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Simple Summary: This study aimed to investigate the use of electroencephalography (EEG) and EEG-
derived (processed) indices for detecting brain activity changes perioperatively in 12 anesthetized
adult horses subjected to various surgery. Frontal electrodes together with Sedline/Root monitor
were used on these horses from soon after anesthesia induction and continued until the horse
first attempted to stand in recovery. The EEG waves were characterized by low-frequency high
amplitude alpha, theta, and alpha waves during the isoflurane maintenance and surgery, which is
commonly observed in profound anesthesia. The processed EEG indices including Patient State
Index, Burst Suppression Ratio, and 95% Spectral Edge Frequency changed significantly between
the stages (induction, surgery, and recovery) of anesthesia. Collectively, the presence of the slow
EEG wave activities and the presence of burst suppression implies that these horses were profoundly
unconscious during the anesthesia. We concluded that the use of EEG in conjunction with traditional
cardiorespiratory monitoring provides clinically relevant information about perioperative brain state
changes in the anesthetized horses.

Abstract: This study aimed to investigate the use of electroencephalography (EEG) for detecting brain
activity changes perioperatively in anesthetized horses subjected to surgery. Twelve adult horses
undergoing various surgeries were evaluated after premedication with xylazine and butorphanol,
induction with ketamine, midazolam, and guaifenesin, and maintenance with isoflurane. The
frontal EEG electrodes were placed after the horse was intubated and mechanically ventilated. The
EEG data were collected continuously from Stage (S)1—transition from induction to isoflurane
maintenance, S2—during surgery, S3—early recovery before xylazine sedation (0.2 mg kg IV), and
S4—recovery after xylazine sedation. The Patient State Index (PSI), (Burst) Suppression Ratio (SR),
and 95% Spectral Edge Frequency (SEF95) were compared across the stages. The PSI was lowest in S2
(20.8 ± 2.6) and increased to 30.0 ± 27.7 (p = 0.005) in S3. The SR increased from S1 (5.5 ± 10.7%) to S3
(32.7 ± 33.8%, p = 0.0001). The spectral power analysis showed that S3 had a significantly higher
content of delta wave activity (0.1–4 Hz) in the EEG and lower relative power in the 3 Hz to 15 Hz
range when compared to S1 and S2. A similar result was observed in S4, but the lower power
was in a narrower range, from 3 Hz to 7 Hz, which indicate profound central nervous system
depression potentiated by xylazine, despite the cessation of isoflurane anesthesia. We concluded that
the use of EEG provides clinically relevant information about perioperative brain state changes of the
isoflurane-anesthetized horse.
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1. Introduction

General anesthesia can be accomplished by single or multiple classes of anesthetics
to achieve antinociception, amnesia, akinesia, and unconsciousness [1]. Modern equine
anesthetic practice employs multiple anesthetic drug classes in the development of a mul-
timodal balanced anesthetic protocol. This may include premedication with an alpha-2
sedative agent plus an opioid, induction with a benzodiazepine together with a disso-
ciative anesthetic, and maintenance with an inhalant agent. The welfare of the equine
patient while undergoing anesthesia is maintained with subsequent monitoring of the
four anesthetic components by assessing hemodynamic parameters, eye reflexes, and body
movements [2–6]. The degree of muscle relaxation is usually judged by the anal and ex-
tremity muscle tone. The end-tidal inhalant anesthetic concentration is used to determine
the depth of anesthesia changes over time.

While these monitoring parameters have been used for many years, equine anesthesia
monitoring presents a unique challenge for the anesthetist. Unlike human and small animal
anesthesia, the heart and respiratory rates rarely change dramatically in the anesthetized
horse subjected to surgery. The respiration is usually mechanically controlled, which
makes respiratory rate or character difficult to use as an indicator of the level of anesthesia.
This leaves the anesthetist to rely on other surrogate signs of the central nervous system
changes such as blood pressure, eye and swallowing reflexes, and muscle/anal tone for
assessing the depth of anesthesia [6]. Furthermore, the amnesia and unconsciousness of
the anesthetized horse are assumed based on the clinical assumption that if a horse is not
moving when subjected to noxious stimuli, it must be unconscious and have no memory of
such an experience. This assumption remains a mystery to us, since we cannot know this
without monitoring the brain state directly and continuously in real time. To make matters
worse, the equine patient may be purposefully anesthetized in a deeper plane of anesthesia
than necessary in order to prevent sudden movements of the horse and to avoid the animal
injuring itself or surgical personnel during a surgical procedure [7].

