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Abstract: Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer
new possibilities in morphological and functional imaging. As the modality matures towards clinical
application, research efforts aim to address multifactorial limitations that negatively impact the
resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects,
as well as the status of this progressive refinement process, we conduct an extensive search for
optoacoustic image quality improvement approaches that have been evaluated with humans in vivo,
thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web
of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from
1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic
screening process. We review the identified approaches, describing their primary objectives, targeted
limitations, and key technical implementation details. Moreover, considering comprehensive and
objective quality assessment as an essential prerequisite for the adoption of such approaches in
clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality
evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects.
Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence
in quality assessment of their proposed methods, and discuss features that distinguish them from
works with similar objectives. Additionally, informed by the rating results, we highlight areas with
improvement potential, and extract recommendations for designing quality assessment pipelines
capable of providing rich evidence.
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1. Introduction

Optoacoustic imaging, also termed photoacoustic imaging, is an emerging, hybrid
technology that enables non-invasive visualization of tissue morphological and functional
characteristics at depths of up to several centimeters [1]. Non-invasive optoacoustic imaging
is based on the optoacoustic effect (Figure 2), in which an instantaneous optical excitation
of tissue (usually by means of a pulsed laser) causes the thermoelastic expansion of light-
absorbing biomolecules and the subsequent generation of wideband pressure waves that
are recorded by ultrasonic transducers positioned on the tissue surface [2]. This hybrid
approach leverages and integrates the desirable characteristics offered by pure optical and
ultrasonic methods, i.e., optical contrast and acoustic resolution, respectively. Mathematical
inversion of the acquired signals renders planar or volumetric images of the initial spatial
distribution of acoustic pressure, which is proportional to the absorbed optical energy [3].
Illumination with specific wavelengths enables targeting chromophores of interest, such
as oxygenated or deoxygenated hemoglobin, melanin, lipids, and water [4]. In principle,
quantitative imaging of chromophore concentrations is possible with multi-wavelength
measurements [5], making (‘multispectral’ or ‘spectral’) optoacoustic imaging attractive
for an expansive range of clinical [4] and preclinical [6] applications, including, inter
alia, histology, dermatology, endocrinology, vascular imaging, and imaging of cancer
and inflammation.

Current optoacoustic imaging systems can be broadly categorized as microscopic,
mesoscopic, and macroscopic/tomographic, depending on the targeted tissue penetra-
tion depth and resolution (Figure 2). Optoacoustic microscopy systems typically employ
raster-scanning imaging heads that accommodate a single acoustic detector, and are further
classified into optical-resolution (OR-PAM, optical-resolution photoacoustic microscopy)
and acoustic-resolution (AR-PAM) categories, depending on whether the achievable resolu-
tion is limited by optical or acoustic diffraction, respectively [7]. OR-PAM systems depend
on tightly focused illumination to achieve very high-resolution imaging of superficial struc-
tures, whereas AR-PAM systems enable relatively deeper penetration at reduced resolution.
Mesoscopic systems, such as raster-scan optoacoustic mesoscopy (RSOM), further trade
resolution for depth, with wide field illumination and either single or arrays of wideband,
focused detectors [8]. Macroscopic implementations also rely on wide field illumination
and allow for a significant increase in penetration depth through narrowband detector
arrays, at the expense of resolving power [9].

With its strong ability to provide label-free imaging of the endogenous optical contrast of
tissue, optoacoustic imaging promises great value for clinical use. Microscopic systems are
naturally applicable in histological imaging scenarios [10–12], whereas both microscopic and
mesoscopic configurations are effective tools for imaging the skin and revealing indicators
(inter alia, characteristics of the microvasculature, melanin, or lipid content) of dermato-
logical conditions [4,13,14]. Macroscopic systems, such as the monochromatic optoacoustic
tomography (OAT) or the multispectral optoacoustic tomography (MSOT), have great clin-
ical potential for applications including cancer, vascular imaging, imaging inflammation,
imaging of lipids/adipose tissues, and imaging of endocrine disorders [15–22]. Examples of
optoacoustic images obtained in clinically relevant settings are shown in Figure 1.

Many factors reduce or limit the quality of optoacoustic images, which, in turn, hinder
the modality’s potential for clinical translation. These factors may emerge from the imaging
hardware [25–30], the inexact or approximative image reconstruction algorithms [25,26,31–33],
the attenuative properties and inhomogeneous nature of tissue (light-tissue interaction
phenomena) [34–39], or particularities of the acquisition procedure [40,41], and manifest as
image noise, artifacts, and poor overall image fidelity.

Naturally, research activity in the fields of denoising and reconstruction quality en-
hancement has generated diverse approaches in all stages of the imaging pipeline, i.e., prior
to, during, and after tomographic reconstruction. For such approaches to become part of
what will eventually be standard technical procedures for clinical optoacoustic imaging,
quality assessment is necessary. Quality assessment, or quality evaluation, is an impor-
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tant topic in medical imaging that aims to provide means for the performance evaluation
of imaging systems and image restoration or compression algorithms [42]. Establishing
well-designed image quality assessment methodologies enables impartial comparison of
heterogenous image quality improvement techniques in the context of practical expec-
tations, whereas identifying their strengths and limitations helps to establish trust and
facilitates progress towards image quality enhancement and, finally, clinical translation.
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image at 800 nm. (g) Magnification of the arterial cross-section in the ultrasound image. (h) Magni-

fication of the same cross-section in the spectrally unmixed MSOT image in (f), showing the total 

hemoglobin (THb) signal. (i) Same magnification showing the lipids signal. 

