣ξ̂, ν̂]
≤ γ((1+%)δ) + γ((1+

1

%
)(1+%′)‖ν̂‖)+γ((1+

1

%
)(1+

1

%′
)E
[
‖R̃ς‖

∣∣ ξ̂, ν̂])
= γ((1+%)δ)+γ((1+

1

%
)(1+%′)‖ν̂‖)+γ((1+

1

%
)(1+

1

%′
)E
[
([R̃ς]>[R̃ς])

1
2
∣∣ ξ̂, ν̂])

≤ γ((1+%)δ)+γ((1+
1

%
)(1+%′)‖ν̂‖)+γ((1+

1

%
)(1+

1

%′
)(E
[
[R̃ς]>[R̃ς]

∣∣ ξ̂, ν̂])1
2 )

= γ((1 + %)δ) + γ((1 +
1

%
)(1 + %′)‖ν̂‖) + γ((1 +

1

%
)(1 +

1

%′
)

√
Tr(R̃>R̃)),

where %, %′ ∈ R>0. Then one can conclude that

E
[
V(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂]− V(ξ, ξ̂)

≤ −(1−e−κ̃τ )V(ξ, ξ̂) + e−κ̃ττπ‖
√
MBH‖2‖ν̂‖2+γ((1+

1

%
)(1+%′)‖ν̂‖)

+ e−κ̃ττ(G>MG+π‖
√
Mb‖2)+γ((1 + %)δ)+γ((1 +

1

%
)(1 +

1

%′
)

√
Tr(R̃>R̃)),

which completes the proof with α(s) = λmin(M)
λmax(C>C)

s2,∀s ∈ R≥0, κ := 1−e−κ̃τ , ρext(s) :=

e−κ̃ττπ‖
√
MBH‖2s2+γ((1+1

%)(1+%′)s),∀s ∈ R≥0, and ψ = e−κ̃ττ(G>MG+π‖
√
Mb‖2)

+ γ((1 + %)δ) + γ((1 + 1
%)(1 + 1

%′ )
√

Tr(R̃>R̃)). �

Remark 3.2.10. Note that if γ is linear, then ρext and ψ defined in (3.2.7) are reduced to
ρ(s) := e−κ̃ττπ‖

√
MBH‖2s2 +γ(s),∀s ∈ R≥0, and ψ := e−κ̃ττ(G>MG+π‖

√
Mb‖2)+

γ(δ) + γ(
√

Tr(R̃>R̃)).
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3.2 Abstraction-based Synthesis of ct-SCS

Remark 3.2.11. Note that if the abstraction Σ̂ is infinite (i.e., Σ̃), ρext and ψ defined
in (3.2.7) are reduced to ρext(s) := e−κ̃ττπ‖

√
MBH‖2s2 + γ((1 + %)s),∀s ∈ R≥0, and

ψ := e−κ̃ττ(G>MG+π‖
√
Mb‖2)+γ((1+ 1

%)
√
Tr(R̃>R̃)). Moreover, if the abstraction Σ̂

is infinite and non-stochastic, ρext and ψ are reduced to ρext(s) := e−κ̃ττπ‖
√
MBH‖2s2+

γ(s), ∀s ∈ R≥0, and ψ := e−κ̃ττ(G>MG + π‖
√
Mb‖2). This means if the concrete

system possesses some stability property and the concrete and abstract systems are, re-
spectively, in continuous-time and discrete-time domain, it is actually better to go to
non-stochastic abstractions than stochastic ones since non-stochastic abstractions are
closer than stochastic versions (cf. the case study) to concrete systems.

3.2.4 Case Study

To demonstrate the effectiveness of our proposed approaches, we apply our results to the
temperature regulation in a building of two adjacent rooms, each equipped with a heater.
The model of this case study is borrowed from [GGM16] with slight modifications and
by including stochasticity in the model. We want to first present a discrete-time infinite
abstraction, and then employ the discrete-time abstraction as a substitute to synthesize
policy regulating the temperature of the rooms for a bounded time horizon.

The evolution of the temperature T (·) can be described by the following stochastic
differential equation

Σ:

{
dT (t) = (AT (t) + θ̂Thν(t) + β̂TE)dt+ 0.512dWt,
ζ(t) = T (t),

(3.2.16)

where

A =

[
−2η̂ − β̂ η̂

η̂ −2η̂ − β̂

]
, TE = [Te1 ;Te2 ], T (t) = [T1(t);T2(t)], ν(t) = [ν1(t); ν2(t)].

Moreover, parameters η̂ = 0.05, β̂ = 0.005, and θ̂ = 0.01 are conduction factors, respec-
tively, between the two rooms, between the external environment and each room, and
between the heater and each room. Furthermore, parameters Tei = −1 ◦C, i ∈ {1, 2},
are outside temperatures, Th = 50 ◦C is the heater temperature, and Ti(t), i ∈ {1, 2},
are taking values in [20, 21]. The discrete-time infinite abstraction of Σ is given by

Σ̃ :

{
T̃ (k + 1) = T̃ (k) + ν̃(k),

ζ̃(k) = T̃ (k),
k ∈ N,

where ν̃(k) = [ν̃1(k); ν̃2(k)], and ν̃i(k), i ∈ {1, 2}. Then, one can readily verify that
conditions (3.2.12)-(3.2.13) are satisfied by

K =

[
−1.808 −1.734
−1.734 −1.808

]
, Q =

[
−0.21 0.1

0.1 −0.21

]
, M = I2, κ̃ = 1.8.

By taking τ = 0.001 andH = 0.1I2, the function V(T (kτ), T̃ (k)) = (T (kτ)−T̃ (k))>(T (kτ)−
T̃ (k)) is an SSF from Σ̃ to Σ satisfying condition (3.2.6) with α(s) = s2 and condi-
tion (3.2.7) with κ = 0.001s, ρext(s) = 4.99 × 10−6s2 + 2.82s, ∀s ∈ R≥0, and ψ =
4.992× 10−4.
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3 Discretization-based Techniques based on (In)Finite Abstractions

Now by taking the initial states of Σ and Σ̃ as [20.3; 20.7], and employing Theo-
rem 3.2.6, one can guarantee that the distance between outputs of Σ and Σ̃ will not
exceed ε = 0.5 during the time horizon T = 7 with a probability of at least 88%, i.e.,

P(‖ζ(kτ)− ζ̃(k)‖ ≤ 0.5, ∀k ∈ [0, 7]) ≥ 0.88 .

Let us now synthesize a controller for Σ via its discrete-time abstraction Σ̃ such that
the controller maintains the temperature of each room in the comfort zone [20, 21]. We
design a controller for the discrete-time abstract system Σ̃, and then refine the controller
back to Σ using an interface function. We employ the tool SCOTS [RZ16] to synthesize
controllers for Σ̃ keeping the temperature of each room in the safe set [20, 21]. Closed-
loop state trajectories of two rooms with different noise realizations are illustrated in
Figure 3.1. Furthermore, several realizations of the norm of the error between outputs
of Σ and Σ̃ are illustrated in Figure 3.2. In order to have some more analysis on the
provided probabilistic bound, we also run Monte Carlo simulation of 10000 runs. In
this case, one can statistically guarantee that the distance between outputs of Σ and
Σ̃ is always less than or equal to 0.19 with the same probability, (i.e., at least 88%).
This issue is expected and the reason is due to the conservatism nature of Lyapunov-
like techniques (simulation functions), but with the gain of having formal guarantee
on the output trajectories rather than empirical ones. Note that we have intentionally
dropped the noise of the discrete-time abstraction and employed SCOTS here to show
that if the concrete system possesses some stability property and the two systems are in
continuous-time and discrete-time domain, it is actually better to construct and employ
the non-stochastic abstractions since non-stochastic abstractions are closer than the
stochastic ones (as discussed in Remark 3.2.11) to concrete systems.

0 1 2 3 4 5 6 7

20

20.2

20.4

20.6

20.8

21

Figure 3.1: Closed-loop state trajectories of two rooms with different noise realizations, for
T = 7.

3.3 Compositional Abstraction-based Synthesis of ct-SHS:
Small-Gain Approach

In this section, we enlarge the class of models to continuous-time stochastic hybrid sys-
tems (ct-SHS) as in Definition 2.3.1 by adding Poisson process to the dynamics and pro-
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Figure 3.2: Several realizations of the norm of the error between outputs of Σ and of Σ̃, e.g.,
‖ζ(kτ)− ζ̃(k)‖, for T = 7.

pose a compositional framework for the construction of discrete-time finite-space MDPs
for this class of systems. We utilize sufficient small-gain conditions to provide the com-
positionality results which rely on the relation between the continuous-time subsystems
and their discrete-time counterparts based on stochastic simulation functions. This type
of relations enables us to compute a probability bound between the interconnection of
continuous-time concrete subsystems and that of their discrete-time (in)finite abstrac-
tions. We show that if the original stochastic hybrid system has a stability property, the
probability bound associated with non-stochastic abstractions is less conservative than
that of stochastic ones. In this respect, we first compositionally quantify the distance
between the interconnection of continuous-time stochastic hybrid subsystems and that
of their discrete-time (finite or infinite) abstractions in a probabilistic setting. We also
generalize our construction scheme to a particular class of nonlinear stochastic hybrid
systems and construct finite abstractions together with their corresponding stochastic
simulation functions for this class of systems. We apply our approaches to a temperature
regulation in a circular building (presented as a running example) and construct com-
positionally a discrete-time abstraction of a network containing 1000 rooms. We employ
the constructed discrete-time abstractions as substitutes to compositionally synthesize
policies regulating the temperature of each room for a bounded time horizon.

3.3.1 Discrete-Time Finite Abstractions of ct-SHS

Here, the infinite abstraction refers to an approximation of the original system in the
discrete-time but continuous-space domain, while the finite abstraction is another ap-
proximation in both discrete-time and discrete state set. In order to propose the con-
struction procedure for finite abstractions, we first need to introduce infinite abstractions
as time-discretized versions of ct-SHS similar to (3.2.1).

A discrete-time infinite abstraction of ct-SHS Σ is denoted by the tuple

Σ̃ =
(
X̃, Ũ , W̃ , ς, f̃ , Ỹ , h̃

)
, (3.3.1)
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3 Discretization-based Techniques based on (In)Finite Abstractions

where Ũ ⊆ Rm̄ and W̃ ⊆ Rp̄ are Borel spaces as external and internal input spaces
of the system, respectively. For given initial state ã = x̃(0) ∈ X̃ and input sequences
{ν̃(k) : Ω→ Ũ , k ∈ N} and {w̃(k) : Ω→ W̃ , k ∈ N}, evolution of Σ̃ can be written as

Σ̃ :

{
ξ̃(k + 1) = f̃(ξ̃(k), ν̃(k), w̃(k), ς(k)),

ζ̃(k) = h̃(ξ̃(k)),
k ∈ N. (3.3.2)

We associate to Ũ and W̃ the sets Ũ and W̃ to be the collections of sequences {ν̃(k) :
Ω→ Ũ , k ∈ N} and {w̃(k) : Ω→ W̃ , k ∈ N}, in which ν̃(k) and w̃(k) are independent
of ς(z) for any k, z ∈ N and z ≥ k. For any initial state ã ∈ X̃, ν̃(·) ∈ Ũ and w̃(·) ∈ W̃,
the random sequences ξ̃ãν̃w̃ : Ω × N → X̃, ζ̃ãν̃w̃ : Ω × N → Ỹ satisfying (3.3.2) are
respectively called the solution process and output trajectory of Σ̃ under an external
input ν̃, an internal input w̃, and an initial state ã.

A discrete-time infinite abstraction of ct-SHS Σ in (3.3.1) can be equivalently repre-
sented as an MDP [HSA17]

Σ̃ =
(
X̃, Ũ , W̃ , T̃x̃, Ỹ , h̃

)
,

where the map T̃x̃ : B(X̃)× X̃ × Ũ × W̃ → [0, 1], is a conditional stochastic kernel that
assigns to any x̃ ∈ X̃, ν̃ ∈ Ũ , and w̃ ∈ W̃ , a probability measure T̃x̃(·|x̃, ν̃, w̃) on the
measurable space (X̃,B(X̃)) so that for any set A ∈ B(X̃),

P(x̃(k + 1) ∈ A | x̃(k), ν̃(k), w̃(k)) =

∫
A
T̃x̃(dx̃(k + 1)|x̃(k), ν̃(k), w̃(k)).

For given inputs ν̃(·), w̃(·), the stochastic kernel T̃x̃ captures the evolution of the state
of Σ̃ and can be uniquely determined by the pair (ς, f̃) from (3.3.1).

Given the discrete-time stochastic hybrid system presented in (3.3.2), we are interested
in a Markov policies similar to the one presented in Definition 3.2.1. In particular, the
Markov policy here observes the exact values of state ξ̃(k) ∈ X̃ and internal input
w̃(k) ∈ W̃ at time step k, and selects the external input ν̃(k) ∈ Ũ as a sample from the
probability measure ρ̄(· | ξ̃(k), w̃(k)).

Now we proceed with constructing finite MDPs Σ̂ as finite abstractions of the discrete-
time stochastic hybrid systems Σ̃ presented in (3.3.2). To do so, we assume the state and
input sets of Σ̃ are restricted to compact subsets over which we are interested to perform
the synthesis. The rest of the state sets can be considered as single absorbing states in
both Σ̃ and Σ̂. In order to make the notation easier, we assume this procedure is already
applied to the system and eliminate the absorbing states from the presentation. Then
the abstraction algorithm is based on finite partitions of sets X̃ = ∪zXz, Ũ = ∪zUz, and
W̃ = ∪zWz and selection of representative points ξ̂z ∈ Xz, ν̂z ∈ Uz, and ŵz ∈ Wz as
abstract states and inputs as in the following definition.

Definition 3.3.1. Given a ct-SHS Σ = (X,U,W,U ,W, f, σ, ρ, Y, h) with its time-discretized

version Σ̃ =
(
X̃, Ũ , W̃ , ς, f̃ , Ỹ , h̃

)
, the finite abstraction Σ̂ can be represented as

Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ , ĥ),
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where X̂ = {ξ̂z, z = 1, . . . , nξ̃}, Û = {ν̂z, z = 1, . . . , nν̃}, and Ŵ = {ŵz, z = 1, . . . , nw̃}
are the sets of selected representative points. Function f̂ : X̂ × Û × Ŵ × Vς → X̂ is
defined as

f̂(ξ̂, ν̂, ŵ, ς) = Φξ̃(f̃(ξ̂, ν̂, ŵ, ς)), (3.3.3)

where the quantization map Φξ̃ : X̃ → X̂ satisfies inequality (3.2.5).

Remark 3.3.2. Note that there is no restriction on discretizing the state, external and
internal input sets. However, the size of the state discretization parameter δ appears
in the formulated error (cf. (3.3.27)): one can decrease the error by reducing the state
discretization parameter. We also do not have any constraint on the shape of the partition
elements in constructing the finite MDPs. For the sake of an easier implementation,
one can consider the partition sets as boxes and the center of each box as representative
points.

Continuous Time, Continuous Space

0.9

0.07

0.03

0.6
0.1

0.28

0.2

0.45
0.35

dξ(t)=f(ξ(t), ν(t), w(t))dt+σ(ξ(t))dWt + ρ(ξ(t)) dPt

ξ̃(k + 1) = f̃(ξ̃(k), ν̃(k), w̃(k), ς(k))

f̂(ξ̂, ν̂, ŵ, ς) = Φξ̃ (f̃(ξ̂, ν̂, ŵ, ς))

Σ :

Discrete Time,

˜

Σ :

̂

Σ :

Discrete Time, Discrete Space

Continuous Space

Figure 3.3: A schematic relation between Σ, Σ̃, and Σ̂.

A schematic relation between Σ, Σ̃, and Σ̂ is depicted in Figure 3.3. In the next subsec-
tions, we provide a framework for compositional synthesis of interconnected discrete-time
(finite or infinite) abstractions from ct-SHS. We define notions of max-type stochastic
pseudo-simulation and simulation functions for quantifying the probabilistic error be-
tween original continuous-time stochastic hybrid systems and that of their discrete-time
(finite or infinite) abstractions with and without internal signals, respectively.
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3.3.2 max-Type Stochastic Pseudo-Simulation and Simulation Functions

Here, we first introduce a notion of max-type stochastic pseudo-simulation functions
(SPSF) for ct-SHS with both internal and external inputs. We then define a notion of
max-type stochastic simulation functions (SSF) for ct-SHS with only external inputs.
We mainly employ these two definitions to quantify the probabilistic closeness of inter-
connected continuous-time stochastic hybrid systems and their discrete-time (finite or
infinite) abstractions.

Definition 3.3.3. Consider a ct-SHS Σ = (X,U,W,U ,W, f, σ, ρ, Y, h) and its (in)finite
abstraction Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ , ĥ) with internal inputs. A function S : X × X̂ → R≥0

is called a max-type stochastic pseudo-simulation function (max-type SPSF) from Σ̂ to
Σ if

• ∃α ∈ K∞ such that

∀x ∈ X,∀x̂ ∈ X̂, α(‖h(x)− ĥ(x̂)‖∞) ≤ S(x, x̂), (3.3.4)

• ∀k ∈ N, ∀ξ := ξ(kτ) ∈ X,∀ξ̂ := ξ̂(k) ∈ X̂, and ∀ν̂ := ν̂(k) ∈ Û , ∀w := w(kτ) ∈W ,
∀ŵ := ŵ(k) ∈ Ŵ , ∃ν := ν(kτ) ∈ U such that

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]
≤ max

{
κS(ξ, ξ̂), ρint(‖w − ŵ‖∞), ρext(‖ν̂‖∞), ψ

}
, (3.3.5)

for some chosen sampling time τ ∈ R>0, 0 < κ < 1, ρext, ρint ∈ K∞, and ψ ∈ R>0.

We write Σ̂ �max
PS Σ if there exists an SPSF S from Σ̂ to Σ, and call the hybrid system

Σ̂ a discrete-time (in)finite abstraction of concrete (original) system Σ. Abstraction Σ̂
could be finite or infinite depending on cardinalities of sets X̂, Û , Ŵ .

Remark 3.3.4. Note that the above definition does not put any restriction on the state
set of abstract systems; therefore, it can also be employed to establish a stochastic pseudo-
simulation function from infinite abstractions Σ̃ presented in (3.3.1) to Σ (cf. the running
example).

Now, we adapt the above notion to the interconnected ct-SHS without internal inputs
by omitting all the terms related to w, ŵ which is utilized in Theorem 3.2.6 for relating
interconnected systems.

Definition 3.3.5. Consider a ct-SHS Σ = (X,U,U , f, σ, ρ, Y, h) and its finite abstraction
Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ) without internal inputs. A function V : X × X̂ → R≥0 is called a

max-type stochastic simulation function (max-type SSF) from Σ̂ to Σ if

• ∃α ∈ K∞ such that

∀x ∈ X,∀x̂ ∈ X̂, α(‖h(x)− ĥ(x̂)‖∞) ≤ V(x, x̂), (3.3.6)
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• ∀k ∈ N, ∀ξ := ξ(kτ) ∈ X,∀ξ̂ := ξ̂(k) ∈ X̂, and ∀ν̂ := ν̂(k) ∈ Û , ∃ν := ν(kτ) ∈ U
such that

E
[
V(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂] ≤ max
{
κV(ξ, ξ̂), ρext(‖ν̂‖∞), ψ

}
, (3.3.7)

for some chosen sampling time τ ∈ R>0, 0 < κ < 1, ρext ∈ K∞, and ψ ∈ R>0.

We write Σ̂ �max
S Σ if there exists an SSF V from Σ̂ to Σ, and call the hybrid system Σ̂

a discrete-time (in)finite abstraction of concrete (original) system Σ.
One can utilize Theorem 3.2.6 to compare output trajectories of original intercon-

nected continuous-time stochastic hybrid systems and that of their discrete-time (finite
or infinite) abstractions. This theorem holds for the setting here since the max-type SSF
in (3.3.7) implies the sum-type SSF in (3.2.7).

3.3.3 Compositional Abstractions for Interconnected ct-SHS

In this subsection, we analyze networks of stochastic hybrid subsystems

Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, ρi, Yi, hi), i ∈ {1, . . . , N}, (3.3.8)

and discuss how to construct their finite abstractions together with a max-type SSF
based on corresponding SPSF of their subsystems.

3.3.3.1 Interconnected Stochastic Hybrid Systems

We consider a collection of stochastic hybrid subsystems Σi as in (3.3.8) where their
internal inputs and outputs are partitioned as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ],

yi = [yi1; . . . ; yiN ], (3.3.9)

and their output spaces and functions are of the form

Yi =

N∏
j=1

Yij , hi(xi) = [hi1(xi); . . . ;hiN (xi)]. (3.3.10)

The outputs yii are interpreted as external ones, whereas the outputs yij with i 6= j are
internal ones which are employed to interconnect these stochastic hybrid subsystems.
For the interconnection, if there is a connection from Σj to Σi, we assume that wij is
equal to yji. Otherwise, we put the connecting output function identically zero, i.e.,
hji ≡ 0. Now we define the concrete interconnected stochastic hybrid systems.

Definition 3.3.6. Consider N ∈ N≥1 stochastic hybrid subsystems Σi = (Xi, Ui,Wi,Ui,
Wi, fi, σi, ρi, Yi, hi), i ∈ {1, . . . , N}, with the input-output configuration as in (3.3.9) and
(3.3.10). The interconnection of Σi for any i ∈ {1, . . . , N}, is the concrete interconnected
stochastic hybrid system Σ = (X,U,U , f, σ, ρ, Y, h), denoted by I(Σ1, . . . ,ΣN ), such that
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X :=
∏N
i=1Xi, U :=

∏N
i=1 Ui, f :=

∏N
i=1 fi, σ := blkdiag(σ1(x1), . . . , σN (xN )), ρ :=

blkdiag(ρ1(x1), . . . , ρN (xN )), Y :=
∏N
i=1 Yii, and h =

∏N
i=1 hii, subject to the following

interconnection constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = yij , Yij ⊆Wji.

Remark 3.3.7. Note that we employ the term “internal” for inputs and outputs of
subsystems that are affecting each other in the interconnection topology: internal output
of a subsystem affects internal input of another subsystem. We utilize the term “external”
for inputs and outputs that are not used for the sake of constructing the interconnection.
Properties of the interconnected system are specified over the external outputs. The main
goal is to synthesize external inputs to satisfy desired properties over external outputs.

An example of the interconnection of two concrete stochastic hybrid subsystems Σ1

and Σ2 is illustrated in Figure 3.4.

I(Σ1,Σ2)

Σ1

Σ2

y11
Wt1 , Pt1

ν1

y22

ν2

Wt2 , Pt2

y12

w21 y21

w12

Figure 3.4: Interconnection of two concrete stochastic hybrid subsystems Σ1 and Σ2.

For the sake of better illustration of the results, we provide our case study as a running
example throughout this section.

Running Example. Consider a network of n = 1000 rooms each equipped with a
heater and connected circularly as depicted in Figure 3.5. The model of this case study
is adapted from [GGM16] by including nonlinearity and stochasticity in the model. The
evolution of the temperature T (·) can be described by the interconnected stochastic

Σ1

Σ2

Σ3 Σ4

Σ5

Σ1000

Figure 3.5: A circular building in a network of 1000 rooms.
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differential equation

Σ:

{
dT (t) = (AT (t) + θ̂Thν(t) + β̂TE + ϕ(ξ(t))dt+GdWt +RdPt,
ζ(t) = T (t),

where A is a matrix with diagonal elements aii = −2η̂−β̂, i ∈ {1, . . . , n}, off-diagonal ele-
ments āi,i+1 = āi+1,i = ā1,n = ān,1 = η̂, i ∈ {1, . . . , n−1}, and all other elements are iden-
tically zero, G = 0.5In, R = 0.2In, and ϕ(ξ(t)) = [0.5ϕ1(0.5ξ1(t)); . . . ; 0.5ϕn(0.5ξn(t))]
with ϕi(x) = sin(x), ∀i ∈ {1, . . . , n}. Parameters η̂ = 0.05, β̂ = 0.005, and θ̂ = 0.01
are conduction factors, respectively, between the rooms i ± 1 and i, the external envi-
ronment and the room i, and the heater and the room i. Moreover, TE = [Te1 ; . . . ;Ten ],
ν(t) = [ν1(t); . . . ; νn(t)], and T (t) = [T1(t); . . . ;Tn(t)], where Ti(t) is taking values in
the set [20, 21], for all i ∈ {1, . . . , n}. Outside temperatures are the same for all rooms:
Tei = −1 ◦C, ∀i ∈ {1, . . . , n}, and the heater temperature is Th = 50 ◦C.

By considering the individual rooms as Σi described by

Σi :

{
dTi(t) = (aiiTi(t)+θ̂Thνi(t)+η̂wi(t)+β̂Tei+0.5ϕi(0.5ξi(t)))dt+0.5dWti + 0.2dPti ,
ζi(t) = Ti(t),

one can readily verify that Σ = I(Σ1, . . . ,ΣN ) where wi(t) = [ζi−1(t); ζi+1(t)] (with
ζ0 = ζn, ζn+1 = ζ1). �

3.3.3.2 Compositional Abstractions of Interconnected Hybrid Systems

In this subsection, we consider Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, ρi, Yi, hi) as an original ct-
SHS and Σ̂ as its discrete-time finite abstraction given by the tuple Σ̂i = (X̂i, Ûi, Ŵi, ςi, f̂i,
Ŷi, ĥi) with the input-output configuration similar to (3.3.9) and (3.3.10), where Ŵi ⊆Wi

and Ŷi ⊆ Yi. In order to present the compositionality results of the paper, we assume
there exist max-type SPSF Si from Σ̂i to Σi satisfying conditions (3.3.4), (3.3.5) in Def-
inition 3.3.3 with the corresponding functions and constants denoted by αi, ρinti, ρexti,
κi, and ψi. Since we construct our finite MDPs Σ̂i from time-discretized versions of
original systems (i.e., from Σ̃i), we define here the abstraction map Φw̃ji on W̃ji that

assigns to any w̃ji ∈ W̃ji representative point ŵji ∈ Ŵji of the corresponding partition
set containing w̃ji. The mentioned map satisfies

‖Φw̃ji(w̃ji)− w̃ji‖∞ ≤ µ̄ji, ∀w̃ji ∈ W̃ji, (3.3.11)

where µ̄ji is an internal input discretization parameter defined similar to δ in (3.2.5).
Now we define a notion of interconnection applicable to discrete-time finite abstractions.
Note that condition (3.3.11) helps us to freely take quantization parameters of internal
input sets at the cost of having an additional error term formulated in ψ in (3.3.15). We
now define the abstract interconnected stochastic hybrid systems.

Definition 3.3.8. Consider N ∈ N≥1 finite stochastic hybrid subsystems Σ̂i = (X̂i,Ûi,Ŵi,

ςi, f̂i, Ŷi, ĥi), i ∈ {1, . . . , N}. The interconnection of Σ̂i is the finite interconnected
stochastic hybrid system Σ̂ = (X̂, Û , ς, f̂ , Ŷ , ĥ), denoted by Î(Σ̂1, . . . , Σ̂N ), such that
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X̂ :=
∏N
i=1 X̂i, Û :=

∏N
i=1 Ûi, ς := [ς1, . . . , ςN ], f̂ :=

∏N
i=1 f̂i, Ŷ :=

∏N
i=1 Ŷii, and

ĥ =
∏N
i=1 ĥii, subject to the following constraint:

∀i, j∈{1, . . . , N}, i 6= j : ŵji = Φw̃ji(ŷij), Φw̃ji(Ŷij) ⊆ Ŵji.

We now raise the following small-gain assumption that is essential for the composi-
tionality result in this chapter.

Assumption 3.3.9. Assume that there exist K∞ functions δ̃f , λ̄ such that (λ̄−Id) ∈ K∞
and K∞ functions κij defined as

κij(s) :=

{
κis if i = j,

(Id + δ̃f ) ◦ ρinti ◦ λ̄ ◦ α−1
j (s) if i 6= j,

satisfy

κi1i2 ◦ κi2i3 ◦ · · · ◦ κir−1ir ◦ κiri1 < Id (3.3.12)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.
The small-gain condition (3.3.12) implies the existence of K∞ functions σ̄i [Rüf10,

Theorem 5.5], satisfying

max
i,j

{
σ̄−1
i ◦ κij ◦ σ̄j

}
< Id, i, j = {1, . . . , N}. (3.3.13)

Remark 3.3.10. Remark that the small-gain condition (3.3.12) is a standard one in
studying the stability of large-scale interconnected systems via input-to-state stable Lya-
punov functions [DRW07, DRW10]. This condition is automatically satisfied if each κii
is less than identity (κii < Id,∀i ∈ {1, . . . , N}). Since this condition should be satisfied
for all possible sequences (i1, . . . , ir) ∈ {1, . . . , N}r, r ∈ {1, . . . , N}, it allows some sub-
systems to compensate the undesirable effects of other subsystems in the interconnected
network such that this condition is satisfied.

In the next theorem, we employ small-gain Assumption 3.3.9 to quantify the error
between the interconnection of continuous-time stochastic hybrid subsystems and that
of their discrete-time abstractions in a compositional manner.

Theorem 3.3.11. Consider an interconnected ct-SHS Σ = I(Σ1, . . . ,ΣN ) induced by
N ∈ N≥1 continuous-time stochastic hybrid subsystems Σi. Suppose that each Σi admits

a discrete-time abstraction Σ̂i together with a max-type SPSF Si. If Assumption 3.3.9
holds and maxi σ̄

−1
i for σ̄i as in (3.3.13) is concave, then function V(x, x̂) defined as

V(x, x̂) := max
i
{σ̄−1

i (Si(xi, x̂i))}, (3.3.14)

is a max-type SSF from Σ̂ = Î(Σ̂1, . . . , Σ̂N ) to Σ = I(Σ1, . . . ,ΣN ).
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Proof. We first show that SSF V in (3.3.14) satisfies condition (3.3.6) for some K∞
function α. For any x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, one gets:

‖h(x)− ĥ(x̂)‖∞ = max
i
{‖hii(xi)− ĥii(x̂i)‖∞} ≤ max

i
{‖hi(xi)− ĥi(x̂i)‖∞}

≤ max
i
{α−1

i (Si(xi, x̂i))} = β (max
i
{σ̄−1

i (Si(xi, x̂i))}) = β(V(x, x̂))

where β(s) = maxi

{
α−1
i ◦ σ̄i(s)

}
for all s ∈ R≥0, which is a K∞ function and (3.3.6)

holds with α = β−1.

We continue with showing (3.3.7), as well. Let κ(s) = maxi,j{σ̄−1
i ◦ κij ◦ σ̄j(s)}. It

follows from (3.3.13) that κ < Id. Since maxi σ̄
−1
i is concave, one can readily acquire

the chain of inequalities in (3.3.15) using Jensen’s inequality, condition (3.3.11), and by
defining ρext(·), and ψ as

ρext(s) :=
{

max
i
{σ̄−1

i ◦ ρexti(si)}, s.t. si≥ 0, ‖[s1; . . . ; sN ]‖∞ = s
}
,

ψ := max
i
σ̄−1
i (Λi),

where Λi := (Id+ δ̃−1
f )◦(ρinti◦λ̄◦(λ̄−Id)−1(maxj,j 6=i{µ̄ji})+ψi). Hence, V is a max-type

from Σ̂ to Σ, which completes the proof. �

Remark 3.3.12. Note that to show Theorem 3.3.11, we employed the following inequal-
ities: {

ρint(a+ b) ≤ ρint ◦ λ̄(a) + ρint ◦ λ̄ ◦ (λ̄− Id)−1(b),

a+ b ≤ max{(Id + δ̃f )(a), (Id + δ̃−1
f )(b)},

for any a, b ∈ R≥0, where ρint, δ̃f , λ̄, (λ̄− Id) ∈ K∞.

The results of Theorem 3.3.11 are schematically depicted in Figure 3.6. As illustrated,
if there exists a max-type SPSF Si(xi, x̂i) between each original subsystem and its corre-
sponding finite MDP, one can construct a max-type SSF V(x, x̂) as proposed in (3.3.14)
between the interconnected original system and its interconnected finite abstraction pro-
vided that the small-gain condition (3.3.12) is satisfied.

3.3.4 Construction of max-type SPSF

Here, we impose conditions on the infinite ct-SHS Σ enabling us to establish a max-type
SPSF from its finite abstraction Σ̂ to Σ. The required conditions are presented for a
particular class of continuous-time nonlinear stochastic hybrid systems as in the next
subsection.

3.3.4.1 A Class of Nonlinear Stochastic Hybrid Systems

We focus on a special class of continuous-time nonlinear stochastic hybrid systems Σ
and quadratic pseudo-stochastic simulation functions S. We formally define this class of
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E
[
V(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂]=E[max
i

{
σ̄−1
i (Si(ξi((k + 1)τ), ξ̂i(k + 1)))

} ∣∣ ξ, ξ̂, ν, ν̂]
≤ max

i

{
σ̄−1
i (E

[
Si(ξi((k + 1)τ), ξ̂i(k + 1))

∣∣ ξ, ξ̂, ν, ν̂])}
= max

i

{
σ̄−1
i (E

[
Si(ξi((k + 1)τ), ξ̂i(k + 1)) | ξi, ξ̂i, νi, ν̂i

]
)
}

≤ max
i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(‖wi − ŵi‖∞), ρexti(‖ν̂i‖∞), ψi})

}
= max

i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(max

j,j 6=i
{‖wij − ŵij‖∞}), ρexti(‖ν̂i‖∞), ψi})

}
= max

i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(max

j,j 6=i
{‖yji−ŷji+ŷji−Φw̃ij (ŷji)‖∞}), ρexti(‖ν̂i‖∞),

ψi})
}

≤ max
i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(max

j,j 6=i
{‖hj(xj)−ĥj(x̂j)‖∞+‖ŷji−Φw̃ij (ŷji)‖∞}),

ρexti(‖ν̂i‖∞), ψi})
}

≤ max
i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti(max

j,j 6=i
{α−1

j (Sj(xj , x̂j)) + µ̄ji}), ρexti(‖ν̂i‖∞), ψi})
}

≤ max
i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), ρinti ◦ λ̄(max

j,j 6=i
{α−1

j (Sj(xj , x̂j))})

+ ρinti ◦ λ̄ ◦ (λ̄− Id)−1(max
j,j 6=i
{µ̄ji}), ρexti(‖ν̂i‖∞), ψi})

}
≤ max

i

{
σ̄−1
i (max{κi(Si(xi, x̂i)), (Id + δ̃f ) ◦ ρinti ◦ λ̄(max

j,j 6=i
{α−1

j (Sj(xj , x̂j))}),

ρexti(‖ν̂i‖∞),Λi})
}

= max
i,j

{
σ̄−1
i (max{κij(Sj(xj , x̂j)), ρexti(‖ν̂i‖∞),Λi})

}
= max

i,j

{
σ̄−1
i (max{κij ◦ σ̄j ◦ σ̄−1

j (Sj(xj , x̂j)), ρexti(‖ν̂i‖∞),Λi})
}

= max
i,j

{
σ̄−1
i (max{κij ◦ σ̄j(V(x, x̂)), ρexti(‖ν̂i‖∞),Λi})

}
= max{κ(V(x, x̂)), ρext(‖ν̂‖∞), ψ}. (3.3.15)

systems and then construct their finite abstractions Σ̂ as discussed in Subsection 3.3.1
by providing conditions under which a nominated S is a max-type SPSF from Σ̂ to Σ.

The class of continuous-time nonlinear stochastic hybrid systems is defined as

Σ :

{
dξ(t) = (Aξ(t)+Bν(t)+Dw(t)+Eϕ(Fξ(t))+b) dt+GdWt+

∑r
z=1RzdPzt ,

ζ(t) = Cξ(t),

(3.3.16)
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ŷii ν
yii

ΣN

. . .
.. .

ŷij
∀i �= j

∀i �= jwji = yij,Φw̃ji
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Figure 3.6: Compositionality results given that small-gain condition (3.3.12) is satisfied.

where A ∈ Rn×n, B ∈ Rn×m̄, C ∈ Rq̄×n, D ∈ Rn×p̄, E ∈ Rn×1, F ∈ R1×n, G ∈ Rn×1,
b ∈ Rn×1, and Ri ∈ Rn×1, ∀z ∈ [1; · · · ; r]. We use the tuple

Σ = (A,B,C,D,E, F,G,b, R, ϕ, λ̄),

where R = {R1, . . . , Rr}, λ̄ = {λ̄1, . . . , λ̄r} with λ̄z as the rates of Poisson processes Pzt ,
to refer to the class of stochastic hybrid systems in (3.3.16). The discrete-time infinite
abstraction of Σ is described by

Σ̃ :

{
ξ̃(k + 1) = ξ̃(k) + ν̃(k) + D̃ w̃(k) + R̃ς(k),

ζ̃(k) = C̃ξ̃(k),
k ∈ N, (3.3.17)

where D̃ and R̃ are arbitrarily chosen. Our goal here is to use Σ̃ as the time-discretized
version of Σ in order to establish a max-type SPSF from Σ̂ to Σ via Σ̃ while finding the
best approximation error. Later, we show that R̃ = 0n and D̃ = 0n×p̄ result in the least
approximation error (cf. Remark 3.3.17).

Running Example (continued). The discrete-time infinite abstraction of Σi is
given by

Σ̃i :

{
T̃i(k + 1) = T̃i(k) + ν̃i(k),

ζ̃i(k) = T̃i(k),
k ∈ N.

Note that, as discussed in Remark 3.3.17, we consider here R̃i = D̃i = 0 in order to have
the smallest constants ψi for each Si (which results in smaller probabilistic error).
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We present the discrete-time finite abstraction of Σ̃ as

Σ̂ :

{
ξ̂(k + 1) = Φξ̃(ξ̂(k) + ν̂(k) + D̃ ŵ(k) + R̃ς(k)),

ζ̂(k) = Ĉξ̂(k),
k ∈ N, (3.3.18)

where map Φξ̃ : X̃ → X̂ satisfies condition (3.2.5). Now we nominate the following
quadratic simulation function

S(x, x̂) = (x− P̄ x̂)>M(x− P̄ x̂), (3.3.19)

where P̄ is a square matrix and M is a positive-definite matrix of an appropriate di-
mension. In order to show that the nominated S in (3.3.19) is a max-type SPSF from Σ̂
to Σ, we require Assumption 3.2.7 and the following key assumption.

Assumption 3.3.13. Let Σ = (A,B,C,D,E, F,G,b, R, ϕ, λ̄). Assume that for some
constant κ̃ ∈ R>0, there exist matrices M � 0, K, P̄ , Q, L and H of appropriate
dimensions such that the following matrix (in)equalities hold:

(A+BK)>M+M(A+BK) � −κ̃M, (3.3.20)

AP̄ = BQ, (3.3.21)

E = BL, (3.3.22)

D = BH. (3.3.23)

Note that there exist matrices Q, L, and H satisfying conditions (3.3.21), (3.3.22),
and (3.3.23) if and only if im AP̄ ⊆ im B, im E ⊆ im B, and im D ⊆ im B, respectively.
Now, we provide another main results of this section showing that under Assumptions
3.2.7 and 3.3.13, function S in (3.3.19) is a max-type SPSF from Σ̂ to Σ.

Theorem 3.3.14. Let Σ = (A,B,C,D,E, F,G,b, R, ϕ, λ̄) and Σ̂ be its discrete-time fi-
nite abstraction with the discretization parameter δ. Suppose Assumptions 3.2.7 and 3.3.13
hold, and Ĉ = C̃ = CP̄ . Then function S in (3.3.19) is a max-type SPSF from Σ̂ to Σ.

Proof. Since Ĉ = CP̄ , we have ‖Cx − Ĉx̂‖2∞ ≤ nλmax(C>C)‖x − P̄ x̂‖2, and
similarly λmin(M)‖x − P̄ x̂‖2 ≤ (x − P̄ x̂)>M(x − P̄ x̂). One can readily verify that
λmin(M)

nλmax(C>C)
‖Cx − Ĉx̂‖2∞ ≤ S(x, x̂) holds ∀x, ∀x̂, implying that condition (3.3.4) holds

with α(s) = λmin(M)
nλmax(C>C)

s2 for any s ∈ R≥0. We proceed with showing that condi-

tion (3.3.5) holds, as well. Using Assumption 3.2.7, we have

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ=ξ(kτ), ξ̂= ξ̂(k), ν=ν(kτ), ν̂= ν̂(k), w=w(kτ), ŵ= ŵ(k)
]

= E
[
S(ξ((k+1)τ), ξ̂(k+1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]−E[S(ξ((k+1)τ), ξ̂)
∣∣ξ, ξ̂, ν, ν̂, w, ŵ]

+ E
[
S(ξ((k+1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]
≤ E

[
S(ξ((k+1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]+E[γ(‖ξ̂(k + 1)− ξ̂‖∞)
∣∣ ξ̂, ν̂, ŵ].
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Now by employing Dynkin’s formula [Dyn65], one obtains

E
[
S(ξ((k+1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]+E[γ(‖ξ̂(k + 1)− ξ̂‖∞)
∣∣ ξ̂, ν̂, ŵ]

= Eς

[
S(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
LS(ξ(t), ξ̂)dt

]∣∣ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)− ξ̂‖∞)
∣∣ξ̂, ν̂, ŵ].

Since the infinitesimal generator LS acting on function S is defined as

LS(ξ, ξ̂) = ∂ξS(ξ, ξ̂)f(ξ, ν, w) +
1

2
Tr(σ(ξ)σ(ξ)>∂ξ,ξS(ξ, ξ̂))

+

r∑
j=1

λ̄j(S(ξ + ρ(ξ)erj , ξ̂)− S(ξ, ξ̂)), (3.3.24)

where erj denotes an r-dimensional vector with 1 on the j-th entry and 0 elsewhere, and

∂ξS(ξ, ξ̂) = 2(ξ(t)− P̄ ξ̂)>M, ∂ξ,ξS(ξ, ξ̂) = 2M,

then one has

Eς

[
S(ξ, ξ̂)+E

[∫ (k+1)τ

kτ
LS(ξ(t), ξ̂)dt

] ∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)− ξ̂‖∞)
∣∣ξ̂, ν̂, ŵ]

= Eς

[
S(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
(2(ξ(t)−P̄ ξ̂)>M(Aξ(t)+Eϕ(Fξ(t)) +Bν(t) + b+Dw(t))

+G>MG+ 2(ξ(t)−P̄ ξ̂)>M
r∑

z=1

λ̄zRz+

r∑
z=1

λ̄zR
>
zMRz)dt

] ∣∣ ξ̂, ν̂, ŵ]
+ E

[
γ (‖ ξ̂(k + 1)− ξ̂ ‖∞)

∣∣ξ̂, ν̂, ŵ].
Given any ξ(t), ξ̂(k), w(t) and ŵ(k), we choose ν(t) via the following interface function:

ν(t) = K(ξ(t)−P̄ ξ̂(k))−Qξ̂(k)−Lϕ(Fξ(t))+H(w(kτ)−ŵ(k))−Hw(t), (3.3.25)

where kτ ≤ t ≤ (k + 1)τ . By employing conditions (3.3.21), (3.3.22) and (3.3.23) , and
the definition of the interface function in (3.3.25), we have

Eς

[
S(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
(2(ξ(t)−P̄ ξ̂)>M(Aξ(t)+Eϕ(Fξ(t))+Bν(t)+b+Dw(t))+G>MG

+ 2(ξ(t)−P̄ ξ̂)>M
r∑

z=1

λ̄zRz+
r∑

z=1

λ̄zR
>
zMRz)dt

] ∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)−ξ̂‖∞)
∣∣ξ̂, ν̂, ŵ]

= Eς

[
S(ξ, ξ̂)+E

[∫ (k+1)τ

kτ
(2 (ξ(t)−P̄ ξ̂)>M((A+BK)(ξ(t)−P̄ ξ̂) +b+D(w−ŵ))+G>MG

+ 2(ξ(t)−P̄ ξ̂)>M
r∑

z=1

λ̄zRz +
r∑

z=1

λ̄zR
>
zMRz)dt

]∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)−ξ̂‖∞)
∣∣ξ̂, ν̂, ŵ].
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Using Young’s inequality [You12] as ab ≤ π
2a

2 + 1
2π b

2, for any a, b ≥ 0 and any π > 0,
by employing Cauchy-Schwarz inequality and using condition (3.3.20), one has

Eς

[
S(ξ, ξ̂)+E

[∫ (k+1)τ

kτ
(2 (ξ(t)−P̄ ξ̂)>M((A+BK)(ξ(t)−P̄ ξ̂)+b+D(w − ŵ))+G>MG

+ 2(ξ(t)−P̄ ξ̂)>M
r∑

z=1

λ̄zRz+

r∑
z=1

λ̄zR
>
zMRz)dt

]∣∣ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)−ξ̂‖∞)
∣∣ξ̂, ν̂, ŵ]

≤ Eς
[
S(ξ, ξ̂)+E

[ ∫ (k+1)τ

kτ
(−κ̃S(ξ(t), ξ̂)+π‖

√
Mb‖2+π‖

√
MD‖2‖w−ŵ‖2+G>MG

+

r∑
z=1

λ̄zR
>
zMRz+π‖

√
M

r∑
z=1

λ̄zRz‖2)dt
]∣∣ ξ̂, ν̂, ŵ]+ E[γ(‖ξ̂(k+1)− ξ̂‖∞)

∣∣ ξ̂, ν̂, ŵ]
= Eς

[
S(ξ, ξ̂)+ E

[∫ (k+1)τ

kτ
−κ̃S(ξ(t), ξ̂) dt+τ(π‖

√
Mb‖2+π‖

√
MD‖2‖w−ŵ‖2+G>MG

+
r∑

z=1

λ̄zR
>
zMRz+π‖

√
M

r∑
z=1

λ̄zRz‖2)
]∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)− ξ̂‖∞)

∣∣ξ̂, ν̂, ŵ].

