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Abstract Monolithic optimization of large systems with many interacting components can be a difficult
task. Hence, distributed optimization architectures have been developed in which the monolithic
optimization is decomposed into a set of smaller optimization subproblems. However, most of
the distributed architectures are not fully separable and require a coordination strategy among the
subproblems.

In this work, a new distributed optimization architecture is proposed that does not require coordination.
The proposed architecture consists of two parts: (1) a system optimization that assigns stiffness
requirements to components that are approximately feasible and mass-optimal, based on pre-trained
meta models, and (2) component optimizations that can be solved independently and in parallel.
Because the creation of meta models for the system optimization is expensive, an offline database
consisting of multiple meta models valid for a variety of design problems, is created. The required
training data is computed using a newly developed active-learning undersampling strategy that enables
an efficient sampling process while also providing a well-balanced dataset.

The validity of the proposed approach is demonstrated by minimizing the mass of a two-component
system subject to a displacement requirement. With increasing complexity, the quality of results
slightly deteriorates from 0.40% to 3.91% to a maximum mass deviation of 8.18% compared to a
monolithic optimization. Next, a four-component system is investigated to path the way towards
practical application. For this purpose, the general applicability of the offline database for components
of different geometrical dimensions is investigated, a computational time comparison is performed,
and finally the approach is applied to design a low-cost lightweight robot. The results obtained for the
robot application deviate from the benchmark result of monolithic optimization by 12.9%.

Keywords Distributed Optimization ·Topology Optimization ·Machine Learning ·Lightweight Design
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1 Introduction

1.1 Motivation for distributed design optimization

A useful industry benchmark for vehicles is that a 10% reduction in weight results in a 6% improvement
of fuel consumption of a combustion-engine automotive or in a 14% increase in range for electric
vehicles (Robinson et al., 2019). This not only illustrates the potential of weight reduction with respect
to environmental protection, but also the economical aspect. Weight reduction and, thus, lightweight
design therefore plays a significant role in modern product development processes. Lightweight design
can be defined as the minimization of weight while satisfying all system requirements. Apart from the
automotive industry, this applies in particular to all non-stationary applications, such as robots, ships,
aircraft and spacecraft, but also to stationary products, such as bridges in civil engineering.

To design the lightest possible system, structural design optimization schemes can be utilized.
Structural design optimization is a mathematical design method to find the optimal or best design
within the available means (Papalambros & Wilde, 2018; Martins & Ning, 2022). In general, global
optimality can rarely be proven and rather optimized designs are achieved with respect to a given
benchmark (Sigmund, 2011). Since the idea for analytical calculation of mass-minimal truss structures
by Michell (1904), design optimization methods have undergone numerous improvements and have
been applied to many different problems. While various different approaches for structural optimization
exist, topology optimization has become a frequently used design approach, especially in early stages
of product development processes. Most developments are based on the works of Bendsøe & Kikuchi
(1988) and Bendsøe & Sigmund (2004) and many other methods have evolved from there. The amount
of research that has been done on this topic is extensive and continues to grow, as can be seen from
the number of literature reviews published in recent years, e.g., by Rozvany (2009), Sigmund & Maute
(2013), Deaton & Grandhi (2014) or L. Wang et al. (2021).

However, the holistic or monolithic design of large systems with many interacting components can
be a difficult task. First, from a product development perspective, the development process itself
requires decomposition (Sobieszczanski-Sobieski & Haftka, 1997). In classical top-down development
processes, requirements are first formulated at the system level and then broken down, and passed on
to lower levels and finally to the respective departments (Forsberg & Mooz, 1991). The tasks are then
ideally solved by separate engineering groups. This hierarchical process is particularly advantageous
from a designer’s perspective, who can use specialized analysis and design tools to work on parts rather
than the entire system (Eckert & Clarkson, 2005; Tosserams et al., 2009). Second, from a computational
perspective, the sheer size of the system can make monolithic optimization prohibitively expensive,
requiring decomposition to reduce the size of the problem and the computational time (Martins &
Lambe, 2013).

For both views, decomposition is therefore often preferred over a monolithic architecture. In the
context of design optimization, distributed design optimization architectures have been developed
to reduce computational time and resemble this distributed development process (Martins & Ning,
2022). Distributed optimization architectures decompose a given optimization problem into smaller
optimization subproblems that allow individual design by separate groups (Martins & Lambe, 2013).
In recent years, many different distributed architectures have been developed and successfully applied to
a variety of different use cases. Among others, collaborative optimization by Braun (1996), analytical
target cascading by H. M. Kim et al. (2003), BLISS-2000 by Sobieszczanski-Sobieski et al. (2000,
2003) or quasiseparable decomposition by Haftka & Watson (2005).
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1.2 Lightweight design of mechanical multi-component systems
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Figure 1.1: A generic serial mechanical multi-component system clamped on the left side of the first
component and subject to a load 𝒇 on the right end of the system resulting in a
translational end effector displacement 𝒖ee

In this work, the lightweight design of mechanical multi-component systems is to be investigated. A
mechanical multi-component system is hereby defined as a collection of mechanical components that
interact with each other and perform specified functions. According to this definition, a large number of
industrial products can be considered as mechanical multi-component systems. For research purpose,
the following investigations are restricted on serial systems, yet an extension to parallel systems is
possible without any changes within the proposed approach.

A generic serial mechanical multi-component system, Fig. 1.1, has 𝑛c components that can be oriented
with respect to each other by prescribed rotations 𝜽 (𝑖) = [𝛼, 𝛽, 𝛾]⊤(𝑖) at the joint positions 𝒑 (𝑖) , where
each set of rotations yields a specific system pose. Each component 𝑖 consists of a structural element
and two rigid connectors on both sides. The structural elements of length 𝑙 (𝑖) are modeled as linear
elastic and have two mechanical interfaces 𝒂 (𝑖) and 𝒃 (𝑖) with 𝑛dof=6 degrees of freedom. The first
component is clamped on the left side 𝒑 (0) and a static payload 𝒇 is applied on the right side of the
last component of the system 𝒑 (𝑛c ) . The combination of pose and acting total system load 𝒇s is called
load case and the system can be investigated with respect to multiple load cases 𝑛p.

The requirement on the system stiffness is:

The system must sustain a system load 𝒇s with a maximum translational end effector
displacement of 𝑢max for a specified set of rotations 𝜽 (𝑖) .

Fig. 1.2 illustrates the dependencies between all relevant quantities that are needed to solve the given
design problem. The detailed design variables 𝒙 (𝑖) include all design details for component 𝑖. For a
given material, 𝒙 (𝑖) determines the detailed stiffness matrix 𝑲d, (𝑖) , including all degrees of freedom
of each structural element, and subsequently the interface stiffness matrix 𝑲 (𝑖) ∈ R12×12 that defines
the component’s elastic behavior with respect to the two interfaces 𝒂 (𝑖) and 𝒃 (𝑖) . The components are
then assembled to the system stiffness matrix 𝑲s = A𝑛c

𝑖=1 𝑲 (𝑖) . Under a given system load vector 𝒇s,
the system deforms, resulting in the general system displacements 𝒅s. Since the requirement is only
on the translational part of the deformation 𝒅s, the system stiffness is measured as the inverse of

𝑢 = | |𝒖ee | |2, (1.1)

whereas 𝒖ee∈𝒅s and contains the translational displacements at the end effector of the system. Similarly,
the detailed design variables 𝒙 (𝑖) also define the mass 𝑚 (𝑖) of each component and consequently the
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system mass

𝑚 = 𝑚s =

𝑛c∑︁
𝑖=1

𝑚 (𝑖) . (1.2)

The design problem can be hierarchically organized into three levels:

(I) system level: 𝒛 = [𝑚, 𝑢],

(II) component-performance level: 𝒚 (𝑖) = [𝑚 (𝑖) , 𝑲 (𝑖) ],

(III) component-detail level: 𝒙 (𝑖) .
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Figure 1.2: Dependencies between all relevant quantities on the system level (I), component-
performance level (II), and component-detail level (III) for monolithic optimization (A)
and a distributed design optimization approach (B)

In order to solve the design problem, it can be cast into a monolithic structural optimization
problem (A)

min
𝒙(𝑖)

∑𝑛c
𝑖=1 𝑚 (𝑖)

(
𝒙 (𝑖)

)
,

s. t.: 𝑢𝑐
(
𝒙 (𝑖)

)
− 𝑢max ≤ 0, for 𝑐=1, ..., 𝑛p, (1.3)

𝒙lb ≤ 𝒙 (𝑖) ≤ 𝒙ub, for 𝑖=1, ..., 𝑛c.

The optimization problem (1.3) has some particular properties. There are no shared design variables
𝒙 (0) between the components of the system, meaning each component possesses only its own design
variables 𝒙 (𝑖) . The objective function 𝑚=

∑𝑛c
𝑖=1 𝑚 (𝑖) is separable, i.e., it can be expressed as a sum of

functions, each of which depend only on the corresponding local design variables 𝒙 (𝑖) . On the other
hand, the constraint function 𝑔(𝒙)=𝑢𝑐 (𝒙) − 𝑢max depends on all design variables 𝒙=[𝒙 (1) , ..., 𝒙 (𝑛c ) ].
If the constraints 𝒈(𝒙)≤0 did not exist, this optimization problem could be simply decomposed into
𝑛c independent optimization subproblems. In literature, this kind of monolithic design optimization
problem is called complicating constraints problem (Conejo et al., 2002).

For distributed architectures, the monolithic optimization problem (1.3) therefore needs to be
decomposed. The fundamentals needed for a new distributed optimization architecture (B) are
explained in the following Chapter 2, including the required methods of computational mechanics
in Section 2.1, machine learning in Section 2.2, and design optimization methods in Section 2.3.
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1.3 Problem description and research objectives

In Section 1.1 it was shown that the lightweight design of complex systems in a monolithic manner,
such as the serial mechanical multi-component system problem introduced in Section 1.2, motivates
the development of distributed optimization architectures. The two main motivations are that product
development in industry, involving many parties, requires a distributed process and that decomposing
the problem can reduce computational time.

However, in practice, distributed optimization architectures are not able to sufficiently solve these
two problems, and thus have not been widely used in industry (Martins & Ning, 2022). A major
reason for this is that the decomposed optimization problems of most distributed architectures are
not fully separable and require a coordination strategy to maintain consistency between the shared
variables of the system and the subproblems. In an industrial context, this coordination would need
an optimization architecture connecting all involved departments, which is difficult to realize, because
different engineering groups may use different design tools. In addition, when using such a coordination
strategy, there is a risk that the actual coordination cost will exceed the cost of the original optimization
problem, which is referred to as coordination overhead in design optimization (Alexandrov & Hussaini,
1997; Martins & Lambe, 2013; Tosserams et al., 2009). Unless a problem has a particular structure,
there is no distributed architecture that converges as fast as a monolithic one (Martins & Ning, 2022).
Sometimes distributed optimization architectures even fail to converge to a solution that is consistent
and/or feasible, i.e., satisfies all posed requirements.

Therefore, a decomposition scheme without any need for coordination is advantageous. In the context
of distributed optimization architectures, we define the term decoupling as a decomposition between
system and component level, and a decomposition between different components without the need for
coordination after the decomposition. Thus, the implementation and adoption of decoupled distributed
optimization architectures in industry is simplified in comparison to classical distributed architectures.
This type of decoupling, for example, was introduced by Zimmermann & von Hoessle (2013) and
embedded in a design procedure in Zimmermann et al. (2017). However, the procedure differs from
classical design optimization methods in the way that it is not based on point solutions, but so-called
solution spaces, which represent sets of good, i.e., feasible, designs. Regardless of the optimization
objectives, decoupled architectures generally run into the risk of

1. accidentally ruling out the optimal but initially unknown solutions on the system level and
2. committing to a physically infeasible design, i.e., a design that cannot be realized on a detail level

afterwards.

These are two classical problems from top-down design tasks that specify certain performance measures
a priori. One way to address this is to transfer a priori information from the component level to the
system level using meta models, i.e., mathematical surrogates that are trained before performing a
decoupling (Hou & Jiao, 2020). Meta models have a long history in systems design because they can
reduce the high computational cost of large-size computer models (Viana et al., 2014). Papadrakakis
et al. (1998) were one of the first authors that successfully applied meta models into a structural
optimization problem, yet for size and shape optimization only. In the field of topology optimization,
the combination of high-fidelity solutions of finite element models together with a large number of
design variables lead to high computational cost for the design optimization process. Hence, meta
models have recently been used to speed up the optimization process of these large-scale optimization
problems, see, for example, the reviews of Mukherjee et al. (2021), Ramu et al. (2022) or Woldseth et
al. (2022).

Here, the deformation energy, referred to as compliance in the context of topology optimization, is often
utilized as a performance measure. Since the compliance is a load dependent quantity, corresponding
mechanical detailed designs are only valid for the respective load case. For example, B. J. Kim et al.
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(2016) carried out a dynamic system optimization with a decomposition of the structure based on a
regression model that maps mass onto compliance for equivalent static loads of different time steps.
Oh et al. (2019) utilized deep learning techniques for estimating topologies with respect to minimal
compliance for given normal and shear load cases of a vehicle wheel. The theoretical extension of this
idea is that by using a sufficiently broad dataset that spans variations in loads, boundary conditions,
material models, objective function, and design domains, one can train a regressor to construct a general
mapping from the input conditions of a given problem onto its corresponding optimal topology. A
variety of papers have been recently published on this idea, e.g., Ulu et al. (2015), Lei et al. (2019), Yu
et al. (2019) or Sosnovik & Oseledets (2019). To take these variations into account, extensive sampling
procedures are needed. In addition, compliance often does not accurately represent stiffness-related
quantities of interest, such as maximum displacement. Using compliance here would impose an
unnecessarily strict constraint on a problem. However, similar to compliance, the displacement of a
structure is load dependent and therefore requires extensive sampling, too.

In order to reduce the amount of sample data needed, it would be beneficial to have quantities
that represent inherent component characteristics and are thus independent of changing boundary
conditions. For linear analyses, a stiffness matrix incorporates all information about the geometrical and
physical constitution of mechanical components and is therefore load-independent. Moreover, it can be
directly related to a displacement requirement for a given load case and contains all relevant information
regarding the deformation behavior. Hence, stiffness modeling plays an important role, e.g., in the
design of robots, where multiple poses and loads are often considered. To reduce computational cost,
meta models are sometimes used here to investigate the elastic behavior. For example, X. Wang et
al. (2019) performed a stiffness matrix optimization of a serial robot based on a parameterization
of a topology, using a linear regression for the stiffness estimation of the components with respect
to the mass. Parameterization here refers to more general geometrical changes through some few
representative design variables called parameters, rather than detailed changes within the topology.
Furthermore, M. Wang et al. (2022) topology optimized a parallel robot using a stiffness matrix-mass
meta model for different geometrical dimensions trained by an orthogonal design of experiment. In the
context of multi-scale optimization, the expensive connection of macro- and microscale of a structure
is sometimes replaced by meta models to reduce computational cost. These meta models estimate the
elastic behavior of the microstructure in terms of internal energy or the constitutive tensor, which can
be related to the stiffness matrix of a mechanical body. For instance, a substructuring technique for
hierarchical lattice structures was used in Z. Wu et al. (2019) to estimate the mass and stiffness matrix
of microstructures. For this purpose, a regression model based on orthogonal decomposition was built,
where microstructure properties are determined by samples of parameterized unit cells. White et al.
(2019) proposed a neural network to provide a mapping from parameterized microstructures to their
elastic material properties as elastic stiffness coefficients. Further, L. Wang et al. (2021) performed an
optimization considering meta models of different parameterized microstructures in terms of material
properties, such as stiffness matrix or thermal conductivity. However, due to the given parameterization
of the geometry, the design freedom in the presented approaches is limited and thus one does not exploit
the full lightweight design potential.

In Xia & Breitkopf (2015), topology optimization without parameterization was performed to predict
the effective strain energy density as well as the constitutive tensor of microstructures. Therefore,
an offline database based on tensor decomposition was created for a continuous representation of
topology optimized microstructures. Following the idea of an offline database, Ferrer et al. (2016)
created a material catalog of microscale optimized topologies with respect to the constitutive tensor
and compliance. The offline database is computed once in an offline process and can then be consulted
as many times as needed in the online design process. In addition, Kollmann et al. (2020) has used
equivalent load cases to determine the stiffness matrix of topology-optimized microstructures, training
a regression model for multi-scale optimization. However, this regression model does not work directly
with a stiffness matrix, but with either the bulk modulus, shear modulus or Poisson’s ratio. Finally,



6 1 Introduction

Yilin et al. (2021) trained convolutional neural networks for nonparametric microstructures using a
voxel-based homogenization approach to calculate the effective elasticity tensor and its gradients.
However, the microstructures were not optimized but created from a dataset for different topologies
and volume fractions. In summary, to the author’s knowledge, an application of meta models for
topology-optimized structures that are not parameterized and work directly with stiffness matrices as
input is still lacking.

Besides the risk of excluding optimal designs, ensuring physical feasibility is also a relevant and
difficult challenge for decoupled top-down design approaches. Theoretically, all positive (semi-)definite
stiffness matrices can be realized by a mechanical design. Milton & Cherkaev (1995) have shown
that any given positive definite elasticity tensor satisfying the necessary symmetry conditions can
be realized with a two-phase composite consisting of a sufficiently compliant isotropic phase and a
sufficiently rigid isotropic phase configured in a suitable microstructure. Huang & Schimmels (1998)
and Huang & Schimmels (2000) have shown that arbitrary spatial stiffness matrices can be realized with
a set of so-called screw springs. Based on these findings, one could simply explicitly dismiss designs
that are not positive definite to ensure feasibility for the system. This has been done, for instance,
by L. Wang et al. (2020), who considered positive definiteness explicitly as an inequality constraint
in a multi-scale optimization problem. However, in the design of continuous structural components,
external influences, such as a limited geometrical design domain, available materials, and minimum
member size further restrict the feasible design space of positive definite stiffness matrices (Milton et
al., 2017; J. Wu et al., 2021). To avoid committing to an infeasible system level design that cannot be
realized, a more appropriate feasibility constraint must be imposed, with design space limits that are
not explicitly known yet. Existing data can be used to approximate the feasible region using machine
learning classifiers. In a more general context, classifiers have frequently been used in top-down
design to ensure feasibility, e.g., for analog circuit design (Ding & Vemur, 2005; Boolchandani et al.,
2011), air conditioners (Jeong et al., 2012) or the physically feasible workspace of a robot (Kulick
et al., 2013). In mechanical material design, Jung et al. (2019) modeled feasibility constraints via
a support vector machine to perform optimization for inverse material design. Qiu et al. (2021)
developed a deep learning-based design strategy for efficient and effective selection of fiber materials
and stacking orientations of composites using a classifier that estimates physical feasibility based on a
given database. Regenwetter & Ahmed (2022) developed a metric that considered physical feasibility,
expressed as geometrical compatibility, for inverse design tasks, such as a bicycle frame. However, no
previous work could be identified for direct and explicit classification of stiffness matrices.

In the area of distributed design optimization, some classical architectures also explicitly use meta
models or at least recommend their use. In BLISS-2000, for example, the expensive training process
of regression models is an explicit part of the optimization architecture itself in order to provide
subproblem information to the system level during optimization (Sobieszczanski-Sobieski et al., 2000,
2003). In contrast, quasiseparable decomposition recommends the use of pre-trained regression models
so that the training process itself is not part of the actual architecture. While the original version of
the quasiseparable decomposition recommends only the use of regression models, some versions rely
entirely on pre-trained models, but these do not include classification for physical feasibility and
are also not intended for reuse (Haftka & Watson, 2005; B. Liu et al., 2004). An offline database
for both, pre-trained regression and classification models valid for a wide range of design problems
could therefore help to avoid the costly training process, so that training is only required when no
suitable models are available. Such offline databases are used, for example, in some of the multi-scale
optimizations presented previously, such as in Xia & Breitkopf (2015) or Ferrer et al. (2016), but an
application to distributed optimization architectures has not yet been discovered in literature.

In conclusion, the motivation of the Section 1.1 and the preceding problem description of the state of
the art contributions of this Section 1.3 have shown the opportunities and obstacles faced in the design
of complex systems using design optimization and, in particular, distributed design optimization.
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The goal of this work is now to:

Develop a new hierarchical and decoupled distributed optimization architecture (B) for
the lightweight design of mechanical multi-component systems, Fig. 1.1, by decoupling
the original monolithic optimization problem (A) of (1.3) using meta models for physical
feasibility and optimality as part of an offline database.

The main research objectives are:

1. Set up a surrogate-based system optimization problem between hierarchy level (I) and (II) that
decouples the optimization problem by assigning stiffness requirements that are approximately
physically feasible and mass-optimal. Information about physical feasibility and optimality should
be provided by meta models during the system optimization. Decoupling is to be done according
to the physical components, which is an object-based partitioning.

2. Set up a component optimization formulation between hierarchy level (II) and (III), that can
be solved independently of each other and therefore also in parallel, while still ensuring that the
requirement on system stiffness 𝑢≤𝑢max is satisfied.

3. Create an offline database of available meta models that can be used for the system optimization
without the necessity of training a meta model for every single design task. The meta models
estimate physical feasibility and optimality with respect to mass based on the interface stiffness
matrix of each component.
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1.4 Structure of the thesis

The organization of this thesis is illustrated in Fig. 1.3. After the introduction of this chapter, Chapter 2
explains the fundamentals needed to build a decoupled optimization architecture for mechanical
multi-component systems, see also Fig 1.2. Section 2.1 presents the methods of computational
mechanics necessary to build the bottom-up mapping between level (III) and (II), while Section 2.2
introduces the basics of machine learning to create meta models for the connection between (II)
and (I). Utilizing those bottom-up mappings, design optimization methods are presented in Section 2.3.
Surrogate-based optimization between level (I) and (II) is explained in Section 2.3.1 and topology
optimization between level (II) and (III) in Section 2.3.2. The subsequent Chapter 3 presents the current
state of the art related to distributed design optimization methods in detail and outlines the challenges
and research gaps of the existing methods. Based on the fundamentals and already existing distributed
architectures, Chapter 4 presents the proposed approach denoted as Informed Decomposition (B). In
Chapter 5, a two-component system is investigated to verify the validity of the proposed architecture
in terms of physical feasibility and optimality with respect to mass for the design problem class (P1).
Subsequently, in Chapter 6, the approach is further analyzed to show the way towards a practical
application of the developed method by investigating the design problem class (P2). A four-component
system is therefore analyzed. The objectives of the second investigation are the verification of the
general applicability of the offline database for components with different geometrical dimensions, the
investigation of computational time, and finally the structural design of a low-cost lightweight robot for
a pick-and-place task. Chapter 7 provides a general discussion on the results and shows both advantages
and disadvantages of the developed approach. Finally, Chapter 8 concludes with a summary and an
outlook on possible improvements and extensions of the proposed Informed Decomposition.

6 Design problem class (P2) 
Towards practical application

1

3 Distributed design optimization

7 Discussion

8 Conclusion

1 Introduction

2. 1 Methods of 

computational 
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2.2

Machine 

learning
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optimization
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5 Design problem class (P1) 
Physical feasibility and optimality

2 Fundamentals
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Figure 1.3: Structure of the thesis
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2 Fundamentals

2.1 Methods of computational mechanics

2.1.1 Finite elements

The finite element method (FEM) is a numerical approach mainly used to solve physical problems in
engineering analysis. Its basic principle is to discretize a continuum of a design domain Ω into small
elements of known shape and behavior in order to approximate the system’s response. Below, the
relevant aspects of FEM for this work will be introduced. Further details and derivations can be found
in, e.g., Hughes (2000), Zienkiewicz et al. (2005) or Bathe (2014).

𝒕

Γ

Ω

𝒃

Ωe

Ωe

(a) (b) (c)

Figure 2.1: (a) Geometrical design domain Ω and boundary Γ with the applied body forces 𝒃 and
traction forces 𝒕, (b) discretized design domain Ω, and (c) local element design domain
Ω𝑒 for a three-dimensional hexahedron finite element

For a general boundary value problem in linear elastostatics, Fig. 2.1 (a), the so-called weak form can
be derived as ∫

Ω

𝛿𝜺⊤𝝈 𝑑Ω −
∫
Ω

𝛿𝒅⊤𝒃 𝑑Ω −
∫
Γ

𝛿𝒅⊤ 𝒕 𝑑Γ = 0, (2.1)

where 𝝈, 𝜺, and 𝒅 are the stresses, strains, and displacements at any point, 𝒃 are the body forces and 𝒕
the traction forces applied to the design domain Ω. 𝛿𝜺 and 𝛿𝒅 can be chosen arbitrarily, and are usually
referred to as the virtual strains and displacements, respectively. The term

∫
Ω
𝛿𝜺⊤𝝈 𝑑Ω represents the

strain or internal energy, whereas the term
∫
Ω
𝛿𝒅⊤𝒃 𝑑Ω +

∫
Γ
𝛿𝒅⊤ 𝒕 𝑑Γ determines the potential energy

of the external loads.

The weak form for a given mechanical structure serves as a starting point for the FEM. The design
domainΩ can be discretized into a finite number of smaller simpler elements, which are interconnected
by nodes. An assembly of finite elements replaces the original geometry and is called a mesh,
Fig. 2.1 (b). Next, an assumption about the elastic behavior of each element needs to be established,
Fig. 2.1 (c). The specific element behavior can be described by local element stiffness matrices

𝑲𝑒 =

∫
Ω𝑒

𝑩⊤𝑪𝑩 𝑑Ω𝑒, (2.2)

where 𝑩 is the element strain matrix and 𝑪 is the material matrix of the constitutive equation. After
having assigned the mechanical properties to the local elements, the global stiffness matrix 𝑲 can be
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assembled

𝑲 =

𝑛ele

A
𝑒=1

𝑲𝑒. (2.3)

The global stiffness matrix 𝑲 approximates the elastic behavior of the design domain Ω based on
the geometrical discretization. The respective discretized governing equations for the weak form are
consequently

𝑲𝒅 = 𝒇 , (2.4)

with 𝒅 as the nodal displacement vector containing all displacements of the discretized design domain
Ω and 𝒇 as the corresponding load vector.

The stiffness matrix 𝑲 possesses four important properties:

1. 𝑲 must be symmetric, i.e., 𝑲 = 𝑲⊤,
2. rigid body modes 𝝓𝑟 result in zero forces, i.e., 𝑲𝝓𝑟 = 0,
3. 𝑲 must be positive semi-definite, i.e., 𝒅⊤𝑲𝒅 ≥ 0,
4. sparsity for assembled stiffness matrices 𝑲 = A𝑛ele

𝑒=1 𝑲𝑒.

Symmetry: This property follows directly from the Betti-Maxwell theorem of reciprocal work, which
states that a displacement at location 𝑑𝑖 caused by a unit load 𝑓 𝑗 at location 𝑗 is equal to the displacement
at location 𝑑 𝑗 caused by a unit load 𝑓𝑖 at location 𝑖.

Rigid body modes: A structure without any defined support can move freely in space according to
its rigid body modes 𝝓𝑟 . If dynamic effects are neglected, a displacement 𝒅 based on the rigid body
modes 𝝓𝑟 does not require any force, hence 𝑲𝒅=0 holds, for 𝒅≠0. From a mathematical point of view,
an unsupported stiffness matrix 𝑲 is therefore singular. Only by adding boundary conditions, such as
a displacement boundary condition, this system can be solved.

Positive (semi-)definiteness: The positive (semi-)definiteness can be derived from physical
considerations. Any displacement of a mechanical body which is not a rigid-body mode 𝝓𝑟 must
result in a strain energy 𝐸= 1

2 𝒅
⊤𝑲𝒅. Since energy is by definition non-negative, 𝐸≥0, also 1

2 𝒅
⊤𝑲𝒅 ≥ 0

must hold. This is the mathematical condition for positive semi-definiteness of matrices. From this
property it can also be derived that a stiffness matrix 𝑲 has only non-negative diagonal terms.

Sparsity: A matrix 𝑲 consisting mainly of zero entries is called a sparse matrix. Sparsity allows for
special storage and computation operations that are faster than a classical matrix operation. Due to the
assembly process performed by A𝑛ele

𝑒=1, the global stiffness matrix 𝑲 is usually a sparse matrix. Only
local degrees of freedom (not necessarily all) of the element stiffness matrix 𝑲𝑒 are nonzero, as well
as those connected to other elements by nodes.

2.1.2 Guyan reduction

For linear static problems, Guyan (1965) developed a master-slave elimination technique to reduce the
computational cost of FEM computations. Sometimes the term Irons-Guyan reduction is also used
since a similar method was developed simultaneously in Irons (1963) and Irons (1965). The main idea
is to remove all degrees of freedom to which no loads or boundary conditions are applied. The nodes
associated with degrees of freedom that are to be removed are called slave nodes, whereas the boundary
conditions and loads are applied to the degrees of freedom of the master nodes, Fig. 2.2 (a).
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𝑻g
⊤ 𝑲 𝑻g

𝒎

𝒎

(a) (b)

Ω

𝒔

𝒎

𝒎

𝑥

𝑦
𝑧

Figure 2.2: (a) Geometrical design domain Ω discretized by finite elements consisting of master and
slave nodes, 𝑚 and 𝑠, respectively, and (b) the reduced system 𝑲g = 𝑻⊤

g 𝑲 𝑻g utilizing a
Guyan reduction that removes the slave nodes 𝑠 from Ω

The static problem of (2.4) can then be rewritten as
𝑲𝑚𝑚 𝑲𝑚𝑠

𝑲𝑠𝑚 𝑲𝑠𝑠



𝒅𝑚

𝒅𝑠

 =


𝒇𝑚

0

 , (2.5)

where the suffix 𝑚 is used for the master degrees of freedom and the suffix 𝑠 is used for the condensed
slave degrees of freedom. Solving equation (2.5) in terms of 𝒅𝑚 gives the following dependency
for 𝒅𝑠

𝒅𝑠 = −𝑲−1
𝑠𝑠 𝑲𝑠𝑚 𝒅𝑚. (2.6)

Introducing (2.6) into (2.5) leads to the reduced stiffness matrix 𝑲g

𝑲g = 𝑲𝑚𝑚 − 𝑲𝑚𝑠 𝑲
−1
𝑠𝑠 𝑲𝑠𝑚. (2.7)

Now, the reduced system
𝑲g 𝒅𝑚 = 𝒇𝑚, (2.8)

can be solved to determine the master nodes’ displacements 𝒅𝑚, Fig. 2.2 (b). Since all degrees of
freedom contribute to the condensation process of 𝑲g, there is no loss of accuracy (Guyan, 1965). The
linear system of equations of (2.8) is therefore equivalent to the original problem (2.4).

The condensation process of the Guyan reduction can also be expressed with respect to a linear
transformation 𝑻g (J.-G. Kim & Lee, 2014). The master displacements 𝒅𝑚 are then related to the entire
displacement vector 𝒅 in the following way

𝒅 = 𝑻g 𝒅𝑚, (2.9)

𝑻g =


𝑰

−𝑲−1
𝑠𝑠 𝑲𝑠𝑚

 . (2.10)

Using this transformation matrix𝑻g, the reduced stiffness matrix 𝑲g can be obtained in a more compact
notation

𝑲g = 𝑻⊤
g 𝑲 𝑻g. (2.11)
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2.1.3 Rigid body elements

Rigid body elements are used in various engineering analysis tools to transfer loads or connect different
components rigidly. Stemming from the FEM software Nastran, rigid body elements were introduced
and applied to a variety of use cases. In the following, the concept of the so-called rigid body element 2
(RBE2), based on a master-slave elimination within a multi-point constraint, is explained according to
Heirman & Desmet (2010) and G.-R. Liu & Quek (2013).

The RBE2 is a linear rigid element with one master node𝑚 and one or more slave nodes 𝑠. The degrees
of freedom of the master node are often referred to as the independent degrees of freedom, whereas
slave nodes possess dependent degrees of freedom. The rigidity between the master and slave nodes
is prescribed by the following geometrical constraint on the slave displacements

𝒅𝑠 =


𝒖𝑠

𝝋𝑠

 =


𝒖𝑚 + 𝝋𝑚 × [𝒙𝑠 − 𝒙𝑚]

𝝋𝑚

 , (2.12)

where Δ𝒙 = [𝒙𝑠 − 𝒙𝑚] represents the distance vector from the independent master to the dependent
slave node, see Fig. 2.3 (a). The general displacement vector 𝒅 = [𝒖, 𝝋]⊤ consists of a translational 𝒖
and rotational part 𝝋. Note that the above equation is only valid for small deformations.

𝑻r
⊤𝑲 𝑻r

𝒙𝑚

(a) (b)

𝒙𝑠

∆𝒙 𝟏

𝟐

𝟑
𝟒

𝟓

𝟔

𝒅𝑚 =
𝒖
𝝋

𝑚
=

𝑑1
𝑑2
⋮
𝑑6 𝑚

Figure 2.3: (a) Geometrical design domain Ω discretized by finite elements with one exemplary
master node 𝒙𝑚 (orange dot) and slave node 𝒙𝑠 (black dot), defining the distance vector
Δ𝒙 = [𝒙𝑠 − 𝒙𝑚], and (b) the reduced system 𝑲r = 𝑻⊤

r 𝑲𝑻r, which is computed using a
multi-point constraint based on (2.12) for all slave nodes 𝑠 belonging to the right and left
sides of the design domain Ω

The geometrical constraint of (2.12) is incorporated into a homogeneous equality constraint

𝑪 𝒅 = 0 , (2.13)[
𝑪𝑚 𝑪𝑠

] 
𝒅𝑚

𝒅𝑠

 =

[
0
]

, (2.14)

where 𝑪 is the constraint matrix and 𝒅 is the general displacement vector, both ordered with respect to
the master and slave nodes 𝑚 and 𝑠, respectively. The constraint matrix 𝑪 can be used to compute the
new elastic system behavior 𝑲r based on a master-slave elimination

𝑲r = 𝑻⊤
r 𝑲𝑻r, (2.15)
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where the condensation matrix 𝑻r and the total displacement 𝒅 are similarly computed as in
Section 2.1.2

𝒅 = 𝑻r𝒅𝑚, (2.16)

𝑻r =


𝑰

−𝑪−1
𝑠 𝑪𝑚

 . (2.17)

It should be noted that the introduction of a RBE2 formulation into a model artificially increases the
stiffness of the structure by constraining some deformations that would be allowed in reality.



14 2 Fundamentals

2.2 Machine learning

Machine learning models, or meta models, can be established to approximate the system behavior by
fast but simple low-fidelity models. Within this work, the connection between level (II) and (I) of the
given design problem is to be established by meta models.

The general idea of machine learning is to predict a specific unknown output 𝒛 for given input data 𝒚

𝒛 ≈ 𝒛 = 𝒇 (𝒚), (2.18)

based on previously provided data

𝒀 = [𝒚⊤1 , ..., 𝒚
⊤
𝑁 ]⊤, 𝒀 ∈ R𝑁×𝑛y , (2.19)

𝒁 = [𝒛⊤1 , ..., 𝒛
⊤
𝑁 ]⊤, 𝒁 ∈ R𝑁×𝑛z . (2.20)

The precise form of the meta model 𝒇 (𝒚) is determined during the training phase based on the training
data [𝒀tr, 𝒁tr], which is a subset of the provided data of (2.19) and (2.20). Machine learning approaches
can be divided into two different learning types: Supervised learning and unsupervised learning.
Supervised learning deals with problems where a set of input 𝒀 and output data 𝒁 is known. This
means that a priori knowledge of the relationship between both already exists. In unsupervised learning,
the input data is available but there is no output data, hence 𝒁 = [ ]. Here, only relations between the
input variables and the general structure of the data can be used to predict the output 𝒛. Depending on
the form of the output 𝒛, one distinguishes between regression and classification problems in machine
learning. In regression problems, the desired output 𝒛 is in a continuous range, while classification uses
a discrete assignment to the output variables, e.g., binary classification with two classes 𝑧 ∈ [−1, 1].

Once the meta model 𝒇 (𝒚) is trained, it can be tested by predicting the output 𝒛 of new data from
a test set [𝒀te, 𝒁te]. It should be noted that testing should only be done with unseen data, i.e., the
model should not be tested with data that has already been used for training. The ability to correctly
predict new unseen data is referred to as generalization. In practical applications, the variability of
the input vectors is so large that the training data may include only a tiny fraction of all possible input
data, making generalization a central goal of machine learning. To ensure good generalization, it is
important to obtain a sufficient amount of information about the problem through the training data.
This is ensured by sampling methods, which provide the entire sample data [𝒀 , 𝒁] and therefore play
an important role in machine learning.

In general, there are a variety of different machine learning methods for both classification and
regression problems, the interested reader is referred to Bishop (2006), Hastie et al. (2009) or James
(2013). For this work, first, supervised learning for regression with artificial neural networks and
binary classification with support vector machines are introduced, and afterwards different sampling
strategies are explained that can provide the meta models with the needed sample data [𝒀 , 𝒁].