Figure 1. Examples of optoacoustic images. Top: Microscopic images of the lipid core of a human
carotid atheroma, adapted from [12] with permission from Elsevier. (a) OAM image of embedded
red blood cells. (b) Brightfield microscopy image. (c) Two-photon excitation microscopy fluorescence
image. Middle: (d) RSOM image of the skin microvasculature on the dorsal aspect of the forearm,
adapted from [24], CC BY 4.0 (http://creativecommons.org/licences/by/4.0/, accessed on 26 July
2022). Horizontal lines demarcate the epidermis (EP) and dermis (DR). The color scale represents the
size of the imaged microvessels, with red representing large vessels, orange middle-sized vessels,
and green small vessels. Bottom: Ultrasound and MSOT images of the carotid artery of a patient
with carotid atherosclerosis, adapted from [17] with permission from Elsevier. The arterial lumen
is demarcated in red, and the plaque area with a yellow dashed line. (e) Ultrasound image. (f)
MSOT image at 800 nm. (g) Magnification of the arterial cross-section in the ultrasound image. (h)
Magnification of the same cross-section in the spectrally unmixed MSOT image in (f), showing the
total hemoglobin (THb) signal. (i) Same magnification showing the lipids signal.

A common initial step in the process of testing imaging technologies is validation
in controlled settings, i.e., via numerical (computational) or physical imaging phantoms
that are designed to replicate imaging scenarios of varying complexities; such techniques
have been commonly employed in optoacoustic imaging [43]. Numerical phantoms are
used in digital simulation environments that offer convenience and flexibility in modifying
parameters of the imaging system (e.g., properties of the ultrasonic detector) and the im-
aged targets (e.g., optical/acoustic properties of absorbers and surrounding media) that
may affect image quality [25], whereas physical phantoms provide more realistic testing
conditions at the expense of flexibility. Preliminary testing with phantoms enables the
assessment of imaging performance in terms of different, isolated characteristics of interest;
a fundamental example relevant to optoacoustic imaging is the characterization of image
resolution and sensitivity at various depths, by imaging thin absorbers embedded in a typi-
cally homogeneous medium, e.g., light absorbing wires inserted in porcine gelatin [44,45].
Additionally, absorbers arranged in a grid pattern can be used to measure geometric accu-

http://creativecommons.org/licences/by/4.0/
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racy and identify distortions [31], as well as to examine the uniformity of intensity across
the field of view. Certain properties of simple phantoms, such as high optical absorbance
of targets and low optical and acoustic attenuation of the enclosing medium, oversimplify
imaging, and could, therefore, lead to falsely optimistic estimates of imaging performance.
To this end, biologically realistic phantoms have been proposed [46,47]. These are fabricated
using material that resembles real tissue in terms of morphology and acoustic and optical
properties, providing a more complex and challenging testing environment.

Biosensors 2022, 12, x FOR PEER REVIEW 3 of 37 
 

 

Figure 1. Optoacoustic principle and imaging configurations. Above, the optoacoustic effect, in 

which light absorbed by chromophores in tissue results in emission of ultrasound. Below, 

categorization of optoacoustic imaging configurations into microscopic, mesoscopic, and 

macroscopic, with the corresponding tissue penetration depth limits and resolution orders of 

magnitude, as reported in relevant reviews [8,9,23]. 

 

Figure 2. Examples of optoacoustic images. Top: Microscopic images of the lipid core of a human 

carotid atheroma, adapted from [12] with permission from Elsevier. (a) OAM image of embedded 

red blood cells. (b) Brightfield microscopy image. (c) Two-photon excitation microscopy fluores-

cence image. Middle: (d) RSOM image of the skin microvasculature on the dorsal aspect of the fore-

arm, adapted from [24], CC BY 4.0 (http://creativecommons.org/licences/by/4.0/, accessed on 26 July 

2022). Horizontal lines demarcate the epidermis (EP) and dermis (DR). The color scale represents 

the size of the imaged microvessels, with red representing large vessels, orange middle-sized ves-

sels, and green small vessels. Bottom: Ultrasound and MSOT images of the carotid artery of a patient 

with carotid atherosclerosis, adapted from [17] with permission from Elsevier. The arterial lumen is 

demarcated in red, and the plaque area with a yellow dashed line. (e) Ultrasound image. (f) MSOT 

image at 800 nm. (g) Magnification of the arterial cross-section in the ultrasound image. (h) Magni-

fication of the same cross-section in the spectrally unmixed MSOT image in (f), showing the total 

hemoglobin (THb) signal. (i) Same magnification showing the lipids signal. 

Figure 2. Optoacoustic principle and imaging configurations. Above, the optoacoustic effect, in which
light absorbed by chromophores in tissue results in emission of ultrasound. Below, categorization
of optoacoustic imaging configurations into microscopic, mesoscopic, and macroscopic, with the
corresponding tissue penetration depth limits and resolution orders of magnitude, as reported in
relevant reviews [8,9,23].

Though testing in such controlled environments facilitates quantitative benchmarking
and provides valuable insights, it cannot possibly substitute for evaluation with images
obtained in real-world clinical scenarios. An image denoising algorithm, for example,
could achieve excellent results in images of simply structured phantom targets, but perform
poorly in the presence of multiple unpredictable real-world variables, such as subject
motion, reflections of out of plane absorbers, and inter-subject variability in anatomy or
in other properties of tissue. Thus, during the assessment of image quality improvement
techniques, the ultimate benchmark should be their effect on clinical utility, i.e., their
capacity to reveal additional, clinically relevant content (e.g., known anatomic landmarks,
characteristic biomarkers of disease, or other measurable features related to tissue function,
such as blood oxygenation) in scans of human subjects in vivo. Proof-of-concept-level
evidence of image quality improvement can be derived with one or few subjects [48,49],
whereas more mature and quantitative evaluation can be conducted by involving larger
subject groups and performing statistical analyses [50,51].