Using Grönwall inequality [Gro19], one has

Eς

[
S(ξ, ξ̂)+E

[∫ (k+1)τ

kτ
−κ̃S(ξ(t), ξ̂)dt+τ(π‖

√
Mb‖2+ π‖

√
MD‖2‖w − ŵ‖2 +G>MG

+

r∑
z=1

λ̄zR
>
z MRz+π‖

√
M

r∑
z=1

λ̄zRz‖2)
] ∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)− ξ̂‖∞)

∣∣ξ̂, ν̂, ŵ]
≤ Eς

[
e−κ̃τS(ξ, ξ̂)+E

[
e−κ̃ττ(π‖

√
Mb‖2+pπ‖

√
MD‖2‖w−ŵ‖2∞+G>MG+

r∑
z=1

λ̄zR
>
zMRz

+ π‖
√
M

r∑
z=1

λ̄zRz‖2)
]∣∣ ξ̂, ν̂, ŵ]+E[γ(‖ξ̂(k+1)−ξ̂‖∞)

∣∣ξ̂, ν̂, ŵ]
= e−κ̃τS(ξ, ξ̂) + e−κ̃ττ(G>MG+π‖

√
Mb‖2 + pπ‖

√
MD‖2‖w − ŵ‖2∞ +

r∑
z=1

λ̄zR
>
zMRz

+ π‖
√
M

r∑
z=1

λ̄zRz‖2)+E
[
γ(‖ξ̂(k+1)−ξ̂‖∞)

∣∣ ξ̂, ν̂, ŵ].

Since function γ defined in Assumption 3.2.7 is concave, using Jensen inequality one has
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E
[
γ(‖ξ̂(k + 1)− ξ̂‖∞)

∣∣ ξ̂, ν̂, ŵ]
= E

[
γ(‖ξ̂(k + 1)− (ξ̂ + ν̂ + D̃ŵ + R̃ς) + (ξ̂ + ν̂ + D̃ŵ + R̃ς)− ξ̂‖∞)

∣∣ ξ̂, ν̂, ŵ]
≤ E

[
γ(δ + ‖ν̂ + D̃ŵ + R̃ς‖∞)

∣∣ ξ̂, ν̂, ŵ]
≤ γ((1 + %)δ) + E

[
γ((1 +

1

%
)‖ν̂ + D̃ŵ + R̃ς‖∞)

∣∣ ξ̂, ν̂, ŵ]
≤ γ((1+%)δ) + γ((1+

1

%
)(1+%′)‖ν̂+D̃ ŵ‖∞)+γ((1+

1

%
)(1+

1

%′
)E
[
‖R̃ς‖∞

∣∣ ξ̂, ν̂, ŵ])
≤ γ((1+%)δ)+γ((1+

1

%
)(1+ %′)‖ν̂+D̃ ŵ‖)∞+γ((1+

1

%
)(1+

1

%′
)E
[
([R̃ς]>[R̃ς])

1
2
∣∣ ξ̂, ν̂, ŵ])

≤ γ((1+%)δ)+γ((1+
1

%
)(1+%′)(1+%′′)‖ν̂‖∞) +γ((1+

1

%
)(1+%′)(1+

1

%′′
)‖D̃ ‖∞ ‖ŵ‖∞)

+ γ((1 +
1

%
)(1 +

1

%′
)(E
[
[R̃ς]>[R̃ς]

∣∣ ξ̂, ν̂, ŵ])1
2 )

= γ((1 + %)δ) +γ((1+
1

%
)(1+%′)(1+%′′)‖ν̂‖∞) +γ((1+

1

%
)(1+%′)(1+

1

%′′
) ‖D̃‖∞ ‖ŵ‖∞)

+ γ((1 +
1

%
)(1 +

1

%′
)

√
Tr(R̃>R̃)), (3.3.26)

where %, %′, %′′ ∈ R>0. Then one can conclude that

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]
≤ e−κ̃τS(ξ, ξ̂) +γ((1+

1

%
)(1+%′)(1+%′′)‖ν̂‖∞) + e−κ̃ττpπ‖

√
MD‖2‖w − ŵ‖2∞

+ e−κ̃ττ(G>MG+π‖
√
Mb‖2+

r∑
z=1

λ̄zR
>
zMRz+π‖

√
M

r∑
z=1

λ̄zRz‖2)+γ((1+%)δ)

+ γ((1 +
1

%
)(1 +

1

%′
)

√
Tr(R̃>R̃)) + γ((1+

1

%
)(1+%′)(1+

1

%′′
) ‖D̃‖∞ ‖ŵ‖∞). (3.3.27)

Using the previous inequality and by employing the similar argument as the one in [SGZ18,
Theorem 1], one obtains

E
[
S(ξ((k+1)τ), ξ̂(k+1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]≤max
{
κS(ξ, ξ̂), ρint(‖w−ŵ‖∞), ρext(‖ν̂‖∞), ψ

}
,
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which completes the proof with

α(s) :=
λmin(M)

nλmax(C>C)
s2, ∀s ∈ R≥0,

κ := 1− (1− π̃)κ̄,

ρext(s) := (1 + %̃)(
1

π̃κ̄
)γ((1 +

1

%
)(1 + %′)(1+%′′)s), ∀s ∈ R≥0,

ρint(s) := (1 + 1/%̃)(
1

π̃κ̄
)(1 + %̃′)e−κ̃ττpπ‖

√
MD‖2s2, ∀s ∈ R≥0,

ψ := (1 + 1/%̃)(
1

π̃κ̄
)(1 + 1/%̃′)(e−κ̄ττ(G>MG+ π‖

√
Mb‖2 +

r∑
z=1

λ̄zR
>
zMRz

+ π‖
√
M

r∑
z=1

λ̄zRz‖2) + γ((1 + %)δ) + γ((1 +
1

%
)(1 +

1

%′
)

√
Tr(R̃>R̃))

+ γ((1+
1

%
)(1+%′)(1+

1

%′′
) ‖D̃‖∞ ‖ŵ‖∞)),

where κ̄ = 1− e−κ̃τ , 0 < π̃ < 1, and %̃, %̃′ > 0. �

Remark 3.3.15. Note that since the abstract system Σ̂ in this chapter is considered
in discrete-time domain, then the infinitesimal generator LS(x, x̂) defined in (3.3.24) is
different from the usual one that was employed in [ZMEM+14].

Remark 3.3.16. Note that we nominated the simulation function in the quadratic form
as in (3.3.19) and obtained the matrix inequality condition (3.3.20). Satisfying this in-
equality has a necessary and sufficient condition which is stabilizability of the pair (A,B).
Alternatively, other forms of simulation functions can be used but the corresponding re-
quired conditions need to be obtained according to the definition of the simulation func-
tion.

Running Example (continued). Conditions (3.3.20)-(3.3.23) are satisfied byMi =
1, P̄i = 1, Qi = −0.21, Li = 1, Hi = 0.1. By taking τ = 0.1, λ̄i = 0.5, πi = 1, π̃i =
0.99, %̃i = 0.01, %̃′i = 1, %i = 0.01, the function Si(Ti(kτ), T̃i(k)) = (Ti(kτ) − T̃i(k))2 is a

max-type SPSF from Σ̃i to Σi satisfying condition (3.3.4) with αi(s) = s2, ∀s ∈ R≥0 and
condition (3.3.5) with κi = 0.99, ρexti(s) = 2.04s, ρinti(s) = 7.78 × 10−11s2, ∀s ∈ R≥0,
and ψi = 1.36× 10−8. �
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The functions and constants α, ρext, ρint ∈ K∞, 0 < κ < 1, and ψ ∈ R>0 in Defini-
tion 3.3.3 associated with S in (3.3.19) are obtained as

α(s) :=
λmin(M)

nλmax(C>C)
s2, ∀s ∈ R≥0,

κ := 1− (1− π̃)κ̄,

ρext(s) := (1 + %̃)(
1

π̃κ̄
)γ((1 +

1

%
)(1 + %′)(1+%′′)s), ∀s ∈ R≥0,

ρint(s) := (1 + 1/%̃)(
1

π̃κ̄
)(1 + %̃′)e−κ̃ττpπ‖

√
MD‖2s2, ∀s ∈ R≥0,

ψ := (1 + 1/%̃)(
1

π̃κ̄
)(1 + 1/%̃′)(e−κ̄ττ(G>MG+ π‖

√
Mb‖2

+

r∑
z=1

λ̄zR
>
zMRz+π‖

√
M

r∑
z=1

λ̄zRz‖2) + γ((1 + %)δ)

+ γ((1 +
1

%
)(1 +

1

%′
)

√
Tr(R̃>R̃)) + γ((1+

1

%
)(1+%′)(1+

1

%′′
) ‖D̃‖∞ ‖ŵ‖∞)),

where κ̄ = 1− e−κ̃τ , and 0 < π̃ < 1 and %̃, %̃′, %, %′, %′′ > 0 are chosen arbitrarily.

Note that if γ is linear, then ρext, and ψ defined in (3.3.5) are reduced to

ρext(s) := (1 + %̃)(
1

π̃κ̄
)γ(s), ∀s ∈ R≥0,

ψ := (1 + 1/%̃)(
1

π̃κ̄
)(1 + 1/%̃′)(e−κ̃ττ(G>MG+ π‖

√
Mb‖2 +

r∑
z=1

λ̄zR
>
z MRz

+ π‖
√
M

r∑
z=1

λ̄zRz‖2)+γ(δ)+γ(

√
Tr(R̃>R̃))+γ(‖D̃‖∞ ‖ŵ‖∞)).

Remark 3.3.17. Note that for the abstraction Σ̃ in (3.3.17), ρext, and ψ defined in (3.3.5)
are reduced to

ρext(s) := (1 + %̃)(
1

π̃κ̄
)γ((1 + %)(1 + %′)s), ∀s ∈ R≥0,

ψ := (1 + 1/%̃)(
1

π̃κ̄
)(1 + 1/%̃′)(e−κ̃ττ(G>MG+ π‖

√
Mb‖2 +

r∑
z=1

λ̄zR
>
zMRz

+π‖
√
M

r∑
z=1

λ̄zRz‖2)+γ((1+
1

%
)

√
Tr(R̃>R̃))+γ((1+%)(1+

1

%′
) ‖D̃‖∞ ‖ŵ‖∞)).
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Moreover, if the abstraction Σ̃ is non-stochastic (i.e., R̃ = 0n) with D̃ = 0n×p, then

ρext(s) := (1 + %̃)(
1

π̃κ̄
)γ(s), ∀s ∈ R≥0,

ψ := (1 + 1/%̃)(
1

π̃κ̄
)(1 + 1/%̃′)(e−κ̃ττ(G>MG+ π‖

√
Mb‖2+

r∑
z=1

λ̄zR
>
zMRz

+ π‖
√
M

r∑
z=1

λ̄zRz‖2). (3.3.28)

This means if the concrete system has some stability property, it is actually better to
go with the non-stochastic infinite abstractions than the stochastic ones since the non-
stochastic abstractions are closer than the stochastic versions to the concrete systems
(cf. the running example).

Remark 3.3.18. Note that not having any internal input in the abstract systems in
(3.3.18) (i.e., D̃ = 0n×p) will actually result in less approximation error. In fact, the
smart choice of the interface map in (3.2.15) still ensures that output trajectories of
abstract systems follow those of the original ones with a quantified probabilistic error
bound which gets smaller if D̃ = 0n×p.

Running Example (continued). Now we proceed with checking the small-gain
condition (3.3.12) that is required for the compositionality result. By taking σ̄i(s) = s,
∀i ∈ {1, . . . , n}, condition (3.3.12) and as a result condition (3.3.13) are always satisfied.
Hence, V(T (kτ), T̂ (k)) = maxi(Ti(kτ)−T̂i(k))2 is a max-type SSF from Σ̃ to Σ satisfying
conditions (3.3.6) and (3.3.7) with α(s) = s2, ∀s ∈ R≥0, κ = 0.99, ρext(s) = 2.04s,∀s ∈
R≥0, and ψ = 1.36× 10−8.

By taking the initial states of Σ and Σ̃ as 20.511000, and utilizing Theorem 3.2.6, one
can guarantee that the distance between outputs of Σ and Σ̃ will not exceed ε = 0.5
during the time horizon T = 12 with probability at least 91%, i.e.,

P(‖ζ(kτ)− ζ̃(k)‖ ≤ 0.5, ∀k ∈ [0, 12]) ≥ 0.91.

We now synthesize a controller for Σ via its discrete-time abstraction Σ̃ such that the
controller keeps the temperature of each room in a safe set [20, 21]. The idea here is
to design a local controller for the abstract subsystem Σ̃i, and then refine it back to
subsystem Σi via the interface function. We employ the software tool SCOTS [RZ16] on
a machine with Linux Ubuntu (Intel i7@3.6GHz CPU and 16 GB of RAM) to synthe-
size controllers for Σ̃i maintaining the temperature of each room in the comfort zone
[20, 21]. The required memory usage and computation time for synthesizing controllers
for each room are respectively 184 MB and 70 seconds. Closed-loop state trajectories of
a representative room with different noise realizations in a network of 1000 rooms are
illustrated in Figure 3.7. Furthermore, several realizations of the norm of error between
outputs of Σ and Σ̃ are illustrated in Figure 3.8. In order to provide more practical
analysis on the proposed probabilistic bound, we also run Monte Carlo simulation for
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10000 runs. In this case, one can statistically guarantee that the distance between out-
puts of Σ and Σ̃ is always less than or equal to 0.24 with the same probability (i.e., at
least 91%). This issue is expected and the reason is due to the conservative nature of
simulation functions, but with the gain of providing formal guarantees on the proba-
bilistic distance between output trajectories rather than empirical ones. Note that we
intentionally dropped the noise and instead used SCOTS [RZ16]. The reason is because
we formally showed that if the concrete system has some stability property and the
two systems are in continuous-time and discrete-time domains, it is actually better to
construct and employ the non-stochastic abstraction (as discussed in Remark 3.3.17).

0 2 4 6 8 10 12
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Figure 3.7: Closed loop state trajectories of a representative room with different noise realiza-
tions in a network of 1000 rooms, for T = 12.
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Figure 3.8: Several realizations of the norm of the error between the outputs of Σ and of Σ̃,
i.e., ‖ζ(kτ)− ζ̃(k)‖, for T = 12.

3.3.5 Analysis on Probabilistic Closeness Guarantee

In order to have a practical analysis on the probabilistic closeness guarantee, we provide
Table 3.1 in which we discuss the proposed closeness guarantees for different values
of time horizon, closeness precision, diffusion and reset terms. We fixed the employed
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Table 3.1: Probabilistic error bound proposed in (3.2.8) based on T , ε,G and R.

Time horizon T 5 10 15 20 30 40

Probabilistic closeness 96% 92% 88% 85% 78% 71%

Precision ε 0.1 0.3 0.5 0.7 0.9 1.1

Probabilistic closeness 6% 75% 91% 95% 97% 98%

Diffusion term G 0.1 0.3 0.5 0.7 0.9 1.1

Probabilistic closeness 63% 59% 53% 45% 35% 27%

Reset term R 0.1 0.3 0.5 0.7 0.9 1.1

Probabilistic closeness 75% 68% 53% 37% 23% 12%

parameters in the case study and computed the closeness for different ranges of T , G,R, ε.
We have also fixed τ = 0.03 for computing the probabilistic bound for G,R. As seen, the
probabilistic closeness guarantee is improved by either decreasing T , G,R or increasing
ε. Note that constant ψ in (3.2.8) is formulated based on diffusion and reset terms as
in (3.3.28).

3.4 Compositional Abstraction-based Synthesis of ct-SCS:
Dissipativity Approach

In this section, we provide a compositional scheme based on dissipativity approach for
the construction of finite MDPs from ct-SCS. We derive dissipativity-type conditions
to propose compositionality results which are established based on relations between
continuous-time subsystems and that of their abstract counterparts utilizing notions
of so-called stochastic storage functions. The proposed compositionality approach here
can be potentially less conservative than the small-gain one presented in the previous
section for some classes of systems. In particular, the dissipativity-type compositional
reasoning proposed here can enjoy the structure of the interconnection topology and
may not require any constraint on the number or gains of subsystems (cf. Remark 3.5.5
and the case study). Consequently, the proposed approach here can provide a scale-free
compositionality condition which is independent of the number of subsystems, compared
to the proposed results based on small-gain approach in the previous section.

Here, we consider continuous-time stochastic control systems as in Remark 2.3.3. We
slightly abuse the notation and divide the output set and map of the system to Y1, Y2

and h1, h2, where

• Y1 ⊆ Rq̄1 is the external output set of the system;

• Y2 ⊆ Rq̄2 is the internal output set of the system;

• h1 : X → Y1 is the external output map;

• h2 : X → Y2 is the internal output map.
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Accordingly, a continuous-time stochastic control system Σ is characterized by

Σ = (X,U,W,U ,W, f, σ, Y1, Y2, h1, h2), (3.4.1)

and it satisfies

Σ :


dξ(t) = f(ξ(t), ν(t), w(t)) dt+ σ(ξ(t)) dWt,
ζ1(t) = h1(ξ(t)),
ζ2(t) = h2(ξ(t)).

(3.4.2)

3.4.1 Finite Abstractions of ct-SCS

A time-discretized version of ct-SCS Σ is defined by the tuple

Σ̃ =
(
X̃, Ũ , W̃ , ς, f̃ , Ỹ1, Ỹ2, h̃1, h̃2

)
, (3.4.3)

where X̃, Ũ , W̃ , ς, f̃ are defined as in (3.3.1) and

• Ỹ1 ⊆ Rq̄1 is a Borel space as the external output set;

• Ỹ2 ⊆ Rq̄2 is a Borel space as the internal output set;

• h̃1 : X̃ → Ỹ1 is the external output map;

• h̃2 : X̃ → Ỹ2 is the internal output map.

The evolution of Σ̃, for given initial state x̃(0) ∈ X̃ and input sequences {ν̃(k) : Ω→
Ũ , k ∈ N} and {w̃(k) : Ω→ W̃ , k ∈ N}, can be written as

Σ̃ :


ξ̃(k + 1) = f̃(ξ̃(k), ν̃(k), w̃(k), ς(k)),

ζ̃1(k) = h̃1(ξ̃(k)),

ζ̃2(k) = h̃2(ξ̃(k)).

k ∈ N.

The discrete-time stochastic control system Σ̃ can be equivalently reformulated as a
continuous-time MDP

Σ̃ =
(
X̃, Ũ , W̃ , T̃x̃, Ỹ1, Ỹ2, h̃1, h̃2

)
,

where the map T̃x̃ : B(X̃)× X̃ × Ũ × W̃ → [0, 1], is a conditional stochastic kernel.

Given a discrete-time system Σ̃ = (X̃, Ũ , W̃ , ς, f̃ , Ỹ1, Ỹ2, h̃1, h̃2), its finite abstraction
Σ̂ can be characterized as

Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ1, Ŷ2, ĥ1, ĥ2),

where X̂ = {ξ̂z, z = 1, . . . , nξ̃}, Û = {ν̂z, z = 1, . . . , nν̃}, and Ŵ = {ŵz, z = 1, . . . , nw̃}
are sets of selected representative points. Function f̂ : X̂ × Û × Ŵ × Vς → X̂ is defined
as (3.3.3).
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3.5 Stochastic Storage and sum-Type Simulation Functions

In this section, we first define a notion of stochastic storage functions (SStF) for ct-SCS
with both internal and external signals.

Definition 3.5.1. Consider a ct-SCS Σ = (X,U,W,U ,W, f, σ, Y1, Y2, h1, h2) and its
(in)finite abstraction Σ̂ = (X̂, Û , Ŵ , ς, f̂ , Ŷ1, Ŷ2, ĥ1, ĥ2). A function S : X × X̂ → R≥0 is

called a stochastic storage function (SStF) from Σ̂ to Σ if

• ∃α ∈ K∞ such that

∀x ∈ X,∀x̂ ∈ X̂, α(‖h1(x)− ĥ1(x̂)‖) ≤ S(x, x̂), (3.5.1)

• ∀k ∈ N, ∀ξ := ξ(kτ) ∈ X,∀ξ̂ := ξ̂(k) ∈ X̂, and ∀ν̂ := ν̂(k) ∈ Û , ∀w := w(kτ) ∈W ,
∀ŵ := ŵ(k) ∈ Ŵ , ∃ν := ν(kτ) ∈ U such that

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ] (3.5.2)

≤ κS(ξ, ξ̂) + ρext(‖ν̂‖) + ψ +

[
w − ŵ

h2(x)− ĥ2(x̂)

]> [X 11 X 12

X 21 X 22

]
︸ ︷︷ ︸

X :=

[
w − ŵ

h2(x)− ĥ2(x̂)

]
,

for some chosen sampling time τ ∈ R>0, 0 < κ < 1, ρext ∈ K∞, ψ ∈ R>0, and a
symmetric matrix X with conformal block partitions X z,z̄, z, z̄ ∈ {1, 2} ∈ {1, 2}.

We call the control system Σ̂ a discrete-time (in)finite abstraction of concrete (original)
system Σ if there exists an SStF S from Σ̂ to Σ. Abstraction Σ̂ could be finite or infinite
depending on cardinalities of sets X̂, Û , Ŵ . Since the above definition does not put any
restriction on the state set of abstract systems, it can be also used to define a stochastic
storage function from discrete-time system Σ̃ presented in (3.4.3) to Σ (cf. the case
study).

We also utilize the notion of sum-type stochastic simulation functions as in Defini-
tion 3.2.4 by slightly modifying condition (3.2.7) as

E
[
V(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂] ≤ κV(ξ, ξ̂) + ρext(‖ν̂‖) + ψ, (3.5.3)

where 0 < κ < 1. Now by employing Theorem 3.2.6, one can quantify the proba-
bilistic closeness between output trajectories of original interconnected continuous-time
stochastic systems and that of their discrete-time (finite or infinite) abstractions.

3.5.1 Compositionality Results

We first formally define the interconnected stochastic control systems.

Definition 3.5.2. Consider N ∈ N≥1 stochastic control subsystems Σi = (Xi, Ui,Wi,Ui,
Wi, fi, σi, Y1i , Y2i ,h1i ,h2i), i ∈ {1, . . . , N}, and a matrix M defining the coupling between
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these subsystems. We require the condition M
∏N
i=1 Y2i ⊆

∏N
i=1Wi to establish a well-

posed interconnection. The interconnection of Σi, ∀i ∈ {1, . . . , N}, is the ct-SCS Σ =
(X,U,U , f, σ, Y, h), denoted by I(Σ1, . . . ,ΣN ), such that X :=

∏N
i=1Xi, U :=

∏N
i=1 Ui,

f :=
∏N
i=1 fi, σ := blkdiag(σ1(x1), . . . , σN (xN )), Y :=

∏N
i=1 Y1i, and h =

∏N
i=1 h1i, with

the internal inputs constrained according to:

[w1; · · · ;wN ] = M [h21(x1); · · · ;h2N (xN )].

Remark 3.5.3. Note that we do not have any restrictions on the interconnected ma-
trix M and its entries can take any values depending on the forms of interconnection
topologies.

We consider Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, Y1i , Y2i , h1i , h2i) as an original ct-SCS and
Σ̂i as its discrete-time finite abstraction given by the tuple Σ̂i = (X̂i, Ûi, Ŵi, ςi, f̂i, Ŷ1i , Ŷ2i ,
ĥ1i , ĥ2i). We also assume that there exist an SStF Si from Σ̂i to Σi with the correspond-
ing functions, constants, and matrices denoted by αi, ρexti, κi, ψi, Xi, X 11

i , X 12
i , X 21

i ,
and X 22

i . In the next theorem, we quantify the error between the interconnection of
continuous-time stochastic subsystems and that of their discrete-time abstractions in a
compositional fashion.

Theorem 3.5.4. Consider an interconnected stochastic control system Σ = I(Σ1, . . . ,ΣN )
induced by N ∈ N≥1 stochastic control subsystems Σi and the coupling matrix M . Let

each subsystem Σi admit an abstraction Σ̂i with the corresponding SStF Si. Then

V(x, x̂) :=
N∑
i=1

µiSi(xi, x̂i), (3.5.4)

is a sum-type SSF from the interconnected system Σ̂ = I(Σ̂1, . . . , Σ̂N ), with coupling
matrix M̂ , to Σ = I(Σ1, . . . ,ΣN ) if there exist µi > 0, i ∈ {1, . . . , N}, and[

M
Iq̃

]>
Xcmp

[
M
Iq̃

]
� 0, (3.5.5)

M = M̂, (3.5.6)

M̂

N∏
i=1

Ŷ2i ⊆
N∏
i=1

Ŵi, (3.5.7)

where

Xcmp :=



µ1X 11
1 µ1X 12

1
. . .

. . .

µNX 11
N µNX 12

N

µ1X 21
1 µ1X 22

1
. . .

. . .

µNX 21
N µNX 22

N


, (3.5.8)

and q̃ =
∑N

i=1 q̄2i with q̄2i being dimensions of the internal output of subsystems Σi.
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Proof. We first show that V in (3.5.4) satisfies condition (3.2.6) for some K∞ function
α. For any x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂, one gets:

‖h(x)− ĥ(x̂)‖ = ‖[h11(x1); . . . ;h1N (xN )]− [ĥ11(x̂1); . . . ; ĥ1N (x̂N )]‖

≤
N∑
i=1

‖h1i(xi)− ĥ1i(x̂i)‖ ≤
N∑
i=1

α−1
i (Si(xi, x̂i)) ≤ ᾱ(V(x, x̂)),

with the function ᾱ : R≥0 → R≥0 defined for all s ∈ R≥0 as

ᾱ(s) := max
{∑N

i=1 α
−1
i (si)

∣∣ si≥ 0,
∑N

i=1 µisi = s
}
.

By taking the K∞ function α(s) := ᾱ−1(s), ∀s ∈ R≥0, one acquires

α(‖h(x)− ĥ(x̂)‖) ≤ V(x, x̂),

fulfilling condition (3.2.6).
We continue with showing condition (3.5.3), as well. One can obtain the chain of

inequalities in (3.5.9) using conditions (3.5.5) and (3.5.6) and by defining κ(·), ψ, ρext(·)
as

κs := max
{ N∑
i=1

µiκisi
∣∣ si≥ 0,

N∑
i=1

µisi = s
}
,

ρext(s) := max
{ N∑
i=1

µiρexti(si)
∣∣ si≥ 0, ‖[s1; . . . ; sN ]‖ = s

}
,

ψ :=
N∑
i=1

µiψi.

Hence one can conclude that V is a sum-type SSF from Σ̂ to Σ, which completes the
proof. �

Remark 3.5.5. Condition (3.5.5) is similar to the LMI discussed in [AMP16] as a com-
positional stability condition based on the dissipativity theory. As shown in [AMP16], this
condition holds independently of the number of subsystems in many physical applications
with particular interconnection structures, e.g., skew symmetric.

3.5.2 Construction of SSF for a Class of Affine Systems

Here, we focus on a special class of continuous-time stochastic affine systems and impose
conditions enabling us to establish an SStF from its finite abstraction Σ̂ to Σ. The model
of the system is given by

Σ :


dξ(t) = (Aξ(t) +Bν(t) +Dw(t) + b)dt+GdWt,
ζ1(t) = C1ξ(t),
ζ2(t) = C2ξ(t),

(3.5.10)
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E
[
V(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂] = E
[ N∑
i=1

µiSi(ξi((k + 1)τ), ξ̂i(k + 1))
∣∣ ξ, ξ̂, ν, ν̂]

=
N∑
i=1

µiE
[
Si(ξi((k + 1)τ), ξ̂i(k + 1))

∣∣ ξ, ξ̂, ν, ν̂]
=

N∑
i=1

µiE
[
Si(ξi((k + 1)τ), ξ̂i(k + 1))

∣∣ ξi, ξ̂i, νi, ν̂i]
≤

N∑
i=1

µi
(
κiSi(xi, x̂i)+ρexti(‖ν̂i‖)+ψi+

[
wi−ŵi

h2i(xi)−ĥ2i(x̂i)

]>[X 11
i X 12

i

X 21
i X 22

i

][
wi−ŵi

h2i(xi)−ĥ2i(x̂i)

])
=

N∑
i=1

µiκiSi(xi, x̂i) +
N∑
i=1

µiρexti(‖ν̂i‖) +
N∑
i=1

µiψi

+



w1 − ŵ1
...

wN − ŵN
h21(x1)− ĥ21(x̂1)

...

h2N (xN )− ĥ2N (x̂N )



>

Xcmp



w1 − ŵ1
...

wN − ŵN
h21(x1)− ĥ21(x̂1)

...

h2N (xN )− ĥ2N (x̂N )


=

N∑
i=1

µiκiSi(xi, x̂i) +
N∑
i=1

µiρexti(‖ν̂i‖) +
N∑
i=1

µiψi

+


M

 h21(x1)
...

h2N (xN )

− M̂
 ĥ21(x̂1)

...

ĥ2N (x̂N )


h21(x1)− ĥ21(x̂1)

...

h2N (xN )− ĥ2N (x̂N )



>

Xcmp


M

 h21(x1)
...

h2N (xN )

− M̂
 ĥ21(x̂1)

...

ĥ2N (x̂N )


h21(x1)− ĥ21(x̂1)

...

h2N (xN )− ĥ2N (x̂N )


=

N∑
i=1

µiκiSi(xi, x̂i) +
N∑
i=1

µiρexti(‖ν̂i‖) +
N∑
i=1

µiψi

+

 h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )


> [

M
Iq̃

]>
Xcmp

[
M
Iq̃

] h21(x1)− ĥ21(x̂1)
...

h2N (xN )− ĥ2N (x̂N )


≤

N∑
i=1

µiκiSi(xi, x̂i) +

N∑
i=1

µiρexti(‖ν̂i‖) +

N∑
i=1

µiψi ≤ κV (x, x̂) + ρext(‖ν̂‖) + ψ. (3.5.9)
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where A ∈ Rn×n, B ∈ Rn×m̄, D ∈ Rn×p̄, C1 ∈ Rq̄1×n, C2 ∈ Rq̄2×n, G ∈ Rn, and b ∈ Rn.
We employ the tuple

Σ = (A,B,C1, C2, D,G,b),

to refer to the class of stochastic affine systems in (3.5.10). The time-discretized version
of Σ is proposed as

Σ̃ :


ξ̃(k + 1) = ξ̃(k) + ν̃(k) + D̃w̃(k) + R̃ς(k),

ζ̃1(k) = C̃1ξ̃(k),

ζ̃2(k) = C̃2ξ̃(k),

k ∈ N, (3.5.11)

where D̃ and R̃ are matrices chosen arbitrarily, and C̃1 = C1P̄ , C̃2 = C2P̄ with P̄ as
chosen in (3.3.19). Our main target here is to employ Σ̃ as the discrete-time version
of Σ in order to establish an SStF from Σ̂ to Σ through Σ̃ while quantifying the best
approximation error. Later, we show that R̃ = 0n and D̃ = 0n×p̄ result in the least

approximation error in our settings. Now, we describe the finite abstraction of Σ̃ as

Σ̂ :


ξ̂(k + 1) = Φξ̃(ξ̂(k) + ν̂(k) + D̃ŵ(k) + R̃ς(k)),

ζ̂1(k) = Ĉ1ξ̂(k),

ζ̂2(k) = Ĉ2ξ̂(k),

k ∈ N,

where map Φξ̃ : X̃ → X̂ satisfies the inequality (3.2.5). We employ the nominated
quadratic function in (3.3.19) and utilize Assumptions 3.2.7 and 3.3.13 (but without
condition (3.3.22)) to show the main results of this subsection. We also raise the following
main assumption.

Assumption 3.5.6. Let Σ = (A,B,C1, C2, D,G,b). Assume that for some constants
π > 0 and 0 < κ̄ < 1− e−κ̃τ with a sampling time τ , there exist matrices X 11, X 12, X 21,
and X 22 of appropriate dimensions such that[

πe−κ̃ττB>MB 0
0 πe−κ̃ττD>MD

]
�
[
κ̄M+ C>2 X 22C2 C>2 X 21

X 12C2 X 11

]
, (3.5.12)

where M� 0 is the matrix appeared in (3.3.20).

Remark 3.5.7. Note that in Assumption 3.5.6, matrices B,D,C2 are those in the
system dynamics, constant and matrix κ̃,M are the same as those satisfying the condi-
tion (3.3.20), and constants and matrices π, κ̄,X 11,X 12,X 21,X 22 are our decision vari-
ables to be designed. One can readily satisfy this assumption via semi-definite programing
toolboxes and then check the compositionality condition (3.5.5) with obtained conformal
block partitions X ij, i, j ∈ {1, 2} of subsystems (cf. the case study).

Now we provide another main result of this section showing that under which condi-
tions S in (3.3.19) is an SStF from Σ̂ to Σ.
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Theorem 3.5.8. Let Σ = (A,B,C1, C2, D,G,b) and Σ̂ be its finite MDP with the
discretization parameter δ. Suppose Assumptions 3.2.7, 3.3.13 and 3.5.6 hold, Ĉ1 =
C̃1 = C1P̄ , and Ĉ2 = C̃2 = C2P̄ . Then the quadratic function S in (3.3.19) is an SStF
from Σ̂ to Σ.

Proof. Since Ĉ1 = C1P̄ , we have ‖C1x − Ĉ1x̂‖2 = (x − P̄ x̂)>C>1 C1(x − P̄ x̂). Since
λmin(C>1 C1)‖x−P̄ x̂‖2 ≤ (x−P̄ x̂)>C>1 C1(x−P̄ x̂) ≤ λmax(C>1 C1)‖x−P̄ x̂‖2, and similarly
λmin(M)‖x − P̄ x̂‖2 ≤ (x − P̄ x̂)>M(x − P̄ x̂) ≤ λmax(M)‖x − P̄ x̂‖2, it can be readily

verified that λmin(M)

λmax(C>1 C1)
‖C1x − Ĉ1x̂‖2 ≤ S(x, x̂) holds ∀x ∈ X, ∀x̂ ∈ X̂, implying that

condition (3.5.1) holds with α(s) = λmin(M)

λmax(C>1 C1)
s2, ∀s ∈ R≥0.

We proceed with showing that condition (3.5.2) holds, as well. Using Assumption 3.2.7,
we have

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ=ξ(kτ), ξ̂= ξ̂(k), ν=ν(kτ), ν̂= ν̂(k), w=w(kτ), ŵ= ŵ(k)
]

= E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]− E[S(ξ((k + 1)τ), ξ̂)
∣∣ξ, ξ̂, ν, ν̂, w, ŵ]

+ E
[
S(ξ((k + 1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]
≤ E

[
S(ξ((k + 1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ ξ̂, ν̂, ŵ].
Now by employing Dynkin’s formula [Dyn65], one obtains

E
[
S(ξ((k + 1)τ), ξ̂)

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ ξ̂, ν̂, ŵ]
= Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
LS(ξ(t), ξ̂)dt

]∣∣ξ̂, ν̂, ŵ]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ].
Since the infinitesimal generator LS, acting on the function S, is defined as

LS(ξ, ξ̂) = ∂ξS(ξ, ξ̂)f(ξ, ν, w) +
1

2
Tr(σ(ξ)σ(ξ)>∂ξ,ξS(ξ, ξ̂)),

where

∂ξS(ξ, ξ̂) = 2(ξ(t)− P̄ ξ̂)>M, ∂ξ,ξS(ξ, ξ̂) = 2M,

one has

Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
LS(ξ(t), ξ̂)dt

] ∣∣ ξ̂, ν̂, ŵ]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
= Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
(2(ξ(t)− P̄ ξ̂)>M(Aξ(t) +Bν(t) +Dw(t) + b)

+G>MG)dt
] ∣∣ ξ̂, ν̂, ŵ]+ E

[
γ (‖ ξ̂(k + 1)− ξ̂ ‖)

∣∣ ξ̂, ν̂, ŵ].
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Given any ξ(t), ξ̂(k), w(t) and ŵ(k), we choose ν(t) via the following interface function:

ν(t) = K(ξ(t)− P̄ ξ̂(k))−Qξ̂(k) + (ξ(kτ)− P̄ ξ̂(k)) +H(w(kτ)− ŵ(k))−Hw(t),
(3.5.13)

where kτ ≤ t ≤ (k + 1)τ . By employing conditions (3.3.21), (3.3.23), and the definition
of the interface function in (3.5.13), we have

Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
(2(ξ(t)− P̄ ξ̂)>M(Aξ(t) +Bν(t) +Dw(t) + b) +G>MG)dt

] ∣∣ ξ̂,
ν̂, ŵ

]
+ E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
= Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
(2 (ξ(t)− P̄ ξ̂)>M((A+BK)(ξ(t)− P̄ ξ̂) +B(ξ(kτ)− P̄ ξ̂(k))

+D(w − ŵ) + b) +G>MG)dt
]∣∣ ξ̂, ν̂, ŵ]+ E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ].

Using Young’s inequality [You12] as ab ≤ π
2a

2 + 1
2π b

2, for any a, b ≥ 0 and any π > 0,
by employing Cauchy-Schwarz inequality and using condition (3.3.20), one has

Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
(2 (ξ(t)− P̄ ξ̂)>M((A+BK)(ξ(t)− P̄ ξ̂) +B(ξ(kτ)− P̄ ξ̂(k))

+D(w − ŵ) + b) +G>MG)dt
]∣∣ ξ̂, ν̂, ŵ]+ E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
≤ Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
(−κ̃S(ξ(t), ξ̂) + π‖

√
Mb‖2 + π‖

√
MB(ξ(kτ)− P̄ ξ̂(k))‖2

+ π‖
√
MD(w − ŵ)‖2 +G>MG)dt

]∣∣ ξ̂, ν̂, ŵ]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ ξ̂, ν̂, ŵ]
= Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
−κ̃S(ξ(t), ξ̂) dt+ τ(π‖

√
Mb‖2 + π‖

√
MB(ξ(kτ)−P̄ ξ̂(k))‖2

+ π‖
√
MD(w − ŵ)‖2 +G>MG)

]∣∣ ξ̂, ν̂, ŵ]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ].
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Using Grönwall inequality [Gro19], one has

Eς

[
S(ξ, ξ̂) + E

[ ∫ (k+1)τ

kτ
−κ̃S(ξ(t), ξ̂)dt+ τ(π‖

√
Mb‖2 + π‖

√
MB(ξ(kτ)− P̄ ξ̂(k))‖2

+ π‖
√
MD(w − ŵ)‖2 +G>MG)

]∣∣ ξ̂, ν̂, ŵ]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
≤ Eς

[
e−κ̃τS(ξ, ξ̂) + E

[
e−κ̃ττ(π‖

√
M̃b‖2 + π‖

√
MB(ξ(kτ)− P̄ ξ̂(k))‖2

+ π‖
√
MD(w − ŵ)‖2 +G>MG)

]∣∣ ξ̂, ν̂, ŵ]+ E
[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
= e−κ̃τS(ξ, ξ̂) + e−κ̃ττ(G>MG+ π‖

√
Mb‖2 + π‖

√
MB(ξ(kτ)− P̄ ξ̂(k))‖2

+ π‖
√
MD(w − ŵ)‖2) + E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
= e−κ̃τS(ξ, ξ̂) + e−κ̃ττ(G>MG+ π‖

√
Mb‖2) + E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
+

[
ξ − P̄ ξ̂
w − ŵ

]> [
πe−κ̃ττB>MB 0

0 πe−κ̃ττD>MD

] [
ξ − P̄ ξ̂
w − ŵ

]
.

By employing (3.5.12) and since Ĉ2 = C2P , we have

e−κ̃τS(ξ, ξ̂) + e−κ̃ττ(G>MG+ π‖
√
Mb‖2) + E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
+

[
ξ − P̄ ξ̂
w − ŵ

]> [
πe−κ̃ττB>MB 0

0 πe−κ̃ττD>MD

] [
ξ − P̄ ξ̂
w − ŵ

]
≤ e−κ̃τS(ξ, ξ̂) + e−κ̃ττ(G>MG+ π‖

√
Mb‖2) + E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
+

[
ξ − P̄ ξ̂
w − ŵ

]> [
κ̄M+ C>2 X 22C2 C>2 X 21

X 12C2 X 11

] [
ξ − P̄ ξ̂
w − ŵ

]
= (κ̄+ e−κ̃τ )S(ξ, ξ̂) + e−κ̃ττ(G>MG+ π‖

√
Mb‖2) + E

[
γ(‖ξ̂(k + 1)− ξ̂‖)

∣∣ξ̂, ν̂, ŵ]
+

[
w − ŵ

C2ξ − Ĉ2ξ̂

]> [X 11 X 12

X 21 X 22

] [
w − ŵ

C2ξ − Ĉ2ξ̂

]
.

Since the function γ defined in Assumption 3.2.7 is concave, using Jensen inequality, one
can obtain the chain of inequalities in (3.3.26). Then one can conclude that

E
[
S(ξ((k + 1)τ), ξ̂(k + 1))

∣∣ ξ, ξ̂, ν, ν̂, w, ŵ]
≤ (κ̄+ e−κ̃τ )S(ξ, ξ̂) + γ((1 +

1

%
)(1 + %′)(1 + %′′)‖ν̂‖) + e−κ̃ττ(G>MG+ π‖

√
Mb‖2)

+ γ((1 + %)δ)+γ((1 +
1

%
)(1 +

1

%′
)

√
Tr(R̃>R̃))+γ((1 +

1

%
)(1 + %′)(1 +

1

%′′
) ‖D̃ ‖ ‖ŵ‖)

+

[
w − ŵ

C2ξ − Ĉ2ξ̂

]> [X 11 X 12

X 21 X 22

] [
w − ŵ

C2ξ − Ĉ2ξ̂

]
,
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which completes the proof with

α(s) :=
λmin(M)

λmax(C>1 C1)
s2, ∀s ∈ R≥0,

κ := κ̄+ e−κ̃τ ,

ρext(s) := γ((1 +
1

%
)(1 + %′)(1 + %′′)s), ∀s ∈ R≥0,

ψ := e−κ̄ττ(G>MG+ π‖
√
Mb‖2) + γ((1 + %)δ) + γ((1 +

1

%
)(1 +

1

%′
)

√
Tr(R̃>R̃))

+ γ((1 +
1

%
)(1 + %′)(1 +

1

%′′
) ‖D̃ ‖ ‖ŵ‖).

�

Remark 3.5.9. Note that for the discrete-time system Σ̃ in (3.5.11), ρext, and ψ defined
above are reduced to

ρext(s) := γ((1 + %)(1 + %′)s), ∀s ∈ R≥0,

ψ := e−κ̃ττ(G>MG+π‖
√
Mb‖2)+γ((1+

1

%
)

√
Tr(R̃>R̃))+γ((1+%)(1+

1

%′
)‖D̃‖ ‖ŵ‖).

Moreover, if the abstraction Σ̃ is non-stochastic (i.e., R̃ = 0n) with D̃ = 0n×p, then

ρext(s) := γ(s), ∀s ∈ R≥0, ψ := e−κ̃ττ(G>MG+ π‖
√
Mb‖2).

This simply means if the concrete system satisfies some stability property (cf. (3.3.20)),
it is better to pick non-stochastic discrete-time system rather than stochastic ones since
the non-stochastic systems provide smaller approximation errors (cf. the case study).

3.5.3 Case Study

To illustrate the effectiveness of the proposed results, we apply our approaches to the
temperature regulation in a circular network containing 100 rooms and construct com-
positionally a discrete-time system from its original continuous-time dynamic. We then
employ the constructed discrete-time abstractions as substitutes to compositionally syn-
thesize policies regulating the temperature of each room in a comfort zone.

Consider the circular network of n = 100 rooms as

Σ :

{
dT (t) = (AT (t) + θ̂Thν(t) + β̂TE) dt+GdWt,
ζ(t) = T (t),

(3.5.14)

where A is a matrix with diagonal elements āii = −2η̂ − β̂ − θ̂νi(t), i ∈ {1, . . . , n},
off-diagonal elements āi,i+1 = āi+1,i = ā1,n = ān,1 = η̂, i ∈ {1, . . . , n − 1}, and all other

elements are identically zero, and G = 0.5In. Parameters η̂ = 0.05, β̂ = 0.005, and
θ̂ = 0.01 are conduction factors. Moreover, TE = [Te1 ; . . . ;Ten ], ν(t) = [ν1(t); . . . ; νn(t)],
and T (t) = [T1(t); . . . ;Tn(t)], where Ti(t) is taking values in the set [20, 21], for all
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i ∈ {1, . . . , n}. Outside temperatures are the same for all rooms: Tei = −1 ◦C, ∀i ∈
{1, . . . , n}, and the heater temperature is Th = 50 ◦C. Now by considering the individual
rooms as Σi described by

Σi :

dTi(t) = (āiiTi(t) + θ̂Thνi(t) + η̂wi(t) + β̂Tei) dt+ 0.5dWti ,
ζ1i(t) = Ti(t),
ζ2i(t) = Ti(t),

(3.5.15)

one can readily verify that Σ = I(Σ1, . . . ,ΣN ) where the coupling matrix M is such
that mi,i+1 = mi+1,i = m1,n = mn,1 = 1, i ∈ {1, . . . , n − 1}, and all other elements are
identically zero. The discretized version of Σi is proposed by

Σ̃i :


T̃i(k + 1) = T̃i(k) + ν̃i(k),

ζ̃1i(k) = T̃i(k),

ζ̃2i(k) = T̃i(k),

k ∈ N.