2.2.1 Regression with artificial neural networks

In the early years of artificial neural networks (1943-1958), several researchers were recognized for
their pioneering contributions in this upcoming field (Haykin, 2009). Starting from the first idea of
artificial neural networks as computing machines in McCulloch & Pitts (1943) to the derivation of the
first hypothesis for self-organized learning in Hebb (1949) to the establishment of the first perceptron,
i.e., the first artificial neural network by Rosenblatt (1958). However, it was not until the mid-1980s



2 Fundamentals 15

that artificial neural networks gained attention by Rumelhart et al. (1986). In general, artificial neural
networks can be used for both classification and regression problems. In the following, feed forward
artificial neural networks for regression are presented based on Bishop (2006).

In linear regression models, a linear combination of 𝑛b predefined nonlinear basis functions 𝜙𝑖 (𝒚) and
weights 𝑤𝑖 are utilized to predict data

𝑓 (𝒚, 𝒘) =
𝑛b∑︁
𝑖=1

𝑤𝑖𝜙𝑖 (𝒚). (2.21)

However, these linear regression models are limited by the curse of dimensionality. To enable
application to large-scale problems, it is necessary to adapt the basis functions to the training data.
Therefore, basis functions 𝜙𝑖 (𝒚) were extended to depend on additional parameters besides the weights
𝑤𝑖 to improve their capacities.

In the field of artificial neural networks, the basic neural network is determined by a series of functional
transformations. First, 𝑛b so-called activations 𝑎𝑖 are determined

𝑎𝑖 =

𝑛y∑︁
𝑗=1
𝑤

(1)
𝑖 𝑗
𝑦 𝑗 + 𝑤 (1)

𝑖0 , (2.22)

where 𝑤𝑖 𝑗 is referred to as weights, 𝑤𝑖0 as biases, and the superscript (1) corresponds to the first layer
of the network.

Next, for each activation 𝑎𝑖 a differentiable, nonlinear activation function ℎ( · ) is utilized

𝑏𝑖 = ℎ(𝑎𝑖). (2.23)

Each output 𝑏𝑖 can be seen as a basis function 𝜙𝑖 (𝒚) of equation (2.21) and are called hidden units
in the field of neural networks. A classical choice of activation function is the logistic sigmoid or the
tangens hyperbolicus function.

In accordance with the idea of linear regression, those intermediate outputs 𝑏𝑖 are linearly combined
to the overall output 𝑧

𝑧 =

𝑛b∑︁
𝑖=1

𝑤
(2)
𝑖
𝑏𝑖 + 𝑤 (2)

0 . (2.24)

Note that for regression problems usually only one scalar output 𝑧 is chosen, in contrast to multiple
ones within classification problems. In total, the overall network function 𝑓 (𝒚, 𝒘) = 𝑧 is then

𝑓 (𝒚, 𝒘) =
𝑛b∑︁
𝑖=1

𝑤
(2)
𝑖
ℎ
©«

𝑛y∑︁
𝑗=1
𝑤

(1)
𝑖 𝑗
𝑦 𝑗 + 𝑤 (1)

𝑖0
ª®¬ + 𝑤 (2)

0 , (2.25)

see also Fig. 2.4, or simplified

𝑓 (𝒚, 𝒘) =
𝑛b∑︁
𝑖=0

𝑤
(2)
𝑖
ℎ
©«

𝑛y∑︁
𝑗=0
𝑤

(1)
𝑖 𝑗
𝑦 𝑗

ª®¬ , (2.26)

by introducing additional parameters 𝑦0 = 𝑏0 = 1.
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Figure 2.4: Network diagram for the two-layer neural network corresponding to equation (2.25). The
input 𝑦 𝑗 , hidden units 𝑏𝑖 , and output variables 𝑧 are represented by nodes, and the weight
parameters 𝑤𝑖 𝑗 and 𝑤𝑖 are represented by links between the nodes, in which the bias
parameters are denoted by links coming from additional input and hidden variables 𝑦0
and 𝑏0

Equation (2.25) and (2.26) are nonlinear functions from a set of input variables 𝒚 to a total output
variable 𝑧 given by a vector of adjustable parameters 𝒘. The term feedforward refers to the fact that
the architecture has no loops, i.e., the outputs are deterministic functions of the inputs. Considering
the activation functions of all hidden units of a network to be linear, one can always find an equivalent
network without hidden units for such a network. For one layer, Minsky & Papert (1969) have shown the
limitations of neural networks in learning the relationship between inputs and outputs by demonstrating
that neural networks are unable to classify patterns of nonlinearly separable classes. However, with
multiple layers, artificial neural networks are universal approximators that can successfully approximate
any function if the parameters are chosen appropriately (Hornik et al., 1989).

The network architecture of Fig. 2.4 is the most commonly used architecture with input 𝑦 𝑗 , a so-called
hidden layer with hidden units 𝑏𝑖 , and an output 𝑧. However, it can be easily extended, e.g., by
considering additional hidden layers, each consisting of a weighted linear combination followed by an
element-wise transformation with a nonlinear activation function ℎ( · ). Note that there are different
terminologies in the literature with respect to counting the number of layers in such networks. We
adhere to the terminology of Bishop (2006), in which the architecture of Fig. 2.4 is a two-layer
network because the number of layers of adaptive weights 𝒘 is important for determining the network
properties.

To determine the weights 𝒘 of an artificial neural network, an optimization objective needs to be
defined. For regression problems with a given training data [𝒚, 𝑧]𝐴, for 𝐴=1, ..., 𝑁 , usually the residual
sum of squares (RSE) is minimized

min
𝒘

RSE =
∑𝑁

𝐴=1

(
𝑓 (𝒚𝐴, 𝒘) − 𝑧𝐴

)2
, (2.27)

where 𝑧𝐴 are the observed target values and 𝑓 (𝒚𝐴, 𝒘) are the predictions of a trained neural network.
Note that the nonlinearities of 𝑓 (𝒚𝐴, 𝒘) lead to a nonconvex optimization problem with respect to the
error RSE.

The weights 𝒘 are determined by incorporating first and sometimes second order information into the
optimization. There are two types of optimization approaches for training artificial neural networks:
batch methods and online methods. Batch methods use the entire dataset at once, which has the
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advantage of accurate gradient estimation and parallelization but requires a large amount of memory.
Due to non-convexity, multiple starting points are used in practice to at least have a comparison between
different local minima to ensure a good enough solution. In contrast, online methods use only one data
point at a time and are therefore particularly suitable for large datasets. They are easy to implement
and deal more efficiently with redundancies in the training data. In addition, there is the possibility
of escaping local minima (Bishop, 2006; Haykin, 2009). In order to evaluate the derivatives of the
objective function efficiently, the so-called error backpropagation algorithm can be applied. Rumelhart
et al. (1986) proposed the first backpropagation algorithm involving a gradient-descent method. If
second-order information is necessary, the Hessian matrix 𝑯 can be computed using backpropagation,
too. Because the computation of the Hessian matrix is expensive, approximation schemes are utilized,
as e.g., the Levenberg–Marquardt approximation.

Instead of the RSE, the mean squared error (MSE) can also be used, which represents the average of
the squared errors

MSE =
1
𝑁

𝑁∑︁
𝐴=1

(
𝑓 (𝒚𝐴, 𝒘) − 𝑧𝐴

)2
. (2.28)

For more details on how to train an artificial neural network by means of backpropagation, the interested
reader is referred to Bishop (2006). Besides the RSE and MSE, other performance measurements can
be utilized after the training process to evaluated the resulting artificial neural network. For instance,
the coefficient of determination, denoted as 𝑅2, is often used to assess the accuracy of a regression
model

𝑅2 = 1 − RSE
TSS

, (2.29)

where TSS =
∑𝑁

𝐴=1( 𝑓 (𝒚𝐴, 𝒘) − 𝑧)2 is the total sum of squares. 𝑅2 takes only values between 0 and 1
and measures the proportion of variability in 𝒛 that can be explained using 𝒚 (James, 2013).

While the number of input and output units in a neural network is generally determined by the
dimensionality of the problem and the weights𝒘 by solving the optimization problem (2.27), the number
of hidden layers and units can be adjusted independently to achieve the best predictive performance.
These so-called hyperparameters, whose values are set before the training process, have a significant
influence on the results (Bishop, 2006). Various techniques for the determination of hyperparameters
exist, a simple way is carrying out a full-factorial design with all hyperparameters and choosing the
configuration with the best performance with respect to the specified performance values.

2.2.2 Binary classification with support vector machines

The support vector machine is a supervised machine-learning method initially developed for binary
classification problems over a duration of 30 years from 1965-1995 (Vapnik & Kotz, 2006). It is based
on three major developments:

1. an algorithm for optimal separating hyperplanes for linear classification problems (Vapnik &
Chervonenkis, 1974) using the Vapnik–Chervonenkis theory,

2. the extension to nonlinear classification problems by constructing a hyperplane using the kernel
trick in Boser et al. (1992), and

3. the generalization of the maximal margin idea for non-separable and nonlinear classification
problems in Corinna Cortes & Vladimir Vapnik (1995), i.e., the actual support vector
machine (SVM).

SVMs can in general be applied to both, regression and classification tasks. In the following, a SVM
for binary classification tasks is reviewed.
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1. Linear classification problems

A binary classification problem (𝑧 ∈ [−1, 1]) is linearly separable, if for a given training data [𝒚, 𝑧]𝐴
a scalar 𝑏 and a vector 𝒘 exist, for which

𝒘𝒚⊤𝐴 + 𝑏 ≥ 1, if 𝑧𝐴 = 1,
𝒘𝒚⊤𝐴 + 𝑏 ≤ −1, if 𝑧𝐴 = −1, (2.30)

holds, see Fig. 2.5 (b).

(a) (b) (c)

Φ 𝜉𝐴

Figure 2.5: Support vector machine for (a) nonlinear classification problems using the
transformation 𝚽(𝒚) to convert it to (b) a linear classification problem with perfectly
separable training data. (c) Non-separable training data can be processed using slack
variables 𝜉𝐴 to shift data to the hard margin boundary

The unique solution that separates the training data with a maximal margin 𝑀 perfectly is called
hard-margin hyperplane

𝒘∗𝒚⊤ + 𝑏∗ = 0, (2.31)

where the margin 𝑀 is defined as 𝑀 (𝒘, 𝑏) = 2/|𝒘 |.

In order to maximize this margin𝑀 , 𝒘, and 𝑏 have to be determined such that |𝒘 | = 𝒘𝒘⊤ is minimized,
while ensuring a clear separation between the two classes. The underlying optimization problem is
therefore a quadratic programming problem of the following form

min
𝒘,𝑏

1
2𝒘𝒘

⊤,

s. t.: 𝑧𝐴 (𝒘𝒚⊤
𝐴
+ 𝑏) ≥ 1, for 𝐴 = 1, ..., 𝑁, (2.32)

where

𝑧𝐴 (𝒘𝒚⊤𝐴 + 𝑏) ≥ 1, (2.33)

represents the condition for linear separation of (2.30). The vectors 𝒚𝐴 closest to the hyperplane, i.e.,
where the inequality constraint is active 𝑧𝐴 (𝒘𝒚⊤

𝐴
+ 𝑏) = 1, are called support vectors. The solution of

this quadratic optimization problem can be written as a linear combination of the support vectors 𝒚𝐴,
which determines the hard-margin hyperplane

𝒘 =

𝑁∑︁
𝐴=1

𝑧𝐴𝜆𝐴𝒚𝐴. (2.34)
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2. Nonlinear classification problems

The method so far, only applies for linear classification problems. In Boser et al. (1992), an efficient
method for computing hyperplanes for nonlinear classification problems in a linear feature space
was introduced. Here, the input space is transformed using a nonlinear predefined function 𝚽(𝒚),
see Fig. 2.5 (a-b),

𝒘𝚽⊤(𝒚) + 𝑏 = 0. (2.35)

The respective optimization problem to solve the nonlinear classification problem is

min
𝒘,𝑏

1
2𝒘𝒘

⊤,

s. t.: 𝑧𝐴 (𝒘𝚽⊤(𝒚𝐴) + 𝑏) ≥ 1, for 𝐴 = 1, ..., 𝑁. (2.36)

The solution vector 𝒘 can then be rewritten as

𝒘 =

𝑁∑︁
𝐴=1

𝑧𝐴𝜆𝐴𝚽(𝒚𝐴). (2.37)

3. Non-separable and nonlinear classification problems

If the classification data cannot be separated perfectly, an error margin needs to be introduced, see
Fig 2.5 (c). Corinna Cortes & Vladimir Vapnik (1995) developed the general procedure for nonlinear,
non-separable training data, called SVM. The inequality constraint of (2.36) is therefore extended with
slack variables 𝜉𝐴

𝑧𝐴 (𝒘𝚽⊤(𝒚𝐴) + 𝑏) ≥ 1 − 𝜉𝐴, (2.38)

which allows for classification error during the training process, i.e., that data points 𝒚𝐴 are by 𝜉𝐴 on
the wrong side of the hyperplane. The hyperplane is therefore called soft-margin hyperplane. Instead
of only maximizing the minimal distance, one tries to solve the classification problem with a minimal
number of errors

Θ(𝝃) =
𝑁∑︁
𝐴=1

𝜉𝐴. (2.39)

The general SVM optimization problem to determine the optimal soft-margin hyperplane then reads

min
𝒘,𝑏

1
2𝒘𝒘

⊤ + 𝐶 Θ(𝝃),

s. t.: 𝑧𝐴 (𝒘𝚽⊤(𝒚𝐴) + 𝑏) ≥ 1 − 𝜉𝐴, for 𝐴 = 1, ..., 𝑁, (2.40)
𝜉𝐴 ≥ 0,

where 𝐶 is a constant penalty factor for slack variables 𝜉𝐴. The larger the penalty factor 𝐶, the larger
the penalty for data points 𝒚𝐴 that are misclassified during optimization. Eventually, fewer data points
will cross the hyperplane boundary. However, this comes at the cost of making the SVM optimization
problem to be solved more complex, i.e., more nonlinear. The smaller 𝐶 is, the more data points will
cross the boundary, but the final model will be smoother. For imbalanced training data, meaning that
a dataset has an uneven distribution between its classes, the penalty constant 𝐶 can be also used to
improve the classification performance of the SVM.
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In contrast to the optimization problem (2.27) of neural networks from Section 2.2.1, the SVM
optimization problem (2.40) is convex, thus simplifying the training process. The solution vector of
(2.37) defines now the soft-margin hyperplane, which may separate some training data incorrectly.
The resulting SVM is then

𝑧 = 𝑓 (𝚽(𝒚), 𝒘), for 𝑧 ∈ [−1, 1] . (2.41)

In order to assess the performance of the resulting SVM with respect to the sample data [𝒀 , 𝒁], different
performance measure can be utilized (James, 2013). The most common performance measure is the
accuracy ACC, which is the fraction of errors that are made when the estimates 𝑧𝐴 = 𝑓 (𝚽(𝒚𝐴), 𝒘) are
compared to the training observations 𝑧𝐴

ACC =
1
𝑁

𝑁∑︁
𝐴=1

𝐼

(
𝑓 (𝚽(𝒚𝐴), 𝒘) − 𝑧𝐴

)
. (2.42)

Here 𝐼 ( 𝑓 (𝚽(𝒚𝐴), 𝒘) − 𝑧𝐴) is an indicator variable that is 𝐼=1, if 𝑧𝐴 = 𝑧 and 𝐼=0, if 𝑧𝐴 ≠ 𝑧.

Closely related to the accuracy ACC are the errors for correctly (true) or incorrectly (false) predicted
classes in binary classification. The two classes of 𝑧 ∈ [−1, 1] are often referred to as negative and
positive. The so-called confusion matrix, Table 2.1, contains the rates of the four different classification
conditions, i.e., true positive (TP), true negative (TN), false positive (FP), and false negative (FN). 𝑁p
and 𝑁n are the number of positive and negative samples, respectively, and 𝑁 = 𝑁p + 𝑁n.

Table 2.1: Confusion matrix in binary classification
Predicted class

Positive Negative

Actual class

Po
si

tiv
e True positive rate False negative rate

TPR = TP
𝑁p

FNR = FN
𝑁p

N
eg

at
iv

e

False positive rate True negative rate
FPR = FP

𝑁n
TNR = TN

𝑁n

While the optimization problem (2.40) determines the best SVM hyperplane for given data [𝒀 , 𝒁],
some hyperparameters must also be specified for the SVM. For example, the choice of the kernel
function 𝚽(𝒚, 𝑘s), which can also depend on other parameters 𝑘s and the so-called box constraint, i.e.,
the previously introduced cost 𝐶. The hyperparameters are usually determined by cross-validation
procedures, e.g., k-fold cross-validation, for more information see James (2013).

2.2.3 Sampling methods

In order to ensure a good generalization of the trained meta models 𝑓 for a given training data [𝒀 , 𝒁],
a large number of different sampling techniques exist. Instead of sampling, often also the term design
of experiment (DoE) is used in the field of machine learning. In the following four different sampling
techniques are introduced:

1. Random sampling,
2. Latin hypercube sampling,
3. Random undersampling, and
4. Informed undersampling,

see also Fig. 2.6.
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(a) (b) (c) (d)

Neglected sample data Classification 

boundary

Not considered partitions

Figure 2.6: (a) Random sampling, (b) latin hypercube sampling for 𝑁 = 4 partitions, (c) random
undersampling, and (d) informed undersampling using SVM

1. Random sampling

Random sampling is the most commonly used sampling technique. Let the inputs 𝒚𝐴 ∈ R1×𝑛y be a
random sample from a known probability distribution, then the sample input data, for 𝐴 = 1, ..., 𝑁 in
each dimension 𝑗 , can be computed as

𝑦 𝑗 ,𝐴 = 𝑦lb, 𝑗 + 𝜉
(
𝑦ub, 𝑗 − 𝑦lb, 𝑗

)
, for 0 ≤ 𝜉 ≤ 1, (2.43)

where 𝜉 is a random variable with the probability distribution 𝐹 (𝜉), see Fig. 2.6 (a). Besides machine
learning, random sampling is used in a variety of Monte Carlo methods (Andrieu et al., 2003).

2. Latin hypercube sampling

In McKay et al. (1979), a method called latin hypercube sampling was introduced and proved that
the performance of meta models 𝑓 can be improved, if certain monotonicity conditions hold. For a
given sample number 𝑁 , each dimension 𝑗 of the design space of 𝒚 ∈ R1×𝑛y is first partitioned into 𝑁
disjoint subspaces or partitions with equal probabilities 1/𝑁 . Each input 𝑦 𝑗 is then sampled once for
each partition 𝑃 = [1, ..., 𝑁]

𝑦 𝑗 ,𝑃 = 𝑦lb, 𝑗 +
(𝑃 − 𝜉)
𝑁

(
𝑦ub, 𝑗 − 𝑦lb, 𝑗

)
, for 0 ≤ 𝜉 ≤ 1. (2.44)

Each component 𝑦 𝑗 ,𝑃 for each partition 𝑃 is then randomly combined to an input sample vector 𝒚𝐴

𝒚𝐴 = [𝑦1,𝑃𝜉
, ..., 𝑦𝑛𝑦 ,𝑃𝜉

], (2.45)

where 𝑃𝜉 takes random values of 𝑃 ∈ [1, ..., 𝑁]. In contrast to random sampling, Fig. 2.6 (a), using
latin hypercube sampling ensures that the complete sample input data 𝒀 consist of components 𝑦 𝑗 ,𝑃
of each partition 𝑃, see also Fig. 2.6 (b).

Classification: Learning from imbalanced data

Most machine learning algorithms for classification assume that the number of sample points in each
class is approximately equal. However, training data is often imbalanced, meaning that a dataset has an
uneven distribution between its classes. A fundamental problem with imbalanced training data is that
it significantly affects the performance of most standard learning algorithms. According to Krawczyk
(2016), three different techniques are commonly used to address this impact: 1. data-level methods
that modify the sample set to balance distributions and/or remove samples, 2. algorithm-level methods
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that directly modify existing learning algorithms to reduce bias against majority classes and adapt
them to evaluate data with skewed distributions, e.g., the cost 𝐶 of SVMs of (2.40), and 3. hybrid
methods that combine the benefits of the previous two groups. At the data-level, various sampling
techniques attempt to apply certain heuristics to directly provide a well-balanced dataset to the machine
learning algorithm (He & Garcia, 2009; Krawczyk, 2016). Two data-level methods are presented below.

3. Random undersampling

A natural way to deal with this problem is undersampling. Undersampling attempts to compensate
for the imbalance by randomly removing data from the majority class of the original dataset.
Undersampling, however, has a relatively obvious problem: by removing sample data from the
majority class, the classifier may miss important information (He & Garcia, 2009). The general
concept of undersampling is illustrated in Fig. 2.6 (c).

4. Informed undersampling

To overcome this drawback, informed undersampling can be used. The goal of informed undersampling
is to avoid or minimize information loss by including additional information in the sampling process.
One possibility of informed undersampling are active-learning strategies. Active-learning refers to
algorithms that automatically select data points from which to learn. A special class of active-learning
strategies is called uncertainty sampling. In uncertainty sampling, the algorithm retains only the
sample points where the classifier is most uncertain and neglects all other sample points. This is done
by evaluating the sample points 𝒚𝐴 by a meta model 𝑓 and selecting those closest to the classification
boundary approximated by the meta model 𝑓 , see also Fig. 2.6 (d). SVMs are particularly well
suited for this type of informed undersampling because the mathematical definition of the separating
hyperplane makes the distance calculation trivial (Ertekin et al., 2007; Kremer et al., 2014).

For more information on different sampling techniques or also other ways of dealing with imbalanced
training datasets as algorithm-level and hybrid methods, please see He & Garcia (2009) or Krawczyk
(2016).



2 Fundamentals 23

2.3 Design optimization

Design optimization is a mathematical design method to seek the optimal or best design within the
available means (Papalambros & Wilde, 2018; Martins & Ning, 2022). The mathematical standard
formulation for optimization is typically stated as a minimization problem in the negative null form

min
𝑥 𝑗

𝑓 (𝑥 𝑗),

s. t.: 𝑔𝑘 (𝑥 𝑗) ≤ 0, for 𝑘 = 1, ..., 𝑛g, (2.46)
ℎ𝑙 (𝑥 𝑗) = 0, for 𝑙 = 1, ..., 𝑛h,

𝑥lb, 𝑗 ≤ 𝑥 𝑗 ≤ 𝑥ub, 𝑗 , for 𝑗 = 1, ..., 𝑛x.

To distinguish and modify designs, the design variables 𝒙 = [𝑥1, ..., 𝑥𝑛x] are introduced that describe the
design of the given problem. The best design is hereby evaluated with the objective function 𝑓 (𝒙) that
depends on these design variables and is formulated by the design engineer to realize a given objective.
The term available means refers to the constraints 𝒈(𝒙)=[𝑔1, ..., 𝑔𝑛g] ≤ 0 and 𝒉(𝒙)=[ℎ1, ..., ℎ𝑛h]=0
and the bounds [𝒙lb, 𝒙ub] posed on the design problem. These are typically problem specific restriction
that cannot be changed by the designer. The term negative null form stems from the fact that the
inequality constraints are formulated as 𝒈(𝒙) ≤ 0. We can now, for example, recognize the monolithic
optimization problem (1.3) of Section 1.2 as a minimization problem in the negative null form.

𝒚, 𝒛

𝒙∗

optimization driver

bottom-up mapping

𝒙(𝒒) 𝒇 𝒒 , 𝒈 𝒒 , 𝒉(𝒒)
𝝏𝒇 𝒒

𝝏𝒙
,
𝝏𝒈 𝒒

𝝏𝒙
,
𝝏𝒉 𝒒

𝝏𝒙

for 𝑞 = 0 Initialization of start vector 𝒙(0)

while convergence criteria not met do

1. Set 𝒙(𝑞+1) = 𝒙(𝑞) + ∆𝒙(𝑞)

2. Set 𝑞 = 𝑞 + 1

end 

Optimization driver

𝒙(0)

Requirements on 

(a) (b)

Figure 2.7: (a) Fundamental steps of a general optimization algorithm carried out by the
optimization driver and (b) flowchart of an optimization algorithm architecture with the
two main parts: optimization driver and bottom-up mapping

After having set up an optimization problem (2.46), the actual task of finding the optimal design

𝒙∗, (2.47)

needs to be solved. In practice, the increasing complexity of design optimization problems makes an
analytical solution procedure impractical. Therefore, numerical iterative optimization algorithms are
applied to solve the problem at hand. The fundamental steps of an optimization algorithm can be seen
in Fig 2.7 (a).

For 𝑞=0, the optimization driver initializes a start vector

𝒙 (0) , (2.48)
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which is then changed in each new iteration 𝑞 according to algorithm-specific rules Δ𝒙 (𝑞)

𝒙 (𝑞+1) = 𝒙 (𝑞) + Δ𝒙 (𝑞) , (2.49)
𝑞 = 𝑞 + 1, (2.50)

until a predefined convergence criteria is met. Note that depending on the mathematical nature of the
design problem, the choice of the start vector 𝒙 (0) as well as the utilized optimization algorithm can
have a significant impact on the final optimization result 𝒙∗.

The general flowchart of an optimization algorithm is shown in Fig 2.7 (b). The two main parts of an
optimization algorithm are

1. optimization driver and
2. bottom-up mapping.

The previously mentioned optimization driver steers the optimization based on the given top-level
requirements for 𝒚 and 𝒛 from the top down to the optimal bottom-level solution 𝒙∗, which is why
the term top-down is also sometimes used here. In contrast, the corresponding bottom-up mappings
compute the actual top-level response values 𝒚 and 𝒛 based on the chosen bottom-level design variables
𝒙, hence the term bottom-up. In engineering, these bottom-up mappings are mostly high-dimensional
computer models, as FEM models of Section 2.1, that must be run multiple times during the course of
the algorithm, hence limiting the usage of design optimization due to too high computational cost. If the
computational cost of high-fidelity models is too large, often a so-called surrogate-based optimization
is utilized. In surrogate-based optimization, low-fidelity meta models are established to approximate
the system behavior by faster but simpler low fidelity models, as introduced in Section 2.2. Note that
bottom-up mappings are also often just called analyses in the optimization community.

Many different classifications of optimization algorithms exist (Papalambros & Wilde, 2018; Martins
& Ning, 2022). Two important ways of classification are:

1. gradient-based vs. gradient-free algorithms,
2. local vs. global search algorithms.

Gradient-based algorithms rely on local gradient (𝜕/𝜕𝑥) or curvature (𝜕2/𝜕𝑥2) information for changes
Δ𝒙 (𝑞) in the current design 𝒙 (𝑞) . In general, gradient-based algorithms scale better to problems with
many design variables than gradient-free algorithms. However, since first or second order information
is required, this information must be readily available when using such a method. Unfortunately,
often black-box functions with a simple input-output structure are used, hence lacking analytical
derivatives. Here, the gradients must be numerically approximated by finite difference schemes, which
is computationally expensive. Moreover, gradient-based algorithms tend to converge to the nearest
local minimum rather than the global minimum. Another problem arises when the objective function
is non-smooth, i.e., discontinuities exist, or the values of the design variables take only integer values,
leading to a discrete problem. In all these cases, gradient-free algorithms are preferred. They rely only
on zero-order information of the used bottom-up mappings 𝑓 (𝒙), 𝒈(𝒙), and 𝒉(𝒙). By simultaneously
evaluating many different designs 𝒙𝐴, it is attempted to identify the optimal global design 𝒙∗glob.

The terms local and global search algorithms refer to the way of how the design space is searched.
Local search algorithms start from one single start vector 𝒙 (0) and take a series of steps 𝑞 that are
supposed to converge to the closest local optimum 𝒙∗loc. In contrast, global search algorithms try to
scan the whole design space utilizing multiple designs 𝒙𝐴 in order to find the global optimum 𝒙∗glob,
however global convergence can also not be ensured. Since gradient-based algorithms rely typically
on local information and gradient-free algorithms indeed scan a broader area of the design space,
the terms local and gradient-based, and global and gradient-free are often used synonymously. Yet,
sometimes gradient-based algorithms use global search information and gradient-free algorithm rely
on local-search strategies (Martins & Ning, 2022).
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2.3.1 Surrogate-based optimization

The system level optimization problem we want to explore is based on meta models. In this context, the
term surrogate-based optimization is often used in engineering. The goal is to create meta models that
are much faster to compute than the original models, but still maintain sufficient accuracy (Martins &
Ning, 2022). This does not necessarily mean that the responses of the meta models are approximations;
they can still be 100% accurate. The optimization problem (2.46) therefore only changes with respect
to the used bottom-up mappings 𝑓 , �̂�, and ℎ̂

min
𝑦 𝑗

𝑓 (𝑦 𝑗),

s. t.: �̂�𝑘 (𝑦 𝑗) ≤ 0, for 𝑘 = 1, ..., 𝑛g, (2.51)
ℎ̂𝑙 (𝑦 𝑗) = 0, for 𝑙 = 1, ..., 𝑛h,

𝑦lb, 𝑗 ≤ 𝑦 𝑗 ≤ 𝑦ub, 𝑗 , for 𝑗 = 1, ..., 𝑛y.

Since the surrogate-based system optimization problem is to be carried out between the hierarchy
level (I) and (II) of the design problem, the design variables for the system level optimization are now
the component performances 𝒚 of the hierarchy level (II), see Section 1.2. Instead of the original
high-fidelity bottom-up mappings, meta models are used and the objective and constraint functions are
now 𝑓 (𝒚), �̂�(𝒚), and ℎ̂(𝒚).

To avoid that an optimal design 𝒙∗ is not already ruled out at the system level, we want to ensure
global convergence 𝒚∗ for our given system optimization design problem. Therefore, a gradient-free
global search algorithm called particle swarm optimization (PSO) is used. Since the number of design
variables 𝑛y of hierarchy level (II) is relatively small and the computational cost of the used meta
models 𝑓 (𝒚), �̂�(𝒚), and ℎ̂(𝒚) should also be comparatively small, evaluating multiple designs 𝒚𝐴
during the PSO does not pose any problem in terms of computational cost.
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Figure 2.8: Geometrical representation of the update scheme of PSO to compute the new position
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Even though the PSO is a gradient-free and global-search algorithm, it still incorporates local-search
information. It was initially proposed by Kennedy & Eberhart (1995) and further developed in Eberhart
& Kennedy (1995) and Shi & Eberhart (1998). It is inspired by the idea of simulating social behavior
in nature. In contrast to classical gradient-based optimization algorithms, PSO starts with an initial set
of start vectors 𝒀 (0) = [𝒚⊤1 , ..., 𝑦

⊤
𝑁s
]⊤. One design variable vector 𝒚𝐴, for 𝐴=1, ..., 𝑁s, is referred to as

a particle, whereas the set of particles in one iteration 𝒀 (𝑞) is called a swarm in the context of PSO.
During the course of the algorithm, each particle 𝒚 (𝑞)

𝐴
takes individual steps based on the following

update scheme

𝒗 (𝑞+1)
𝐴

= 𝑤 𝒗 (𝑞)
𝐴

+ 𝜉1 ( 𝒑 (𝑞)
𝐴

− 𝒚 (𝑞)
𝐴

) + 𝜉2 ( 𝒑 (𝑞)
g − 𝒚 (𝑞)

𝐴
), (2.52)

𝒚 (𝑞+1)
𝐴

= 𝒚 (𝑞)
𝐴

+ 𝒗 (𝑞+1)
𝐴

, (2.53)
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where 𝒚 (𝑞)
𝐴

is the current position, 𝒗 (𝑞)
𝐴

the velocity, 𝒑 (𝑞)
𝐴

the particle’s best position and 𝒑 (𝑞)
g the

swarm’s best position, which are used to calculate the new velocity 𝒗 (𝑞+1)
𝐴

and thus the new position
𝒚 (𝑞+1)
𝐴

, see also Fig. 2.8.

The three components of the velocity update can be interpreted as:

1. Inertia: 𝒗 (𝑞)
𝐴

,
2. Cognition: 𝒑 (𝑞)

𝐴
− 𝒚 (𝑞)

𝐴
,

3. Social: 𝒑 (𝑞)
g − 𝒚 (𝑞)

𝐴
.

The inertia takes the old velocity 𝒗 (𝑞)
𝐴

for the calculation of the new velocity 𝒗 (𝑞+1)
𝐴

into account, adding
an inertia to the algorithm which prevents too large changes between two iterations. The cognition
considers the particle’s best position throughout the whole optimization process, whereas the social
part contributes the swarm’s best position for each update step. According to Shi & Eberhart (1998),
the inertia represents the global search properties, whereas the cognition and social part contribute to
a local search. The parameters 𝑤, 𝜉1, and 𝜉2 control the influence of each component on the algorithm
and are problem specific. Tuning of the parameters allows a switching between exploration (global)
and exploitation (local). In general, the convergence behavior of PSO depends highly on the parameter
choice and the given problem (Poli et al., 2007). Yet, PSO has been successfully applied to a variety
of different design optimization problems (Kennedy & Eberhart, 1995; Poli et al., 2007).

2.3.2 Topology optimization

For the component optimization between hierarchy level (II) and (III), structural design optimization
techniques are to be utilized, that are based on high-fidelity FEM models. To cast a given structural
design optimization problem into a mathematical optimization formulation, typically three different
types of structural design optimization are distinguished (Bendsøe & Sigmund, 2004):

1. sizing,
2. shape, and
3. topology.

Sizing Shape Topology

(a) (b) (c)

Figure 2.9: Three types of structural design optimization: (a) Sizing, (b) shape, and (c) topology
optimization

In a typical sizing problem, the design variables 𝒙 correlate with an indirect change of geometry,
such as the cross-section of a truss element, see Fig. 2.9 (a). Note that the general design domain
Ω of a sizing design problem remains the same during optimization and is determined a priori. In
contrast, the goal of a shape optimization problem is to find the optimal shape of the design domain Ω.
Therefore, the shape itself of the design domain Ω is described by design variables 𝒙 and are changed
during the optimization process. This sometimes affects the underlying FEM model and requires
remeshing, complicating the design optimization process. Finally, topology optimization is concerned
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with determining the most general features, such as the number, location, and shape of holes and the
connectivity of a design domain Ω with given geometrical dimensions (Bendsøe & Sigmund, 2004).
Therefore, it is usually the starting point of an structural design optimization task, while shape and/or
size optimization is performed afterwards.

In this work, we are concerned with topology optimization, but all developed methods also work with
other types of structural design optimization. Topology optimization was first established by Bendsøe
& Kikuchi (1988) aiming to solve the following structural design optimization problem:

How to distribute material in a given design domain Ω to achieve an optimal or best design
within the available means.

Since then, several approaches have been developed to solve this design optimization problem, such as
density-based approaches or level-set, topological derivative, phase-field, and evolutionary approaches
(Sigmund & Maute, 2013). Starting point for all classical topology optimization approaches is a
mechanical body in linear elastostatics, as already introduced in Section 2.1, that is subject to boundary
conditions and outer loads. If the stiffness is to be maximized, i.e., minimization of the internal energy,
the following optimization problem can be formulated

min
𝒅∈𝑫,𝑬

𝑙 (𝒅),

s. t.: 𝑎E(𝒅, 𝛿𝒅) − 𝑙 (𝛿𝒅) = 0, for all 𝛿𝒅 ∈ 𝑫, (2.54)
𝑬 ∈ 𝑬ad,

where 𝑎E(𝒅, 𝛿𝒅) =
∫
Ω
𝛿𝜺⊤𝝈 𝑑Ω and 𝑙 (𝛿𝑑) =

∫
Ω
𝛿𝒅⊤𝒃 𝑑Ω +

∫
Γ
𝛿𝒅⊤ 𝒕 𝑑Γ are the internal and external

virtual work components of the static equilibrium equation in the weak form of Section 2.1.1. In
topology optimization, 𝑙 (𝛿𝑑) is referred to as compliance 𝐶, 𝑫 refers to the set of kinematically
admissible displacement fields, and 𝑬 are the stiffness values as design variables belonging to the set
of admissible stiffness tensors in 𝑬ad for a predefined reference volume 𝑉0. A topology-optimized
domain Ω in terms of compliance 𝐶 for a given load 𝒕 and a volume 𝑉0 is shown in Fig. 2.10.

(a) (b)

𝒕ΓΩ

Figure 2.10: (a) A mechanical body Ω in linear elastostatics clamped on the left boundary subject to
a traction load 𝒕 on the right boundary and (b) the respective optimal topology for
minimized internal energy, while satisfying a volume constraint

When the problem (2.54) needs to be solved in practice, FEM as a bottom-up mapping is usually
utilized. Among the investigated topology optimization methods, the so-called Simplified Isotropic
Material with Penalization (SIMP) model is the most common one (Bendsøe & Sigmund, 2004). Here,
the stiffness for a given isotropic material is scaled throughout the discretized design domain Ω

𝜌
𝑝
𝑒 𝑲𝑒, 𝑝 ≥ 1, (2.55)

𝑛ele∑︁
𝑒=1

𝜌𝑒𝑉𝑒 ≤ 𝑉0, 0 < 𝜌lb,𝑒 < 𝜌𝑒 ≤ 1, (2.56)

where 𝜌𝑒=𝑥 𝑗 are the design variables and are usually referred to as densities in a SIMP-based topology
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optimization. The density 𝜌𝑒 scales the stiffness of each element in Ω between a lower threshold
and a reference stiffness 𝑲𝑒. In addition, 𝜌𝑒 also scales the volume per element 𝑉𝑒 and hence the
total volume 𝑉 . Since for non-composite materials, intermediate densities 0<𝜌𝑒<1 have no physical
meaning, a discrete 0-1 design is desired. In SIMP, one therefore usually chooses a value of 𝑝>1, so
intermediate densities are unfavorable in the sense that the stiffness achieved is less than the volume 𝑉
of the material, implicitly directing the optimization to a 0-1 design. Choosing 𝑝 too low or too high
leads to either gray-scale problems, i.e., too many intermediate densities, or too fast convergence to
local minima. The value that ensures good convergence to almost 0-1 solutions is 𝑝=3.