Although a literature review on signal and image processing methodologies in op-
toacoustic imaging was recently published [52], the focus was not on studies that involve
human subjects, and the matter of quality assessment has not been considered. Within
this scope, we conducted a systematic literature search to identify existing approaches
to optoacoustic image denoising and quality improvement that have been evaluated on
human subjects in vivo. As a first natural outcome, a concise summary of factors that limit
optoacoustic image quality, as well as their manifestations in the image domain, is drawn
based on the identified body of study material. Secondly, a methodological overview is
given, offering a technical outline of every individual approach, and a categorization into
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signal domain, image domain, and reconstruction or hybrid methodologies. Moreover,
to deviate from the simple survey paradigm and provide additional value for upcoming
research efforts, we identify subgroups of approaches to improving optoacoustic image
quality with a common purpose and similar evaluation procedures, and critically analyze
the subgroups’ efficacies; in each subgroup, the individual studies are comparatively rated
according to a set of criteria designed to capture important aspects of optoacoustic image
quality assessment. The individual criteria ratings are combined to yield comprehensive
total ratings, which, after normalization by the subgroup mean rating, resulted in a final
ranking of the studies. This enabled identification of the most effective approaches to
evaluating optoacoustic image quality to inform future work. In parallel, a broader exami-
nation of the distribution of individual criteria ratings revealed limitations and areas of
potential improvement in the assessment of optoacoustic image quality. Finally, the primary
findings are summarized in a set of recommendations for the comprehensive evaluation of
optoacoustic image quality improvement approaches.

To the best of our knowledge, this is the first work to combine a technical overview
with a critical, in-depth analysis of reported quality assessment procedures while having
evaluation on humans as a prerequisite in optoacoustic imaging.

2. Image Quality Limiting Factors in Clinical Optoacoustics

In an ideal imaging scenario, a motionless subject in an acoustically and optically
homogenous and lossless medium would be sufficiently illuminated by a high-power light
source and fully encompassed by densely arranged ultrasound detectors with sufficient
bandwidth and detection angle. In practice, however, these conditions are not met. Image
reconstruction algorithms must, therefore, account for and be robust to a variety of limiting
factors, while also meeting the demand for real-time operation. Simplifying assumptions
allow for shorter image formation times, yet limit reconstruction accuracy, establishing
a tradeoff between these two highly important requirements in the clinical setting. To
reduce the data acquisition times and hardware costs, sparse acquisition schemes have
been considered [53], further limiting the applicability of conventional reconstruction
algorithms that depend on complete measurement data. In this section, we identify and
describe the limiting factors that contribute to image quality deterioration in optoacoustic
imaging. We consider (background) noise to be any image content that does not correspond
to optical absorption within the imaged plane or volume. Table 1 gives an overview of the
identified limitations and their corresponding manifestations in the image domain.

Table 1. An overview describing the correspondence between primary limiting factors and their
manifestations in the image domain. The bullet points (•) indicate correspondence between the
limiting factors (table rows), and manifestations (table columns).

Deformation of
Structures

Aliasing
Artifacts Negative Values

Reflection
Artifacts

(In-Plane)
Clutter Background

Noise

Limited view • •
Limited bandwidth • • •

Spatial undersampling • •
Inadequate illumination •

Optical attenuation •
Out-of-plane absorption •

Acoustic attenuation • •
Acoustic heterogeneity • • • •

Coupling mismatch •
Inexact algorithms • • •

Motion •

2.1. Limitations in Hardware and Algorithms

In this section, an overview of the limitations in hardware and algorithms is pre-
sented and schematically illustrated in Figure 3, where Figure 3a denotes the original
(unaffected) image.
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Figure 3. Image domain manifestations of limitations in hardware and algorithms. The upper
thick line represents the skin boundary. The circular shapes represent optoacoustic absorbers in
tissue. (a) Original, unaffected image. (b) Background noise due to limited illumination intensity.
(c) Deformation resulting from acoustic mismatch. (d) Loss of high-frequency information (blurring)
due to limited bandwidth acquisition. (e) Incomplete structure rendering due to limited-view
acquisition. (f) Negative values (represented with blue) near dominant absorbers. (g) Aliasing
artifacts. (h) Smearing due to inadequate modelling of transducer detector dimensions.

High optical irradiance can damage absorbing tissue due to excess heat. Therefore,
illumination intensity is limited by safety regulations. The faint excitation of absorbing
molecules aggravates the effect of electronic and thermal background noise on the detected
signals [30] (Figure 3b).

A homogenous medium, such as coupling gel or water, is commonly used to achieve
acoustic coupling between tissue and the imaging probe. The extent of acoustic refraction
at the interface will scale depending on the degree of mismatch in acoustic properties
thereof, distorting the propagation path of pressure waves, and consequently introducing
significant deformation (Figure 3c) in images obtained with conventional acoustic inversion
algorithms that assume uniform speed of sound (SoS) [31].

Optoacoustic signals are broadband in nature [54]. The frequency of the emitted pres-
sure waves is inversely correlated to the volume of the absorbing structure. The temporal
response of ultrasound detectors used in practice is band-limited; thus, the spectrum of
the acquired signals is incomplete: a low-frequency transducer will mostly capture signals
corresponding to larger structures, whereas a high-frequency transducer will primarily
record components corresponding to finer structures or sharp boundaries [25,28]. Insuf-
ficient bandwidth coverage can, therefore, lead to loss of fidelity in the form of missing
information in the reconstructed images (Figure 3d).

The transducer arrays used in practice typically resemble an open surface with partial
access to the imaged volume, receiving signals only from a restricted field of view, with
the exception of circular arrays that may achieve full-view coverage, but can presently
only be found in preclinical devices. Individual transducer elements also exhibit direction-
dependent sensitivity that can be especially relevant in the near field. These characteristics
constitute the limited-view problem, which primarily manifests itself as the deformation
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of object shapes and incomplete rendering of structures that are poorly visible from the
detection surface [25,27] (Figure 3e).

The incomplete acquisition of pressure data in limited-view and limited-bandwidth
conditions, inaccurate descriptions of acoustic wave propagation and detection resulting
from simplifications employed in reconstruction algorithms, as well as the attenuative and
inhomogenous nature of the acoustic medium, may additionally lead to the formation of
images with negative values [29,33,55]. Such values are unnatural, as there is no physical
interpretation for negative optical absorption. Negative values tend to form in the vicinity
of dominant absorbers (Figure 3f), and may completely conceal weaker absorbers nearby.

The Nyquist criterion dictates the appropriate temporal and spatial sampling rates for
pressure measurements. Practical constraints due to the prohibitively high cost of densely
populated transducer arrays or long acquisition times justify the acquisition of measure-
ments at sub-Nyquist rates, giving rise to aliasing artifacts (Figure 3g). The universal
back-projection (UBP) algorithm has also been linked to such artifacts [26].