As discussed in Remark 3.5.9, we consider here R̃i = D̃i = 0 to have the least constants
ψi for each Si (resulting in the least probabilistic error). Then, one can readily verify that
conditions (3.3.20),(3.3.21),(3.3.23) are satisfied by Mi = 1, P̄i = 1, Qi = −0.21, Hi =
0.1. Condition (3.5.12) is also satisfied by τi = 0.1, πi = 1, κ̄i = 0.499,X 11

i = e−κ̃iτiτiη̂
2,

X 22
i = −πie−κ̃iτiτiθ̂2T 2

h , X 12
i = X 21

i = 0. Therefore, Si(Ti(kτ), T̃i(k)) = (Ti(kτ)− T̃i(k))2

is an SStF from Σ̃i to Σi satisfying condition (3.5.1) with αi(s) = s2,∀s ∈ R≥0 and
condition (3.5.2) with κi = 0.5, ρexti(s) = 2s, ∀s ∈ R≥0, ψi = 1.17× 10−10, and

Xi =

[
e−κ̃iτiτiη̂

2 0

0 −πie−κ̃iτiτiθ̂2T 2
h

]
. (3.5.16)

Now we look at Σ̃ = I(Σ̃1, . . . , Σ̃N ) with a coupling matrix M̃ satisfying condition (3.5.6)
as M̃ = M . By choosing µ1 = · · · = µN = 1 and using Xi in (3.5.16), matrix Xcmp in
(3.5.8) is reduced to

Xcmp =

[
e−κ̃iτiτiη̂

2In 0

0 −πie−κ̃iτiτiθ̂2T 2
hIn

]
,

and accordingly condition (3.5.5) is reduced to[
M
In

]>
Xcmp

[
M
In

]
= e−κ̃iτiτiη̂

2M>M − πie−κ̃iτiτiθ̂2T 2
hIn � 0,

without requiring any restrictions on the number or gains of subsystems. We used
M = M>, and 4e−κ̃iτiτiη̂

2 − πie−κ̃iτiτiθ̂2T 2
h � 0 by employing Gershgorin circle theorem

[Bel65] to show the above LMI. Hence, V(T (kτ), T̃ (k)) =
∑100

i=1(Ti(kτ)−T̃i(k))2 is a sum-

type SSF from Σ̃ to Σ satisfying conditions (3.2.6) and (3.5.3) with α(s) = s2, ∀s ∈ R≥0,
κ = 0.5, ρext(s) = 20s, ∀s ∈ R≥0, and ψ = 1.17× 10−8.
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By taking initial states of Σ and Σ̃ as 20.51100, and employing Theorem 3.2.6, one can
guarantee that the distance between outputs of Σ and Σ̃ will not exceed ε = 0.5 during
the time horizon T = 12 with a probability of at least 91%, i.e.,

P(‖ζ(kτ)− ζ̃(k)‖ ≤ 0.5, ∀k ∈ [0, 12]) ≥ 0.91.

We now synthesize a controller for Σ via its discrete-time system Σ̃ such that the con-
troller keeps the temperature of each room in the comfort zone [20, 21]. We employ the
software tool SCOTS [RZ16] to synthesize controllers for Σ̃i maintaining the temperature
of each room in the safe set [20, 21]. Closed-loop state trajectories of a representative
room with different noise realizations in a network of 100 rooms are illustrated in Fig-
ure 3.9. Furthermore, several realizations of the norm of the error between outputs of Σ
and Σ̃ are illustrated in Figure 3.10.

0 2 4 6 8 10 12
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Figure 3.9: Closed-loop state trajectories of a representative room with different noise realiza-
tions in a network of 100 rooms, for T = 12.
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Figure 3.10: Several realizations of the norm of the error between outputs of Σ and of Σ̃, i.e.,
‖ζ(kτ)− ζ̃(k)‖, for T = 12.
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3.6 Summary

3.6 Summary

In the first part of this chapter, we have proposed a systematic approach for the con-
struction of discrete-time finite-space MDPs from continuous-time stochastic control
systems without internal input sets W . We have first established a relation between the
continuous-time system and its discrete-time counterpart based on stochastic simulation
functions. We then leveraged the constructed relation and computed a probability bound
between continuous-time concrete systems and that of their discrete-time (in)finite ab-
stractions. We focused on a particular class of stochastic affine systems and constructed
finite abstractions together with their corresponding stochastic simulation functions for
this class of systems.

In the second part of the chapter, we enlarged the class of models to continuous-
time stochastic hybrid systems with Poisson processes and proposed a compositional
framework for the construction of discrete-time finite-space MDPs from this class of
systems. We utilized sufficient small-gain conditions to provide the compositionality
results which rely on the relation between the continuous-time subsystems and their
discrete-time counterparts based on stochastic simulation functions. We also generalized
our construction scheme to a particular class of nonlinear stochastic hybrid systems and
constructed finite abstractions together with their corresponding stochastic simulation
functions for this class of systems.

Finally, we provided a compositional scheme based on dissipativity approach for the
construction of finite MDPs from continuous-time stochastic control systems. We derived
dissipativity-type conditions to propose compositionality results which are established
based on relations between continuous-time subsystems and that of their abstract coun-
terparts utilizing notions of so-called stochastic storage functions. We showed that the
proposed compositionality condition based on dissipativity reasoning can be potentially
less conservative than the small-gain one for some classes of systems. In particular, the
dissipativity-type compositional reasoning can enjoy the structure of the interconnec-
tion topology and may not require any constraint on the number or gains of subsystems.
Consequently, the proposed compositionality condition can be scale-free and indepen-
dent of the number of subsystems. We applied our approaches to a room temperature
system in a circular network.
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Control Barrier Certificates

4.1 Introduction

Another promising approach for the formal analysis of SHS is to employ control bar-
rier certificates (CBC), as a discretization-free approach. Intuitively speaking, barrier
certificates are Lyapunov-like functions defined over the state space of the system to
enforce a set of inequalities on both the function itself and the infinitesimal generator
along the flow (or one-step transition) of the system. An appropriate level set of a bar-
rier certificate can separate an unsafe region from all system trajectories starting from
a given set of initial conditions. Consequently, the existence of such a function provides
a formal probabilistic certificate for system safety (cf. Figure 4.1). On the downside,
finding CBC for complex dynamical systems is computationally very expensive, espe-
cially if the dimension of underlying systems is high. Motivated by this main challenge,
this chapter is concerned with developing compositional techniques in the context of
control barrier certificates for formal verification and controller synthesis of large-scale
SHS to enforce high-level logic properties. In particular, we consider the large-scale SHS
as an interconnected system composed of several smaller subsystems, and develop com-
positional frameworks for the construction of CBC for the complex interconnected SHS
using control barrier certificates of smaller subsystems.

X

X0

B(x) ≤ γ

X : State space
X0 : Initial set

Xu: Unsafe set
B : Barrier certificate

λ > γ

Xu

B(x) ≥ λ

B(x) = γ

Figure 4.1: A barrier certificate for dynamical systems. The (red) dashed line denotes the
initial level set B(x) = γ.
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4.1.1 Related Literature

In the past few years, there have been some results on the verification and controller syn-
thesis of stochastic systems via control barrier certificates. In this respect, discretization-
free techniques based on barrier certificates for stochastic hybrid systems are initially
proposed in [PJ04, PJP07]. Stochastic safety verification using barrier certificates for
switched diffusion processes and stochastic hybrid systems is, respectively, proposed
in [WB17] and [HCL+17]. Formal controller synthesis for stochastic systems via control
barrier certificates is proposed in [JSZ20]. A controller synthesis framework for stochastic
control systems based on control barrier certificates is also provided in [Cla19]. Verifi-
cation and control for finite-time safety of stochastic systems via barrier certificates are
discussed in [SDC19].

Verification of uncertain partially-observable Markov decision processes (POMDPs)
with uncertain transition and/or observation probabilities using barrier certificates is
discussed in [ACJT18, ASBA19]. Compositional construction of control barrier certifi-
cates for stochastic discrete-time systems is presented in [ALZ20, ALZ22]. An intro-
duction and overview of recent work on control barrier certificates and their applica-
tion to verify and enforce safety properties in the context of safety-critical controllers
are presented in [ACE+19]. Compositional construction of safety controllers for net-
works of continuous-space POMDPs using control barrier certificates is recently pro-
posed in [JLZ23]. Compositional construction of control barrier certificates for networks
of stochastic systems against ω-regular specifications is presented in [ALZ23].

4.1.2 Contributions

In the first part of this chapter, we propose a compositional approach based on small-gain
conditions for the construction of control barrier certificates for ct-SCS. The proposed
scheme is based on a notion of so-called pseudo-barrier certificates computed for sub-
systems, using which one can synthesize state feedback controllers for interconnected
systems enforcing safety specifications over a finite time horizon. Particularly, we first
leverage sufficient small-gain type conditions to compositionally construct control barrier
certificates for interconnected systems based on the corresponding pseudo-barrier certifi-
cates computed for subsystems. Then, using the constructed control barrier certificates,
we quantify upper bounds on exit probabilities - the probability that an interconnected
system reaches certain unsafe regions - in a finite time horizon. We employ a systematic
technique based on the sum-of-squares optimization program to search for pseudo-barrier
certificates of subsystems while synthesizing safety controllers.

In the second part of the chapter, we enlarge the class of systems to continuous-time
stochastic hybrid systems by adding Poisson processes to the dynamics and propose a
compositional scheme based on dissipativity approaches for the construction of control
barrier certificates for this class of models. The proposed compositionality approach
here is potentially less conservative than the small-gain one since the dissipativity-type
compositional reasoning can enjoy the structure of the interconnection topology and may
not require any constraints on the number or gains of the subsystems. Furthermore, the
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provided results based on small-gain approaches ask an additional condition (cf. con-
dition (4.2.1)) which is required for the satisfaction of small-gain type compositionality
conditions, while dissipativity-type reasoning does not need such an extra condition.

In the third part of the chapter, we generalize the underlying dynamics to stochastic
switching systems with Markovian switching signals and solve the controller synthesis
problem for this class of systems with respect to high-level logic properties in a compo-
sitional manner. The controller synthesis problem now is more challenging since it deals
with two different types of adversarial inputs: (i) internal inputs modeling the effects of
other subsystems, and (ii) switching signals which are randomly changing the modes of
the system. We also enlarge the class of specifications to those that can be expressed by
the accepting language of deterministic finite automata (DFA), whereas previous sections
handle only invariance specifications. To do so, we decompose the given complex speci-
fication to simple reachability tasks based on automata representing the complements of
original finite-state automata and provide upper bounds on probabilities of satisfaction
for those reachability tasks by computing their corresponding pseudo-barrier certificates.
In addition, we provide an additional approach to compute pseudo-barrier certificates
for systems with finite input sets by employing counter-example guided inductive syn-
thesis framework based on the satisfiability modulo theories (SMT) solvers such as Z3
[DMB08], dReal [GAC12] or MathSat [CGSS13].

In the last part of the chapter, we propose a compositional framework for the construc-
tion of control barrier certificates for discrete-time stochastic switched systems accepting
multiple control barrier certificates with some dwell-time conditions. Switching signals
here are control inputs and the main goal is to synthesize them with a specific dwell-time
such that outputs of original systems satisfy some high-level specifications such as safety,
reachability, etc. To do so, we first provide an augmented framework for presenting each
switched subsystem with several modes with a single system covering all modes (called
augmented switched systems) whose output trajectories are exactly the same as those of
original switched systems. We then compositionally construct augmented control barrier
certificates for interconnected augmented systems based on so-called augmented pseudo-
barrier certificates of subsystems by leveraging some max-type small-gain conditions.
Afterwards, given the constructed augmented barrier certificates, we quantify upper
bounds on the probability that interconnected systems reach certain unsafe regions in a
finite time horizon.

4.2 Compositional Construction of Control Barrier Certificates:
Small-Gain Approach

In this section, we propose a compositional technique based on small-gain approaches for
the construction of control barrier certificates for continuous-time stochastic control sys-
tems. We first compositionally construct control barrier certificates for interconnected
systems based on so-called pseudo-barrier certificates of subsystems by leveraging small-
gain conditions. Then, given the constructed control barrier certificates, we quantify
upper bounds on the probability that interconnected systems reach certain unsafe re-
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gions in a finite time horizon. We finally utilize a systematic technique based on the
sum-of-squares optimization program [Par03] to search for pseudo-barrier certificates of
subsystems. We illustrate the effectiveness of our proposed results by applying them
to a temperature regulation in a circular building containing 1000 rooms by composi-
tionally synthesizing safety controllers (together with the corresponding pseudo-barrier
certificates) regulating the temperature of each room for a bounded time horizon.

In the next subsections, we define notions of control pseudo-barrier and barrier cer-
tificates for ct-SCS and interconnected versions, respectively.

4.2.1 Control Pseudo-Barrier and Barrier Certificates

Here, we first introduce a notion of control pseudo-barrier certificate (CPBC) for ct-
SCS with both internal and external inputs. We then define a notion of control barrier
certificate (CBC) for ct-SCS with only external inputs. We leverage the former notion to
compositionally construct the latter one for interconnected systems. We mainly employ
the latter notion to quantify upper bounds on the probability that the interconnected
system reaches certain unsafe regions in a finite time horizon via Theorem 4.2.6.

Definition 4.2.1. Consider a ct-SCS Σ = (X,U,W,U ,W, f, σ, Y, h). Let X0, Xu ⊆ X
be initial and unsafe sets of the system, respectively. A twice differentiable function
B : X → R≥0 is called a control pseudo-barrier certificate (CPBC) for Σ if there exist
α, κ ∈ K∞, ρint ∈ K∞ ∪ {0}, γ, ψ ∈ R≥0 and λ ∈ R>0, such that

B(x) ≥ α(‖h(x)‖2), ∀x ∈ X, (4.2.1)

B(x) ≤ γ, ∀x ∈ X0, (4.2.2)

B(x) ≥ λ, ∀x ∈ Xu, (4.2.3)

and ∀x ∈ X, ∃ν ∈ U , such that ∀w ∈W ,

LB(x) ≤ −κ(B(x)) + ρint(‖w‖2) + ψ, (4.2.4)

where LB is the infinitesimal generator of the stochastic process acting on B [Oks13],
defined as

LB(x) = ∂xB(x)f(x, ν, w) +
1

2
Tr(σ(x)σ(x)>∂x,xB(x)). (4.2.5)

Remark 4.2.2. Condition (4.2.1) is required for the satisfaction of small-gain type
compositionality conditions in Subsection 4.2.2. Although we assume that the full state
information is available for interconnected systems, we define ct-SCS in (2.3.3) with
outputs y = h(x), using which we will introduce the interconnection constraint.

The employed quantifiers in condition (4.2.4) implicitly imply that one can synthesize
decentralized controllers for Σ since the control input ν is independent of internal inputs
w (state information of other subsystems). However, one can change the sequence of the
quantifier in (4.2.4) to ∀x ∈ X,∀w ∈ W, ∃ν ∈ U in order to design distributed control
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policies. In this latter case, the chance of finding control pseudo-barrier certificates gets
increased since distributed controllers do not need to be robust against the whole range
of the internal input set.

Now we amend the above notion for the interconnected ct-SCS without internal in-
puts by simply eliminating all the terms related to w. This notion will be utilized in
Theorem 4.2.6 for quantifying upper bounds on exit probabilities over systems without
internal inputs (e.g., interconnected stochastic systems).

Definition 4.2.3. Consider an (interconnected) system Σ = (X,U,U , f, σ) with initial
and unsafe sets X0, Xu ⊆ X. A twice differentiable function B : X → R≥0 is called a
control barrier certificate (CBC) for Σ if

B(x) ≤ γ, ∀x ∈ X0, (4.2.6)

B(x) ≥ λ, ∀x ∈ Xu, (4.2.7)

and ∀x ∈ X, ∃ν ∈ U such that

LB(x) ≤ −κ(B(x)) + ψ, (4.2.8)

for some κ ∈ K∞, γ, ψ ∈ R≥0, and λ ∈ R>0 with λ > γ.

Remark 4.2.4. Note that X0 and Xu should not intersect in order to enforce the safety
property in Definition 4.2.3. In particular, since we enforce γ < λ, this condition im-
plicitly implies that there is no intersection between sets X0 and Xu based on inequali-
ties (4.2.6) and (4.2.7).

Remark 4.2.5. Condition (4.2.8) ensures that the CBC is decaying up to a nonnegative
constant ψ, which captures the magnitude of the stochasticity in the system. In addi-
tion, one requires γ < λ to have a meaningful probabilistic bound using Theorem 4.2.6;
however, we only need this condition for the CBC in Definition 4.2.3. One can readily
verify that the probabilistic safety guarantee in Theorem 4.2.6 is improved by increasing
the distance between γ and λ.

The next theorem shows the usefulness of CBC to quantify upper bounds on the exit
probability of (interconnected) systems without having internal inputs.

Theorem 4.2.6. Let Σ = (X,U,U , f, σ) be an (interconnected) ct-SCS without internal
inputs. Suppose B is a CBC for Σ as in Definition 4.2.3, and there exists a constant
κ̂ ∈ R>0 such that the function κ ∈ K∞ in (4.2.8) satisfies κ(s) ≤ κ̂s, ∀s ∈ R≥0. Then
the probability that the solution process of Σ staring from any initial state ξ(0) = x0 ∈ X0

reaches Xu under the policy ν(·) within a finite time horizon [0, T ] ⊆ R≥0 is formally
quantified as

Px0
ν

{
ξ(t) ∈ Xu for some 0 ≤ t ≤ T

∣∣ ξ(0) = x0

}
≤

1− (1− γ
λ)e−

ψT
λ , if λ ≥ ψ

κ̂ ,

κ̂γ+(eκ̂T −1)ψ
κ̂λeκ̂T

, if λ ≤ ψ
κ̂ .

(4.2.9)

61



4 Discretization-free Techniques based on Control Barrier Certificates

Proof. Based on condition (4.2.7), we have Xu ⊆ {x ∈ X
∣∣ B(x) ≥ λ}. Then one has

Px0
ν

{
ξ(t) ∈ Xu for some 0 ≤ t ≤ T

∣∣ ξ(0) = x0

}
≤ Px0

ν

{
sup

0≤t≤T
B(ξ(t)) ≥ λ

∣∣ ξ(0) = x0

}
.

(4.2.10)

One can acquire the upper bound in (4.2.9) by applying [Kus67, Theorem 1, Chapter
III] to (4.2.10) and, respectively, utilizing conditions (4.2.8) and (4.2.6). �

Remark 4.2.7. If the function κ(·) in (4.2.8) is zero, the inequality (4.2.8) is reduced
to LB(x) ≤ ψ, and accordingly, the upper bound in (4.2.9) is reduced to γ+ψT

λ .

Remark 4.2.8. In Section 4.2.3, we reformulate the conditions of Definition 4.2.3 to
an optimization problem such that one can minimize the values of γ and ψ in order to
acquire an upper bound in the finite time horizon that is as tight as possible.

In the next subsection, we analyze networks of stochastic control subsystems and show
under which conditions one can construct a CBC of an interconnected system using its
CPBC of subsystems.

4.2.2 Compositional Construction of CBC

Here, we provide a compositional framework for the construction of control barrier
certificates for interconnected systems Σ. Suppose we are given control subsystems
Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, Yi, hi), i ∈ {1, . . . , N}, where their internal inputs and
outputs are partitioned as (3.3.9)-(3.3.10). Assume that for control subsystems Σi, i ∈
{1, . . . , N}, there exist CPBC Bi as defined in Definition 4.2.1 with functions αi, κi ∈ K∞,
ρinti ∈ K∞ ∪ {0}, and constants γi, ψi ∈ R≥0 and λi ∈ R>0. In order to establish the
main compositionality result of the paper, we raise the following sum-type small-gain
assumption.

Assumption 4.2.9. Assume that for any i, j ∈ {1, · · · , N}, i 6= j, there exist K∞
functions γ̂i and constants λ̂i ∈ R>0 and δ̂ij ∈ R≥0 such that for any s ∈ R≥0:

κi(s) ≥ λ̂iγ̂i(s),
hji ≡ 0 =⇒ δ̂ij = 0,

hji 6≡ 0 =⇒ ρinti((N − 1)α−1
j (s)) ≤ δ̂ij γ̂j(s),

where αj, κi, and ρinti, represent the corresponding K∞ functions related to Bi appearing
in Definition 4.2.1.

Before presenting the next main theorem, we define Λ := diag(λ̂1, . . . , λ̂N ), ∆ := {δ̂ij},
where δ̂ii = 0 ∀i ∈ {1, · · · , N}, and Γ(s) := [γ̂1(s1); . . . ; γ̂N (sN )], where s = [s1; . . . ; sN ].
In the next theorem, we leverage the small-gain Assumption 4.2.9 to compute composi-
tionally a control barrier certificate for the interconnected system Σ as in Definition 3.3.6.
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Theorem 4.2.10. Consider the interconnected ct-SCS Σ = I(Σ1, . . . ,ΣN ) induced by
N ∈ N≥1 stochastic control subsystems Σi. Suppose that each control subsystem Σi

admits a CPBC Bi as defined in Definition 4.2.1 with initial and unsafe sets X0i and
Xui, respectively. If Assumption 4.2.9 holds and there exists a vector µ with µi > 0, i ∈
{1, . . . , N}, such that

µ>(−Λ + ∆) < 0, (4.2.11)

N∑
i=1

µiλi >
N∑
i=1

µiγi, (4.2.12)

then

B(x) :=
N∑
i=1

µiBi(xi) (4.2.13)

is a CBC for the interconnected system Σ = I(Σ1, . . . ,ΣN ) with the initial and unsafe
sets X0 :=

∏N
i=1X0i, Xu :=

∏N
i=1Xui, respectively.

Proof. We first show that conditions (4.2.6) and (4.2.7) in Definition 4.2.3 hold. For
any x := [x1; . . . ;xN ] ∈ X0 =

∏N
i=1X0i and from (4.2.2)

B(x) =
N∑
i=1

µiBi(xi) ≤
N∑
i=1

µiγi = γ,

and similarly for any x := [x1; . . . ;xN ] ∈ Xu =
∏N
i=1Xui and from (4.2.3)

B(x) =
N∑
i=1

µiBi(xi) ≥
N∑
i=1

µiλi = λ,

satisfying conditions (4.2.6) and (4.2.7) with γ =
∑N

i=1 µiγi and λ =
∑N

i=1 µiλi. Note
that λ > γ according to (4.2.12). Now, we show that condition (4.2.8) holds as well. By
applying the following inequality

ρinti(s1 + · · ·+ sN−1) ≤
N−1∑
i=1

ρinti((N − 1)si),

which is valid for any ρinti ∈ K∞ ∪ {0}, and any si ∈ R≥0, i ∈ {1, · · · , N}, employ-
ing condition (4.2.1) and Assumption 4.2.9, one can obtain the chain of inequalities in
(4.2.14). By defining

κ(s) := min
{
− µ>(−Λ + ∆)Γ(B̄(x))

∣∣µ>B̄(x) = s
}
,

ψ :=

N∑
i=1

µiψi,

where B̄(x) = [B1(x1); . . . ;BN (xN )], condition (4.2.8) is also satisfied. Then B is a CBC
for Σ, which completes the proof. �
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LB(x) = L
N∑
i=1

µiBi(xi) =
N∑
i=1

µiLBi(xi) ≤
N∑
i=1

µi(−κi(Bi(xi)) + ρinti(‖wi‖2) + ψi)

=
N∑
i=1

µi
(
− κi(Bi(xi)) + ρinti(

N∑
j=1,i 6=j

‖wij‖2) + ψi
)

=
N∑
i=1

µi
(
− κi(Bi(xi)) + ρinti(

N∑
j=1,i 6=j

‖yji‖2) + ψi
)

≤
N∑
i=1

µi
(
− κi(Bi(xi)) +

N∑
j=1,i 6=j

ρinti((N − 1)‖yji‖2) + ψi
)

=
N∑
i=1

µi
(
− κi(Bi(xi)) +

N∑
j=1,i 6=j

ρinti((N − 1)‖hj(xj)‖2) + ψi
)

≤
N∑
i=1

µi
(
− κi(Bi(xi)) +

N∑
j=1,i 6=j

ρinti((N − 1)α−1
j (Bj(xj))) + ψi

)
≤

N∑
i=1

µi
(
− λ̂iγ̂i(Bi(xi)) +

N∑
j=1,i 6=j

δ̂ij γ̂j(Bj(xj)) + ψi
)

= µ>(−Λ + ∆)Γ(B1(x1); . . . ;BN (xN )) +
N∑
i=1

µiψi. (4.2.14)

Remark 4.2.11. Note that Assumption 4.2.9 is a well-established one in the relevant
literature [IDW09, DIW11] studying the stability of large-scale interconnected systems via
ISS Lyapunov functions of subsystems. We utilize this standard assumption to construct
CBC of networks based on CPBC of their subsystems. The compositionality condition
µ>(−Λ+∆) < 0, constructed from the parameters in Assumption 4.2.9, is automatically
satisfied if the spectral radius of Λ−1∆ is strictly less than one [DIW11], denoted by
ρspc(Λ

−1∆) < 1, which is easy to check. If ∆ is irreducible, µ can be chosen as the left
eigenvector of −Λ+∆ corresponding to the largest eigenvalue, which is real and negative
by the Perron-Frobenius theorem [Axe94].

Remark 4.2.12. Condition (4.2.12) in general is not very restrictive since constants µi
in (4.2.13) play a considerable role in rescaling CPBC for subsystems while normalizing
the effect of internal gains of other subsystems (cf. [DRW10] for a similar argument
but in the context of stability analysis via ISS Lyapunov functions). One can expect that
condition (4.2.12) holds in many applications due to this rescaling.
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4.2.3 Computation of CPBC

Here, we reformulate the proposed conditions in Definition 4.2.1 as a sum-of-squares
(SOS) optimization problem [Par03] and provide a systematic approach for computing
CPBC and corresponding control policies for subsystems Σi. The SOS technique relies
on the fact that a polynomial is non-negative if it can be written as a sum of squares
of different polynomials. In order to utilize an SOS optimization, we raise the following
assumption.

Assumption 4.2.13. Subsystem Σi has a continuous state set Xi ⊆ Rni and continuous
external and internal input sets Ui ⊆ Rm̄i and Wi ⊆ Rp̄i. Moreover, the drift term
fi : Xi × Ui × Wi → Xi is a polynomial function of the state xi and external and
internal inputs νi, wi. Furthermore, the output map hi : Xi → Yi and the diffusion
term σi : Rni → Rni×bi are polynomial functions of the state xi. We also assume K∞
functions αi and ρinti are polynomial.

Under Assumption 4.2.13, the following lemma provides a set of sufficient conditions
for the existence of a CPBC required in Definition 4.2.1, which can be solved as an SOS
optimization problem.

Lemma 4.2.14. Suppose Assumption 4.2.13 holds and sets X0, Xu, X,W can be defined
by vectors of polynomial inequalities X0i = {xi ∈ Rni | g0i(xi) ≥ 0}, Xui = {xi ∈ Rni |
gui(xi) ≥ 0}, Xi = {xi ∈ Rni | gi(xi) ≥ 0}, Ui = {νi ∈ Rm̄i | gνi(xi) ≥ 0}, and Wi =
{wi ∈ Rp̄i | gwi(xi) ≥ 0}, where the inequalities are defined element-wise. Suppose there
exist a sum-of-squares polynomial Bi(xi), constants γi, ψi ∈ R≥0, λi ∈ R>0, functions
αi, κi ∈ K∞, ρinti ∈ K∞ ∪ {0}, polynomials lνji (x) corresponding to the jth input in
νi = (ν1i , ν2i , . . . , νm̄i) ∈ Ui ⊆ Rm̄i, and vectors of sum-of-squares polynomials l0i(xi),
lui(xi), li(xi), l̂i(xi, νi, wi), lνi(xi, νi, wi), and lwi(xi, νi, wi) of appropriate dimensions
such that the following expressions are sum-of-squares polynomials:

Bi(xi)− l>i (xi)gi(xi)− αi(hi(xi)>hi(xi)), (4.2.15)

−Bi(xi)− l>0i(xi)g0i(xi) + γi, (4.2.16)

Bi(xi)− l>ui(xi)g1i(xi)− λi, (4.2.17)

−LBi(xi)− κi(Bi(xi)) + ρinti(w
>
i wi) + ψi −

m̄i∑
j=1

(νji−lνji (xi))

− l̂>i (xi, νi, wi)gi(xi)− l>νi(xi, νi, wi)gνi(xi)− l
>
wi(xi, νi, wi)gwi(xi). (4.2.18)

Then, Bi(xi) satisfies conditions (4.2.1)-(4.2.4) in Definition 4.2.1 and νi = [lν1i
(xi); . . . ;

lνm̄i (xi)], i ∈ {1, . . . , N}, is the corresponding safety controller.

Proof. Since Bi(xi) and li(xi) in (4.2.15) are sum-of-squares, we have 0 ≤ Bi(xi) −
l>i (xi)gi(xi)−αi(‖hi(xi)‖2). Since the term l>i (xi)gi(xi) is non-negative over X, the new
condition (4.2.15) implies condition (4.2.1) in Definition 4.2.1. Similarly, we can show
that (4.2.16) and (4.2.17) imply conditions (4.2.2) and (4.2.3) in Definition 4.2.1. Now
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we show that condition (4.2.18) implies (4.5.4), as well. By selecting external inputs
νji = lνji(xi) and since l̂>i (xi, νi, wi)gi(xi), l

>
νi(xi, νi, wi)gνi(xi), l

>
wi(xi, νi, wi) are all non-

negative over the set X, we have LBi(xi) ≤ −κi(Bi(xi)) + ρinti(‖wi‖) +ψi which implies
that the function Bi(xi) is a CPBC, which completes the proof. �

Remark 4.2.15. Note that the function κi(·) in (4.2.18) can cause nonlinearity on un-
known parameters of Bi. A possible way to avoid this issue is to consider a linear function
κi(s) = κ̂is, ∀s ∈ R≥0, with some constant κ̂i ∈ R>0 as appeared in Theorem 4.2.6. Then
one can employ bisection method to minimize the value of κ̂i.

Remark 4.2.16. For computing the sum-of-squares polynomial Bi(xi) fulfilling reformu-
lated conditions (4.2.15)-(4.2.18), one can readily employ existing software tools available
in the literature such as SOSTOOLS [PAV+13] together with a semidefinite programming
(SDP) solver such as SeDuMi [Stu99].

4.2.4 Case Study

To illustrate the effectiveness of the proposed results, we apply our approaches to the
temperature regulation in (3.5.14) in a network of 1000 rooms. By considering the
individual rooms Σi as in (3.5.15), one can readily verify that Σ = I(Σ1, . . . ,ΣN ) where
wi(t) = ζi±1(t) (with ζ0 = ζn and ζn+1 = ζ1). Note that for the sake of a simpler
illustration of the results, we assume that all subsystems are homogeneous.

The regions of interest in this example are Xi ∈ [1, 50], X0i ∈ [19.5, 20], Xui =
[1, 17] ∪ [23, 50],∀i ∈ {1, . . . , n}. The main goal is to find a CBC for the interconnected
system, during which a safety controller is synthesized for Σ maintaining the temperature
of rooms in a comfort zone [17, 23]1000. The idea here is to search for CPBC and ac-
cordingly design local controllers for subsystems Σi. Consequently, the controller for the
interconnected system Σ is simply a vector such that its ith component is the controller
for the subsystem Σi. We employ the software tool SOSTOOLS and the SDP solver Se-
DuMi to compute CPBC as described in Subsection 4.2.3. According to Lemma 4.2.14,
we compute CPBC of an order 2 as Bi(Ti) = 4183T 2

i −165400Ti+1635114 and the corre-
sponding safety controller of an order 2 as νi(Ti) = −120Ti + 7000 for all i ∈ {1, . . . , n}.
Moreover, the corresponding constants and functions in Definition 4.2.1 satisfying con-
ditions (4.2.1)-(4.2.4) are quantified as γi = 1250, λi = 23000, κi(s) = 11 × 10−4s, ψi =
10, αi(s) = 9s, ρinti(s) = 10−5s, ∀s ∈ R≥0.

We now proceed with Theorem 4.2.10 to construct a CBC for the interconnected
system using CPBC of subsystems. One can readily verify that small-gain Assump-
tion 4.2.9 holds with γ̂i(s) = s, ∀s ∈ R≥0, λ̂i = 11× 10−4, δ̂ij = 1.1× 10−6. By selecting
µi = 1, ∀i ∈ {1, . . . , n}, one can readily show that the spectral radius of Λ−1∆ is 0.95
which is strictly less that one (cf. Remark 4.2.11), and consequently, the composition-
ality condition (4.2.11) is satisfied. Moreover, the compositionality condition (4.2.12) is
also met since λi > γi, ∀i ∈ {1, . . . , n}. Then by employing the results of Theorem 4.2.10,
one can conclude that B(T ) =

∑1000
i=1 (4183T 2

i − 165400Ti + 1635114) is a CBC for the
interconnected system Σ with γ = 125× 104, λ = 23× 106, κ(s) = 11× 10−4s, ∀s ∈ R≥0,
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Figure 4.2: Closed-loop state trajectories of a representative room with 10 noise realizations in
a network of 1000 rooms.

and ψ = 104. Accordingly, ν(T ) = [−1201T1 + 7000; . . . ;−120T1000 + 7000] is the overall
safety controller for the interconnected system.

By employing Theorem 4.2.6, one can guarantee that the temperature of the intercon-
nected system Σ starting from initial conditions x0 ∈ [19.5, 20]1000 remains in the safe
set [17, 23]1000 during the finite time horizon T = 10 with a probability of at least 95%,
i.e.,

Px0
ν

{
ξ(t) /∈ Xu | ξ(0) = x0, ∀t ∈ [0, 10]

}
≥ 0.95 . (4.2.19)

Closed-loop state trajectories of a representative room with 10 different noise realiza-
tions are illustrated in Figure 4.2. As illustrated, one out of 10 trajectories violates the
safety specification, which is in accordance with the theoretical guarantee in (4.2.19).

4.3 Compositional Construction of Control Barrier Certificates:
Dissipativity Approach

In this section, we enlarge the class of systems to continuous-time stochastic hybrid sys-
tems by adding Poisson processes to the dynamics (cf. Definition 2.3.1) and propose a
compositional scheme based on dissipativity approaches for the construction of control
barrier certificates for this class of models. The proposed compositionality approach
here is potentially less conservative than the small-gain one since the dissipativity-type
compositional reasoning can enjoy the structure of the interconnection topology and may
not require any constraints on the number or gains of the subsystems. Furthermore, the
provided results based on small-gain approaches ask an additional condition (cf. con-
dition (4.2.1)) which is required for the satisfaction of small-gain type compositionality
conditions, while dissipativity-type reasoning does not need such an extra condition.
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4.3.1 Control Storage and Barrier Certificates

In this subsection, we first introduce a notion of control storage certificates (CStC) for
ct-SHS with both internal and external signals.

Definition 4.3.1. Consider a ct-SHS Σ = (X,U,W,U ,W, f, σ, ρ, Y1, Y2, h1, h2). Let
X0, X1 ⊆ X be initial and unsafe sets of the system, respectively. A twice differentiable
function B : X → R≥0 is called a stochastic control storage certificate (CStC) for Σ if
there exist κ ∈ K∞, γ, ψ ∈ R≥0, λ ∈ R>0, and a symmetric matrix X with conformal
block partitions X zz̄, z, z̄ ∈ {1, 2}, where X 22 � 0, such that

• ∀x ∈ X0,

B(x) ≤ γ, (4.3.1)

• ∀x ∈ Xu,

B(x) ≥ λ, (4.3.2)

• and ∀x ∈ X, ∃ν ∈ U , such that ∀w ∈W ,

LB(x) ≤ −κ(B(x)) + ψ +

[
w

h2(x)

]>[X 11 X 12

X 21 X 22

]
︸ ︷︷ ︸

X :=

[
w

h2(x)

]
, (4.3.3)

where LB is the infinitesimal generator of the stochastic process acting on the
function B [Oks13], defined as

LB(x)=∂xB(x)f(x, ν, w)+
1

2
Tr(σ(x)σ(x)>∂x,xB(x))+

r∑
j=1

λ̄j(B(x+ ρ(x)erj)−B(x)),

(4.3.4)

where ∂xB(x) =
[∂B(x)
∂xi

]
i

is a row vector, ∂x,xB(x) =
[∂2B(x)
∂xi∂xj

]
i,j
, λ̄j is the rate of

Poisson process, and erj denotes an r-dimensional vector with 1 on the j-th entry
and 0 elsewhere.

Remark 4.3.2. Note that a stochastic storage certificate captures the role of w (i.e.
the effect of interaction between subsystems in the interconnected topology) using the
quadratic term in the right-hand side of (4.3.3). This term is interpreted in dissipativity
theory as the supply rate of the system [AMP16] which is initially used to show the
stability of a network based on stabilities of its subsystems. Here, we choose this function
to be quadratic which results in tractable compositional conditions later in the form of
linear matrix inequalities (cf. (4.3.5)).

Now one can employ the notion of CBC for the interconnected ct-SHS (without in-
ternal signals) as in Definition 4.2.3 and quantify upper bounds on the probability that
the interconnected system reaches certain unsafe regions in a finite time horizon via
Theorem 4.2.6.
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Remark 4.3.3. Note that stochastic storage certificates satisfying conditions (4.3.1)-
(4.3.3) are not useful on their own to ensure the safety of the interconnected system as a
whole. Stochastic storage certificates are some appropriate tools used to construct over-
all control barrier certificates given that some compositionality conditions are satisfied
(cf. (4.3.5),(4.3.6)). The safety of the system can then be verified via Theorem 4.2.6 only
using the constructed control barrier certificate.

In the next subsection, we analyze networks of stochastic hybrid subsystems and show
under which conditions one can construct a CBC of an interconnected system utilizing
the corresponding CStC of subsystems.

4.3.2 Compositional Construction of CBC

Here, we analyze networks of stochastic hybrid subsystems, i ∈ {1, . . . , N},

Σi = (Xi, Ui,Wi,Ui,Wi, fi, σi, ρi, Y1i , Y2i , h1i , h2i),

and discuss how to construct a CBC of the interconnected system based on CStC of
subsystems using dissipativity-type compositional conditions. We assume that for hybrid
subsystems Σi, i ∈ {1, . . . , N}, there exist CStC Bi as defined in Definition 4.3.1 with
the corresponding functions, constant, and matrices denoted by κi ∈ K∞, γi, ψi ∈ R≥0,
λi ∈ R>0, Xi, X 11

i , X 12
i , X 21

i , and X 22
i . In the next theorem, we compositionally

construct a control barrier certificate for the interconnected system Σ as presented in
Definition 3.5.2.

Theorem 4.3.4. Consider an interconnected stochastic hybrid system Σ = I(Σ1, . . . ,ΣN )
induced by N ∈ N≥1 stochastic hybrid subsystems Σi and the coupling matrix M . Sup-
pose that each subsystem Σi admits a CStC Bi as defined in Definition 4.3.1 with the
corresponding initial and unsafe sets X0i and Xui, respectively. Then

B(x) :=
N∑
i=1

µiBi(xi)

is a CBC for the interconnected system Σ = I(Σ1, . . . ,ΣN ) with the corresponding initial
and unsafe sets X0 :=

∏N
i=1X0i, Xu :=

∏N
i=1Xui, respectively, if there exist µi > 0,

i ∈ {1, . . . , N}, such that [
M
Iq̃

]>
Xcmp

[
M
Iq̃

]
� 0, (4.3.5)

N∑
i=1

µiλi >
N∑
i=1

µiγi, (4.3.6)

where Xcmp is defined as (3.5.8) and q̃ =
∑N

i=1 q̄2i with q̄2i being dimensions of the
internal output of subsystems Σi.
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Proof. We first show that conditions (4.2.6) and (4.2.7) in Definition 4.2.3 hold. For
any x := [x1; . . . ;xN ] ∈ X0 =

∏N
i=1X0i and from (4.3.1)

B(x) =
N∑
i=1

µiBi(xi) ≤
N∑
i=1

µiγi = γ,

and similarly for any x := [x1; . . . ;xN ] ∈ Xu =
∏N
i=1Xui and from (4.3.2)

B(x) =
N∑
i=1

µiBi(xi) ≥
N∑
i=1

µiλi = λ,

satisfying conditions (4.2.6) and (4.2.7) with γ =
∑N

i=1 µiγi and λ =
∑N

i=1 µiλi. Note
that λ > γ according to (4.3.6). Now, we show that condition (4.2.8) holds, as well. One
can obtain the chain of inequalities in (4.3.7) using compositionality condition (4.3.5)
and by defining κ(·), ψ as

κ(s) := min
{ N∑
i=1

µiκi(si)
∣∣ si≥ 0,

N∑
i=1

µisi = s
}
,

ψ :=
N∑
i=1

µiψi.

Then B is a CBC for Σ, which completes the proof. �

Remark 4.3.5. Note that one can utilize Lemma 4.2.14 to reformulate the proposed
conditions in Definition 4.3.1 as an SOS optimization problem and provide a systematic
approach for computing CStC and corresponding control policies for subsystems Σi. In
this case, condition (4.2.18) in Lemma 4.2.14 is changed to

−LBi(xi)− κi(Bi(xi)) +

[
wi

h2i(xi)

]>[X 11
i X 12

i

X 21
i X 22

i

][
wi

h2i(xi)

]
+ ψi −

m̄i∑
j=1

(νji−lνji (xi))

− l̂>i (xi, νi, wi)gi(xi)− l>νi(xi, νi, wi)gνi(xi)− l
>
wi(xi, νi, wi)gwi(xi).

4.3.3 Case Studies

4.3.3.1 Room Temperature Network

To illustrate the effectiveness of the proposed results, we first apply our approaches to
the temperature regulation in (3.5.14) in a network of 1000 rooms by adding a Poisson
process to the dynamics. We consider η̂ = 0.005, β̂ = 0.06, θ̂ = 0.15, G = R =
0.1In, Th = 48 ◦C, TE = [Te1 ; . . . ;Ten ] with Tei = −15 ◦C, ∀i ∈ {1, . . . , n}, T (t) =
[T1(t); . . . ;Tn(t)] and ν(t) = [ν1(t); . . . ; νn(t)]. We also consider the rates of Poisson
processes as λ̄i = 0.1,∀i ∈ {1, . . . , n}. Now by considering the individual rooms as
in (3.5.15), one can readily verify that Σ = I(Σ1, . . . ,ΣN ) where the coupling matrix
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LB(x) = L
N∑
i=1

µiBi(xi) =
N∑
i=1

µiLBi(xi)

≤
N∑
i=1

µi
(
− κi(Bi(xi)) + ψi +

[
wi

h2i(xi)

]> [X 11
i X 12

i

X 21
i X 22

i

] [
wi

h2i(xi)

] )
=

N∑
i=1

−µiκi(Bi(xi)) +

N∑
i=1

µiψi

+



w1
...
wN

h21(x1)
...

h2N (xN )



>

µ1X 11
1 µ1X 12

1
. . .

. . .

µNX 11
N µNX 12

N

µ1X 21
1 µ1X 22

1
. . .

. . .

µNX 21
N µNX 22

N





w1
...
wN

h21(x1)
...

h2N (xN )



=
N∑
i=1

−µiκi(Bi(xi)) +
N∑
i=1

µiψi +


M

 h21(x1)
...

h2N (xN )


h21(x1)

...
h2N (xN )



>

Xcmp


M

 h21(x1)
...

h2N (xN )


h21(x1)

...
h2N (xN )



=

N∑
i=1

−µiκi(Bi(xi)) +

N∑
i=1

µiψi +

 h21(x1)
...

h2N (xN )


> [

M
Iq̃

]>
Xcmp

[
M
Iq̃

] h21(x1)
...

h2N (xN )


≤

N∑
i=1

−µiκi(Bi(xi)) +
N∑
i=1

µiψi ≤ −κ(B(x)) + ψ. (4.3.7)

M is defined as mi,i+1 = mi+1,i = m1,n = mn,1 = 1, i ∈ {1, . . . , n − 1}, and all other
elements are identically zero.

The regions of interest in this example are Xi = [1, 50], X0i = [19.5, 20], Xui =
[1, 17] ∪ [23, 50], ∀i ∈ {1, . . . , n}. The main goal is to find a CBC for the interconnected
system, using which a safety controller is synthesized for Σ maintaining the temperatures
of rooms in the comfort zone W = [17, 23]1000. We first search for CStC and accordingly
design local controllers for subsystems Σi. Consequently, the controller for the inter-
connected system Σ is simply a vector such that its ith component is the controller for
subsystem Σi. We employ the software tool SOSTOOLS [PAV+13] and the SDP solver
SeDuMi [Stu99] to compute CStC as described in Lemma 4.2.14. We compute CStC
of order 2 as Bi(Ti) = 0.3112T 2

i − 12.3035Ti + 121.59906 and the corresponding safety
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controller νi(Ti) = −0.0120155Ti + 0.7 for all i ∈ {1, . . . , n}. Moreover, the correspond-
ing constants and functions in Definition 4.3.1 satisfying conditions (4.3.1)-(4.3.3) are
quantified as γi = 0.08, λi = 2.7, κi(s) = κ̂is, ∀s ∈ R≥0 with κ̂i = 10−7, ψi = 5 × 10−3,
and

Xi =

[
κ̂ie
−4η̂2 0
0 −κ̂ie−4θ2T 2

h

]
. (4.3.8)

We now proceed with Theorem 4.3.4 to construct a CBC for the interconnected system
using CStC of subsystems. By selecting µi = 1, ∀i ∈ {1, . . . , n}, and utilizing Xi in
(4.3.8), the matrix Xcmp in (3.5.8) is reduced to

Xcmp =

[
κ̂ie
−4η̂2In 0

0 −κ̂ie−4θ2T 2
hIn

]
,

and condition (4.3.5) is reduced to[
M
In

]>
Xcmp

[
M
In

]
= κ̂ie

−4η̂2M>M − κ̂ie−4θ2T 2
hIn � 0,

without requiring any restrictions on the number or gains of subsystems. We used
M = M>, and 4κ̂ie

−4η̂2 − κ̂ie
−4θ2T 2

h � 0 by employing Gershgorin circle theorem
[Bel65] to show the above LMI. Moreover, the compositionality condition (4.3.6) is also
met since λi > γi, ∀i ∈ {1, . . . , n}. Then by employing the results of Theorem 4.3.4, one
can conclude that B(T ) =

∑1000
i=1 (0.3112T 2

i − 12.3035Ti + 121.59906) is a CBC for the
interconnected system Σ with γ = 80, λ = 2700, κ(s) = 10−7s, ∀s ∈ R≥0, and ψ = 5.
Accordingly, ν(T ) = [−0.0120155T1 +0.7; . . . ;−0.0120155T1000 +0.7] is the overall safety
controller for the interconnected system.

By employing Theorem 4.2.6, one can guarantee that the temperature of the inter-
connected system Σ starting from initial conditions inside X0 = [19.5, 20]1000 remains in
the safe set [17, 23]1000 during the time horizon T = 10 with the probability of at least
96%, i.e.,

Px0
ν

{
ξ(t) /∈ Xu | ξ(0) = x0, ∀t ∈ [0, 10]

}
≥ 0.96.

Closed-loop state trajectories of a representative room with 10 different noise realiza-
tions are illustrated in Figure 4.3.