The minimum compliance optimization problem of (2.54) can then be reformulated as

min
𝜌𝑒
𝐶 (𝜌𝑒) = 𝒇⊤𝒅,

s. t.:
∑𝑛ele

𝑒=1 𝜌𝑒𝑉𝑒 −𝑉0 ≤ 0, (2.57)
𝜌lb,𝑒 ≤ 𝜌𝑒 ≤ 𝜌ub,𝑒, for 𝑒 = 1, ..., 𝑛ele,

and the FEM equilibrium (A𝑛ele
𝑒=1 𝜌

𝑝
𝑒 𝑲𝑒)𝒅 = 𝒇 is maintained within each function call to compute 𝒅.

Since the number of design variables 𝑛x is equal to the number of finite elements 𝑛ele of the model,
the dimensionality of the optimization problem is usually very high, while the number of constraints
is small in comparison. Therefore, gradient-based optimization algorithms are typically utilized to
solve (2.57). To compute the derivatives, the adjoint method can be used, in which the derivatives of
the displacements 𝒅 are not computed explicitly. For the minimum compliance problem (2.57) the
required gradients can be calculated as follows

𝜕𝐶

𝜕𝜌𝑒
= −𝑝𝜌𝑝−1

𝑒 𝒅⊤𝑲𝑒𝒅, (2.58)

whereas the gradients for the volume are

𝜕𝑉

𝜕𝜌𝑒
= 𝑉𝑒 . (2.59)

Therefore, derivatives for the minimum compliance problem are extremely cheap to compute with only
localized derivatives, i.e., each derivative contains only element-level information. However, hidden
in the displacement vector 𝒅 of the compliance gradients is an effect of the other design variables since
the system displacement is naturally affected by each element and thus by all design variables 𝜌𝑒.

Besides the classical minimum compliance problem in topology optimization, often also other
quantities of interests need to be calculated. In the monolithic optimization problem (A) of (1.3),
displacement gradients instead of the compliance are needed. Yet, with a small modification also these
can be derived via the adjoint method as

𝜕𝑑 𝑓

𝜕𝜌𝑒
= −𝑝𝜌𝑝−1

𝑒 𝝀⊤𝑲𝑒𝒅, (2.60)

where 𝑑 𝑓 is the displacement of interest of the global displacement vector 𝒅, and 𝝀⊤ is the solution
of the adjoint load problem 𝑲𝝀 = 1, where 1 has only zero entries except for the particular degree of
freedom 𝑓 , which is 1 𝑓 = 1. For more details, see Bendsøe & Sigmund (2004).

The most common algorithm for topology optimization problems is the method of moving asymptotes
(MMA) developed by Svanberg (1987). It is a gradient-based algorithm that utilizes a special type of
convex approximations based on local information, which are supposed to stabilize and accelerate the
convergence of the MMA. In addition, the asymptotes provide an extra degree of flexibility that can be
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leveraged to solve a given design problem more effectively. The starting optimization problem for the
MMA is

min
𝑥 𝑗 ,𝜐𝑘 ,𝜁

𝑓 (𝑥 𝑗) + 𝑎0𝜁 +
∑𝑛g

𝑘=1

(
𝑐𝑘𝜐𝑘 + 1

2𝑑𝑘𝜐
2
𝑘

)
,

s. t.: 𝑔𝑘 (𝑥 𝑗) − 𝑎𝑘𝜁 − 𝜐𝑘 ≤ 0 for 𝑘 = 1, ..., 𝑛g (2.61)
𝑥lb, 𝑗 ≤ 𝑥 𝑗 ≤ 𝑥ub, 𝑗 , for 𝑗 = 1, ..., 𝑛x,

0 ≤ 𝜐𝑘
0 ≤ 𝜁 .

For the minimum compliance problem (2.57), the design variables are the element densities 𝑥 𝑗=𝜌𝑒,
the objective is the compliance 𝑓 (𝑥 𝑗)=𝐶 and the inequality constraint is concerned with the volume
𝑔(𝑥 𝑗)=

∑𝑛ele
𝑒=1 𝜌𝑒𝑣𝑒 − 𝑉0. The artificial design variables 𝜐 and 𝜁 are computed by the MMA during the

optimization. The heuristic parameters are set to 𝑎0=1, 𝑎𝑘=0, and 𝑑𝑘=0, while for 𝑐𝑘 it is recommended
by Svanberg (2007) to use a reasonable large number, e.g., 103 ≤ 𝑐𝑘 ≤ 104.

For each iteration 𝑞 at point [𝒙 (𝑞) , 𝝊 (𝑞) , 𝜁 (𝑞) ], a MMA subproblem is constructed

min
𝑥 𝑗 ,𝜐𝑘 ,𝜁

𝑓 (𝑥 𝑗) + 𝑎0𝜁 +
∑𝑛g

𝑘=1

(
𝑐𝑘𝜐𝑘 + 1

2𝑑𝑘𝜐
2
𝑘

)
s. t.: �̂�𝑘 (𝑥 𝑗) − 𝑎𝑘𝜁 − 𝜐𝑘 ≤ 0, for 𝑘 = 1, ..., 𝑛g (2.62)

𝛼lb, 𝑗 ≤ 𝑥 𝑗 ≤ 𝛼ub, 𝑗 , for 𝑗 = 1, ..., 𝑛x,

0 ≤ 𝜐𝑘 ,
0 ≤ 𝜁,

where 𝑓 (𝑥 𝑗) and �̂�𝑘 (𝑥 𝑗) are approximations of the original functions based on first-order information
at the current iteration 𝒙 (𝑞) and the lower and upper moving asymptotes, 𝑙 𝑗 and 𝑢 𝑗 , respectively. For
more information on the approximations and the correct choice of parameters, see Svanberg (2007).

By constructing the Lagrange function 𝐿 (𝒙, 𝝊, 𝜁 , 𝝀) of the given optimization problem (2.62), the
Karush-Kuhn-Tucker optimality conditions can be derived. Using a primal-dual interior point method,
the relaxed problem can be converted into a system of linear equations. Taking advantage of the duality
and eliminating 𝝊, it can be solved for the dual Lagrange multipliers 𝝀 and the artificial design variable
𝜁 , instead of the primary design variables 𝒙. This alters the system size according to Svanberg (2007)
from

R𝑛x×𝑛x , (2.63)

to

R(𝑛g+1)×(𝑛g+1) . (2.64)

For problems with a high number of design variables 𝑛x, but low number of constraints 𝑛g, this can
reduce the system size considerably. Finally, for each iteration 𝑞, a new design in the primal space is
calculated as

[𝒙 (𝑞+1) , 𝝊 (𝑞+1) , 𝜁 (𝑞+1) ] . (2.65)

For any optimal solution, 𝝊∗=0 and 𝜁∗=0 should hold. Even though the MMA relies on some heuristic
parameters, the algorithm works very well for a variety of structural design optimization problems
(Svanberg, 1987).
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Regardless of the optimization algorithm, there are three main problems of a SIMP-based topology
optimization (Sigmund & Petersson, 1998; Bendsøe & Sigmund, 2004):

1. mesh-dependency,
2. checkerboard pattern, and
3. non-convexity.

(a) (b)

.

(c)

𝒕

𝒕

𝒕

𝒕

𝒕

Figure 2.11: (a) Optimization results for a coarse and fine mesh, (b) checkerboard pattern, and (c)
non-unique solutions of SIMP-based topology optimization

First, there is a mesh-dependency for results of SIMP-based topology optimization. This is due to
the fact that in general there is no unique solution to the continuous mechanical problem (2.54).
Introducing new holes while keeping the volume constant always increases the quality of the given
structure. Similarly, refining the mesh in a discretized domain Ω leads to a better but also qualitatively
different topology, see Fig. 2.11 (a). Ideally, the mesh refinement should only lead to a better description
of the boundaries of the topology, but with the same qualitative characteristics.

Second, SIMP-based topology optimization also suffers from so-called checkerboard patterns.
Checkerboard patterns involve structures whose densities vary periodically, similar to a checkerboard
consisting of alternating fixed (𝜌𝑒=1) and empty elements (𝜌𝑒=𝜌lb,𝑒), see Fig. 2.11 (b). Although a
checkerboard pattern does not lead to a meaningful elastic behavior, such designs are often produced by
a topology optimization. One explanation for the appearance of checkerboards in topology optimization
is that such material arrangements exhibit artificially high stiffness when analyzed in certain discretized
formulations.

For the mesh-dependency as well as checkerboard patterns, various solution procedures do exist, the
interesting reader is referred to Sigmund & Petersson (1998) or Bendsøe & Sigmund (2004). Within
this work, a gradient sensitivity filter is utilized to solve both problems

𝜕 𝑓

𝜕𝜌𝑒
=

1
𝜌𝑒

∑𝑛ele
𝑖=1 �̃�𝑖

𝑛ele∑︁
𝑖=1

�̃�𝑖𝜌𝑖
𝜕 𝑓

𝜕𝜌𝑖
, (2.66)

whereas 𝑛ele is the total number of elements in the mesh. The mesh-independent convolution operator
�̃�𝑖 is defined as

�̃�𝑖 = 𝑟min − dist(𝑒, 𝑖), {𝑖 ∈ 𝑛ele | dist(𝑒, 𝑖) ≤ 𝑟min} , for 𝑒=1, ..., 𝑛ele, (2.67)

where dist(𝑒, 𝑖) is the distance between the center of the element 𝑒 and another element 𝑖 in the
dimensionless parameter space of the finite element mesh. The operator �̃�𝑖 is zero outside the filter
radius. For a filter radius of 𝑟min=0, the optimization converges to the original solution and for
𝑟min=∞ an evenly distributed material is obtained. Unfortunately, the sensitivity filter is a heuristic
and the theoretical basis not yet understood. However, computational experience has shown that
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filtering of the sensitivity information of the optimization problem is a highly efficient way to ensure
mesh-independency and avoid checkerboard patterns.

Third and lastly, structural topology optimization problems for 𝑝>1 are non-convex, meaning many
problems may have multiple optima, i.e., non-unique solutions. An example of this is the design
of a uniaxially tensioned structures. Here, a structure consisting of one thick bar is just as good as
a structure consisting of several thin bars of the same cross-sectional area, see Fig. 2.11 (c). This
non-convexity typically means that one can find several different local minima in gradient-based
optimization algorithms, and that one can obtain different solutions to the same discretized problem
by choosing different initial start vectors 𝒙 (0) and different parameters of the utilized optimization
algorithm.

After a topology optimization has been performed, considering the previously discussed problems, the
results usually must be interpreted, e.g., in terms of a conversion to a CAD file during post-processing.
These post-processing steps are necessary tasks within a SIMP-based topology optimization and many
different approaches have been proposed to solve this task. For example, the output can be smoothed
using image processing tools. Many commercial optimization softwares automatically smooth the
outputs, so care must be taken here as the underlying problem, e.g., checkerboard pattern or gray-scale,
is ignored (Sigmund & Petersson, 1998). Another approach that emerged soon after the introduction
of topology optimization are methods that combine topology optimization with shape optimization
in a post-processing step (Sigmund & Maute, 2013). Even if an extra shape optimization is tedious,
the fulfillment of the requirements can be explicitly ensured here. In addition to pure post-processing
methods, many other topology optimization approaches are originally motivated by the need to provide
results that reduce the effort of subsequent post-processing steps compared to SIMP-based topology
optimization in the first place (Deaton & Grandhi, 2014).
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3 Distributed design optimization

3.1 Introduction

Distributed design optimization originates from a research area called multidisciplinary design
optimization (MDO). It investigates the application of numerical optimization techniques to the design
of engineering systems that span multiple disciplines or components (Martins & Lambe, 2013). In
addition to classical high-fidelity bottom-up mappings, such as FEM, also low-fidelity meta models are
often utilized here. Formulating the design problem and coordinating different bottom-up mappings
is a critical part within MDO. The combination of a coordination strategy and one or more problem
formulations is called an architecture. This architecture can be either monolithic or distributed, and the
right choice can significantly reduce the computational time required to solve the given optimization
problem. Monolithic architectures form and solve a single optimization problem, although several
bottom-up mappings may be included. In contrast, distributed optimization architectures decompose
the single optimization problem into a set of smaller optimization subproblems containing subsets of
the objectives, design variables, and constraints (Martins & Lambe, 2013). The decomposition itself
can either be done along discipline boundaries, which is called aspect partitioning and is the classical
area of MDO. Another possibility is object partitioning, where physical components are decomposed
(Tosserams et al., 2009). Since we focus on object partitioning, our different subproblems are now
referred to as top-level system optimization and lower-level component optimization. However, the
component optimizations could theoretically also be different disciplines. There are two main reasons
to prefer distributed optimization architectures over monolithic ones. The first reason is to mimic
the classical product development process where groups design their tasks independently, making
distributed optimization architectures supposedly easier to adopt in industry. The second is the ability
to decompose the problem to reduce computational time (Martins & Ning, 2022). Among distributed
architectures, there are several properties that need to be considered to apply the right architecture to
the given problem. In this work, we distinguish between distributed architectures that possess

1. a decoupled vs. nested vs. alternating formulation,
2. a hierarchical vs. non-hierarchical decomposition,
3. a parallel vs. non-parallel execution, and those that
4. converge vs. not converge to the monolithic solution.

According to Tosserams et al. (2009), nested formulations are two-level programming problems in
which the lower-level component optimizations are nested within a coordinating system optimization.
In contrast, alternating formulations iterate between solving a system optimization and the respective
component optimizations. In addition, we introduce a third decoupled formulation that is executed
strictly sequentially, i.e., first on the system level and then on the lower component levels, without
requiring iteration back to the system level or coordination among the different components. Depending
on the formulation, the degree of dependency and thus the coordination effort required to solve the
problem decreases from nested to alternating to decoupled. Furthermore, the type of decomposition of
the monolithic optimization problem can differ between hierarchical or non-hierarchical (Papalambros
& Wilde, 2018). In this work, a hierarchical architecture has a system optimization and a component
optimization, and each optimization subproblem operates within clear hierarchical levels, e.g., the
system optimization problem should not deal with detailed design variables 𝒙 of hierarchy level
(III). Moreover, whether a parallel or a non-parallel execution is implemented can help reduce the
computational time of large-size optimization problems. Finally, a central concern of distributed
optimization architectures is that they converge to the monolithic solution of their monolithic
counterpart (Martins & Lambe, 2013; Martins & Ning, 2022).
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3.2 Distributed optimization architectures

In general, there is a wide variety of distributed optimization architectures, see, e.g., Tosserams et al.
(2009) or Martins & Lambe (2013). In the following chapter only the distributed architectures most
relevant for the given monolithic optimization problem (A) of Section 1.2 are discussed. The notation
is therefore adapted to a complicating constraints problem with a separable objective function 𝑓 (𝒙), a
system-wide constraint function 𝑔(0) (𝒙), no shared design variables 𝒙 (0) , and three distinct hierarchy
levels [𝒛, 𝒚, 𝒙]. Hierarchy levels (II) and (III) are concerned only with their local design variables 𝒙 (𝑖)
and responses 𝒚 (𝑖) . For simplicity, the equality constraints 𝒉(𝒙)=0 and the upper and lower bounds of
the respective design variables are neglected in this chapter.

3.2.1 Individual optimization

An intuitive approach that is often used in industry is an individual optimization (IO). Here, a concurrent
design of the entire system is often not possible due to the difficulty of coordinating all departments
and their respective engineers responsible for a particular component or discipline. Hence, each
component 𝑖 of the system is optimized individually with respect to its own local objective function,
design variables, and constraints

min
𝒙(𝑖)

𝑓(𝑖) (𝒙 (𝑖) ),

s. t.: 𝒈(0) (𝒙 (𝑖) ) ≤ 0, (3.1)
𝒈(𝑖) (𝒙 (𝑖) ) ≤ 0.

One can perform the IO of (3.1) either sequentially, see Fig. 3.1 (a), in which case it is also called
sequential optimization (Martins & Ning, 2022), or in parallel, see Fig. 3.1 (b), in which case some
assumptions are made to decouple the problems, see, e.g., Krischer et al. (2020).

Component 

optimization (1)

𝒛, 𝒚

𝒙 1

Component 

optimization (𝑛c)

𝒙 𝑛c

Component 

optimization (𝑖)

𝒛, 𝒚

𝒙

(a) (b)

⋮

Figure 3.1: Flowchart of the individual optimization architecture (IO) in (a) the classical sequential
way and (b) in parallel for specific assumptions made beforehand

In both cases, no interdependencies are taken into account and no system optimization takes place to
steer all individual components of the system toward the optimal overall system design. Instead, after
each step, the respective results 𝒙 (𝑖) are simply passed on and the system behavior is evaluated at the
end (Kroo, 1997; Martins & Ning, 2022).
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The ease of implementation without the need for direct interaction between the different bottom-up
mappings makes this approach attractive. Since the component optimization problems (3.1) do not
need to consider coupling or consistency, the dimensionality of each optimization problem is not
increased and can be solved with the classical available algorithms, while parallelization is possible if
decoupling is done beforehand, see Fig. 3.1 (b). However, optimal solutions cannot usually be found,
and even feasible solutions require a large number of outer iterations, so the whole process often has
to be run several times. Since an IO does not take into account mutual dependencies and does not
converge to the original problem solution of a monolithic optimization, it is often not considered a real
distributed architecture (Martins & Ning, 2022).

3.2.2 Collaborative optimization

One of the most mature distributed architectures is collaborative optimization (CO) conceived by Braun
(1996). The CO architecture is inspired by the way different design teams work together in the context
of complex engineering systems in industry. In CO, the system optimization problem is responsible for
minimizing the system objective, while the component optimizations minimize system inconsistencies
(Braun et al., 1996; Braun & Kroo, 1997).

The system optimization problem is

min
�̃�(𝑖) ,𝒚

𝑡
(𝑖)

𝑓 (�̃� (𝑖) , 𝒚
𝑡
(𝑖) ),

s. t.: 𝒈(0) (�̃� (𝑖) , 𝒚
𝑡
(𝑖) ) ≤ 0, (3.2)

𝐽∗(𝑖) = | |�̃� (𝑖) − 𝒙 (𝑖) | |22 + ||𝒚𝑡(𝑖) − 𝒚 (𝑖) | |22 = 0 for 𝑖 = 1, ..., 𝑛c,

where the constraint function 𝐽(𝑖) measures the consistency between requested system-level values and
the component-level values. The nested component optimization subproblem is then

min
𝒙(𝑖)

𝐽(𝑖) (𝒙 (𝑖) ),

s. t.: 𝒈(𝑖) (𝒙 (𝑖) ) ≤ 0. (3.3)

The general procedure of the CO can be seen in Fig. 3.2. CO is a nested architecture, meaning each
system optimization iteration includes 𝑛c complete component optimizations.

𝒛

𝒙

System optimization

driver

System optimization

Component 

optimization (𝑖)

𝒚(𝑖)
𝑡 , 𝒙 𝑖 𝒚 𝑖 , 𝒙(𝑖)

Figure 3.2: Flowchart of the collaborative optimization architecture (CO)



3 Distributed design optimization 35

The system optimization driver provides target values 𝒚𝑡(𝑖) and copies of the component’s design
variables �̃� (𝑖) to the component optimizations 𝑖. Each component optimization is carried out
independently of each other and returns the computed response 𝒚 (𝑖) as well as the component’s
design variables 𝒙 (𝑖) to the system optimization, after each component optimization converged.

The complete independence of the component optimization problems combined with a simple
coordination pattern makes this architecture attractive for weakly coupled design problems. Due to
the nested formulation, post-optimization sensitivity analysis, i.e., computing derivatives with respect
to an optimized function, is required which complicates the evaluation of the consistency constraint
functions 𝐽(𝑖) . Since the system optimization uses local copies �̃� (𝑖) of the design variables of the
component optimization problems, the dimensionality of CO can increase significantly depending on
the problem formulation, e.g., when topology optimization is used. These local copies also prevent
CO from being a strictly hierarchical architecture. However, copies of the local design variables are
only made when these variables directly affect the objective. The component optimizations within the
CO can be run in parallel. Moreover, it has been proved that the CO problem converges to the original
solution of a monolithic optimization. However, it shows problems in terms of numerical performance
due to the underlying mathematical formulation. Among the observed problems are infeasible results
as well as severe convergence issues leading to a higher number of iterations or no convergence at all
(Martins & Lambe, 2013).

3.2.3 Analytical target cascading

Analytical target cascading (ATC) was developed by H. M. Kim et al. (2003) as a hierarchical multi-level
coordination strategy to support the top-down development processes in the automotive industry. The
goal is to turn top-level system targets into detailed component-level specifications while also enabling
parallel design activities. On each level, each subproblem tries to meet its own objectives and target
values, if existing, while passing on own responses and targets to other levels. This negotiation between
upper-level requirements and lower-level resources takes place at every level until all subproblems
converge (Martins & Lambe, 2013; Papalambros & Wilde, 2018).

The system optimization formulation is

min
𝒚𝑡(𝑖)

∑𝑛c
𝑖=1 𝑓(𝑖) (𝒚

𝑡
(𝑖) ) +

∑𝑛c
𝑖=1 𝑃(𝑖)

(
𝒚𝑡(𝑖) − 𝒚 (𝑖)

)
,

s. t.: 𝒈(0) (𝒚𝑡(𝑖) ) ≤ 0, for 𝑖 = 1, ..., 𝑛c, (3.4)

whereas the component optimization subproblems are defined as

min
𝒙(𝑖)

𝑓(𝑖) (𝒙 (𝑖) ) + 𝑃(𝑖)
(
𝒚𝑡(𝑖) − 𝒚 (𝑖)

)
,

s. t.: 𝒈(𝑖) (𝒙 (𝑖) ) ≤ 0. (3.5)

The general ATC procedure is shown in Fig. 3.3. ATC is an alternating formulation with two iteration
loops. For each inner iteration of the distributed architecture, the system optimization is solved first
and the target values 𝒚𝑡(𝑖) are passed to each component optimization problem. Each component
optimization problem can be solved in parallel and computes its respective responses 𝒚 (𝑖) based on
𝒙 (𝑖) . Consistency between the system and component optimizations is ensured by a relaxed penalty
formulation 𝑃(𝑖) in the objective function at each level. In the outer iteration 𝑞, the weights of the
penalty function 𝑃(𝑖) are updated until the convergence criteria are satisfied.
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Figure 3.3: Flowchart of the analytical target cascading architecture (ATC)

Often, ATC and the earlier CO architecture are seen as related architectures sharing the same basic
idea with a simple coordination pattern between the different problem levels. However, unlike the
nested formulation of CO, the alternating formulation of ATC simplifies the implementation, e.g., no
post-optimization sensitivity analysis is required when computing gradients. Moreover, the original
ATC formulation is strictly hierarchical. For convex problems, there is a mathematical proof of
convergence to the optimum of a monolithic optimization (Han & Papalambros, 2010). However,
relaxation via penalty functions 𝑃(𝑖) allows for inconsistencies in the convergent solution 𝒙∗ and ATC
is therefore often rather used in the early stages of product development to check whether the set goals
are achievable at all. Moreover, the choice of penalty functions 𝑃(𝑖) and the actual magnitude of the
weights during the optimization have a large impact on the results. There are no strict rules in this
regard, and either quadratic formulations or an augmented Lagrangian formulation are recommended
(H. M. Kim et al., 2003; Tosserams et al., 2006).

3.2.4 BLISS-2000

The original bilevel integrated system synthesis (BLISS) was developed by Sobieszczanski-Sobieski
et al. (2000) and follows the idea of decomposing engineering design problems along disciplinary or
component lines. In Sobieszczanski-Sobieski et al. (2003), an enhancement of the original approach
was introduced called BLISS-2000, where the system optimization is carried out on meta models, and
the component optimizations are fully autonomous.

For BLISS-2000, the system optimization problem is given by

min
𝒚𝑡(𝑖) ,𝒘(𝑖)

𝑓 (𝒚𝑡(𝑖) ),

s. t.: 𝒈0(𝒚𝑡(𝑖) ) ≤ 0, (3.6)
𝒚𝑡(𝑖) − �̂� (𝑖) (𝒘 (𝑖) ) = 0, for 𝑖 = 1, ..., 𝑛c,

and the component optimization is

min
𝒙(𝑖)

𝒘 (𝑖) 𝒚
⊤
(𝑖)

(
𝒙 (𝑖)

)
,

s. t.: 𝒈(𝑖) (𝒙 (𝑖) ) ≤ 0. (3.7)
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The BLISS-2000 is an alternating distributed optimization architecture, see Fig. 3.4. In each
iteration, first a DoE is carried out that trains meta models �̂� (𝑖) based on the formulated component
optimizations (3.7). These meta models are then used to compute the responses for the system
optimization (3.6). The system optimization problem determines the target values 𝒚𝑡(𝑖) and the weight
coefficients 𝒘 (𝑖) that are related to the component optimization objectives. Consistency between the
target values 𝒚𝑡(𝑖) and the approximated responses of the meta models �̂� (𝑖) are considered by the
consistency constraint 𝒚𝑡(𝑖)−�̂� (𝑖)=0 on the system level. The weights 𝒘 (𝑖) can be interpreted as a
measure of control over the respective component optimizations (Martins & Lambe, 2013).

DoE

System 

optimization

𝒛
𝑞 = 1

𝑞 ≠ 1

Component 

optimization (𝑖)

𝒘(𝑖) ෝ𝒚(𝑖)

𝒙 𝑖

Figure 3.4: Flowchart of the BLISS-2000 architecture

Even though BLISS-2000 contains a DoE, it has a relatively simple alternating solution procedure. The
strictly hierarchical formulation also keeps the number of design variables at each level relatively low
by adding targets 𝒚𝑡(𝑖) and weights 𝒘 (𝑖) only at the system level. As the meta model approximation is
burdened with an error, iterative refitting of the meta models with a DoE needs to be conducted in each
iteration. Since the meta models are trained for each component, and the problems are independent,
the calculations can be run in parallel with minimal coordination. If the fully parallel potential is
exploited, BLISS-2000 has the capability of outperforming other distributed architectures (Martins &
Lambe, 2013). Moreover, Sobieszczanski-Sobieski et al. (2003) proved that BLISS-2000 is equivalent
to a monolithic optimization, if the problem is convex.

3.2.5 Quasiseparable decomposition

The quasiseparable decomposition (QSD) was proposed by Haftka & Watson (2005) for a particular
class of optimization problems that are narrow enough for a rigorous decomposition theory, yet general
enough to encompass the majority of large-scale engineering design problems. The decomposition
approach itself is inspired by rounds of negotiations in a company between different hierarchical levels
and is therefore intended to represent a classical product development process in industry.

The system optimization problem reads

min
𝒚𝑡(𝑖) ,𝑏(𝑖)

𝑓 (𝒚𝑡(𝑖) ) +
∑𝑛c

𝑖=1 𝑏 (𝑖) ,

s. t.: 𝒈(0) (𝒚𝑡(𝑖) ) ≤ 0, (3.8)
−𝑠∗(𝑖) (𝒚

𝑡
(𝑖) , 𝑏 (𝑖) ) ≤ 0, for 𝑖 = 1, ..., 𝑛c,
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while the component optimization is

min
𝒙(𝑖) ,𝑠(𝑖)

−𝑠 (𝑖) ,

s. t.: 𝑔(𝑖) (𝒙 (𝑖) ) + 𝑠 (𝑖) ≤ 0, (3.9)
𝑓(𝑖) (𝒙 (𝑖) ) + 𝑠 (𝑖) + 𝑏 (𝑖) ≤ 0,

𝒚𝑡(𝑖) − 𝒚 (𝑖) (𝒙 (𝑖) ) = 0.

The original formulation is a nested architecture where the solutions 𝑠 (𝑖) of the component optimization
problems (3.9) are constraints in the system optimization. The basic idea is to assign to each component
optimization 𝑖 budgets 𝑏 (𝑖) and target values 𝒚𝑡(𝑖) from the system level. The component optimizations
then independently maximize their constraint margin 𝑠 (𝑖) while satisfying their objective function
𝑓(𝑖) and constraints 𝑔(𝑖) under the given budget 𝑏 (𝑖) . The margins 𝑠∗(𝑖) are then returned to the
system optimization and are used to adjust the values of 𝒚𝑡(𝑖) and the budgets 𝑏 (𝑖) . This decomposition
procedure can be viewed as a negotiation between the manager (system level) and the team or department
leaders (component level), where the manager presents each with a set of performance requirements
and budgets. For each set, the department leader provides a measure of how well they can meet
the requirements and budget. In this way, the manager can intelligently allocate resources between
teams.

In addition to the original nested procedure of Haftka & Watson (2005), B. Liu et al. (2004) also used
QSD in a decoupled formulation, by establishing pre-trained meta models

𝑠∗(𝑖) ≈ 𝒔 (𝑖) (𝒚𝑡(𝑖) , 𝑏 (𝑖) ), (3.10)

using sample data from multiple component optimizations (3.9). The meta models 𝒔 (𝑖) can then estimate
the optimal constraints 𝑠∗(𝑖) of the system optimization problem (3.8). Afterwards, 𝑛c component
optimizations are performed, which are decoupled and need to be performed only once after the system
optimization, see Fig. 3.5.
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𝒚 𝑖
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Figure 3.5: Flowchart of the quasiseparable decomposition architecture (QSD) according to B. Liu et
al. (2004)

The actual implementation of QSD in the original formulation is complicated due to the gradient
computation of the nested and non-continuous component optimization derivatives, so meta models
are usually used here as well. In the formulation of B. Liu et al. (2004), the implementation is further
simplified by running the approach purely hierarchically and sequentially, which is made possible by
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the decoupling after the system optimization. Due to the decoupling also the component optimizations
for the training and the actual design process can be run in parallel. A general convergence theory for
quasiseparable optimization with continuous variables and 𝐶2-continuity showed that the distributed
architecture of QSD can enable global convergence. However, problems were encountered when
performing the decoupled optimization architecture. Due to inaccuracies in the meta models, small
violations of the constraints could be found after the final component optimizations demanding manual
modification of the results (B. Liu et al., 2004).
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3.3 Research gap

In the previous section, established distributed optimization architectures were presented that are best
suited for the decomposition of the monolithic optimization problem (A) of (1.3). It is interesting to note
that all architectures are motivated by the needs of product development processes in industry, however,
each single architecture differs in the way of how the mathematical formulation and coordination
architecture is set up. In general, distributed architectures have been successfully applied to a variety
of use cases but have so far failed to meet the general expectation of enabling adoption in industry by
resembling industrial development processes and reducing computational time (Martins & Ning, 2022).
One reason is that the decomposed optimization problems of most distributed architectures possess a
coordination strategy to maintain consistency. In an industrial context, this coordination would require
an optimization architecture that connects all the departments involved, which is difficult to implement.
Second, using such a coordination strategy runs the risk of coordination overhead, which makes the
entire distributed optimization computationally expensive.

Chapter 1 motivated the need for a decoupled and hierarchical optimization architecture that is based
on parallel component optimizations and solves the original monolithic optimization problem (A)
using meta models for optimality (regression) and physical feasibility (classification). On the one
hand, it is assumed that decoupling, i.e., decomposition without subsequent necessary coordination,
can reduce computational effort and avoid coordination overhead. On the other hand, decoupled
architectures eliminate the need for an overarching software architecture. Thus, decoupling circumvents
several implementation obstacles in practice. Furthermore, a hierarchical formulation resembles the
classical product development process in industry, where requirements are typically derived from the
management level down to the departments. This is also advantageous from a computational point
of view since fewer design variables are available at the system level and the higher-dimensional
detail level of the components is decoupled. Decoupling also allows parallel execution, which is
another potential for reducing computational time. Finally, convergence to the monolithic solution is
a necessary property for distributed optimization architectures. Therefore, for the proposed decoupled
architecture, information about optimality and physical feasibility should be provided to the system
level by meta models. However, meta model training should not be part of the optimization architecture,
but pre-trained meta models are stored in an offline database.

Table 3.1 provides an overview of the presented distributed architectures, evaluating whether an
architecture possesses a decoupled formulation (as opposed to nested or alternating), hierarchical
decomposition, parallel execution, and converges to the monolithic solution. In addition, the respective
bottom-up mappings that are explicitly required for the distributed architectures are presented, where
it is distinguished between high-fidelity and low-fidelity bottom-up mappings. In the following a short
summary of the presented distributed optimization architectures is given and the challenges in the
application of the existing methods to the monolithic optimization problem (A) of (1.3) are outlined.

Table 3.1: Overview of the presented distributed optimization architectures: Individual optimization
(IO), collaborative optimization (CO), analytical target cascading (ATC), BLISS-2000,
and quasiseparable decomposition (QSD)

Distributed Architecture properties Bottom-up mappings

optimization Decoupled Hierarchical Parallel Monolithic
High-fidelity

Low-fidelity

architectures formulation decomposition execution solution Regression Classification

IO x x x

CO x x x

ATC x x x x

BLISS-2000 x x x x x

QSD x x x x x x
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IO is often used in industry due to its simplicity. However, it is not considered a real distributed
architecture because it generally does not converge to the optimum of the original monolithic problem
and is therefore also not suitable for the given design task (A).

In contrast, CO is a distributed architecture, since it has been proved that it converges to the
monolithic solution. Moreover, CO allows a parallel working environment for the respective component
optimizations. However, it is a nested and also not purely hierarchical formulation, which makes
it difficult to apply in the original formulation to high dimensional topology optimization design
problems.

The related ATC is a purely hierarchical multi-level approach in an alternating formulation. Similar to
CO, it allows for parallel design and equivalence to the monolithic solution can be shown for convex
problems. From the main idea, ATC is well suited for the given monolithic optimization problem
(A), only the alternating formulation consisting of two loops, an inner and an outer one, might cause
coordination overhead and an overarching software architecture is still mandatory.

BLISS-2000 follows the idea of providing component level information to the system level by meta
models in a hierarchical and alternating formulation. The system optimization is carried out on meta
models, while the component optimizations are executed in parallel. It was shown that it converges
to the monolithic solution for convex problems. In contrast to our objective, the expensive training
process for the meta models is however part of the optimization architecture and needs to be carried
out for each iteration.

Finally, QSD also utilizes meta models. In the original nested formulation rather for sensitivity
information, but B. Liu et al. (2004) also used them to establish a decoupled architecture. Here, the
training process of the meta models is excluded from the actual design process, making the optimization
itself faster. After the system optimization, the component optimizations are completely independent,
i.e., decoupled, and can therefore also be run in parallel. However, due to inaccuracies in the meta
models, constraints for the final design were violated, hence being physically infeasible. A classifier
that evaluates physical feasibility could have helped here to solve this problem. It is also not clear if
and how meta models that have already been trained can be reused, which contradicts our general idea
of an offline database.

In conclusion, no distributed optimization architecture could be identified that satisfies all our posed
requirements to the architecture properties and bottom-up mappings listed in Table 3.1. Nevertheless,
partial aspects of the existing and established distributed architectures can be used as a starting
point for the distributed architecture under development. Parallelization is a main lever for reducing
computational time and has been used in each distributed architecture. A purely hierarchical view
was taken by ATC, BLISS-2000, and QSD in accordance with the goal of this work. Finally, both
BLISS-2000 and QSD use meta models for the transfer of information about optimality from the
component level to the system level, yet lacking estimations on physical feasibility.

In the following chapter, a newly developed hierarchical decoupled optimization architecture (B) based
on meta models of an offline database, estimating optimality and physical feasibility, is presented. In
addition, a parallel IO formulation (C) is used in Chapter 5 and an ATC formulation (D) in Chapter 6.
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4 Informed Decomposition

To decompose the given monolithic optimization problem (A) of (1.3), the hierarchical and decoupled
Informed Decomposition (B) was first introduced in Krischer & Zimmermann (2021) and further
developed in Krischer et al. (2022). It is divided into

(a) a decoupled optimization architecture consisting of a surrogate-based system optimization that
decouples the problem and subsequent independent and parallel component optimizations, and

(b) an offline database consisting of feasibility estimators 𝑝 and mass estimators �̂�,

see also Fig. 4.1. The decoupled optimization architecture (a) does not need any coordination
between the system optimization and the component optimization problems and is based on object
partitioning, meaning that the problem is decomposed with respect to the physical components. Since
the architecture is decoupled, meta models 𝑝 and �̂� are needed to ensure physical feasibility 𝑝 and
optimality with respect to mass 𝑚. Note that the process of establishing new meta models (b) is not
supposed to be carried out for each new design problem. The idea is, to create an offline database of
available meta models that can be used for the majority of design problems. Established meta models
can in general be reused for different design problems and have a larger applicability due to similitude
methods and explicit consideration of geometrical parameters. If appropriate models do not exist, the
procedure (b) is executed to extend the offline database.