A common simplifying assumption found in reconstruction algorithms is that transducer
elements are point-like. In reality, the detectors have finite dimensions and integrate the
pressure over their surface, which is expressed in the point spread function (or spatial impulse
response) of the system. When unaccounted for, the finite detector aperture leads to spatially
smeared reconstruction of optoacoustic sources [32] (Figure 3h), reducing resolution.

2.2. Limitations in Tissue

In this section, an overview of the limitations in tissue is presented and schematically
illustrated in Figure 4, where Figure 4a denotes the original (unaffected) image.

The attenuation of light due to optical absorption and multiple scattering events is a
major issue in optoacoustic tomography [37], resulting in low and inhomogenous fluence
at depth. The waveforms emitted by scarcely illuminated absorbers deep in tissue are
fainter (Figure 4b) and, thus, are also more susceptible to background interference, in
comparison to those situated closer to the surface. The spatial inhomogeneity of light
fluence prevents accurate reconstructions of initial pressure distributions, whereas the non-
linear dependency of light fluence on the optical wavelength further impedes quantitative
recovery of chromophore concentrations [5].

The attainable resolution at depth is limited by frequency-dependent acoustic atten-
uation, caused by dissipation and scattering [34], and primarily affecting high-frequency
signals. In addition to having lower amplitude, the attenuated waveforms broaden as their
bandwidth becomes narrower [35], and the corresponding image features appear blurred
(Figure 4c).

The acoustic heterogeneity of tissue also obstructs accurate optoacoustic image re-
construction. The boundaries between tissues of highly contrasting acoustic properties
(e.g., bone surfaces) reflect incident waveforms back towards the imaging probe, generating
reflection artifacts [36] (Figure 4d), which may overlap with other image features of interest,
or be mistaken as regions of actual optical absorption. Unknown variations in acoustic
speed also challlenge reconstruction algorithms that naively assume constant SoS inside
tissue, distorting the reconstructed images [39].

The inevitable excitation of strong optical absorbers outside the imaged plane or
volume (e.g., melanin in the skin) generates intense pressure waves that reach the transducer
array either directly or after being reflected by echogenic structures inside the tissue,
causing the formation of clutter [38] (Figure 4e) in the reconstructed images. Clutter may
significantly obscure signals originating from weakly illuminated absorbers and contribute
to misinterpretation.
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Figure 4. Image domain manifestations of limitations in tissue and in the acquisition process. The
upper thick line represents the skin boundary. The shapes below represent optoacoustic absorbers
in tissue. (a) Original, unaffected image. (b) Reduced contrast at depth due to optical attenuation.
(c) Reduced resolution of deeper structures due to acoustic attenuation. (d) Reflection artifacts due
to acoustic heterogeneity. (e) Clutter originating from optical absorbers outside the imaging plane.
(f) Directional blurring due to motion.

2.3. Limitations in the Acquisition Process

Averaging techniques are regularly used to suppress random noise or artifacts in
optoacoustic images. Following multiple excitations and data acquisitions in a short
time window, averaging may be performed either in the signal domain or in the image
domain [52]. A sequential acquisition scheme is also relevant in raster-scan imaging setups,
where multiple images or volumes at adjacent locations are spatially merged [49]. This
introduces an additional source of noise, i.e., unintended motion. Fine subject motion
due to breathing or arterial pulsation, as well as relative displacement between the probe
and the tissue owing to movement of the patient or the operator, will result in misaligned
acquisitions and blurred image features [41] (Figure 4f).

2.4. The Need Targeted by the Present Review

Clearly, exploring the research efforts which are oriented towards mitigating such
limitations is meaningful. Additionally, with clinical utility in scope, there is value in
analyzing the individual works and revealing well-evaluated approaches to optoacoustic
image quality improvement, which can be considered as more mature in the path towards
clinical application. This may also yield valuable insights on proper practices for evaluating
optoacoustic image quality.

3. Material and Methods
3.1. Systematic Literature Search

We conducted a systematic search in PubMed, Scopus, Web of Science, IEEE Xplore,
ACM Digital Library, and Google Scholar, for articles published from 1 January 2010 to
31 October 2021. The searched information fields included publication titles, abstracts,
and keywords. A comprehensive search query consisting of three main clauses was used:
(photoacoustic* OR “photo-acoustic” OR “photo-acoustics” OR optoacoustic* OR “opto-
acoustic” OR “opto-acoustics”) AND (reconstruct* OR denois* OR noise OR artifact* OR
artefact* OR clutter) AND (clinic* OR “hand-held” or handheld OR “hand held” OR
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freehand OR “free-hand” OR “free hand” OR human OR humans OR patient OR patients
OR volunteer OR volunteers OR subject OR subjects OR individual OR individuals OR
participant OR participants OR man OR men OR woman OR women OR person OR people
OR “in-vivo” or “in vivo” OR experiment*).

In Google Scholar, publication titles were searched with the first two clauses only, due
to its limited functionality. Records of ineligible publication types, such as book chapters
or academic theses, were manually excluded. Offline inspection also revealed numerous
falsely identified records whose retrieved information did not satisfy all search clauses.
Such records were automatically identified and excluded from screening. This automatic
process was only applied to records with available abstracts. Records whose abstracts were
not retrieved were handled separately. The removal of duplicate records was performed in
a semi-automated manner. Groups of duplicate records were automatically identified and
subsequently manually inspected to eliminate false positives. The titles and abstracts of the
remaining records were screened, and potentially eligible articles were sought for retrieval
and full-text evaluation according to the following four inclusion criteria:

(i) The proposed method is employed in an imaging scenario.
(ii) Image quality improvement or noise reduction is the primary objective.
(iii) The proposed method functions entirely after the acquisition of optoacoustic data.
(iv) Evaluation of the proposed method with human subjects in vivo is reported.