Numerous human and animal studies [8–22] have shown that general anesthetic drugs
induce systematic changes in EEG patterns in a dose-dependent manner. For example, dur-
ing a light plane of anesthesia, the EEG is dominated by high frequency and low amplitude
beta waves (14–30 Hz). When the anesthetic level increases, the beta waves disappear and
the patterns shift to low frequency and high amplitude alpha (8–13 Hz), theta (4–8 Hz),
and delta (0.5–4 Hz) waves. These waves remain dominant in a moderate to deep plane of
anesthesia, with alpha waves eventually becoming smaller in amplitude [10,14,15,18,23–30].
As the depth of anesthesia continues to deepen, burst suppression, an EEG pattern charac-
terized by periods of isoelectric activity alternating with occasional high-frequency brain
activity, appears [17,31,32]. In an excessive anesthetic depth, the frequency of the suppres-
sion lengthens between the bursts of brain activity, and this frequency is measured by
the EEG monitor as the burst suppression ratio (SR). As the anesthetic plane continues to
deepen, cortical silence occurs with a resultant quasi-isoelectric EEG pattern [10,33]. As a
result, monitoring EEG provides a direct method of monitoring the brain activity associ-
ated with the change in the depth of anesthesia in humans and animals [10]. The routine
use of EEG for monitoring brain function has not gained significant acceptance in equine
anesthesia. Although the use of EEG for monitoring the depth of anesthesia in horses has
been previously attempted with bispectral index monitoring [7,11,16,18,20,26,34–36], the
results were not optimum, and were at times confusing.

With recent advancements in brain function monitoring technology and with a better
understanding of the pharmacology of the molecular target of the anesthetic drugs on the
neural circuitry, more advanced EEG monitors, including Masimo Sedline ® are commer-
cially available for use in human patients [10]. The Sedline® monitor (Masimo Corporation,
Irvine, CA, USA) obtains four frontal EEG channels of the raw (or unprocessed) EEG electri-
cal signal, and provides a quantitative analysis of the brain’s electrical activity based on the
changes in the various EEG power of the δ, θ, α, and β-frequency bands, to yield a single
numerical value called PSI. These advanced EEG monitors utilize both unprocessed EEG
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and EEG-derived (processed) indices to indicate the levels of unconsciousness and, hence,
the depth of anesthesia in anesthetized humans. Unfortunately, in human EEG studies,
most of the information is obtained from a single drug classification, such as propofol
alone, inhalant anesthetic alone, dexmedetomidine alone, or, at the most, a combination
of no more than a few pharmacologic classes in a single protocol [10,28,30,37,38]. The
EEG information obtained in such a situation is likely quite different from the multimodal
anesthetic protocols used in horses. Therefore, it is unknown whether the use of Sedline®

monitors can reproduce those results observed in human studies. The use of Sedline®

monitors in horses and pigs has been recently explored [22,34,35]. Exploring a routine
and easy-to-use continuous EEG monitoring system as an adjunct to the current cardiores-
piratory monitoring in equine anesthesia is a worthwhile endeavor in order to improve
the anesthetic safety in a species that has a high risk of morbidity and mortality while
undergoing and recovering from general anesthesia.

The goals of this study were to (1) explore the clinical use of EEG in the multimodal
anesthetic protocol to evaluate brain state changes in anesthetized horses perioperatively,
and (2) to determine if any correlations exist between the EEG indices and the traditional
monitoring parameters, including cardiorespiratory values, subjective anesthetic depth
scores, and end-tidal isoflurane concentrations. We hypothesized that the EEG could be
used continuously in monitoring equine anesthesia perioperatively to provide information
about brain state changes, and the EEG parameters would be unlikely to correlate well
with the traditional monitoring parameters.

2. Materials and Methods

This study was approved by the Animal Care and Use Committee at Purdue University.
Owner consent forms were obtained before the study.

2.1. Animals

Twelve client-owned adult horses for soft tissue (n = 6) or orthopedic (n = 6) related
surgeries that were not performed on the head were enrolled in this study. All animals were
deemed healthy and free from central nervous system dysfunction and systemic illness.
The aged of the horses ranged from one to fourteen years old, and the horses weighed
between 317 and 522 kg (Table 1). The sexes of the horses were two intact males, three
females, and seven geldings. The details of the horse information, types of surgeries, and
anesthesia durations are presented in Table 2.

Table 1. The sex, breeds, age, and weight of the 12 horses enrolled in this study.

ID Weight (kg) Sex Breed Age (Years)

1 435 G QH 10
2 439 F QH 1
3 317 F Standardbred 1
4 478 G Thoroughbred 5
5 550 G Thoroughbred 8
6 552 G QH 7
7 543 M QH 11
8 465 G QH 6
9 396 G Mix-breed 14
10 362 M QH 1
11 454 F Morgan 10
12 324 G Thoroughbred 6

QH: Quarter Horse, G: Gelding, F: female, M: male (stallion).
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Table 2. The types of surgeries, duration of anesthesia, and the recovery score of the horses enrolled
in the study. For the recovery quality scores: 4 represents the worst and 1 represents the best.