(a) (b)
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𝒙 𝑖

Figure 4.1: Overview of the proposed approach (B): (a) a decoupled optimization architecture
consisting of system optimization and decoupled component optimizations, and (b)
establishing an offline database of feasibility estimators 𝑝 and mass estimators �̂�

In the following sections, an alternative representation of interface stiffness matrices 𝑲=𝚽(𝜿) is
introduced. Then, the actual decoupled optimization architecture is presented, which consists
of surrogate-based system optimization and decoupled component optimizations. Afterwards, a
procedure for building an offline database with a specific active-learning undersampling strategy
is explained to obtain well-balanced and efficiently sampled training data. In the last section, the
design problem classes are introduced that are utilized to validate the developed approach.
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4.1 𝜅-representation of interface stiffness matrix 𝐾

The low-dimensional representation 𝜿 of the interface stiffness matrix 𝑲 is a key element of the
proposed decoupled optimization architecture. On the one hand, 𝜿 is used as a target value 𝒚𝑡 and
is therefore the link between the system and component optimization. On the other hand, 𝜿 is from
importance as it removes redundancies in 𝑲 and hence reduces the number of design variables of the
system optimization and also the number of constraints in the subsequent component optimization.
Additionally, it is the input for the meta models 𝑝 and �̂�. Therefore, first a kernel based on the rigid
body modes 𝝓𝑟 of 𝑲 is introduced, which establishes the basic mapping 𝚽(𝜿)=𝑲. The size of 𝜿 can
be further reduced by enforcing symmetry conditions on the detailed design 𝒙 of the components.
Finally, the scaling of components based on the 𝜅-representation using similitude methods and explicit
geometrical parameters is explained. This extends the scope of the offline database by using same 𝑝
and �̂� for 𝜿 of different geometrical dimensions of the design domain Ω of the structural element.

4.1.1 Kernel of interface stiffness matrix 𝐾

For an arbitrary three-dimensional mechanical body with 𝑛int=2 interfaces and 𝑛dof=6 degrees of
freedom per interface, see Fig 4.2, the interface stiffness matrix 𝑲 determines the elastic behavior of
the structural element with respect to the interfaces 𝒂 and 𝒃

𝑲 ∈ R12×12. (4.1)
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Figure 4.2: A three-dimensional mechanical body with 𝑛int=2 interfaces and 𝑛dof=6 degrees of
freedom per interface

Each interface possesses 𝑛dof=6 degrees of freedom , three translational and three rotational, with the
corresponding displacements, 𝒖 and 𝝋, respectively

𝒅𝑎 = [𝒖, 𝝋]𝑎⊤ = [𝑑1, 𝑑2, ..., 𝑑6]⊤, ∈ R6×1, (4.2)
𝒅𝑏 = [𝒖, 𝝋]𝑏⊤ = [𝑑7, 𝑑8, ..., 𝑑12]⊤, ∈ R6×1. (4.3)

Moreover, for the following investigations, the two mechanical interfaces 𝒂 and 𝒃 are fixed on the local
𝑥-axis with same orientation

𝒃 − 𝒂 = [𝑙, 0, 0]⊤. (4.4)

From Section 2.1.1 it is known, that feasible interface stiffness matrices 𝑲 must among others satisfy
the following three requirements

(R1) 𝑲 must be symmetric, i.e., 𝑲 = 𝑲⊤,
(R2) rigid body modes 𝝓𝑟 result in zero forces, i.e., 𝑲𝝓𝑟 = 0,
(R3) 𝑲 must be positive semi-definite, i.e., 𝒅⊤𝑲𝒅 ≥ 0.
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Additionally, a fourth requirement is imposed demanding that
(R4) there exists a detail design 𝒙 corresponding to 𝑲.

Thus, not all interface stiffness matrices 𝑲 can be realized. If the requirements (R1)-(R4) are all
satisfied, 𝑲 is said to be physically feasible.

Due to the symmetry requirement (R1) on the entries 𝑘𝑖, 𝑗 of 𝑲 ∈ R12×12 the following condition
holds

𝑘𝑖, 𝑗 = 𝑘 𝑗 ,𝑖 , (4.5)

hence the number of independent stiffness entries reduces from 𝑛k=144 to 𝑛k=78.

Moreover, the mechanical body with 𝑛int=2 interfaces and 𝑛dof=6 degrees of freedom per interface
possesses 𝑛𝜙=6 rigid body modes 𝝓𝑟 , see Fig. 4.3, corresponding to three translational and three
rotational rigid body modes without any internal deformations. Based on the requirement (R2) the
rigid body modes 𝝓𝑟 can be used to remove dependent stiffness entries of the interface stiffness matrix
𝑲 by solving the following equation

𝑲𝝓𝑟 = 0, for 𝑟 = 1, ..., 6. (4.6)
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Figure 4.3: 𝑛𝜙=6 rigid body modes of a mechanical body with 𝑛𝑖𝑛𝑡=2 interfaces and 𝑛dof=6 degrees
of freedom. (1-3) show the translational rigid body modes, while (4-6) show the
rotational rigid body modes

From a mathematical point of view these six rigid body modes 𝝓𝑟 correspond to six eigenvectors
with eigenvalues of zero 𝜆𝑟=0 of the interface stiffness matrix 𝑲. Equation (4.6) comprises the
six-dimensional null space or also called kernel of the interface stiffness matrix 𝑲. In order to assess
the number of independent entries of 𝑲 the rank-nullity theorem can be used (Meyer, 2008). Here, the
rank of 𝑲 can be calculated as the difference between the dimension of the vector space of dim(𝑲)=12
and the dimension of the null space, also called the nullity(𝑲)=𝑛𝜙=6,

rank(𝑲) + nullity(𝑲) = dim(𝑲). (4.7)

It follows that rank(𝑲)=6 and thus the dimension of the non-degenerated vector space, i.e., the vector
space where the linear dependencies are removed, is also R6. From a mechanical point of view, this
can be shown more easily with a small example, see Fig. 4.4.



4 Informed Decomposition 45

7

8

9

10

11

12
4

1
5

2

3

6

𝒂 𝒃

𝑲 ∈ ℝ12×12

𝒂 𝒃

𝑲 ∈ ℝ6×6

(a) (b)

4

1
5

2

3

6

Figure 4.4: A three-dimensional mechanical body that is (a) freely moving in space without support
𝑲 ∈ R12×12 and (b) clamped on the right interface 𝒃 leading to 𝑲 ∈ R6×6

If a mechanical body is without any support, Fig. 4.4 (a), 𝑲 ∈ R12×12 has the earlier mentioned 𝑛𝜙=6
rigid body modes 𝝓𝑟 and can freely move in space without any force 𝒇=0. Only by adding boundary
conditions as, e.g., a displacement boundary condition, this system can be solved by removing those
rigid body modes. If the mechanical body is, for instance, clamped on one side, Fig. 4.4 (b), then the
interface stiffness matrix is 𝑲 ∈ R6×6, while still possessing all information of the mechanical body.
Thus, requirement (R2) combined with the symmetry requirement (R1) lead to 𝑛k=21 independent
stiffness entries 𝑘𝑖, 𝑗 of 𝑲 ∈ R6×6. Since 𝑲 ∈ R12×12 can be recomputed from 𝑲 ∈ R6×6 by just taking
the geometrical information of the rigid body modes 𝝓𝑟 into account, also 𝑲 ∈ R12×12 possesses 𝑛k=21
independent stiffness entries 𝑘𝑖, 𝑗 . To establish the connection between the lower dimensional space R6

and R12, a linear map 𝚽 can be set up by solving (4.6) for specific 𝑘𝑖, 𝑗 . Those 𝑘𝑖, 𝑗 are then the entries
of the low-dimensional representation 𝜿, which is referred to as 𝜅-representation in the following.

Since (4.6) is an underdetermined system of linear equations, there are several ways of parametrizing
the linear map with 21 input values 𝑘𝑖, 𝑗 , which does not necessarily need to be the entries of the
clamped mechanical body of Fig. 4.4 (b). One possible representation is

𝚽(𝜿) = 𝑲, 𝚽 : R6 → R12, (4.8)

𝜿 = [𝑘1,1, 𝑘2,1, 𝑘3,1, 𝑘4,1, 𝑘5,1, 𝑘6,1, 𝑘2,2, ...

𝑘2,3, 𝑘2,4, 𝑘2,5, 𝑘3,3, 𝑘3,4, 𝑘3,6, 𝑘4,4, ... (4.9)
𝑘4,5, 𝑘4,6, 𝑘5,5, 𝑘5,6, 𝑘6,6, 𝑘11,11, 𝑘12,12],

where 𝜿 ∈ R1×21. Thus 𝑛k=21 stiffness entries determine the total deformation of the mechanical
body with 𝑛int=2 and 𝑛dof=6. Note that unlike 𝑲 ∈ R6×6 of the clamped body in Fig. 4.4 (b), the
diagonal entries 𝑘11,11 and 𝑘12,12 of interface 𝒃 are taken instead of the non-diagonal entries 𝑘2,6 and
𝑘3,5 of 𝒂. This is done because it is known from Section 2.1.1 that the diagonal entries of the positive
semi-definite stiffness matrix 𝑲 are strictly positive. Therefore, the lower bound on the diagonal entries
is always known a priori, which facilitates subsequent design optimization for the stiffness entries.

The modeling process to connect the detailed design variables 𝒙 of level (III) to the level (II) interface
stiffness matrix 𝑲 with respect to 𝒂 and 𝒃, see also Fig. 4.5, consists of three steps:

(1) Discretization of the design domain Ω of the mechanical body with three-dimensional brick
elements 𝑲𝑒 (see also Section 2.1.1),

(2) Static condensation of the design domain with respect to the left (𝑨) and right side (𝑩) of the
domain using a Guyan reduction (see also Section 2.1.2),

(3) Kinematic condensation with respect to the 𝑛dof=6 dimensional interfaces at 𝒂 and 𝒃 using a RBE2
formulation (see also Section 2.1.3).
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Figure 4.5: Modeling process of the interface stiffness matrix 𝑲 consisting of (1) discretization, (2)
static condensation, and (3) kinematic condensation

First (1), the geometrical design domain Ω of each structural element is discretized with 𝑛ele
three-dimensional brick elements 𝑲𝑒. Within this work, the design domain Ω is realized with a
rectangular domain of height ℎ, width 𝑤, and length 𝑙. The numbering convention of the finite element
mesh can be seen in Appendix A.1. The elastic behavior of the entire mechanical body is described
by the detailed stiffness matrix 𝑲d

𝑲d =

𝑛ele

A
𝑒=1

𝜌
𝑝
𝑒 𝑲𝑒, 0 < 𝜌𝑒 ≤ 1, (4.10)

while 𝜌𝑒=𝑥 𝑗 are the detailed design variables of the design domain Ω and 𝑝 is a penalty factor utilized
in SIMP-based topology optimization methods, see also Section 2.3.2. The design variables 𝜌𝑒 scale
each element 𝑲𝑒 with respect to the given material properties, while the geometrical hull defined by ℎ,
𝑤, and 𝑙 remains constant. For 𝑝=3, this should lead to a 0−1-detailed design pattern were each finite
element is either full material or void.

Then (2), a static condensation is performed with respect to the master degrees of freedom located on
the left 𝑨 ∪ 𝒂 and right side 𝑩 ∪ 𝒃 of the design domain, Fig. 4.5 (2),

𝑲g = 𝑻⊤
g 𝑲d𝑻g, (4.11)

where 𝑻g is the Guyan condensation matrix.

Finally (3), the remaining degrees of freedom on 𝑨 and 𝑩 are rigidly connected to the interfaces 𝒂 and
𝒃 using a RBE2 formulation of a rigid body element. The interface stiffness matrix 𝑲 can be computed
as

𝑲 = 𝑲rg = 𝑻⊤
r 𝑲g𝑻r = 𝑻⊤

r 𝑻
⊤
g 𝑲d𝑻g𝑻r, (4.12)

with 𝑻r being the second interface condensation matrix related to the rigid body elements on both
sides, see also Appendix A.2.1.

Thus, the resulting structural element has two rigid interfaces on the left 𝑨 and right side 𝑩. The shown
reduction process can be executed with no loss of information for the static case, meaning the results
are equivalent to a body that only has a rigid left and right side, and no Guyan reduction (4.11). It
should be noted that the reduction procedure to compute the interface stiffness matrix 𝑲 can be carried
out with different finite element types. For example, in Krischer & Zimmermann (2021), both beam
elements and plane stress elements were used, where for beam elements with their rotational-based
formulation, only a static Guyan condensation is needed but no rigid body elements.
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The equation (4.12) establishes a connection between the detail level (III) design variables 𝒙 and the
component-performance level (II) quantity 𝑲, which can be represented by the lower-dimensional
𝜿 vector of the linear mapping 𝚽(𝜿). The computation of the mass 𝑚 can be done directly from the
detailed design variables 𝒙. Later on, a connection between both level (II) quantities 𝒚 = [𝑚, 𝑲] is
established by the meta models 𝑝 and �̂�, where the detail level (III) design variables 𝒙 are incorporated
implicitly by providing a sufficiently large sample dataset. The input of the meta models is then the
lower-dimensional 𝜿 of 𝑲 = 𝚽(𝜿), while the outputs are the second level (II) quantity 𝑚 and the
physical feasibility 𝑝

𝑝 ≈ 𝑝(𝜿), (4.13)
𝑚 ≈ �̂�(𝜿). (4.14)

4.1.2 Symmetry conditions

To further reduce the number of dimensions of 𝜿 ∈ R1×21, additional restrictions are imposed on the
physically feasible detailed designs 𝒙. First, it is assumed that the geometrical shape of the design
domain Ω is invariant with respect to the 𝑥-axis, i.e., the dimension of the outer hull of the design
domain Ω remains constant along the 𝑥-axis, as is the case, for example, for the rectangular design
domain used, see Fig. 4.6. Thus, for topology optimization, only the design variables within the design
domain can be changed. Second, a planar symmetry condition for the mechanical body is enforced
with respect to the

(S1) 𝑥−𝑦 plane and
(S2) 𝑥−𝑧 plane.
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Figure 4.6: Exemplary invariant rectangular design domain with enforced plane symmetry on the 𝑥-𝑦
and 𝑥-𝑧 plane

The invariant design domain together with the symmetry conditions (S1) and (S2) lead to a beam-like
deformation behavior of the structural element with respect to the interfaces 𝒂 and 𝒃. Following the
idea of three-dimensional elastic beam theory, see, e.g., Andersen & Nielsen (2008), the interfaces
now lie on the neutral axis of the mechanical body, meaning normal forces 𝑓1 or 𝑓7 only induce axial
displacements with respect to 𝑑1 and 𝑑7. Thus,

𝑘𝑖, 𝑗 = 0, for 𝑖 = [1, 7] and 𝑗 ≠ [1, 7] . (4.15)

Also, 𝒂 and 𝒃 coincide with the principal axis of the bending moments 𝑓5, 𝑓11 and 𝑓6, 𝑓12 causing that
only their associated shear loads 𝑓3, 𝑓9 and 𝑓2, 𝑓8, respectively, are coupled to these bending degrees
of freedom. Hence, also all other stiffness entries 𝑘𝑖, 𝑗 are zero

𝑘𝑖, 𝑗 = 0, for 𝑖 = [2, 6, 8, 12] and 𝑗 ≠ [2, 6, 8, 12], (4.16)
𝑘𝑖, 𝑗 = 0, for 𝑖 = [3, 5, 9, 11] and 𝑗 ≠ [3, 5, 9, 11] . (4.17)
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Finally, for double symmetric cross sections, as it holds for (S1) and (S2), also the neutral axis coincides
with the shear center, meaning that torsional displacements 𝑑4 and 𝑑10 are only caused by the torsional
loads 𝑓4 or 𝑓10. Therefore,

𝑘𝑖, 𝑗 = 0, for 𝑖 = [4, 10] and 𝑗 ≠ [4, 10], (4.18)

are zero. With these assumptions, the interface stiffness matrix can approximately be determined by

𝑲=



𝑘1,1 0 0 0 0 0 𝑘1,7 0 0 0 0 0

𝑘2,2 0 0 0 𝑘2,6 0 𝑘2,8 0 0 0 𝑘2,12

𝑘3,3 0 𝑘3,5 0 0 0 𝑘3,9 0 𝑘3,11 0

𝑘4,4 0 0 0 0 0 𝑘4,10 0 0

𝑘5,5 0 0 0 𝑘5,9 0 𝑘5,11 0

𝑘6,6 0 𝑘6,8 0 0 0 𝑘6,12

𝑘7,7 0 0 0 0 0

sym 𝑘8,8 0 0 0 𝑘8,12

𝑘9,9 0 𝑘9,11 0

𝑘10,10 0 0

𝑘11,11 0

𝑘12,12



. (4.19)

Incorporating (4.19) into (4.8) and (4.9) leads to a further reduced stiffness description

𝚽sym(𝜿) = 𝑲, (4.20)
𝜿sym = [𝑘1,1, 𝑘2,2, 𝑘3,3, 𝑘4,4, 𝑘5,5, 𝑘6,6, 𝑘11,11, 𝑘12,12 ], (4.21)

where 𝜿sym ∈ R1×8. Note that 𝜿sym only consist of diagonal entries of 𝑲. In conclusion, 𝑛k=8 diagonal
stiffness entries are necessary to fully describe the deformation behavior 𝑲 ∈ R12×12 of the structural
element with respect to 𝒂 and 𝒃 for an invariant design domain Ω and enforced symmetry planes 𝑥−𝑦
and 𝑥−𝑧. The explicit linear mapping 𝚽sym(𝜿) = 𝑲 of (4.20) is given in the Appendix A.3.

4.1.3 Scaling

In contrast to e.g., shape optimization, topology optimization is performed on a predefined geometrical
design domain Ω. On closer inspection, 𝑲 and thus 𝜿 depend not only on the design variables 𝑥 𝑗=𝜌𝑒
related to the discretized domain, but also on the material parameters Young’s modulus 𝐸 and Poisson’s
ratio 𝜈 as well as the geometrical design domain Ω itself. The geometrical design domain Ω can then
be determined, for example, by the parameters 𝑙, ℎ, and 𝑤, see Fig 4.7 (a).

𝝆

𝜿

𝑙 ℎ 𝑤

𝐸 𝜈Ω

(a) (b)

𝑙
𝑤

ℎ

𝜌𝑒 𝑥𝑧
𝑦

Figure 4.7: (a) Scaling dependencies between stiffness 𝜿 and the design variables 𝝆, the parameters
𝑙, ℎ, and 𝑤 defining Ω, and the material parameters 𝐸 and 𝜈. (b) The discretized design
domain Ω and one entry 𝜌𝑒 of the numerical design variable vector 𝝆
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For a fixed discretization of the design domain Ω, see Fig 4.7 (b), establishing a link between same
detailed designs 𝝆 on different scaled Ω(𝑖) would be beneficial since the same meta models 𝑝(𝜿) and
�̂�(𝜿) could be used for different geometrical dimensions. This supports the implementation of an
offline database for the proposed decoupled optimization architecture (B).

Similitude theory is a branch of engineering that deals with establishing the necessary and sufficient
conditions for similarity between a reference model and a scaled (up or down) model. It has been
applied in various fields such as civil engineering, vibrations, and impact problems, and helps engineers
to accurately predict the behavior of models (Coutinho et al., 2016; Casaburo et al., 2019). The main
application of similitude methods is in the field of prototyping, but it can be also used for similarity
analyses between computational models of different geometrical sizes. Therefore, the notion of scaling
is introduced as a means of changing the geometrical dimensions of a structure in order to analyze its
response to external influences. For a reference stiffness 𝜿ref based on 𝝆, the scaling of a rectangular
design domain Ω defined by 𝑙, ℎ, and 𝑤 can be achieved by multiplying it with a scaling factor 𝜶. It is
assumed that the relation between the new stiffness 𝜿 and 𝜿ref for same 𝝆 can be defined as

𝜿ref = 𝝀(𝜶) ◦ 𝜿, (4.22)

where 𝝀 is a scaling parameter and ◦ is the Hadamard product, i.e., an element-wise multiplication
operator of the respective vector entries.
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Figure 4.8: Similarity mapping between different 𝜿 and 𝜿ref for same detailed designs 𝝆 and different
geometrical design domains Ω(𝑖)

Fig. 4.8 illustrates the relationship between a reference model and scaled models in detail. Starting
from a given detailed design 𝝆, the model is scaled with the factor 𝜶, while the scaling parameter
𝝀 specifies the scaling laws between similar components. Note that scaling does not work for every
change in the design domain and also depends on the underlying mechanical model. If a suitable
scaling parameter 𝝀 can be found, the stiffness 𝜿 can can be mapped back onto 𝜿ref using (4.22).

For a three-dimensional body Ω without interfaces 𝒂 and 𝒃, that is discretized with volumetric brick
elements, the detailed design 𝝆 determines its elastic behavior. For a constant scaling 𝜶𝑥𝑦𝑧 of the
domain Ω in all coordinate directions, a scaling parameter 𝝀𝑥𝑦𝑧 can be directly derived from the local
formulation 𝑲𝑒 of the element stiffness matrix as

𝝀𝑥𝑦𝑧 =
1

𝜶𝑥𝑦𝑧

. (4.23)
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In general, a scaling with 𝜶𝑥𝑦𝑧 affects the coordinates of the geometrical design domain Ω of the
structural element. If the reduction procedure to compute the 𝜅-representation (4.21) is considered,
it can be observed that the distance vector Δ𝒙 between master and slave nodes of the geometrical
constraint (2.12) of the rigid body element is altered

𝜶𝑥𝑦𝑧◦[𝒙𝑠 − 𝒙𝑚], (4.24)

and hence, the geometrical constraint (2.12) is also affected by taking the cross product of (4.24) with
the rotational degrees of freedom 𝝋𝑚

𝒖𝑠

𝝋𝑠

 =


𝒖𝑚 + 𝝋𝑚 × 𝜶𝑥𝑦𝑧◦[𝒙𝑠 − 𝒙𝑚]

𝝋𝑚

 . (4.25)

The resulting interface stiffness matrix 𝑲 is calculated multiplying the interface condensation matrix
𝑻r on both sides of 𝑲g

𝑲 = 𝑻⊤
r 𝑲g𝑻r,

see also equation (4.12), and𝑻r is computed using the geometrical constraint (4.25) containing 𝜶𝑥𝑦𝑧 .

Therefore, the scaling parameter 𝝀𝑥𝑦𝑧 of the 𝜅-representation (4.21) for constant scaling 𝜶𝑥𝑦𝑧 in
all coordinate directions is affected by (1) the discretization scaling parameter of (4.23) and (2) the
interface condensation matrices 𝑻r

𝝀𝑥𝑦𝑧 =

[
1
𝛼
,

1
𝛼
,

1
𝛼
,

1
𝛼3 ,

1
𝛼3 ,

1
𝛼3 ,

1
𝛼3 ,

1
𝛼3

]
𝑥𝑦𝑧

, 𝝀𝑥𝑦𝑧 ∈ R1×8. (4.26)

Note that the translational degrees of freedom 𝒖 are solely affected by (4.23), while the rotational ones,
𝝋, have a cubic relationship ( · )3 due to the geometrical constraint (4.25) considered in 𝑻r. For scaling
with respect to a single coordinate axis, no matching parameters 𝝀𝑥 , 𝝀𝑦 or 𝝀𝑧 could be identified.

For arbitrarily geometrical scaling, the meta models 𝑝(𝜿) and �̂�(𝜿) can be extended to consider the
geometrical scaling factor 𝜶 explicitly. Due to the known scaling law (4.26) of 𝝀𝑥𝑦𝑧 for constant
scaling, only 𝑛𝛼=2 more explicit 𝛼 are needed for arbitrary changes in all coordinate directions, e.g.,

𝑝(𝜿,𝜶) = 𝑝(𝜿, 𝛼𝑥 , 𝛼𝑦), (4.27)
�̂�(𝜿,𝜶) = �̂�(𝜿, 𝛼𝑥 , 𝛼𝑦). (4.28)

In Fig. 4.9 an exemplary scaling is shown. Direct scaling in the z-direction (𝛼𝑧) is replaced by first
scaling the reference design domain Ωref with a constant scale 𝜶𝑥𝑦𝑧 in all coordinate directions (1).
Then, 𝛼𝑥 (2) and 𝛼𝑦 (3) are used to adjust the dimensions in the other two dimensions to realize the
desired scaling in the 𝑧-direction, while the dimensions in the 𝑥- and 𝑦-directions correspond to the
original reference design domain Ωref.

Apart from scaling the geometrical dimensions of the design domain Ω, also a constitutive scaling with
respect to different materials would enhance the application area of the offline database. As long as
the Poisson’s ratio is the same 𝜈ref = 𝜈 (𝑖) , 𝜿 can be scaled right away applying the linear relationship

𝜆𝑐 =
𝐸ref
𝐸
. (4.29)
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Figure 4.9: Scaling of the design domain Ω in 𝑧-direction without 𝛼𝑧 , but 𝛼𝑥 , 𝛼𝑥 , and 𝛼𝑥𝑦𝑧

The scaled 𝜅-representations for each component 𝑖 can then be used as a low-dimensional representation
of the interface stiffness matrices 𝑲 (𝑖) ∈ R12×12 and are, together with the scaling factors 𝜶, the input
parameters for the meta models 𝑝(𝜿,𝜶) and �̂�(𝜿,𝜶) of the system optimization in the following
section.
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4.2 Decoupled optimization architecture

4.2.1 System optimization

For available 𝑝 and �̂� in the offline database, the system optimization decouples the given design
problem with respect to the physical components, i.e., it performs an object-based partitioning. The
system optimization problem is a variation of the initial monolithic optimization (A) of (1.3). However,
in contrast to the monolithic optimization, the system optimization uses 𝜿 (II) instead of 𝒙 (III) as design
variables, see Fig 4.10 (a)-(b).
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Figure 4.10: Dependencies between all relevant quantities on the system level (I), component-
performance level (II), and component-detail level (III) in (a) monolithic optimization
and the proposed approach consisting of (b) system and (c) component optimization

This means, that the system optimization is carried out without knowing the component details.
To ensure feasibility and optimality, a surrogated-based system optimization using the meta models
𝑝(𝜿,𝜶) and �̂�(𝜿,𝜶) is adopted. The system optimization problem reads

min
𝜿 (𝑖)

∑𝑛c
𝑖=1 �̂�(𝜿 (𝑖) ,𝜶(𝑖) ),

s. t.: −𝑝
(
𝜿 (𝑖) ,𝜶(𝑖)

)
+ 1 = 0,

𝑢𝑐
(
𝜿 (𝑖)

)
− 𝑢max ≤ 0, for 𝑐=1, ..., 𝑛p, (4.30)

𝜿lb ≤ 𝜿 (𝑖) ≤ 𝜿ub, for 𝑖 = 1, ..., 𝑛c.

The mass estimator �̂�(𝜿 (𝑖) ,𝜶(𝑖) ) enables mass estimates with respect to 𝜿 (𝑖) for a specified design
domain Ω(𝑖) . The feasibility estimator 𝑝(𝜿 (𝑖) ,𝜶(𝑖) ) indicates whether the component’s stiffness
𝜿 (𝑖) corresponds to an actual physical design 𝒙 (𝑖) , hence 𝑝(𝜿 (𝑖) ,𝜶(𝑖) )=1. In comparison to the
monolithic optimization of (1.3), the system optimization problem is extended with constraints on the
physical feasibility estimator 𝑝(𝜿,𝜶) for each component 𝑖 ensuring physical feasibility. Note that
for computational reasons usually the actual mass 𝑚 (𝑖) is not computed. Instead, the volume fraction
𝑣 (𝑖)=

100%
𝑉ref

𝑚(𝑖)
𝜌

for a design domainΩ(𝑖) with reference volume𝑉ref and material of density 𝜌 is utilized.
For systems consisting of components of same material but with different geometrical dimensions,
weighting 𝑤 (𝑖) is necessary, 𝑣 =

∑𝑛c
𝑖=1 𝑤 (𝑖)𝑣 (𝑖) , because the volume fraction always remains between

0≤𝑣 (𝑖)≤100%, and hence is independent of the actual dimensions of the design domain Ω(𝑖) .

The formulation with respect to 𝜿 has two advantages: First, the system optimization does not need to
compute the high dimensional detailed stiffness matrices 𝑲𝑑, (𝑖) , but only the low-dimensional interface
stiffness matrices 𝑲 (𝑖) . This reduces the computational cost of solving the bottom-up mapping for
computing the displacements 𝒅𝑠 on the system level needed for the requirement on the translational
displacements 𝑢 = | |𝒖ee | |2. Second, the optimization driver itself has usually fewer design variables
compared to monolithic optimization. When using, e.g., topology optimization, the number of design
variables equals the number of elements in the model, whereas for the system optimization only
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the reduced stiffness vectors 𝜿 (𝑖) needs to be optimized. However, due to the binary classification
characteristic of 𝑝(𝜿,𝜶) and the possibly non-convex design domain spanned by 𝑝(𝜿,𝜶) and �̂�(𝜿,𝜶),
a gradient-free and global-search algorithm, namely a particle swarm optimization (PSO) is utilized to
ensure global convergence, see also Section 2.3.1.

In order to establish the bottom-up mapping for the system optimization, a given multi-component
system needs to be assembled, see also Fig. 4.11. Therefore, each interface stiffness matrix 𝑲 (𝑖) related
to 𝒂 (𝑖) and 𝒃 (𝑖) is first rigidly connected to the joint positions 𝒑 (𝑖−1) and 𝒑 (𝑖) , i.e.,

𝑲p, (𝑖) = 𝑻⊤
p, (𝑖−1,𝑖)𝑲 (𝑖)𝑻p, (𝑖−1,𝑖) , (4.31)

utilizing a RBE2 formulation via the joint condensation matrix 𝑻p, (𝑖−1,𝑖) , see Appendix A.2.2.

(𝑖)

𝒂 𝑖 𝒃 𝑖

𝒑(𝑖)

𝑥

𝑦

𝑧
𝑹 𝑖 (𝜽)

𝜽(𝑖) =

𝛼
𝛽
𝛾 (𝑖)

𝒑(𝑖−1)

𝑻p,(𝑖−1,𝑖)

…

(1)

(2)

Figure 4.11: Assembly process consisting of (1) the condensation matrix 𝑻p, (𝑖−1,𝑖) that connects 𝒂 (𝑖)
and 𝒃 (𝑖) via rigid body elements to 𝒑 (𝑖−1) and 𝒑 (𝑖) , and (2) the rotation matrix 𝑹(𝑖)

Afterwards, the joint stiffness matrix 𝑲p, (𝑖) is transformed into the global coordinate system

(0)𝑲p, (𝑖) = 𝑹⊤
(0) ...𝑹

⊤
(𝑖−1)𝑲p, (𝑖)𝑹(𝑖−1) ...𝑹(0) , (4.32)

applying the rotation matrices 𝑹( 𝑗 ) with the respective rotations 𝜽 ( 𝑗 ) at the joint positions 𝒑 ( 𝑗 ) for
𝑗 = 0, ..., 𝑖−1.

Finally, the global multi-component system stiffness matrix can be assembled

𝑲s =

𝑛c

A
𝑖=1

(0)𝑲p, (𝑖) , (4.33)

and the system displacement is computed as

𝒅s = 𝑲−1
s 𝒇s, (4.34)

with 𝒖ee ∈ 𝒅s as the translational displacements of the end effector. The design variables for the system
optimization of a 𝑛c-component system are

𝜿 = [𝜿 (1) , ..., 𝜿 (𝑛c ) ] . (4.35)

After the system optimization has been carried out, each optimized 𝜿∗(𝑖) can be now taken as a target
stiffness for the subsequent 𝑛c decoupled component optimization problems

𝜿𝑡(𝑖) = 𝜿∗(𝑖) . (4.36)
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4.2.2 Component optimization

The component optimization seeks the optimal design variables 𝒙 (𝑖) (III) in the geometrical design
domain Ω with minimum mass 𝑚 (𝑖) for a given target interface stiffness 𝜿𝑡(𝑖) (II), see Fig 4.10 (c).

The component optimization problem statement reads

min
𝒙(𝑖)

𝑚 (𝑖) (𝒙 (𝑖) ),

s. t.: ∥𝜿 (𝑖) (𝒙 (𝑖) ) − 𝜿𝑡(𝑖) ∥ ≤ 𝜖, (4.37)
𝒙lb ≤ 𝒙 (𝑖) ≤ 𝒙ub,

where 𝒙lb and 𝒙ub are the lower and upper bounds on the design variables 𝒙 (𝑖) , 𝜿 (𝑖) is the
low-dimensional representation of the interface stiffness matrix 𝚽(𝜿 (𝑖) )=𝑲 (𝑖) associated with 𝒙 (𝑖)
and 𝜖 is a small positive value. The masses 𝑚 (𝑖) are again processed as volume fractions 𝑣 (𝑖) , while
now no estimator �̂� is utilized, but the actual volume fraction is computed from the detailed design
variables 𝒙 (𝑖) . The optimization problems (4.37) can be solved in parallel and independently of each
other due to the decoupling of the system optimization (4.30). The system stiffness measured by
the total displacement 𝑢 is assumed to satisfy the requirement 𝑢≤𝑢max as long as the component
optimizations are all feasible.

For a given design domain Ω, discretized with three-dimensional brick elements 𝑲𝑒, a
three-dimensional topology optimization based on the SIMP method can be applied as already
introduced in Section 4.1.1. The detailed design variables 𝑥 𝑗 then correspond to the element densities
𝜌𝑒 and scale the element stiffness matrix 𝑲𝑒 and also determine the volume fraction 𝑣 of the given
design domain Ω

𝜌
𝑝
𝑒 𝑲𝑒, 𝑥 𝑗 = 𝜌𝑒, 𝑝 = 3, (4.38)

𝑣 =
100%
𝑛ele

𝑛ele∑︁
𝑒=1

𝜌𝑒, 0 < 𝜌𝑒 ≤ 1. (4.39)

The penalty factor is hereby set to 𝑝=3, the sensitivity filter radius in the dimensionless parameter
space for finite elements of side length 𝑙𝑒=𝑤𝑒=ℎ𝑒=1 is 𝑟=

√
2, and the element volume 𝑉𝑒 is the same

for all elements.

The MMA developed by Svanberg (1987) can be utilized to compute the solution of each component
optimization problem. Since the MMA is a gradient-based optimization algorithm, it needs the
derivatives of the interface stiffness matrix 𝑲=𝑲rg,

𝜕𝑲rg
𝜕𝜌𝑒

= 𝑻⊤
r

(
𝑻⊤

g
𝜕𝑲d
𝜕𝜌𝑒

𝑻g

)
𝑻r, (4.40)

𝜕𝑲d
𝜕𝜌𝑒

= 𝑝𝜌
𝑝−1
𝑒 𝑲𝑒, (4.41)

as well as the volume fraction gradients

𝜕𝑣

𝜕𝜌𝑒
=

100%
𝑛ele

, (4.42)

that are constant and relate to a 100% filled reference unit volume.
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The stiffness constraint 𝑔(𝒙 (𝑖) )=∥𝜿 (𝑖) (𝒙 (𝑖) )−𝜿𝑡(𝑖) ∥≤𝜖 of (4.37) is reformulated for numerical processing
as

−𝜖 ≤
[

𝜅 𝑗 − 𝜅𝑡𝑗
𝜅ub, 𝑗 − 𝜅lb, 𝑗

]
≤ 𝜖, for 𝑗 = 1, ..., 𝑛k, (4.43)

where 𝜅ub and 𝜅lb are the upper and lower bounds of the stiffness entries, respectively, and normalize
the different stiffness units of 𝜿. This normalization is of utmost importance since constraints of the
MMA should be in a range of 1≤𝑔(𝒙)≤100 (Svanberg, 2007). Experience here shows a high sensitivity
to violations of this recommendation in terms of the MMA convergence behavior.

Since the component optimization (4.37) is a newly developed topology optimization formulation, it
is further recommended to check the reliability of the formulation for new discretized design domains
Ω that are also not covered by similitude theory. For this purpose, a three step verification procedure
is recommended before a multi-component system is optimized, see Fig. 4.12:

(1) the classical minimum compliance optimization (2.57) can be used to compute several reference
stiffnesses 𝜿0 for the resulting 𝒙0 for a given volume fraction 𝑣0 and force 𝒇 ,

(2) 𝜿0 is then used as a target value for the component optimization (4.37) which computes the detailed
design 𝒙,

(3) the resulting 𝒙0 of the minimum compliance optimization (2.57) is compared to 𝒙 of the component
optimization (4.37). If 𝒙0≈𝒙, one can proceed with the Informed Decomposition approach (true).
If 𝒙0≠𝒙 (false), either the heuristic parameters of the MMA itself, see Svanberg (2007), or general
optimization settings, such as start vector, maximum number of iterations, or numerical processing
of the constraint (4.43) can be changed.