To eliminate potential bias during the selection of articles, the title and abstract screen-
ing process was performed independently by two authors (ID, LH). The same individuals
collaborated in the full-text evaluation of the inclusion criteria. All disagreements were
resolved by discussion, until consensus was reached. Forty-five eligible papers were finally
selected, including one that was not retrieved by the search, but was identified in the
references of a related, included work. An overview of the search and screening process is
given in Figure 5, which depicts the corresponding PRISMA 2020 diagram [56].
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3.2. Subgroup Analysis, Rating Criteria, and Procedure

For the systematic assessment of the included studies in terms of evaluation adequacy,
a comparative rating approach was adopted. Initially, four authors (ID, AK, PS, LH)
collaborated in the conceptualization and design of the rating process. A focus group
of three authors (ID, AK, LH) executed the rating process. In the following, all papers
were cooperatively evaluated by all members of the focus group. All disagreements were
resolved by discussion, until consensus was reached.

First, studies were classified according to their general motivation, forming subgroups
of studies with a common purpose (i.e., intention to solve a common problem) and eval-
uation procedures with comparable characteristics. The subgroup analysis was essential
to enable fair comparison, since the studies exhibited significant variety in the design
of evaluation experiments. Thirty-six out of forty-five studies were finally included in
the subgroup analysis; the remaining nine studies were not included either due to their
purpose not suiting any subgroup, or due to the impossibility of meaningful comparison to
the other studies of the subgroup. The subgroups are summarized in Table 2.

Table 2. Summary of the assignment of studies to different subgroups.

Subgroup Primary Purpose References

SSPR Improving reconstruction from sparsely sampled measurements [48,57–64]
SRES Resolution enhancement [32,44,51,65–70]
SART Elimination of overlaying artifacts [26,36,71–73]
SMOT Motion correction [40,41,49,74,75]
SACM Acoustic coupling mismatch modeling [31,76–78]

SLVB
Improving reconstruction from limited-view/bandwidth
measurements [50,79–81]

Following the assignment of studies to the subgroups, the evaluation section of each
paper was thoroughly analyzed, considering, in detail, the design and results of all reported
experiments on numerical and physical phantoms, as well as on humans or animals in vivo.
Through this analysis, a set of criteria was established, according to which the studies were
compared and rated. The criteria, described in Table 3, aim to comprehensively capture the
important aspects of the evaluation procedure in an organized and analytic manner.

The rating procedure was independently conducted for each individual subgroup.
Initially, a subset of applicable criteria was selected according to the specific characteristics
of the included papers. In particular, C2 is only applicable in the SRES, SSPR, and SLVB
subgroups, where reference methods could be identified in preceding research, and C6 is
only applicable in the SSPR subgroup. The remaining criteria are applicable to all subgroups.

In all subgroups, except for SMOT, the experiments reported in each study were classi-
fied into three categories, involving numerical, phantom, and human subjects. Experiments
involving animals were reported in only two studies [48,61], and added little new informa-
tion to the evaluation; these experiments were, therefore, considered as complementary to
studies with human subjects, and assigned to the category of experiments with human sub-
jects. Each category of experiments was analyzed according to the applicable criteria, and
ratings were given to each criterion according to the following scale: 0: absent, 1: lacking, 2:
adequate, 3: ample, 4: thorough. The minimum possible increment was 0.5. A fundamental
motivation behind the rating assignment procedure was to reflect the relative quality, with
respect to each criterion, of the studies included in each subgroup. Therefore, it is more
appropriate to consider the ratings as being relative, not absolute. The ratings given for
each criterion were combined into a subtotal rating for each category of experiments, via
weighted addition. All criteria contributed equally to the subtotal with a weight of 1, except
for C6, which was empirically assigned a weight of 1/5 to reflect a smaller importance; it
was generally considered as being a secondary criterion. The subtotals were combined
into a total rating via weighted addition, followed by division with the sum of the weights
of the applicable criteria, as shown in Figure 6. Subtotals corresponding to numerical
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and phantom experiments were empirically assigned a weight of 1/3 to emphasize the
significance of experiments on human subjects.

Table 3. Summary of the identified criteria, according to which studies were compared and rated.

Criterion Description

C1 Multitude and diversity of experiments

Captures aspects related to the multitude and diversity of conducted
experiments. The reporting of multiple different experiments that
investigate the effectiveness of the proposed method from a variety of
aspects and through realistic and challenging imaging targets, adds to the
validity of the evaluation.

C2
Comparison to established alternatives or
references

Evaluates the extent to which established methods, known to perform well,
are compared to the proposed methods in terms of image fidelity. The
applicability of this criterion depends on whether there has been substantial
previous activity on the problem the considered subgroup concentrates on.
In the case of numerical experiments, the use of ground truth reference
images for comparison is considered essential.

C3
Use and clear definition of quantitative
methods

Apart from the display of reconstructed images, quantitative evaluation
using clearly defined methods and metrics is desirable. Studies are expected
to quantify the deviation to reference images, when they are available; the
display of difference images also helps visualize the spatial distribution of
the error magnitude. When possible, metrics can be calculated over sets of
multiple images, statistically verifying the reported outcomes.

C4
Evaluation in terms of anatomical verity,
quantification capacity, or clinical utility

Essentially, the objective of denoising and image quality improvement
techniques is to attain increased diagnostic and quantification capacity,
advancing the modality towards acceptance in clinical practice.
Optoacoustic imaging brings novel opportunities in quantitative imaging,
especially through multispectral implementations. In this direction, studies
may take the evaluation one step further and provide means to assess the
generated images with respect to anatomical or functional plausibility or
verity, and, ultimately, clinical utility.

C5 Evaluation at different depths

Imaging deep tissue is a major challenge in optoacoustics. Investigating the
performance of the compared methods at different tissue depths or
distances to the transducer array may reveal otherwise unforeseen
limitations.

C6
Evaluation at different sampling rates or
patterns

This criterion is exclusively applicable in studies that focus on
reconstruction from sparsely sampled measurements, where performance
may be affected by changes in the sub-sampling rate or the spatial
arrangement of active sensors. Evaluations that take this factor into account
can be considered as being more comprehensive.