ID Type of Surgery
Total

Anesthesia
Time

(h:min)

Prep-Time
(h:min)

Surgery
Time

(h:min)

Recovery
Time

(h:min)
Recovery

Score

1 Septic joint
arthroscopy 1:35 00:40 00:51 1:20 2

2 Bilateral stifle
arthroscopy 2:46 1:04 1:32 00:52 2

3 Fetlock arthroscopy 1:15 00:25 00:50 00:20 1
4 Hock arthroscopy 1:45 00:55 00:45 00:50 2
5 Hoof resection 1:21 00:40 00:32 00:30 3
6 Navicular

bursoscopy 2:51 1:07 1:32 1:17 1
7 Cryptorchidectomy 2:34 00:40 00:51 00:52 3

8 Draining tract +
mass removal 2:40 00:45 1:50 00:45 1

9 Heel bulb laceration
repair 1:30 00:42 00:42 00:35 4

10 Castration 00:51 00:25 00:30 1:00 1
11 Ovariohysterectomy 2:11 00:29 1:36 1:10 2
12 Herniorrhaphy 2:30 00:53 1:45 1:32 1

2.2. Anesthetic Protocol

All horses received an identical anesthetic protocol. The horses were premedicated
with intravenous xylazine (0.44 mg/kg) and butorphanol (0.02 mg/kg) for sedation. Five to
eight minutes later, the horses were induced with midazolam (0.11 mg/kg) and ketamine
(2.22 mg/kg). Then, 200–300 mL of 5% guaifenesin was given to facilitate jaw tone relax-
ation and endotracheal intubation. Following endotracheal intubation, the horses were
then maintained on isoflurane in 100% oxygen in preparation for the surgery. The same
dose of butorphanol was given by IV hourly for antinociception.

2.3. EEG Electrode Modification and Placement

The Sedline® adult adhesive forehead electrodes (L1, L2, R1, R2, ground CB, and refer-
ence CT) were each connected with a regular neurology EEG needle electrode (Neuroline
subdermal electrodes, 12 × 0.4 mm- 0.5-inch × 27 gauge) using an alligator clip. This
connection allowed flexibility in fitting the electrodes to different horse head sizes, and
provided more precise localization of electrodes without being restricted by the size of the
original adhesive electrodes. After the connection, the electrical signals and impedance
were automatically screened by the Sedline® monitor. The acceptable range for electrode
impedance values was 0.0 to 65.0 kilo-ohms [39]. This range of electrode signals and
impedance was accepted by the Sedline® monitor, as indicated by the green icons shown
on top of the screen for each electrode status throughout the study [39]. If an electrode was
rejected by the monitor, as shown in the icon colors (red, blue, or grey), it was replaced and
reexamined until accepted by the monitor.

The positions of the needle electrodes were similar to those described in Drewnowska
et al. [34], with the position of the electrode corresponding to the position of the human
EEG 10–20 system, the Sedline® electrode R1 positioned at the Fp2, R2 positioned between
F4–F8, L1 positioned at the Fp1, and L2 positioned between F3 and F7. The ground (CB)
and the reference (CT) electrodes were placed on the mid-sagittal line in the central and
the caudal position, respectively (see Figure 1). The placement of the subdermal needle
electrodes was simple, and did not require hair shaving or any adhesive to secure the
needle in place (Figure 2). The needle electrode stayed in position throughout the study,
unless the monitor indicated a bad signal for a given electrode, then the electrode was
adjusted or replaced, as mentioned previously. Alcohol or conduction gel was applied to
the needle electrodes as needed to enhance conductivity as part of the adjustment.
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Figure 1. The needle electrodes were placed on the forehead of a horse soon after anesthetic induction.
The needle electrode wires were color-coded and corresponded to the Sedline® electrode R1 (white
color wire), positioned at an approximation of the Fp2, R2 (green color wire), positioned between
F4–F8, L1 (blue color wire), positioned at an approximation of the Fp1, and L2 (red color wire),
positioned between F3 and F7. The CB—Ground (black color wire) and the CT—Reference (yellow
color wire) electrodes were placed on the mid-sagittal line in the central and the caudal position,
respectively.
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Figure 2. A Sedline® monitor with needle electrodes connected to the forehead of a horse anesthetized
with isoflurane while being prepared for surgery. The Sedline® monitor shows a PSI of 23, the trend
of the PSI over the last 20 min, and the 4-channel raw EEG waveforms at the top of the monitor. The
SEF95 on the left hemisphere is 9.7 Hz and 9.5 Hz on the right hemisphere. The suppression ratio is
zero, and the artifact % is 3.