Component 

optimization

≈

Minimum 

compliance 

optimization 

truefalse

𝜿𝟎 𝒙

Change 

settings
end

𝒙𝟎

𝑣0
𝒇

(1)

(2)

(3)

start

𝒇

𝑣0

Figure 4.12: Verification procedure to ensure the convergence behavior of the component
optimization (4.37) by comparing its results 𝒙 to the results 𝒙0 of a classical minimum
compliance problem (2.57) for a given 𝜿0
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4.3 Offline database

4.3.1 Setup

The organization of the offline database with meta models 𝑝 (𝑖) and �̂� (𝑖) for respective interface degrees
of freedom 𝑛dof and design domainΩ, material [𝐸, 𝜈, 𝜌], and discretization 𝑛ele can be seen in Table 4.1.

Table 4.1: Organization of the offline database containing the trained meta models 𝑝 (𝑖) and �̂� (𝑖)
𝑛dof 2 3 6

and meta models [ �̂�, �̂�] (𝑖) [ �̂�, �̂�] (𝑖) [ �̂�, �̂�] (𝑖)

with

Geometrical design domain Ω(𝑖)

Material data [𝐸, 𝜈, 𝜌] (𝑖)
Discretization 𝑛ele, (𝑖) = [𝑛ele,𝑥 , 𝑛ele,𝑦 , 𝑛ele,𝑧 ] (𝑖)

If no appropriate feasibility estimator 𝑝 and mass estimator �̂� can be found in the offline database,
new meta models need to be established, see Fig. 4.1 (b). To provide the necessary training data 𝒚𝐴,
for 𝐴 = 1, ..., 𝑁 , first the input space needs to be sampled

𝒚𝐴 = [𝜿𝐴,𝜶𝐴], 𝒚𝐴 ∈ R1×𝑛y , (4.44)

for 𝑛y=(𝑛k + 𝑛𝛼) and within the bounds [𝒚lb, 𝒚ub]. The sample output vector contains information
about physical feasibility 𝑝 and the mass 𝑚

𝒛𝐴 = [𝑝𝐴, 𝑚𝐴], 𝒛𝐴 ∈ R1×𝑛𝑧 , (4.45)

while 𝑚𝐴 is again processed as 𝑣𝐴. In order to compute the sample output data 𝒛𝐴, the component
optimization of (4.37) is utilized. It determines whether a corresponding detailed design 𝒙 with
minimum mass 𝑚 exists for the given [𝜿,𝜶]. If the component optimization converges, the feasibility
flag is set to 𝑝𝐴=1, otherwise 𝑝𝐴=-1. The sample data consists then of the input and output data

[𝒀 , 𝒁], ∈ R𝑁×(𝑛𝑦+𝑛𝑧 ) . (4.46)

The sample data can then be used to train new feasibility estimator 𝑝 and mass estimator �̂� for the
offline database. The feasibility estimator 𝑝 is evaluated in terms of the false positive rate, FPR, true
positive rate, TPR, and the accuracy, ACC, of Section 2.2.2, while the mass estimator �̂� is evaluated
in terms of the MSE and the 𝑅2-value of Section 2.2.1.

4.3.2 Active-learning undersampling strategy

In general, not all combinations of stiffness entries can be physically realized. Physically feasible
stiffness matrices 𝑲 and thus 𝜿 must satisfy the requirements (R1-R4) of Section 4.1.1. Therefore, any
randomly sampled dataset [𝒀 , 𝒁] is assumed to contain many more infeasible than feasible data points.
This is not only disadvantageous for the training process of the classifier, but also makes the process
less efficient, because infeasible data points can only be used for the feasibility estimator 𝑝, but not
for the mass estimator �̂�. This is particularly problematic because the component optimizations are
performed for each point at the high-dimensional component-detail level (III), making the computation
very expensive. One way to deal with imbalanced training data is informed undersampling strategies.
SVMs are particularly well suited for this type of sampling because of the mathematical definition of
the separating hyperplane. Based on a SVM, a two-phase active-learning undersampling strategy was
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proposed in Krischer et al. (2022), see also Fig. 4.13 (a), consisting of

(i) classification sampling and
(ii) regression sampling.
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Figure 4.13: Active-learning undersampling strategy: (a) sampling process, (b) physical seed 𝒀p of
iteration 𝐽=1 and evaluation of each sample point via component optimization, (c)
decreasing distance of selected sample points to feasibility boundary for increasing
number of iterations 𝐽, and (d) sample data for training mass estimator. Green, red, and
gray dots show feasible, infeasible and ignored sample points, respectively, circles
indicate selection, and red crosses mark infeasible designs that are ignored

Classification sampling (i) approximates the hyperplane between physically feasible and infeasible
designs by selecting sample points according to temporally trained feasibility estimators 𝑝𝐽 . In each
iteration 𝐽, a new SVM classifier 𝑝𝐽 is trained on a growing set of training data to improve the selection
quality of sample points 𝒀 ∈ R𝑁C×𝑛y incrementally.

For the first iteration 𝐽=1, see also Fig. 4.13 (b), a physical seed 𝒀p is generated by randomly selecting
the design variables of the detail level 𝒙p and computing the respective 𝜿p-values afterwards. Since the
𝜿p are computed from existing detailed designs 𝒙p, all sample points of the first iteration are physically
feasible. Therefore, a one-class SVM is trained, based on the physically feasible seed to select the
next input samples. A random set of samples 𝒀t ∈ R𝑁𝑡×𝑛y is created (gray dots) and evaluated by
the corresponding estimator 𝑝1. Then, a subset of sample points 𝒀s ∈ R𝑁s×𝑛y is added to the dataset
(black circled points) that have the smallest distance from the estimated hyperplane, with 𝑁t>>𝑁s. For
each sample point the component optimization (4.37) is utilized to determine the respective outputs
𝒛𝐴 = [𝑝𝐴, 𝑚𝐴].

For all following iterations 𝐽>1, a binary SVM is utilized (physically feasible/infeasible), see
Fig. 4.13 (c). At each iteration, the sample size 𝑁t of the temporary samples 𝒀t is increased, while the
sample size 𝑁s of the subset 𝒀s is kept constant. Since the ratio 𝑁s/𝑁t decreases at each iteration, it is
likely that the selected subset of sample points 𝒀s of iteration 𝐽 + 1 is closer to the trained hyperplane
than the sample points of iteration 𝐽. After a given number of iterations 𝐶, a final classifier 𝑝𝐶 is
trained on the entire sample data and phase (i) of the proposed active-learning strategy is completed.

Next, regression sampling (ii) is initiated, where 𝑁R regression samples are selected within the feasible
region of the classifier 𝑝, as shown in Fig. 4.13 (d). Note that all feasible points 𝐶p from the previous
phase (i) can already be added to the set of sample points. Each remaining sample point 𝒚𝐴 is randomly
generated within the boundaries of the input space and evaluated by the classifier 𝑝. If the sample
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point is found to be infeasible, the design is ignored, and a new point is generated and evaluated. If it is
feasible, the expensive component optimization of (4.37) is performed to compute the corresponding
mass 𝑚𝐴 and re-evaluate the feasibility 𝑝𝐴. When the predefined number of sample points 𝑁R is
reached, phase (ii) is completed and the sample data can be used to train the final meta models �̂� and
𝑝 with respect to the whole dataset [𝒀 , 𝒁], as shown in Fig. 4.1 (b). For simplicity, one can also take
the estimator 𝑝𝐶=𝑝 of phase (i) right away as the final feasibility estimator. All important parameters
of the active-learning strategy are also summarized in Table 4.2.

Table 4.2: Overview of the parameters of the active-learning strategy for (i) the classification and (ii)
regression sampling phase

(i) Classification sampling: 𝑁𝐽 = 𝑁p, ..., 𝑁C

for 𝐽 = 1, ..., 𝐶

Physical seed 𝒀p Classification samples 𝒀C Temporary samples𝒀t Subset of samples 𝒀s

𝒀p ∈ R𝑁p×𝑛y 𝒀C ∈ R𝑁C×𝑛y 𝒀t ∈ R𝑁t×𝑛y , for 𝑁t = 𝐽 𝑝 (𝑁ub,t−𝑁lb,t )
𝐶𝑝 + 𝑁lb,t 𝒀s ∈ R𝑁s×𝑛y

(ii) Regression sampling:

for 𝐴 = 𝐶p + 1, ..., 𝑁R

Feasible classification samples 𝒀𝐶 = 1 Regression samples𝒀𝑅

𝒀𝐶 ∈ R𝐶p×𝑛y 𝒀𝑅 ∈ R𝑁R×𝑛y

The overall success of the active-learning undersampling strategy depends mainly on the component
optimization (4.37), as it provides us with the crucial information about the feasibility 𝑝 and the
mass 𝑚. A mislabeled sample point can drastically degrade the results of the feasibility estimator 𝑝,
while a non-convergent optimization produces incorrect mass values𝑚 that affect �̂�. If the verification
of Section 4.2.2 was successful, a reliable optimization is assumed.

In addition, it is important to assess the extent to which the input design space of 𝒚 ∈ R𝑛y has been
sampled. This can be done by using some precomputed specific designs that are known to be located
at outer points of the physically feasible design space. Since the 𝜅sym-representation (4.21) consists
only of diagonal values, it is known that a completely filled design domain Ω represents the maximum
value for a given Ω, while the minimum value is obtained for a void design domain Ω. In addition, the
results of the component verification procedure of Fig. 4.12 can be also used to assess the design space
size. Together, a non-precise but rough estimate of the design space can be realized, by either visually
examining the sampled design space, see Fig. 4.14, or giving the produced designs 𝜿 as an input to the
trained feasibility estimator 𝑝.

Filled domain

Compliance optimization

Classification 

boundary 

estimated by Ƹ𝑝

𝜅𝑖

𝜅𝑗

Void domain

Figure 4.14: A completely filled and void design domain can be used to determine the maximum and
minimum value of the design space. Additionally, results of a compliance optimization
can be utilized to evaluate intermediate design points
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4.4 Validation methodology

In order to validate the developed Informed Decomposition (B), two design problem classes are
introduced:

(P1) the validity of the proposed approach is investigated by taking the physical feasibility 𝑝 and
optimality with respect to mass 𝑚 into account, and

(P2) an investigation towards practical application is carried out.

For the two design problem classes (P1) and (P2), with 𝑛c=2 and 𝑛c=4 components, respectively, the
complexity slowly increases by increasing the number of degrees of freedom 𝑛dof and load cases 𝑛p for
each design problem, see Table 4.3.

First, in Chapter 5, the design problem class (P1) is studied. For this purpose, a two-component
system is optimized for 𝑛dof=2, 3, and 6 degrees of freedom per interface and 𝑛p=1, 3, and 6 load
cases, respectively. Each load case is studied in the context of one optimization, denoted by (1) in
Table 4.3. The results of the proposed approach (B) are compared with the results of a monolithic
optimization (A) for all design problems (P1.1-3) to investigate optimality or rather convergence to the
monolithic solution of (A) and physical feasibility. For (P1.1), also a second decoupled architecture
(C) is investigated that does not provide detail level information by meta models to the system level.

Second, in Chapter 6, the Informed Decomposition (B) is then further analyzed by examining the design
problem class (P2) in terms of practical application. Thus, a four-component system for 𝑛dof=2, 3,
and 6 degrees of freedom per interface and corresponding 𝑛p=1, 6, and 100 load cases considered
simultaneously, is investigated. In the first investigation (P2.1), the proof of the general applicability
of the offline database for components of design domains Ω varying in dimensions is given. Then, in
(P2.2), a computational time comparison between approach (B), two monolithic architectures (A1-2),
and analytical target cascading (D) is performed. Finally, in (P2.3), we address a design problem
involving a low-cost lightweight robot for a pick-and-place task with 𝑛p=100 representative static load
cases.

Table 4.3: Overview of the design problem classes (P1) and (P2) with the complexity drivers 𝑛c as
the number of components, 𝑛dof as the number of interface degrees of freedom, and 𝑛p as
the number of load cases, and the different optimization architectures (A) as monolithic
architecture, (B) as the proposed Informed Decomposition, (C) uninformed
decomposition, and (D) analytical target cascading

Design problem
Complexity drivers Optimization architectures

𝑛c 𝑛dof 𝑛p (A) (B) (C) (D)

C
ha

pt
er

5

(P1)
(P1.1) 2 2 1 (1) x x x

(P1.2) 2 3 3 (1) x x

(P1.3) 2 6 6 (1) x x

C
ha

pt
er

6

(P2)
(P2.1) 4 2 1 x x

(P2.2) 4 3 6 x x x

(P2.3) 4 6 100 x x
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5 Design problem class (P1): Physical feasibility and optimality

5.1 Setup

First, a simple two-component system, with a rectangular design domain Ω of width and height
𝑤 (𝑖)=ℎ (𝑖)=30 mm, and length 𝑙 (𝑖)=100 mm for both components, is investigated for a required system
displacement of up to 𝑢max=1 mm. The rectangular geometrical design domain Ω is discretized with
𝑛ele = [20, 8, 8]⊤ elements in 𝑥, 𝑦, and 𝑧-direction for each component 𝑖. The material used is a
synthetic resin for additive manufacturing, see Table 5.1. The given design problem class (P1) is
solved for 𝑛p=6 different load cases, see Fig. 5.1 and Table 5.2, while each load case is considered
within one single optimization and represents a main load in one coordinate direction.

Table 5.1: Material data of a synthetic resin for the components 𝑖 of both design problem classes (P1)
and (P2)

Material
Young’s Poisson’s Density 𝜌

Modulus E (GPa) Ratio 𝜈 (g/cm3)
Synthetic resin 10.0 0.36 1.63

𝑥

𝑦

𝑧

(1) (2)

𝑙(1) 𝑙(2)

𝜽(1)

𝒇

𝒂 1 𝒃 1

𝒑(1)𝒑(0)

𝒑(2)

𝒂 2 𝒃 2

𝜽(0)

(LC4) (LC5) (LC6)

(LC1) (LC2) (LC3)

(a)

(b)

(P1.3)

(P1.1) (P1.2)

Figure 5.1: Design problem class (P1) with (a) a simple two-component system and (b) the 𝑛p=6
respective load cases that are investigated. (P1.1) covers load case (LC1), (P1.2) covers
load cases (LC1-3) and (P1.3) covers all load cases (LC1-6)
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Table 5.2: Definition of the 𝑛p=6 load cases (LC) of design problem class (P1) with a main shear
force in 𝑦 (y-shear), bending moment about the 𝑧-axis (z-bending), normal force in 𝑥
(x-normal), shear force in 𝑧 (z-shear), bending moment about the 𝑦-axis (y-bending) and
torsional moment about the 𝑥-axis (x-torsion)

Load Main 𝜽 (0) 𝜽 (1) 𝒇 𝒑 (0) 𝒂 (1) 𝒃(1) 𝒑 (1) 𝒂 (2) 𝒃(2) 𝒑 (2)

case load rad rad N mm mm mm mm mm mm mm

(LC1) y-shear (2)


0

0

0



0

0

0




0

0

−100




0

0

0



15

0

0



115

0

0



130

0

0



145

0

0



245

0

0



260

0

0



(LC2) z-bending (6)


0

0

− 𝜋
2




0

0

4𝜋
6




0

0

−300


(LC3) x-normal (1)


0

0

− 2𝜋
6




0

0

5𝜋
6




0

0

−3000


(LC4) z-shear (3)


− 𝜋

2

0

0



0

0

0




0

0

−100


(LC5) y-bending (5)


0

0

− 𝜋
2




0

− 4𝜋
6

0




0

0

−300


(LC6) x-torsion (4)


− 𝜋

2

0

0




0

0

𝜋
2




0

0

−100


The respective monolithic optimization problem (1.3) is now decoupled utilizing the Informed
Decomposition approach of Chapter 4. As introduced in Section 4.1.2, symmetry conditions are
enforced leading to the reduced 𝜅-representation (4.21) with eight entries 𝜿=𝜿sym ∈ R1×8. Since the
length 𝑙 (𝑖) of both components is the same, the meta models are reduced exclusively to 𝜿 as the input

𝑝(𝜿), (5.1)
�̂�(𝜿). (5.2)

The classical monolithic optimization (1.3) referred to as (A), serves as a benchmark. The main
objective of this chapter is to show validity of the developed Informed Decomposition approach (B)
by analyzing the

1. physical feasibility 𝑝 and
2. optimality 𝑚.

This is done by slowly increasing complexity for the first design problem class (P1) and comparing the
respective results with (A) by investigating the system with

(P1.1) 𝑛p=1 load case (LC1) for a straight pose with two degrees of freedom per interface 𝑛dof=2 and
an additional comparison to the uninformed decomposition approach (C),

(P1.2) 𝑛p=3 planar load cases (LC1-3) with three degrees of freedom per interface 𝑛dof=3, and
(P1.3) 𝑛p=6 load cases (LC1-6) with all six degrees of freedom per interface 𝑛dof=6.
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5.2 Design problem (P1.1): Load case in straight pose

5.2.1 Introduction

For the first design problem (P1.1), the load case (LC1) is investigated. The proposed Informed
Decomposition (B) is hereby not only compared to the results of monolithic optimization (A), but
also to a decoupled uninformed decomposition approach (C). Since only translational displacements
in the force direction 𝑦 and rotations about the 𝑧-axis occur for a linear investigation in a straight
pose, the interface description can be reduced to 𝑛dof=2. Namely, the shear degrees of freedom in the
𝑦-axis (2, 8) and the rotational degrees of freedom about the 𝑧-axis (6, 12), see Fig. 5.2. Note that
the following section is based on partial results of a similar design problem that was investigated in
Krischer & Zimmermann (2021) and during a supervised student’s project in Kerscher (2021).

𝑲

𝑚

82

6 12

𝒂 𝒃

Figure 5.2: A three-dimensional mechanical body with 𝑛int=2 interfaces and 𝑛dof=2 degrees of
freedom per interface

The 𝜅-representation is hence reduced to

𝜿sym = [𝑘2,2, 𝑘6,6, 𝑘12,12] ∈ R1×3, (5.3)

and the corresponding interface stiffness matrix is

𝑲 ∈ R4×4. (5.4)

5.2.2 Offline database

For (P1.1) with 𝑛dof=2, no meta models 𝑝(𝜿) and �̂�(𝜿) exist in the offline database. Therefore,
the active-learning strategy from Section 4.3 is used to establish new meta models. The sampling
parameters can be obtained from Table 5.3.

Table 5.3: Overview of the parameters of the active-learning strategy for (i) the classification and (ii)
regression sampling phase for (P1.1)

(i) Classification sampling: 𝑁𝐽 = [100, 200, ..., 1100]

for 𝐽 = 1, ..., 10

Physical seed 𝒀p Classification samples 𝒀C Temporary samples𝒀t Subset of samples𝒀s

𝑁p = 100 𝑁C = 1100 𝑁t = 𝐽4

(
106−103

)
104 + 103 𝑁s = 100

(ii) Regression sampling:

for 𝐴 = [650, ..., 1500]

Feasible classification samples𝒀𝐶 = 1 Regression samples𝒀R

𝐶p = 649 𝑁R = 1500
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To illustrate how the active-learning strategy works, Fig. 5.3 shows the iterations 𝐽=1 and 2 of the
classification phase (i). First, in Fig. 5.3 (a), the initial physically feasible seed is shown 𝒀p. The
physical seed corresponds to actual physical topologies that are created with prescribed densities 𝒙=𝝆
and reduced to 𝜿 using the reduction procedure of Section 4.1.1. Hence, it is known that these 𝜿 exist.
Next, randomly generated temporary samples 𝒀t are calculated for iteration 𝐽=1, Fig. 5.3 (b), and the
sub samples 𝒀s closest to the feasible points are selected, Fig. 5.3 (c). Then, all selected sample points
are evaluated using component optimization (4.37) and iteration 𝐽=2 begins. Fig. 5.3 (d) shows the
separation plane of the temporary binary SVM 𝑝2. It can be seen that the shape is irregular, which is
due to the small number of sample points. Temporary samples 𝒀t are then created again, Fig. 5.3 (e),
and the points 𝒀s that are now closest to the new SVM separation plane are selected, Fig. 5.3 (f). This
process is performed for all iterations 𝐽 = 1, ..., 10. During the active learning strategy, the shape and
hence the quality of the SVM will successively improve.
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Figure 5.3: Iteration 𝐽=1: (a) Initial physical seed 𝒀p, (b) temporary samples 𝒀t, (c) chosen subset of
classification samples 𝒀s. Iteration 𝐽=2: (d) Visualization of the SVM for the samples 𝒀p
of the first iteration 𝐽=1, (e) temporary samples 𝒀t, (f) chosen subset of classification
samples 𝒀s. Circles indicate proximity to the feasibility boundary

The sample data [𝒀 , 𝒁] computed by the active-learning strategy is shown in Fig. 5.4 (i)-(ii). Fig. 5.4 (i)
shows the infeasible data points outside the physically feasible design space, while all feasible data
points are inside the SVM plane. Fig. 5.4 (ii) shows the physically feasible data points inside the SVM
plane generated in both phases (i) and (ii). The general shape of the physically feasible region is a
three-dimensional solid that tapers towards high or low stiffness values. One can observe a smooth
transition of the volume fraction from data points with low stiffness values and also low volume fraction
values to designs with high stiffnesses and correspondingly high volume fraction values. In addition,
the volume fraction of stiffness designs increases as it approaches the boundary of the physically
feasible design space. The active-learning strategy almost captured the lower and upper bound of the
design space, corresponding to a completely void and filled design domain Ω. It should be noted that
some physically feasible data points are outside the SVM plane. This is because different feasibility
estimators 𝑝𝐽 (𝜿), for 𝐽 = 1, ..., 10, are trained during the active-learning strategy and therefore the
shape of the separation plane may also change slightly, causing earlier feasible points to be falsely
classified as infeasible.
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The sample data can then be used to train the final meta models 𝑝(𝜿) and �̂�(𝜿). The feasibility
estimators 𝑝𝐽 (𝜿) for 𝐽 = 2, ..., 10 are realized with a binary SVM classifier from MATLAB with radial
basis functions as the nonlinear kernel function 𝜙(𝒚). For the final estimator 𝑝=𝑝10, for 𝐽=10, the data
is split into 80% training and 20% test samples. The hyperparameters are a kernel scale parameter
𝑘s and the box-constraint 𝐶, which are determined using a Bayesian optimization with a five-fold
cross-validation on the training data. To assess the performance of the classifier, the earlier introduced
FPR, TPR, and ACC were analyzed, see Table 5.4. Since a decision for an infeasible design on the
system level makes the whole design approach invalid, the most important quantity is a low FPR. The
final separating plane 𝑝 can once again be seen in Fig. 5.4. Compared to the temporary classifier 𝑝2(𝜿)
from Fig. 5.3 (d), the volume of the physically feasible space is larger, and the shape of the plane is
more regular.
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Figure 5.4: Results of the active-learning strategy for (P1.1): (i) the final SVM separation plane of
𝑝10 and the respective infeasible classification samples [𝒀 , 𝒁]C and (ii) the regression
samples [𝒀 , 𝒁]M within the physically feasible design domain

Then, the mass estimator �̂�(𝜿) is implemented with a feedforward artificial neural network (ANN).
The sample data is divided into 80% training, 10% validation and 10% test samples. The mass
estimator �̂�(𝜿) is trained using the Levenberg-Marquardt algorithm in MATLAB. To select the best
configuration of hidden layers and corresponding neurons, a grid search for 𝑛hl = 1, ..., 5 hidden layers
and 𝑛n = 1, ..., 10 neurons was performed. The configuration with the lowest 𝑅2-value was chosen.
The final ANN has 𝑛hl=3 hidden layers and 𝑛n=7 hidden neurons. In addition, the MSE of the volume
fraction was taken as a second performance measure, see Table 5.4.

Table 5.4: Performance measures of 𝑝(𝜿) and �̂�(𝜿) for (P1.1)
�̂� (𝜿) �̂�(𝜿)

FPR TPR ACC 𝑅2 MSE (%)

0.0286 0.973 0.973 0.996 1.61

Having created the meta models needed for the offline database, approach (B) is now ready to optimize
(P1.1) by decomposing the original monolithic optimization problem (1.3) of (A).

5.2.3 Uninformed decomposition (C)

In addition to (A) and (B), also a third IO formulation (C) is investigated in this section. The so-called
uninformed decomposition approach (C) has been developed in Krischer et al. (2020) for a similar
two-component structure. The name uninformed decomposition refers to decomposition without
providing detail level information (III) by meta models to the system level (I).
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The system is decoupled based on assumptions, e.g., by a reference structure that is not necessarily
optimal. Then, each component is optimized with respect to its own local objectives, design variables
and constraints. Thus, this is also a decoupled approach, with the important difference from (B) that no
estimate �̂� of the mass is used to balance the requirements on the stiffness matrices of the individual
components, nor is any estimate of the physical feasibility 𝑝 used, potentially affecting both optimality
and physical feasibility.

The total translational deformation

𝑢ee = 𝑢
𝑝

(1) + 𝜑
𝑝

(1) 𝑙 (2) + 𝑢
𝑝

(2) , (5.5)

can be additively decomposed into the translational displacement 𝑢𝑝(1) and the rotational displacement
𝜑
𝑝

(1) of the first component and translational displacement 𝑢𝑝(2) of the second component, see Fig. 5.5.

𝑙(1) 𝑙(2)
𝜑 1
𝑝
𝑙(2)

𝑢ee

𝑢 1
𝑝

𝜑 1
𝑝

𝑢 2
𝑝

Figure 5.5: Additive decomposition of the end effector displacement 𝑢ee into the respective
component displacements 𝑢𝑝(1) , 𝜑

𝑝

(1) , and 𝑢𝑝(2)

The system requirement 𝑢ee≤𝑢max will be satisfied, whenever the following component requirements
are satisfied

𝑏 (1) (𝒙) =

(
𝑢
𝑝

(1) + 𝜑
𝑝

(1) 𝑙 (2)
)
− 𝛼𝑢max ≤ 0, (5.6)

𝑏 (2) (𝒙) = 𝑢
𝑝

(2) − (1 − 𝛼) 𝑢max ≤ 0, (5.7)

where 𝛼 can assume any value between 0 and 1. 𝛼 controls how much stiffness is required of each
component in order to meet the system stiffness requirement. Two stiffness distributions are chosen
for comparison: 𝛼=0.5, (C1), and 𝛼=0.6, (C2).

The component optimization for the uninformed decomposition (C) of each component reads

min
𝒙(𝑖)

𝑚 (𝑖) (𝒙 (𝑖) ),

s. t.: 𝑏 (𝑖) (𝒙 (𝑖) ) ≤ 0, (5.8)
𝒙lb ≤ 𝒙 (𝑖) ≤ 𝒙ub.

Having established all approaches (A), (B), and (C1-2), the design problem (P1.1) can now be solved.

5.2.4 System optimization

First, the quantities of interest 𝒛 = [𝑚, 𝑢] on the system level (I) are computed in terms of the level
(II) 𝜅-representations. Thus, the monolithic approach (A) is executed, and the corresponding 𝜿-values
are computed after the optimization has converged. For the decoupled architecture of the Informed
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Decomposition (B), the surrogate-based system optimization (4.30) is solved with 𝑝(𝜿) and �̂�(𝜿)
using PSO. Finally, the uninformed decomposition (C) of (5.8) is used, for 𝛼=0.5 and 𝛼=0.6, and the
respective 𝜿 are computed after convergence of the component optimizations. All 𝜿 (𝑖) vectors for the
utilized approaches (A), (B), and (C1-2) can be seen in Table 5.5. The monolithic approach (A) and the
Informed Decomposition (B) yield designs for each component 𝑖=1, 2 with similar stiffness values. In
contrast, the uninformed approaches (C1) and (C2) show higher stiffness values for the first component
and lower stiffness values for the second component, indicating a suboptimal stiffness distribution.

Table 5.5: Component performance (II), 𝒚 (𝑖) = [𝑣 (𝑖) , 𝜿 (𝑖) ], and the quantities on the system level (I),
𝒛 = [𝑚, 𝑢], of design problem (P1.1) for monolithic optimization (A), the proposed
Informed Decomposition (B), and the uninformed decomposition with 𝛼=0.5, (C1), and
with 𝛼=0.6, (C2)

Component-performance level (II): 𝒚(𝑖) = [𝑣(𝑖) , 𝜿 (𝑖) ]

Load case Comp. (𝑖) Approach
𝜿 (𝑖)

𝑣(𝑖) 𝑘2,2 𝑘6,6 𝑘12,12

% N
mm

N mm
rad

N mm
rad

(LC1)

(1)

(A) 51.48 1.19𝑒3 9.04𝑒6 8.04𝑒6

(B) 48.39 1.37𝑒3 9.46𝑒6 7.57𝑒6

(C1) 100.0 7.17𝑒3 2.51𝑒7 2.51𝑒7

(C2) 69.35 2.61𝑒3 1.37𝑒7 1.26𝑒7

(2)

(A) 27.84 588 5.15𝑒6 1.42𝑒6

(B) 31.24 973 6.46𝑒6 3.10𝑒6

(C1) 22.36 306 2.66𝑒6 8.49𝑒5

(C2) 23.81 398 3.38𝑒6 9.25𝑒5

Quantities on the system level (I): 𝒛 = [𝑚, 𝑢]

Load case Approach
∑
𝑚(𝑖)

( · )−𝑚𝐴
𝑚𝐴

𝑢

g % mm

(LC1)

(A) 114.0 - 1.00

(B) 114.5 0.40 0.99

(C1) 175.9 54.3 1.04

(C2) 133.9 17.5 1.00

5.2.5 Component optimization

The system optimization (4.30) of approach (B) has decoupled the given design problem enabling
𝑛c=2 independent component optimizations (4.37). Each optimized 𝜿 (𝑖) of level (II) can be taken
as a target stiffness for component optimization (4.37) to compute the final topologies 𝒙 (𝑖) at level
(III). The results are then compared to (A) and (C1-2) and are listed in Table 5.5 together with the
resulting quantities of interests on the system level (I), 𝒛 = [𝑚, 𝑢]. Since the system optimization and
the component optimization operate on volume fractions 𝑣 (𝑖) and 𝜿 (𝑖) , the component-performance
level quantities (II) are given as 𝒚 (𝑖) = [𝑣 (𝑖) , 𝜿 (𝑖) ].

All approaches (A), (B), and (C1-2) produced qualitatively similar topologies for load case (LC1) in
straight pose for both components, see Fig. 5.6. The first component experiences a mixed load case
consisting of a 𝑧-bending moment and a 𝑦-shear force. Therefore, on the one hand, the material is
distributed farthest from the main bending axis, while on the other hand, a slightly tapered tip in the
beginning with reinforcements in the center for the occurring shear loads can be seen. In contrast,
the second component shows a classical cantilever beam topology with a more pronounced tip, where
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the 𝑦-shear force is applied, and reinforcements in the center between the upper and lower side of the
component. The difference between component 𝑖=1 and 𝑖=2 is only the ratio between shear force and
bending moment. The proposed approach (B) produces a slightly lighter first component compared
to the reference design (A), while the second component is slightly heavier. Overall, the total mass
achieved by the Informed Decomposition is 0.40% heavier than the reference design resulting from
(A), while both meet the requirement 𝑢≤𝑢max for system stiffness. The approaches (C1) and (C2) show
in accordance with the higher stiffness values, also higher masses for the first component, and lower
masses for the lower stiffnesses of the second component. Overall, both approaches (C1) and (C2)
yield system masses that are far from the benchmark results of (A), with a deviation of 54.3% and
17.5%, respectively. In addition, the first component of (C1) is completely filled with material, which
is due to an overly demanding requirement, which therefore cannot be met because it is not physically
feasible (𝑝=−1). Hence, also the system requirement 𝑢≤𝑢max is violated with 𝑢=1.04 mm for (C1),
while the approaches (A), (B), and (C2) are all feasible.
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Figure 5.6: Optimized component designs 𝒙 (𝑖) for (P1.1) of monolithic optimization (A), Informed
Decomposition (B), uninformed decomposition with 𝛼=0.5, (C1), and 𝛼=0.6, (C2)
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5.3 Design problem (P1.2): Planar load cases

5.3.1 Introduction

For the second design problem (P1.2), the load cases (LC1-3) are analyzed. Unlike the previous section,
now only a comparison between the monolithic optimization (A) and the Informed Decomposition (B)
is carried out. The planar load cases demanding for all planar degrees of freedom of the components 𝑖.
Therefore, the stiffness matrix is reduced to 𝑛dof=3 with the normal degrees of freedom (1, 7), shear
degrees of freedom in the 𝑦-axis direction (2, 8), and the rotational degrees of freedom about the
𝑧-axis (6, 12), see Fig. 5.7. It should be noted that research addressing a similar design problem was
conducted in a supervised student’s project of Li (2022) and this section is based on partial results
from that.

𝑲

𝑚
7

8

1

2

𝒂 𝒃

6 12

Figure 5.7: A three-dimensional mechanical body with 𝑛int=2 interfaces and 𝑛dof=3 degrees of
freedom per interface

The 𝜅-representation is hence reduced to

𝜿sym = [𝑘1,1, 𝑘2,2, , 𝑘6,6, 𝑘12,12] ∈ R1×4, (5.9)

and the corresponding interface stiffness matrix is

𝑲 ∈ R6×6. (5.10)

5.3.2 Offline database

The monolithic optimization (A) of (P1.2) does not require any further preparation. In contrast, the
offline database of approach (B) does not contain any meta model 𝑝(𝜿) and �̂�(𝜿) for 𝑛dof=3. Therefore,
the offline database is extended by utilizing the active-learning sampling strategy of Section 4.3. The
parameters for the active-learning sampling are documented in Table 5.6.

Table 5.6: Overview of the parameters of the active-learning strategy for (i) the classification and (ii)
regression sampling phase for (P1.2)

(i) Classification sampling: 𝑁𝐽 = [600, 1200, ..., 6600]

for 𝐽 = 1, ..., 10

Physical seed 𝒀p Classification samples 𝒀C Temporary samples𝒀t Subset of samples𝒀s

𝑁p = 600 𝑁C = 6600 𝑁t = 𝐽4

(
106−105

)
104 + 105 𝑁s = 600

(ii) Regression sampling:

for 𝐴 = [4301, ..., 8000]

Feasible classification samples𝒀𝐶 = 1 Regression samples𝒀R

𝐶p = 4300 𝑁R = 8000
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The sample data [𝒀 , 𝒁] computed by the active-learning strategy is visualized in Fig. 5.8, while Fig.
5.8 (i) shows the classification sample data and Fig. 5.8 (ii) the created regression samples. Since
the stiffness design space is now R4, the data is projected onto two two-dimensional scatter plots to
show the physically feasible design space. Because this section and the previous one use the same
rectangular design domain Ω of width and height 𝑤 (𝑖)=ℎ (𝑖)=30 mm, and length 𝑙 (𝑖) = 100 mm, the
shared stiffness values 𝑘2,2 ,𝑘6,6, and 𝑘12,12 have in theory the same lower and upper bounds. Yet,
the statistic nature of the active-learning strategy that is also influenced by the number of dimensions
𝑛𝑘 cannot ensure that the complete design space is sampled. Nevertheless, the comparison with the
upper (filled) and lower limit (void) of the diagonal stiffness values, indicates that the active-learning
strategy again almost captured both bounds. The resulting sample data can then be used to train the
final meta models 𝑝(𝜿) and �̂�(𝜿) in accordance with Section 5.2. The performance measures for both
estimators are listed in Table 5.7.
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Figure 5.8: Results of the active-learning strategy for (P1.2): (i) classification samples for physical
feasibility estimation and (ii) regression samples for mass estimation

Table 5.7: Performance measures of 𝑝(𝜿) and �̂�(𝜿) for (P1.2)
�̂� (𝜿) �̂�(𝜿)

FPR TPR ACC 𝑅2 MSE (%)

0.0355 0.920 0.931 0.992 2.31

5.3.3 System optimization

With the available meta models 𝑝(𝜿) and �̂�(𝜿) in the offline database, the investigation of (P1.2) can
be started. Approach (A) and (B) are applied to the three load cases (LC1-3) of the design problem
(P1.2). First, the level (II) 𝜅-representations are computed and the resulting 𝜿 (𝑖) can be seen in Table
5.8. The monolithic approach (A) and the Informed Decomposition (B) produce similar 𝜿 (𝑖) designs
for both components and all load cases (LC1-3), while no significant outlier can be identified.
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Table 5.8: Component performance (II), 𝒚 (𝑖) = [𝑣 (𝑖) , 𝜿 (𝑖) ], and the quantities on the system level (I),
𝒛 = [𝑚, 𝑢], of design problem (P1.2) for monolithic optimization (A) and the proposed
Informed Decomposition (B)

Component-performance level (II): 𝒚(𝑖) = [𝑣(𝑖) , 𝜿 (𝑖) ]

Load case Comp. (𝑖) Approach
𝜿 (𝑖)

𝑣(𝑖) 𝑘1,1 𝑘2,2 𝑘6,6 𝑘12,12

% N
mm

N
mm

N mm
rad

N mm
rad

(LC1)

(1)
(A) 51.48 4.12𝑒4 1.19𝑒3 9.04𝑒6 8.04𝑒6

(B) 47.68 3.51𝑒4 1.91𝑒3 1.05𝑒7 9.19𝑒6

(2)
(A) 27.84 1.11𝑒4 588 5.15𝑒6 1.42𝑒6

(B) 31.18 1.32𝑒4 859 6.69𝑒6 1.88𝑒6

(LC2)

(1)
(A) 55.04 4.77𝑒4 399 7.26𝑒6 7.26𝑒6

(B) 53.60 4.03𝑒4 615 7.07𝑒6 7.44𝑒6

(2)
(A) 37.02 2.05𝑒4 1.09𝑒3 8.44𝑒6 2.95𝑒6

(B) 42.06 2.66𝑒4 1.89𝑒3 1.08𝑒7 5.81𝑒6

(LC3)

(1)
(A) 68.41 4.81𝑒4 1.09𝑒3 1.27𝑒7 2.21𝑒6

(B) 66.92 4.26𝑒4 1.18𝑒3 1.26𝑒7 3.42𝑒6

(2)
(A) 30.62 1.97𝑒4 1.02𝑒3 3.14𝑒6 3.14𝑒6

(B) 33.95 2.40𝑒4 880 2.25𝑒6 3.74𝑒6

Quantities on the system level (I): 𝒛 = [𝑚, 𝑢]

Load case Approach
∑
𝑚(𝑖)

( · )−𝑚𝐴
𝑚𝐴

𝑢

g % mm

(LC1)
(A) 114.0 - 1.00

(B) 113.4 −0.57 0.99

(LC2)
(A) 132.4 - 1.00

(B) 137.5 3.91 1.00

(LC3)
(A) 142.4 - 1.00

(B) 145.0 1.87 1.00

5.3.4 Component optimization

Then, the optimized 𝜿 (𝑖) of level (II) are taken as target values to compute the final topologies 𝒙 (𝑖)
at level (III) using the decoupled component optimizations (4.37) of the proposed approach (B). The
resulting topologies are shown in Fig. 5.9, while the respective volume fractions 𝑣 (𝑖) and the resulting
quantities 𝒛 = [𝑚, 𝑢] on the system level (I) are listed in Table 5.8.