It is worth highlighting that with the assumption of all dynamics and barrier certifi-
cates are polynomial types, the computational complexity of using SOS in our setting is
linear with respect to the number of subsystems. Whereas, if one is interested in solving
the problem in a monolithic manner, the complexity will be polynomial in terms of the
number of subsystems [WTL15]. In the worst-case scenario, the computational complex-
ity in the monolithic manner will be exponential in terms of the number of subsystems
if the underlying dynamics and barrier certificates are not polynomial.

Importance of Compositionality Condition. In order to demonstrate the impor-
tance of the compositionality condition, we raise the following counter example. Con-
sider a network of two rooms each equipped with a heater and connected circularly as
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Figure 4.3: Closed-loop state trajectories of a representative room with 10 noise realizations in
a network of 1000 rooms.

I(Σ1,Σ2)

Σ1: Room 1

Σ2: Room 2

ζ11ν1

ζ12
ν2

ζ21

w2 ζ22

w1

Figure 4.4: Interconnection of two rooms Σ1 and Σ2.

illustrated in Figure 4.4, with dynamics as in (3.5.15) with Tei = −100, ∀i ∈ {1, 2}.
One can readily verify that Σ = I(Σ1,Σ2) where the coupling matrix M is defined as

M =

[
0 1
1 0

]
. Let regions of interest be the same as before. We compute CStC of or-

der 2 as Bi(Ti) = 0.76484T 2
i − 30.18033Ti + 297.73079 and its corresponding controller

νi(Ti) = 0.0120155Ti + 0.7 for all i ∈ {1, 2}, with

Xi =

[
4× 10−4 20

20 5× 10−4

]
.

We now select µi = 1,∀i ∈ {1, 2}, and construct the matrix Xcmp in (3.5.8) as

Xcmp =


4× 10−4 0 20 0

0 4× 10−4 0 20
20 0 5× 10−4 0
0 20 0 5× 10−4

.
Now we check the compositionality condition in (4.3.5) as[

M
In

]>
Xcmp

[
M
In

]
� 0,
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with eigenvalues equal to −39.9991 and 40.0009. Since the compositionality condition
is violated, one cannot automatically conclude that B(T ) = B1(T1) +B2(T2) is a barrier
certificate for the overall system. To show this issue, we employ B(T ) = 0.76484T 2

1 −
30.18033T1+297.73079+0.76484T 2

2−30.18033T2+297.73079 and check the corresponding
conditions for the overall barrier certificate (i.e., conditions (4.2.6)-(4.2.8)) with γ =
γ1 + γ2, λ = λ1 + λ2, ψ = ψ1 + ψ2. As it can be observed from Figures 4.5-4.7, although
conditions (4.2.6),(4.2.7) are satisfied for the overall barrier certificates B(T ) = B1(T1)+
B2(T2), condition (4.2.8) is violated since it is positive at some ranges of X1 ×X2.

Figure 4.5: Satisfaction of condition (4.2.6). As observed, this condition is negative for all
ranges of x1 ∈ X01

and x2 ∈ X02
.

Figure 4.6: Satisfaction of condition (4.2.7). The condition is negative for all ranges of x1 ∈ Xu1

and x2 ∈ Xu2 .

Then one can readily verify that B(T ) = B1(T1) + B2(T2) is not necessarily a barrier
certificate for the overall network ensuring its safety even though all the rooms are the
same and storage certificates are input independent.

74



4.3 Compositional Construction of Control Barrier Certificates: Dissipativity Approach

Figure 4.7: Violation of condition (4.2.8). As observed, this condition is positive for some
ranges of x1 ∈ X1 and x2 ∈ X2.

4.3.3.2 Fully-Interconnected Network

To show the applicability of our approach to strongly connected networks, we consider
interconnected linear ct-SHS

Σ:

{
dξ(t) = (Ḡξ(t) +Bν(t))dt+GdWt +RdPt,
ζ(t) = ξ(t),

with matrix Ḡ = (−In − L) ∈ Rn×n, where L is the Laplacian matrix of a complete
graph [GR01]:

L =


n− 1 −1 · · · · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...

. . .
. . .

...
−1 · · · · · · −1 n− 1


n×n

.

We partition ξ(t) = [ξ1(t); . . . ; ξn(t)], and ν(t) = [ν1(t); . . . ; νn(t)]. Moreover, B = 0.15In
and G = R = 0.1In. We also consider rates of Poisson processes as λ̄i = 0.1,∀i ∈
{1, . . . , n}. Now by considering the individual subsystems as

Σi :


dξi(t) = (−ξi(t) + 0.15νi(t) + wi(t))dt+ 0.1dWti + 0.1dPti ,
ζ1i(t) = ξi(t),
ζ2i(t) = ξi(t),

one can readily verify that Σ = I(Σ1, . . . ,ΣN ) where the coupling matrix M is defined
as M = −L.

The regions of interest in this example are Xi = [2, 6], X0i = [2, 4], X1i = [5, 6],∀i ∈
{1, . . . , n}. For the sake of simulation, we fix n = 15. The main goal is to find a CBC
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for the interconnected system and design its corresponding safety controller Σ maintain-
ing the state of the interconnected system in the safe set W = [2, 5]15. According to
Lemma 4.2.14, we compute CStC of order 4 as Bi(xi) = 0.0002x4

i −0.0024x3
i +0.0109x2

i −
0.0207xi + 0.0146 and the corresponding safety controller νi(xi) = −5.1465x2

i + 60.3564
for all i ∈ {1, . . . , 15}. The corresponding constants and functions in Definition 4.3.1
satisfying conditions (4.3.1)-(4.3.3) are computed as γi = 10−4, λi = 2 × 10−3, κi(s) =
κ̂is, ∀s ∈ R≥0 with κ̂i = 10−7, ψi = 10−6, and

Xi =

[
10−6 10−2

10−2 −5× 10−4

]
. (4.3.9)

We now proceed with Theorem 4.3.4 to construct a CBC for the interconnected system
using CStC of subsystems. By selecting µi = 1, ∀i ∈ {1, . . . , n}, and utilizing Xi in
(4.3.9), the matrix Xcmp in (3.5.8) is reduced to

Xcmp =

[
10−6In 10−2In
10−2In −5× 10−4In

]
,

and condition (4.3.5) is reduced to[
−L
In

]>
Xcmp

[
−L
In

]
= 10−6L>L− 10−2(L+ L>)− 5× 10−4In � 0,

which is always satisfied without requiring any restrictions on the number or gains of
subsystems. In order to show the above LMI, we used L = L> � 0 which are al-
ways true for Laplacian matrices of undirected graphs. Moreover, the composition-
ality condition (4.3.6) is also satisfied since λi > γi,∀i ∈ {1, . . . , n}. Then by em-
ploying Theorem 4.3.4, one can conclude that B(x) =

∑15
i=1(0.0002x4

i − 0.0024x3
i +

0.0109x2
i − 0.0207xi + 0.0146) is a CBC for the interconnected system Σ with γ =

0.0015, λ = 0.03, κ(s) = 10−7s, ∀s ∈ R≥0, and ψ = 1.5 × 10−5. Accordingly, ν(x) =
[−5.1465x2

1 + 60.3564; . . . ;−5.1465x2
15 + 60.3564] is the overall safety controller for the

interconnected system.
By leveraging Theorem 4.2.6, one can guarantee that the state of the interconnected

system Σ starting from initial conditions inside X0 = [2, 4]15 remains in the safe set
[2, 5]15 during the time horizon T = 10 with the probability of at least 95%, i.e.,

Px0
ν

{
ξ(t) /∈ Xu | ξ(0) = x0, ∀t ∈ [0, 10]

}
≥ 0.95 .

Closed-loop state trajectories of a representative subsystem with 10 different noise real-
izations are illustrated in Figure 4.8.

4.4 Compositional Construction of Control Barrier Certificates
for ct-SHS with Markovian Switching

In this section, we generalize the underlying dynamics to stochastic switching systems
with Markovian switching signals as in Definition 2.5.1 and solve the controller synthesis
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Figure 4.8: Closed-loop state trajectories of a representative subsystem with 10 noise realiza-
tions.

problem for this class of systems with respect to high-level logic properties in a compo-
sitional manner. The controller synthesis problem now is more challenging since it deals
with two different types of adversarial inputs: (i) internal inputs modeling the effects of
other subsystems, and (ii) switching signals which are randomly changing the modes of
the system. We also enlarge the class of specifications to those that can be expressed by
the accepting language of deterministic finite automata (DFA), whereas previous sections
handle only invariance specifications. To do so, we decompose the given complex spec-
ification to simple reachability tasks based on automata representing the complements
of original finite-state automata and provide upper bounds on probabilities of satisfac-
tion for those reachability tasks by computing corresponding pseudo-barrier certificates.
In addition, we provide an additional approach to compute pseudo-barrier certificates
for systems with finite input sets by employing counter-example guided inductive syn-
thesis framework based on the satisfiability modulo theories (SMT) solvers such as Z3
[DMB08], dReal [GAC12] or MathSat [CGSS13].

Remark 4.4.1. In this section, we assume that the controller has access to switching
modes, which is a standard assumption used in the relevant literature [DST+21]. In
particular, it is supposed that there is a mode detection device which is capable of iden-
tifying the system mode in real time so that the controller can switch to the matched
mode. There are some results, in the context of stability analysis of stochastic switching
systems [ZNS19, RX16], which also consider some delay while deploying the synthesized
controllers. However, this issue is out of the scope of this section and we leave it to
future works (cf. future contributions in Section 6).

Since the main contribution of this work is to propose a compositional approach for the
construction of control barrier certificates, we are eventually interested in investigating
interconnected systems without having internal inputs. In this case, the tuple (2.5.1) is
reduced to (X,U,U , P,P, f̂ , σ̂, ρ̂) with fp : X × U → X, and ct-SHS-MS (2.5.2) can be
re-written as

Σ : dξ(t) = fp(t)(ξ(t), ν(t)) dt+ σp(t)(ξ(t)) dWt + ρp(t)(ξ(t)) dPt.
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In the next sections, we propose an approach for compositional construction of control
barrier certificates for interconnected ct-SHS-MS. To achieve this, we define notions of
control pseudo-barrier and barrier certificates for ct-SHS-MS and interconnected ver-
sions, respectively.

4.5 Control Pseudo-Barrier and Barrier Certificates for
ct-SHS-MS

Here, we first introduce a notion of control pseudo-barrier certificates (CPBC) for ct-
SHS-MS with both internal and external inputs. We then define a notion of control
barrier certificates (CBC) for ct-SHS-MS with only external inputs. We then employ
the latter notion to quantify upper bounds on the probability that the interconnected
system reaches certain unsafe regions in a finite time horizon via Theorem 4.5.4.

Definition 4.5.1. Consider a ct-SHS-MS Σp, and sets X0, Xu ⊆ X as initial and
unsafe sets of the system, respectively. A twice differentiable function Bp : X → R≥0

is called a control pseudo-barrier certificate (CPBC) for Σp if there exist αp, κp ∈ K∞,
ρintp ∈ K∞ ∪ {0}, and γp, λp, ψp ∈ R≥0, such that for all p ∈ P ,

Bp(x) ≥ αp(‖h(x)‖2), ∀x ∈ X, (4.5.1)

Bp(x) ≤ γp, ∀x ∈ X0, (4.5.2)

Bp(x) ≥ λp, ∀x ∈ Xu, (4.5.3)

and ∀x ∈ X, ∃ν ∈ U , such that ∀w ∈W ,

LBp(x) +
m∑
p′=1

λ̃pp′(x)Bp′(x) ≤ −κp(Bp(x)) + ρintp(‖w‖2) + ψp, (4.5.4)

where LBp is the infinitesimal generator of the stochastic process acting on Bp [Oks13],
defined as

LBp(x)=∂xBp(x)fp(x, ν, w)+
1

2
Tr(σp(x)σp(x)>∂x,xBp(x))+

r∑
j=1

λ̄j(Bp(x+ρp(x)erj)−Bp(x)),

where erj denotes an r-dimensional vector with 1 on the j-th entry and 0 elsewhere.

Now we adapt the above notion to the interconnected ct-SHS-MS without internal
inputs by simply eliminating all terms related to w.

Definition 4.5.2. Consider an (interconnected) ct-SHS-MS Σ = (X,U,U , P,P, f̂ , σ̂, ρ̂),
and X0, Xu ⊆ X as, respectively, initial and unsafe sets of the interconnected system.
A function B : X × P → R≥0, that is twice differentiable with respect to x, is called a
control barrier certificate (CBC) for Σ if, for all p ∈ P ,

B(x, p) ≤ γ, ∀x ∈ X0, (4.5.5)

B(x, p) ≥ λ, ∀x ∈ Xu, (4.5.6)
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and ∀x ∈ X, ∃ν ∈ U such that

LB(x, p) +
M∑
p′=1

λ̃pp′(x)B(x, p′) ≤ −κ(B(x, p)) + ψ, (4.5.7)

for some κ ∈ K∞, γ, λ, ψ ∈ R≥0, with λ > γ, and M = ΠN
i=1mi, where mi is the number

of modes for each subsystem Σi as in (2.5.2).

Remark 4.5.3. Note that since control barrier certificates provide only sufficient con-
ditions for synthesizing safety controllers and not necessary ones, the initial level-set of
CBC, i.e., B(x, p) = γ which is mode-dependent here, is a subset of the maximal winning
set. One can always maximize the volume of the initial level-set of CBC, potentially to
be close to the maximal winning set, by increasing the degree of CBC but at the cost of
having more computational complexity. Remark that due to having unbounded noises in
the stochastic setting, the corresponding safety guarantee in Theorem 4.5.4 comes with
some probability as opposed to deterministic setting where the safety is guaranteed for
all realizations.

The next theorem shows the usefulness of CBC to quantify upper bounds on proba-
bilities that (interconnected) systems reach certain unsafe regions.

Theorem 4.5.4. Let Σ = (X,U,U , P,P, f̂ , σ̂, ρ̂) be an (interconnected) ct-SHS without
internal inputs. Suppose B(x, p) is a CBC for Σ as in Definition 4.5.2, and there exists
a constant κ̂ ∈ R>0 such that the function κ ∈ K∞ in (4.5.7) satisfies κ(s) ≤ κ̂s,
∀s ∈ R≥0. Then the probability that the solution process of Σ starting from any initial
state ξp(0) = x0 ∈ X0 and any initial mode p0 reaches Xu under policy ν(·) within a
time horizon [0, T ] ⊆ R≥0 is formally quantified as

Px0
ν

{
ξp(t) ∈ Xu for some 0 ≤ t ≤ T | ξp(0) = x0, p0

}
≤ δ̄,

δ̄ :=

1− (1− γ
λ)e−

ψT
λ , if λ ≥ ψ

κ̂ ,

κ̂γ+(eκ̂T −1)ψ
κ̂λeκ̂T

, if λ ≤ ψ
κ̂ .

(4.5.8)

The proof of Theorem 4.5.4 is similar to that of Theorem 4.2.6 based on a direct use
of [Kus67, Theorem 1, Chapter III] and is omitted here.

The proposed results in Theorem 4.5.4 provide upper bounds on the probability that
interconnected systems reach unsafe regions in finite time horizons. We now generalize
the proposed results to infinite time horizon, as in the next corollary, provided that
constant ψ = 0

Corollary 4.5.5. Let Σ = (X,U,U , P,P, f̂ , σ̂, ρ̂) be an interconnected ct-SHS without
internal inputs. Suppose B(x, p) is a CBC for Σ such that ψ = 0 in (4.5.7). Then the
probability that the solution process of Σ starting from any initial state ξp(0) = x0 ∈ X0

and any initial mode p0 reaches Xu under policy ν(·) within a time horizon [0,∞) is
formally quantified as

Px0
ν

{
ξp(t) ∈ Xu for some 0 ≤ t <∞ | ξp(0) = x0, p0

}
≤ γ

λ
.
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The proof is similar to that of Theorem 4.2.6 by applying [Kus67, Theorem 12, Chapter
II] and is omitted here.

Remark 4.5.6. Note that CBC B(x, p) satisfying condition (4.5.7) with ψ = 0 is a
non-negative supermartingale [Kus67, Chapter I]. Although the supermartingale prop-
erty on B allows one to provide probabilistic guarantees for infinite time horizons via
Corollary 4.5.5, it is restrictive in the sense that a supermartingale CBC B may not
generally exist [ST12]. Hence, we employ a more general c-martingale type condition in
our work that does not require such an assumption at the cost of providing probabilistic
guarantees only for finite time horizons.

4.5.1 Compositional Construction of CBC for ct-SHS-MS

Here, we provide a compositional framework for the construction of CBC for ct-SHS-MS
Σ. Suppose we are givenN stochastic hybrid subsystems Σi=(Xi, Ui,Wi,Ui,Wi, Pi,Pi, f̂i,
σ̂i, ρ̂i, Yi, hi), i ∈ {1, . . . , N}, where their internal inputs and outputs are partitioned
as (3.3.9)-(3.3.10). Assume that for Σipi , pi ∈ {1, . . . ,mi}, i ∈ {1, . . . , N}, there ex-
ist CPBC Bipi as defined in Definition 4.5.1 with functions αipi , κipi ∈ K∞, ρintipi ∈
K∞ ∪ {0}, and constants γipi , λipi , ψipi ∈ R≥0. One can define the interconnected ct-

SHS-MS similar to Definition 3.3.6 with f̂ :=
∏N
i=1 f̂i, σ̂ := blkdiag(σ̂1(x1), . . . , σ̂N (xN )),

and ρ̂ := blkdiag(ρ̂1(x1), . . . , ρ̂N (xN )). In order to establish the main compositionality
result of the section, we raise the following sum-type small-gain assumption for ct-SHS-
MS.

Assumption 4.5.7. Assume that for any i, j ∈ {1, · · · , N}, i 6= j, there exist K∞
functions γ̂i and constants λ̂ipi ∈ R>0 and δ̂ijpj ∈ R≥0 such that for any s ∈ R≥0 :

κipi(s) ≥ λ̂ipi γ̂i(s), (4.5.9)

hji ≡ 0 =⇒ δ̂ijpj = 0,

hji 6≡ 0 =⇒ ρintipi
((N − 1)α−1

jpj
(s)) ≤ δ̂ijpj γ̂j(s), (4.5.10)

where αjpj , κipi, and ρintipi
, represent the corresponding K∞ functions related to Bipi

appearing in Definition 4.5.1.

Before presenting the main compositionality theorem, we define Λ := diag(λ̂1, . . . , λ̂N )
with λ̂i = minpi∈Pi{λ̂ipi}, ∆ := {δ̂ij} with δ̂ij = maxpi∈Pi{δijpi} and δ̂ii = 0, ∀i ∈
{1, · · · , N}, and Γ(s) := [γ̂1(s1); . . . ; γ̂N (sN )], where s = [s1; . . . ; sN ]. In the next the-
orem, we leverage small-gain Assumption 4.5.7 to compositionally compute a control
barrier certificate for the interconnected ct-SHS-MS.

Theorem 4.5.8. Consider an interconnected ct-SHS-MS Σ = I(Σ1, . . . ,ΣN ) induced
by N ∈ N≥1 stochastic hybrid subsystems Σi=(Xi, Ui,Wi,Ui,Wi, Pi,Pi, f̂i, σ̂i, ρ̂i, Yi, hi).
Suppose that each mode Σipi admits a CPBC Bipi as defined in Definition 4.5.1 with
initial and unsafe sets X0i and Xui, respectively. If Assumption 4.5.7 holds and there
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exists a vector µ with µi > 0, i ∈ {1, . . . , N}, such that

µ>(−Λ + ∆) < 0, (4.5.11)

N∑
i=1

µi min
pi∈Pi
{λipi} >

N∑
i=1

µi max
pi∈Pi
{γipi}, (4.5.12)

then

B(x, p) :=

N∑
i=1

µiBipi(xi), (4.5.13)

with p = [p1; . . . ; pN ], pi ∈ {1, . . . ,mi}, is a CBC for the interconnected system Σ =
I(Σ1, . . . ,ΣN ) with initial and unsafe sets X0 :=

∏N
i=1X0i, Xu :=

∏N
i=1Xui, respec-

tively.

Proof. We first show that conditions (4.5.5) and (4.5.6) in Definition 4.5.2 hold. For
any x := [x1; . . . ;xN ] ∈ X0 =

∏N
i=1X0i and from (4.5.2)

B(x, p) =

N∑
i=1

µiBipi(xi) ≤
N∑
i=1

µiγipi ≤
N∑
i=1

µi max
pi∈Pi
{γipi} = γ,

and similarly for any x := [x1; . . . ;xN ] ∈ Xu =
∏N
i=1Xui and from (4.5.3)

B(x, p) =

N∑
i=1

µiBipi(xi) ≥
N∑
i=1

µiλipi ≥
N∑
i=1

µi min
pi∈Pi
{λipi} = λ,

satisfying conditions (4.5.5) and (4.5.6) with γ =
∑N

i=1 µi maxpi∈Pi{γipi} and λ =∑N
i=1 µi minpi∈Pi{λipi}. Note that λ > γ according to (4.5.12). Now, we show that

condition (4.5.7) holds, as well. We first compute
∑M

p′=1 λ̃pp′(x)B(x, p′) in (4.5.7) based
on transition rates of subsystems. To do so, we first compute it for two subsystems with
three modes and then extend it to the general case of N subsystems with M modes.
Consider two subsystems Σ1,Σ2 with 3 independent modes, i.e., m1 = 3,m2 = 3. The
generator matrix [ASSB00] of Σ1,Σ2 are constructed as

Q̃Σ1 =

−λ̃121 − λ̃131 λ̃121 λ̃131

λ̃211 −λ̃211 − λ̃231 λ̃231

λ̃311 λ̃321 −λ̃311 − λ̃321

,
Q̃Σ2 =

−λ̃122 − λ̃132 λ̃122 λ̃132

λ̃212 −λ̃212 − λ̃232 λ̃232

λ̃312 λ̃322 −λ̃312 − λ̃322

.
Now we construct the generator matrix for the interconnected system Σ = I(Σ1,Σ2)
via Table 4.1, in which the first and second elements of the pair (·, ·) are corresponding
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Table 4.1: Generator matrix of the interconnected system Σ = I(Σ1,Σ2).

Q̃I(Σ1,Σ2) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

(1, 1) * λ̃122
λ̃132

λ̃121
0 0 λ̃131

0 0

(1, 2) λ̃212
* λ̃232

0 λ̃121
0 0 λ̃131

0

(1, 3) λ̃312 λ̃322 * 0 0 λ̃121 0 0 λ̃131

(2, 1) λ̃211 0 0 ∗ λ̃122
λ̃132

λ̃231 0 0

(2, 2) 0 λ̃211
0 λ̃212

∗ λ̃232
0 λ̃231

0

(2, 3) 0 0 λ̃211
λ̃312

λ̃322
* 0 0 λ̃231

(3, 1) λ̃311 0 0 λ̃321 0 0 * λ̃122 λ̃132

(3, 2) 0 λ̃211 0 0 λ̃321 0 λ̃212 ∗ λ̃232

(3, 3) 0 0 λ̃311
0 0 λ̃321

λ̃312
λ̃322

*

to switching modes of the first and second subsystems, respectively. Moreover, diagonal
elements “∗” are the summation of off-diagonals in each row with a negative sign, i.e.,
summation of each row including “∗” should be zero. For each state (pi1 , pj2), we can
jump to (pi′1 , pj′2) with i = i′ or j = j′, i.e., only one of the modes can change [ASSB00].

Then by employing the definition of CBC in (4.5.13) and Table 4.1, one has

9∑
p′=1

λ̃pp′(x)B(x, p′) =
3∑

p′1=1,p′2=1

λ̃p1,p2,p′1,p
′
2
(x)

2∑
i=1

µiBp′i(xi)

=
3∑

p′1=1,p′2=1

λ̃p1,p2,p′1,p
′
2
(x)µ1B1p′1

(x1) +

3∑
p′1=1,p′2=1

λ̃p1,p2,p′1,p
′
2
(x)µ2B2p′2

(x2)

=
3∑

p′1=1

µ1B1p′1
(x1)

λ̃p1p′1︷ ︸︸ ︷
3∑

p′2=1

λ̃p1,p2,p′1,p
′
2
(x) +

3∑
p′2=1

µ2B2p′2
(x2)

λ̃p2p′2︷ ︸︸ ︷
3∑

p′1=1

λ̃p1,p2,p′1,p
′
2
(x)

=

3∑
p′1=1

µ1λ̃p1p′1
B1p′1

(x1) +

3∑
p′2=1

µ2λ̃p2p′2
B2p′2

(x2) =

2∑
i=1

3∑
p′i=1

µiλ̃p′ipi(xi)Bip′i(xi).

One can readily extend the results to N subsystem, each of which has mi modes, and
conclude that

∑M
p′=1 λ̃pp′(x)B(x, p′) =

∑N
i=1

∑mi
p′i=1

µiλ̃pip′i(xi)Bip′i(xi) withM = ΠN
i=1mi.

By applying the following inequality

ρintipi
(s1 + · · ·+ sN−1) ≤

N−1∑
i=1

ρintipi
((N − 1)si),

which is valid for any ρintipi
∈ K∞ ∪ {0}, and any si ∈ R≥0, i ∈ {1, · · · , N}, employ-

ing condition (4.5.1) and Assumption 4.5.7, one can obtain the chain of inequalities in
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(4.5.14). By defining

κ(s) := min
{
− µ>(−Λ + ∆)Γ(B̄(x))

∣∣µ>B̄(x) = s
}
,

ψ :=
N∑
i=1

µi max
pi∈Pi
{ψipi},

where B̄(x) = [B1p1(x1); . . . ;BNpN (xN )], condition (4.5.7) is also satisfied. Then B is a
CBC for Σ, which completes the proof. �

LB(x, p) +
M∑
p′=1

λ̃pp′(x)B(x, p′) = L
N∑
i=1

µiBipi(xi) +
N∑
i=1

mi∑
p′i=1

µiλ̃pip′i(xi)Bip′i(xi)

=
N∑
i=1

µi
(
LBipi(xi)+

mi∑
p′i=1

λ̃pip′i(xi)Bip′i(xi)
)
≤

N∑
i=1

µi
(
− κipi(Bipi(xi))+ρintipi

(‖wi‖2)+ψipi
)

≤
N∑
i=1

µi
(
− κipi(Bipi(xi)) + ρintipi

(

N∑
j=1,i 6=j

‖wij‖2) + ψipi
)

=
N∑
i=1

µi
(
− κipi(Bipi(xi)) + ρintipi

(
N∑

j=1,i 6=j
‖yji‖2) + ψipi

)
≤

N∑
i=1

µi
(
− κipi(Bipi(xi)) +

N∑
j=1,i 6=j

ρintipi
((N − 1)‖yji‖2) + ψipi

)
≤

N∑
i=1

µi
(
− κipi(Bipi(xi)) +

N∑
j=1,i 6=j

ρintipi
((N − 1)‖hj(xj)‖2) + ψipi

)
≤

N∑
i=1

µi
(
− κipi(Bipi(xi)) +

N∑
j=1,i 6=j

ρintipi
((N − 1)α−1

jpj
(Bjpj (xj))) + ψipi

)
≤

N∑
i=1

µi
(
− λ̂ipi γ̂i(Bipi(xi)) +

N∑
j=1,i 6=j

δ̂ijpj γ̂j(Bjpj (xj)) + ψipi
)

= µ>(−Λ + ∆)Γ(B1p1(x1); . . . ;BNpN (xN )) +

N∑
i=1

µiψipi≤−κ(B(x, p)) + ψ. (4.5.14)

Remark 4.5.9. Note that λ̂ipi and δ̂ijpj in Assumption 4.5.7 are used to capture, re-
spectively, the gains of each individual subsystem and its interaction with other subsys-
tems in the interconnection topology, i.e., κipi , ρintipi

. Those λ̂ipi and δ̂ijpj satisfying

conditions (4.5.9)-(4.5.10) are then utilized for the construction of Λ and ∆, and accord-
ingly, establishing the compositionality condition ρspc(Λ

−1∆) < 1. On the downside, the
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small-gain type requirements inherently condition the spectral radius of the interconnec-
tion matrix which, in general, depends on the size of the graph and can be violated as
the number of subsystems grows [DK04], [ZA18, Remark 6.1].

4.5.2 Logic Specifications Expressed as DFA

In this subsection, we deal with a class of specifications expressed by the accepting
language of deterministic finite automata (DFA), as formalized in the following definition.

Definition 4.5.10. A deterministic finite automaton (DFA) is a tuple A = {Q`, q0,Σa, Fa,
t}, where Q` is a finite set of locations, q0 ⊆ Q` is the initial location, Σa is a finite set
(a.k.a., alphabet), Fa ⊆ Q` is a finite set of accepting locations, and t : Q` ×Σa → Q` is
a transition function.

We denote the set of states in the DFA that can be reached from q in the presence
of input symbol σ̃ by t(q, σ̃). A finite word (a.k.a., trace) (σ̃0, σ̃1, . . . , σ̃k−1) ∈ Σk

a is
accepted by the DFA if there exists a finite state run q = (q0, q1, . . . , qk) ∈ Qk+1

` such
that qi+1 = t(qi, σ̃i) for all 0 ≤ i < k and qk ∈ Fa. Accordingly, we denote the set of all
finite words accepted by A, i.e., the language accepted by the DFA A, by L(A). We also
denote the set of all successor states of a state q ∈ Q` by ∆(q). The complement of a
DFA is a DFA by simply interchanging accepting and non-accepting states [BK08].

Here, we study specifications represented by accepting languages of DFA A with sym-
bols defined over a set of atomic propositions AP, i.e., Σa = 2AP . Without loss of
generality, we work here directly with the set of atomic propositions AP instead of its
power set 2AP , i.e., Σa = AP. We are interested in LTL specifications in finite time
horizons, in which the logic operators used in the definition of LTL will also come with
a bound on the time horizon (cf. the case study).

We now define how solution processes of the interconnected ct-SHS-MS Σ over a finite-
time horizon T are related to specifications given by the accepting language of DFA A
via a measurable labeling function L : X → AP.

Definition 4.5.11. Consider an interconnected ct-SHS-MS Σ = (X,U,U , P,P, f̂ , σ̂, ρ̂)
and a specification expressed by DFA A = {Q`, q0,Σa, Fa, t}. Let L : X → AP be a
measurable labeling function. A finite sequence σ̃ξ = (σ̃0, σ̃1, . . . , σ̃k−1) ∈ APk is a finite
trace of the solution process ξa% under its corresponding control policy over a finite time
horizon [0, T ] ⊆ R≥0 if there exists an associated time sequence t0, t1, . . . , tk−1 such that
t0 = 0, tk = T , and for all j ∈ (0, 1, . . . , k − 1), tj ∈ R≥0 the following conditions hold:

• tj < tj+1

• ξ(tj) ∈ L−1(σ̃j)

• If σ̃j 6= σ̃j+1, then for some t′j ∈ [tj , tj+1],

ξ(t) ∈

{
L−1(σ̃j), ∀t ∈ (tj , t

′
j),

L−1(σ̃j+1), ∀t ∈ (t′j , tj+1).
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In other words,

ξ(t′j) ∈ L−1(σ̃j) or L−1(σ̃j+1).

We now define the probability of satisfaction under which the solution processes of
the interconnected system Σ over a finite time horizon T fulfill a specification expressed
by DFA A.

Definition 4.5.12. Consider an interconnected ct-SHS-MS Σ = (X,U,U , P,P, f̂ , σ̂, ρ̂),
a specification given by the accepting language of DFA A = {Q`, q0,Σa, Fa, t}, and a
labeling function L : X → AP. Then, Px0

% {σ̃ξ |= A} denotes the probability that solution
processes ξa% under the control policy % with initial condition ξ(0) = x0 satisfy the
specification expressed by A over the finite time horizon T .

Remark 4.5.13. Note that the set of atomic propositions AP = {p̄0, p̄1, . . . , p̄z} and the
labeling function L : X → AP provide a measurable partition of the state set X = ∪zi=1Xi

as Xi := L−1(p̄i). Without loss of generality, we assume that Xi 6= ∅ for any i, since all
the atomic propositions p̄i with L−1(p̄i) = ∅ can be replaced by (¬true) without affecting
the probability of satisfaction.

Now we state the main problem that we aim to address in this subsection.

Problem 4.5.14. Consider an interconnected ct-SHS-MS Σ, a specification expressed
by the accepting language of DFA A and a labeling function L. Compute a control
policy % such that Px0

% {σ̃ξ |= A} ≥ 1− δ̄, for all x0 ∈ X0.

To find a solution to Problem 4.5.14, we compute a control policy that guarantees
Px0
% {σ̃ξ |= Ac} ≤ δ̄ for all x0 ∈ L−1(p̄i) and some i ∈ {1, 2, . . . , z}, where Ac =
{Q`, q0,Σa, F̄a, t} is a DFA which is the complement of DFA A with F̄a = Q`\Fa. Then
the lower bound 1 − δ̄ can be obviously achieved with the same control policy. Here,
we propose our solution to Problem 4.5.14 by providing a method to decompose the
complement of given specification into simple reachability problems. The main target
now is to find a suitable CBC as in Definition 4.5.2 together with a controller for the
interconnected ct-SHS-MS for simple reachability tasks. Since finding a CBC for large-
scale complex systems can be computationally intractable, we first search for CPBC and
the controller for each subsystem and then leverage compositionality results of Theo-
rem 4.5.8 to acquire the overall CBC and the controller for the given interconnected
system for each reachability task. We eventually combine the probabilities of different
reachability problems in order to acquire an overall lower bound on the probability under
which solution processes of the system satisfy the overall specification.

4.5.2.1 Sequential Reachability Decomposition

Here, we describe sequential reachability decomposition using which a complex speci-
fication expressed by DFA can be decomposed into simple reachability tasks. We fol-
low a similar approach as the one proposed in [JSZ20, Section 4] but for networks of
continuous-time stochastic systems.
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For a DFA A representing the property of interest, we first construct a complement
DFA Ac, whose language contains all finite words not included in L(A). We then specify
all accepting state runs ofAc and denote the set of all finite accepting state runs excluding
self-loops by R. The accepting state runs are then partitioned to sets of sequential state
runs of length 3, where each of them describes a reachability task.

Let |q| = k + 1 be the length of the accepting state run and R be the set of all finite
accepting state runs excluding self-loops, where

R := {q = (q0, q1, . . . , qk) ∈ Qk+1
`

∣∣qk ∈ F̄a, qi 6= qi+1,∀i < k}.

Note that computation of R can be efficiently performed by considering the DFA Ac
as a directed graph D = (V̄, E), where V̄ = Q` and E ⊆ V̄ × V̄ are vertices and edges,
respectively, such that (q, q′) ∈ E if and only if q′ 6= q and there exists p̄ ∈ AP such that
t(q, p̄) = q′. For any (q, q′) ∈ E , the atomic proposition corresponding to the edge (q, q′)
is denoted by σ̃(q, q′). It can be readily verified that a finite path starting at a vertex
q0 and terminating at a vertex that qk ∈ F̄a is an accepting state run q of Ac without
any self-loop belonging to R. Then one can readily compute R by employing available
algorithms for the graph theory such as variants of depth first search algorithm [RN02].

For each p̄ ∈ AP, we define a set Rp̄ as

Rp̄ := {q = (q0, q1, . . . , qk) ∈ R | σ̃(q0, q1) = p̄ ∈ AP}.

We now utilize the definition of P p̄(q)

P p̄(q) := {(qi, qi+1, qi+2)
∣∣ 0 ≤ i ≤ k − 2},

which is the set of state runs of length 3, to characterize our problem as a multiple of
reachability problems. We accordingly denote the set of all reachability elements arising
from different accepting state run sequences by P(Ac) =

⋃
p̄∈AP

⋃
q∈Rp̄ P p̄(q). Compu-

tation of CBC is performed for each individual reachability problem that is obtained
from the elements of P(Ac).

To give the reader more insight on the sequential reachability decomposition, we
present the following running example.

Running Example. Consider the DFAAc in Figure 4.9 in whichAP = {p̄0, p̄1, p̄2, p̄3}
and F̄a = {q3}. The set of accepting state runs without self-loops is presented as

R = {(q0, q1, q2, q3), (q0, q1, q5, q3), (q0, q4, q5, q3), (q0, q4, q3), (q0, q3)}.

The sets R for each p̄ ∈ AP are denoted by Rp̄ and defined as follows:

Rp̄0 = {(q0, q1, q2, q3), (q0, q1, q5, q3)}, Rp̄1 = {(q0, q3)},
Rp̄2 = {(q0, q4, q5, q3), (q0, q4, q3)}, Rp̄3 = {(q0, q3)}.
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q0

q4 q5

q1 q2

q3

p̄2

p̄0

p̄1 ∨ p̄3

p̄0

p̄1

p̄2

p̄1

p̄2

¬p̄0 ∧ ¬p̄3 ¬p̄1

¬p̄2p̄0 ∨ p̄3

p̄3

Figure 4.9: DFA Ac in the running example.

To decompose our complex specification into sequential reachabilities, we consider any
q ∈ Rp̄ and then define P p̄(q) as a set of all state runs of length 3 as

P p̄0(q0, q1, q2, q3) = {(q0, q1, q2), (q1, q2, q3)},
P p̄0(q0, q1, q5, q3) = {(q0, q1, q5), (q1, q5, q3)},
P p̄2(q0, q4, q5, q3) = {(q0, q4, q5), (q4, q5, q3)},
P p̄2(q0, q4, q3) = {(q0, q4, q3)},
P p̄1(q0, q3) = P p̄3(q0, q3) = ∅.

For every q ∈ Rp̄, the corresponding finite words σ̃(q) are given by

σ̃(q0, q3) = {(p̄1 ∨ p̄3)}, σ̃(q0, q4, q3) = {(p̄2, p̄3)},
σ̃(q0, q1, q2, q3) = {(p̄0, p̄1, p̄2)},
σ̃(q0, q1, q5, q3) = {(p̄0, p̄2, p̄1)},
σ̃(q0, q4, q5, q3) = {(p̄2, p̄0, p̄1)}.

�
The following lemma, as a consequence of Theorem 4.5.4, provides the construction of

CBC and its corresponding controller from the elements of P p̄(q) constructed from the
DFA Ac.

Lemma 4.5.15. Consider (q, q′, q′′) ∈ P p̄(q) for every p̄ ∈ AP and q ∈ Rp̄. The
probability that the solution process of ct-SHS-MS Σ starting from any initial state a ∈
X0 = L−1(σ̃(q, q′)) under the control policy % reaches Xu = L−1(σ̃(q′, q′′)) in a finite time
horizon T is upper-bounded by δ̄ as in (4.5.8), provided that there exists a CBC and a
control policy % such that conditions (4.5.5)-(4.5.7) hold.
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(q0,∆(q0))

(q0, q1,∆(q1))

q3

p̄2 p̄0

p̄2p̄0

p̄1

¬p̄0 ∧ ¬p̄3

¬p̄1

p̄0 ∨ p̄3

¬p̄1

(q1, q5,∆(q5))(q4, q5,∆(q5))

(q0, q4,∆(q4)) (q1, q2,∆(q2))

¬p̄2

p̄3

p̄2

p̄1

p̄1

Figure 4.10: DFA As describing switching mechanism.

4.5.2.2 Control Policy

In this subsection, we follow a similar approach as the one proposed in [JSZ20, Section
5.1] by combining controllers for reachability tasks to compute a hybrid controller en-
forcing the overall property. In our proposed controller synthesis scheme, one needs to
compute a CBC and a suitable controller for each element of P(Ac).

Consider the DFA Ac presented in Figure 4.9. The elements (q0, q1, q2) and (q0, q1, q5)
compose two individual reachability problems: one for reaching the region L−1(p̄1) and
the other one for reaching the region L−1(p̄2) both from the same region L−1(p̄0). Since
there may exist two outgoing transitions from a state of the automaton, one should deal
with two different controllers available which may cause ambiguity while applying them
in the closed loop. To tackle this problem, we combine the two reachability problems
into one by replacing Xu in Lemma 4.5.15 with the union of regions corresponding to
the alphabets presenting all the outgoing edges. This technique leads to a common CBC
and the corresponding controller for different reachability elements in the same partition
set. In order to interpret a switching control policy, we first define a DFA As, which
includes the switching mechanism. We partition P(Ac) and combine the reachability
elements with the same CBC and control policy as follows:

γ̄(q,q′,∆(q′)):={(q, q′, q′′)∈P(Ac) | q, q′, q′′∈Q`, q′′∈∆(q′)}.

We denote the corresponding CBC and control policy to each partition set γ̄(q,q′,∆(q′))

by respectively Bγ̄(q,q′,∆(q′))(x) and νγ̄(q,q′,∆(q′)) . In order to interpret a switching control
policy, we first define a DFA As, which includes the switching mechanism as the following
definition.

Definition 4.5.16. Consider the DFA Ac = {Q`, q0,Σa, F̄a, t} with F̄a = Q`\Fa. The
corresponding DFA for switching mechanism is defined as As = {Q`s , q0s ,Σas , Fas , ts}
where Q`s := q0s ∪ {(q, q′,∆(q′)) | q, q′ ∈ Q`\F̄a)} ∪ F̄a is a finite set of locations, q0s :=
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{(q,∆(q)) | q = q0} is a finite set of initial locations, Σas = Σa is a finite set as the
alphabet for switching mechanism, and Fas = F̄a is a finite set of accepting locations.
Moreover, the transition function ts is defined as

• ∀qs = (q,∆(q))) ∈ q0s,

– ts((q,∆(q)), σ̃(q,q′)) = (q, q′,∆(q′)) where q′ ∈ ∆(q),

• ∀qs = (q, q′,∆(q′)) ∈ Q`s\(q0s ∪ F̄a),

– ts((q, q
′,∆(q′)), σ̃(q′,q′′)) = (q′, q′′,∆(q′′)), where q, q′, q′′ ∈ Q`, q′′ ∈ ∆(q′) and

q′′ /∈ F̄a,

– ts((q, q
′,∆(q′)), σ̃(q′,q′′)) = q′′ where q, q′, q′′ ∈ Q`, q′′ ∈ ∆(q′) and q′′ ∈ F̄a.

The switching control policy for Problem 4.5.14 is formally defined as

%(x, qs) = νγ̄q′s
(x), ∀(qs, L(x), q′s) ∈ ts.

Running Example (continued.) The DFA As ={Q`s ,q0s ,Σas , Fas , ts} modeling the
switching mechanism between different control policies of the DFA Ac in Figure 4.9, is
represented in Figure 4.10. �

Now, we propose our solution to compute a lower bound on the probability that the
desired specification is satisfied for Problem 4.5.14.

Theorem 4.5.17. Consider a specification expressed by the accepting language of DFA
A, and the DFA Ac as its complement. For every p̄ ∈ AP, let Rp̄ be the set of all
accepting state runs and P p̄(q) be the set of state runs of length 3. Then the probability
that the solution process of Σ starting from any initial state ξ(0) = x0 ∈ L−1(p̄) under the
corresponding switching control policy satisfying the specification expressed by Ac over
the time horizon [0, T ] ⊆ R≥0 is upper bounded by

Px0
% {σ̃ξ |=Ac}≤

∑
q∈Rp̄

∏
ℵ∈P p̄(q)

{δ̄ℵ
∣∣ℵ = (q, q′, q′′)∈P p̄(q)},

where δ̄ℵ is computed via (4.5.8) and is the upper bound on the probability that solution
processes of Σ starting from X0 := L−1(σ̃(q, q′)) reach Xu := L−1(σ̃(q′, q′′)) within the
time horizon [0, T ] ⊆ R≥0.

Proof. For p̄ ∈ AP, consider an accepting state run Rp̄ and P p̄(q) as the set of state
runs of length 3. For ℵ = (q, q′, q′′) ∈ P p̄(q), one can verify from Lemma 4.5.15 that the
upper bound on the probability that the solution process of Σ starts atX0 = L−1(σ̃(q, q′))
and reaches Xu = L−1(σ̃(q′, q′′)) within the time horizon [0, T ] ⊆ R≥0 under the control
input νℵ is given by δ̄ℵ. Now the upper bound on the probability that the trace of
the solution process reaches the accepting state following the path corresponding to q
is given by the product of the probability bounds corresponding to all elements ℵ =
(q, q′, q′′) ∈ P p̄(q):

P{σ̃(q) |= Ac} ≤
∏

ℵ∈P p̄(q)

{δ̄ℵ
∣∣ℵ = (q, q′, q′′) ∈ P p̄(q)}.
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Now one can conclude that the final upper bound on the probability for the solution
process of Σ starting from any initial state ξ(0) = x0 ∈ L−1(p) to violate the required
specification is essentially the summation of probabilities of all possible accepting state
runs of Ac, i.e.,

Px0
% {σ̃ξ |=Ac}≤

∑
q∈Rp

∏
ℵ∈P p̄(q)

{δ̄ℵ
∣∣ℵ = (q, q′, q′′)∈P p̄(q)}.

�
Now the probability that solution processes of Σ starting from any initial state ξ(0) =

x0 ∈ L−1(p̄) under the the same switching controller satisfy the specification represented
by the language of DFA A is lower bounded by

Px0
% {σ̃ξ |=A}≥1−

∑
q∈Rp̄

∏
ℵ∈P p̄(q)

{δ̄ℵ
∣∣ℵ=(q, q′, q′′)∈P p̄(q)}.

In the next subsection, we provide systematic methods to compute a CPBC and the
corresponding controller for each subsystem.

4.5.3 Computation of CPBC and its Controller

One can utilize Lemma 4.2.14 to reformulate the proposed conditions in Definition 4.5.1
as an SOS optimization problem and provide a systematic approach for computing CPBC
and corresponding control policies for subsystems Σp. Here, we propose another ap-
proach for the computation of CPBC based on counter-example guided inductive syn-
thesis (CEGIS) by employing Satisfiability Modulo Theories (SMT) solvers such as Z3
[DMB08], dReal [GAC12] or MathSat [CGSS13]. In order to present this framework, we
require the following assumption.

Assumption 4.5.18. Each Σp has a compact state set X, a compact internal input set
W and a finite external input set U . Partition sets Xi = L−1(p̄i), ∀i ∈ {0, 1, . . . , z}, are
bounded semi-algebraic sets.