2.4. EEG and Cardiorespiratory Data Collections

For each procedure, the EEG electrodes were placed as soon as (within 5 min) the
horse was endotracheally intubated. The standard vital cardiorespiratory monitoring
was instrumented using side-stream capnography for measuring end-tidal isoflurane and
CO2, pulse oximetry for hemoglobin saturation, electrocardiogram, direct arterial blood
pressure, and body temperature (esophageal and/or rectal temperature when accessible).
The anesthetized horse was immediately placed on a ventilator for controlled ventilation.
During the surgical preparation and surgery, mean arterial blood pressure was maintained
between 65–90 mmHg using balanced electrolyte fluids and a dobutamine infusion to effect.
The end-tidal isoflurane concentration was used to guide the adjustment of the isoflurane
vaporizer setting based on the clinical signs of the anesthetic depth assessment. The depth
of anesthesia was subjectively scored according to the criteria set in Appendix (Table A1).
End-tidal CO2 was maintained between 35–45 mmHg, and hemoglobin oxygen saturation
measured by pulse oximeter was maintained above 98%. Blood gas samples were measured
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at least once every hour in order to validate the non-invasive cardiorespiratory monitoring
values until the horse was moved to the recovery stall.

The EEG data were collected continuously, except when the horse was transported
from the induction area to the surgery room, and from the surgery room to the recovery
stall. During the re-location of the horse, the EEG cable was disconnected from the monitor
and reconnected once the relocation was completed. The cardiorespiratory data were
collected at 5-min intervals during the anesthetic procedure until the horse entered the
recovery stall. For the sake of data analysis, the anesthesia was arbitrarily divided into
four anesthetic stages. Stage 1—(S1, induction stage) was the transition from intravenous
injectable anesthetic induction to isoflurane maintenance while the horse was surgically
scrubbed and prepared for surgery. Stage 2—(S2, surgical stage) was during the surgery and
Stage 3—(S3, early recovery stage) was when the horse was discontinued from isoflurane
maintenance and moved to the recovery stall for recovery, but before a dose of xylazine
(0.2 mg kg IV) was administered for sedation. Stage 4—(S4, late recovery stage) was the
recovery period after the xylazine sedation and until the horse started to have the first
spontaneous movement with an attempt to stand.

The recorded EEG data were automatically stored by the Sedline® and retrieved via
the Masimo® TraceTM program as CSV files. The CSV files contained processed EEG
indices, including high resolution (every two seconds) values of the Patient State Index (PSI,
0—total cortical silence, 100—completely awake state), % (Burst) Suppression Ratio (SR), %
electromyography (EMG), 95% of the Spectral Edge Frequency (SEF95) on the left and right
hemispheres, and % of the artifact (ART). The raw EEG data were downloaded as .edf files
for visual inspection and reconstruction of a spectrogram (see below). The 2-second EEG
data were further aggregated as the mean values at each 5-min interval. For the SEF95 data,
the left and right sides of the hemisphere were calculated separately and compared using
the paired t-tests. The PSI, SR, SEF95, EMG, and ART were compared across the stages
using random-effect linear models, followed by pairwise comparisons with the Bonferroni
adjustment. Both mean (± SD) and median (range) for the EEG indices were reported.

In addition, we also evaluated the raw EEG waveforms and reconstructed a density
spectral array (DSA) by extracting the raw EEG traces from the recorded .edf files using
MATLAB R2019 (The MathWorks, Inc. Natick, MA, USA). Because of the known technical
issues with the Sedline® EEG export [40], we down-sampled every recording to 89 Hz and
only considered the 2nd channels displayed centrally (R1), as the other channels displayed
at the top and the bottom were at higher risk to be affected by clipping. We then performed
an artifact subspace reconstruction with the functions from the EEGLAB toolbox (Swartz
Center for Computational Neuroscience, Institute for Neural Computation, University of
California San Diego, La Jolla, CA 92093-0961, USA) [41], and the burst criterion was set
to 20 as recommended [42]. We then calculated the DSA using the Welch functions with
default settings and NFFT set to 256 (i.e., a frequency resolution set to 0.35 Hz). The DSA
was derived from 10 s EEG segments with a 9 s overlap.