For the already studied y-shear load case (LC1), in theory the same two-component cantilever topology
should be produced as in Section 5.2. This is indeed the case for the monolithic approach (A), however,
the proposed approach (B) has a slightly lighter first component, while the second component is slightly
heavier. However, the total mass of (B) is 0.57% less than that of the reference design (A). Since both
approaches meet the system requirements for displacement, both approaches are feasible. The fact that
(B) slightly outperforms the reference solution (A) can be explained by the non-convexity property of
the topology optimization design problem, which does not guarantee global convergence for arbitrary
start vectors.

The z-bending load case (LC2), see Fig. 5.1 (b), yields a topology for the first component that is
mainly influenced by a pure bending moment about the local 𝑧-axis. Therefore, for (A), the material
is distributed only at the boundary of the design domain Ω to compensate for the bending normal
stresses there, hence resembling a classical i-beam without web. For the second component of (LC2),
a mixture of shear and bending loads is applied, resulting in a similar topology to (LC1). Approach (B)
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shows similar results for the first component, but the second component is slightly heavier, resulting
in a 3.91% increase in system mass while meeting the system requirement.

The last load case (LC3) is the x-normal load case. A pure normal force is applied to the vertical
second component, resulting in a bar-shaped topology in approach (A), while the first component
experiences both shear and normal loads. In comparison, approach (B) has problems generating a
similar topology for the second component. It yields an asymmetric beam with a higher component
mass indicating non-optimality, while the first component looks similar to (A). However, the system
mass is only 1.87% higher than (A) with a feasible system design.

In summary, all load cases deviate below 4% from the reference system masses of (A) and are all
physically feasible and also feasible in terms of system stiffness 𝑢≤𝑢max. It should be noted that for the
three investigated load cases (LC1-3), always the second component with the lower volume fraction
shows higher deviations. This could hint to a degradation in the performance of meta models for
stiffnesses with low volume fraction.

(LC2) – z-bending(LC1) – y-shear

(LC3) – x-normal

(A)

(B)

(A)

(B)

1

0

0.5

𝜌𝑒

(1) (2) (1) (2)

(1) (2)

𝑥
𝑦

𝑧 𝑥
𝑦

𝑧 𝑥
𝑦

𝑧 𝑥
𝑦

𝑧

𝑥
𝑦

𝑧 𝑥
𝑦

𝑧 𝑥
𝑦

𝑧 𝑥
𝑦

𝑧

𝑥
𝑦

𝑧 𝑥
𝑦

𝑧

𝑥
𝑦

𝑧 𝑥
𝑦

𝑧

Figure 5.9: Optimized component designs 𝒙 (𝑖) for (P1.2) of the monolithic optimization (A) and
Informed Decomposition (B)
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5.4 Design problem (P1.3): Three-dimensional load cases

5.4.1 Introduction

For the last problem (P1.3), all load cases (LC1-6) are analyzed and the results of (B) are compared to
the monolithic approach (A). Hence, the complete deformation characteristics need to be considered
with the stiffness matrix 𝑲 ∈ R12×12 for 𝑛dof=6, and the known full 𝜅-representation

𝜿sym = [𝑘1,1, 𝑘2,2, 𝑘3,3, 𝑘4,4, 𝑘5,5, 𝑘6,6, 𝑘11,11, 𝑘12,12] ∈ R1×8.

5.4.2 Offline database

First, two new meta models 𝑝(𝜿) and �̂�(𝜿) for the offline database of the Informed Decomposition (B)
have to be established. The parameters for the active-learning sampling are shown in Table 5.9.

Table 5.9: Overview of the parameters of the active-learning strategy for (i) the classification and (ii)
regression sampling phase for (P1.3)

(i) Classification sampling: 𝑁𝐽 = [2000, 2500, 3000, ..., 9000]

for 𝐽 = 1, ..., 14

Physical seed 𝒀p Classification samples 𝒀C Temporary samples𝒀t Subset of samples𝒀s

𝑁p = 2000 𝑁C = 9000 𝑁t = 𝐽4

(
107−104

)
144 + 104 𝑁s = 500

(ii) Regression sampling:

for 𝐴 = [2694, ..., 8000]

Feasible classification samples𝒀𝐶 = 1 Regression samples𝒀R

𝐶p = 2693 𝑁R = 8000

The sample data [𝒀 , 𝒁] computed by the active-learning strategy is shown in Fig. 5.10. In comparison
to Fig. 5.8, the projection of the scatter plots shows a smaller covered feasible design space for the
shared stiffness values [𝑘1,1, 𝑘2,2, 𝑘6,6, 𝑘12,12] of the previous section. This is confirmed by the void
and filled design domainsΩwhich especially for the upper limit is not covered by the sampling strategy.
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Figure 5.10: Results of the active-learning strategy for (P1.3): (i) classification samples for physical
feasibility estimation and (ii) regression samples for mass estimation
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The active-learning strategy suffers from the curse of dimensionality, which despite of the higher
number of sample points 𝑁C compared to the previous sections prevents the sampling strategy from
covering the whole design space. The sample data can then be used to train the final meta models 𝑝(𝜿)
and �̂�(𝜿). The performance measurements for both estimators are listed in Table 5.10.

Table 5.10: Performance measures of 𝑝(𝜿) and �̂�(𝜿) for (P1.3)
�̂� (𝜿) �̂�(𝜿)

FPR TPR ACC 𝑅2 MSE (%)

0.0499 0.905 0.927 0.951 7.76

5.4.3 System optimization

The 𝜅-representations of level (II) for the given design problem (P1.3) of the monolithic approach (A)
and the system optimization (4.30) of (B) can be seen in Table 5.11. Both (A) and (B) produce results
with similar 𝜿 (𝑖) vectors, yet the deviation of the stiffness values is higher compared to the previous
Sections 5.2 and 5.3. In particular one can observe that the system optimization of (B) is not able to
realize stiffness values close to the lower bound, e.g., the 𝑘2,2 and 𝑘3,3 values for the second component
of load case (LC6). Most likely hindered from bad generalization of the meta models that do not have
sufficient sample data in this region, hence labeling it as falsely infeasible.

5.4.4 Component optimization

Next, the optimized 𝜿 (𝑖) of level (II) are utilized for the component optimization of (B) to derive the
final topologies 𝒙 (𝑖) of level (III). The resulting topologies are shown in Fig. 5.11 with the respective
volume fractions 𝑣 (𝑖) and the resulting quantities on the system level (I), 𝒛 = [𝑚, 𝑢], in Table 5.11.

For the load case y-shear (LC1), the Informed Decomposition (B) leads to similar results as (A) with
a weight difference of 3.87% from (B), being slightly heavier than in the previous two sections.

The load case (LC2) represents the z-bending case known from the previous section. Here, the first
component of approach (B) differs significantly from the one of approach (A) and does not show a
clear pure bending characteristic with also a slightly higher volume fraction. The second component
of approach (B) is even bulkier than the counterpart of (A), resulting in a total system mass deviation
of 8.06%, which is significantly higher than the previous section’s result of 3.91%.

The x-normal load case (LC3) also shows significant differences between approach (A) and (B). While
component one is similar in both approaches, component two is completely different in appearance.
Approach (A) forms the familiar rod-like structure, while approach (B) develops a tube-like design.
For the pure normal load case, this is generally not a problem, since what matters is the cross-sectional
area provided by each slice of the topology. However, the second component is also considerably
heavier and results in the highest deviation of all load cases at 8.18%, which is also in contrast to the
previous section’s accurate solution of 1.87%.

Load case (LC4) is a z-shear load case, thus the same as (LC1) with an 𝑥-rotation of 90◦. It is utilized
to evaluate approach (B) for the technically same load case but for different stiffness inputs. Since the
active-learning strategy automatically samples the design space, small differences are expected to occur
for the different dimensions of R8. While the topologies for approach (A) are the same as for (LC1),
only 90◦ rotated, approach (B) deviates slightly from (LC1), resulting in a slightly higher component
mass for the first component and a slightly lower component mass for the second component. The
mass deviation compared to (A) is 5.83%, which is worse than the 3.87% of (LC1).
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Table 5.11: Component performance (II), 𝒚 (𝑖) = [𝑣 (𝑖) , 𝜿 (𝑖) ], and the quantities on the system level
(I), 𝒛 = [𝑚, 𝑢], of design problem (P1.3) for monolithic optimization (A) and the
proposed Informed Decomposition (B)

Component-performance level (II): 𝒚(𝑖) = [𝑣(𝑖) , 𝜿 (𝑖) ]

Load case Comp. (𝑖) Approach
𝜿 (𝑖)

𝑣(𝑖) 𝑘1,1 𝑘2,2 𝑘3,3 𝑘4,4 𝑘5,5 𝑘6,6 𝑘11,11 𝑘12,12

% N
mm

N
mm

N
mm

N mm
rad

N mm
rad

N mm
rad

N mm
rad

N mm
rad

(LC1)

(1)
(A) 51.48 4.12𝑒4 1.19𝑒3 3.26𝑒3 1.19𝑒6 1.20𝑒7 9.04𝑒6 1.17𝑒7 8.04𝑒6

(B) 47.99 3.37𝑒4 1.78𝑒3 2.50𝑒3 1.19𝑒6 1.06𝑒7 1.09𝑒7 7.51𝑒6 7.63𝑒6

(2)
(A) 27.84 1.11𝑒4 588 208 1.36𝑒5 1.56𝑒6 5.15𝑒6 2.35𝑒6 1.42𝑒6

(B) 34.40 1.84𝑒4 1.28𝑒3 1.36𝑒3 7.87𝑒5 6.16𝑒6 7.78𝑒6 3.82𝑒6 3.27𝑒6

(LC2)

(1)
(A) 55.04 4.77𝑒4 399 3.67𝑒3 8.27𝑒5 1.28𝑒7 7.26𝑒6 1.28𝑒7 7.26𝑒6

(B) 56.29 4.51𝑒4 2.67𝑒3 3.63𝑒3 1.60𝑒6 1.33𝑒7 1.22𝑒7 1.24𝑒7 1.24𝑒7

(2)
(A) 37.02 2.05𝑒4 1.09𝑒3 772 3.93𝑒5 3.48𝑒6 8.44𝑒6 4.21𝑒6 2.95𝑒6

(B) 43.20 2.97𝑒4 2.31𝑒3 2.12𝑒3 1.80𝑒6 9.61𝑒6 1.18𝑒7 7.23𝑒6 7.13𝑒6

(LC3)

(1)
(A) 68.41 4.81𝑒4 1.09𝑒3 3.90𝑒3 1.11𝑒6 1.57𝑒7 1.27𝑒7 1.15𝑒7 2.21𝑒6

(B) 64.33 4.45𝑒4 1.30𝑒3 3.69𝑒3 1.19𝑒6 1.58𝑒7 1.26𝑒7 1.00𝑒7 4.43𝑒6

(2)
(A) 30.62 1.97𝑒4 1.02𝑒3 1.02𝑒3 2.54𝑒5 3.14𝑒6 3.14𝑒6 3.14𝑒6 3.14𝑒6

(B) 42.80 3.07𝑒4 1.88𝑒3 1.89𝑒3 1.21𝑒6 7.34𝑒6 7.97𝑒6 7.24𝑒6 7.00𝑒6

(LC4)

(1)
(A) 51.48 4.12𝑒4 3.26𝑒3 1.19𝑒3 1.19𝑒6 9.04𝑒6 1.20𝑒7 8.04𝑒6 1.17𝑒7

(B) 50.63 3.96𝑒4 3.02𝑒3 2.66𝑒3 2.11𝑒6 1.29𝑒7 1.18𝑒7 1.04𝑒7 1.07𝑒7

(2)
(A) 27.84 1.11𝑒4 208 588 1.36𝑒5 5.15𝑒6 1.56𝑒6 1.42𝑒6 2.35𝑒6

(B) 33.30 1.78𝑒4 1.26𝑒3 1.25𝑒3 7.00𝑒5 7.00𝑒6 5.89𝑒6 3.55𝑒6 4.21𝑒6

(LC5)

(1)
(A) 55.04 4.77𝑒4 3.67𝑒3 399 8.27𝑒5 7.26𝑒6 1.28𝑒7 7.26𝑒6 1.28𝑒7

(B) 54.67 4.38𝑒4 3.78𝑒3 2.20𝑒3 1.66𝑒6 1.12𝑒7 1.34𝑒7 1.09𝑒7 1.27𝑒7

(2)
(A) 37.02 2.05𝑒4 772 1.09𝑒3 3.93𝑒5 8.44𝑒6 3.48𝑒6 2.95𝑒6 4.21𝑒6

(B) 43.74 3.12𝑒4 2.44𝑒3 2.24𝑒3 1.71𝑒6 1.18𝑒7 1.08𝑒7 7.10𝑒6 7.75𝑒6

(LC6)

(1)
(A) 49.29 4.09𝑒4 3.51𝑒3 3.51𝑒3 2.89𝑒6 1.39𝑒7 1.39𝑒7 1.28𝑒7 1.28𝑒7

(B) 46.98 3.77𝑒4 2.89𝑒3 2.84𝑒3 2.59𝑒6 1.21𝑒7 1.21𝑒7 1.03𝑒7 1.04𝑒7

(2)
(A) 26.43 1.05𝑒4 195 548 1.83𝑒5 4.48𝑒6 1.20𝑒6 1.54𝑒6 2.25𝑒6

(B) 34.19 1.99𝑒4 1.42𝑒3 1.55𝑒3 9.00𝑒5 7.48𝑒6 6.81𝑒6 4.89𝑒6 4.37𝑒6

Quantities on the system level (I): 𝒛 = [𝑚, 𝑢]

Load case Approach
∑
𝑚(𝑖)

( · )−𝑚𝐴
𝑚𝐴

𝑢

g % mm

(LC1)
(A) 114.0 - 1.00

(B) 118.4 3.87 1.00

(LC2)
(A) 132.4 - 1.00

(B) 143.0 8.06 0.99

(LC3)
(A) 142.4 - 1.00

(B) 154.0 8.18 1.00

(LC4)
(A) 114.0 - 1.00

(B) 120.7 5.83 1.00

(LC5)
(A) 132.4 - 1.00

(B) 141.5 6.90 0.99

(LC6)
(A) 108.9 - 1.00

(B) 116.7 7.20 0.99
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Figure 5.11: Optimized component designs 𝒙 (𝑖) for (P1.3) of the monolithic optimization (A) and
Informed Decomposition (B)
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The next load case (LC5) is also a rotated version, but of (LC2), resulting in a bending moment about
the 𝑦-axis instead of the 𝑧-axis. In comparison to (LC2), approach (B) yields better results for the
z-bending load case, resulting in a system mass deviation of 6.90% compared to 8.06% of (LC2).

The last load case (LC6) is a torsional load case where the first component is mainly under the influence
of torsion while the second component experiences shear forces, also in the 𝑧-direction as in (LC4).
Approach (A) therefore forms a closed tubular topology for the first component, while the second
component has the classical cantilever beam shape. Approach (B) reproduces the topology for the first
component quite accurately, but the second component turns out to be somewhat bulkier, with a total
mass deviation of 7.20%.

In summary, the Informed Decomposition (B) was able to produce physically feasible designs for all
load cases (LC1-6) while satisfying the system stiffness requirement 𝑢≤𝑢max. The mass deviation of
the proposed approach (B) has a minimum deviation of 3.87% for the y-shear load case (LC1) and a
maximum value of 8.18% for the x-normal load case (LC3). As in the previous section, the second
components with the lower volume fractions showed higher deviations.

In general, all the studied design problems (P1.1-3), with an increasing number of interface degrees
of freedom 𝑛dof=2, 3 to 6, respectively, were feasible. Nevertheless, a deterioration of the results
compared to the previous Section 5.2 and 5.3, from 0.40% to 3.91% and a maximum of 8.18% in
the current section can be observed, see Table 5.12. Thus, the higher-dimensional design space of R8

appears to degrade the meta model estimates in this section.

Table 5.12: Overview of the results of the Informed Decomposition (B) for design problem class (P1)
Design 𝑛c 𝑛dof 𝑛p max

(
𝑚B−𝑚A

𝑚A

)
max(𝑢)

problem % mm

(P1.1) 2 2 1(1) 0.40 ≤ 0.99

(P1.2) 2 3 3(1) 3.91 ≤ 1.00

(P1.3) 2 6 6(1) 8.18 ≤ 1.00
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6 Design problem class (P2): Towards practical application

6.1 Setup

Second, a four-component system, with a rectangular design domain Ω of width and height
𝑤 (𝑖)=ℎ (𝑖)=30 mm, and respective lengths 𝒍=[150, 100, 50, 50]⊤ mm, is investigated in two
configurations, see Fig. 6.1. The first configuration in Fig. 6.1 (a) is a planar setup, where each
component 𝑖 is connected in a straight way with the other components. Only rotations about the 𝑧-axis
are allowed 𝜽 (𝑖) = [0, 0, 𝛾]⊤. The second configuration in Fig. 6.1 (b) shows a three-dimensional
robot architecture for a specific pick-and-place task with the trajectory 𝜽 (𝑖) (𝑡) = [𝛼, 0, 0]⊤, where the
joints only rotate around their local 𝑥-axis and the structural elements 𝑖 are connected by different
kinds of three-dimensional connectors. Both configurations of (P2), (a) and (b), are to be solved for the
earlier introduced synthetic resin, see Table 5.1, and the limit on system displacement is 𝑢max=1 mm.
The geometrical design domain Ω is again discretized with 𝑛ele = [20, 8, 8]⊤ elements in 𝑥, 𝑦, and
𝑧-direction for each component 𝑖.
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Figure 6.1: Design problem class (P2) with (a) a planar four-component system and (b) a
three-dimensional four-component system, i.e., a low-cost lightweight robot. (P2.1) and
(P2.2) cover the planar system, while (P2.3) investigates the three-dimensional system
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The respective monolithic optimization problem (A) of (1.3) is decoupled utilizing the Informed
Decomposition approach (B). As in the previous chapter, the reduced 𝜿-representation (4.21) with
eight entries 𝜿=𝜿sym ∈ R1×8 is adopted.

The main objective of this chapter is to path the way towards a practical application of (B) by
highlighting some additional aspects. This is done by stepwise increasing the degrees of freedom
per interface 𝑛dof=2, 3, and 6 for each problem, while the Informed Decomposition (B) is investigated
for

(P2.1) the general applicability of the offline database for 𝑛p=1 load case in straight pose for a planar
four-component system with 𝑛dof=2 degrees of freedom per interface and an explicit extension
of the meta models to varying geometrical dimensions, see Fig. 6.1 (a),

(P2.2) the computational time compared to two monolithic architectures (A1) and (A2), and to
analytical target cascading (D), for 𝑛p=1, ..., 6 simultaneously considered planar load cases for
a planar four-component system with 𝑛dof=3 degrees of freedom per interface, see Fig. 6.1 (a),
and

(P2.3) a three-dimensional low-cost lightweight robot for 𝑛p=100 static load cases considered
simultaneously derived from a given dynamic trajectory 𝜽 (𝑖) (𝑡) = [𝛼, 0, 0]⊤ with 𝑛dof=6 degrees
of freedom per interface, see Fig. 6.1 (b).
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6.2 Design problem (P2.1): Varying geometrical dimensions

6.2.1 Introduction

In this section, the general applicability of the offline database is investigated, i.e., in particular, the
reusability of the meta models 𝑝 and �̂� for components of different geometrical design domains Ω(𝑖) .
This section is also based on partial results of a similar investigation carried out in Krischer et al.
(2022) and during a supervised student’s project in Thomas (2022). For the design problem (P2.1),
now a planar four-component system, Fig. 6.1 (a), is investigated in a straight pose with 𝑛dof=2 degrees
of freedom and for a payload of 𝑓=7.5 N. It consists of constant cross sections of width and height
𝑤 (𝑖)=ℎ (𝑖)=30 mm, while the lengths, 𝒍=[150, 100, 50, 50]⊤ mm, are different. Therefore, constant
scaling with 𝜆𝑥𝑦𝑧 for all coordinate directions, as introduced in Section 4.1.3, is not applicable.

6.2.2 Offline database

Hence, the meta models are now extended to explicit changes with respect to the 𝑥-axis

𝑝(𝜿, 𝛼𝑥), (6.1)
�̂�(𝜿, 𝛼𝑥). (6.2)

The sampled input design space therefore consist of 𝜿 ∈ R1×3 and 𝛼𝑥 ∈ R1×1,

𝒚𝐴 = [𝜿𝐴, 𝛼𝑥,𝐴], R1×4, (6.3)

while the sample output vector remains the same

𝒛𝐴 = [ 𝑓𝐴, 𝑚𝐴], R1×2. (6.4)

The input design space R𝑛𝑘 has now 𝑛𝑘 + 𝑛𝛼 dimensions, R𝑛𝑘+𝑛𝛼 , see also Fig. 6.2.

𝑙

ℎ 𝜿ref

𝛼𝑥𝑙

ℎ 𝜿𝑥

𝛼𝑥

𝑥𝑧

𝑦

𝜿 design space ℝ𝑛𝑘

Extended design space ℝ𝑛𝑘+𝑛𝛼

Figure 6.2: Extended design space of the meta models 𝑝(𝜿, 𝛼𝑥) and �̂�(𝜿, 𝛼𝑥) by explicitly sampling
detailed designs 𝒙 for different geometrical design domains Ω with corresponding 𝛼𝑥

The results of the Informed Decomposition (B) are compared to the monolithic optimization approach
(A). For the monolithic approach (A) no additional preparation is necessary for (P2.1). The proposed
approach (B) could theoretically reuse the meta models from Section 5.2 for component 𝑖=2 of length
𝑙 (2)=100 mm. However, in this section, the goal is to train a set of meta models that can be used
for the entire system with different length 𝑙 (𝑖) . Therefore, new meta models 𝑝(𝜿, 𝛼𝑥) and �̂�(𝜿, 𝛼𝑥)
need to be created for the offline database of the Informed Decomposition (B). The general procedure
for active-learning sampling remains the same as for the previous Chapter 5. The parameters for
active-learning sampling can be found in Table 6.1.
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Table 6.1: Overview of the parameters of the active-learning strategy for (i) the classification and (ii)
regression sampling phase for (P2.1)

(i) Classification sampling: 𝑁𝐽 = [800, 1200, 1600, ..., 4800]

for 𝐽 = 1, ..., 10

Physical seed 𝒀p Classification samples 𝒀C Temporary samples𝒀t Subset of samples𝒀s

𝑁p = 800 𝑁C = 4800 𝑁t = 𝐽2

(
106−104

)
102 + 104 𝑁s = 400

(ii) Regression sampling:

for 𝐴 = [2726, ..., 5000]

Feasible classification samples 𝒀C = 1 Regression samples𝒀R

𝐶p = 2725 𝑁R = 5000

The sample data [𝒀 , 𝒁] is computed by the active-learning strategy with a reference length 𝑙ref=100 mm
and hence a corresponding 𝛼𝑥=1 value. The sample range for 𝛼𝑥 is

0.48 ≤ 𝛼𝑥 ≤ 1.60, (6.5)

and the results are shown in Fig. 6.3. Fig. 6.3 (i) shows the classfication sample data and Fig. 6.3 (ii)
the created regression samples. In contrast to Section 5.2, the input design space is now R4. One
can observe that within the feasible region, the volume fraction increases for higher stiffness values
approaching the boundary to the infeasible region. Additionally, in accordance with the expected
deformation behavior of the components, the stiffness characteristics for constant component heights
ℎ and widths 𝑤 decreases for greater length 𝑙, i.e., higher 𝛼𝑥 , and increases for lower 𝛼𝑥 .

The shape of the physically feasible design space can cause problems for the active-learning strategy,
because the algorithm is more likely to choose sample points for the low-length region, 𝛼𝑥<1, because
of the larger design space compared to sample points of 𝛼𝑥≥1. For instance, the [𝑘66, 𝛼𝑥]-plot of
Fig. 6.3 (ii) shows a lower density of sample points in the 𝛼𝑥≥1 area.
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Figure 6.3: Results of the active-learning strategy for (P2.1): (i) classification samples for physical
feasibility estimation and (ii) regression samples for mass estimation

The resulting sample data [𝒀 , 𝒁] can then be used to train the final meta models 𝑝(𝜿, 𝛼𝑥) and �̂�(𝜿, 𝛼𝑥)
in accordance with the previous chapter. The performance measures for both estimators are listed in
Table 6.2.
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Table 6.2: Performance measures of 𝑝(𝜿, 𝛼𝑥) and �̂�(𝜿, 𝛼𝑥) for (P2.1)
�̂� (𝜿, 𝛼𝑥 ) �̂�(𝜿, 𝛼𝑥 )

FPR TPR ACC 𝑅2 MSE (%)

0.0433 0.916 0.927 0.992 2.92

6.2.3 System optimization

The Informed Decomposition approach (B) is applied to the design problem (P2.1) for a load case
in a straight pose and compared to (A). It should be noted that despite the different lengths 𝒍 =

[150, 100, 50, 50]⊤ mm for the components, only one feasibility estimator 𝑝(𝜿, 𝛼𝑥) and mass estimator
�̂�(𝜿, 𝛼𝑥) is utilized for the PSO system optimization (4.30) of (B). The results for the level (II)
𝜅-representations can be seen in Table 6.3. The system optimization of (B) produces 𝜿 (𝑖) vectors that
generally have larger values than (A) for components 𝑖=2, 3, 4. Only the first component, 𝑖=1, yields
slightly lower stiffness values.

6.2.4 Component optimization

After the system optimization, the decoupled component optimizations of (B) are carried out between
level (II) and (III). The resulting topologies are shown in Fig. 6.4 with the volume fractions 𝑣 (𝑖) and
the resulting quantities on the system level (I), 𝒛 = [𝑚, 𝑢], in Table 6.3. In general, all components
of approach (A) and (B) show the same features known from the previous chapter for a y-shear load
case. The components 𝑖=1, 2, 3 are mainly designed against the bending load of (LC1), while the last
component 𝑖=4 has the classical cantilever beam topology. The corresponding higher stiffness values
for components 𝑖=2, 3, and 4 of approach (B), also lead to a higher component weight in comparison
to (A), while component 𝑖=1 is accordingly slightly lighter.

In conclusion, the resulting weight 𝑚 of approach (B) deviates by 4.25% to the reference mass of (A),
being also physically feasible for all components. Additionally, both approaches satisfy the system
stiffness requirement 𝑢≤𝑢max.
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Table 6.3: Component performance (II), 𝒚 (𝑖) = [𝑣 (𝑖) , 𝜿 (𝑖) ], and the quantities on the system level (I),
𝒛 = [𝑚, 𝑢], of design problem (P2.1) for monolithic optimization (A) and the proposed
Informed Decomposition (B)

Component-performance level (II): 𝒚(𝑖) = [𝑣(𝑖) , 𝜿 (𝑖) ]

Load case Comp. (𝑖) Approach
𝜿 (𝑖)

𝑣(𝑖) 𝑘2,2 𝑘6,6 𝑘12,12

% N
mm

N mm
rad

N mm
rad

(LC1)

(1)
(A) 78.15 878 9.65𝑒6 9.65𝑒6

(B) 76.42 708 9.22𝑒6 8.00𝑒6

(2)
(A) 58.68 951 8.91𝑒6 8.55𝑒6

(B) 62.59 1.24𝑒3 1.03𝑒7 8.69𝑒6

(3)
(A) 35.57 972 9.61𝑒6 7.88𝑒6

(B) 41.90 3.95𝑒3 1.24𝑒7 1.07𝑒7

(4)
(A) 18.46 871 2.14𝑒6 7.20𝑒4

(B) 26.70 3.95𝑒3 6.68𝑒6 1.59𝑒6

Quantities on the system level (I): 𝒛 = [𝑚, 𝑢]

Load case Approach
∑
𝑚(𝑖)

( · )−𝑚𝐴
𝑚𝐴

𝑢

g % mm

(LC1)
(A) 291.7 - 1.00

(B) 304.1 4.25 1.00
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Figure 6.4: Optimized component designs 𝒙 (𝑖) for (P2.1) of the monolithic optimization (A) and
Informed Decomposition (B)
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6.3 Design problem (P2.2): Computational time

6.3.1 Introduction

The goal of design problem (P2.2) is to provide a detailed insight into the computational cost of
the Informed Decomposition (B) and compare the results to two monolithic approaches (A1) and
(A2), and ATC (D). The performance measure utilized to quantify the computational cost is the
computational time 𝑡 needed for executing the complete design optimization. For a design optimization,
the computational time 𝑡 depends on optimization driver and bottom-up mapping.

Most of the computational cost here is usually caused by solving the systems of equation of the
bottom-up mappings for the component or system responses, 𝒚 or 𝒛, respectively, and gradients 𝜕𝒚

𝜕𝒙

and 𝜕𝒛
𝜕𝒙 , if needed (Martins & Ning, 2022). Solvers for systems of equation of dimension R𝑛×𝑛

typically have a complexity ranging from a classical Gauss-Jordan with O(𝑛3) to O(𝑛2.376) of the
Coppersmith-Winograd algorithm, which is however rarely used in practice (Pan, 1987). The same
holds for multiplication of two matrices of dimension R𝑛×𝑛 (Cormen et al., 2022).

The total complexity for a bottom-up mapping of a general multi-component system depends on the
number of

(1) total degrees of freedom 𝑛d of each component 𝑖,
(2) components 𝑛c, and
(3) load cases 𝑛p considered simultaneously, if 𝜽𝑐 ≠ 𝜽 𝑗 .

In order to investigate the computational time of the architectures (A1-2), (B), and (D), the complexity
of design problem (P2.2), with 𝑛dof=3 degrees of freedom per interface and a constant number of total
degrees of freedom 𝑛𝑑 of each component, is slowly increased by increasing the number of

(P2.2.1) 𝑖=1, 2, 3, and 4 components for load case (LC1), see Fig. 6.5 (a), and
(P2.2.2) 𝑐=1, ..., 6 load cases for a four-component system, see Fig. 6.5 (b) and Table 6.4.

𝑥

𝑦

𝑧

(LC4)

(LC5) (LC6)

(LC1) (LC2)

(LC3)

(a) (b)

𝒇 = 2000 N

𝒇 = 150 N

𝒇 = 25 N

𝒇 = 7.5 N

(1) (2) (3) (4)

(2) (3) (4)

(3) (4)

(4)

(P2.2.1) (P2.2.2)

Figure 6.5: Design problem (P2.2) with a planar four-component system that (a) is set up starting
from 𝑖=1, 2, 3 to 4 components and (b) the full four-component system with increasing
number of 𝑐=1, ..., 6 load cases (LC1-6) that are considered simultaneously
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Table 6.4: Design problem (P2.2): Input angles 𝜽 , forces 𝒇 , joint positions 𝒑, and interface positions
𝒂 and 𝒃 for the 𝑛𝑝=6 load cases (LC1-6)

Load 𝜽 (𝑖) 𝒇 𝒑 (0) 𝒂 (1) , 𝒃(1) 𝒑 (1) 𝒂 (2) , 𝒃(2) 𝒑 (2) 𝒂 (3) , 𝒃(3) 𝒑 (3) 𝒂 (4) , 𝒃(4) 𝒑 (4)

case rad N mm mm mm mm mm mm mm mm mm

(LC1)


0

0

0


,


0

0

0


,


0

0

0


,


0

0

0




0

0

−7.5




0

0

0



2

0

0



152

0

0



256

0

0



258

0

0



358

0

0



462

0

0



542

0

0



592

0

0



696

0

0



698

0

0



748

0

0



750

0

0



(LC2)


0

0

0


,


0

0

0


,


0

0

0


,


0

0

𝜋
2




0

0

−9


(LC3)


0

0

− 𝜋
2


,


0

0

0


,


0

0

0


,


0

0

𝜋
2




0

0

−80


(LC4)


0

0

− 𝜋
2


,


0

0

𝜋
2


,


0

0

0


,


0

0

0




0

0

−8


(LC5)


0

0

0


,


0

0

𝜋
2


,


0

0

− 𝜋
2


,


0

0

𝜋
2




0

0

−15


(LC6)


0

0

− 𝜋
2


,


0

0

0


,


0

0

𝜋
2


,


0

0

0




0

0

−18


The monolithic optimization (A) is carried out considering 𝑛𝑝 load cases simultaneously, for the two
architectures (A1) and (A2). So does the system optimization of (B), while the component optimization
of (B) remains unaffected by the number of components 𝑛𝑐 or number of load cases 𝑛𝑝.

Lastly, the system optimization of the ATC (D) for the given design problem class (P2.2) is

min
𝜿𝑡(𝑖) ,𝑚

𝑡
(𝑖)

∑𝑛𝑐
𝑖=1 𝑚

𝑡
(𝑖) +

∑𝑛c
𝑖=1

(
𝑝m, (𝑖)

𝑚(𝑖)−𝑚𝑡
(𝑖)

𝑚ub, (𝑖)−𝑚lb, (𝑖)

)2

+
∑𝑛c

𝑖=1
∑4

𝑗=1

(
𝑝k, (𝑖) , 𝑗

𝜅(𝑖) , 𝑗−𝜅 𝑡(𝑖) , 𝑗
𝜅ub, (𝑖) , 𝑗−𝜅lb, (𝑖) , 𝑗

)2

,

s. t.: 𝑢𝑐 (𝜿𝑡(𝑖) ) − 𝑢max ≤ 0, for 𝑐=1, ..., 𝑛p, (6.6)
𝝓⊤
(𝑟 ,𝑖)𝑲 (𝑖)𝝓 (𝑟 ,𝑖) ≥ 0, for 𝑟=1, ..., 𝑛𝜙 and for 𝑖=1, ..., 𝑛c,

where 𝑲 (𝑖)=𝚽(𝜿𝑡(𝑖) ) and the component optimization is

min
𝒙(𝑖)

𝑚 (𝑖) (𝒙 (𝑖) ),

s. t.: −𝜖k ≤
𝜅(𝑖) , 𝑗−𝜅 𝑡(𝑖) , 𝑗

𝜅ub, (𝑖) , 𝑗−𝜅lb, (𝑖) , 𝑗
≤ 𝜖k, for 𝑗 = 1, ..., 4, (6.7)

−𝜖m ≤
𝑚(𝑖)−𝑚𝑡

(𝑖)
𝑚ub, (𝑖)−𝑚lb, (𝑖)

≤ 𝜖m.

The target values [𝜿𝑡 ,𝒎𝑡 ] are the design variables of the system optimization (6.6) and [𝜿,𝒎] are the
actual responses computed by the detailed design variables 𝒙 (𝑖) of the component optimizations (6.7).
Since no meta models are utilized for the system optimization, an additional constraint on positive
semi-definiteness for the stiffness matrices 𝑲 (𝑖) ∈ R6×6 is added.
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The original component optimization (3.5) of (D) contains a penalty function as in the system
optimization (6.6). However, the MMA optimization algorithm utilized to solve the component
optimization is sensitive with respect to the magnitude of the objective function values. The penalty
scheme may cause problems in terms of convergence behavior. Therefore, the original formulation is
adapted by reformulating the penalty as two-sided inequality constraints where 𝜖 for the stiffness and
mass values is continuously reduced during the outer loop. This is similar to the effect of increasing
the weights 𝑝 in a penalty function formulation of the original ATC component optimization.