Remark 4.5.19. The assumption of compactness of the state space X ⊆ Rn can be
supported by considering stopped process ξ̃ : Ω× R≥0 → X as

ξ̃(t) =

{
ξ(t), for t < τ,

ξ(τ), for t ≥ τ,

where τ is the first time that the solution process ξ of the subsystem exits from the open
set Int(X). Note that in most cases, the infinitesimal generator corresponding to ξ̃ is
identical to the one corresponding to ξ over the set Int(X), and is equal to zero outside
the set [Kus67]. Hence, the results in Theorem 4.5.4 can be employed for any systems
with this assumption.

Now we leverage Assumption 4.5.18 and reformulate conditions (4.5.1)-(4.5.4) as a
satisfiability problem as the following lemma.
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Lemma 4.5.20. Consider a ct-SHS-MS Σ = (X,U,W,U ,W, P,P, f̂ , σ̂, ρ̂, Y, h), fulfilling
Assumption 4.5.18. Suppose there exists a function Bp(x), constants γp, λp, ψp ∈ R≥0,
and functions αp, κp ∈ K∞, ρintp ∈ K∞ ∪ {0}, such that the following expression is true:∧

x∈X
Bp(x) ≥ αp(‖h(x)‖2)

∧
x∈X0

Bp(x) ≤ γp
∧
x∈Xu

Bp(x) ≥ λp

∧
x∈X

(
∨
ν∈U

(
∧
w∈W
LBp(x) +

m̄∑
p′=1

λ̃pp′(x)Bp′(x) ≤ −κp(Bp(x)) + ρintp(‖w‖2)+ψp)).

Then Bp(x) satisfies conditions (4.5.1)-(4.5.4) in Definition 4.5.1, and accordingly, it is
a CPBC.

4.5.4 Case Study

To show the applicability of our approach to strongly-connected networks with nonlin-
ear dynamics against complex logic properties, we apply our proposed techniques to a
fully-interconnected Kuramoto network of 100 nonlinear oscillators by compositionally
synthesizing hybrid controllers regulating the phase of each oscillator in a comfort zone
for a bounded time horizon. Kuramoto oscillator has broad applications in real-life sys-
tems such as neural networks, smart grids, automated vehicle coordination, and so on.
The model of this case study is adapted from [SA15] by including stochasticity in the
model. The dynamic for the interconnection of N-oscillators is presented as

Σ : dθ(t) = (Ωp(t) +
K

N
ϕ(θ(t)) + ν(t))dt+Gp(t)dWt+Rp(t)dPt, (4.5.15)

where θ = [θ1; . . . ; θN ] is the phase of oscillators with θi ∈ [0, 2π], i = {1, . . . , 100}, Ω=

[Ω1; . . . ; ΩN ] = Ω̄pi1N is the natural frequency of oscillators with Ω̄pi =

{
0.1, if pi=1,
0.12, if pi=2,

K = 0.001 is the coupling strength, ϕ(θ) = [ϕ(θ1); . . . ;ϕ(θN )] such that ϕ(θi) =
ΣN
j=1sin(θj − θi), i ∈ {1, . . . , 100}. Moreover, ν(t) = [ν1(t); . . . ; νN (t)], G = ḠpiIn with

Ḡpi =

{
0.1, if pi = 1,
0.12, if pi = 2,

andR = R̄piIn with R̄pi =

{
0.1, if pi = 1,
0.12, if pi = 2.

We consider

rates of Poisson processes as λ̄i = 0.1, ∀i ∈ {1, . . . , 100}. Now by introducing subsystems
Σi, i ∈ {1, . . . , 100}, described by

Σi:

{
dθi(t)=(Ω̄ipi(t)+K

N

∑N
j=1,i 6=jsin(wij(t)−θi(t))+νipi(t))dt+ ḠipidWti + R̄ipidPti ,

ζi(t) = θi(t),

one can readily verify that Σ = I(Σ1, . . . ,ΣN ) where wij(t) = θj(t).
Transition rates for switching between two modes P = {1, 2} are given as λ̃11i =
−0.9, λ̃12i = 0.9, λ̃21i = 0.8, λ̃22i = −0.8, ∀i ∈ {1, . . . , 100}. In addition, the regions of
interest are X0 = [0, π16 ]N , X1 = [5.8π

12 ,
6.2π
12 ]N , X2 = [5.7π

6 , π]N , X3 = [π, 6.2π
6 ]N , X4 =

[17.8π
12 , 18.2π

12 ]N , X5 = [11.8π
6 , 2π]N and X6 = X\(X0 ∪X1 ∪X2 ∪X3 ∪X4 ∪X5). Each of

these regions is associated with atomic propositions given byAP = {p̄0, p̄1, p̄2, p̄3, p̄4, p̄5, p̄6}
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q0

q1

q3

q2

p̄1
p̄0 ∨ p̄2

¬(p̄1 ∨ p̄4)

p̄4 p̄3 ∨ p̄5

¬(p̄0 ∨ p̄2)

¬(p̄3 ∨ p̄5)

Figure 4.11: DFA Ac of the complement of specification.

such that the labeling function L(xz) = p̄z, ∀xz ∈ Xz, z = {0, . . . , 6}. The objective is
to compute a controller such that if the state of the system starts from X1, it always
stays away from X0 and X2, and if it starts from X4, it always stays away from X3

and X5 within the time horizon [0, T ]. Such a specification can be represented as an
LTL specification given by (p̄1 ∧�¬(p̄0 ∨ p̄2)) ∨ (p̄4 ∧�¬(p̄3 ∨ p̄5)) associated with time
horizon T = 5. The specification can also be represented by accepting language L(A)
of a DFA A. Fig. 4.11 represents the complement DFA Ac.

We decompose the complement of our specification into simple reachability tasks. We
consider accepting state runs without self-loops with T = 5. The DFA Ac has three
such accepting state runs R = {(q0, q3), (q0, q1, q3), (q0, q2, q3)}. The sets P p̄(q) can be
obtained for each of these accepting state runs as P p̄1(q0, q1, q3) = {(q0, q1, q3)}, and
P p̄4(q0, q2, q3) = {(q0, q2, q3)}. Note that since (q0, q3) is a state run of a length 2 and
admits the trivial probability, it is not considered. Accordingly, we need to find control
policies and control barrier certificates for only two reachability elements. To do so,
we utilize the SOS algorithm proposed in Lemma 4.2.14 by employing SOSTOOLS and
SDP solver SeDuMi. Note that since the dynamics of the system Σ in (4.5.15) are
non-polynomial and SOS algorithm is only specialized for polynomial dynamics, we first
make an approximation to our dynamics. In particular, we take an upper bound on the
term LBipi(θi) by replacing the sin(·) terms with either 1 or −1.

For the reachability element (q0, q1, q3) with X0i = [5.8π
12 ,

6.2π
12 ] and Xui = [0, π16 ] ∪

[5.7π
6 , π], i ∈ {1, . . . , 100}, we compute CPBC of an order 6 as Bipi(θi) = 85θ6

i − 310θ5
i +

8.9θ4
i − 36θ3

i + 4791θ2
i − 1038θi + 6245 and the corresponding switching controller νipi =

−5356θi+7000 for pi = 1, and Bipi(θi) = 84θ6
i −308θ5

i +2.8θ4
i −9.5θ3

i +4756θ2
i −1040θi+

6286 together with νipi = −4229θi + 5000 for pi = 2, ∀i ∈ {1, . . . , 100}. Moreover, the
corresponding constants and functions in Definition 4.5.1 satisfying conditions (4.5.1)-
(4.5.4) are quantified as γipi = 3, λipi = 4300, ψipi = 50, κipi(s) = 5 × 10−5s, αipi(s) =
0.8
√
s, ρintipi(s) = 4 × 10−7√s, ∀s ∈ R≥0 for pi = 1; and γipi = 3.2, λipi = 4400, ψipi =

52, κipi(s) = 53 × 10−6s, αipi(s) = 0.85
√
s, ρintipi(s) = 4.2 × 10−7√s, ∀s ∈ R≥0 for pi =

2,∀i ∈ {1, . . . , 100}. We now proceed with Theorem 4.5.8 to construct a CBC for the
interconnected system using CPBC of subsystems. One can readily verify that the
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small-gain Assumption 4.5.7 holds with γ̂i(s) = s, ∀s ∈ R≥0, λ̂i = minpi∈Pi{λ̂ipi} =

5 × 10−5, δ̂ij = maxpi∈Pi{δijpi} = 5 × 10−7. By selecting µi = 1, ∀i ∈ {1, . . . , 100},
the spectral radius of Λ−1∆ is computed as 0.99 which is strictly less that one (cf.
Remark 4.2.11), and consequently the compositionality condition (4.5.11) is satisfied.
Moreover, the compositionality condition (4.5.12) is also met since minpi∈Pi{λipi} >
maxpi∈Pi{γipi}, ∀i ∈ {1, . . . , 100}. Then by employing the results of Theorem 4.5.8, one
can conclude that B(θ, p) :=

∑100
i=1 Bipi(θi) is a CBC for the interconnected system Σ

with γ =
∑100

i=1 maxpi∈Pi{γipi} = 320, λ =
∑100

i=1 minpi∈Pi{λipi} = 43 × 104, κ(s) = 5 ×
10−7s, ∀s ∈ R≥0, and ψ =

∑100
i=1 maxpi∈Pi{ψipi} = 5200. By employing Theorem 4.5.4,

one can guarantee that the state of the interconnected system Σ starts from the initial
set X0 = X1 and never reaches Xu = X0 ∪X2 during the time horizon T = 5 with the
probability of at least 94%, i.e.,

Px0
% {σ̃ξ |= A} ≥ 0.94. (4.5.16)

Similarly, for the reachability element (q0, q2, q3) with X0i = [17.8π
12 , 18.2π

12 ] and Xui =
[π, 6.2π

6 ] ∪ [11.8π
6 , 2π], i ∈ {1, . . . , 100}, we compute CPBC of an order 6 as Bipi(θi) =

0.2θ6
i − 0.028θ5

i + 6.7θ4
i − 1.1θ3

i + 20θ2
i − 6365θi + 24559 and the corresponding hy-

brid controller νipi = −1733θi + 6900 for pi = 1, and Bipi(θi) = 0.11θ6
i − 0.038θ5

i +
8.7θ4

i − 5.5θ3
i + 21θ2

i − 5801θi + 22215 together with νipi = −1678θi + 21870 for pi =
2,∀i ∈ {1, . . . , 100}. Moreover, the corresponding constants and functions in Defi-
nition 4.5.1 satisfying conditions (4.5.1)-(4.5.4) are synthesized as γipi = 300, λipi =
5000, ψipi = 64, κipi(s) = 5 × 10−5s, αipi(s) = 0.8

√
s, ρintipi(s) = 4 × 10−7√s, ∀s ∈ R≥0

for pi = 1; and γipi = 340, λipi = 4500, ψipi = 66, κipi(s) = 51 × 10−6s, αipi(s) =
0.82
√
s, ρintipi(s) = 4.1 × 10−7√s, ∀s ∈ R≥0 for pi = 2,∀i ∈ {1, . . . , 100}. We now

proceed with Theorem 4.5.8 to construct a CBC for the interconnected system using
CPBC of subsystems. One can readily verify that the small-gain Assumption 4.5.7 holds
with γ̂i(s) = s, ∀s ∈ R≥0, λ̂i = minpi∈Pi{λ̂ipi} = 5 × 10−5, δ̂ij = maxpi∈Pi{δijpi} =
5 × 10−7. By selecting µi = 1, ∀i ∈ {1, . . . , 100}, the spectral radius of Λ−1∆ is com-
puted as 0.99 which is strictly less that one, and consequently the compositionality con-
dition (4.5.11) is satisfied. Moreover, the compositionality condition (4.5.12) is also met
since minpi∈Pi{λipi} > maxpi∈Pi{γipi},∀i ∈ {1, . . . , 100}. Then by employing the results
of Theorem 4.5.8, one can conclude that B(θ, p) :=

∑100
i=1 Bipi(θi) is a CBC for the inter-

connected system Σ with γ =
∑100

i=1 maxpi∈Pi{γipi} = 34000, λ =
∑100

i=1 minpi∈Pi{λipi} =
45 × 104, κ(s) = 5 × 10−7s, ∀s ∈ R≥0, and ψ =

∑100
i=1 maxpi∈Pi{ψipi} = 6400. By em-

ploying Theorem 4.5.4, one can guarantee that the state of the interconnected system
Σ starts from the initial set X0 = X4 and never reaches Xu = X3 ∪X5 during the time
horizon T = 5 with the probability of at least 86%, i.e.,

Px0
% {σ̃ξ |= A} ≥ 0.86. (4.5.17)

The switching mechanism for controllers is shown in Figure 4.12. Closed-loop state
trajectories of a representative oscillator with 10 different noise realizations starting from
initial regions X1 and X4 are illustrated in Figure 4.13. The required computation time
and memory usage for computing the CPBC and its corresponding controller for the
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p̄1 p̄4

p̄0 ∨ p̄2 p̄3 ∨ p̄5

¬(p̄0 ∨ p̄2) ¬(p̄3 ∨ p̄5)

q3

(q0, q2,∆(q2)

(q0,∆(q0)

(q0, q1,∆(q1)

Figure 4.12: Switching mechanism for controllers.

Figure 4.13: Closed-loop state trajectories of a representative oscillator with 10 different noise
realizations in a network of 100 oscillators with initial state starting from (left)
Region X1, and (right) Region X4. Changed colours in each trajectory show that
the mode is switched to the other one.

reachability element (q0, q1, q3) are respectively 1.8 minutes and 23 MB, and for the
reachability element (q0, q2, q3) are respectively 1.7 minutes and 21 MB on a machine
with Windows operating system (Intel i7@3.6GHz CPU and 16 GB of RAM). Note
that if one employs our designed controllers and run Monte Carlo simulations on top
of the closed-loop system, the empirical probabilities are much better than the ones we
proposed in (4.5.16), (4.5.17). However, this issue is expected and the reason is due to
the conservatism nature of using polynomial barrier certificates with a fix degree, but
with the gain of providing a formal lower bound on the probability of satisfaction for
safety specification rather than an empirical one.

4.6 Compositional Construction of Control Barrier Certificates
for dt-SS with Dwell-time Conditions

In this section, we propose a compositional framework for the construction of control
barrier certificates for discrete-time stochastic switched systems accepting multiple con-
trol barrier certificates with some dwell-time conditions as in Definition 2.6.1. Switching
signals here are control inputs and the main goal is to synthesize them with a specific
dwell-time such that outputs of original systems satisfy some high-level specifications
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such as safety, reachability, etc. To do so, we first provide an augmented framework for
presenting each switched subsystem with several modes with a single system covering
all modes (called augmented switched systems) whose output trajectories are exactly
the same as those of original switched systems. We then compositionally construct
augmented control barrier certificates for interconnected augmented systems based on
so-called augmented pseudo-barrier certificates of subsystems by leveraging some max-
type small-gain conditions. Given the constructed augmented barrier certificates, we
quantify upper bounds on the probability that interconnected systems reach certain
unsafe regions in a finite time horizon.

4.6.1 Augmented Stochastic Switched Systems

Here, given a dt-SS Σ, we introduce a notion of augmented dt-SS as in the next definition.
Note that this notion is adapted from the definition of labeled transition systems defined
in [BK08] and modified to capture the stochastic nature of the system. This provides an
alternative description of switched systems enabling us to represent a switched system
with a finite set of modes via an augmented system covering the whole modes.

Definition 4.6.1. Given a dt-SS Σ = (X,P,P,W, ς, F, Y, h), we define the associated
augmented dt-SS A(Σ) = (X,P,W, ς,F,Y,H), where:

• X = X × P × {0, . . . , kd − 1} is the set of states. A state (x, p, l) ∈ X means that
the current state of Σ is x, the current value of the switching signal is p, and the
time elapsed since the latest switching time instant upper bounded by kd is l;

• P = P is the set of external inputs;

• W = W is the set of internal inputs;

• ς is a sequence of i.i.d. random variables;

• F : X × P ×W × Vς → X is the one-step transition function given by (x′, p′, l′) =
F ((x, p, l), p, w, ς) if and only if x′ = fp(x,w, ς) and the following scenarios hold:

– l < kd − 1, p′ = p, and l′ = l + 1: switching is not allowed because the time
elapsed since the latest switch is strictly smaller than the dwell-time;

– l = kd − 1, p′ = p, and l′ = kd − 1: switching is allowed but no switch occurs;

– l = kd − 1, p′ 6= p, and l′ = 0: switching is allowed and a switch occurs;

• Y = Y is the output set;

• H : X→ Y is the output map defined as H (x, p, l) = h(x).

We associate to P and W, respectively, the sets P and W to be collections of sequences
{p(k) : Ω → P, k ∈ N} and {w(k) : Ω → W, k ∈ N}, in which p(k) and w(k) are
independent of ς(z) for any k, z ∈ N and z ≥ k. We also denote initial conditions of p
and l by p0 and l0 = 0.
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Remark 4.6.2. Note that in the augmented dt-SS A(Σ) in Definition 4.6.1, we added
two additional variables p and l to the state tuple of the system Σ, in which l is a counter
that depending on its value allows or prevents the system from switching, and p acts as
a memory to record the latest mode.

Proposition 4.6.3. The output trajectory of the augmented dt-SS A(Σ) in Defini-
tion 4.6.1 can be uniquely mapped to an output trajectory of the switched system Σ
defined in (2.6.1), and vice versa.

The proof is similar to that of [LSZ20a, Proposition 2.9] and is omitted here.
In the next subsection, in order to quantify upper bounds on the probability that the

interconnected system reaches a certain unsafe region in a finite time horizon, we first
introduce notions of augmented control pseudo-barrier and barrier certificates for, re-
spectively, augmented dt-SS (with both internal and external signals) and interconnected
augmented dt-SS (without internal signals).

4.6.2 Augmented Control (Pseudo-)Barrier Certificates

Here, we first introduce a notion of augmented control pseudo-barrier certificates for
augmented dt-SS with both internal and external inputs.

Definition 4.6.4. Consider an augmented dt-SS A(Σ) = (X,P,W, ς,F,Y,H), and initial
and unsafe sets X0, Xu ⊆ X for the dt-SS Σ. Let us define X0 = X0×P×{0}, Xu = Xu×
P × {0, . . . , kd − 1}, as initial and unsafe sets of the augmented system, respectively. A
function B : X→ R≥0 is called an augmented control pseudo-barrier certificate (APBC)
for A(Σ) if there exist functions α ∈ K∞, ρint ∈ K∞ ∪ {0}, and constants 0 < κ < 1,
γ, ψ ∈ R≥0 and λ ∈ R>0, such that

B(x, p, l) ≥ α(‖H(x, p, l)‖∞), ∀(x, p, l) ∈ X, (4.6.1)

B(x, p, l) ≤ γ, ∀(x, p, l) ∈ X0, (4.6.2)

B(x, p, l) ≥ λ, ∀(x, p, l) ∈ Xu, (4.6.3)

and ∀(x, p, l) ∈ X, ∃p′ ∈ P, such that ∀w ∈ W, one has (x′, p′, l′) = F ((x, p, l), p, w, ς),
and

E
[
B((x′, p′, l′))

∣∣x, p, l, w] ≤ max
{
κB(x, p, l), ρint(‖w‖∞), ψ

}
, (4.6.4)

where the expectation operator E is with respect to ς under the one-step transition of the
augmented dt-SS A(Σ).

Now, we modify the above notion for augmented dt-SS without internal inputs by
eliminating all the terms related to w which will be employed later for providing proba-
bilistic safety certificates over interconnected augmented switched systems.

Definition 4.6.5. Consider an (interconnected) augmented dt-SS A(Σ) = (X,P, ς,F,Y,H)
without internal inputs, with initial and unsafe sets X0, Xu ⊆ X for the dt-SS Σ. Let us
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define sets X0,Xu ⊆ X as, respectively, initial and unsafe sets of the augmented system.
A function B : X → R≥0 is called an augmented control barrier certificate (ABC) for
A(Σ) if

B(x, p, l) ≤ γ, ∀(x, p, l) ∈ X0, (4.6.5)

B(x, p, l) ≥ λ, ∀(x, p, l) ∈ Xu, (4.6.6)

and ∀(x, p, l) ∈ X,∃p′ ∈ P, such that one has (x′, p′, l′) = F ((x, p, l), p, ς), and

E
[
B((x′, p′, l′))

∣∣x, p, l] ≤ max
{
κB(x, p, l), ψ

}
, (4.6.7)

for some constants 0 < κ < 1, γ, ψ ∈ R≥0 and λ ∈ R>0 with γ < λ, where the expectation
operator E is with respect to ς under the one-step transition of the augmented dt-SS A(Σ).

We now employ Definition 4.6.5 and propose an upper bound on the probability that
an (interconnected) augmented dt-SS reaches an unsafe region via the next theorem.

Theorem 4.6.6. Let A(Σ) = (X,P, ς,F,Y,H) be an (interconnected) augmented dt-SS
without internal inputs. Suppose B is an ABC for A(Σ). Then for any random variable
a as the initial state, any initial mode p0, and l0 = 0 as the initial counter, the probability
that the interconnected augmented dt-SS reaches an unsafe set Xu within the time step
k ∈ [0, T ] is upper bounded by

P
{

sup
0≤k≤T

B(x(k), p(k), l(k)) ≥ λ
∣∣ a, p0, l0

}
≤

{
1− (1− γ

λ)(1− ψ
λ )T , if λ ≥ ψ

1−κ ,

(γλ)κT + ( ψ
(1−κ)λ)(1− κT ), if λ < ψ

1−κ .

(4.6.8)

Proof. According to condition (4.6.6), Xu ⊆ {(x, p, l) ∈ X
∣∣ B(x, p, l) ≥ λ}. Then we

have

P
{

(x(k), p(k), l(k)) ∈ Xu for 0 ≤ k ≤ T
∣∣ a, p0, l0

}
≤ P

{
sup

0≤k≤T
B(x(k), p(k), l(k)) ≥ λ

∣∣ a, p0, l0

}
. (4.6.9)

The proposed bounds in (4.6.8) follows directly by applying [Kus67, Theorem 3, Chapter
III] to (4.6.9) (but adapted to stochastic switched systems) and employing respectively
conditions (4.6.7) and (4.6.5). �

4.6.3 Compositional Construction of ABC

Here, we analyze networks of stochastic switched subsystems by driving a max-type
small-gain condition and discuss how to construct an ABC of the augmented dt-SS via
the corresponding APBC of subsystems. Suppose we are given N stochastic switched
subsystems

Σi = (Xi, Pi,Pi,Wi, ςi, Fi, Yi, hi), i ∈ {1, . . . , N},
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where Fi = {f i1, . . . , f imi}, with its equivalent augmented dt-SS A(Σi) = (Xi,Pi,Wi, ςi,Fi,
Yi,Hi), in which their internal inputs and outputs are partitioned as in (3.3.9)-(3.3.10).
We now define a notion of the interconnection for augmented dt-SS A(Σi)=(Xi,Pi,Wi, ςi,
Fi,Yi,Hi).

Definition 4.6.7. Consider N ∈ N≥1 augmented dt-SS A(Σi)=(Xi,Pi,Wi, ςi,Fi,Yi,Hi),
with the input-output configuration as in (3.3.9)-(3.3.10). The interconnection of A(Σi),
∀i ∈ {1, . . . , N}, is the interconnected augmented dt-SS A(Σ) = (X,P, ς,F,Y,H), de-
noted by I(A(Σ1), . . . ,A(ΣN )), such that X :=

∏N
i=1Xi, P :=

∏N
i=1 Pi, Y :=

∏N
i=1Yii,

H =
∏N
i=1Hii, and the map F =

∏N
i=1 Fi is the transition function given by (x′, p′, l′) =

F ((x, p, l), p, ς) if and only if x′ = fp(x,w, ς), where fp =
∏N
i=1 f

i
pi, and the following

scenarios hold for any i ∈ {1, . . . , N}:

• li < kdi − 1, p′i = pi, and l′i = li + 1;

• li = kdi − 1, p′i = pi, and l′i = kdi − 1;

• li = kdi − 1, p′i 6= pi, and l′i = 0;

where x = [x1; . . . ;xN ], p = [p1; . . . ; pN ], l = [l1; . . . ; lN ], ς = [ς1; . . . ; ςN ], and subjected to
the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = yij , Yij ⊆Wji.

Assume for the augmented dt-SS A(Σi) = (Xi,Pi,Wi, ςi,Fi,Yi,Hi), i ∈ {1, . . . , N},
there exists an APBC Bi with the corresponding functions and constants denoted by
αi, ρinti, κi, γi, λi and ψi as in Definition 4.6.4. Now we raise the following max-type
small-gain assumption to establish the main compositionality result of the paper.

Assumption 4.6.8. Assume that K∞ functions κij defined as

κij(s) :=

{
κis, if i = j,

ρinti(α
−1
j (s)), if i 6= j,

satisfy

κi1i2 ◦ κi2i3 ◦ · · · ◦ κir−1ir ◦ κiri1 < Id, (4.6.10)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.

The small-gain condition (4.6.10) implies the existence of K∞ functions σ̄i > 0 [Rüf10,
Theorem 5.5] satisfying condition (3.3.13).

In the next theorem, we show that if Assumption 4.6.8 holds and maxi σ̄
−1
i is concave

(in order to employ Jensen’s inequality), then we can construct an ABC of A(Σ) using
the APBC of A(Σi).
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Theorem 4.6.9. Consider an interconnected augmented dt-SS A(Σ) = (X,P, ς,F,Y,H)
induced by N ∈ N≥1 augmented dt-SS A(Σi). Suppose that each A(Σi) admits an APBC
Bi as defined in Definition 4.6.4. If Assumption 4.6.8 holds and

max
i

{
σ̄−1
i (λi)

}
> max

i

{
σ̄−1
i (γi)

}
, (4.6.11)

then B(x, p, l) defined as

B(x, p, l) := max
i

{
σ̄−1
i (Bi(xi, pi, li))

}
, (4.6.12)

is an ABC for the interconnected augmented dt-SS I(A(Σ1), . . . ,A(ΣN )) provided that
maxi σ̄

−1
i for σ̄i as in (3.3.13) is concave.

Proof. We first show that conditions (4.6.5) and (4.6.6) in Definition 4.6.5 hold. For
any (x, p, l) ∈ X0 =

∏N
i=0X0i and from (4.6.2), we have

B(x, p, l) = max
i

{
σ̄−1
i (Bi(xi, pi, li))

}
≤ max

i

{
σ̄−1
i (γi)

}
= γ,

and similarly for any (x, p, l) ∈ Xu =
∏N
i=1Xui and from (4.6.3), one has

B(x, p, l) = max
i

{
σ̄−1
i (Bi(xi, pi, li))

}
≥ max

i

{
σ̄−1
i (λi)

}
= λ,

satisfying conditions (4.6.5) and (4.6.6) with γ = maxi

{
σ̄−1
i (γi)

}
and λ = maxi

{
σ̄−1
i (λi)

}
.

Now we show that condition (4.6.7) holds, as well. Let κ(s) = maxi,j{σ̄−1
i ◦κij ◦σ̄j(s)}.

It follows from (3.3.13) that κ < Id. Moreover, λ > γ according to (4.6.11). Since
maxi σ̄

−1
i is concave, one can readily acquire the chain of inequalities in (4.6.13) using

Jensen’s inequality, and by defining the constant ψ as

ψ := max
i
σ̄−1
i (ψi).

Hence B(x, p, l) is an ABC for the interconnected augmented dt-SS I(A(Σ1), . . . ,A(ΣN )),
which completes the proof. �

4.6.4 Construction of APBC

Here, we impose conditions on dt-SS Σp enabling us to find an APBC for A(Σ). The
APBC for the augmented dt-SS A(Σ) is established under the assumption that the
given dt-SS Σp has max-type control barrier certificates for all modes as in the following
definition.

Definition 4.6.10. Consider a dt-SS Σp, and sets X0, Xu ⊆ X as initial and unsafe
sets of the given dt-SS, respectively. A function Bp : X → R≥0 is said to be a max-
type control barrier certificate (max-type CBC) for Σp if there exist functions αp ∈ K∞,
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E
[
B(x′, p′, l′)

∣∣x, p, l] = E
[

max
i

{
σ̄−1
i (Bi(x′i, p′i, l′i))

} ∣∣x, p, l]
≤ max

i

{
σ̄−1
i (E

[
Bi(x′i, p′i, l′i)

∣∣x, p, l])} = max
i

{
σ̄−1
i (E

[
Bi(x′i, p′i, l′i)

∣∣xi, pi, li])}
≤ max

i

{
σ̄−1
i (max{κiBi(xi, pi, li), ρinti(‖wi‖∞), ψi})

}
= max

i

{
σ̄−1
i (max{κiBi(xi, pi, li), ρinti(max

j,j 6=i
{‖wij‖∞}), ψi})

}
= max

i

{
σ̄−1
i (max{κiBi(xi, pi, li), ρinti(max

j,j 6=i
{‖yji‖∞}), ψi})

}
≤ max

i

{
σ̄−1
i (max{κiBi(xi, pi, li), ρinti(max

j,j 6=i
{‖Hj(xj , pj , lj)‖∞}), ψi})

}
≤ max

i

{
σ̄−1
i (max{κiBi(xi, pi, li), ρinti(max

j,j 6=i
{α−1

j (Bj(xj , pj , lj))}), ψi})
}

= max
i,j

{
σ̄−1
i (max{κijBj(xj , pj , lj), ψi})

}
= max

i,j

{
σ̄−1
i (max{κij ◦ σ̄j ◦ σ̄−1

j (Bj(xj , pj , lj)), ψi})
}

≤ max
i,j,z

{
σ̄−1
i (max{κij ◦ σj ◦ σ̄−1

z (Bz(xz, pz, lz)), ψi})
}

= max
i,j

{
σ̄−1
i (max{κij ◦ σ̄j(B(x, p, l)), ψi})

}
= max

{
κB(x, p, l), ψ

}
. (4.6.13)

ρintp ∈ K∞ ∪ {0}, and constants 0 < κp < 1, γp, ψp ∈ R≥0 and λp ∈ R>0, such that

Bp(x) ≥ αp(‖h(x)‖∞), ∀x ∈ X, (4.6.14)

Bp(x) ≤ γp, ∀x ∈ X0, (4.6.15)

Bp(x) ≥ λp, ∀x ∈ Xu, (4.6.16)

and ∀x ∈ X, ∀w ∈W , one has

E
[
Bp(x(k + 1))

∣∣x,w] ≤ max
{
κpBp(x), ρintp(‖w‖), ψp

}
. (4.6.17)

In order to construct an APBC for the augmented dt-SS A(Σ), we also need to raise
the following assumption.

Assumption 4.6.11. Suppose there exists µ̃ ≥ 1 such that

∀x ∈ X, ∀p, p′ ∈ P, Bp(x) ≤ µ̃Bp′(x). (4.6.18)

Remark 4.6.12. Assumption 4.6.11 is a standard one in the literature for switched sys-
tems accepting multiple Lyapunov functions with dwell-time similar to the one appeared
in [Lib03, equation (3.6)].
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Under Definition 4.6.10 and Assumption 4.6.11, the next theorem lays the foundations
for constructing an APBC for A(Σ).

Theorem 4.6.13. Let Σ = (X,P,P,W, ς, F, Y, h) be a switched subsystem with its equiv-
alent augmented system A(Σ) = (X,P,W, ς,F,Y,H). Let Bp be a CBC for Σp, ∀p ∈ P , as
in Definition 4.6.10. Assume Assumption 4.6.11 holds, and consider ε > 1. If ∀p ∈ P ,
kd ≥ ε ln(µ̃)

ln(1/κp) + 1, then

B(x, p, l) =
1

κpl/ε
Bp(x), (4.6.19)

is an APBC for A(Σ).

Proof. For any (x, p, l) ∈ X, we get

‖H(x, p, l)‖∞ = ‖h(x)‖∞ ≤ α−1
p (Bp(x)) = α−1

p (κp
l/ε B((x, p, l))).

Since 1

κ
l/ε
p

> 1, one can conclude that condition (4.6.1) holds with α(s) = minp{αp(s)},
∀s ∈ R≥0. Now we show that conditions (4.6.2) and (4.6.3) hold, as well. For any
(x, p, l) ∈ X0, one has

B(x, p, l) =
1

κpl/ε
Bp(x) ≤ 1

κpl/ε
γp,

and similarly for any (x, p, l) ∈ Xu, one has

B(x, p, l) =
1

κpl/ε
Bp(x) ≥ 1

κpl/ε
λp,

satisfying conditions (4.6.2) and (4.6.3) with γ = maxp{ 1
κp(kd−1)/εγp} and λ = minp{λp}

(since 1

κ
l/ε
p

> 1).

Now we proceed with showing condition (4.6.4), as well. In order to show that B(x, p, l)
in (4.6.19) satisfies (4.6.4), we should consider the three different scenarios as in Defini-
tion 4.6.1. For the first scenario (l < kd − 1, p′ = p, and l′ = l + 1), we have:

E
[
B(x′, p′, l′)

∣∣x, p, l, w] =
1

κp′ l
′/ε
E
[
Bp′(x′)

∣∣x, p, w] =
1

κp(l+1)/ε
E
[
Bp(fp(x,w, ς))

∣∣x,w]
≤ 1

κp(l+1)/ε
max

{
κpBp(x(k)), ρintp(‖w‖), ψp

}
= max

{
κ
ε−1
ε

p Bp(x, p, l),
1

κ
(l+1)/ε
p

ρintp(‖w‖),
1

κ
(l+1)/ε
p

ψp

}
≤ max

{
κ
ε−1
ε

p Bp(x, p, l),
1

κ
kd/ε
p

ρintp(‖w‖),
1

κ
kd/ε
p

ψp

}
;

Note that the last inequality holds since l < kd − 1, and consequently, l + 1 < kd.
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For the second scenario (l = kd − 1, p′ = p, and l′ = kd − 1), we have:

E
[
B(x′, p′, l′)

∣∣x, p, l, w] =
1

κp′ l
′/ε
E
[
Bp′(x′)

∣∣x, p, w] =
1

κpl/ε
E
[
Bp(fp(x,w, ς))

∣∣x,w]
≤ 1

κpl/ε
max

{
κpBp(x(k)), ρintp(‖w‖), ψp

}
= max

{
κpB(x, p, l),

1

κpl/ε
ρintp(‖w‖),

1

κpl/ε
ψp

}
≤ max

{
κ
ε−1
ε

p B(x, p, l),
1

κ
kd/ε
p

ρintp(‖w‖),
1

κ
kd/ε
p

ψp

}
;

Note that the last inequality holds since ε > 1, and consequently, 0 < ε−1
ε < 1.

For the last scenario (l = kd − 1, p′ 6= p, and l′ = 0), using Assumption 4.6.11, we
have:

E
[
B((x′, p′, l′))

∣∣x, p, l, w] =
1

κp′ l
′/ε
E
[
Bp′(x′)

∣∣x, p, w] ≤ µ̃E[Bp(fp(x,w, ς)) ∣∣x,w]
≤ µ̃max

{
κpBp(x(k)), ρintp(‖w‖), ψp

}
= µ̃κp

(kd−1)/ε 1

κpl/ε
max

{
κpBp(x(k)), ρintp(‖w‖), ψp

}
= max

{
µ̃κ(kd−1)/ε

p κpB((x, p, l)), µ̃ρintp(‖w‖), µ̃ψp
}

≤ max
{
κpB((x, p, l)), µ̃ρintp(‖w‖), µ̃ψp

}
≤ max

{
κ
ε−1
ε

p B((x, p, l)),
1

κ
kd/ε
p

ρintp(‖w‖),
1

κ
kd/ε
p

ψp

}
;

Note that the last scenario holds since ∀p ∈ P , kd ≥ ε ln(µ̃)
ln(1/κp) +1, and equivalently ∀p ∈

P , µ̃κ
(kd−1)/ε
p ≤ 1. By defining κ = maxp{κ

ε−1
ε

p }, ρint(s) = maxp{ 1

κ
kd/ε
p

ρintp(s)},∀s ∈

R≥0, and ψ = maxp{ 1

κ
kd/ε
p

ψp}, condition (4.6.4) holds. Hence, B(x, p, l) is an APBC for

A(Σ), which completes the proof. �

Remark 4.6.14. Note that if there exists a common CBC B : X → R≥0 for all switching
modes p ∈ P satisfying conditions of Definition 4.6.10 and Assumption 4.6.11 (with
µ̃ = 1), then B(x, p, l) = B(x) (cf. the first case study in Subsection 4.6.5.1).

Remark 4.6.15. One can use Lemmas 4.2.14 and 4.5.20 to compute max-type CBC in
Definition 4.6.10 based on, respectively, SOS optimization problem and CEGIS approach.

4.6.5 Case Study

To demonstrate the effectiveness of the proposed results, we first apply our approaches
to the room temperature network in a circular building containing 1000 rooms. We
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compositionally synthesize safety controllers to maintain the temperature of each room
in a comfort zone in a bounded time horizon. Moreover, to show the applicability of our
results to switched systems accepting multiple barrier certificates with a dwell-time con-
dition, we apply our technique to a circular cascade network of 500 subsystems (totally
1000 dimensions) and provide upper bounds on the probability that the interconnected
system reaches some unsafe region in a finite time horizon.

4.6.5.1 Room Temperature Network

The evolution of the temperature T (·) in the interconnected system is governed by the
following dynamics:

Σ:

{
T (k + 1) = AT (k) + θ̂ThBp(k) + β̂TE + 0.25ς(k),

y(k) = T (k),

where A ∈ Rn×n is a matrix with diagonal elements given by āii = (1− 2η̂ − β̂ − θ̂bipi),
off-diagonal elements āi,i+1 = āi+1,i = ā1,n = ān,1 = η̂, i ∈ {1, . . . , n − 1}, and all other

elements are identically zero. Moreover, η̂ = 0.005, β̂ = 0.022, and θ̂ = 0.05, Tei = −1 ◦C,
Th = 50 ◦C, T (k) = [T1(k); . . . ;Tn(k)], ς = [ς1(k); . . . ; ςn(k)], TE = [Te1 ; . . . ;Ten ], and
Bp = [b1p1 ; . . . ; bnpn ], such that

bipi =



0, if pi = 1,
0.1, if pi = 2,
0.2, if pi = 3,
0.3, if pi = 4,
0.4, if pi = 5,
0.5, if pi = 6,
0.6, if pi = 7,

with the finite set of modes Pi = {1, . . . , 7}, i ∈ {1, . . . , n}. Now by considering the
individual rooms as Σi represented by

Σi :

{
Ti(k + 1) = āiiTi(k) + θ̂Thbipi(k) + η̂wi(k) + β̂Tei(k) + 0.25ςi(k),

yi(k) = Ti(k),

one can readily verify that Σ = I(Σ1, . . . ,ΣN ), equivalently Σ = I(A(Σ1), . . . , ,A(ΣN )),
where wi(k) = [Ti−1(k);Ti+1(k)] (with T0 = Tn and Tn+1 = T1).

The regions of interest in this example are Xi ∈ [1, 50], X0i ∈ [19, 21], Xui = [1, 17] ∪
[23, 50],∀i ∈ {1, . . . , n}. The main goal is to find an ABC for the interconnected system
such that a switching signal is synthesized for Σ keeping the temperature of rooms in
the comfort zone [17, 23]1000. Note that in this example Bp = Bp′ , ∀p, p′ ∈ P (i.e., there
exists a common barrier certificate with µ̃ = 1). Then B(x, p, l) = B(x) as discussed
in Remark 4.6.14. We employ the SMT solver Z3 and CEGIS approach to compute an
APBC of an order 4 as Bi(Ti) = −0.00012T 4

i + 0.01045T 3
i − 0.19932T 2

i − 0.64538Ti +
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Figure 4.14: Closed-loop state trajectories of a representative room with 10 noise realizations
in a network of 1000 rooms.

28.68175. Furthermore, the corresponding constants and functions in Definition 4.6.4
satisfying conditions (4.6.1)-(4.6.4) are quantified as γi = 0.16, λi = 1.2, ψi = 7.07 ×
10−4, κi = 0.99, αi(s) = 4.5 × 10−5s2, and ρi(s) = 9.3 × 10−6s2,∀s ∈ R≥0. Then Bi(xi)
is an APBC for A(Σi),

We now proceed with constructing an ABC for the interconnected system using APBC
of subsystems. We check the small-gain condition (4.6.10) that is required for the com-
positionality result. By taking σ̄i(s) = s, ∀i ∈ {1, . . . , n}, condition (4.6.10) and as
a result condition (3.3.13) are always satisfied. Moreover, the compositionality con-
dition (4.6.11) is met since λi > γi,∀i ∈ {1, . . . , n}. Then one can conclude that

B(T ) = maxi

{
− 0.00012T 4

i + 0.01045T 3
i − 0.19932T 2

i − 0.64538Ti + 28.68175
}

is an

ABC for A(Σ) satisfying conditions (4.6.5)-(4.6.7) with γ = 0.16, λ = 1.2, κ = 0.99, and
ψ = 7.07× 10−4.

By employing Theorem 4.6.6, one can guarantee that the temperature of the inter-
connected system Σ starting from the initial condition a ∈ [19, 21]1000 remains in the
comfort region [17, 23]1000 during the time horizon T = 10 with a probability of at least
87%, i.e.,

P
{
B(T (k)) < 1.2

∣∣ a, ∀k ∈ [0, 10]
}
≥ 0.87 .

State trajectories of the closed-loop system in a network of 1000 rooms for a repre-
sentative room with 10 noise realizations are illustrated in Figure 4.14.

Let us now make a comparison between our results with that of [LSZ20a] which pro-
vides a compositional approach for the same class of stochastic switched system but
based on finite abstractions. In order to provide a closeness guarantee of at least 87%
between state trajectories of the system Σ and those of its finite abstraction in [LSZ20a],
one needs to select the state discretization parameter as 0.005, and the required mem-
ory usage is accordingly 96.76 GB (cf. [LSZ20a] for more details on computing memory
usage based on discretization parameters). In comparison, we needed here only 22.5 MB
memory to search for CBC of each subsystem. The computation time in our setting for
synthesizing local safety controllers for each subsystem is 5.7 minutes whereas it takes
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almost 2865 minutes to only construct finite abstractions for each subsystem using pro-
posed approaches in [LSZ20a]. Note that subsystems in this example are scalar, and the
results proposed in [LSZ20a] will suffer from the curse of dimensionality in the case of
dealing with higher dimensional subsystems.

4.6.5.2 Switched Systems Accepting Multiple Barrier Certificates with Dwell-Time

In order to show the applicability of our results to switched systems accepting multiple
barrier certificates with a dwell-time condition, we apply our techniques to a circular
cascade network of 500 subsystems (totally 1000 dimensions). The model of the system
does not have a common barrier certificate because it exhibits unstable behaviors for
different switching signals [Lib03] (i.e., if one periodically switches between different
modes, the trajectory goes to infinity). The dynamics of the interconnected system are
described by

Σ :

{
x(k + 1) = Ap(k)x(k) +Bp(k) +Rς(k),

y(k) = x(k),

where

Ap(k) =


Āpi 0 · · · · · · Ã

Ã Āpi 0 · · · 0

0 Ã Āpi · · · 0
...

. . .
. . .

...

0 · · · · · · Ã Āpi


n×n

,

Āpi =


[
0.05 0
0.9 0.03

]
, if pi = 1,[

0.02 −1.2
0 0.05

]
, if pi = 2,

Ã =

[
0.01 0

0 0.01

]
.

We choose R = blkdiag(0.112, . . . , 0.112) and fix here N = 500. Furthermore, Bp =
[b1p1 ; . . . ; bNpN ] such that

bipi =


[
−0.9
0.5

]
, if pi = 1,[

0.9
−0.2

]
, if pi = 2.

We partition x(k) as x(k) = [x1(k); . . . ;xN (k)] and ς(k) as ς(k) = [ς1(k); . . . ; ςN (k)],
where xi(k), ςi(k) ∈ R2, i.e., xi = [xi1 ;xi2 ], ςi = [ςi1 ; ςi2 ]. Now, by introducing the
individual subsystems Σi described as

Σi :

{
xi(k + 1) = Āpi(k)xi(k) + Ãiwi(k) + bipi(k) + 0.112ςi(k),

yi(k) = xi(k),

where wi(k) = yi−1, i ∈ {1, . . . , N}, with y0 = yN , one can readily verify that Σ =
I(Σ1, . . . ,ΣN ), equivalently Σ = I(A(Σ1), . . . ,A(ΣN )).
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The regions of interest here are Xi ∈ [−6, 6]2, X0i ∈ [−0.5, 0.5]2, Xui = [−6,−2]2 ∪
[2, 6]2,∀i ∈ {1, . . . , N}. The main goal is to find an ABC for the interconnected system
such that a switching signal is synthesized for Σ regulating the state of subsystems in
a safe zone [−2, 2]1000. We first find a CBC for each mode based on Definitions 4.6.10
using software tool SOSTOOLS [PAV+13] and SDP solver SeDuMi [Stu99]. One can
verify that, ∀i ∈ {1, . . . , N}, conditions (4.6.14)-(4.6.17) are satisfied by

for pi = 1: γpi = 0.15, λpi = 2.4, κpi = 0.469, ψpi = 5.42× 10−6,

αpi(s) = 4× 10−5s2, ρintpi(s) = 2.71× 10−6s2,∀s ∈ R≥0,

for pi = 2: γpi = 0.16, λpi = 2.3, κpi = 0.498, ψpi = 6.88× 10−6,

αpi(s) = 5× 10−5s2, ρintpi(s) = 3.44× 10−6s2,∀s ∈ R≥0,

with B1i(xi) = 0.2309x2
i1 + 0.1160xi1xi2 + 0.000001xi1 + 0.2529x2

i2 − 0.000001xi2 +
0.000000002, B2i(xi) = 0.2394x2

i1+0.1101xi1xi2−0.000002xi1+0.2588x2
i2−0.000008xi2+

0.000000005. One can also verify that condition (4.6.18) is met with µ̃ = 2. By
taking ε = 2, one can get the dwell-time kd = 3. Hence, Bi(xi, pi, li) = 1

κ
l/2
pi

Bi(xi)

is an APBC for A(Σi) satisfying conditions (4.6.1)-(4.6.4) with αi(s) = 4 × 10−5s2,
∀s ∈ R≥0, γi = 0.321, λi = 2.3, κi = 0.706, ρinti(s) = 9.78 × 10−6s2, ∀s ∈ R≥0, and
ψi = 1.95× 10−5.