The SMOT subgroup was handled slightly differently, as the studies primarily per-
formed their evaluations via experiments with human subjects, i.e., the most appropriate
way to draw useful conclusions in such a setting. In some cases, synthetic motion was
added to scans obtained from either physical phantoms or human subjects for preliminary
validation of the proposed methods. Such experiments were taken into consideration, but
were not analyzed into separately rated criteria (as in the other subgroups) due to the
simplicity they exhibited. Instead, they were handled as a single criterion, i.e., they were
given a single rating and contributed to the total rating equally to the other criteria.

The ultimate objective of the rating procedure was to highlight studies that conducted,
in their subgroup, relatively comprehensive and unbiased evaluations of their proposed
methods for the improvement of optoacoustic image quality. To achieve this, the total rating
was divided by the mean rating of the corresponding subgroup, yielding the normalized
total rating, a metric of the deviation from the subgroup average. This metric was finally
used to select a set of studies that surpass the threshold defined by the upper quartile
(Q3) of the normalized total ratings distribution. An illustrative overview of the rating
procedure is given in Figure 6.
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4. Results
4.1. Signal Domain (Pre-Processing) Approaches

Table 4 summarizes the methodological overview of the identified signal domain
approaches. The detailed description follows.

Table 4. Summary of the identified signal domain (pre-processing) approaches. OAT: optoa-
coustic tomography, MSOT: multispectral optoacoustic tomography, RSOM: raster-scan optoacous-
tic mesoscopy.

Ref, Title Modality Purpose Subgroup Year

[27], Ultrasound-guided photoacoustic
image reconstruction: image completion
and boundary suppression

2D OAT

Correction of incomplete structure
reconstruction and suppression of weak
absorbers near dominant boundaries due to
limited view and bandwidth

- 2013

[82], Adaptive multi-sample-based
photoacoustic tomography with imaging
quality optimization

2D OAT Alignment of signals for effective averaging
in the presence of motion - 2015

[83], Spread Spectrum Photoacoustic
Tomography With Image Optimization 2D OAT Recovery of out-of-band information and

alignment of signals for effective averaging - 2016

[72], Identification and removal of
laser-induced noise in photoacoustic
imaging using singular value
decomposition

2D OAT Elimination of laser-induced noise SART 2016

[68], Basic study of improvement of axial
resolution and suppression of time side lobe
by phase-corrected Wiener filtering in
photoacoustic tomography

3D OAT Improvement of axial resolution by
time-side-lobes suppression SRES 2018

[40], Motion Quantification and Automated
Correction in Clinical RSOM 3D RSOM Motion correction SMOT 2019

[49], Motion correction in optoacoustic
mesoscopy 3D RSOM Motion correction SMOT 2017

[26], Spatiotemporal Antialiasing in
Photoacoustic Computed Tomography 2D OAT Elimination of spatial aliasing SART 2020
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In an effort to correct for incomplete structure reconstruction and suppression of
weak absorbers in the vicinity of dominant boundaries, caused by the limited-view and
-bandwidth conditions, Kruizinga et al. [27] developed an ultrasound-guided technique.
Based on the observation that optoacoustic and ultrasound images share common morpho-
logical information, a co-registered ultrasound image is manually segmented into relevant
structures, which are assigned initial source pressure values derived from reconstructed
optoacoustic images, and used to simulate the full optoacoustic wave field. The simulated
field is used to mitigate the limited-view errors by completing missing wavenumbers in the
recorded signals, or to reveal fine structures by masking out dominant boundary signals.

Wang et al. [82] proposed a multi-sample averaging approach to improve the inher-
ently low signal-to-noise ratio (SNR) of acquired optoacoustic signals. The cross correlation
between acquired frames is calculated to determine relative time shifts and adaptively align
the waveforms. This step is preceded by upsampling via cubic spline interpolation for
greater precision. The aligned signals are finally averaged, suppressing random noise and
enhancing detail. The aforementioned procedure is also the ultimate step of the method
reported by Cao et al. [83], in which the frequency response of the transducer is used to
design an appropriate transfer function. The latter is utilized in an inverse signal filtering
process with Wiener deconvolution to amplify frequency components that were suppressed
due to limited transducer bandwidth.

Hill et al. [72] utilized Singular Value Decomposition (SVD) to obtain a sparse represen-
tation of the external noise induced from the laser electronics in the excitation source. Such
noise manifests itself as planar patterns that are consistent across the data vectors acquired
in parallel from multiple transducer elements. The noise was assumed to be additive,
modelled with an experimentally determined number of Singular Value Components (SVC)
and subtracted from the data matrices prior to image reconstruction. Averaging of multiple
denoised images, followed by envelope detection with the Hilbert transform, produced the
final images.

In the work by Nagaoka et al. [68], it is assumed that the original optoacoustic wave-
form generated from a small point or cylindrical source approximately resembles a unipolar
pulse. However, propagation in acoustically lossy tissue and the limited detector band-
width distort the recorded waveform, introducing spurious time side lobes that reduce
axial resolution. To alleviate the distortion, the signals received by each element of the
transducer array are subject to Wiener filtering for bandwidth restoration, followed by
phase correction filtering and thresholding. The corrected signals are used to reconstruct
the image with a delay-and-sum method. The negative amplitudes in the reconstructed
image are eliminated by thresholding.

A motion correction algorithm for RSOM was proposed by Aguirre et al. [40], in which
a cumulative cross-correlation surface (CS) function is calculated from the acquired 3D
sinogram. Broadly, this 2D function measures the cross-correlation between recordings at
adjacent scan locations that compose the sinogram. Its continuity is assumed to reflect the
disruptions in the sinogram caused by motion. The calculated CS function is compared to
a synthetic smooth CS function to quantify the vertical displacements between the detector
and the skin at each scan location caused by breathing, heart beating, and arterial pulsation.
The displacements are then accounted for during image reconstruction.

Schwarz et al. [49] also developed a motion correction algorithm for RSOM. Vertical
movement between the melanin layer at the skin surface and the detector is expected to
cause matching disruptions in the acquired 3D sinogram. The algorithm works by first
detecting the skin surface at each scan point of the raw sinogram. The detection approach
differs based on whether the imaged region lies in an area of hairy or hairless skin. The
estimated discontinuous 3D surface is subsequently corrected with a moving average filter,
resulting in a smooth surface. Finally, for image reconstruction, the position of the detector
is adjusted using the relative offset between the two surfaces.