Due to the known technical issues, we only presented results regarding the relative
power [40]. We normalized the power to the cumulative power in the 0.35 to 29.56 Hz
range. We then extracted the DSA segments corresponding to each animal at each stage and
used the median of the spectral power for further analysis. In order to statistically compare
the spectral power, we calculated the area under the receiver operator characteristics curve
(AUC) and 10,000-fold bootstrapped 95% confidence intervals (CI) using the MATLAB-
based MES toolbox [43] for each frequency. A 95% CI exclusive of AUC = 0.5 indicated a
significant difference [43]. In order to reduce the risk of false positives, we only defined a
significant difference (p < 0.05) if at least two neighboring frequencies showed significant
differences. Similar procedures have been applied previously [23,44].

3. Results

A picture of a study horse with needle electrodes connected to the forehead and EEG
recorded by the Sedline® monitor during S1 is shown in Figure 2. An example of an EEG
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raw tracing taken from all four stages of a horse undergoing soft tissue surgery is presented
in Figure 3. A reconstructed DSA example of a horse (soft-tissue surgery horse #4) is shown
in Figure 4.
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Figure 4. A reconstructed Density Spectral Array (DSA) example of a horse (soft-tissue surgery horse
#4) is shown. The DSA was constructed with 5 s EEG segments from the entire anesthetic procedure.
The artifact noise was removed using artifact subspace reconstruction. The DSA shows dominant
slow wave activity as represented by the warm colors in the DSA. Towards the end of the DSA, it
shifted toward cooler colors in the higher frequencies, and an increase in the power in the slower
frequencies can be seen. All DSAs looked similar in the study horses.

The processed EEG data are shown in Table 3. The mean PSI and SR values were
significantly different between stages (Table 3). The mean PSI value during S2 was signifi-
cantly lower than the other stages, whereas the mean SR spiked during S3 and S4. There
was no significant difference between the left and right hemispheres in SEF95, and both
were lower in S3 and S4 compared with S1 and S2. The EMG activities were significantly
lower during S1 and S2 and increased significantly in S3 and S4.
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Table 3. Processed EEG parameters during the 4 stages of anesthesia in the isoflurane-anesthetized
horse. Stage 1—transition from induction to isoflurane anesthesia, stage 2—surgery during isoflurane
maintenance, stage 3—early recovery before xylazine administration, and stage 4—late recovery. The
5-min average EEG data are analyzed.

Stage 1 Stage 2 Stage 3 Stage 4
Mean ± SD 1.3 ± 0.2 1.3 ± 0.1 1.1 ± 0.5 0.3 ± 0.1

ETISO Median (range) 1.4 (0.3–1.7) 1.3 (0.9–1.7) 1.4 (0.3–1.5) 0.3 (0.2–0.5)
n 102 169 9 5

Mean ± SD 24.8 ± 10.9 20.8 ± 2.7 30.0 ± 27.7 25.6 ± 14.9
PSI Median (range) 22.1

(11.8–90.2)
21.2

(11.2–27.2)
22.3

(1.4–87.4) 22 (1.1–74.4)
n 98 174 19 78

Mean ± SD 5.5 ± 10.7 7.2 ± 12.1 32.7 ± 33.8 20.0 ± 24.7
SR Median (range) 1.1 (0–52.7) 1.6 (0–54.9) 18.1

(0.4–93.2) 9.2 (0–95.4)
n 102 179 19 79

Mean ± SD 8.3 ± 2.7 8.2 ± 2.0 7.2 ± 4.8 4.6 ± 4.4
SEF L Median (range) 8.4 (2.2–15.9) 8.4 (2.7–15.7) 6.2 (1.3–17.1) 2.8 (1.1–24.9)

n 96 177 14 66
Mean ± SD 8.7 ± 2.9 8.2 ± 2.2 4.9 ± 2.7 4.5 ± 2.7

SEF R Median (range) 8.3 (4.0–17.1) 8.4 (1.1–14.1) 4.6 (1.4–11.2) 3.9 (1–13.8)
n 96 175 14 70

Mean ± SD 6.3 ± 9.3 6.0 ± 6.0 13.1 ± 19.1 11.0 ± 13.1
EMG Median (range) 4.1 (0–59.3) 4.5 (0–22.2) 0.8 (0–55.9) 8.4 (0–65.5)

n 102 179 19 79
Mean ± SD 29.6 ± 23.5 23.5 ± 21.7 12.7 ± 13.2 13.4 ± 16

ART Median (range) 25.8
(0.1–91.2) 17.2 (0–100) 7.1 (1.1–44.7) 7.0 (0–84)

n 102 179 19 79
ETISO: End-tidal isoflurane (%); PSI: Patient State Index; SR: Burst Suppression Ratio (%); SEF L/R: 95% of spectral
edge frequency (Hz) on the R (right) or L (left) hemispheres; EMG: % of the electromyographic activity; ART: % of
the artifact; “n” represent the total number of data points used for the data calculation.