We now proceed with constructing an ABC for the interconnected system using APBC
of subsystems. We check the small-gain condition (4.6.10). By taking σi(s) = s, ∀i ∈
{1, . . . , N}, condition (4.6.10) and as a result condition (3.3.13) are always satisfied.
Moreover, the compositionality condition (4.6.11) is met since λi > γi,∀i ∈ {1, . . . , N}.
Hence, B(x, p, l) = maxi{ 1

κ
l/2
pi

Bi(xi)} is an ABC for the interconnected A(Σ) satisfying

conditions (4.6.5)-(4.6.7) with γ = 0.321, λ = 2.3, κ = 0.706, and ψ = 1.95× 10−5.
By employing Theorem 4.6.6, one can guarantee that the state of the interconnected

system Σ starting from the initial condition a ∈ [−0.5, 0.5]1000, with any initial mode p0

and l0 = 0, remains in the safe set [−2, 2]1000 during the time horizon T = 100 with a
probability of at least 86%, i.e.,

P
{
B(x(k), p(k), l(k)) < 2.3

∣∣ a, p0, l0, ∀k ∈ [0, 100]
}
≥ 0.86.

4.7 Summary

In the first part of this chapter, we have proposed a compositional approach based
on small-gain reasoning for the construction of control barrier certificates for ct-SCS
via pseudo-barrier certificates constructed for individual subsystems. We employed a
systematic technique based on the sum-of-squares optimization program to search for
pseudo-barrier certificates of subsystems while synthesizing safety controllers. Then,
utilizing the constructed control barrier certificates, we quantified upper bounds on the
probability that an interconnected system reaches certain unsafe regions in a finite time
horizon.
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In the second part of the chapter, we enlarged the class of systems to continuous-time
stochastic hybrid systems by adding Poisson processes to the dynamics and proposed a
compositional scheme based on dissipativity approaches for the construction of control
barrier certificates for this class of models. We showed that the dissipativity-type com-
positional reasoning can enjoy the structure of the interconnection topology and may
not require any constraints on the number or gains of the subsystems. In addition, the
provided results based on small-gain approaches ask an additional condition (cf. con-
dition (4.2.1)) which is required for the satisfaction of small-gain type compositionality
conditions, while dissipativity-type reasoning proposed here does not need such an extra
condition.

In the third part of the chapter, we generalized the underlying dynamics to stochastic
switching systems with Markovian switching signals to enforce high-level logic properties
in a compositional manner. We also enlarged the class of specifications to those that can
be expressed by the accepting language of deterministic finite automata (DFA), whereas
previous sections handle only invariance specifications. Furthermore, we provided an
additional approach to compute pseudo-barrier certificates for systems with finite input
sets by employing counter-example guided inductive synthesis framework based on the
satisfiability modulo theories (SMT) solvers such as Z3 [DMB08], dReal [GAC12] or
MathSat [CGSS13].

In the last part of the chapter, we proposed a compositional framework for the con-
struction of control barrier certificates for discrete-time stochastic switched systems ac-
cepting multiple control barrier certificates with some dwell-time conditions. We pro-
vided an augmented framework for presenting each switched subsystem with several
modes with a single system covering all modes whose output trajectories are exactly
the same as those of original switched systems. We then compositionally constructed
augmented control barrier certificates for interconnected augmented systems based on
augmented pseudo-barrier certificates of subsystems by leveraging some max-type small-
gain conditions. Given the constructed augmented barrier certificates, we quantified up-
per bounds on the probability that interconnected systems reach certain unsafe regions
in a finite time horizon.
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5 Model-free Techniques based on
Data-Driven Optimization

5.1 Introduction

Although SHS have been becoming ubiquitous in different real-world safety-critical ap-
plications in the past few years, closed-form mathematical models for many complex
systems are either not available or equally complex to be of any practical use. Ac-
cordingly, one cannot employ model-based techniques, proposed in the previous chap-
ters, to analyze and design this type of complex unknown systems. Although there are
some indirect data-driven techniques, in the related literature, to solve various analysis
and synthesis problems by learning approximate models via identification techniques
(see [HW13, and references herein]), acquiring an accurate model for complex systems
is always very challenging, time-consuming, and expensive, especially if the underlying
dynamics are too complex which is the case in many real-world applications. Then di-
rect data-driven techniques have received significant attentions in the past few years for
the formal analysis of unknown SHS while bypassing the system identification phase.
Since guaranteeing safety and reliability of physical systems based on data is currently
very challenging, which is of vital importance in many safety-critical applications, this
chapter is concerned with developing direct data-driven techniques for the verification
and synthesis of SHS while providing formal guarantees.

5.1.1 Related Literature

There have been some results in the setting of data-driven optimization techniques. Sce-
nario approach has been initially introduced in [CC06] to deal with semi-infinite convex
programming for robust control analysis and synthesis problems. The main benefit of
the proposed approach is that the solvability of the problem can be obtained through
random sampling of constraints provided that a probabilistic relaxation of the worst-
case robust paradigm is accepted. As an extension of [CC06], a random convex program
framework is developed in [Cal10] in which the results provide an explicit bound on
the upper tail probability of violation. The proposed setup is then generalized to the
case of random convex programs with posteriori violated constraints to improve the
optimal objective value while maintaining the violation probability under control. A
novel framework for establishing a probabilistic bridge from optimal values of scenario
convex programs to those of robust convex and chance-constrained programs is ini-
tially proposed in [MESL14] in which the uncertainty takes values in a general, possibly
infinite-dimensional, metric space. The results are then generalized to a certain class of
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non-convex problems that includes binary decision variables. An approximation bridge
from the infinite-dimensional linear programming to tractable finite convex programs is
developed in [MESKL18] in which the performance of the approximation is quantified ex-
plicitly. The proposed results are based on the randomized optimization and first-order
methods, leading to priori as well as posteriori performance guarantees.

There have been several results on formal analysis and controller synthesis for unknown
systems via indirect data-driven approaches, i.e., those which leverage system identifica-
tion techniques followed by model-based controller synthesis approaches. In this regard,
a data-driven approach based on Gaussian processes to learn models of quadrotors oper-
ating in partially unknown environments is proposed in [WTE18]. A safe reinforcement
learning framework for safety-critical control tasks is presented in [COMB19], in which
Gaussian processes are employed to model the system dynamics and its uncertainties.
A data-driven approach to synthesize controllers enforcing signal temporal logic spec-
ifications is studied in [SB18], where a set-valued piece-wise affine model is learned to
contain all possible behaviors of an unknown system. A learning-based approach for the
construction of symbolic models for nonlinear control systems to enforce safety specifi-
cations is proposed in [HSK+20]. A data-driven approach utilizing Gaussian processes
to learn unknown control affine nonlinear systems together with a probabilistic bound
on the accuracy of the learned model is presented in [JPZ20]. An optimization-based
framework for learning control laws from data to enforce safety properties is studied
in [LHR+20].

There have also been some results in recent years on the formal analysis of unknown
systems via direct data-driven approaches, i.e., those that bypass the system identifi-
cation phase and directly employ system measurements for the verification and control
analysis. A data-driven approach for stability analysis of black-box linear switched sys-
tems is proposed in [KBJT19], in which a stability-like guarantee is provided based on
both the number of observations and the required level of confidence. As an exten-
sion of [KBJT19], a data-driven computation of invariant sets for discrete time-invariant
black-box systems is proposed in [WJ19]. A data-enabled predictive control algorithm
for unknown stochastic linear systems is presented in [CLD19]. A data-driven verifi-
cation approach for partially-known dynamics with non-deterministic inputs and noisy
observations is proposed in [HVdHA15]. Reinforcement learning schemes to synthesize
correct policies for continuous-space Markov decision processes with unknown models are
studied in [LSS+20, KS20, LPK+22]. Construction of symbolic models and finite MDPs
for unknown dynamical systems using data is proposed in [LF22, LSFZ22], respectively.
Data-driven verification and synthesis of stochastic systems via (control) barrier certifi-
cates are presented in [SLSZ21, SLSZ23]. A data-driven synthesis of safety controllers
via multiple control barrier certificates is recently proposed in [NZ23]. Compositional
data-driven approaches for safety verification of large-scale stochastic systems including
autonomous vehicles are presented in [LDLCF22, LSF23]. Dara-driven stability certifi-
cates of (interconnected) homogeneous nonlinear systems are proposed in [LF22, LA23].

Other direct data-driven approaches which are developed on top of behavioral ap-
proaches [WP97] have been proposed to solve linear quadratic regulation (LQR) prob-
lems [DPT19], to design model-reference controllers for linear systems [BDPFT21], and
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to stabilize polynomial-type systems [GDPT21], switched linear systems [RDPT21], and
linear time-varying systems [NM20]. Recently, data-driven approaches for solving LQR
problems and synthesizing robust controllers are proposed in [DPT21, BKSA20, BSA20],
in which underlying unknown dynamics are affected by exogenous disturbances. A data-
driven technique to learn control laws for nonlinear polynomial-type systems directly
from data is proposed in [GDPT20], in which input-output measurements are collected
in an experiment over a finite-time period. Nevertheless, none of these approaches con-
sider state and input constraints. Data-driven approaches to synthesize state-feedback
controllers making a compact polyhedral set containing the origin robustly invariant
are proposed in [BDPT20b, BDPT20a]. These results are conservative in the sense that
when there is no controller for the given compact polyhedral set, one might be able to find
controllers making subsets of this polytope robustly invariant. In addition, these tech-
niques require an individual constraint for each vertex of the polytope (cf. [BDPT20b,
Section 4] and [BDPT20a, Theorems 1, 2]). Consequently, given any arbitrary polytope,
the number of vertices grows exponentially with respect to its dimension and the number
of hyperplanes in the worst case scenario [Dye83].

5.1.2 Contributions

In the first part of this chapter, we propose a data-driven approach for the formal esti-
mation of infinitesimal generators of continuous-time stochastic systems with unknown
dynamics. We first approximate the infinitesimal generator of the solution process via
a set of data collected from trajectories of the unknown system. The approximation
utilizes both time discretization and sampling from the solution process. Assuming
proper continuity assumptions on dynamics of the system, we then quantify the close-
ness between the infinitesimal generator and its approximation while providing a priori
guaranteed confidence bound. We demonstrate that both the time discretization and
the number of data play significant roles in providing a reasonable closeness precision.
Moreover, for a fixed size of data, variance of the estimation converges to infinity when
the time discretization parameter goes to zero. The formulated error bound shows how
to pick proper data size and time discretization jointly to prevent this counter-intuitive
behavior.

In the second part of the chapter, we enlarge the class of systems to stochastic hybrid
ones by adding Poisson processes to the dynamics and propose a data-driven approach
for the estimation of infinitesimal generator for this class of models. In addition, our
data-driven scheme handles stochastic systems with control inputs, while the results of
the previous section only deal with stochastic autonomous systems.

In the third part of the chapter, we propose a data-driven approach for formal ver-
ification of both discrete- and continuous-time systems with unknown dynamics. The
main target is to verify the safety of unknown systems based on the construction of
barrier certificates via a set of data collected from trajectories of systems while provid-
ing an a-priori guaranteed confidence on the safety. In our proposed frameworks, we
first cast the original safety problem as a robust convex program (RCP). Solving the
proposed RCP is not tractable in general since the unknown model appears in one of the
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constraints. Instead, we collect finite numbers of data from trajectories of systems and
provide a scenario convex program (SCP) corresponding to the original RCP. We then
establish a probabilistic closeness between the optimal value of SCP and that of RCP,
and as a result, we formally quantify the safety guarantee of unknown systems based on
the number of data and the required level of confidence. We propose our frameworks in
both discrete- and continuous-time settings.

In the last part of the chapter, we propose a data-driven approach to synthesize safety
controllers for continuous-time nonlinear polynomial-type systems with unknown dy-
namics. The proposed framework is based on notions of control barrier certificates,
constructed from data while providing a guaranteed confidence of 1 on the safety of un-
known systems. Under a certain rank condition, we synthesize polynomial state-feedback
controllers to ensure the safety of the unknown system only via a single trajectory col-
lected from it.

5.2 Data-Driven Estimation of Infinitesimal Generators for
Stochastic Systems

Infinitesimal generator of a continuous-time stochastic process is a partial differential
operator that encodes large amounts of information about the stochastic process. In
particular, infinitesimal generator plays a significant role in the analysis of continuous-
time stochastic systems including (i) stability verification and controller synthesis via
(control) Lyapunov functions (e.g., [TSS14]); (ii) input-to-state stability (ISS) prop-
erty of continuous-time stochastic systems (e.g., [ZKZ12]); (iii) establishing similar-
ity relations between two continuous-time stochastic systems via stochastic simulation
functions (e.g., [JP09, NSZ21]); (iv) incremental stability of continuous-time stochastic
control systems (e.g., [ZMEM+14]), and (v) safety verification and controller synthe-
sis of continuous-time stochastic systems via barrier certificates (e.g., [PJP07, SDC19,
NSZ20b]), to name a few. Hence, computing the infinitesimal generator is a crucial step
in developing an analysis framework for continuous-time stochastic systems.

In this section, we propose a data-driven approach for the estimation of infinitesimal
generator of continuous-time stochastic systems with unknown dynamics. To do so, we
first approximate the infinitesimal generator of the stochastic system via a set of data
collected from trajectories of the unknown system. We then provide a formal scheme to
compute the error between the approximated infinitesimal generator and the exact one
corresponding to unknown dynamics with the associated confidence bound. We show
that both the sampling time and number of data are crucial to provide a reasonable
closeness precision. To demonstrate the effectiveness of our proposed results, we apply
them to an unknown room temperature problem.

5.2.1 Continuous-Time Stochastic Systems

We consider stochastic systems in continuous-time (ct-SS) defined over a general state
space as in the following definition.
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Definition 5.2.1. A continuous-time stochastic system (ct-SS) is characterized by the
tuple

Σ = (X, f, σ), (5.2.1)

where:

• X ⊂ Rn is the state space of the system;

• f : X → Rn is the drift term;

• σ : Rn → Rn×b is the diffusion term.

A continuous-time stochastic system Σ satisfies

Σ : dx(t) = f(x(t))dt+ σ(x(t))dWt, (5.2.2)

P-almost surely (P-a.s.), where the stochastic process x : Ω × R≥0 → X is called the
solution process of Σ. We also employ xa(t) to denote the value of the solution process at
time t ∈ R≥0 under an initial condition xa(0) = a P-a.s., where a is a random variable
that is F0-measurable.

In order to ensure the existence and uniqueness of the solution process, we assume that
the drift term f is globally Lipschitz continuous: i.e., there exists a constant Lf ∈ R≥0

such that

‖f(x)− f(x′)‖ ≤ Lf‖x− x′‖, ∀x, x′ ∈ X. (5.2.3)

We also assume that the diffusion term σ is globally Lipschitz continuous with the
Lipschitz constant Lσ. In this section, we assume that the state set X is a compact
subset of Rn over which we are interested to perform our analysis. This is motivated
by the boundedness assumptions required for the theoretical results of this work (cf.
Assumption 5.2.5).

We define c(x) := σ(x)σ(x)> as the infinitesimal covariance and call f(x) the in-
finitesimal mean. In addition, the infinitesimal generator L of the process x(t) acting
on a function H : X → R is defined as

LH(x) = ∂xH(x)f(x) +
1

2
Tr(c(x)∂x,xH(x)), (5.2.4)

where ∂xH(x) =
[∂H(x)
∂xi

]
i
∈ R1×n and ∂x,xH(x) =

[∂2H(x)
∂xi∂xj

]
i,j
∈ Rn×n. One important

aspect of the infinitesimal generator is that it can be used to compute the expected
value of any function of the solution process H(xτ ) via Dynkin’s formula [Dyn65] as the
following:

E
[
H(xτ )

]
= H(x) + Ex

[ ∫ τ

0
LH(xt)dt

]
, ∀x ∈ X, (5.2.5)

where xτ is the solution process at time τ ∈ R≥0 starting from x, and Ex is the expected
value conditioned on x.
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In this section, we assume that drift and diffusion terms f, σ in (5.2.1) are both
unknown, and we employ the term unknown model to refer to this type of systems.
The main goal is to provide a formal framework for the estimation of the infinitesimal
generator in (5.2.4). To do so, we first approximate the infinitesimal generator L as

L̂1H(x) :=
Ex

[
H(xτ )

]
−H(x)

τ
, ∀x ∈ X. (5.2.6)

Since there is no closed-form solution for the expected value in (5.2.6), one cannot di-
rectly employ (5.2.6) as the approximated value of the infinitesimal generator. Suppose

we collect N̂ independent and identically distributed (i.i.d.) sampled data (xiτ )N̂i=1 by
extracting N̂ solution processes xiτ , i ∈ {1, . . . , N̂ }, at time τ . We now employ an em-
pirical approximation of the expected value and propose another layer of approximation
for the infinitesimal generator L as

L̂2H(x) :=

1
N̂

∑N̂
i=1H(xiτ )−H(x)

τ
, ∀x ∈ X, (5.2.7)

where N̂ ∈ N≥1 is the number of samples required for the computation of the empirical
mean.

We now state the main problem that we aim at solving in this section.

Problem 5.2.2. Consider the infinitesimal generator of the stochastic process
in (5.2.4), and its data-driven approximation in (5.2.7). Provide a formal frame-
work to quantify ε̃ ∈ R≥0 as the distance between the infinitesimal generator and its
data-driven approximation with an a-priori confidence β ∈ (0, 1] as

P
{
|L̂2H(x)− LH(x)| ≤ ε̃

}
≥ 1− β, ∀x ∈ X. (5.2.8)

It should be noted that the confidence β in (5.2.8) is due to the data-driven nature
of our proposed estimation algorithm. In particular, one can push the confidence to be
close to 1 at the cost of collecting more data. This type of guarantee is very similar to the
closeness guarantee provided by Chernoff bound in statistical model checking [LSAZ22,
Section 9].

Remark 5.2.3. Note that the empirical approximation in (5.2.7) can be utilized for
scenarios in which the infinitesimal generator needs to be computed for finitely-many
initial conditions. Examples of such scenarios include safety verification and synthesis
of stochastic hybrid systems similar to [SLSZ23] or construction of finite Markov de-
cision processes and establishing similarity relations between two stochastic systems via
stochastic simulation functions as in [NSZ21], where dynamics of underlying systems are
unknown.
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5.2.2 Solution Approach

Here, we first quantify the formal closeness between LH(x) and its first approximation
L̂1H(x) as in (5.2.6). We then quantify the distance between L̂1H(x) and its empirical
approximation L̂2H(x) as in (5.2.7). We finally propose our solution for the closeness
quantification between LH(x) and L̂2H(x). To do so, we need to raise the following two
assumptions.

Assumption 5.2.4. Suppose infinitesimal mean f(x), covariance c(x), ∂xH(x), and
∂x,xH(x) are all Lipschitz continuous with Lipschitz constants Lf as in (5.2.3), and
Lc,LH1 ,LH2 ∈ R≥0 as the following, ∀x, x′ ∈ X:

‖c(x)− c(x′)‖F ≤ Lc‖x− x′‖, ‖∂xH(x)− ∂x′H(x′)‖ ≤ LH1‖x− x′‖,
‖∂x,xH(x)− ∂x′,x′H(x′)‖F ≤ LH2‖x− x′‖.

Assumption 5.2.5. Suppose f(x), c(x), ∂xH(x), and ∂x,xH(x) are all bounded with
constants Mf , Mc,MH1 ,MH2 ∈ R≥0 as, ∀x ∈ X:

‖f(x)‖ ≤ Mf , ‖∂xH(x)‖ ≤ MH1 , ‖c(x)‖F ≤Mc, ‖∂x,xH(x)‖F ≤MH2 .

We now employ Assumptions 5.2.4 and 5.2.5 and propose the next lemma which shows
that LH(x) is also Lipschitz continuous.

Lemma 5.2.6. Under Assumptions 5.2.4-5.2.5, LH(x) is also Lipschitz continuous with
a Lipschitz constant L as:

|LH(x)− LH(x′)| ≤ L ‖x− x′‖, ∀x, x′ ∈ X,

where L =MH1Lf +MfLH1 + 1
2(LcMH2 +McLH2).

Proof. Using the definition of LH(x) in (5.2.4), we have

|LH(x)− LH(x′)|≤|∂xH(x)f(x)− ∂x′H(x′)f(x′)|+|1
2

Tr
(
c(x)∂x,xH(x)−c(x′)∂x′,x′H(x′)

)
|.

(5.2.9)

Using the following known inequality

|A>B− C>D| ≤ ‖A‖‖B−D‖+ ‖D‖‖A− C‖,

for all A,B,C,D ∈ Rn, and Assumptions 5.2.4 and 5.2.5, the first term in the right-hand
side of (5.2.9) is upper bounded by

‖∂xH(x)‖‖f(x)−f(x′)‖+‖f(x′)‖‖∂xH(x)−∂x′H(x′)‖ ≤ MH1Lf‖x−x′‖+MfLH1‖x−x′‖.
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Using the notation A � B as the Hadamard product of two matrices A,B, the second
term in the right-hand side of (5.2.9) is upper bounded as

1

2

∣∣∣∑
i,j

[c(x)� ∂x,xH(x)]i,j−[c(x′)� ∂x′,x′H(x′)]i,j

∣∣∣
≤ 1

2

∑
i,j

∣∣∣[(c(x)− c(x′))� ∂x,xH(x)]i,j

∣∣∣+
1

2

∑
i,j

∣∣∣[c(x′)� (∂x,xH(x)− ∂x′,x′H(x′))]i,j

∣∣∣
≤ 1

2

[∑
i,j

[c(x)−c(x′)]2i,j
∑
i,j

[∂x,xH(x)]2i,j

] 1
2
+

1

2

[∑
i,j

[c(x′)]2i,j
∑
i,j

[∂x,xH(x)−∂x′,x′H(x′))]2i,j

] 1
2

=
1

2
‖c(x)− c(x′)‖F ‖∂x,xH(x)‖F +

1

2
‖c(x′)‖F ‖∂x,xH(x)− ∂x′,x′H(x′))‖F

≤ 1

2
(LcMH2 +McLH2)‖x− x′‖.

Combining the two upper bounds completes the proof. �
Now as the first step, we formally quantify the closeness between LH(x) and its

approximation L̂1H(x) as proposed in the following theorem.

Theorem 5.2.7. Let LH(x) be the infinitesimal generator of the process x(t) acting
on a function H and L̂1H(x) be its approximation as in (5.2.6) both at state x. Under
Assumptions 5.2.4 and 5.2.5 and Lemma 5.2.6, one has

|L̂1H(x)− LH(x)| ≤ ε̃1, ∀x ∈ X,

with

ε̃1 := L
(1

2
Mfτ +

2

3
Mσ

√
τ
)
, (5.2.10)

where L = MH1Lf +MfLH1 + 1
2(LcMH2 +McLH2), and Mσ is a constant such

that ‖σ(x)‖F ≤Mσ for all x ∈ X.

Proof: Using Dynkin’s formula in (5.2.5) and by considering the definition of L̂1H(x)
as in (5.2.6), one has

L̂1H(x) = E
[1

τ

∫ τ

0
LH(xt)dt

]
.

By subtracting LH(x) from the two sides, we get

L̂1H(x)− LH(x) = E
[1

τ

∫ τ

0

(
LH(xt)− LH(x)

)
dt
]
.

Consequently,

|L̂1H(x)− LH(x)| ≤ 1

τ

∫ τ

0
E
[
|LH(xt)− LH(x)|

]
dt.
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By employing Lemma 5.2.6, we have

|L̂1H(x)− LH(x)| ≤ L

τ

∫ τ

0
E
[
‖xt − x‖

]
dt. (5.2.11)

Now we aim at finding an upper bound for E
[
‖xt − x‖

]
. Under the continuity property

of the solution process of the system, we have

xt = x+

∫ t

0
f(xs)ds+

∫ t

0
σ(xs)dWs.

Then, one obtains

E
[
‖xt − x‖

]
=E

[
‖
∫ t

0
f(xs)ds+

∫ t

0
σ(xs)dWs‖

]
≤ E

[
‖
∫ t

0
f(xs)ds‖+‖

∫ t

0
σ(xs)dWs‖

]
.

According to Jensen’s inequality, we know that for any vector r ∈ Rn, E[‖r‖] ≤
√
E[r>r].

Then,

E
[
‖xt−x‖

]
≤
[
E

∫ t

0
f(xs)

>ds

∫ t

0
f(xs)ds

] 1
2
+
[
E

∫ t

0
σ(xs)

>dW>s
∫ t

0
σ(xs)dWs

] 1
2
.

(5.2.12)

Under Assumption 5.2.5, the first term in the right-hand side of (5.2.12) is upper
bounded by [

E

∫ t

0

∫ t

0
‖f(xs1)‖‖f(xs2)‖ds1ds2

] 1
2 ≤Mf t. (5.2.13)

In addition, using the multivariate version of the Itô isometry property [Oks13] and
Assumption 5.2.5, we can bound the second term in the right-hand side of (5.2.12) as

[∫ t

0
E
[
‖σ(xs)‖2F

]
ds

] 1
2

≤Mσ

√
t. (5.2.14)

By substituting (5.2.13) and (5.2.14) in (5.2.12), one has

E
[
‖xt − x‖

]
≤Mf t+Mσ

√
t. (5.2.15)

Consequently, by substituting (5.2.15) in (5.2.11), we have

|L̂1H(x)− LH(x)| ≤ L

τ

∫ τ

0
(Mf t+Mσ

√
t)dt = L

(1

2
Mfτ +

2

3
Mσ

√
τ
)
,

which completes the proof. �
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Remark 5.2.8. Note that ε̃1 in Theorem 5.2.7 can be seen as the bias of the estimation.
This is due to the fact that E[L̂2H(x)] = L̂1H(x) and

|E[L̂2H(x)]− LH(x)| ≤ ε̃1, ∀x ∈ X,

which means the expectation of the estimator L̂2H(x) is away from the true value LH(x)
by at most ε̃1.

Remark 5.2.9. In order to provide a formal closeness between the infinitesimal gen-
erator of the stochastic process and its first approximation as in Theorem 5.2.7, the
continuity properties of the solution process together with the continuity of H(x) and
LH(x) are required.

As the second step, to quantify the closeness between L̂1H(x) and L̂2H(x), we first
formulate a bound on the variance of L̂2H(x) in the next lemma.

Lemma 5.2.10. Suppose |H(x)| ≤ MH for all x ∈ X. Under Assumptions 5.2.4
and 5.2.5 and Lemma 5.2.6, the variance of L̂2H(x) in (5.2.7) is bounded by

Var(L̂2H(x)) ≤ 1

N̂
[
α̃

τ
+

γ̃√
τ

+ θ̃], (5.2.16)

with α̃ satisfying

|LH(x)2 − 2MHLH(x)| ≤ α̃, ∀x ∈ X,

and γ̃ :=
2

3
Mσ(L̄ + 2MHL ), θ̃ :=

1

2
Mf (L̄ + 2MHL ),

where L̄ := M̄H1Lf +MfL̄H1 + 1
2(LcM̄H2 +McL̄H2), and M̄H1 ,M̄H2 , L̄H1 , L̄H2

are constants similar to the ones in Assumptions 5.2.4 and 5.2.5 but for H(x)2.

Proof. We compute the variance of the empirical mean as

Var(L̂2H(x)) =
1

τ2N̂
Var(H(xiτ )) =

1

τ2N̂

[
E[H(xiτ )2]− E[H(xiτ )]2

]
=

1

τ2N̂

[
E[H(xiτ )2]−H(x)2 − E[H(xiτ )]2 +H(x)2

]
=

1

τN̂

[E[H(xiτ )2]−H(x)2

τ

]
− 1

τN̂
[E[H(xiτ )]−H(x)][E[H(xiτ )] +H(x)]

τ

=
1

τN̂
L̂1H(x)2 − 1

τN̂
L̂1H(x)(E[H(xiτ )] +H(x)).

Similar to (5.2.10), one can also quantify the distance between L̂1H(x)2 and LH(x)2 as

|L̂1H(x)2 − LH(x)2| ≤ ε̄1, ∀x ∈ X,

with ε̄1 := L̄
(

1
2Mfτ + 2

3Mσ
√
τ
)

and

L̄ := M̄H1Lf +MfL̄H1 +
1

2
(LcM̄H2 +McL̄H2),
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where M̄H1 ,M̄H2 , L̄H1 , L̄H2 are constants similar to the ones in Assumptions 5.2.4, 5.2.5
but for H(x)2. These constants can be easily obtained using MH1 ,MH2 ,LH1 ,LH2 .

Then, we have

Var(L̂2H(x)) ≤ 1

τN̂

(
(LH(x)2+ε̄1)− (LH(x)−ε̃1)2MH

)
.

Accordingly, one has

Var(L̂2H(x)) ≤ α̃+ γ̃
√
τ + θ̃τ

τN̂
=

1

N̂
[
α̃

τ
+

γ̃√
τ

+ θ̃],

with α̃ satisfying

|LH(x)2 − 2MHLH(x)| ≤ α̃, ∀x ∈ X,

and γ̃ :=
2

3
Mσ(L̄ + 2MHL ), θ̃ :=

1

2
Mf (L̄ + 2MHL ).

Note that α̃ can be computed using parameters of Assumptions 5.2.4 and 5.2.5. This
completes the proof. �

In the next theorem, we employ Chebyshev’s inequality [SYM84] and quantify the mis-
match between approximated values of the infinitesimal generator in (5.2.6) and (5.2.7)
by providing an a-priori confidence bound.

Theorem 5.2.11. Let L̂1H(x) and L̂2H(x) be approximations of the infinitesimal gen-
erator L at state x based on expected value and empirical approximation as in (5.2.6)
and (5.2.7), respectively. For any 0 < β ≤ 1, we have

P
{
|L̂1H(x)− L̂2H(x)| ≤ ε̃2

}
≥ 1− β, ∀x ∈ X,

with

ε̃2 :=

[
1

βN̂

(
α̃

τ
+

γ̃√
τ

+ θ̃

)] 1
2

. (5.2.17)

Proof. We know that E[L̂2H(x)] = L̂1H(x). According to Chebyshev’s inequal-
ity [SYM84], one has

P
{
|L̂1H(x)− L̂2H(x)| ≤ ε̃2

}
= P

{
|E[L̂2H(x)]− L̂2H(x)| ≤ ε̃2

}
≥ 1− σ2

ε̃2
2

,

for any ε̃2 ∈ R>0, where σ2 is the variance of L̂2H(x) and can be computed using
Lemma 5.2.10:

σ2 := Var

 1

N̂

N̂∑
i=1

H(xiτ )

 ≤ 1

N̂

[
α̃

τ
+

γ̃√
τ

+ θ̃

]
.

Putting β = σ2/ε̃2
2 gives the expression (5.2.17) for ε̃2 as a function of β, which completes

the proof. �
By employing Theorems 5.2.7 and 5.2.11, we now propose the next theorem as our

solution to Problem 5.2.2.
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Theorem 5.2.12. Let LH(x) be the infinitesimal generator of the process x(t) acting
on the function H at state x and L̂2H(x) be its approximation via the empirical mean
as in (5.2.7). By employing the results of Theorems 5.2.7 and 5.2.11, one has

P
{
|L̂2H(x)− LH(x)| ≤ ε̃

}
≥ 1− β, ∀x ∈ X,

for any 0 < β ≤ 1 with ε̃ = ε̃1 + ε̃2, where ε̃1 and ε̃2 are defined in (5.2.10) and (5.2.17),
respectively.

Proof. By defining

A1 = {|L̂1H(x)− LH(x)| ≤ ε̃1},

A2 = {|L̂1H(x)− L̂2H(x)| ≤ ε̃2},

A = {|L̂2H(x)− LH(x)| ≤ ε̃},

one has P{Ā1} = 0 and P{Ā2} ≤ β, where Ā1 and Ā2 are the complement of A1 and
A2, respectively. We are interested in computing the concurrent occurrence of events
A1 and A2, namely P(A1 ∩ A2):

P(A1 ∩ A2) = 1− P
(
Ā1 ∪ Ā2

)
.

Since P
(
Ā1 ∪ Ā2

)
≤ P(Ā1) + P(Ā2), we have

P(A1 ∩ A2) ≥ 1− P(Ā1)− P(Ā2) ≥ 1− β. (5.2.18)

Due to the triangle inequality, A1 ∩ A2 ⊆ A, and accordingly, P
(
A1 ∩ A2

)
≤ P

(
A
)
.

Employing (5.2.18), one has

P
(
A
)
≥ 1− β,

which completes the proof. �
In the next corollary, we present asymptotic properties of our approximation.

Corollary 5.2.13. Let LH(x) be the infinitesimal generator of the process x(t) acting
on a function H and L̂2H(x) be its empirical approximation as in (5.2.7) both at state
x. The approximated L̂2H(x) converges to L̂1H(x) in the mean-square sense if τN̂ goes
to infinity (L̂1H(x) converges to LH(x) if τ goes to zero).

Remark 5.2.14. The variance of the empirical mean in (5.2.16) has an inverse rela-
tion with both the sampling time and the number of data. On the other hand, L̂1H(x)
converges to LH(x) if τ goes to zero. This means the overall closeness ε̃ between the
infinitesimal generator LH(x) and its approximation L̂2H(x) is improved by increasing
the number of data N̂ (which is only appears in ε̃2). However, since τ appears in both
ε̃1 and ε̃2, decreasing τ does not necessarily improve ε̃ and its optimal value should be
computed to reach the least error.
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If the underlying dynamic is deterministic, one can control the closeness error between
Lie derivative LH(x) and its approximation L̂H(x) by picking a small sampling time τ
(i.e., the approximated Lie derivative converges to the exact one for all initial conditions
when the sampling time goes to zero). However, in the stochastic setting as this section,
both the sampling time and the number of data play significant roles to provide a
reasonable closeness precision: L̂2H(x) converges to LH(x) if τN̂ goes to infinity (cf.
Corollary 5.2.13).

5.2.3 Case Study

To illustrate the effectiveness of the proposed results, we apply our approaches to the
following temperature regulation:

Σ: dx(t) = (−η̂x(t) + η̂Te)dt+ σdWt,

where η̂ = 0.001, Te = 8 ◦C, and σ = 0.2. The temperature of the system varies between
1◦C and 5◦C, i.e., x ∈ [1, 5].

We fix a quadratic function H(x) = x2 and aim at computing parameters of As-
sumptions 5.2.4-5.2.5. Then one has LH1 = 2,LH2 = 0,MH1 = 10,MH2 = 2. We
also assume that Lf ,Mf ,Mσ,Mc,Lc are given as Lf = 0.001,Mf = 0.007,Mσ =
0.2,Mc = 0.04, and Lc = 0. We fix τ = 1. Then according to Theorem 5.2.7, one can
guarantee that the closeness between LH(x) and its first approximation L̂1H(x) can be
bounded by ε̃1 = 0.0033, i.e.,

|L̂1H(x)− LH(x)| ≤ 0.0033, ∀x ∈ X.

We now proceed with computing an upper bound for the variance of L̂2H(x) according to
Lemma 5.2.10. By selecting N̂ = 107 andMH = 25, one has Var(L̂2H(x)) ≤ 4.8×10−7.
Now according to Theorem 5.2.11, by taking β = 0.01, we compute the closeness between
L̂1H(x) and L̂2H(x) as ε̃2 = 0.007 with a confidence of at least 99%, i.e.,

P
{
|L̂1H(x)− L̂2H(x)| ≤ 0.007

}
≥ 0.99, ∀x ∈ X.

According to Theorem 5.2.12, we formally quantify the closeness between the infinitesi-
mal generator LH(x) and its approximation via the empirical mean L̂2H(x) as ε̃ = 0.0103
with a confidence of at least 99%, i.e.,

P
{
|L̂2H(x)− LH(x)| ≤ 0.0103

}
≥ 0.99, ∀x ∈ X.

In order to have a practical analysis on the proposed closeness bound in Theorem 5.2.12,
we fix β = 0.01 (i.e., confidence is 99%) and plot the closeness ε̃ based on different ranges
of the sampling time τ and number of data N̂ in Figure 5.1. As seen, the closeness ε̃
between the infinitesimal generator LH(x) and its data-driven approximation L̂2H(x)
is improved by increasing the number of data N̂ . However, since ε̃ = ε̃1 + ε̃2 and the
sampling time τ appears in both ε̃1 in (5.2.10) and ε̃2 in (5.2.17), the closeness ε̃ is not
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Figure 5.1: Closeness ε̃ based on different ranges of the sampling time τ and number of data
N̂ . Plot is in the logarithmic scale.

monotonic for a given confidence 1 − β. In other words, decreasing τ does not always
improve ε̃ and its optimal value should be computed to reach the least error.

In order to show that the asymptotic properties of our approximation according to
Corollary 5.2.13, we assume that we know the model and compute LH(x) as

LH(x) = 2x(−η̂x+ η̂Te) + 0.04,

which is clearly independent of the sampling time. We now compute L̂2H(x) based
on (5.2.7). In Figure 5.2, we plot the difference between the exact LH(x) and its ap-
proximation L̂2H(x) for the same initial condition x1(0) = 0.07 but for different ranges
of the sampling time. We compute L̂2H(x) 500 times with different numbers of data and
plot only the maximum of computed values. As can be observed, for the small sampling
time (e.g., 10−4), the number of data should be large enough such that N̂ τ remains
large enough, and accordingly, one can provide a reasonable closeness precision between
LH(x) and L̂2H(x).

5.3 Data-Driven Estimation of Infinitesimal Generators for
ct-SHS

In this section, we enlarge the class of models to contentious-time stochastic hybrid
systems by adding Poisson processes to the dynamics and propose a data-driven approach
for the estimation of infinitesimal generator for this class of models. In addition, our
data-driven scheme handles stochastic systems with control inputs, while the results
of the previous section only deal with stochastic autonomous systems. We consider
continuous-time stochastic hybrid systems as in Definition 2.3.1 but without internal
inputs w and denote it by the tuple Σ = (X,U,U , f, σ, ρ) satisfying

Σ: dx(t) = f(x(t), ν(t))dt+ σ(x(t))dWt + ρ(x(t))dPt, (5.3.1)
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Figure 5.2: Difference between the exact analytical LH(x) and its approximation L̂2H(x) for
the same initial condition x = 0.07 but different ranges of the sampling time.
Plots are in the logarithmic scale in horizontal axis. The computation of L̂2H(x)
is repeated 500 times with different numbers of data and only the maximum of
L̂2H(x) is plotted.

P-almost surely (P-a.s.) for any ν ∈ U , where the stochastic process x : Ω × R≥0 → X
is called the solution process of Σ. Here, we assume that Poisson processes Pzs, for any
z ∈ {1, . . . , r}, have rates λ̄z.

To ensure the existence, uniqueness, and strong Markov property of the solution pro-
cess [ØS05], we assume that the drift, diffusion, and reset terms are all globally Lipschitz
continuous (cf. Assumption 5.3.1). We perform our analysis over X and U which are
assumed to be compact subsets of Rn and Rm̄, respectively. This is motivated by bound-
edness assumptions required for our theoretical results (cf. Assumption 5.3.2).

We study the infinitesimal generator L of the process x(t) acting on a twice continuously-
differentiable function H : X → R, defined as [Oks13].

LH(x) = ∂xH(x)f(x, ν) +
1

2
Tr(c(x)∂x,xH(x))

+

r∑
j=1

λ̄j(H(x+ ρ(x)erj)−H(x)), (5.3.2)

where ∂xH(x) =
[∂H(x)
∂xi

]
i

is a row vector, ∂x,xH(x) =
[∂2H(x)
∂xi∂xj

]
i,j
, λ̄j is the rate of Poisson

process, and erj is an r-dimensional vector with 1 on the j-th entry and 0 elsewhere.

Here, we develop a data-driven scheme to formally quantify ε̃ ∈ R≥0 as the distance
between the infinitesimal generator of ct-SHS in (5.3.2) and its data-driven approxima-
tion in (5.2.7) with a priori confidence β∈ (0, 1] as in (5.2.8). To do so, we first need to
raise the following two assumptions.

Assumption 5.3.1. Suppose f, σ, ρ, ν(t), c(x),H(x), ∂xH(x), and ∂x,xH(x) are all Lips-
chitz continuous with, respectively, Lipschitz constants Lf ,Lν ,Lσ,Lρ, L̄ν ,Lc,LH,LH1 ,
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LH2 ∈ R≥0 as the following, ∀x, x′ ∈ X, ∀ν, ν ′ ∈ U , ∀t, t′ ∈ R≥0:

‖f(x, ν)− f(x′, ν ′)‖ ≤ Lf‖x− x′‖+ Lν‖ν − ν ′‖,
‖σ(x)− σ(x′)‖F ≤ Lσ‖x− x′‖, ‖ρ(x)− ρ(x′)‖F ≤ Lρ‖x− x′‖,
‖ν(t)− ν(t′)‖ ≤ L̄ν |t− t′|, ‖c(x)− c(x′)‖F ≤ Lc‖x− x′‖,
|H(x)−H(x′)| ≤ LH‖x− x′‖, ‖∂xH(x)− ∂x′H(x′)‖ ≤ LH1‖x− x′‖,
‖∂x,xH(x)− ∂x′,x′H(x′)‖F ≤ LH2‖x− x′‖.

Assumption 5.3.2. Suppose f(x), c(x), σ(x), ρ(x), H(x), ∂xH(x), and ∂x,xH(x) are all
bounded with constants Mf , Mc,Mσ,Mρ,MH,MH1 ,MH2 ∈ R≥0 as, ∀x ∈ X,∀ν ∈ U :

‖f(x, ν)‖ ≤ Mf , ‖c(x)‖F ≤Mc, ‖σ(x)‖F ≤Mσ, ‖ρ(x)‖F ≤Mρ,

|H(x)| ≤ MH, ‖∂xH(x)‖ ≤ MH1 , ‖∂x,xH(x)‖F ≤MH2 .

By leveraging Assumptions 5.3.1-5.3.2, we propose next result showing that LH(x) is
also Lipschitz continuous.

Lemma 5.3.3. Under Assumptions 5.3.1-5.3.2, LH(x) is Lipschitz continuous with
Lipschitz constants L1,L2 ∈ R≥0:

|LH(x)− LH(x′)| ≤ L1‖x− x′‖+ L2‖ν − ν ′‖,

for all x, x′ ∈ X and all ν, ν ′ ∈ U , where

L1 = MH1Lf +MfLH1 +
1

2
(LcMH2 +McLH2) +

r∑
j=1

λ̄j(2LH + LHLρ),

L2 = MH1Lν .

Proof: Using the definition of LH(x) in (5.3.2), we have

|LH(x)− LH(x′)| ≤ |∂xH(x)f(x, ν)− ∂x′H(x′)f(x′, ν ′)|

+ |1
2

Tr
(
c(x)∂x,xH(x)− c(x′)∂x′,x′H(x′)

)
|+ |

r∑
j=1

λ̄j
(
H(x+ ρ(x)erj)− (H(x′ + ρ(x′)erj)

)
|

+ |
r∑

j=1

λ̄j(H(x)−H(x′))|. (5.3.3)

Using the following inequality

|ATB− CTD| ≤ ‖A‖‖B−D‖+ ‖D‖‖A− C‖,

for all A,B,C,D ∈ Rn, and Assumptions 5.3.1-5.3.2, the first term in the right-hand
side of (5.3.3) is upper bounded by

‖∂xH(x)‖‖f(x, ν)− f(x′, ν ′)‖+ ‖f(x′, ν ′)‖‖∂xH(x)− ∂x′H(x′)‖
≤ MH1(Lf‖x− x′‖+ Lν‖ν − ν ′‖) +MfLH1‖x− x′‖.
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Using the notation A � B as the Hadamard product of two matrices A,B, the second
term in the right-hand side of (5.3.3) is upper bounded as

1

2

∣∣∣∑
i,j

[c(x)� ∂x,xH(x)]i,j − [c(x′)� ∂x′,x′H(x′)]i,j

∣∣∣
≤ 1

2

∑
i,j

∣∣∣[(c(x)− c(x′))� ∂x,xH(x)]i,j

∣∣∣+
1

2

∑
i,j

∣∣∣[c(x′)� (∂x,xH(x)− ∂x′,x′H(x′))]i,j

∣∣∣
≤ 1

2

[∑
i,j

∣∣∣[c(x)−c(x′)]2i,j
∑
i,j

[∂x,xH(x)]2i,j

] 1
2
+

1

2

[∑
i,j

[c(x′)]2i,j
∑
i,j

[∂x,xH(x)−∂x′,x′H(x′)]2i,j

] 1
2

=
1

2
‖c(x)− c(x′)‖F ‖∂x,xH(x)‖F +

1

2
‖c(x′)‖F ‖∂x,xH(x)− ∂x′,x′H(x′))‖F

≤ 1

2
(LcMH2 +McLH2)‖x− x′‖.

Since H(x) is Lipschitz continuous according to Assumption 5.3.1, two last terms in the
right-hand side of (5.3.3) are upper bounded as

r∑
j=1

λ̄j
(
LH‖x− x′ + ρ(x)erj − ρ(x′)erj‖+ LH‖x− x′‖

)
≤

r∑
j=1

λ̄j
(
LH(‖x− x′‖+ ‖ρ(x)− ρ(x′)‖F ‖erj‖) + LH‖x− x′‖

)
≤

r∑
j=1

λ̄j
(
LH(‖x− x′‖+ Lρ‖x− x′‖) + LH‖x− x′‖

)
=

r∑
j=1

λ̄j
(
2LH + LHLρ

)
‖x− x′‖.

Combining the three upper bounds completes the proof. �
Now as the first step, we formally quantify the closeness between LH(x) and its first

approximation L̂1H(x) in the following theorem.

Theorem 5.3.4. Under Assumptions 5.3.1-5.3.2 and Lemma 5.3.3, one has

|L̂1H(x)− LH(x)| ≤ ε̃1, ∀x ∈ X,

where:

ε̃1 := L1

(1

2
(Mf +Mρ

r∑
j=1

λ̄j)τ +
2

3
Mσ

√
τ
)

+
τ

2
L2L̄ν . (5.3.4)

Proof: Using Dynkin’s formula in (5.2.5) and by considering the definition of L̂1H(x)
in (5.2.6), one has

L̂1H(x) = E
[1

τ

∫ τ

0
LH(x(t))dt

]
,
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where x := x(0). By subtracting LH(x) from two sides:

L̂1H(x)− LH(x) = E
[1

τ

∫ τ

0

(
LH(x(t))− LH(x)

)
dt
]
.