Hu et al. [26] considered the problem of spatial aliasing in full-ring geometry optoa-
coustic tomography. Separate spatiotemporal analyses are performed to identify concentric,
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disk-shaped spatial regions, where aliasing may occur either due to insufficient spatial
sampling density or due to the characteristics of the UBP reconstruction algorithm. The two
conditions are termed as aliasing due to spatial sampling (SS) and image reconstruction
(IR), respectively. It is shown that aliasing entirely due to IR can be eliminated by spatial
interpolation, i.e., numerically increasing the number of detection elements. Additionally,
a radius-dependent temporal lowpass filter is proposed to remove aliasing due to SS. A
complementary analysis for the linear array geometry is also reported.

4.2. Image Domain (Post-Processing) Approaches

Table 5 summarizes the methodological overview of the identified image domain
approaches. The detailed description follows.

Table 5. Summary of the identified image domain (post-processing) approaches. OAT: optoacoustic
tomography, MSOT: multispectral optoacoustic tomography, OR-PAM: optical-resolution photoa-
coustic microscopy, RSOM: raster-scan optoacoustic mesoscopy.

Ref, Title Modality Purpose Subgroup Year

[33], Multiscale multispectral optoacoustic
tomography by a stationary wavelet
transform prior to unmixing

2D MSOT Recovery of fine-scale structures masked by
spurious negative values - 2014

[84], 3D Gabor wavelet based vessel
filtering of photoacoustic images 3D OR-PAM Enhancement of vasculature visibility - 2016

[74], Vascular Registration in Photoacoustic
Imaging by Low-Rank Alignment via
Foreground, Background and Complement
Decomposition

3D OAT Alignment of shot volumes for effective
averaging in presence of motion SMOT 2016

[85], Towards a Fast and Safe LED-Based
Photoacoustic Imaging Using Deep
Convolutional Neural Network

2D OAT Improvement of SNR - 2018

[36], Reflection artifact identification in
photoacoustic imaging using
multi-wavelength excitation

2D MSOT Elimination of in-plane reflection artifacts SART 2018

[73], Feasibility of identifying reflection
artifacts in photoacoustic imaging using
two-wavelength excitation

2D MSOT Elimination of in-plane reflection artifacts SART 2020

[86], Spatial weight matrix in
dimensionality reduction reconstruction for
micro-electromechanical system-based
photoacoustic microscopy

3D OR-PAM Noise reduction, registration, and
deconvolution - 2020

[29], Negativity artifacts in back-projection
based photoacoustic tomography 2D OAT Elimination of negativity artifacts due to

limited view and bandwidth - 2021

[75], Subpixel and On-Line Motion
Correction for Photoacoustic Dermoscopy 3D OR-PAM Motion correction SMOT 2021

[41], Regional motion correction for in vivo
photoacoustic imaging in humans using
interleaved ultrasound images

2D OAT Motion correction SMOT 2021

Negative values have no physical meaning, and, when originating from large image
features, can mask nearby fine structures, rendering them invisible to spectral unmixing
techniques. To uncover such structures, the method proposed by Taruttis et al. [33] employs
the stationary wavelet transform to decompose the images taken at different wavelengths
into separate scales, which are then individually inverse-transformed and spectrally un-
mixed by a non-negative least squares algorithm. By unmixing each scale independently,
interference from structures in other scales is prevented. A separate multiscale image is
then formed for each chromophore by adding the different scales together.

To enhance the visibility of vessels in the presence of background noise introduced by
limitations of the acquisition system and optical absorption by irrelevant chromophores in
an OR-PAM setting, Haq et al. [84] utilized Gabor wavelet filtering, in consideration of the
multiscale nature of vessels. Furthermore, a Hessian-based filtering technique classifies
structures into tubular, blob, and plate-like, based on the relationship between eigenvalues
of the Hessian matrix calculated at each voxel. The Euclidean norm of the matrix is used
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to differentiate between structures of interest and noise. The latter filtering technique is
repeated at different scales, ultimately preserving the maximum response of each scale.

To accurately align multiple shot volumes for the optoacoustic imaging of large body
parts in the presence of body motion, Bise et al. [74] proposed to organize the volume images
as rows of an observation matrix, and to transform the latter to low-rank by a coarse-to-fine
optimization framework. In the coarse step, after noise suppression with a vessel enhancing
filter, a multi-scale pyramid scheme is used to find the optimal transform function. In
the fine step, the transform function is further optimized, while also taking noise into
consideration. Specifically, the coarsely aligned, non-filtered volumes are decomposed
into a low-rank vessels foreground, a dense noise background, and a sparse complement
component. A statistical prior constraint is introduced in the formulation of the refining
optimization process, in which the average of the dense noise background at each spatial
voxel is forced to be constant, based on the examination of experimental data.

A deep convolutional neural network architecture consisting of three sequentially
connected image enhancement units was developed by Anas et al. [85]. The units are jointly
trained on triads of cross-sectional target images from blood-vessel-mimicking phantoms
with sequentially increasing image quality: the deeper the unit, the better the quality of the
target image. This pattern is assumed to guide feature extraction more effectively across
the network. The method was proposed to reduce the need for extensive frame averaging,
which would lead to motion artifacts in an LED-based optoacoustic system, where the
output power is inherently limited.

A method for the identification and removal of in-plane reflection artifacts was pro-
posed by Nguyen et al. [36], based upon the assumption that a reflection artifact appears
deeper than, and its spectral response is principally correlated with, the image feature it
originated from. Given the images taken at four different wavelengths, features of the
clearest image are detected via segmentation, and their spectral response is estimated using
the rest of the images. Then, features with high cross-correlation, in terms of spectral
response, are grouped. The dominant feature in each group is assigned as a real absorber,
whereas fainter features appearing at larger depths are assigned as reflection artifacts, and
are removed by setting the corresponding pixel values to zero. An alternative that does
not require segmentation is also given, in which the same correlation analysis is instead
performed for each pixel of the image. In a subsequent work [73], the technique was slightly
adjusted and shown feasible in a setting where two wavelengths were available instead
of four.