The subjective depth of anesthesia score was not significantly different between stages.
The mean value of the subjective depth score for S1 was 2.4 ± 0.8, with a median value of 2
(2–3), 2.5 ± 0.7 with a median value of 3 (2–3) for S2, and 2.0 ± 1.0 with a median value of
2 (1–3) for S3. There was no significant difference between the left and right hemispheres
in SEF95, and both were lower in S3 and S4 compared with S1 and S2. The EMG activities
were significantly lower during S1 and S2, and increased significantly in S3 and S4. The
correlations between the processed EEG indices and subjective anesthetic depth score were
all weak (Spearman’s rho ranged from 0.001 to 0.26). The subjective score in S4 was not
evaluated since the horses were extubated and were given xylazine.

The mean (SD) and median (range) of end-tidal isoflurane measurements are pre-
sented in Table 3. The correlations between the process EEG parameters and the end-tidal
isoflurane concentration were also weak in S1 (Spearman’s rho ranged from −0.01 to 0.16)
and were slightly stronger in S2 (Spearman’s rho ranged from −0.10 to 0.36). During the
general anesthetic period, the blood pressure was maintained with mean arterial blood
pressure above 65 mmHg, end-tidal CO2 between 35–45 mmHg, hemoglobin saturation for
oxygen of > 98%, and body temperature of the horse above 37 degrees Celsius.

The spectral power analysis showed that S3 had a significantly higher content of low
delta wave activity (0.1–4 Hz) in the EEG and lower relative power in the ~ 3 Hz to 15 Hz
range when compared to S1 and S2. A similar result was observed in S4, but the lower
power was in a narrower range, from ~3 Hz to 7 Hz. The corresponding power spectral
density (PSD) plots are shown in Figure 5.
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4. Discussion

The results of this study showed that the EEG could be used perioperatively to obtain
brain state changes in a multimodal balanced anesthetic protocol for anesthetized horses.

The modern EEG monitor not only provides raw EEG waveforms, but also provides
processed EEG in the form of spectrograms as well as processed EEG indices. In the current
study, PSI and SR provided detailed information about the brain state changes over the
stages of anesthesia. The PSI values were initially higher in the S1 and then decreased
during the S2, whereas SR increased slightly from S1 to S2. The PSI scale on the Sedline®

monitor is between 0 (total cortical silence) and 100 (fully awake). In the anesthetized
human, the PSI values are targeted between 25–50 during the surgery, which serves to
indicate loss of consciousness and an optimal anesthetic plane for surgery [45,46]. The PSI
values during the S1 and S2 were lower than this range, assuming the horse has the same
optimal PSI range as humans, indicating that the anesthetic plane was deeper than “the
optimal anesthetic plane.” The optimal anesthetic plane PSI range in the anesthetized horse
is not known, however the presence of burst suppression could potentially indicate that
the anesthetic plane was likely in a profound stage.

Burst suppression consists of episodes of isoelectric EEG silence alternating with
high EEG voltage periods and bursts of slow waves. The SR is calculated by the Sedline®

monitor as the percentage (0–100) of epochs in the last 63 s where the EEG silent periods
are longer than 0.5 s, and during which the EEG voltage does not exceed approximately
+5 to− 5 µV [47]. One of the most common reasons to have a high burst suppression ratio
under general anesthesia is an excessive depth of anesthesia [31,48–51]. The SR was present
during the S1 and S2. The low PSI and presence of SR indicated that the brain activities of
these horses were profoundly depressed during the transition from injectable anesthesia to
inhalant anesthesia (S1) and during the isoflurane maintenance (S2).

Clinically, it is not uncommon in equine practice to have the horse anesthetized deeper
than “just adequately” (i.e., no movement) [19] because having an under-anesthetized
horse moving during the surgery could result in patient and personnel injury if strong
spontaneous movement occurs and is not able to be quickly controlled. In the current study,
the correlations between subjective depth of anesthesia score and PSI or SR were relatively
weak. The subjective anesthetic depth score indicated that the depth of anesthesia during
S2 was in the “medium” stage, and was “medium-deep” in S1 and S3, which suggested
that these horses were in a deeper plane of anesthesia during these times than during the
surgery. The subjective depth score, however, could not sufficiently quantify how much
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deeper the anesthesia of these horses was in S1 and S3 when compared with S2. With the
PSI and SR values, we were able to quantitatively assess the changes in the cortical activity
of these horses during the various stages of the anesthesia.