Consequently,

|L̂1H(x)− LH(x)| ≤ 1

τ

∫ τ

0
E
[
|LH(x(t))− LH(x)|

]
dt.

By employing Lemma 5.3.3, one has

|L̂1H(x)− LH(x)| ≤ 1

τ

∫ τ

0
E
[
L1‖x(t)− x‖+ L2‖ν(t)− ν‖

]
dt,

with u := u(0). Since ‖ν(t)− ν(t′)‖ ≤ L̄ν |t− t′|:

|L̂1H(x)− LH(x)| ≤ L1

τ

∫ τ

0
E
[
‖x(t)− x‖

]
dt+

τ

2
L2L̄ν . (5.3.5)

Now we aim at finding an upper bound for E
[
‖x(t)−x‖

]
. Under the continuity property

of the solution process of the system, we have

x(t) = x+

∫ t

0
f(x(s), ν(s))ds+

∫ t

0
σ(x(s))dWs +

r∑
j=1

Pjt∑
i=1

ρ(xsi)erj , (5.3.6)

where Pt = [P1
t ; · · · ;Prt] is the Poisson process with r events and xsi is the solution process

of the system that jumps at times si. Then, one obtains

E
[
‖x(t)− x‖

]
= E

[
‖
∫ t

0
f(x(s), ν(s))ds+

∫ t

0
σ(x(s))dWs +

r∑
j=1

Pjt∑
i=1

ρ(xsi)erj‖
]

≤ E
[
‖
∫ t

0
f(x(s), ν(s))ds‖+ ‖

∫ t

0
σ(x(s))dWs‖+ |

r∑
j=1

Pjt∑
i=1

ρ(xsi)erj |
]
.

According to Jensen’s inequality, for any vector r ∈ Rn, E[‖r‖] ≤
√
E[rT r]. Then,

E
[
‖x(t)− x‖

]
≤
[
E
[ ∫ t

0
f(x(s), ν(s))Tds

∫ t

0
f(x(s), ν(s))ds

]] 1
2

+
[
E
[ ∫ t

0
σ(x(s))TdWT

s

∫ t

0
σ(x(s))dWs

]] 1
2

+ E
[ r∑
j=1

Pjt∑
i=1

‖ρ(xsi)‖‖erj‖
]
.

(5.3.7)
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Under Assumption 5.3.2, the first term in the right-hand side of (5.3.7) is upper bounded
by [

E
[ ∫ t

0

∫ t

0
‖f(x(s1), ν(s1))‖‖f(x(s2), ν(s2))‖ds1ds2

]] 1
2 ≤Mf t. (5.3.8)

In addition, using the multivariate version of the Itô isometry property [Oks13] and
Assumption 5.3.2, one can bound the second term in the right-hand side of (5.3.7) as[∫ t

0
E
[
‖σ(x(s))‖2F

]
ds

] 1
2

≤Mσ

√
t. (5.3.9)

Moreover,

E
[ r∑
j=1

Pjt∑
i=1

‖ρ(xsi)‖‖erj‖
]
≤ E

[ r∑
j=1

Pjt∑
i=1

Mρ

]
=Mρ

r∑
j=1

E
[
Pjt
]
≤Mρ

r∑
j=1

λ̄jt. (5.3.10)

By substituting (5.3.8)-(5.3.10) in (5.3.7), one has

E
[
‖x(t)− x‖

]
≤Mf t+Mσ

√
t+Mρ

r∑
j=1

λ̄jt. (5.3.11)

Consequently, by substituting (5.3.11) in (5.3.5), one has

|L̂1H(x)− LH(x)| ≤ L1

τ

∫ τ

0
(Mf t+Mσ

√
t+Mρ

r∑
j=1

λ̄jt)dt+
τ

2
L2L̄ν

= L1

(1

2
(Mf +Mρ

r∑
j=1

λ̄j)τ +
2

3
Mσ

√
τ
)

+
τ

2
L2L̄ν ,

which completes the proof. �

Remark 5.3.5. If input signal ν is piece-wise constant of duration τ instead of being
Lipschitz continuous, the error term contributed by ν in our setting will be zero. Accord-
ingly, the bound ε̃1 in (5.3.4) is reduced to ε̃1 := L1

(
1
2(Mf +Mρ

∑r
j=1 λ̄j)τ+ 2

3Mσ
√
τ
)
.

As the second step, we now quantify the closeness between L̂1H(x) and L̂2H(x). To
do so, we first formulate a bound on the variance of L̂2H(x) in the next theorem.

Theorem 5.3.6. Under Assumptions 5.3.1-5.3.2 and Lemma 5.3.3, the variance of
L̂2H(x) in (5.2.7) is bounded by

Var(L̂2H(x)) ≤ 1

N̂
[
α̃

τ
+

γ̃√
τ

+ θ̃], (5.3.12)

for some α̃, γ̃, θ̃ ∈ R≥0.
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Proof: Since (xiτ )N̂i=1 is N̂ i.i.d. sampled data by extracting N̂ solution processes
xiτ , i ∈ {1, . . . , N̂ }, at time τ from the same initial condition under N̂ different indepen-
dent noise realizations, we compute the variance of empirical mean as

Var(L̂2H(x)) =
1

τ2N̂
Var(H(xiτ )) =

1

τ2N̂

[
E[H(xiτ )2]− E[H(xiτ )]2

]
=

1

τ2N̂

[
E[H(xiτ )2]−H(x)2 − E[H(xiτ )]2 +H(x)2

]
=

1

τN̂

[E[H(xiτ )2]−H(x)2

τ

]
− 1

τN̂
[E[H(xiτ )]−H(x)][E[H(xiτ )] +H(x)]

τ

=
1

τN̂
L̂1H(x)2 − 1

τN̂
L̂1H(x)(E[H(xiτ )] +H(x)).

Similar to (5.3.4), one can also quantify the distance between L̂1H(x)2 and LH(x)2 as
|L̂1H(x)2 − LH(x)2| ≤ ε̄1, where

ε̄1 := L̄1

(1

2
(Mf +Mρ

r∑
j=1

λ̄j)τ +
2

3
Mσ

√
τ
)

+
τ

2
L̄2L̄ν ,

with

L̄1 = M̄H1Lf +MfL̄H1 +
1

2
(LcM̄H2 +McL̄H2) +

r∑
j=1

λ̄j(2L̄H + L̄HLρ),

L̄2 = M̄H1Lν ,

where B̄H1 , B̄H2 , L̄H, L̄H1 , L̄H2 are constants similar to the ones in Assumptions 5.3.1-
5.3.2 but forH(x)2. These constants can be readily obtained usingMH1 ,MH2 ,LH,LH1 ,LH2 .
Then,

Var(L̂2H(x)) ≤ 1

τN̂
(
(LH(x)2 + ε̄1)− (LH(x)− ε̄1)2MH

)
.

Accordingly, one has

Var(L̂2H(x)) ≤ α̃+ γ̃
√
τ + θ̃τ

τN̂
=

1

N̂
[
α̃

τ
+

γ̃√
τ

+ θ̃],

with α̃ satisfying |LH(x)2 − 2MHLH(x)| ≤ α̃,∀x ∈ X, and

γ̃ :=
2

3
Mσ(L̄1 + 2MHL1),

θ̃ :=
1

2
((Mf +Mρ

r∑
j=1

λ̄j)(L̄1 + 2MHL1) + (L̄2L̄ν + 2MHL2L̄ν)).

Note that α̃ can be computed using parameters of Assumptions 5.3.1-5.3.2, and this
completes the proof. �

In the next theorem, we employ Chebyshev’s inequality [SYM84] and quantify the mis-
match between approximated values of the infinitesimal generator in (5.2.6) and (5.2.7)
by providing an a-priori confidence bound.
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Theorem 5.3.7. Let L̂1H(x) and L̂2H(x) be approximations of the infinitesimal gen-
erator LH(x)(x) based on the expected value and empirical approximation as in (5.2.6)
and (5.2.7), respectively. For any β ∈ (0, 1], we have

P
{
|L̂1H(x)− L̂2H(x)| ≤ ε̃2

}
≥ 1− β, ∀x ∈ X,

with

ε̃2 :=
[ 1

βN̂
( α̃
τ

+
γ̃√
τ

+ θ̃
)] 1

2. (5.3.13)

The proof is similar to that of Theorem 5.2.11 and is omitted here.
By leveraging Theorems 5.3.4 and 5.3.7, we now propose the next theorem as our

solution to Problem 5.2.2 for the formal quantification of the closeness between the
infinitesimal generator LH(x) and its data-driven approximation L̂2H(x).

Theorem 5.3.8. Let LH(x) be the infinitesimal generator of the stochastic process x(t)
and L̂2H(x) be its approximation via the empirical mean as in (5.2.7). By employing
the results of Theorems 5.3.4 and 5.3.7, one has

P
{
|L̂2H(x)− LH(x)| ≤ ε̃

}
≥ 1− β, ∀x ∈ X,

for any β ∈ (0, 1] with ε̃ = ε̃1 + ε̃2, where ε̃1 and ε̃2 are defined in (5.3.4) and (5.3.13),
respectively.

The proof is similar to that of Theorem 5.2.12 and is omitted here.

5.3.1 Case Study: Jet Engine Compressor

To demonstrate the effectiveness of the proposed results, we apply our data-driven ap-
proaches to a nonlinear jet engine compressor [AT10]:

Σ :

[
dx1(t)
dx2(t)

]
=

[
−x2(t)− 3

2x
2
1(t)− 1

2x
3
1(t)

x1(t)− ν(t)

]
dt+

[
0.1dWt

0.1dWt

]
+

[
0.1dPt
0.1dPt

]
,

where x1 = Φ̄ − 1, x2 = Ψ̄ − Λ̄ − 2, with Φ̄, Ψ̄, Λ̄ being, respectively, the mass flow, the
pressure rise, and a constant. We assume that the model is unknown to us. In addition,
the controller is also unknown and we only have its Lipschitz constant as L̄ν = 1.12.

We fix H(x) = 0.01x2
1 + 0.02x1x2 + 0.01x2

2, and compute parameters of Assump-
tions 5.3.1-5.3.2. Then one has LH = 0.056,LH1 = 0.04,LH2 = 0,MH = 0.04,MH1 =
0.056,MH2 = 0.04. We also assume that Lf = 4.7,Lu = 1,Lc = 0,Mf = 3.08,Mc =
0.014,Mσ = 0.14, and Mρ = 0.14. We fix τ = 0.01. Then according to Theorem 5.3.4,

one can guarantee that the closeness between LH(x) and its first approximation L̂1H(x)
can be bounded by ε̃1 = 0.01, i.e.,

|L̂1H(x)− LH(x)| ≤ 0.01, ∀x ∈ X.
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Figure 5.3: Closeness ε̃, represented by ‘colour bar’, based on different ranges of the sampling
time τ and number of data N̂ . As it can be observed, for a fixed number of N̂ , the
total error ε̃ first decreases for τ ∈ [10−6, 100] and again increases for τ ∈ [100, 102].

We now proceed with computing an upper bound for the variance of L̂2H(x) according
to Theorem 5.3.6. By selecting N̂ = 105, one has Var(L̂2H(x)) ≤ 9.5 × 10−6. Now
according to Theorem 5.3.7, by taking β = 0.01, we compute the closeness between
L̂1H(x) and L̂2H(x) as ε̃2 = 0.03 with a confidence of at least 99%, i.e.,

P
{
|L̂1H(x)− L̂2H(x)| ≤ 0.03

}
≥ 0.99, ∀x ∈ X.

According to Theorem 5.3.8, we formally quantify the closeness between the infinitesimal
generator LH(x) and its approximation via the empirical mean L̂2H(x) as ε̃ = 0.04 with
a confidence of at least 99%, i.e.,

P
{
|L̂2H(x)− LH(x)| ≤ 0.04

}
≥ 0.99, ∀x ∈ X.

We fix β = 0.01 (i.e., confidence is 99%) and plot the closeness ε̃ based on different
ranges of the sampling time τ and number of data N̂ in Fig. 5.3. As it can be observed,
the closeness ε̃ between the infinitesimal generator LH(x) and its approximation L̂2H(x)
is improved by increasing the number of data N̂ . However, since ε̃ = ε̃1 + ε̃2 and the
sampling time τ appears in both ε̃1 in (5.3.4) and ε̃2 in (5.3.13), the closeness ε̃ is not
monotonic for a given confidence 1− β.

5.4 Data-Driven Verification of Unknown Discrete- and
Continuous-Time Systems

In this section, we provide a data-driven scheme for the construction of barrier certifi-
cates for the safety verification of unknown discrete- and continuous-time systems. In
our proposed settings, we first formulate our original safety problem as a robust convex
program (RCP). Since the formulated RCP is not tractable due to unknown dynamics,
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we consider a given set of data collected from the system and provide a scenario con-
vex program (SCP) corresponding to the original RCP. Accordingly, by establishing a
probabilistic closeness between the optimal value of SCP and that of RCP, we quantify
the safety guarantee of unknown systems based on the number of data and the required
level of the safety confidence. In order to establish a probabilistic relation between
optimal values of SCP and RCP, we first raise some Lipschitz continuity assumptions
over RCP’s conditions. We provide some explicit approaches to compute the required
Lipschitz constants. To demonstrate the effectiveness of the proposed results, we apply
our approaches to three physical systems with unknown dynamics: (i) continuous-time
room temperature system, (ii) continuous-time nonlinear jet engine compressor, and
(iii) discrete-time DC motor. We utilize data collected from trajectories of systems and
verify that states of unknown systems stay in some safe sets with an a-priori desired con-
fidence. A graphical representation of the structure of this section and its contributions
is illustrated in Fig. 5.4.

Robust

Convex

Program

Original

Safety

Problem

Scenario

Program

Guaranteed Probabilistic

Confidence

Theorem 5.4.5 Eq. (5.4.5) Eqs. (5.4.6), (5.4.16)

Theorems 5.4.9, 5.4.22

Convex Data

Figure 5.4: A graphical representation of the section’s structure and contributions.

In is worth mentioning that scenario-based optimization techniques have been also
used for the controller design in [CGP09]. However, the proposed results in [CGP09]
only relate optimal values of scenario and chance-constrained programs, and accordingly,
provide guarantees over chance-constrained programs. In contrast, we transfer here the
safety guarantees over the original robust program (which is the main problem in our
setting) but at the cost of taking into account the Lipschitz constant of the system, and
consequently, requiring much more sampled data. The work in [GBSV+19] proposes
a specification-based simulation metric to synthesize a controller from an abstraction
of the system which is learned from data. In contrast, we propose here a data-driven
approach to directly provide a formal guarantee over the safety of unknown systems with-
out performing any system identification. The work in [LHR+20, RHL+20] proposes an
optimization-based framework to learn control barrier functions from data for the sys-
tems with known dynamics and under the assumption of accessibility of safe trajectories
generated by an expert. Whereas in our setting, we develop data-driven approaches to
guarantee safety of systems with (partially) unknown dynamics.
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5.4.1 Discrete-Time Dynamical Systems

We consider discrete-time dynamical systems (dt-S) as defined in the following.

Definition 5.4.1. A discrete-time dynamical system (dt-S) is represented by

Σd : x(k + 1) = f(x(k)), k ∈ N, (5.4.1)

where x : N→ X is the state evolution of Σd, X ⊆ Rn is the state set of the system, and
f : X → Rn is a function characterizing the state evolution of the system. We employ
xx0(k) to denote the value of the state evolution at time k ∈ N started from an initial
condition x0 = x(0).

In the next subsection, we provide a formal definition of barrier certificates for discrete-
time dynamical systems as in (5.4.1).

5.4.2 Barrier Certificates (BC)

Definition 5.4.2. Consider a dt-S Σd, and X0, Xu ⊆ X as initial and unsafe sets,
respectively. A function B : X → R is called a barrier certificate (BC) for Σd over a
time horizon [0, T ) if there exist ψ ∈ R≥0 and γ, λ ∈ R, such that γ + ψT < λ, and

B(x) ≤ γ, ∀x ∈ X0, (5.4.2)

B(x) ≥ λ, ∀x ∈ Xu, (5.4.3)

B(f(x)) ≤ B(x) + ψ, ∀x ∈ X. (5.4.4)

Remark 5.4.3. Note that since γ+ψT < λ in Definition 5.4.2, one can readily see that
T < λ−γ

ψ , i.e., time horizon T converges to infinity once c goes to zero.

In the next definition, we present the safety problem for dt-S Σd.

Definition 5.4.4. Given a safety specification ϕ = (X0, Xu, T ), where X0, Xu ⊆ X and
T ∈ N∪{∞}, and a dt-S Σd, Σd is called safe within (in)finite time horizon T , denoted
by Σd |=T ϕ, if all trajectories of Σd started from the initial set X0 ⊆ X never reach the
unsafe set Xu ⊆ X.

We present the next theorem to show the usefulness of BC for verifying the safety of
dt-S as in Definition 5.4.4.

Theorem 5.4.5. Let Σd be a dt-S. Suppose B is a BC for Σd as in Definition 5.4.2.
Then one has xx0(k) /∈ Xu, for any x0 ∈ X0 and any k ∈ [0, T ), where T ≤ λ−γ

ψ .

Proof. According to (5.4.4), since B(x(k + 1)) − B(x(k)) ≤ ψ, one can recursively
infer that B(x(k))− B(x(0)) ≤ ψk. From (5.4.2), we have B(x(k)) ≤ γ + ψk. Now since
γ+ψT < λ, one can readily conclude that B(x(k)) < λ. From (5.4.3), one gets x(k) /∈ Xu

for any k ∈ [0, T ) which completes the proof. It is clear that if ψ is equal to zero, one
can provide the safety guarantee for an infinite time horizon. �
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In order to provide a formal guarantee for the safety of the system in (5.4.1), knowing
the precise map f is essential to check the condition (5.4.4) in Definition 5.4.2. In the
next subsection, we assume that we do not have any information about the model (i.e.,
map f) and provide a data-driven scheme for the construction of barrier certificates
using a finite set of data collected from trajectories of the system.

5.4.3 Data-Driven Construction of BC

Here, we assume that the transition map f in (5.4.1) is unknown, and we employ the
term unknown model to refer to this type of systems. The main goal is to verify the
safety of the unknown system in (5.4.1) by constructing a barrier certificate using data.
In our setting, we take two consecutive data-points from trajectories of the system as
the pair of (x(k), x(k+1)) and denote it by (x̂, f(x̂)). We also fix the structure of barrier
certificates as B(q, x) =

∑z
j=1 qjpj(x) with some user-defined (possibly nonlinear) basis

functions pj(x) and unknown coefficients q = [q1; . . . ; qz] ∈ Rz. For instance, in the case
of polynomial-type barrier certificates, basis functions pj(x) are monomials over x.

In order to enforce conditions (5.4.2)-(5.4.4) in Definition 5.4.2, we first cast our
problem as the following robust convex program (RCP):

RCP:


min
[d;Φ]

Φ,

s.t. maxj
{
gj(x, d)

}
≤ Φ, j∈{1, . . . , 4}, ∀x∈X,

d = [γ;λ;ψ; q1; . . . ; qz], Φ, γ, λ ∈ R, ψ ∈ R≥0,

(5.4.5)

where

g1(x, d) = (B(q, x)− γ)1X0(x), g2(x, d) = (−B(q, x) + λ)1Xu(x),

g3(x, d) = γ + ψT − λ− µ̂, g4(x, d) = B(q, f(x))− B(q, x)− ψ,

for some µ̂ < 0, and with 1X0(x) and 1Xu(x) being indicator functions acting on initial
and unsafe sets, respectively. Note that we employ µ̂ < 0 in condition g3 to ensure γ < λ
when ψ = 0. We denote the optimal value of RCP by Φ∗R. If Φ ≤ 0, a solution to the
RCP implies the satisfaction of conditions (5.4.2)-(5.4.4) in Definition 5.4.2.

Remark 5.4.6. Note that we modified conditions (5.4.2)-(5.4.4) of Definition 5.4.2 in
the RCP in (5.4.5) by adding Φ to their right-hand side. We accordingly defined Φ as the
objective function of the RCP. Later, we provide our solution to the safety verification
of the unknown system by establishing a probabilistic relation between the optimal value
of RCP (i.e., Φ∗R) and that of its corresponding scenario convex program (SCP) which
is defined next.

To solve the proposed RCP (5.4.5), we face two major difficulties. First, the proposed
RCP in (5.4.5) has infinitely many constraints since the state of the system lives in a
continuous set (i.e., x ∈ X). Besides, one needs to know the precise map f in order
to tackle the problem. These challenges motivate us to employ data-driven approaches
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and propose a scenario convex program of RCP. Let (x̂i)
N
i=1 denote N independent and

identically distributed (i.i.d.) data sampled within X. Instead of solving the RCP
in (5.4.5), we rather solve the following scenario convex program (SCP):

SCP:


min
[d;Φ]

Φ,

s.t. maxj
{
gj(x, d), g4(x̂i, d)

}
≤ η, j ∈ {1, 2, 3},

∀x∈X,∀x̂i∈X,∀i∈{1, . . . ,N},
d = [γ;λ;ψ; q1; . . . ; qz], Φ, γ, λ ∈ R, ψ ∈ R≥0,

(5.4.6)

where g1-g4 are the functions defined in (5.4.5). One can readily see that (5.4.6) has
constraints of the same form as in (5.4.5) only restricted to a finite number of data.
Moreover, one can substitute f(x̂i) in B(q, f(x̂i)) in g4 by measuring the unknown dt-S
after one-step evolution starting from x̂i. We denote the optimal value of SCP by Φ∗N .
One can readily see that the SCP in (5.4.6) is a linear programming in terms of unknown
decision variables.

In the next subsection, we establish a probabilistic closeness guarantee between the
optimal value of SCP (i.e., Φ∗N ) and that of RCP (i.e., Φ∗R), and accordingly, verify the
safety of unknown systems with an a-priori guaranteed confidence bound.

5.4.4 Safety Guarantee over Unknown Systems

Here, inspired by the fundamental results in [MESL14], we aim at establishing a for-
mal relation between the optimal value of SCP in (5.4.6) and that of RCP in (5.4.5).
Accordingly, we formally quantify the safety guarantee of unknown systems based on
the number of data and the required level of confidence. We state the main problem
considered in this subsection.

Problem 5.4.7. Consider a (partially) unknown dt-S Σd as in (5.4.1) and a safety
specification ϕ = (X0, Xu, T ) as in Definition 5.4.4. Construct a barrier certificate
by solving the SCP in (5.4.6) based on collected data to provide a formal guarantee
on the satisfaction of the safety specification ϕ within the time horizon T with an
a-priori confidence bound β ∈ [0, 1], i.e.,

PN
{

Σd |=T ϕ
}
≥ 1− β.

To address Problem 5.4.7, we first propose the following assumption.

Assumption 5.4.8. Suppose g4(x, d) is Lipschitz continuous with respect to x with the
Lipschitz constant Lg.

Under Assumption 5.4.8, the next theorem, inspired by [MESL14], establishes a bridge
between the optimal values of SCP in (5.4.6) and that of the original RCP in (5.4.5),
and accordingly, provides a mechanism to verify the safety of the unknown system.
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Theorem 5.4.9. Consider a (partially) unknown dt-S as in (5.4.1), and initial and
unsafe regions X0 and Xu, respectively. Let Assumption 5.4.8 hold. Consider the
corresponding SCP in (5.4.6) with its associated optimal value Φ∗N and solution d∗ =
[γ∗;λ∗;ψ∗; q∗1; . . . ; q∗z ], with an arbitrary number of samples N ∈ N≥1 and β ∈ [0, 1].
Then the following statement holds with a confidence of at least 1− β: if

Φ∗N + Lg ĝ
−1(ε) ≤ 0, (5.4.7)

with

ε ≥ I−1
r (1− β, z̄,N − z̄ + 1)), (5.4.8)

where z̄ is the number of decision variables, I is the regularized incomplete beta func-
tion [Cal10], and ĝ(r) : R≥0 → [0, 1] is a function of order rn which depends on the
sampling distribution and the geometry of the uncertainty set X, then the unknown dt-S
is safe in the sense of Theorem 5.4.5 within the time horizon λ∗−γ∗

ψ∗ .

Proof. Based on [MESL14, Theorem 3.6 and Proposition 3.8], the probabilistic dis-
tance between optimal values of RCP and SCP can be formally lower bounded as∗

PN
{

0 ≤ Φ∗R − Φ∗N ≤ LSPh̄(ε)
}
≥ 1− β, (5.4.9)

with h̄(ε) = Lg ĝ
−1(ε), where ĝ(r) : R≥0 → [0, 1] is a function of order rn which depends

on the sampling distribution and the geometry of the uncertainty set X, and LSP is a
Slater constant as defined in [MESL14, equation (5)]. Based on [MESL14, Remark 3.5],
since the original RCP in (5.4.5) can be casted as a min-max optimization problem, the
Slater constant LSP can be selected as 1. We refer the interested reader to [MESL14,
equation (5)] for more details on the formal definition of Slater point.
From (5.4.9), one can readily conclude that Φ∗N ≤ Φ∗R ≤ Φ∗N+Lg ĝ

−1(ε) with a confidence
of at least 1 − β. If Φ∗N + Lg ĝ

−1(ε) ≤ 0, then Φ∗R ≤ 0, implying the satisfaction of
conditions (5.4.2)-(5.4.4) in Definition 5.4.2 and ensuring the safety of the unknown
system within time horizon λ∗−γ∗

ψ∗ with a confidence of at least 1 − β, which completes
the proof. �

Remark 5.4.10. As discussed in [MESL14, Proposition 3.8], the function ĝ in (5.4.8)
satisfies the following inequity:

ĝ(r) ≤ P
[
Br(x)

]
, ∀r ∈ R≥0, ∀x ∈ X,

where Br(x) ⊂ X is an open ball centered at x with radius r. In the case of collecting
samples with a uniform distribution from an n-dimensional hyper-rectangle uncertainty
set, the function ĝ in (5.4.8) is computed as

ĝ(r) =
Vol(Br(x))

2nVol(X)
=

π
n
2

Γ̃(n
2

+1)
rn

2nVol(X)
=

π
n
2 rn

2nΓ̃(n2 + 1)Vol(X)
, (5.4.10)

∗One can readily verify that Φ∗R is always bigger than or equal to Φ∗N since Φ∗R is computed for
infinitely many constraints, whereas Φ∗N is computed only for finitely many of them.
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where π ≈ 3.14, Vol(·) is the volume of the set/ball, and Γ̃ is the Gamma function defined

as Γ̃(n) = (n−1)! for any positive integer n and Γ̃(n+ 1
2) = (n− 1

2)×(n− 3
2)×· · ·× 1

2×π
1
2

for any non-negative integer n. Note that 1/2n in (5.4.10) is needed for the computation
of P

[
Br(x)

]
when the sampled data are located in the corner of the uncertainty set X.

If one collects samples with a uniform distribution from a rectangle uncertainty set with
side lengths a and b, the function ĝ in (5.4.10) is reduced to ĝ(r) = πr2

4ab (cf. case studies).

Remark 5.4.11. In the case of collecting samples with a uniform distribution from an
n-dimensional hyper-sphere uncertainty set with radius R, the function ĝ in (5.4.15) is
computed as

ĝ(r) =
Rn
∫ c1

0 t
n−1

2 (1−t)−
1
2 dt + rn

∫ c2
0 t

n−1
2 (1−t)−

1
2 dt

2Rn
∫ 1

0 t
n−1

2 (1−t)−
1
2 dt

, (5.4.11)

where c1 = 1 − (2R2−r2)2

4R4 , c2 = 1 − r2

4R2 . We refer the interested readers to [KT12] for
the computation of ĝ for other shapes of uncertainty sets with different types of sample
distributions.

Since our dynamical system in this section is non-stochastic, the probabilistic confi-
dence bound in Theorem 5.4.9 is due to data collected from the system (i.e., by increasing
data, the confidence improves). If the unknown system is stochastic, then the provided
guarantee consists of two layers of probabilities: the inner layer is regarding the stochas-
ticity in the system and the outer layer is due to data similar to our setting. In this
case, one also has a confidence on the probability of satisfaction (see [CLD19]).

It is worth mentioning that the main benefit of the results in Theorem 5.4.9 compared
to system identification is that the proposed data-driven technique here is capable of
providing safety guarantees for any type of nonlinear systems which are Lipschitz con-
tinuous, whereas system identification approaches are mainly tailored to linear or some
particular classes of nonlinear systems. In addition, even if one is able to find a model
using system identification techniques, one still needs to search for a barrier certificate.
In this case, one suffers from the computational complexity in both identifying the model
as well as searching for a barrier certificate based on it.

In order to provide a safety certificate over the original unknown system via Theo-
rem 5.4.9, we propose Algorithm 1 to describe the required procedure.

Algorithm 1 Safety guarantee over unknown dt-S

1: Select a-priori N ∈ N≥1, β ∈ [0, 1] as desired
2: Compute ε as in (5.4.8)
3: Solve the SCP (5.4.6) with the desired N and obtain Φ∗N
4: If Φ∗N + Lg ĝ

−1(ε) ≤ 0, then the safety of the unknown dynamical system is guaran-
teed with a confidence of at least 1− β

5: Otherwise, one cannot judge the safety of the system, given parameters ε and β.
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To the best of our knowledge, our result is the first to provide safety verification for
unknown dynamical systems. Providing such a safety certificate using [MESL14] was
not straightforward. In particular, there is no objective function involved in searching
for barrier certificates in Definition 5.4.2. In order to utilize the results in [MESL14],
we artificially defined an objective function based on a value Φ. We then related the
optimal value of RCP (which is unknown) to that of SCP (which can be computed
by collecting data) and provided the safety certificate for the unknown system with an
a-priori confidence bound as long as Φ∗N + Lg ĝ

−1(ε) ≤ 0.

Remark 5.4.12. Note that our approach provides a much more tractable way of com-
puting barrier certificates than model-based approaches using sum-of-squares (SOS) op-
timization problem. In particular, our method is not only applicable to polynomial-type
dynamics, but also to much more complex (un)known systems in which the RCP problem
does not have even any tractable solution.

In order to check the condition (5.4.7) in Theorem 5.4.9, one needs to first compute
Lg. We propose in the next lemma an explicit way to compute Lg for the choice of
quadratic barrier certificates and linear dynamics.

Lemma 5.4.13. Consider a linear dt-S of the form x(k + 1) = Ax(k) with A ∈ Rn×n.
Assume that ‖A‖ ≤ Lf ∈ R≥0. Then Lg in Assumption 5.4.8 for a quadratic barrier
certificate of the form x>P̄ x, with a symmetric matrix P̄ ∈ Rn×n, is computed as Lg =
2h̃ρspc(P̄ )(L 2

f + 1), where ρspc is the spectral radius, and h̃ is an upper bound on the

norm of the state vector, i.e., ‖x‖ ≤ h̃ ∈ R≥0 for any x ∈ X.

Proof. For computing the Lipschitz constant of g4 with respect to x, we have

Lg = max
x∈X,‖x‖≤h̃

‖∂g4(x)

∂x
‖.

Accordingly,

Lg= max
x∈X,‖x‖≤h̃

‖2(A>P̄A− P̄ )x‖ ≤ max
x∈X,‖x‖≤h̃

‖2(A>P̄A− P̄ )‖‖x‖

≤ 2h̃(‖A>P̄A‖+ ‖P̄‖) ≤ 2h̃(‖P̄‖‖A‖2 + ‖P̄‖) ≤ 2h̃ρspc(P̄ )(L 2
f + 1).

Then Lg = 2h̃ρspc(P̄ )(L 2
f + 1), which completes the proof. �

Remark 5.4.14. Note that one needs to know an upper bound for ρspc(P̄ ) in order to
check the condition (5.4.7) in Theorem 5.4.9. The pre-assumed upper bound should be
then enforced as an additional condition while solving the SCP (5.4.6) as mentioned in
Step 3 of Algorithm 1. Note that the required conditions for enforcing ρspc(P̄ ) ≤ v̄ ∈ R>0

may result in nonlinear constraints in SCP (5.4.6). To resolve this issue, we enforce
those conditions as linear bounds on entries of matrix P̄ using Gershgorin circle theorem
[Var10] (cf. case studies).

137



5 Model-free Techniques based on Data-Driven Optimization

Remark 5.4.15. If the underlying dynamics are nonlinear in the form of (5.4.1), one
can still employ a similar reasoning as Lemma 5.4.13 and compute Lg = 2ρspc(P̄ )(MfLf+

h̃) by assuming that ‖f(x)‖ ≤ Mf ∈ R≥0, and ‖∂f(x)
∂x ‖ ≤ Lf ∈ R≥0 for any x ∈ X.

In order to compute Lg as in Lemma 5.4.13, one needs to know an upper bound for
‖A‖ which is actually the Lipschitz constant of the dynamic (i.e., Lf ) in the linear case.
To do so, one can assume the model is fully unknown and estimate the Lipschitz constant
of dynamics using a finite number of data collected from trajectories of the system as
described in the following subsection.

5.4.4.1 Estimation of Lipschitz Constant of Dynamics from Data

Here, we employ the proposed results in [WZ96] and provide the following algorithm to
estimate the Lipschitz constant of dynamics from a finite number of data collected from
the system.

Algorithm 2 Estimation of Lipschitz constant of dt-S

1: Select randomly two initial conditions x̂i, ŷi, such that ‖x̂i − ŷi‖ ≤ α̂ for any i ∈
{1, . . . , N̄ }, with α̂ ∈ R>0 being some arbitrary threshold

2: Compute the slope si as,

si =
‖f(x̂i)− f(ŷi)‖
‖x̂i − ŷi‖

, ∀i ∈ {1, . . . , N̄ },

where f(x̂i) and f(ŷi) are one step evaluations of the system started from initial
states xi and yi, respectively

3: Compute the maximum slope as ψ̄ = max{s1, . . . , sN̄ }
4: Repeat Steps 1-3 M̄ times and acquire ψ̄1, . . . , ψ̄M̄
5: Apply Reverse Weibull distribution [WZ96] to ψ̄1, . . . , ψ̄M̄ , which gives us so-called

location, scale, and shape parameters
6: The obtained location parameter is the estimated Lipschitz constant of dt-S

By employing Algorithm 2, the following lemma, borrowed from [WZ96], ensures the
convergence of the estimated Lipschitz constant to its actual value in the limit.

Lemma 5.4.16. Let Σd be a dt-S with an unknown transition map f . By employing
Algorithm 2, the estimated Lipschitz constant Lf for Σd converges to its actual value if
and only if α̂ goes to zero and N̄ ,M̄ go to infinity.

Remark 5.4.17. Note that we do not consider any confidence bound for the estimation
of the Lipschitz constant in the setting of our work. Instead, we pick α̂ very small and
N̄ ,M̄ very big such that one can get a good approximation for the Lipschitz constant.
In the case study section, we show that our estimated value for the Lipschitz constant of
the system is almost the same as its actual value.
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In the next subsections, we tailor the previous results for continuous-time dynamical
systems.

5.4.5 Continuous-Time Dynamical Systems

We consider continuous-time dynamical systems (ct-S) as formalized in the following
definition.

Definition 5.4.18. A continuous-time dynamical system (ct-S) described as

Σc : ẋ(t) = f(x(t)), (5.4.12)

where x : R≥0 → X is the state trajectory of Σc, X ⊆ Rn is the state set of the system,
and f : X → Rn is the vector field. We employ xx0(t) to denote the value of the state
trajectory at time t ∈ R≥0 under the initial condition x0 = x(0). In order to ensure the
existence and uniqueness of the state trajectory, we consider some regularity assumptions
on vector field f as discussed in [Son98].

We present the notion of barrier certificates (BC) for ct-S in (5.4.12) in the following
definition.

Definition 5.4.19. Consider a ct-S Σc in (5.4.12), and X0, Xu ⊆ X as, respectively,
initial and unsafe sets of the system. A continuously differentiable function B : X → R
is called a barrier certificate (BC) for Σc if there exist ψ ∈ R≥0 and γ, λ ∈ R, with
γ + ψT < λ, such that conditions (5.4.2), (5.4.3) are satisfied, and

LfB(x) ≤ ψ, ∀x ∈ X, (5.4.13)

where LfB is the Lie derivative of B : X → R with respect to the vector field f , and is
defined as

LfB(x) = ∂xB(x)f(x). (5.4.14)

We similarly recast conditions of the barrier certificate as the proposed RCP in (5.4.5),
where

g4(x, d) = LfB(q, x)− ψ. (5.4.15)

Similar to the first part of this section, we employ the proposed SCP in (5.4.6) instead
of solving the RCP in (5.4.5). Although the infinitely many constraints in (5.4.5) are
converted to finitely many in SCP (5.4.6) by using the collected data, one still needs to
know the map f to enforce condition g4. Note that condition g4 in (5.4.15) cannot be
directly acquired from collected data based on f(x̂i). To tackle this issue, inspired by
the previous sections, we approximate the Lie derivative of B with respect to f (i.e.,
LfB(q, x)) appeared in g4 as

L̂fB(q, x) :=
B(q, xτ )− B(q, x)

τ
, ∀x ∈ X, (5.4.16)
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where xτ is the solution of the unknown system after τ ∈ R>0 units of time starting
from x. The proposed approximation in (5.4.16) satisfies the following inequality

|L̂fB(q, x)− LfB(q, x)| ≤ ε̃, ∀x ∈ X,

where ε̃ is a positive constant and is formally quantified later in Subsection 5.2.2. Now,
we propose another version of the SCP (5.4.6) as

SCPε̃ :


min
[d;Φ]

Φ,

s.t. max
{
gj(x̂i, d), ḡ4(x̂i, d, ε̃)

}
≤Φ, j∈{1, 2, 3}, ∀i ∈ {1, . . . ,N},

d = [γ;λ;ψ; q1; . . . ; qz], Φ, γ, λ ∈ R, ψ, ε̃ ∈ R≥0,

(5.4.17)

where ḡ4(x̂i, d, ε̃) = L̂fB(q, x̂i)− ψ + ε̃.
We now state the main problem that we plan to solve in this subsection.

Problem 5.4.20. Consider a (partially) unknown ct-S Σc as in (5.4.12) and a safety
specification ϕ = (X0, Xu, T ) as in Definition 5.4.4. Construct a barrier function by
solving the SCPε̃ in (5.4.17) based on collected data to provide a formal guarantee on
the satisfaction of the safety specification ϕ within the time horizon T with an a-priori
confidence bound β ∈ [0, 1], i.e.,

PN
{

Σc |=T ϕ
}
≥ 1− β.

To address Problem 5.4.20, we propose the next theorem which establishes a bridge
between optimal values of SCPε̃ in (5.4.17) and that of original RCP in (5.4.5), and
accordingly verifies the safety of the unknown system with an a-priori confidence bound.

Theorem 5.4.21. Consider an unknown ct-S as in (5.4.12), and initial and unsafe
regions X0 and Xu, respectively. Let Assumption 5.4.8 hold with g4 as in (5.4.15).
Consider the corresponding SCPε̃ in (5.4.17) with its associated optimal value Φ∗N and
solution d∗ = [γ∗;λ∗;ψ∗; q∗1; . . . ; q∗z ], with an arbitrary number of samples N ∈ N≥1 and
β ∈ [0, 1]. Then the following statement holds with a confidence of at least 1− β: if

Φ∗N + Lg ĝ
−1(ε) ≤ 0,

with ε as in (5.4.8), and ĝ(r) : R≥0 → [0, 1] being a function of order rn which depends on
the sampling distribution and the geometry of the uncertainty set X, then the unknown
ct-S in (5.4.12) is safe in the sense of Theorem 5.4.5 (but in the continuous-time setting)
within the time horizon λ∗−γ∗

ψ∗ .

The proof of Theorem 5.4.21 is similar to that of Theorem 5.4.9 and is omitted here.
Similar to Lemma 5.4.13, we propose in the next lemma an explicit way to compute

Lg for ct-S for the choice of quadratic barrier certificates and linear dynamics.

Lemma 5.4.22. For a linear ct-S ẋ(t) = Ax(t) with A ∈ Rn×n, let the matrix A be
bounded as ‖A‖ ≤ Lf , where Lf is the Lipschitz constant of the system as in (5.2.3).
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Then Lg for a quadratic barrier certificate of the form x>P̄ x, with a symmetric matrix
P̄ ∈ Rn×n, is computed as Lg=4h̃ρspc(P̄ )Lf , where ρspc is the spectral radius, and h̃ is
an upper bound on the norm of the state vector, i.e., ‖x‖ ≤ h̃ ∈ R≥0 for any x ∈ X.

Proof. For g4, we have

Lg :

{
max
x∈X

‖∂g4(x)
∂x ‖,

s.t. ‖x‖ ≤ h̃.

Accordingly,

Lg = max
x∈X,‖x‖≤h̃

‖2(P̄A+A>P̄ )x‖ ≤ max
x∈X,‖x‖≤h̃

‖2(P̄A+A>P̄ )‖‖x‖

≤ 4h̃‖P̄‖‖A‖ ≤ 4h̃ρspc(P̄ )Lf ,

which completes the proof. �

Remark 5.4.23. If the underlying dynamics are nonlinear in the form of (5.4.12),
one can still employ a similar reasoning as in Lemma 5.4.22 and compute the Lipschitz
constant as Lg = 2ρspc(P̄ )(Mf + h̃Lf ) by assuming that ‖f(x)‖ ≤ Mf ∈ R≥0, and

‖∂f(x)
∂x ‖ ≤ Lf ∈ R≥0 for any x ∈ X.

In the next subsection, we formally approximate the Lie derivative of the system (5.4.12)
(i.e., LfB(q, x)) by L̂fB(q, x) by providing its quantified closeness as ε̃.

5.4.5.1 Formal Approximation of Lie Derivative

In order to quantify the formal closeness between LfB(q, x) and its approximation

L̂fB(q, x), we assume that vector field f and ∂xB(q, x) are Lipschitz continuous and
bounded as

‖f(x)− f(x′)‖ ≤ Lf‖x− x′‖, ‖∂xB(q, x)− ∂x′B(q, x′)‖ ≤ LB1‖x− x′‖, (5.4.18)

‖f(x)‖ ≤ Mf , ‖∂xB(q, x)‖ ≤ MB1 . (5.4.19)

Remark 5.4.24. Since the structure of the barrier is considered as a linear combina-
tion of known basis functions, one can a-priori select LB1 and MB1 as some arbitrary
numbers and enforce their corresponding conditions in (5.4.18) and (5.4.19) as some
additional constraints while solving SCPε̃ (5.4.17) (cf. case studies).

We now employ (5.4.18),(5.4.19) and propose the next lemma to show that LfB(q, x)
is also Lipschitz continuous.

Lemma 5.4.25. Under conditions (5.4.18),(5.4.19), LfB(q, x) is Lipschitz continuous
with a Lipschitz constant L as:

|LfB(q, x)− LfB(q, x′)| ≤ L ‖x− x′‖, ∀x, x′ ∈ X,

where L =MB1Lf +MfLB1.
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Proof. Using the definition of LfB(q, x) in (5.4.14), we have

|LfB(q, x)−LfB(q, x′)| ≤ |∂xB(q, x)f(x)−∂′xB(q, x′)f(x′)|.

By employing the following known inequality

|A>B− C>D| ≤ ‖A‖‖B−D‖+ ‖D‖‖A− C‖,

for all A,B,C,D ∈ Rn, one has

|LfB(q, x)− LfB(q, x′)| ≤ ‖∂xB(q, x)‖‖f(x)− f(x′)‖+ ‖f(x′)‖‖∂xB(q, x)− ∂x′B(q, x′)‖.

By employing conditions (5.4.18),(5.4.19), one gets

|LfB(q, x)− LfB(q, x′)| ≤ MB1Lf‖x− x′‖+MfLB1‖x− x′‖
= (MB1Lf +MfLB1)‖x− x′‖=L ‖x− x′‖,

which completes the proof. �
Now all the ingredients are ready to formally quantify the closeness between LfB(q, x)

and its approximation L̂fB(q, x) as proposed in the following theorem.

Theorem 5.4.26. Let LfB(q, x) be the Lie derivative of B with respect to f and L̂fB(q, x)
be its approximation as in (5.4.16). Under conditions (5.4.18),(5.4.19), and using Lemma 5.4.25,
one has

|L̂fB(q, x)− LfB(q, x)| ≤ 1

2
τLMf , ∀x ∈ X,

where τ is the sampling time, and L =MB1Lf +MfLB1.

Proof. Since xτ is the solution of the model after τ units of time starting from x, one
has

B(q, xτ ) = B(q, x) +

∫ τ

0
LfB(q, xt)dt. (5.4.20)

Considering the approximation L̂fB(q, x) as in (5.4.16) and by employing (5.4.20), one
has

L̂fB(q, x) =
1

τ

∫ τ

0
LfB(q, xt)dt.

By subtracting LfB(q, x) from both sides of the equality, we have

L̂fB(q, x)− LfB(q, x) =
1

τ

∫ τ

0

(
LfB(q, xt)− LfB(q, x)

)
dt.

Consequently,

|L̂fB(q, x)− LfB(q, x)|≤ 1

τ

∫ τ

0
|LfB(q, xt)− LfB(q, x)|dt.
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By employing Lemma 5.4.25, one gets

|L̂fB(q, x)− LfB(q, x)| ≤ 1

τ

∫ τ

0
L ‖xt − x‖dt =

L

τ

∫ τ

0
‖xt − x‖dt.

Now we aim at finding an upper bound for ‖xt − x‖. Under the continuity property of
the solution process of the system, we have

xt = x+

∫ t

0
f(xs)ds.

Then, using Cauchy–Schwarz inequality, one has

‖xt − x‖ = ‖
∫ t

0
f(xs)ds‖=

[ ∫ t

0
f(xs)

>ds

∫ t

0
f(xs)ds

] 1
2

=
[ ∫ t

0

∫ t

0
f(xs1)>f(xs2)ds1ds2

] 1
2

≤
[ ∫ t

0

∫ t

0
‖f(xs1)‖‖f(xs2)‖ds1ds2

] 1
2
.