In the following, a rough estimation on the computational cost of the four architectures (A1-2), (B),
and (D) for design problem (P2.2) is conducted. For this, a complexity of O(𝑛3) is assumed for all
main computations to illustrate the influence of the number of components 𝑛c and load cases 𝑛p for a
constant number of total degrees of freedom 𝑛d per component, while other constants are neglected.

6.3.2 Cost estimation

Normal bottom-up mapping (A1)

In industry, a FEM model is typically built as a black-box function using a commercial software
without any explicit hierarchy levels (I, II, and III) that were introduced in Section 1.2. We will
refer to the monolithic architecture that is utilizing such a bottom-up mapping as a normal monolithic
optimization (A1). The approach (A1) resembles the classical situation for an optimization task in
industry. Here, one would simply set up each structural element of component 𝑖 first and then connect
them to each other by, e.g., applying a rigid body element to both sides 𝑨 and 𝑩 of 𝑲d ∈ R𝑛d×𝑛d with
𝑛d = 𝑛m + 𝑛int𝑛dof. The degrees of freedom of the finite element mesh are 𝑛m, 𝑛dof are the degrees of
freedom of the interfaces, and 𝑛int is the number of interfaces, see Fig. 6.6 (a).

𝑻r
⊤ 𝑲d 𝑻𝐫

(a)

𝑛int = 2
𝑛d = 𝑛m + 𝑛int𝑛dof

𝑲d ∈ ℝ
𝑛d×𝑛d

𝑲rd ∈ ℝ
𝑛rd×𝑛rd

𝑛rd = 𝑛d − 𝑛𝐴 − 𝑛𝐵
𝑛𝐴 ∈ 𝑛m
𝑛𝐵 ∈ 𝑛m

𝑲rg ∈ ℝ
𝑛r𝑔×𝑛r𝑔

𝑛r𝑔 = 𝑛int𝑛dof

(b)

(c)

𝑻r
⊤ 𝑻g

⊤ 𝑲d 𝑻g 𝑻r

𝑛𝐵

𝑛𝐴

𝑛m

𝑛int

𝑛dof

Figure 6.6: Modeling process starting from (a) 𝑲d containing all degrees of freedom of the structural
element and reduction to either (b) 𝑲rd of (A1) from the normal bottom-up mapping, or
(c) 𝑲rg of (A2, B, D) for the hierarchical bottom-up mappings

Therefore, the detailed stiffness matrix, see Fig. 6.6 (b), can be built independently of the number of
load cases 𝑛p for each of the 𝑛c components

𝑲rd = 𝑻⊤
r 𝑲d𝑻r, 𝑲rd ∈ R𝑛rd×𝑛rd , (6.8)

where the degrees of freedom 𝑛𝐴 and 𝑛𝐵 are subtracted from the model, i.e., 𝑛rd=𝑛d−𝑛𝐴−𝑛𝐵. Note that
unlike the reduction procedure of Section 4.1, no Guyan reduction 𝑻g is applied to the interior nodes of
the component and the computation of𝑻r (2.17) and 𝑲rd (6.8) is neglected in the following estimation.
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The overall FEM equation, involving the system stiffness matrix 𝑲rd,s, is then

𝑲rd,s𝒅rd,s = 𝒇rd,s, 𝑲rd,s ∈ R𝑛rd,s×𝑛rd,s , (6.9)
𝑛rd,s = 𝑛c𝑛rd − 𝑛c𝑛dof ≈ 𝑛c𝑛rd, for 𝑛rd>>𝑛dof,

where the assembly operations for 𝑲rd,s, consisting of the joint condensation matrices 𝑻𝑝, (𝑖−1,𝑖) ,
the rotation matrices 𝑹(𝑖) , and the assembly operator A𝑛c

𝑖=1 involving the detailed stiffness matrices
𝑲𝑟𝑑, (𝑖) ∈ R𝑛rd×𝑛rd , are also neglected for this computational cost estimation.

For the serial assembly process, the first interface of the system is clamped and the overlapping
interfaces from the subsequent components are subtracted. However, the degrees of freedom 𝑛rd are
much larger than 𝑛dof of the interfaces. Hence, the size of the system is approximately correlated with
the number of components 𝑛c and their degrees of freedom 𝑛rd, i.e., 𝑛rd,s≈𝑛c𝑛rd.

The system is then solved at once using (6.9). If a new load case 𝑗 with a different pose 𝜽 𝑗≠𝜽𝑐 is
introduced, a new bottom-up mapping must be created involving the inversion of 𝑲rd,s ∈ R𝑛rd,s×𝑛rd,s .
For more than one load case, 𝑛p>1, the normal monolithic optimization (A1) performs this expensive
bottom-up computation 𝑛p times in serial for each load case 𝑐=1, ..., 𝑛p, see Fig. 6.7 (A1). Hence, the
total computational complexity of (6.9) for a Gauss-Jordan solver is

O(𝑛3
norm) = O

(
𝑛p

[
𝑛rd,s

]3
)
≈ O

(
𝑛p [𝑛c𝑛rd]3

)
. (6.10)

If for 𝑛rd=𝑛d−𝑛𝐴−𝑛𝐵, it is assumed that the total number of degrees of freedom 𝑛d is much larger than
those of the left 𝑛𝐴 and the right 𝑛𝐵, the computational complexity of the entire normal bottom-up
mapping, for 𝑛c=4 and 𝑛p=6, can be expressed with respect to 𝑛d

O(𝑛3
norm) ≈ O

(
𝑛p [𝑛c𝑛d]3

)
= O

(
384 𝑛3

d

)
, for 𝑛rd ≈ 𝑛d. (6.11)

Thus, the computation of the bottom-up mapping of (A1) for (P2.2) is up to 384 times higher than
the computation of one load case for one component, i.e., 𝑛p=1 and 𝑛c=1. This may make an actual
monolithic optimization (A1) for more complex design problems prohibitively expensive.
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Figure 6.7: Flowchart of the two monolithic optimizations (A1-2), Informed Decomposition (B) and
analytical target cascading (D)
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Hierarchical bottom-up mappings (A2, B, D)

However, the earlier introduced hierarchy levels (I, II, and III) can be used to establish a hierarchical and
also decomposed formulation consisting of two main bottom-up mappings instead of one monolithic
one, which makes the computations approximately independent of the number of components 𝑛c and
load cases 𝑛p.

First, between level (III) and (II), the interface stiffness matrix 𝑲rg∈R𝑛rg×𝑛rg , for 𝑛rg=2𝑛dof, is computed
from 𝑲d ∈ R𝑛d×𝑛d , see also Fig. 6.6 (c),

𝑲rg = 𝑻⊤
r 𝑻

⊤
g 𝑲d𝑻g𝑻r, 𝑲d ∈ R𝑛d×𝑛d → 𝑲rg ∈ R𝑛rg×𝑛rg . (6.12)

The computational complexity of 𝑻g (2.10) and 𝑻r (2.17) correlates to the number of slave degrees of
freedom 𝑠 with O(𝑛3). The same holds approximately for the dimensions of the four sequential matrix
multiplications to reduce the detailed stiffness matrix 𝑲d from R𝑛d×𝑛d to R𝑛rg×𝑛rg . However, 𝑲rg is
computed independently of the number of load cases 𝑛p and in parallel for 𝑛c components.

For a rough estimation of the bottom-up mapping (6.12), the computational complexity is therefore
related to the highest involved number of degrees of freedom 𝑛d

O(𝑛3
d→rg) ≈ O

(
𝑛3

d

)
. (6.13)

Second, between level (II) and (I) for each component 𝑖, the condensation and rotational matrices
𝑻p, (𝑖−1,𝑖) and 𝑹(𝑖) are applied to 𝑲rg, (𝑖) and the final assembly process A𝑛c

𝑖=1 is carried out. The
bottom-up mapping between level (II) and (I), for 𝑛c components and 𝑛rg=2𝑛dof, is then

𝑲s𝒅s= 𝒇s, 𝑲s ∈ R𝑛s×𝑛s with 𝑛s=𝑛c𝑛rg − 𝑛c𝑛dof = 𝑛c𝑛dof. (6.14)

The number of load cases 𝑛p now only affects the lower dimensional system stiffness matrix 𝑲s ∈ R𝑛s×𝑛s

based on 𝑲rg instead of the high-dimensional detailed system stiffness matrix 𝑲rd,s ∈ R𝑛rd,s×𝑛rd,s based
on 𝑲rd of (A1), see also Fig. 6.6 (b)-(c).

Neglecting the assembly process, the computational complexity for the bottom-up mapping (6.14)
between level (II) and (I) for 𝑛p load cases is then

O(𝑛p𝑛
3
s ) = O

(
𝑛p [𝑛c𝑛dof]3

)
. (6.15)

The degrees of freedom 𝑛s of the bottom-up mapping (6.14) between level (II) and (I) are negligible
compared to 𝑛𝑑→𝑟𝑔 of the detailed bottom-up mapping (6.12) between (III) and (II), i.e.,

𝑛d→rg>>𝑛s. (6.16)

Therefore, the total computational complexity of the hierarchical bottom up mappings is approximately
equal to (6.13). This means, that the computational cost O(𝑛3

hier) is independent of the number of
components 𝑛c and load cases 𝑛p, if the necessary resources for parallelization are available

O
(
𝑛3

hier

)
≈ O

(
𝑛3

d

)
. (6.17)

This type of hierarchical bottom-up mappings is used for the second monolithic architecture (A2) as
well as for the two distributed architectures of Informed Decomposition (B) and ATC (D), see Fig. 6.7.
In contrast to (A2), which uses the two decomposed hierarchical bottom-up mappings for a single
optimization problem in parallel, the distributed architectures have a bottom-up mapping for each
optimization subproblem. Consequently, the system optimization uses (6.14), while the component
optimization uses (6.12).
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Full matrix vs. sparse matrix operations

For sparse matrices, such as assembled stiffness matrices 𝑲, the solution process can be greatly
accelerated by a special sparse implementation. Here, the computational complexity depends on
𝑛𝑛𝑧(𝑲), the number of nonzero elements in 𝑲 (Gilbert et al., 1992). This effect is particularly
important for the normal bottom-up mapping of (A1), since 𝑲rd,s has the largest dimensions 𝑛rd,s
that scale with O(𝑛3) for a Gauss-Jordan solver. Table 6.5 shows a comparison between the normal
bottom-up mapping of (A1) and the corresponding hierarchical bottom-up mappings of (A2), (B), and
(D) for full and sparse matrix operations for 𝑛c=4 components and 𝑛p=6 load cases. Each operation
was carried out 𝑛𝑡=20 times and the average was taken.

Table 6.5: Computational time of the normal bottom-up mapping (A1) and the hierarchical
bottom-up mappings of (A2),(B), and (D) for full and sparse matrix implementation

Bottom-up mapping

full sparse

norm. hier. norm. hier.

𝑡norm = 400 s 𝑡hier = 1.39 s 𝑡norm = 2.12 s 𝑡hier = 0.402 s
𝑡norm
𝑡hier

= 287 𝑡norm
𝑡hier

= 5.27

It can be observed that for full matrices the time ratio between the normal approach and the hierarchical
one is with 𝑡norm

𝑡hier
= 287 close to the estimated 384 of (6.11). A reason for the slightly lower value could

be that the internal solver of MATLAB is quicker than the estimated complexity of O(𝑛3). With the
usage of sparse operations, the time difference decreases drastically but is still showing a significant
ratio of 𝑡norm

𝑡hier
= 5.27.

Yet, the computational cost necessary to solve the main bottom-up mappings for the responses
𝒛 and 𝒚 is not the only factor contributing to computational time. Additionally, some internal
assembly computations are needed and for parallel activities also a coordination between the different
computations takes place. For gradient-based algorithms, the gradient computations within the
bottom-up mappings also take additional time but are usually smaller than the response computations.

Optimization driver

The optimization driver is the second source of computational cost within design optimization. For
(P2.2), the optimization driver solves different optimization problems for the approaches (A1-2), (B),
and (D).

Both monolithic optimizations (A1-2) solve the original monolithic optimization problem (1.3) with
the respective detailed design variables of the high-dimensional level (III)

𝒙=[𝒙 (1) , ..., 𝒙 (𝑛c ) ] . (6.18)

In contrast, the system optimization for (B) and (D) works on the component-performance level (II)

𝜿=[𝜿 (1) , ..., 𝜿 (𝑛c ) ], (6.19)

and the component optimizations only deal with their local variables of level (III)

𝒙 (𝑖) . (6.20)

In the following, the actual computational time 𝑡 needed for the design problems (P2.2.1) and (P2.2.2) is
computed. A similar investigation was performed in the supervised student’s project of Rinner (2022),
but for different design problems and with a comparison only between monolithic optimization (A)
and the Informed Decomposition (B).
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6.3.3 Cost investigation

Total computational time 𝑡 and average computational time 𝑡

As mentioned earlier, the main performance measure for computational cost within this section is the
computational time 𝑡 needed for executing the complete design optimization. The number of iterations
𝑞=1, ..., 𝑛iter together with the computational time per iteration 𝑡 (𝑞) of the utilized bottom-up mappings
and the algorithm-specific computations of the optimization driver, result in the computational time 𝑡
of the entire optimization. Since (B) is based on the idea of an offline database, the sampling and
training time 𝑡offline for the meta models is not considered during this time investigation.

Despite the computational time 𝑡, also the number of iterations 𝑛iter are taken into account by computing
the average computational time per iteration 𝑡. For the following investigation, each optimization is
carried out 𝑛𝑡=20 times to compensate for performance variations during the optimization and the
mean of all runs is taken

𝑡 =
1
𝑛𝑡

𝑛𝑡∑︁
𝑖=1

𝑡𝑖 , (6.21)

𝑡 =
𝑡

𝑛iter
. (6.22)

For the different (sub-)problems of (A1), (A2), (B), and (D), different optimization algorithms are
utilized. For a fair comparison, the same convergence criteria for all optimizations concerned with
the expensive level (III) was used. The system optimizations between level (I) and (II) have different
criteria since (B) is solved by a PSO and (D) by an interior point method utilizing the fmincon algorithm
of MATLAB, see Table 6.6.

Table 6.6: Optimization settings for (A1-2), (B), and (D)
(A1) (A2) (B) (D) (B) (D)

Level (I)-(III) (II)-(III) (I)-(II)

Algorithm MMA PSO fmincon

Convergence criteria
|𝒙(𝑞+1) − 𝒙(𝑞) |∞ ≤ 1𝑒−3 |𝒙(𝑞+1) − 𝒙(𝑞) |∞ ≤ 1𝑒−10

| 𝑓 (𝒙(𝑞) )− 𝑓 (𝒙(𝑞+1) ) |
1+| 𝑓 (𝒙(𝑞) ) | ≤ 1𝑒−2 | 𝑓 (𝒙(𝑞) )− 𝑓 (𝒙(𝑞+1) ) |

1+| 𝑓 (𝒙(𝑞) ) | ≤ 1𝑒−6

All optimizations were performed on the same computer, with all files stored on the local hard disk.
The resources used are listed in Table 6.7.

Table 6.7: Computational resources used for the computational time comparison of (P2.2)
Processor Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz

Memory 16 GB

Software MATLAB R2021a

Offline Database

For (P2.2), the meta models of Section 5.3 for component 𝑖=2 with 𝑙=100 mm can be reused and
therefore only two more meta models with input 𝜿 ∈ R1×4 for 𝑙=50 mm and 𝑙=150 mm need to be
trained

𝑝𝑙=50(𝜿), 𝑝𝑙=150(𝜿), (6.23)
�̂�𝑙=50(𝜿), �̂�𝑙=150(𝜿). (6.24)
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The parameters for the active-learning sampling can be found in Table 6.8. For classification
sampling (i), the same parameters are used for 𝑙=[50, 100] mm as for 𝑙=100 mm of Section 5.3.

Table 6.8: Overview of the parameters of the active-learning strategy for (i) the classification and (ii)
regression sampling phase for (P2.2) for 𝑙=50 mm and 𝑙=150 mm

(i) Classification sampling: 𝑁𝐽 = [600, 1200, ..., 6600]

for 𝐽 = 1, ..., 10

Physical seed 𝒀p Classification samples 𝒀C Temporary samples𝒀t Subset of samples𝒀s

𝑁p = 600 𝑁C = 6600 𝑁t = 𝐽4

(
106−105

)
104 + 105 𝑁s = 600

(ii) Regression Sampling:

for 𝐴 = [𝐶p + 1, ..., 8000]

Feasible classification samples 𝒀C = 1 Regression samples𝒀R

𝑙 = 50 mm 𝑙 = 150 mm 𝑙 = 50 mm 𝑙 = 150 mm

𝐶p = 4338 𝐶p = 4272 𝑁R = 8000

The total sample data [𝒀 , 𝒁] calculated with the active-learning strategy for 𝑙=50 mm and 𝑙=150 mm
are shown in Fig. 6.8 (a) and (b), respectively, while (i) shows the classification sample data and (ii) the
regression sample data. The general shape is similar to the results of Fig. 5.8 from Section 5.3. However,
the magnitude of the stiffness entries of 𝜿 (𝑖) differs significantly due to the different component
lengths 𝑙 (𝑖) .
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Figure 6.8: Results of the active-learning strategy for (P2.2) for (a) 𝑙=50 mm and (b) 𝑙=150 mm. The
first row are the (i) classification samples for physical feasibility estimation and the
second row are the (ii) regression samples for mass estimation

The sample data [𝒀 , 𝒁] can then be used to train the final meta models 𝑝(𝜿) and �̂�(𝜿) as in Section 5.2.
The performance measures for both estimators are listed in Table 6.9.

Table 6.9: Performance measures of 𝑝(𝜿) and �̂�(𝜿) for (P2.2)
𝑙=50 mm 𝑙=150 mm

�̂� (𝜿) �̂�(𝜿) �̂� (𝜿) �̂�(𝜿)

FPR TPR ACC 𝑅2 MSE (%) FPR TPR ACC 𝑅2 MSE (%)

0.0452 0.937 0.942 0.994 1.73 0.0292 0.925 0.937 0.992 2.50
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(P2.2.1) Increasing number of components 𝑛c

For the first investigation (P2.2.1), the multi-component system is slowly assembled by increasing the
number of components from 𝑛c = 1, 2, 3 to 4, see Fig. 6.5 (a). The results of the computational cost
for the approaches (A1-2), (B), and (D) are shown in Fig. 6.9. In Fig. 6.9 (a), the computational time
𝑡 of all approaches can be seen. Since applying distributed architectures to a one-component system is
not reasonable, only the monolithic approaches (A1-2) were performed for this case. The first thing to
notice is that the computational time 𝑡 (𝐷) of approach (D) is significantly larger than those of all other
approaches.

(a) (c)(b)

Figure 6.9: Time comparison for (P2.2.1): (a) and (b) total computational time 𝑡, (c) computational
time per iteration 𝑡

Therefore, Fig. 6.9 (b) shows the comparison on a smaller time scale neglecting approach (D). Here,
the computational time 𝑡(A1) for approach (A1) increases as the number of components 𝑛c increases. In
comparison, approach (A2) is slightly slower and shows the same trend as the number of components
increases. Based on the estimation (6.17), independence of the number of components 𝑛c was expected
for (A2) and hence also a lower computational time 𝑡(A2). This contradiction can be explained by the
internal coordination required for parallelization, which seems to be higher for the given given problem
than the advantage of running the bottom-up mappings of size 𝑛d in parallel. In particular, for 𝑛c=1,
the normal approach (A1) is shown to have a lower computational time 𝑡(A1) compared to 𝑡(A2),
demonstrating the slower data management.

In contrast, the Informed Decomposition (B), for 𝑛c>2, is the fastest of all approaches, exploiting
the potential of parallelization especially for 𝑛c=4. Since no internal coordination is required for the
decoupled component optimizations, the speedup is clearly visible. Moreover, one can observe that
the assumption (6.16) of negligible system optimizations was reasonable, since system optimization
accounts for only a small percentage of the computational time 𝑡(B). However, there are significant
differences in the computational time 𝑡(B) for each component configuration.

To get a more detailed insight, Fig. 6.9 (c) shows the average computational time 𝑡 and the needed
iterations 𝑛iter. For approach (B), the average computational time 𝑡 (𝐵) is almost the same in all cases,
showing that only the number of iterations 𝑛iter = [218, 197, 302] caused the differences. Since
the component optimization is almost the same for (B) and (D), it can be observed that the average
computational time 𝑡 (𝐷) is also only slightly higher. The difference in Fig. 6.9 (a) can therefore be
explained by internal coordination within the inner loop of the distributed optimization of (D). This
coordination overhead lead to 𝑛iter>4000 iterations for all component configurations 𝑛c=1, 2, 3, 4.
Further, approach (A1) shows again a slightly lower 𝑡 compared to (A2). This is plausible since (A1)
and (A2) solve the same optimization problem and therefore have the same number of iterations 𝑛iter
for each design problem.
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Moreover, the resulting quantities of interest are shown in Table 6.10. Fig. 6.10 shows the final
topologies for load case (LC1) and 𝑛c=4 components for (A), (B), and (D). All approaches are able to
satisfy the system requirement 𝑢≤𝑢max. However, while approach (B) has a maximum mass deviation
of 5.55%, approach (D) not only has a higher computational time 𝑡(D), but also problems finding a
design close to the reference design of (A) with a maximum deviation of 24.0%. The identical results
for approach (A1) and (A2) also prove that different bottom-up mappings do not affect the results, but
only the computational time 𝑡.

Table 6.10: Quantities of interest of (P2.2.1) for monolithic optimizations (A1-2), Informed
Decomposition (B), and analytical target cascading (D)

Number of
Approach

∑
𝑚(𝑖)

( · )−𝑚A
𝑚A

𝑢 Number of
Approach

∑
𝑚(𝑖)

( · )−𝑚A
𝑚A

𝑢

components 𝑛c g % mm components 𝑛c g % mm

1

(A1) 18.02 - 1.00

2

(A1) 35.79 - 1.00

(A2) 18.02 - 1.00 (A2) 35.79 - 1.00

(B) - - - (B) 37.01 3.41 0.99

(D) - - - (D) 44.38 24.0 0.95

3

(A1) 115.1 - 1.00

4

(A1) 291.7 - 1.00

(A2) 115.1 - 1.00 (A2) 291.7 - 1.00

(B) 120.4 4.55 1.00 (B) 307.9 5.55 1.00

(D) 129.5 12.4 1.00 (D) 332.9 14.1 1.00
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(A)

(B)

1
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0.5
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Figure 6.10: Optimized component designs 𝒙 (𝑖) for (P2.2.1) of the monolithic optimization (A1-2),
Informed Decomposition (B), and analytical target cascading (D) for 𝑛c=4 components
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(P2.2.2) Increasing number of load cases 𝑛p

Due to the large coordination overhead of approach (D), it is neglected for the second investigation. For
(P2.2.2), the number of load cases 𝑛p is increased for the full four-component system, see Fig. 6.5 (b).
Note that unlike Chapter 5, the load cases are all part of the same optimization problem and hence are
considered simultaneously. Moreover, the load cases are arranged in such a way that load case (LC1) is
the dominant load case, i.e., 𝒙∗ for (LC1) is feasible for all other load case configurations (LC1-LC6),
and thus is the overall optimum. However, the computational time 𝑡 is likely to increase due to the
more complex bottom-up mappings and computations of the optimization driver. In Fig. 6.11 (a), the
total computational time 𝑡 of the approaches (A1), (A2), and (B) can be seen.

(a) (b)

Figure 6.11: Time comparison for (P2.2.2): (a) total computational time 𝑡, (b) computational time
per iteration 𝑡

For an increasing number of load cases 𝑛p, the computational time 𝑡(A1) for approach (A1) now increases
almost linearly, which is accordance to the iterative call of the normal bottom-up mapping and the
estimation (6.11). In contrast, approach (A2) shows a much flatter slope 𝑡(A2) compared to (A1). The
expected constant behavior is not achieved, which is due to the higher cost of the optimization driver
and the internal coordination of the monolithic architecture. Nevertheless, it is faster than (A1) for
𝑛p>1 load cases. The hierarchical bottom-up mappings of (A2) clearly show the expected advantage
here.

Accordingly, the Informed Decomposition (B) also shows lower computational time 𝑡(B) than (A1) and
is also faster than (A2), showing the lowest computational time for all investigated load cases. The
advantage over (A2) can again mainly be explained by the complete independence of the component
optimizations and a lower number of design variables for the optimization driver.

In Fig. 6.11 (b), the average computational time 𝑡 and the required iterations 𝑛iter are shown. As in
Fig. 6.9 (c), (B) shows an almost constant average computational time 𝑡 (𝐵) across all load cases. Thus,
the variations in the total computational time 𝑡(B) can be explained by different numbers of iterations
𝑛iter until convergence. (A2) experienced a small increase per added load case for 𝑡 due to the higher
number of constraints of the optimization problem and internal coordination for parallelization. In
contrast, (A1) shows a significant increase per new load case 𝑐, which is consistent with the linear
increase in Fig. 6.11 (a).

It should be noted that the monolithic optimizations (A1) and (A2) for different number of load
cases 𝑛p do not converge to the same solution, although (LC1) is the dominant load case for
all converged solutions 𝒙∗. Besides the final mass 𝑚, also the number of iterations differ,
𝑛iter=[201, 203, 216, 216, 225, 223]. The optimization algorithm had convergence problems for an
increasing number of constraints, where the MMA sometimes even failed and more conservative
settings of the algorithm were required, e.g., tighter bounds for the moving asymptotes.
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The results in terms of the quantities of interest are shown in Table 6.11. Fig. 6.12 shows the final
topologies for 𝑛c=4 components and 𝑛p=6 load cases for (A1-2) and (B). Again, all investigated
approaches (A1-2) and (B) satisfy the system requirements, with approach (B) also being physically
feasible and differing from the benchmark results of (A1-2) by at most 6.44%. Although the different
load case configurations affect the monolithic results of (A), (A1) and (A2) always converge to the
same solution, once again proving the equivalence of the two approaches.

Table 6.11: Quantities of interest of (P2.2.2) for monolithic optimizations (A1-2) and Informed
Decomposition (B)

Number of
Approach

∑
𝑚(𝑖)

( · )−𝑚A
𝑚A

𝑢 Number of
Approach

∑
𝑚(𝑖)

( · )−𝑚𝐴
𝑚𝐴

𝑢

load cases 𝑛p g % mm load cases 𝑛p g % mm

1

(A1) 291.7 - 1.00

2

(A1) 290.4 - 1.00

(A2) 291.7 - 1.00 (A2) 290.4 - 1.00

(B) 304.1 4.26 0.99 (B) 309.2 6.44 0.99

3
(A1) 299.5 - 1.00

4
(A1) 299.5 - 1.00

(A2) 299.5 - 1.00 (A2) 299.5 - 1.00

(B) 318.7 6.43 1.00 (B) 308.9 3.14 1.00

5
(A1) 299.5 - 1.00

6
(A1) 299.1 - 1.00

(A2) 299.5 - 1.00 (A2) 299.1 - 1.00

(B) 311.7 4.06 1.00 (B) 309.1 3.37 1.00
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Figure 6.12: Optimized component designs 𝒙 (𝑖) for (P2.2.2) of the monolithic optimization (A1-2)
and Informed Decomposition (B) for 𝑛c=4 components and 𝑛p=6 load cases
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Conclusion

The results for the computational time 𝑡 of the final configuration of (P2.2.1) and (P2.2.2) are shown
in Table 6.12. For (P2.2.1), with 𝑛𝑐=4 components for one considered load case, 𝑛𝑝=1, the proposed
Informed Decomposition (B) had the lowest computational time 𝑡(B). The monolithic approach (A1)
was slower by a factor of 1.67 and approach (A2) was even slower by 1.68, showing the slow internal
data management of the parallelization. Finally, the ATC (D) showed the highest computational time 𝑡
and was 22.7 slower than (B).

For (P2.2.2), with 𝑛𝑐=4 components and 𝑛𝑝=6 load cases, approach (B) is faster than (A1) by a factor
of 13.9. In addition to the savings of 5.27 expected from the earlier investigation on the different
bottom-up mappings of (A1) and (B), see again Table 6.5, the reduced number of design variables
for the decoupled component optimizations of (B) reduces the computational time 𝑡(B). In contrast,
approach (A2) and (B) use the same hierarchical bottom-up mappings that can be parallelized. However,
approach (B) is also faster than (A2) by 3.45. The decoupling, without the need to internally coordinate
the parallelization, and the low-dimensional optimization problem led to a significant reduction in the
computational time 𝑡.

Table 6.12: Computational time 𝑡 comparison between (B), (A1), (A2), and (D) for (P2.2.1) and
(P2.2.2)

Design problem (P2.2.1): 𝑛c = 4, 𝑛p = 1 Design problem (P2.2.2): 𝑛c = 4, 𝑛p = 6

(B) (A1) (A2) (D) (B) (A1) (A2) (D)

\ 𝑡(A1)
𝑡(B)

= 1.67 𝑡(A2)
𝑡(B)

= 1.68 𝑡(D)
𝑡(B)

= 22.7 \ 𝑡(A1)
𝑡(B)

= 13.9 𝑡(A2)
𝑡(B)

= 3.45 -

In conclusion, the approach (A1) with the normal bottom-up mapping scales as expected with the
number of components 𝑛c and the number of load cases 𝑛p. The second monolithic approach (A2)
also has increasing computational time 𝑡 for increasing number of components 𝑛c due to internal
coordination, but there is only weak coupling with respect to the number of load cases 𝑛p. Approach (D)
suffered from significant coordination overhead for all configurations in the first design problem (P2.1.1)
and was therefore not investigated further. Only approach (B) showed complete independence from both
the number of components 𝑛c and the number of load cases 𝑛p and also did not suffer from coordination
overhead. Thus, the decoupled optimization architecture (B) for the design problem (P2.2) was able
to reduce the computational time 𝑡 in comparison to the two given monolithic optimizations (A1-2) as
well as ATC (D).
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6.4 Design problem (P2.3): Low-cost lightweight robot

6.4.1 Introduction

Design problem (P2.3) deals with the second configuration of Fig. 6.1 (b), a robot architecture
with 𝑛dof=6 degrees of freedom per interface, where the structural elements of each component 𝑖
are connected by three-dimensional connectors, see also Fig. 6.13 (a). The robot is designed for a
specific trajectory 𝜽 (𝑖) (𝑡) = [𝛼, 0, 0]⊤ of a pick-and-place task and a payload of 𝑚=1 kg is applied to
the end effector, see Fig. 6.13 (b) and Table 6.13. From the given trajectory 𝜽 (𝑖) (𝑡), 𝑛p=100 static
representative load cases are derived and evaluated with respect to the stiffness requirement 𝑢≤1 mm.

(a) (b)

start
end

Figure 6.13: (a) Low-cost lightweight robotic architecture in the initial position 𝜽 (𝑖) = 0 and (b) the
pick-and-place trajectory 𝜽 (𝑖) (𝑡)

Table 6.13: Design problem (P2.3): Start and end pose 𝜽 = [𝛼, 𝛽, 𝛾]⊤, joint positions 𝒑, and
interface positions 𝒂 and 𝒃

𝜽 (𝑖) 𝒑 (0) 𝒂 (1) , 𝒃(1) 𝒑 (1) 𝒂 (2) , 𝒃(2) 𝒑 (2) 𝒂 (3) , 𝒃(3) 𝒑 (3) 𝒂 (4) , 𝒃(4) 𝒑 (4)

rad mm mm mm mm mm mm mm mm mm

Start


1.19

0

0


,


−0.589

0

0


,


-1.04

0

0


,


0

0

0
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0

0
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0
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0



-52

204

0
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204

0



-154

204

0



-206

204

52



-206

264

72



-206

314

72



-258

366

72



-260

366

72



-310

366

72



-310

366

72

End


2.72

0

0


,


-1.43

0

0


,


-0.0266

0

0


,


0

0

0


Note that unlike the earlier investigated design problems, the gravity forces 𝒇cog of the rigid connectors
are now also considered, since some of the connectors contain motors and other parts that cannot be
neglected. The respective gravity forces at the center of gravity can be recalculated with respect to the
interface positions 𝑝 (𝑖) , adding an offset moment for the lever arm distance between the joint position
𝒑 and the center of gravity 𝒙cog, see Fig. 6.14 and Table 6.14. Due to the assumption of rigid joints,
this recalculation does not affect the elastic behavior of the multi-component system.
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𝒑(𝑖)

𝒙cog

𝒃(𝑖)
𝒇cog

𝒑(𝑖)

𝒙cog

𝒃(𝑖)

𝒇cog

(a) (b)

𝒂(𝑖+1) 𝒂(𝑖+1)

Figure 6.14: (a) Actual acting gravity loads 𝒇cog of the rigid connectors and (b) substitute loads
acting on the join positions 𝒑 (𝑖)

Table 6.14: Design problem (P2.3): Center of gravity 𝒙cog and gravity loads 𝒇cog of the connectors for
each component 𝑖 at initial position 𝜽 (𝑖) = 0, plus payload 𝒇 at end effector position 𝒑 (4)

Component (1) Component (2) Component (3) Component (4)

𝒙cog 𝒇cog 𝒙cog 𝒇cog 𝒙cog 𝒇cog 𝒙cog 𝒇cog 𝒙cog 𝒇cog 𝒙cog 𝒇cog 𝒙cog 𝒇cog 𝒑 (4) 𝒇

mm N mm N mm N mm N mm N mm N mm N mm N
0

1

0




0

0

-0.294



-18
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6.4.2 Offline database

The Informed Decomposition approach (B) can take advantage of the offline database since meta models
for 𝑙=100 mm already exist. Therefore, component 𝑖=2 can reuse the meta models of Section 5.4. For
the other three components, two new meta models with input 𝜿 ∈ R1×8 are needed

𝑝𝑙=50(𝜿), 𝑝𝑙=150(𝜿), (6.25)
�̂�𝑙=50(𝜿), �̂�𝑙=150(𝜿). (6.26)

The parameters for the active-learning sampling can be found in Table 6.15. Once again, the same
parameters are used for 𝑙=50 mm and 𝑙=150 mm as for the already trained meta model of length
𝑙=100 mm.

Table 6.15: Overview of the parameters of the active-learning strategy for (i) the classification and
(ii) regression sampling phase for (P2.3) for 𝑙 = 50 mm and 𝑙 = 150 mm

(i) Classification sampling: 𝑁𝐽 = [2000, 2500, 3000, ..., 9000]

for 𝐽 = 1, ..., 14

Physical seed𝒀p Classification samples 𝒀C Temporary samples𝒀t Subset of samples 𝒀s

𝑁p = 2000 𝑁C = 9000 𝑁t = 𝐽4

(
107−104

)
144 + 104 𝑁s = 500

(ii) Regression sampling:

for 𝐴 = [𝐶p + 1, ..., 8000]

Feasible classification samples𝒀C = 1 Regression samples𝒀R

𝑙 = 50 mm 𝑙 = 150 mm 𝑙 = 50 mm 𝑙 = 150 mm

𝐶p = 2668 𝐶p = 2351 𝑁R = 8000
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The overall sample data [𝒀 , 𝒁] for 𝑙=50 mm and 𝑙=150 mm computed by the active-learning strategy
is shown in Fig. 6.15 (a) and (b), respectively. Similar to Section 5.4, the active-learning strategy is
not capable of sampling especially the upper bound of the design space for both lengths corresponding
to filled design domains Ω.
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Figure 6.15: Results of the active-learning strategy for (P2.3) for (a) 𝑙=50 mm and (b) 𝑙=150 mm.
The first row are the (i) classification samples for physical feasibility estimation and the
second row are the (ii) regression samples for mass estimation

It is also noticeable that during classification phase (i) for 𝑙=150 mm, see Fig. 6.15 (b), one of the
temporary classifiers failed, resulting in several infeasible sample data points at the upper boundary
of the design space. Nevertheless, the sample data is used to train the final meta models 𝑝(𝜿) and
�̂�(𝜿). The performance measures for both estimators are listed in Table 6.16. Even though one of
the temporary classifiers failed during classification phase (i), the performance measures of the meta
models, for 𝑙=150 mm, do not appear to be affected.

Table 6.16: Performance measures of 𝑝(𝜿) and �̂�(𝜿) for (P2.3)
𝑙=50 mm 𝑙=150 mm

�̂� (𝜿) �̂�(𝜿) �̂� (𝜿) �̂�(𝜿)

FPR TPR ACC 𝑅2 MSE (%) FPR TPR ACC 𝑅2 MSE (%)

0.0393 0.912 0.936 0.973 4.58 0.0473 0.915 0.934 0.935 8.80
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6.4.3 System optimization

With the available meta models 𝑝(𝜿) and �̂�(𝜿) in the offline database, the investigation of (P2.3) can
be started. Therefore, approach (A) and (B) are applied to the design problem (P2.3) with 𝑛p=100
static load cases. First, the level (II) 𝜅-representations are computed and can be seen in Table 6.17.