Several factors determine the clinical usefulness of an EEG monitor, including its
ability to detect the brain state changes of a patient anesthetized with multimodal anesthetic
protocols, and the response or lack of such a response to nociceptive stimuli, hence the
conscious state of the anesthetized patient. Ultimately, the EEG parameters provided by
the monitor are used to assess the depth of anesthesia/hypnosis and to allow titration of
the anesthetic effect, in order to avoid excessive anesthesia causing central nervous system
depression or inadequate anesthesia for a patient undergoing nociception in surgery [10,51].
The low PSI value and the presence of SR were an indication of the inadvertently deep
plane of anesthesia of the horses in the current study, which suggested that the anesthesia of
these horses could have been lightened in order to reduce the depth of the anesthesia, had
EEG been used to guide its monitoring, in addition to the traditional subjective anesthetic
depth evaluations. The end-tidal isoflurane concentration showed an increase from S1
to S2. During S3, the SR value increased significantly from S2, indicating that the depth
of anesthesia was far more excessive than in S2, despite the termination of isoflurane
anesthesia at this time. Such an increase in the SR was mainly due to the absence of active
surgical stimulation when the horses were being weaned from isoflurane anesthesia, but
the cerebral cortex depression remained due to the accumulation of depressive effects from
the previous excessive stages.

Regaining consciousness during the anesthetic recovery is a passive process, as well as
a reversal of anesthetic induction [50,52]. Mechanisms involved in the anesthetic-induced
loss of consciousness and regain of cerebral function have been studied, and much evidence
supports the theory that general anesthetic drugs disrupt the communications of the
neurocircuits that control the brainstem, thalamus, and cortex [10,14,15,28,37,38,51]. The
basic functions that are controlled by the brainstem, including respiration, cardiovascular
motor tone (blood pressure), swallowing, coughing, and eye reflexes, were used to score
the subjective anesthetic depth in this study. These functions were lost soon after anesthetic
induction, and gradually resumed during the recovery phase. It is vital to have a clear
understanding of the anesthetic-induced neurophysiology and EEG data coupled with the
clinical assessment in order to evaluate the overall brain state of an anesthetized patient.

Many of the depressive physiological events during S1 and S2 can be tied to the EEG
changes, especially the changes in the brainwave from high-frequency low amplitude
beta waves to low frequencies and high amplitude of δ, θ, and α waves (see Figure 4).
The spectral edge frequency is the frequency below which 95% of the total EEG power
is located [53]. Studies have shown that SEF95 decreased during isoflurane anesthesia
compared with the awake state [53]. Unfortunately, we were unable to obtain the complete
awake EEG of the horses in this study, thus could not compare the awake SEF95 with the
anesthetized states. The mean value of the SEF95 during S1 and S2 were in the range of 8.19
to 8.65 Hz, indicating that the δ, θ, and α waves were dominant during these stages.

The presence of these dominant brainwaves in humans explains the neurocircuitry
mechanisms of anesthetic-induced actions [10,14,15,51], which were observed in our study.
For example, during S1, the anesthetic-induced brainstem depression abolished the swal-
lowing reflex and spontaneous breathing function. The loss of these two functions via
brainstem suppression and inhibition of reticular formation permitted an anesthetic state
that allowed endotracheal tube intubation, retention, and respiration to be mechanically
controlled by a ventilator without the horse breathing against it. This anesthetic-induced
depressive state was maintained by isoflurane during S2 for the surgery. The horses not
breathing (bucking) against the ventilator indicated that the transmission of the electrical
impulses from the peripheral stretch receptors in the lungs, diaphragmatic, and intercostal
muscles via the phrenic, glossopharyngeal, and vagus nerves were all inhibited and unable
to communicate to the medulla oblongata respiratory center. The mean end-tidal isoflurane
concentration during S2 was 1.3 ± 0.1% [54–57], which was a typical concentration used
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for maintaining equine surgery with a multimodal anesthetic protocol. Collectively, the
presence of these slow-wave activities and the presence of burst suppression indicated that
the functional connectivity of the thalamocortical loop (brainstem, thalamus, and cortex)
was lost [15,52], and implies that these horses were profoundly unconscious. Furthermore,
the presence of these waves also indicated that the sensory inputs from the lower part
of the brain were blocked and could not be perceived by the cortex, and that profound
antinociception and muscle relaxation were evident.

During S3, the SEF95 further decreased to mean values of 4.88 and 7.23 Hz from S2.
This decrease in the SEF95 can be explained by the continuation of a profoundly depressed
brain state despite the isoflurane being terminated. The lack of active surgical stimuli
may have put these horses into a deeper cortical depression. This claim was supported
by the significant increase in the SR values from S2 to S3. As the recovery progressed, the
basic function of the brainstem was likely to be discordant from the cerebral cortex (i.e.,
consciousness) due to the termination of isoflurane and the metabolism of the induction
drugs, which allowed the depressive effect of these anesthetics on the brainstem to be
lifted. This then led to the return of swallowing and coughing reflexes, the resumption of
spontaneous breathing, and an increase in muscle tone. Based on these signs, the horse was
extubated in this study and entered S4. The increase in the mean PSI and EMG% during S3
aligned with these clinical observations.