Under condition (5.4.19), we obtain

‖xt − x‖ ≤
∫ t

0
Mfds =Mf t.

Consequently, one has

|L̂fB(q, x)− LfB(q, x)| ≤ L

τ

∫ τ

0
Mf tdt =

1

2
τLMf ,

which completes the proof. �
As seen in Theorem 5.4.26, one can control the closeness error between LfB(q, x) and

its approximation L̂fB(q, x̂i) by picking a small sampling time τ . This is also better for
the precision of the approximation since a smaller sampling time provides a more precise
approximation. We employ the following room temperature example to elaborate more
on this issue.

Room temperature. Consider a temperature regulation of a room with a model
borrowed from [GGM16]. The evolution of the temperature T (·) can be described by
the following ct-S

Σc : Ṫ (t) = −θ̂T (t) + θ̂Te, (5.4.21)

where θ̂ = 0.005 and Te = −20 ◦C.
We fix a quadratic barrier certificate of the form B(q, T ) = T 2 + 2T − 1. Accordingly,

one has

LfB(q, T ) = (2T + 2)(−θ̂T (t) + θ̂Te), (5.4.22)

which is independent of the sampling time. The approximation of the Lie derivative in
our setting based on (5.4.16) is L̂fB(q, T ) = B(q,Tτ )−B(q,T )

τ . If the model in (5.4.21) is
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Figure 5.5: Exact LfB(q, T ) and its approximation L̂fB(q, T ) for different ranges of sampling
time and 4 different initial conditions.

known, its state trajectory is obtained as Te−θ̂τ − Te(e−θ̂τ − 1). Then the approximate
Lie derivative can be computed as

L̂fB(q, T ) =
(
T 2(e−2θ̂τ−1)+2T (e−θ̂τ−1)+T 2

e (e−θ̂τ−1)2

− 2Te(e
−θ̂τ−1)−2TeTe

−θ̂τ (e−θ̂τ−1)
)
/τ. (5.4.23)

It can be readily shown that L̂fB(q, T ) in (5.4.23) converges to LfB(q, T ) in (5.4.22)
if the sampling time τ goes to zero. Since the model in our setting is unknown, we
instead collect data and estimate L̂fB(q, T ) via (5.4.16). The exact Lie derivative and
its approximation via collected data for different ranges of the sampling time starting
from 4 different initial conditions are plotted in Figure 5.5. As can be observed, the
approximate L̂fB(q, T ) converges to the exact LfB(q, T ) for all initial conditions when
the sampling time goes to zero.

Remark 5.4.27. Although a smaller sampling time provides a smaller closeness error,
we do not consider the numerical error originating from finite-precision computations
in different computing platforms. In practice, this numerical precision imposes a lower
bound over the sampling time and does not allow it to be very small.

In order to provide the closeness between LfB(q, x) and its approximation L̂fB(q, x)
as in Theorem 5.4.26, the Lipschitz constant of the system Lf is needed (cf. Assump-
tion 5.2.4). One can assume the model is fully unknown and instead estimate the Lips-
chitz constant of dynamics from collected data as described in Algorithm 2 with

si =
‖ (x̂τi−x̂0i

) − (ŷτi−ŷ0i
)

τ ‖
‖x̂0i − ŷ0i‖

, ∀i ∈ {1, . . . , N̄ }.

Remark 5.4.28. It is worth mentioning that we presented our results in this section for
deterministic dynamical systems for the sake of providing a clearer presentation. How-
ever, our results here can be readily extended to nondeterministic dynamical systems
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with dynamics x(k + 1) = f(x(k), w(k)) (resp. ẋ(t) = f(x(t), w(t))), where w(k) ∈ W
(resp. w(t) ∈ W ) is a bounded disturbance with W ⊆ Rp̄ being the disturbance set. In
this case, the sample space is expanded to X ×W , and accordingly, ĝ(r) is a functions
of rn+p̄, where p̄ is the dimension of the disturbance set. In addition, g4 in Assump-
tion 5.4.8 should be Lipschitz continuous with respect to both x and w which requires the
re-computation of Lg in Lemma 5.4.13 and Remark 5.4.15 (resp. Lemma 5.4.22 and
Remark 5.4.23 in the continuous-time setting).

5.4.6 Case Studies

To illustrate the effectiveness of our proposed results, we first apply our results to the
continuous-time room temperature system in (5.4.21). We verify that the temperature
of the room with unknown dynamics maintains in a comfort zone with some desirable
confidence by collecting data sampled from trajectories of the system. To show the
applicability of our techniques to higher dimensional systems with nonlinear dynamics,
we then apply our results to a continuous-time nonlinear jet engine compressor and a
discrete-time DC motor. In all three case studies, we collect data from trajectories of
unknown systems with a uniform distribution.

5.4.6.1 Continuous-Time Case

Room Temperature. Consider the room temperature system in (5.4.21). The regions
of interest here are X = [17, 20], X0 = [17, 18], and Xu = [19, 20]. We assume that the
model is unknown to us. The main goal is to construct a BC via data collected from tra-
jectories of the system by solving SCPε̃ (5.4.17) and accordingly verify if the temperature
of the room stays within the comfort zone [17, 19] according to Theorem 5.4.21.

We first fix the structure of our barrier certificate as B(q, x) = q1x
2 +q2x+q3. We now

follow Algorithm 1 in order to utilize the results of Theorem 5.4.9. We first fix N = 1005
and β = 10−7, a-priori. Now we need to compute Lg which is required for checking the
condition (5.4.7) in Theorem 5.4.9. Since the Lipschitz constant Lf is required for
computing Lg according to Lemma 5.4.13, we employ Algorithm 2 to estimate it from
sampled data. By considering N̄ = M̄ = 1000 and α̂ = τ = 0.01, we get Lf =
0.005 which is exactly equal to the Lipschitz constant of the actual dynamic. We now
construct matrix P based on coefficients of the barrier certificate. By considering each
coefficient of the barrier between [−0.2, 0.2], we ensure that ρspc(P ) ≤ 0.4 as discussed in
Remark 5.4.14 and, accordingly, Lg = 12. Given that the number of decision variables
affects ε in (5.4.8), we fix ψ = 0 a-priori to enforce the safety property for an infinite
time horizon (decision variables now are reduced to 6). We now compute ε in (5.4.8) as
ε = 0.0278.

Now we need to compute ε̃ as in Theorem 5.4.26 which is required for solving the
SCPε̃ (5.4.17) (i.e., condition ḡ4). We assume Mf is given to us as 0.2. By employing
ranges of coefficients of the barrier, we computeMB1 ≤ 8.2 and LB1 ≤ 0.4. By selecting

τ = 0.01, the closeness between LfB(q, x) and L̂fB(q, x) is computed as ε̃ = 1.21×10−4.
Note that considering coefficients of barriers within [−0.2, 0.2] enforces the additional
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Figure 5.6: Barrier certificate of unknown room temperature model. Note that the barrier
certificate is quadratic and only a small segment of this function between [17, 20] is
plotted here.

conditions as

−0.2 ≤ q1, q2, q3 ≤ 0.2, (5.4.24)

that should be enforced in solving SCPε̃ (5.4.17) as discussed in Remark 5.4.24. We now
solve the SCPε̃ (5.4.17) with N = 1005, ε̃ = 1.21 × 10−4, and the additional conditions
in (5.4.24). Coefficients of the barrier certificate together with other decision variables
of SCPε̃ are computed as

B(q, x) = 0.2x2 + 0.2x+ 0.2,Φ∗N = −1.2952, γ∗ = 71.6191, λ∗ = 74.9146.

We now compute ĝ(ε) according to Remark 5.4.10 as ĝ(ε) = ε
3 . Since Φ∗N + Lg ĝ

−1(ε) =
−0.2960 ≤ 0, according to Theorem 5.4.21, one can guarantee that the temperature of
the room with unknown dynamics remains in the safe set [17, 19] for an infinite time
horizon with a confidence of at least 1−β = 1−10−7. The constructed barrier certificate
from data is illustrated in Figure 5.6.

In order to have a practical analysis on the required number of collected data in Theo-
rem 5.4.9, we plotted in Figure 5.7 the required number of data in terms of the threshold
ε and the confidence β based on (5.4.8) for the room temperature problem. As it can
be observed, the required number of data decreases by increasing either the threshold ε
or the confidence β. However, in practice, one needs to select β as small as possible to
provide a reasonable safety confidence (i.e., 1 − β) over the original unknown system.
Besides, in order to ensure the safety of the unknown system with some confidence, con-
dition Φ∗N + Lg ĝ

−1(ε) ≤ 0 needs to hold. Consequently, selecting a smaller ε allows for
larger optimal value Φ∗N , and hence, conditions on the barrier certificates become more
relaxed but at the cost of solving the SCPε̃ in (5.4.17) with a higher number of data as
illustrated in Figure 5.7.
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It is worth mentioning that by increasing the degree of BC, there is a higher chance
of satisfying conditions g1-g4 but at the cost of considering a bigger ε in (5.4.8) given
that the number of decision variables z̄ also increases.

Figure 5.7: Required number of data, represented by ‘colour bar’, in terms of the threshold ε
and the confidence β. Plot is in the logarithmic scale for Lg = 12 and 6 decision
variables. The required number of data decreases by increasing either the threshold
ε or the confidence β.

Jet Engine. Consider the following nonlinear Moore-Greitzer jet engine model in
no-stall mode [ZMEAL13]:

Σc :

[
ẋ1(t)
ẋ2(t)

]
=

[
−x2(t)− 3

2x
2
1(t)− 1

2x
3
1(t)

x1(t)

]
,

where x1 = Φ̄ − 1, x2 = Ψ̄ − Λ̄ − 2, with Φ̄, Ψ̄, Λ̄ being, respectively, the mass flow,
the pressure rise, and a constant. The regions of interest here are X = [0.1, 1]2, X0 =
[0.1, 0.5]2, and Xu = [0.7, 1]2. We assume that the model is unknown. The main goal is to
construct a BC via data collected from trajectories of the system by solving SCPε̃ (5.4.17)
and accordingly verify if x(t) ∈ [0.1, 0.7)2 for some time t according to Theorem 5.4.21.

We fix the structure of our barrier function as B(q, x) = q1x1 + q2x1x2 + q3x2 + q4.
We also fix N = 257149 and β = 0.01, a-priori. By employing Algorithm 2, we estimate
Lf = 12.083. We assumeMf is given to us asMf = 12.1655. By constructing matrix P
and considering each coefficient of the barrier between [−0.4, 0.4], we compute ρspc(P ) ≤
0.6, and accordingly, Lg = 55.6098. We fix λ = 3.1 and ψ = 0 a-priori, to reduce the
number of decision variables to 5. We now compute ε in (5.4.8) as ε = 4.5127 × 10−5.
Now we need to compute ε̃ as in Theorem 5.4.26. By considering ranges of coefficients
of barriers between [−0.4, 0.4], we compute MB1 ≤ 3.3941 and LB1 ≤ 1.2649. By

selecting τ = 10−5, the closeness between LfB(q, x) and L̂fB(q, x) is computed as ε̃ =
3.4306×10−4. We now solve the SCPε̃ (5.4.17) with N = 257149, ε̃ = 3.4306×10−4, and
the additional conditions −0.4 ≤ q1, q2, q3 ≤ 0.4. Coefficients of the barrier certificate
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together with decision variables in SCPε̃ are computed as

B(q, x) = 0.4x1 + 0.4x1x2 − 0.0728x2 + 2.7288,Φ∗N = −0.0552, γ∗ = 3.0455.

We now compute ĝ(ε) according to Remark 5.4.10 as ĝ(ε) = π
3.24ε

2. Since Φ∗N +
Lg ĝ

−1(ε) = −2 × 10−4 ≤ 0, according to Theorem 5.4.21, one can guarantee that
x(t) ∈ [0.1, 0.7)2 for all t ∈ R≥0 with a confidence of at least 1− β = 99%.

Satisfaction of conditions (5.4.2)-(5.4.3) and (5.4.13) via constructed barrier certificate
from data is illustrated in Figures 5.8 and 5.9. As observed in Figure 5.8, the initial
set X0 = [0.1, 0.5]2 is inside the γ-level set of the barrier certificate (i.e., B(q, x) = γ)
and the unsafe set Xu = [0.7, 1]2 is outside the λ-level set of the barrier certificate (i.e.,
B(q, x) = λ). Moreover, in Figure 5.9, condition (5.4.13) is non-positive for all ranges of
x1 ∈ [0.1, 1] and x2 ∈ [0.1, 1].

Figure 5.8: Jet engine: Satisfaction of conditions (5.4.2)-(5.4.3). Initial set is inside the γ-level
set of the barrier certificate (i.e., B(q, x) = γ) and the unsafe set is outside the
λ-level set of the barrier certificate (i.e., B(q, x) = λ).

5.4.6.2 Discrete-Time Case

DC Motor. Our third case study is a discrete-time DC motor adapted from [Ade13]
as follows:

x1(k + 1) = x1(k) + τ
(−R̄
L̄
x1(k)− kdc

L̄
x2(k)

)
,

x2(k + 1) = x2(k) + τ
(kdc
J̄
x1(k)− b

J̄
x2(k)

)
,

where x1, x2, R̄ = 1, L̄ = 0.5, and J̄ = 0.01 are the armature current, the rotational speed
of the shaft, the electric resistance, the electric inductance, and the moment of inertia of
the rotor, respectively. In addition, τ = 0.01, b = 0.1, and Kdc = 0.01 which represents
both the motor torque and the back electromotive force. The regions of interest here are
X = [0.1, 0.5] × [0.1, 1], X0 = [0.1, 0.4] × [0.1, 0.55], and Xu = [0.45, 0.5] × [0.6, 1]. We
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Figure 5.9: Jet engine: Satisfaction of condition (5.4.13). This condition is non-positive for all
ranges of x1 ∈ [0.1, 1] and x2 ∈ [0.1, 1].

assume that the model is unknown. The main goal is to construct a BC via collected
data by solving SCP (5.4.6) and accordingly verify if x ∈ [0.1, 0.45)× [0.1, 0.6) based on
Theorem 5.4.9 for infinite time horizons.

We fix the structure of our barrier function as B(q, x) = q1x
2
1 + q2x1x2 + q3x

2
2 + q4.

We follow Algorithm 1 in order to utilize the results of Theorem 5.4.9. We first fix
N = 82821 and β = 0.05, a-priori. Now we employ Algorithm 2 and estimate Lipschitz
constant of the system as Lf ≤ 1. Let Mf be given to us as Mf ≤ 1. By constructing
matrix P and considering each coefficient of the barrier within [−0.5, 0.5], we compute
ρspc(P ) ≤ 1, and accordingly, Lg = 1.67. We fix ψ = 0 a-priori, to reduce the number
of decision variables to 7. We now compute ε in (5.4.8) as ε = 1.76 × 10−4. We then
solve the SCP (5.4.6) with N = 82821 and compute coefficients of the barrier certificate
together with other decision variables as

B(q, x) = 0.5x2
1 + 0.5x1x2 + 0.5x2

2 + 0.5,Φ∗N = −0.0155, γ = 0.8882, λ = 0.9035.

We now compute ĝ(ε) according to Remark 5.4.10 as ĝ(ε) = π
1.44ε

2. Since Φ∗N +
Lg ĝ

−1(ε) = −5 × 10−4 ≤ 0, according to Theorem 5.4.9, one can guarantee that
x(k) ∈ x ∈ [0.1, 0.45)× [0.1, 0.6) for all t ∈ R≥0 with a confidence of at least 1−β = 95%.

Satisfaction of conditions (5.4.2)-(5.4.4) via constructed barrier certificate from data
is illustrated in Figures 5.10 and 5.11.

5.5 Data-Driven Controller Synthesis of Unknown Nonlinear
Polynomial Systems

In this section, we propose a data-driven approach to synthesize safety controllers for
continuous-time nonlinear polynomial-type systems with unknown models. In our pro-
posed framework, we leverage control barrier certificates constructed from data and
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Figure 5.10: DC motor: Satisfaction of conditions (5.4.2)-(5.4.3). As seen, the initial set is
inside the γ-level set of the barrier certificate (i.e., B(q, x) = γ) and the unsafe
set is outside the λ-level set of the barrier certificate (i.e., B(q, x) = λ).

Figure 5.11: DC motor: Satisfaction of condition (5.4.4). As observed, the condition is non-
positive for all ranges of x1 ∈ [0.1, 0.5] and x2 ∈ [0.1, 1].

provide guaranteed confidence of 1 on the safety of unknown systems. Under a cer-
tain rank condition, which is closely related to the condition of persistency of excita-
tion [WRMDM05], we synthesize polynomial-type state-feedback controllers to ensure
the safety of unknown systems only by using a single trajectory collected from systems.
To illustrate the effectiveness of our proposed approaches, we apply them to a nonlinear
polynomial system with unknown dynamics.

5.5.1 Continuous-Time Nonlinear Polynomial Systems

Here, we consider continuous-time nonlinear polynomial systems (ct-NPS) as formalized
in the following definition.
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Definition 5.5.1. A continuous-time nonlinear polynomial system (ct-NPS) is described
by

Σ: ẋ = AM̃(x) +Bν, (5.5.1)

where A ∈ Rn×Ñ , B ∈ Rn×m̄, M̃(x) ∈ RÑ is a vector of monomials in state x ∈ X, and
ν ∈ U is the control input, with X ⊂ Rn and U ⊂ Rm̄ being the state and input sets,
respectively.

We assume that matrices A,B are both unknown and we employ the term unknown
model to refer to this type of systems in (5.5.1). With this definition in hand, we now
state the main problem that we aim to solve in this section.

Problem 5.5.2. Consider a ct-NPS in (5.5.1) with unknown matrices A,B, and an
initial and unsafe sets X0, Xu ⊂ X, respectively. Synthesize a matrix polynomial F̃ (x)
such that controller ν = F̃ (x)M̃(x) makes the unknown ct-NPS (5.5.1) safe in the
sense that its trajectories starting from X0 never reach Xu.

In order to address Problem 5.5.2, we present a definition of control barrier certificates
for ct-NPS in the next subsection.

5.5.2 Control Barrier Certificates (CBC)

Definition 5.5.3. Consider the ct-NPS Σ, and X0, Xu ⊆ X as its initial and unsafe
sets, respectively. A function B : X → R is called a control barrier certificate (CBC) for
Σ if there exist γ, λ ∈ R>0, with λ > γ, such that

B(x) ≤ γ, ∀x ∈ X0, (5.5.2)

B(x) ≥ λ, ∀x ∈ Xu, (5.5.3)

and ∀x ∈ X,∃ν ∈ U , such that

LB(x) ≤ 0, (5.5.4)

where LB is the Lie derivative of B : X → R with respect to dynamics as in (5.5.1),
which is defined as

LB(x) = ∂xB(x)(AM̃(x) +Bν), (5.5.5)

with ∂xB(x) =
[∂B(x)
∂xi

]
i
.

We denote by xx0ν(t) the state of Σ reached at time t ∈ R≥0 under an input ν and
from an initial condition x0 = x(0). Inspired by [PJ04], we present the next theorem
showing how to use CBC to ensure that the state evolution of Σ starting from any initial
state in X0 will never reach the unsafe region Xu for an infinite time horizon.

Theorem 5.5.4. Consider a ct-NPS Σ. Suppose B is a CBC for Σ as in Definition 5.5.3.
Then, one gets xx0ν(t) /∈ Xu for any x0 ∈ X0 and any t ∈ R≥0, where the control input
ν is chosen in a way that (5.5.4) holds.
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5.5.3 Data-Driven Synthesis of Safety Controller

Here, we propose our data-driven approach to synthesize safety controllers for unknown
ct-NPS in (5.5.1). To do so, we first fix the structure of our CBC to be quadratic in the
form of B(x) = M̃(x)>P̄M̃(x), with P̄ � 0. We then collect input-output data from
unknown ct-NPS over the time interval [t0, t0 + (T̃ − 1)τ ], where T̃ ∈ N>0 is the number
of collected samples, and τ ∈ R>0 is the sampling time:

U0,T̃ = [ν(t0) ν(t0 + τ) . . . ν(t0 + (T̃ − 1)τ)], (5.5.6)

X0,T̃ = [x(t0) x(t0 + τ) . . . x(t0 + (T̃ − 1)τ)], (5.5.7)

X1,T̃ = [ẋ(t0) ẋ(t0 + τ) . . . ẋ(t0 + (T̃ − 1)τ)]. (5.5.8)

Remark 5.5.5. Note that X1,T̃ contains derivatives of the state at sampling times, which
are in general not available as measurements. In order to tackle this issue, one can
use appropriate filters for the approximation of derivatives via the available approaches
proposed in the relevant literature (e.g., [LMS08, PA15]).

Inspired by [GDPT20], we present the following lemma to obtain data-based represen-
tation of closed-loop ct-NPS (5.5.1) with polynomial controllers ν = F̃ (x)M̃(x), where
F̃ (x) is a matrix polynomial, which will be synthesized.

Lemma 5.5.6. Let matrix Q(x) be a (T̃ × Ñ) matrix polynomial such that

IÑ = N0,T̃Q(x),

with

Ñ0,T̃ = [M̃(x(t0)) M̃(x(t0 + τ)) . . . M̃(x(t0 + (T̃ − 1)τ))]

being an (Ñ × T̃ ) full row-rank matrix, constructed from the vector M̃(x) and samples
X0,T̃ . If one sets ν = F̃ (x)M̃(x) = U0,T̃Q(x)M̃(x), then the closed-loop system ẋ =

AM̃(x) +Bν has the following data-based representation:

ẋ = X1,T̃Q(x)M̃(x), equivalently, A+BF̃ = X1,T̃Q(x).

Proof. Since F̃ (x) = U0,T̃Q(x), the closed-loop ct-NPS can be written as

(A+BF̃ (x))M̃(x)=[B A]

[
F̃ (x)
IÑ

]
M̃(x)=[B A]

[
U0,T̃

Ñ0,T̃

]
Q(x)M̃(x)=X1,T̃Q(x)M̃(x),

with X1,T̃ = [B A]

[
U0,T̃

Ñ0,T̃

]
and U0,T̃ as in (5.5.6). Hence, ẋ = X1,T̃Q(x)M̃(x), equiva-

lently, A+BÑF = X1,T̃Q(x) is the data-based representation of the closed-loop ct-NPS,
which completes the proof. �
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Remark 5.5.7. Note that in order to enforce Ñ0,T̃ to be full row rank, the number of

samples T̃ should be at least Ñ . Since the matrix Ñ0,T̃ is constructed from sampled data,
this assumption is readily verifiable.

By employing the data-based representation in Lemma 5.5.6, we propose the following
theorem, as the main result of this section, to construct a CBC from data and synthesize
the control gain F̃ (x) making the unknown ct-NPS in (5.5.1) safe.

Theorem 5.5.8. Consider an unknown ct-NPS Σ as in (5.5.1), i.e., ẋ = AM̃(x) +Bν,
with its data-based representation ẋ = X1,T̃Q(x)M̃(x). Suppose there exists a matrix

polynomial H̃(x) ∈ RT̃×Ñ such that

Ñ0,T̃ H̃(x) = P̄−1, with P̄ � 0.

If the following conditions are satisfied

• ∀x ∈ X0,

M̃(x)>
[
Ñ0,T̃ H̃(x)

]−1M̃(x) ≤ γ, (5.5.9)

• ∀x ∈ Xu,

M̃(x)>
[
Ñ0,T̃ H̃(x)

]−1M̃(x) ≥ λ, (5.5.10)

• ∀x ∈ X,

J (x) := −
[∂M̃
∂x
X1,T̃ H̃(x) + H̃(x)>X>

1,T̃
(
∂M̃
∂x

)>
]
� 0, (5.5.11)

then B(x) = M̃(x)>(Ñ0,T̃ H̃(x))−1M̃(x) is a CBC and ν = U0,T̃ H̃(x)(Ñ0,T̃ H̃(x))−1M̃(x)
is its corresponding safety controller for the unknown ct-NPS.

Proof. Since B(x) = M̃(x)>P̄M̃(x) and P̄−1 = Ñ0,T̃ H̃(x), it is straightforward
that conditions (5.5.9)-(5.5.10) imply (5.5.2)-(5.5.3). We now proceed with showing
condition (5.5.4), as well. Considering (5.5.4) and (5.5.5), one has

LB(x) = M̃(x)>P̄
∂M̃
∂x

(A+BF̃ (x))M̃(x) + M̃(x)>(A+BF̃ (x))>(
∂M̃
∂x

)>P̄M̃(x)

= M̃(x)>P̄
[∂M̃
∂x

(A+BF̃ (x))P̄−1 + P̄−1(A+BF̃ (x))>(
∂M̃
∂x

)>
]
P̄M̃(x).

Since P̄−1 = Ñ0,T̃ H̃(x), then P̄−1P̄ = IÑ = Ñ0,T̃ H̃(x)P̄ . Since IÑ = Ñ0,T̃Q(x), then

Q(x) = H̃(x)P̄ and, accordingly, Q(x)P̄−1 = H̃(x). Since A+BF̃ (x) = X1,T̃Q(x), then

(A+BF̃ (x))P̄−1 = X1,T̃Q(x)P̄−1 = X1,T̃ H̃(x).
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Therefore,

LB(x)=M̃(x)>P̄
[∂M̃
∂x
X1,T̃ H̃(x)+H̃(x)>X>

1,T̃
(
∂M̃
∂x

)>
]
P̄M̃(x)=−M̃(x)>P̄

[
J (x)

]
P̄M̃(x).

If J (x) � 0, then LB(x) � 0 and condition (5.5.4) is satisfied. Consequently,

B(x) = M̃(x)>(Ñ0,T̃ H̃(x))−1M̃(x)

is a CBC and

ν = U0,T̃Q(x)M̃(x) = U0,T̃ H̃(x)(Ñ0,T̃ H̃(x))−1M̃(x)

is its corresponding safety controller for the unknown ct-NPS, which completes the
proof. �

Remark 5.5.9. Note that in practice, in order to satisfy condition (5.5.11), some a-
priori information about unknown systems, such as physical considerations, can be useful
to get insights on the most appropriate choice of M̃(x).

In the remainder of this section, we discuss the implementation of Theorem 5.5.8.
Here, we consider the state set X, initial set X0, and unsafe set Xu as

X =

mx⋃
i=1

Xi, with Xi := {x ∈ Rn
∣∣ g̃ik(x) ≥ 0, k = 1, . . . , k}, (5.5.12)

X0 =

m0⋃
i=1

X0i , with X0i := {x ∈ Rn
∣∣ f̃ik(x) ≥ 0, k = 1, . . . , k0}, (5.5.13)

Xu =

m1⋃
i=1

Xui , with Xui := {x ∈ Rn
∣∣ h̃ik(x) ≥ 0, k = 1, . . . , k1}, (5.5.14)

with g̃ik(x), f̃ik(x), and h̃ik(x) being polynomial. The input set U is defined as

U := {ν ∈ Rm̄
∣∣ b>j ν ≤ 1, with j = 1, . . . , J̄ }, (5.5.15)

with bj ∈ Rm̄ being some constant vectors. Additionally, we raise the following corollary
which is required for our implementation results.

Corollary 5.5.10. Consider a CBC B(x) = M̃(x)>P̄M̃(x) with P̄ � 0 as in Defini-
tion 5.5.3 for a ct-NPS Σ in (5.5.1), and γ̃ ∈ R>0. If M̃(x(0))>P̄M̃(x(0)) ≤ γ̃, then
M̃(x(t))>P̄M̃(x(t)) ≤ γ̃ for all t ∈ R>0.

Corollary 5.5.10 can readily be verified with the help of non-positiveness of LB(x) (5.5.4).
By employing Corollary 5.5.10, we are ready to show the next result for computing a
CBC and its associated safety controller.
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Corollary 5.5.11. Consider a ct-NPS Σ as in (5.5.1), sets X, X0, and Xu as in (5.5.12)-
(5.5.14), respectively, an input set U as in (5.5.15), and data U0,T̃ , X1,T̃ , and Ñ0,T̃ as
in (5.5.6), (5.5.8), and Lemma 5.5.6, respectively. If there exist a positive definite matrix

P̄ ∈ RÑ×Ñ , a matrix polynomial H̃(x) ∈ RT̃×Ñ , and γ, λ ∈ R>0, with λ > γ such that

−M̃(x)>P̄M̃(x)−
k0∑
k=1

λ̃′ik(x)f̃ik(x) + γ,∀i ∈ [1,m0],∀k ∈ [1, k0],

(5.5.16)

M̃(x)>P̄M̃(x)−
k1∑
k=1

λ̃′′ik(x)h̃ik(x)− λ,∀i ∈ [1,m1],∀k ∈ [1, k1],

(5.5.17)

−[
∂M̃
∂x
X1,T̃ H̃(x) + H̃(x)>X>

1,T̃
(
∂M̃
∂x

)>]−
k∑

k=1

λ̃ik(x)g̃ik(x)IN ,∀i ∈ [1,mx], ∀k ∈ [1, k],

(5.5.18)

1− b>j U0,T̃ H̃(x)P̄M̃(x)− λ̃u(x)
(
γ − M̃(x)>P̄M̃(x)

)
,∀j = 1, . . . , J̄ ,

(5.5.19)

are sum-of-square (SOS), with λ̃ik(x), λ̃′ik(x), λ̃′′ik(x), and λ̃u(x) being SOS polynomials,

and IÑ = P̄ Ñ0,T̃ H̃(x), then B(x) = M̃(x)>P̄M̃(x) is a CBC for Σ with the correspond-

ing safety controller ν = U0,T̃ H̃(x)P̄M̃(x).

Proof. It is straightforward that if (5.5.16) holds, then one has M̃(x)>P̄M̃(x) +∑k0
k=1 λ̃

′
ik

(x)f̃ik(x) ≤ γ, ∀i ∈ [1,m0],∀k ∈ [1, k0]. Since λ̃′ik(x) are SOS polynomials,

then
∑k

k=1λ̃ik(x)g̃ik(x) are non-negative given the definition of X0 in (5.5.13). Hence,

M̃(x)>P̄M̃(x) ≤ γ holds ∀x ∈ X0, indicating that (5.5.9) holds with P̄ =
[
Ñ0,T̃ H̃(x)

]−1
.

Similarly, (5.5.17) implies that M̃(x)>P̄M̃(x)−
∑k1

k=1 λ̃
′′
ik

(x)h̃ik(x) ≥ λ, ∀i ∈ [1,m1], ∀k ∈
[1, k1]. Since λ̃′′ik(x) are SOS polynomials, one has

∑k1
k=1 λ̃

′′
ik

(x)h̃ik(x) ≥ 0, and ac-

cordingly M̃(x)>P̄M̃(x) ≥ λ for all x ∈ Xu, indicating that (5.5.10) holds with

P̄ =
[
Ñ0,T̃ H̃(x)

]−1
. Next, we show that (5.5.18) implies that

Ji(x) := −[
∂M̃
∂x
X1,T̃ H̃(x)+H̃(x)>X>

1,T̃
(
∂M̃
∂x

)>] � 0

hold for all x ∈ Xi, i ∈ [1,mx]. First, (5.5.18) is SOS implying that Ji(x)−
∑k

k=1λ̃ik(x)

g̃ik(x)IÑ � 0. Since λ̃ik(x) are SOS polynomials for all k ∈ [1, k],
∑k

k=1λ̃ik(x)g̃ik(x) are
non-negative over Xi. Then, one can readily verify that Ji(x) � 0, ∀x ∈ Xi, and (5.5.11)
holds accordingly. Finally, we show that (5.5.19) ensures that ν = U0,T̃ H̃(x)P̄M̃(x) ∈ U
for all x ∈ B1(x) with B1(x) := {x ∈ Rn|M̃(x)>P̄M̃(x) ≤ γ}, and IÑ = P̄ Ñ0,T̃ H̃(x).
Note that we only need to consider the set B1(x) instead of the whole state set X since
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Corollary 5.5.10 shows that state trajectories of the system stay inside the set B1(x).
Considering the definition of U as in (5.5.15), ν ∈ U requires that

b>j U0,T̃ H̃(x)P̄M̃(x) ≤ 1, (5.5.20)

holds ∀j = 1, . . . , J̄ , and ∀x ∈ B1(x). Note that (5.5.19) implies that b>j U0,T̃ H̃(x)P̄M̃(x)+

λ̃u(x)(γ − M̃(x)>P̄M̃(x)) ≤ 1. Hence, (5.5.20) holds since λ̃u is an SOS polynomial. �

Remark 5.5.12. One can employ existing software tools in the relevant literature such
as SOSTOOLS [PAV+13] together with a semidefinite programming (SDP) solver such as
SeDuMi [Stu99] to readily enforce conditions (5.5.16)-(5.5.19) over the sets X0, Xu,and
X, while searching for the matrix polynomial H̃(x) and matrix P̄ .

Remark 5.5.13. Note that condition (5.5.19) is a bilinear matrix inequality (BMI) due
to having a bilinearity between decision matrices H̃ and P̄ . In order to resolve this
problem, one can first obtain a candidate for P̄ based on (5.5.16) and (5.5.17), and then
try to search for appropriate H̃(x) such that (5.5.18) and (5.5.19) hold. As an alternative
approach, one can also use the technique proposed in [HHB99] to linearize the BMI using
a first-order perturbation approximation and then solve the linearized version.

5.5.4 Case Study

Here, we focus on the following nonlinear polynomial system borrowed from [GDPT20]:

ẋ1 = x2,

ẋ2 = x2
1 + ν, (5.5.21)

which is of the form of (5.5.1), with

A =

[
1 0
0 1

]
, B =

[
0
1

]
, M̃(x) =

[
x2

x2
1

]
,

and n = Ñ = 2. Here, we consider the state set X = [−20, 20] × [−20, 20], the initial
set X0 = [−2.5, 2.5] × [−2.5, 2.5], the unsafe set Xu = [−20, 20] × [10, 20] ∪ [−20, 0] ×
[−20,−10] ∪ [3.5, 7] × [−4, 0], and the input set U = [−30, 30]. We assume that both
matrices A and B are unknown and treat this system as a black-box one.

To collect data, we initialize the system at x(0) = [2; 3] and simulate the system with
inputs that are randomly selected from the input set following a uniform distribution.
The data are collected with a sampling time τ = 0.02s as follows:

U0,5 =
[
0.8134 3.6710 −0.4437 −1.9421 −0.7241

]
,

X0,5 =

[
2 2.0610 2.1246 2.1906 2.2581
3 3.0987 3.2597 3.3439 3.4040

]
,

X1,5 =

[
3 3.0987 3.2597 3.3439 3.4040

4.8134 7.9186 4.0701 2.8565 4.3747

]
.
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Figure 5.12: Several state trajectories, initial set X0, unsafe set Xu, and level sets
M̃(x)>P̄M̃(x) = γ and M̃(x)>P̄M̃(x) = λ.

Accordingly, one has

Ñ0,5 =

[
3 3.0987 3.2597 3.3439 3.4040
4 4.2476 4.5137 4.7986 5.0988

]
,

with Ñ0,5 being defined as in Lemma 5.5.6 with T̃ = 5. With the help of Theorem 5.5.8
and Corollary 5.5.11, we obtain

H̃(x) =


0.4266 0.07214x1−0.3641
−0.2245 −0.1001x1−0.0333
0.2831 0.0047x1−0.3398
0.1311 0.0097x1−0.3049
−0.5217 0.01334x1+0.9762

, P̄ =

[
5.8938 0

0 2.6160

]
,

with γ = 139.03, and λ = 392.56. The associated safety controller is designed as

ν = −0.8877x3
1 − x2

1 − 2.8264x2. (5.5.22)

Figure 5.13: Several input trajectories of the system.

For the simulation results, we randomly select 105 initial states from the initial state
set and simulate the system for 4 seconds, while the controller in (5.5.22) is applied in
the closed-loop. We depicted some state and input trajectories in Figures 5.12 and 5.13,
respectively. Moreover, we also depicted in Figure 5.12 the initial set X0, the unsafe set
Xu, and the corresponding level sets specified by γ and λ as in Corollary 5.5.11. One can
readily see that the system in (5.5.21) is safe and the input constraint is also satisfied.
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5.6 Summary

In the first part of this chapter, we proposed a data-driven approach for the estimation of
infinitesimal generators of continuous-time stochastic systems with unknown dynamics.
We approximated the infinitesimal generator of the solution process via a set of data
collected from trajectories of the unknown system. The approximation leverages both
time discretization and sampling from the solution process. By assuming proper conti-
nuity assumptions on dynamics of the system, we then quantified the closeness between
the infinitesimal generator and its approximation while providing an a-priori guaranteed
confidence bound.

In the second part of the chapter, we enlarged the class of models to stochastic hybrid
systems by adding Poisson processes to the dynamics and propose a data-driven approach
for the estimation of infinitesimal generator for this class of models. In addition, we
developed a data-driven scheme to handle stochastic systems with control inputs, while
the results of the previous section only deal with stochastic autonomous systems.

In the third part of the chapter, we proposed a data-driven approach for formal ver-
ification of both discrete- and continuous-time systems with unknown dynamics. The
main target was to verify the safety of unknown systems based on the construction of
barrier certificates via a set of data collected from trajectories of systems while provid-
ing an a-priori guaranteed confidence on the safety. To do so, we first cast the original
safety problem as a robust convex program (RCP) and provided a scenario convex pro-
gram (SCP) corresponding to the original RCP by collecting finite numbers of data from
trajectories of systems. We then established a probabilistic closeness between the opti-
mal value of SCP and that of RCP, and as a result, we formally quantified the safety
guarantee of unknown systems based on the number of data and the required level of
confidence.

In the last part of the chapter, we proposed a data-driven approach to synthesize
safety controllers for continuous-time nonlinear polynomial-type systems with unknown
dynamics. The proposed framework was based on notions of control barrier certificates,
constructed from data while providing a guaranteed confidence of 1 on the safety of
unknown systems. Under a certain rank condition, we synthesized polynomial state-
feedback controllers to ensure the safety of the unknown system only via a single trajec-
tory collected from it.
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6.1 Conclusions

This dissertation was concerned with (compositional) techniques for formal analysis and
synthesis of (unknown) stochastic hybrid systems. In the first part of the disserta-
tion, we proposed systematic approaches for the construction of finite abstractions for
continuous-time stochastic control and hybrid systems. In order to deal with curse of di-
mensionality problem as the main challenge in the construction of finite abstractions, we
also provided compositional abstractions-based techniques based on small-gain and dis-
sipativity approaches for formal analysis of continuous-time SHS. We showed that the
proposed compositionality approach based on dissipativity reasoning can be potentially
less conservative than the small-gain one for some classes of systems given that it can
enjoy the structure of the interconnection topology and may not require any constraint
on the number or gains of subsystems. Consequently, the dissipativity compositionality
condition can be scale-free and independent of the number of subsystems compared to
the small-gain approach.

In the second part of the dissertation, we developed compositional techniques in the
context of control barrier certificates (CBC) for formal verification and controller syn-
thesis of large-scale stochastic control and hybrid systems. In particular, control barrier
certificates have received significant attentions in the past few years as a discretization-
free approach for formal analysis of SHS. On the downside, finding CBC for complex
dynamical systems is computationally very expensive, especially if one is dealing with
high-dimensional systems. Then developing compositional techniques is essential to alle-
viate this type of computational complexity. In our proposed setting, we considered the
large-scale SHS as an interconnected system composed of several smaller subsystems,
and provided compositional frameworks for the construction of CBC for the complex
interconnected SHS using control barrier certificates of smaller subsystems.

In the last part of the dissertation, we developed data-driven techniques for the verifi-
cation and synthesis of SHS while providing formal guarantees. In particular, closed-form
mathematical models for some complex SHS are either not available or equally complex
to be of any practical use. Accordingly, one cannot employ model-based techniques to
analyze and design this type of complex unknown systems. Then data-driven techniques
have received significant attentions in the past decade for the formal analysis of unknown
SHS enforcing complex control missions. However, guaranteeing safety and reliability
of physical systems based on data is very challenging, which is of vital importance in
many safety-critical applications. The last part of the thesis was dedicated to develop
data-driven verification and synthesis techniques for formal analysis of SHS.
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6.2 Recommendations for Future Research

In this section, we discuss some interesting topics that could be considered as potential
future research lines.

• Compositional controller synthesis via abstraction-based techniques. In
the third chapter of the dissertation, we widely studied different compositional
approaches for the construction of (in)finite abstractions for networks of stochastic
control/hybrid systems. One potential direction as a future work is to investigate
the compositional controller synthesis for continuous-time stochastic systems. In
particular, given a specification over the interconnected system, one can study the
formal relation between the probability of satisfactions provided by local controllers
for individual subsystems and that of their monolithic ones in the interconnected
case.

• Decomposition of larger classes of LTL properties. In the third chapter
of the thesis, we mainly considered our specifications as the safety. In particular,
we considered the overall safety specification as a hyper-rectangle (a.k.a., hyper
interval) and decomposed and projected it to different dimensions corresponding
to subsystems. We first designed local controllers for abstractions Σ̂i, and then
refined them back to subsystems Σi using interface functions. Consequently, the
controller for the interconnected system Σ is simply constructed by augmenting
controllers of subsystems Σi. Another direction as the future research line is to
consider more complex LTL properties including reachability, reach-avoid, etc.,
and study how to decompose those high-level specifications in order to provide a
compositional synthesis framework for them.

• Establishing similarity relations for the general setting of continuous-
time SHS. In the third chapter of the dissertation, we focused on a particular
class of stochastic affine and nonlinear systems and constructed finite abstractions
together with their corresponding stochastic simulation functions for these classes
of models. One interesting open problem is to provide a similarity relation for the
general setting of continuous-time SHS.

• Closeness guarantees between sampling times. In the third chapter of the
dissertation, we provided probabilistic closeness guarantees between output trajec-
tories of original continuous-time stochastic systems and that of their discrete-time
(finite or infinite) abstractions only at sampling times. Another research direction
is to extend our proposed results to provide a closeness between sampling times,
as well.

• Reduce conservatism in controller synthesis via CBC. In the forth chapter
of the dissertation, the way that we synthesized controllers via CBC is somewhat
conservative since we added an extra term in (4.2.18) to resolve the bilinearity
problem between unknown coefficients of CBC and its controller, which makes
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our proposed SOS conservative. One research line is to investigate another ap-
proaches to resolve the encountered bilinearity and search for the controller in a
less conservative way.

• Considering delay in controller synthesis of Markovian switching. In the
forth chapter of the dissertation, in order to provide the CBC results for ct-SHS
with Markovian switching, we assumed that the controller has access to switching
modes. In particular, it is supposed that there is a mode detection device which
is capable of identifying the system mode in real time so that the controller can
switch to the matched mode. One interesting research direction is to consider also
some delay while deploying the synthesized controllers which makes our proposed
approach more practical.

• Reduce sample complexity of the data-driven approach via paralleliza-
tion. In the last chapter of the dissertation, in order to provide safety guarantees
over unknown original system, the required number of data for solving scenario
convex program is exponential with respect to the dimension of the system. One
potential research direction is to reduce the sample complexity via developing a
parallelization methodology for linear programming of each scenario optimization
problem. Such an approach would effectively reduce the computational burden
and enhance the efficiency of the analysis.

• Data-driven controller synthesis for general nonlinear systems. In the
last chapter of the dissertation, we proposed a data-driven approach to synthesize
safety controllers for continuous-time nonlinear polynomial-type systems with un-
known models. Another research direction is to leverage a similar reasoning as we
proposed here and develop the data-driven controller synthesis approach for the
general setting of nonlinear systems.

• Data-driven analysis for more complex LTL properties. In the final chap-
ter of the dissertation, we introduced a data-driven approach for analyzing safety
specifications in black-box systems. Building upon this work, an intriguing avenue
for further research involves applying a similar reasoning framework to develop a
data-driven analysis for more complex Linear LTL properties, such as reachabil-
ity and reach-avoid. This expansion would enable a comprehensive exploration
of complex system behaviors, leveraging the power of data-driven techniques to
enhance the analysis of such properties.

• Data-driven construction of finite MDPs. In the final chapter of the disserta-
tion, we presented novel data-driven approaches for constructing (control) barrier
certificates. Extending this line of research, an intersecting direction is to apply
similar reasoning techniques to construct finite MDPs using data, particularly for
stochastic hybrid systems with unknown characteristics. This research direction
holds significant potential for advancing the analysis and control of such systems
by leveraging the power of data-driven techniques.
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[DRW10] S. N Dashkovskiy, B. S. Rüffer, and F. R. Wirth. Small gain theorems for
large scale systems and construction of ISS Lyapunov functions. SIAM
Journal on Control and Optimization, 48(6):4089–4118, 2010.

[DST+21] Z. Du, Y. Sattar, D. A. Tarzanagh, L. Balzano, S. Oymak, and
N. Ozay. Certainty equivalent quadratic control for Markov jump sys-
tems. arXiv:2105.12358, 2021.

[Dye83] M. E. Dyer. The complexity of vertex enumeration methods. Mathematics
of Operations Research, 8(3):381–402, 1983.

[Dyn65] E. B. Dynkin. Markov processes. Springer, 1965.

[GAC12] S. Gao, J. Avigad, and E. M. Clarke. δ-complete decision procedures for
satisfiability over the reals. In International Joint Conference on Auto-
mated Reasoning, pages 286–300, 2012.

[GAM93] M. K. Ghosh, A. Arapostathis, and S. I. Marcus. Optimal control of
switching diffusions with application to flexible manufacturing systems.
SIAM Journal on Control and Optimization, 31(5):1183–1204, 1993.

[GBSV+19] Shromona Ghosh, Somil Bansal, Alberto Sangiovanni-Vincentelli, San-
jit A Seshia, and Claire Tomlin. A new simulation metric to determine
safe environments and controllers for systems with unknown dynamics. In
Proceedings of the 22nd ACM International Conference on Hybrid Sys-
tems: Computation and Control, pages 185–196, 2019.

[GDPT20] M. Guo, C. De Persis, and P. Tesi. Learning control for polynomial
systems using sum of squares relaxations. In 59th IEEE Conference on
Decision and Control (CDC), pages 2436–2441. IEEE, 2020.

[GDPT21] M. Guo, C. De Persis, and P. Tesi. Data-driven stabilization of nonlinear
polynomial systems with noisy data. IEEE Transactions on Automatic
Control, 2021.
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