Table 6.17: Component performance (II), 𝒚 (𝑖) = [𝑣 (𝑖) , 𝜿 (𝑖) ], and the quantities on the system level
(I), 𝒛 = [𝑚, 𝑢], of design problem (P2.3) for monolithic optimization (A) and the
proposed Informed Decomposition (B)

Component-performance level (II): 𝒚(𝑖) = [𝑣(𝑖) , 𝜿 (𝑖) ]

Comp. (𝑖) Approach
𝜿 (𝑖)

𝑣(𝑖) 𝑘1,1 𝑘2,2 𝑘3,3 𝑘4,4 𝑘5,5 𝑘6,6 𝑘11,11 𝑘12,12

% N
mm

N
mm

N
mm

N mm
rad

N mm
rad

N mm
rad

N mm
rad

N mm
rad

(1)
(A) 51.92 2.92𝑒4 159 1.32𝑒3 4.10𝑒5 9.26𝑒6 4.93𝑒6 1.09𝑒7 4.63𝑒6

(B) 60.07 3.23𝑒4 1.47𝑒3 1.17𝑒3 9.51𝑒5 9.80𝑒6 1.24𝑒7 9.44𝑒6 1.19𝑒7

(2)
(A) 50.99 4.32𝑒4 3.68𝑒3 3.68𝑒3 2.99𝑒6 1.46𝑒7 1.46𝑒7 1.39𝑒7 1.39𝑒7

(B) 50.99 4.17𝑒4 3.24𝑒3 3.24𝑒3 2.67𝑒6 1.33𝑒7 1.25𝑒7 1.20𝑒7 1.22𝑒7

(3)
(A) 34.41 3.73𝑒4 3.96𝑒3 7.51𝑒3 2.64𝑒6 7.72𝑒6 8.53𝑒6 6.88𝑒6 8.02𝑒6

(B) 38.03 4.94𝑒4 7.24𝑒3 7.65𝑒3 3.15𝑒6 1.09𝑒7 1.02𝑒7 8.27𝑒6 9.74𝑒6

(4)
(A) 16.61 3.12𝑒3 67.0 669 1.30𝑒5 1.61𝑒6 6.05𝑒5 4.00𝑒4 5.74𝑒5

(B) 28.35 2.22𝑒4 2.94𝑒3 3.82𝑒3 6.92𝑒5 4.70𝑒6 3.37𝑒6 3.77𝑒6 2.80𝑒6

Quantities on the system level (I): 𝒛 = [𝑚, 𝑢]∑
𝑚(𝑖)

( · )−𝑚𝐴
𝑚𝐴

max(𝑢𝑐)

g % mm

(A) 221.9 - 1.00

(B) 250.6 12.9 0.99

The Informed Decomposition approach yields results for 𝜿 (𝑖) that differ significantly for components
𝑖=1, 3, and 4, while the second component 𝑖=2 has nearly equal values. As in Section 5.4, the system
optimization seems to have problems in realizing small stiffness values, e.g., 𝑘2,2 for 𝜿 (1) , and 𝑘2,2 and
𝑘3,3 for 𝜿 (4) . It is possible that the meta models do not have sample data in this region, which prevents
the system optimization from computing those values. In summary, the experienced outliers indicate
a non-optimal decoupling of the multi-component system by the system optimization of (B).

6.4.4 Component optimization

Next, the optimized 𝜿 (𝑖) values of level (II) are utilized to derive the final topologies 𝒙 (𝑖) of level (III)
using the decoupled component optimizations (4.37) of (B). The resulting volume fractions 𝑣 (𝑖) and
the quantities 𝒛 = [𝑚, 𝑢] on the system level (I) are listed in Table 6.17. The maximum displacement
of the trajectory is denoted as max(𝑢𝑐).

It should be noted that the last pose of the given trajectory turned out to be the dominant load case.
Therefore, the plausibility is approximately checked by analyzing this load case (LC100), see also Fig.
6.16, and comparing it with the resulting topologies for approach (A) and (B) in Fig. 6.17.

Approach (A), for 𝑛p=100 load cases, shows some specific properties for each component 𝑖 of the
multi-component system. The last component 𝑖=4 on which the pay load 𝒇 acts, has a topology that
evolved mainly against a local 𝑧-shear force, suggesting that it is not only optimal for the last load
case (LC100), but is the dominant load case over the entire discretized trajectory 𝜽 (𝑖) (𝑡). The third
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component 𝑖=3 exhibits a nearly closed topology, with more material accumulating on the outer edges
of the 𝑦-axis than on the 𝑧-axis. This is again consistent with the orientation of component 𝑖=3 for
the last pose, which shows mainly loads due to bending about the 𝑧-axis, requiring more material at
the 𝑦-axis boundaries. The additional torsional loads and 𝑦-bending moments attempt to close the
structure, which also requires material for the 𝑧-axis. Component 𝑖=2 results in a fully closed tubular
profile experiencing the highest torsional load of all components, which can also be concluded from the
system pose for the final load case (LC100). Moreover, it exhibits high stiffness to shear and bending
loads. Finally, the first component 𝑖=1 has a topology that mainly supports bending about the 𝑧-axis
and normal forces in the local 𝑥-axis, yet the open profile lacks stiffness against any torsional load.

(1)

(2)

(3)
(4)

Figure 6.16: Dominant load case (LC100) of the given pick-and-place trajectory

For a static analysis, all topologies are plausible with respect to the last load case (LC100) and hence
are also supporting the hypothesis of one dominant load case. However, these results also show a
clear drawback of the chosen approach. The static poses of the original dynamic trajectory do not
consider dynamic loads. Therefore, especially the first component 𝑖=1 shows significant weaknesses
in practical applications. The low-cost lightweight robot architecture derived for the given trajectory
rotates around the local 𝑥-axis of the first component to perform its task. In a dynamic load case, this
leads to torsional loads on the first component, for which it provides little stiffness due to its non-closed
structure. Nevertheless, for a static consideration, these poses are actually optimal. This is consistent
with the idea of a pure top-down design process, where only the explicit requirements for the system
are met and thus all implicit requirements are not met.

For the detailed design of approach (B), the components 𝑖=1, 𝑖=3, and 𝑖=4 of the multi-component
system significantly deviate from both, the component volume fractions 𝑣 (𝑖) and their respective
topologies 𝒙 (𝑖) compared to (A). However, the components 𝑖=1 and 𝑖=3 exhibit the same main
characteristics for the experienced loads of the investigated load cases. In contrast, the high deviation
of the 𝜿 (4) -vector of component 𝑖=4 of the system optimization, also leads to a topology that does
not show the expected features against a dominating 𝑧-shear load. Additionally, the component mass
produced by (B) deviates by 70.7% from (A). In contrast, component 𝑖=2 not only agrees for the
𝜿 (2) -values, but also with respect to the topology and the component mass, which turns out to be even
identical.

In summary, the total mass deviation is 12.9%, while both approaches (A) and (B) produce feasible
designs with respect to the system displacement requirement 𝑢≤𝑢max. Once again, approach (B) had
most problems for the component with the lowest volume fraction 𝑣 (4) . The resulting topologies of
Fig. 6.17 produced by the proposed Informed Decomposition (B) were subsequently post-processed
and mounted into the robot architecture, see Fig. 6.18. The actual low-cost lightweight robot was later
built using additive manufacturing in the workshop of the Laboratory of Product Development and
Lightweight Design.
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Figure 6.17: Optimized component designs 𝒙 (𝑖) for (P2.3) of the monolithic optimization (A) and
Informed Decomposition (B)

Figure 6.18: Resulting low-cost lightweight robot with topology optimized and post-processed
structural elements for 𝑛p=100 load cases
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7 Discussion

The main goal of this thesis was to develop a new hierarchical and decoupled distributed optimization
architecture for the lightweight design of mechanical multi-component systems referred to as Informed
Decomposition (B). In the following, a general discussion on the results is given in order to show both
advantages and disadvantages of the developed approach.

Physical feasibility and optimality. The validity of the developed approach was investigated by
analyzing the obtained results with respect to physical feasibility and optimality of the system mass.
Therefore, the results were compared to the ones of a classical monolithic optimization problem. This
was done by slowly increasing the number of interface degrees of freedom from two, to three, and
finally to six. It could be observed that as the number was increased, the result quality deteriorated
also, see Table 5.12. However, all results were physically feasible and also feasible with respect to
the system stiffness requirement. The result quality and hence the validity of the developed approach
depends mainly on the utilized meta models, which are responsible for distributing the stiffness
properties to the components in a physically feasible and mass-optimal way. They are trained on an
increasing number of input dimensions, which makes it more and more difficult to sample the entire
space thoroughly. Hence, the sample data provided by the active-learning strategy deteriorates and
therefore also the generalization of the meta models. However, the results were also compared to an
uninformed decomposition, where the components were decoupled based on rough estimations and
then just individually optimized. Here, one component was even physically infeasible and also an
infeasible system design with respect to the stiffness requirement occurred. The deviations of the
system mass, i.e., the non-optimality, for the uninformed decomposition was significantly higher than
for the proposed approach. Thus, the key component of using meta models proved to be crucial in
the context of decoupled optimization architectures. The uninformed approach ran the risk of both
proposing physically infeasible designs and failing to provide mass-optimal solutions.

Offline database. Generating sample data for the meta models of the offline database is the critical
step within the proposed approach. Each sample point requires computationally expensive component
optimization, resulting in high sampling cost. The implemented active-learning undersampling strategy
helps to enable an efficient sampling procedure while providing a well-balanced dataset. During the
sampling procedure, a trade-off must be made between high accuracy (low 𝜖 in component optimization)
and low computational cost (high 𝜖). In general, it is not guaranteed that the entire design space is
actually covered during the sampling procedure. The results showed that especially stiffness regions
for low and high volume fractions often have predictions of lower quality or are falsely estimated as
physically infeasible. Furthermore, the lower and upper bound of the design space were never fully
captured. This worsens for components with a higher number of degrees of freedom per interface
and hence higher dimensions of the input design space due to the curse of dimensionality. One main
problem is the selection mechanism of new data points of the active-learning strategy, where only the
distance to the separating hyperplane is considered. Especially distances for higher dimensions tend
to be equal making a differentiation of designs difficult. Also, no mechanism for evenly distributed
points is included, hence some regions are preferred by the algorithm just by the nature of the physical
feasible design space.

In the field of optimization architectures, there are approaches that make this expensive sampling and
training process a part of the optimization itself. However, in other applications as in the context of
multi-scale optimization, meta models that are pre-trained and part of an offline database are also used.
Following the idea of an offline database, the Informed Decomposition approach utilizes pre-trained
meta models, which are supposed to be used for a variety of different design problems. Similitude
theory allows the reuse of meta models for same detailed designs on different geometrical design



7 Discussion 103

domains. However, so far this is only possible with constant scaling in all coordinate directions. If
an arbitrary change is desired, the meta models must be explicitly extended by that information. This
is an important step towards building an offline database that can be used for arbitrary mechanical
design problems, making the need for a new expensive training process very unlikely. So far, only the
application to one additional input and two degrees of freedom per interface has been shown, limiting
the current approach.

Product development processes. One main motivation for distributed optimization architectures is
to mimic the structure of classic product development processes, where different departments can
design their subsystems independently (Martins & Ning, 2022). These classical product development
processes usually prohibit the use of monolithic architectures, which require a central decision unit
and a company-wide software architecture. Therefore, decomposition of distributed optimization
architectures should support design optimization to be more easily deployed in industry. Nevertheless,
distributed architectures have rarely been used. One reason is that although classical distributed
architectures decompose a single optimization problem into a set of smaller optimization subproblems,
they still need to be coordinated by a system level problem and also need to communicate with each
other. In an industrial context, this coordination would also require an optimization architecture for all
departments of a company, which is difficult to realize. Therefore, decoupling as implemented in the
proposed Informed Decomposition, without the need for coordination should simplify an application
in industry, since after the system optimization all problems can be solved completely independently.

Computational time. The second motivation for distributed architectures is to reduce computational
time by decomposing large-size monolithic optimization problems. However, most distributed
architectures cannot reduce computational time in general compared to monolithic optimization,
but only for specific design problems (Martins & Ning, 2022). In this work, different load cases
in linear statics for a mechanical multi-component system were investigated. For the given design
problems, a detailed investigation of the computational cost was performed by comparing the
resulting computational time with two monolithic approaches as well as analytical target cascading
as a hierarchical distributed optimization architecture. Among the architectures studied, Informed
Decomposition showed the lowest computational time required to solve the given design problems.
The computational time of Informed Decomposition proved to be completely independent of the
number of components and the number of load cases, and also did not suffer from coordination
overhead. The computational time advantage can be explained mainly by two reasons: (1) the
hierarchically decomposed bottom-up mappings used, (2) the decoupled optimization architecture
that allows parallelization of the independent component optimizations without an overarching
software architecture. First, (1) the hierarchical bottom-up mappings allow the computational cost
of the bottom-up mappings to be approximately independent of both the number of components
and the number of load cases. Second, (2) the decoupling of Informed Decomposition enables
the decomposition of optimization subproblems without coordination or an overarching software
architecture. In comparison, monolithic approaches can also use decomposed bottom-up mappings to
reduce computational time, but without decomposition, the size of the optimization problem remains
the same and an overarching software architecture is required. Classical distributed architectures, on
the other hand, also decompose the problem and thus reduce the size. However, they still require an
overarching architecture for coordination and therefore run the risk that the coordination time exceeds
the time of the original optimization problem, i.e., coordination overhead. Moreover, in this work,
internal coordination for parallelization for monolithic and distributed architectures also affected
the computational time. This is avoided by the decoupling of the proposed approach, which further
simplifies and also speeds up the optimization. It should be noted, however, that the expensive training
of meta models has been neglected in this computational time investigation. This assumption is only
valid if an offline database has been built beforehand and the approach can be in fact applied to a wide
range of design problems.
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Multidisciplinary design optimization. So far, only serial mechanical multi-component systems with
two system quantities, i.e., system mass and displacement, within linear statics were investigated. In
general, an extension to other quantities of interests or even other physical domains should be possible.
As long as quantities can be formulated that are component inherent, the theoretical framework remains
the same. More difficult are local quantities, such as stresses, which can only be computed at the detail
level. The system optimization cannot explicitly account for such local quantities, so there is a risk
of again computing a physically infeasible design. Apart from the extension to different quantities
of interests and/or disciplines, distributed architecture are classically applied to multiple different
disciplines. This so-called aspect partitioning, meaning the decomposition is carried out by discipline
boundaries, instead of the physical components is the main application of multidisciplinary design
optimization. The application of the Informed Decomposition to original multidisciplinary design
optimization problems is also possible, if each discipline can be represented by one or multiple meta
models. Even though the investigated design problem is a complicating constraints problem, also
optimization problems with other characteristics should be possible.

Mesh resolution. The finite element models used in this work only have coarse meshes. Nevertheless,
the aforementioned computational time advantage of a decoupled optimization architecture remains
also for finer meshes, but the sampling method in particular would become more expensive.
Theoretically, the decoupled component optimizations involving the detailed designs could also be
performed with finer meshes than those used for the meta models. The system optimization using
these meta models would then decouple the system in a non-optimal but possibly still sufficient way.
The finer meshes of the decoupled component optimizations can then only lead to equivalent or better
designs than the reference design of the coarse mesh.

Post-processing. Finally, the results of topology optimization often require a post-processing step.
On the one hand, gray scaling may occur, where the engineer has to make sense of the results after
topology optimization. On the other hand, the geometrical design domain is usually approximated
by finite elements and often needs to be converted to a CAD format for subsequent design steps. In
this work, only manual post-processing based on image smoothing was performed, see Fig. 6.18.
However, small changes in the final topology might cause an invalid component behavior violating
system requirements. Therefore, a requirement-based post-processing is necessary to reliably transfer
the results into an actual feasible multi-component system.
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8 Conclusion

8.1 Summary

In this thesis, the lightweight design of mechanical multi-component systems in linear statics was
addressed. In order to design the lightest possible system, structural optimization techniques are often
used, such as topology optimization. However, the monolithic design of large systems with many
interacting components is a difficult task. First, the design process itself requires decomposition to
enable separate and independent development. Second, the size of the system may make overall
monolithic optimization prohibitively expensive, requiring decomposition to reduce the size and the
computational time. Therefore, distributed optimization architectures have been developed in which
the monolithic optimization problem is decomposed into a set of smaller optimization subproblems
containing subsets of the objectives, design variables, and constraints. In practice, however, distributed
optimization architectures have not been able to adequately address these two existing problems and
are therefore rarely used. A major reason for this is that the decomposed optimization problems of
most distributed architectures are not fully separable and require a coordination strategy to maintain
consistency between the subproblems. This complicates the application of such architectures in
an industrial context that requires a department-wide software architecture. In addition, using such a
coordination strategy risks that the actual coordination cost exceeds the cost of the original optimization
problem, which is called coordination overhead and prevents these architectures from being faster.

For this thesis, the lightweight design task involves a serial mechanical multi-component system, where
the first component is clamped, and a static payload is applied on the last component. The system must
sustain a vertical load with a maximum translational end effector displacement for minimum mass.
The systems under investigation can be hierarchically divided into three levels. The main drivers
of complexity are the number of interface degrees of freedom, the number of components, and the
number of load cases investigated. To solve this lightweight design task, the Informed Decomposition
approach was proposed in Chapter 4. This hierarchical design optimization approach consists of

(a) a decoupled optimization architecture consisting of a surrogate-based system optimization that
decouples the problem and subsequent independent and parallel component optimizations, and

(b) an offline database consisting of feasibility estimators and mass estimators.

The decoupled optimization architecture (a) first performs a system optimization that minimizes the
system mass while satisfying the system displacement requirement. Moreover, the system optimization
decouples the given design problem with respect to the physical components, i.e., an object-based
partitioning. Unlike classical decomposition schemes, decoupling decomposes the monolithic
optimization into independent optimization subproblems that can be solved without coordination. The
performance of each mechanical component of the system is defined by interface stiffness matrices
and their respective component masses. Since the detailed structure of each component is not known
a priori, the physical feasibility of each interface stiffness matrix is also considered. A component is
considered physically feasible if a given component performance can be subsequently realized at the
detail level. This is achieved by providing the system optimization with meta models that evaluate both
the physical feasibility and the mass of the given component stiffness matrices. The surrogate-based
system optimization thus assigns the required stiffness properties for each component in a mass-optimal
and physically feasible manner without knowing their detailed descriptions.

In a second step, the optimized stiffness properties are used to formulate constraints for the subsequent
component optimizations. The component optimizations minimize the mass for the given stiffness
properties and can be performed completely independently, eliminating the need for coordination
between components or the system level. Decoupling also allows parallel component optimizations
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that do not require an overarching software architecture. Instead of the actual interface stiffness
matrix, the elastic properties of the stiffness matrices are condensed without loss of information into a
low-dimensional 𝜅-representation. This representation is an important part of the proposed approach as
it provides a link between the different hierarchical levels and also serves as a communication variable
between the system optimization and the component optimizations.

Since training meta models for mass and feasibility estimation is computationally expensive, the
Informed Decomposition approach is also based on the idea of an offline database (b). This means
that training of meta models is not part of the optimization architecture (a), but that already trained
meta models are available that can be used for the majority of given design problems. Thus, training
of meta models does not need to be performed for each new design problem, but only when no suitable
models are available in the database. The appropriate meta models also have higher applicability due to
similitude theory for similar geometrical design domains. If arbitrary geometrical changes of the design
domain are needed, the meta models can be explicitly extended to geometrical information. In general,
not all combinations of stiffness entries are physically feasible. Therefore, each randomly selected
dataset is assumed to contain many more infeasible than feasible data points. So-called imbalanced
training data degrades the performance of meta models and makes the sampling process less efficient.
Therefore, an active-learning undersampling strategy was developed to enable an efficient sampling
process while maintaining a well-balanced dataset. The sampling strategy consists of two phases:
(i) classification sampling and (ii) regression sampling. Classification sampling (i) approximates the
hyperplane between feasible and infeasible designs by selecting sample points according to intermediate
classifiers. In regression sampling (ii), the trained classifier evaluates regression samples so that only
feasible samples are optimized and assumed infeasible sample points are ignored a priori.

After having established the decoupled optimization architecture, the following Chapter 5 examined
the validity of the approach. In order to verify the validity, the physical feasibility and optimality with
respect to mass were investigated by analyzing a linear mechanical two-component system. During
the investigation, the complexity was slowly increased with respect to the number of load cases as well
as the interface degrees of freedom. The results were compared to the ones of a classical monolithic
optimization. Overall, the results were all physically feasible and also feasible with respect to the
system stiffness requirement. However, as the number of degrees of freedom increases, the result
quality deteriorates slightly from 0.40% to 3.91% to a maximum of 8.18% mass deviation for the last
investigation.

Afterwards, important aspects for practical application are presented in Chapter 6. Therefore, a linear
four-component system with different lengths was investigated. For the first design problem, the system
was studied with only one set of meta models for all four components with different lengths. This section
therefore showed how the scope of meta models can be extended to support the construction of an offline
database of multiple meta models that can be used for any mechanical design problem. The second
design problem included a detailed investigation on the computational time of the proposed Informed
Decomposition approach and compared the results to two monolithic approaches as well as one other
distributed optimization architecture, namely analytical target cascading. It could be shown that the
computational time of optimization problems can be reduced significantly by utilizing a decoupled
architecture. A hierarchical and decomposed bottom-up mapping can reduce the computational cost
related to the number of components and load cases, while an appropriate optimization architecture
also affects the convergence behavior and internal coordination processes. Finally, the last design
problem deals with a low-cost lightweight robot that was designed for a given specific trajectory of a
pick-and-place task. Hence, 100 static representative load cases of the given dynamic trajectory were
derived and evaluated with respect to the system stiffness requirement. The results produced for this
robot application deviate no more than 12.9% in mass from the monolithic benchmark result and were
all physically feasible. The resulting topologies were subsequently post-processed and mounted into a
robot architecture that was later built using additive manufacturing in the workshop of the Laboratory
of Product Development and Lightweight Design.
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8.2 Outlook

Some promising potentials for further improvements are outlined in the following. First, as already
discussed in Section 7, the active-learning undersampling strategy used could be modified to explicitly
account for the distribution of sample points within the design space, as is the case with latin hypercube
sampling, for example. This could improve the quality of point selection and thus reduce the observed
degradation of results for higher input dimensions of the meta models, especially for the full six degrees
of freedom per interface.

Second, the system optimization is based on a gradient-free and global search particle swarm
optimization. Although this algorithm has proven successful for a variety of design problems, it
relies on some heuristic parameters and requires multiple runs due to its statistical nature without
the ability to accurately replicate previous results. A gradient-based algorithm could support the
repeatability and reproducibility of the presented approach, but with the higher risk of convergence to
a local optimum.

Third, the component performance was realized by topology optimization for rectangular cross sections.
Since classical SIMP-based topology optimization works on pre-defined geometrical design domains
discretized by finite elements, an extension to other cross sections, such as circular profiles, could be
implemented, too. It would also be interesting to use different approaches to structural optimization,
such as size or shape optimization, and compare the results with topology optimization. This would
only require a change in the component optimization without affecting the general framework of
Informed Decomposition. The component optimization itself uses a target stiffness as a constraint that
can be processed in different ways. Up to now, a two-sided inequality constraint has been used to realize
approximately the required component stiffness with a small deviation of 𝜖 . However, this imposes an
unnecessarily stringent requirement on the component stiffness, since it also excludes designs that are
too stiff. A one-sided formulation could solve this problem by using more general stiffness measures,
such as the eigenvalues of the respective stiffness matrices.

Despite further development of the approach itself, an extension to design problems with other system
characteristics should also be performed to prove the general validity of the developed optimization
architecture. An extension to parallel mechanical multi-component systems should be possible without
changes within the method. Also, components with a higher number of interfaces could be used, but
a new 𝜅-representation has to be created here.

For industrial relevance, further application examples should be considered. So far, only the last design
problem of a low-cost lightweight robot represents a practical application. Since multi-component
systems can be found in many industrial fields, such as suspensions in automotive engineering, truss
structures in civil engineering, landing gears in aerospace engineering, there is a wide range of
possible application scenarios. Different application scenarios may also require different quantities
of interest. Up to now, only displacement quantities have been studied, so an investigation of other
quantities of interest and/or disciplines is important. The moment of inertia has been investigated
by several researchers using topology optimization since voxel-based approaches allow for efficient
inertia computation. This would pave the way towards dynamic investigations. Moreover, the general
structure of heat conduction problems is similar to that of compliance-based topology optimization in
linear statics, indicating a reasonable extension to another discipline.

Finally, an investigation of classical multidisciplinary design optimization problems involving different
disciplines could be conducted. Here, a comparison between the established distributed architectures
and the proposed Informed Decomposition for specific benchmark problems would further validate the
approach.
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A Appendices

A.1 Finite element mesh numbering conventions

The utilized three-dimensional brick elements 𝑲𝑒 with the respective local node numbering convention
can be seen in Fig. A.1

1 2

4 3

5 6

8 7

𝑢1

𝑢2

𝑢3

(a) (b)

Figure A.1: Three-dimensional brick elements with the local (a) node numbering convention and (b)
𝑛dof=3 translational degrees of freedom per node

and the global numbering conventions of the finite element model with respect to the finite elements
and nodes of the mesh are shown in Fig. A.2.
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Figure A.2: Exemplary finite element mesh for 𝑛ele = [2, 2, 2]⊤ with the respective global (a) element
numbering and (b) node numbering convention
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A.2 RBE2 formulations

A.2.1 Interface condensation matrix

In order to connect the left and right side, 𝑨 and 𝑩, to the interface degrees of freedom of 𝒂 and 𝒃, the
following geometrical constraint matrix 𝑪 is established

𝑪=



1 0 0 0 Δ𝑧 -Δ𝑦 -1 0 0 0 0 0 · · · 0 0 0 0 0 0

0 1 0 -Δ𝑧 0 Δ𝑥 0 -1 0 0 0 0 · · · 0 0 0 0 0 0

0 0 1 Δ𝑦 -Δ𝑥 0 0 0 -1 0 0 0 · · · 0 0 0 0 0 0

1 0 0 0 Δ𝑧 -Δ𝑦 0 0 0 -1 0 0 · · · 0 0 0 0 0 0

0 1 0 -Δ𝑧 0 Δ𝑥 0 0 0 0 -1 0 · · · 0 0 0 0 0 0

0 0 1 Δ𝑦 -Δ𝑥 0 0 0 0 0 0 -1 · · · 0 0 0 0 0 0
.
.
.

0 0 0 0 0 0 · · · -1 0 0 0 0 0 1 0 0 0 Δ𝑧 -Δ𝑦

0 0 0 0 0 0 · · · 0 -1 0 0 0 0 0 1 0 -Δ𝑧 0 Δ𝑥

0 0 0 0 0 0 · · · 0 0 -1 0 0 0 0 0 1 Δ𝑦 -Δ𝑥 0

0 0 0 0 0 0 · · · 0 0 0 -1 0 0 1 0 0 0 Δ𝑧 -Δ𝑦

0 0 0 0 0 0 · · · 0 0 0 0 -1 0 0 1 0 -Δ𝑧 0 Δ𝑥

0 0 0 0 0 0 · · · 0 0 0 0 0 -1 0 0 1 Δ𝑦 -Δ𝑥 0



, (A.1)

where the first half is related to the left side 𝑨 and the second half to the right side 𝑩. The constraint
matrix 𝑪 then needs to be ordered with respect to the master and slave degrees of freedom, 𝑚 and 𝑠,
respectively, to compute the interface condensation matrix 𝑻r

𝑪 =

[
𝑪𝑚 𝑪𝑠

]
, 𝑻r =


𝑰

−𝑪−1
𝑠 𝑪𝑚

 .

A.2.2 Joint condensation matrix

To assemble the multi-component system, the left and right side, 𝒂 (𝑖) and 𝒃 (𝑖) , are connected rigidly to
its respective joint positions 𝒑 (𝑖−1) and 𝒑 (𝑖) . In contrast to the original formulation of Section 2.1.3,
here no explicit new degrees of freedom are introduced for the constraint matrix 𝑪, but the interface
points are just recomputed with respect to the joint positions

𝑪=



1 0 0 0 Δ𝑧 -Δ𝑦 0 0 0 0 0 0

0 1 0 -Δ𝑧 0 Δ𝑥 0 0 0 0 0 0

0 0 1 Δ𝑦 -Δ𝑥 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 Δ𝑧 -Δ𝑦

0 0 0 0 0 0 0 1 0 -Δ𝑧 0 Δ𝑥

0 0 0 0 0 0 0 0 1 Δ𝑦 -Δ𝑥 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



, (A.2)

and the reduced joint condensation matrix 𝑻p, (𝑖−1,𝑖) is just

𝑻p, (𝑖−1,𝑖) = 𝑪. (A.3)
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A.3 Explicit linear mapping

For a mechanical body with 𝑛int=2 interfaces and 𝑛dof=6 degrees of freedom per interface, 𝑛𝜙=6 rigid
body modes exist

𝝓 (1) =
[

𝑢 0 0 0 0 0 𝑢 0 0 0 0 0
]⊤
, (A.4)

𝝓 (2) =
[

0 𝑢 0 0 0 0 0 𝑢 0 0 0 0
]⊤
, (A.5)

𝝓 (3) =
[

0 0 𝑢 0 0 0 0 0 𝑢 0 0 0
]⊤
, (A.6)

𝝓 (4) =
[

0 0 0 𝜑 0 0 0 0 0 𝜑 0 0
]⊤
, (A.7)

𝝓 (5) =
[

0 0 𝑢 0 𝜑 0 0 0 −𝑢 0 𝜑 0
]⊤
, 𝜑 = 2𝑢/𝑙, (A.8)

𝝓 (6) =
[

0 −𝑢 0 0 0 𝜑 0 𝑢 0 0 0 𝜑

]⊤
, 𝜑 = 2𝑢/𝑙, (A.9)

see also Fig 4.3.

The independent entries of the given interface stiffness matrix 𝑲 for 𝑥−𝑦 and 𝑥−𝑧 symmetry planes

𝑲=



𝑘1,1 0 0 0 0 0 𝑘1,7 0 0 0 0 0

𝑘2,2 0 0 0 𝑘2,6 0 𝑘2,8 0 0 0 𝑘2,12

𝑘3,3 0 𝑘3,5 0 0 0 𝑘3,9 0 𝑘3,11 0

𝑘4,4 0 0 0 0 0 𝑘4,10 0 0

𝑘5,5 0 0 0 𝑘5,9 0 𝑘5,11 0

𝑘6,6 0 𝑘6,8 0 0 0 𝑘6,12

𝑘7,7 0 0 0 0 0

sym 𝑘8,8 0 0 0 𝑘8,12

𝑘9,9 0 𝑘9,11 0

𝑘10,10 0 0

𝑘11,11 0

𝑘12,12



,

can be reduced utilizing equation (4.6)

𝑲𝝓𝑟 = 0.

If it is solved with respect to

𝜿sym = [𝑘1,1, 𝑘2,2, 𝑘3,3, 𝑘4,4, 𝑘5,5, 𝑘6,6, 𝑘11,11, 𝑘12,12 ] ∈ R1×8,

the following relations hold for the explicit linear mapping 𝚽sym(𝜿)=𝑲

𝑘1,1 =𝜅1, 𝑘1,7=-𝜅1,
𝑘2,2 =𝜅2, 𝑘2,6=

𝜅2𝑙
2+𝜅6-𝜅8

2𝑙 , 𝑘2,8=-𝜅2, 𝑘2,12=
𝜅2𝑙

2−𝜅6+𝜅8
2𝑙 ,

𝑘3,3 =𝜅3, 𝑘3,5=- 𝜅3𝑙
2+𝜅5−𝜅7

2𝑙 , 𝑘3,9=-𝜅3, 𝑘3,11=- 𝜅3𝑙
2-𝜅5+𝜅7

2𝑙 ,
𝑘4,4 =𝜅4, 𝑘4,10=-𝜅4,
𝑘5,5 =𝜅5, 𝑘5,9=

𝜅3𝑙
2+𝜅5-𝜅7

2𝑙 , 𝑘5,11=
𝜅3𝑙

2-𝜅5-𝜅7
2 ,

𝑘6,6 =𝜅6, 𝑘6,8=- 𝜅2𝑙
2+𝜅6-𝜅8

2𝑙 𝑘6,12=
𝜅2𝑙

2-𝜅6-𝜅8
2

𝑘7,7 =𝜅1,
𝑘8,8 =𝜅2, 𝑘8,12=- 𝜅2𝑙

2-𝜅6+𝜅8
2𝑙 ,

𝑘9,9 =𝜅3, 𝑘9,11=
𝜅3𝑙

2-𝜅5+𝜅7
2𝑙 ,

𝑘10,10=𝜅4,
𝑘11,11=𝜅7,
𝑘12,12=𝜅8.

(A.10)
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B Nomenclature

𝒂 ∈ R3×1 Left interface position
𝒃 ∈ R3×1 Right interface position
𝒅 ∈ R(𝑛int𝑛dof )×1 Displacement vector

𝒅s ∈ R𝑛s×1 System displacement vector
𝒇 ∈ R(𝑛int𝑛dof )×1 Load vector
𝒇s ∈ R𝑛s×1 System load vector
ℎ ∈ R1×1 Height of design domain
𝑲 ∈ R(𝑛int𝑛dof )× (𝑛int𝑛dof ) Interface stiffness matrix
𝑲d ∈ R𝑛d×𝑛d Detailed stiffness matrix
𝑲𝑒 ∈ R24×24 Element stiffness matrix of a translational brick element
𝑲p ∈ R(𝑛int𝑛dof )× (𝑛int𝑛dof ) Joint stiffness matrix
𝑲s ∈ R𝑛s×𝑛s System stiffness matrix

𝑙 ∈ R1×1 Length of design domain
𝑚 ∈ R1×1 System mass
�̂� ∈ R1×1 Mass estimator
𝒑 ∈ R3×1 Joint position
�̂� ∈ R1×1 Feasibility estimator

𝑻g ∈ R𝑛d× (𝑛𝐴+𝑛𝐵+𝑛int𝑛dof ) Guyan condensation matrix
𝑻p ∈ R(𝑛int𝑛dof )× (𝑛int𝑛dof ) Joint condensation matrix
𝑻r ∈ R(𝑛𝐴+𝑛𝐵+𝑛int𝑛dof )× (𝑛int𝑛dof ) Interface condensation matrix
𝑢 ∈ R1×1 Euclidean norm of translational end effector displacement vector
𝒖 ∈ R3×1 Translational displacement vector

𝒖ee ∈ R3×1 Translational end effector displacement vector
𝑣 ∈ R1×1 Volume fraction
𝑤 ∈ R1×1 Width of design domain
𝒙 ∈ R1×𝑛x Quantities on component-detail level (III)

𝒀 ∈ R𝑁×𝑛y Input sample data
𝒚 ∈ R1×𝑛y Quantities on component-performance level (II)
𝒁 ∈ R𝑁×𝑛z Output sample data
𝒛 ∈ R1×𝑛z Quantities on system level (I)
𝜶 ∈ R3×1 Scaling factor

𝜽 ∈ R3×1 Joint rotations
𝜿 ∈ R1×𝑛k Low-dimensional representation of the interface stiffness matrix
𝝀 ∈ R1×𝑛k Scaling parameter
𝜌 ∈ R1×1 Material density

𝜌𝑒 ∈ R1×1 Element density of SIMP-based topology optimization
𝝋 ∈ R3×1 Rotational displacement vector
𝝓𝑟 ∈ R(𝑛int𝑛dof )×1 Rigid body mode
𝚽(𝜿) Linear mapping function
Ω Design domain

( ·)lb/ub Lower/upper bound of variables
( ·)𝑡 Target values
( ·)∗ Functions or variables at their optimal value
ˆ( ·) Meta models of a given function
˜( ·) Functions or variables that are copies

( ·) (𝑖) Functions or variables that apply only to one component
( ·) (0) Functions or variables shared by more than one component
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C Glossary

Architecture Combination of coordination strategy and one or more problem formulations
Bottom-up mapping Mapping of lower-level design variables onto higher-level outputs, often also called analysis

Component A component consists of a structural element and rigid connectors on both sides
Coordination overhead Coordination cost exceeds the computational cost of the original monolithic optimization problem
Coordination strategy A coordination strategy determines the information exchange within a given optimization problem
Decomposition Partitioning of a design problem into smaller subproblems
Decoupling Decoupling is a decomposition without the need for coordination

Design domain Geometrical space of a structural element which is designed by detailed design variables
Design space Input space defined by a set of design variables that may be restricted by bounds or constraints
Distributed architecture Architectures that decompose an optimization problem into smaller optimization subproblems
End effector A device at the end of a multi-component system used to perform functions, mainly used in robotics

Interface An idealized point of connection and interaction between two or more elements
Interface stiffness matrix A stiffness matrix that determines the elastic behavior of a structural element with respect to interfaces
Load case Combination of system pose and acting system load
Monolithic architecture Architectures that form and solve a single optimization problem, may include several bottom-up mappings
Multi-component system A collection of mechanical components that interact with each other and perform specified functions

Offline database Database with pre-trained meta models that can then be reused for different design problems
Physically feasible A proposed top-level design that can be realized on a detail level afterwards
Rigid body element An idealized element that does not deform under external loads or displacements
Scaling Changing the geometrical dimensions of a structural element by a constant factor

System pose Prescribed set of joint rotations that define the position and orientation of a multi-component system
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