The EMG monitoring capacity of the Sedline® monitor is an added benefit to monitor-
ing the frontal EEG in horses during anesthesia. The placement of the frontal electrodes
allows detection of the frontal muscular activities (i.e., eye movements) involving the
inter- and frontoscutularis, and the oculi ocularis muscles. Eye movements, such as active
blinking and nystagmus, during surgery are reliable eye reflexes of a horse that is reacting
to nociceptive stimuli or an inadequate plane of anesthesia. Consequently, during S3 and
S4, the increase in the EMG% suggested the return of the motor function to these muscles,
and the presence of nystagmus was a strong indicator that the horse was awakening. The
significant increase in mean values of EMG from S1 and S2 to S3 and S4 support these
clinical observations.

Xylazine is an alpha-2 agonist, similar to dexmedetomidine, and is commonly used
to reduce the number of premature attempts to stand during equine recovery [58,59].
Xylazine acts on the locus coeruleus to cause sedation and can induce falsely low PSI values
with a sleep-like state spindle pattern [10,18,30,60]. The administration of xylazine in this
study resulted in a reduction in SEF95, but did not significantly change the PSI, SR, or
EMG. These findings were different from the results of a human study [60] showing that
dexmedetomidine CRI in sevoflurane anesthetized patients resulted in both SEF95 and PSI
reduction, and enhanced the depth of sevoflurane anesthesia. The differences between
our study and the human study may be due to the drug and route (IV bolus vs. CRI) of
administration, the species, and the timing of drug administration on different inhalant
anesthetics (isoflurane vs sevoflurane).

Equine recovery is known to be one of the most critical stages of the entire anesthesia
course [61]. This is because one of the unique aspects of equine anesthesia, using isoflurane
for maintenance, causes significant muscle relaxation during the early recovery stage, and
premature attempts to stand before full control of muscles, posture, and gait balance are
regained can put the horse at risk of limb fracture [62–64]. Furthermore, the actual brain
state determining when a horse decides to stand and how it controls its own locomotion
during the attempt to stand in recovery is currently unknown.

Studies in humans (and other species) on locomotion may shed some light in the
brain state of how a horse decides to stand. Locomotion in humans is defined as the
stages of a gait cycle to move from one place to another while maintaining balance and
posture, showing complex coordination among the spinal central pattern generator, the
brainstem reticular formation, the sensorimotor cortex, the basal ganglia, the basal forebrain,
and the cerebellum, in order to properly control muscle tone, posture, and gait [65–68].
Furthermore, it has been shown that the motivation driving a locomotive episode involves
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internal or external needs, including the motor cortex, for a goal-driven or limbic system for
emotion-driven or external motivation driven by environmental cues. Although we do not
know exactly what motivates a horse to stand and what determines when a horse stands
during anesthetic recovery, it is likely that a similar part of the brain structure reported in
human locomotion may also play a role in supporting a horse to stand successfully [67].

In S4, the low mean PSI and the high SR value indicate that the central nervous system
remained under the significant influence of anesthetics, despite the resumption of the
brainstem’s basic function. These EEG data suggest that although the horses were extubated
and resumed spontaneous breathing, the central nervous system and the brainstem that
coordinated the muscle tone, posture, and gait balance remained depressed during this late
recovery stage. We recognize the fact that the timing of when a horse decides to stand is far
more complicated than what we have traditionally believed. It involves many parts of the
brain that must work in concert to support the animal’s body weight and coordination, as
it involves not only locomotion but also the motivation to drive them to stand successfully.
Further studies are needed which focus on the use of EEG in understanding this area
of physiology.

In conclusion, the result of this study showed that the EEG can be used to continuously
monitor the brain state changes of an isoflurane-anesthetized horse with a multimodal
anesthetic protocol.
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Appendix A

Table A1. Subjective score categories and criteria used for evaluation of the depth of anesthesia score
in the isoflurane-anesthetized horse. Modification from [19].

Anesthetic Plane Score Pupil
Position/Size

Eye Reflex
(P, Palpebral;
C, Corneal)

Heart Rate/Blood
Pressure

Too light 4 Central/ large or
small P: active, C: active

Normal or elevated
/breathing against the

ventilator

Medium 3 Ventromedial/
small or medium

P: depressed, C: mildly
depressed

Normal or minimally
depressed

Medium-deep 2 Central/ medium P: depressed, C:
depressed

Minimally to moderately
depressed

Too deep 1 Central/ large P: absent C: markedly
depressed Markedly depressed
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