Ma et al. [86] developed a processing method for images generated with an OR-
PAM variant that employs a micro-electromechanical system (MEMS) scanning mirror to
accelerate the raster-scanning procedure. Such a system is prone to distortion and resolution
limitations, stemming from electrical, ultrasonic, optical, and thermal particularities of the
hardware. The proposed method, termed as spatial weight matrix (SWM), processes the
image in three distinct stages: first, an adaptive wiener filter is used for noise reduction.
Then, a registration module corrects for geometric distortions introduced by the scanning
procedure. Finally, a deconvolution operation accounts for error that originates from
neglecting the surface area of the ultrasonic sensor.

Shen et al. [29] studied the formation mechanisms of negativity artifacts, and eval-
uated the performance of two simple post-processing approaches. In the forced-zeroing
approach, negative values are simply set to zero, whereas in the envelope detection ap-
proach, the negative components of the image are reverted, and amplitude profiles are
extracted via Hilbert transform. The envelope detection approach results in images with
broadened features that may, however, retain more information about the geometry of the
optoacoustic sources.

In optoacoustic dermoscopy, involuntary subject motion causes vertical displacement,
whereas the scanning process itself causes a horizontal misalignment. Vertical displacement
can be decomposed into rigid motion, mainly due to sudden movement of the human
subjects, and non-rigid motion, caused mainly by breathing, heart beating, and arterial
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pulsation. Horizontal displacement is considered as rigid motion. The algorithm presented
by Cheng et al. [75], based on subpixel motion estimation, corrects for motion in two steps:
in the Subpixel Global Motion Correction step, horizontal and vertical rigid displacements
between adjacent B-scans are corrected for via a spline interpolation method. In the Subpixel
Vertical Motion Correction step, vertical non-rigid displacements between adjacent A-lines
of the same B-scan are estimated via a cumulative differential function inspired by the
approach by Aguirre et al. [40], and offset.

Erlöv et al. [41] examined the feasibility of using a regional motion correction algorithm
for hand-held 2D optoacoustic tomography. In contrast to global motion correction, a
regional approach could also account for internal tissue movement. The technique is based
on intensity phase tracking (IPT) performed on the interleaved ultrasound images that
are co-registered with the optoacoustic images. The use of ultrasound images makes the
solution appropriate for multispectral scenarios, where consecutive optoacoustic frames
depict different absorber distributions, and, therefore, cannot be used reliably for tracking.

4.3. Reconstruction and Hybrid Approaches

In contrast to signal and image-domain approaches, reconstruction approaches address
the targeted optoacoustic image quality limitations in an end-to-end manner, integrating
the quality improvement techniques in the image reconstruction pipeline. Approaches that
incorporate multiple elements, such as analysis in the signal domain, reconstruction, and
processing in the image domain, are considered hybrid. Table 6 summarizes the method-
ological overview of the identified reconstruction and hybrid approaches. A detailed
description follows.

Table 6. Summary of the identified reconstruction and hybrid approaches. OAT: optoacoustic
tomography, MSOT: multispectral optoacoustic tomography.

Ref, Title Modality Purpose Subgroup Method Class Method
Sub-Class Year

[70], Coherent-weighted three-dimensional
image reconstruction in linear-array-based
photoacoustic tomography

3D OAT Improvement of
elevation resolution SRES Reconstruction Beamforming 2016

[66], Real-time delay-multiply-and-sum
beamforming with coherence factor for in vivo
clinical photoacoustic imaging of humans

2D OAT
Improvement of
lateral resolution

and SNR
SRES Reconstruction Beamforming 2019

[67], Linear-array photoacoustic imaging using
minimum variance-based delay multiply and
sum adaptive beamforming algorithm

2D OAT

Improvement of
resolution and

reduction of
sidelobes

SRES Reconstruction Beamforming 2018

[65], Wave front analysis for enhanced
time-domain beamforming of point-like targets
in optoacoustic imaging using a linear array

2D OAT
Improvement of
lateral resolution

and SNR
SRES

Hybrid
(signal domain
analysis, post-

processing)

Beamforming 2019

[44], Multiple Delay and Sum With Enveloping
Beamforming Algorithm for Photoacoustic
Imaging

2D OAT
Suppression of
sidelobes and

artifacts
SRES Reconstruction Beamforming 2020

[51], Photoacoustic tomography reconstruction
using lag-based delay multiply and sum with a
coherence factor improves in vivo ovarian
cancer diagnosis

2D OAT
Improvement of
resolution and

contrast
SRES Reconstruction Beamforming 2021

[69], Generalized spatial coherence
reconstruction for photoacoustic computed
tomography

2D OAT

Improvement of
resolution, contrast,

preservation of
relative signal

magnitude

SRES Reconstruction Beamforming 2021

[59], Model-Based Learning for Accelerated,
Limited-View 3-D Photoacoustic Tomography 3D OAT

Reconstruction
from sub-sampled,

limited-view
measurements

SSPR Reconstruction Machine
Learning 2018

[58], Approximate k-Space Models and Deep
Learning for Fast Photoacoustic Reconstruction 3D OAT

Reconstruction
from sub-sampled

measurements
SSPR Reconstruction Machine

Learning 2018
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Table 6. Cont.

Ref, Title Modality Purpose Subgroup Method Class Method
Sub-Class Year

[79], Deep-Learning Image Reconstruction for
Real-Time Photoacoustic System 2D OAT

Improvement of
limited-view and

limited-bandwidth
reconstruction

quality

SLVB Reconstruction Machine
Learning 2020

[80], Y-Net: Hybrid deep learning image
reconstruction for photoacoustic tomography
in vivo

2D OAT

Improvement of
limited-view and

limited-bandwidth
reconstruction

quality

SLVB Hybrid Machine
Learning 2020

[62], High-speed, sparse-sampling
three-dimensional photoacoustic computed
tomography in vivo based on principal
component analysis

3D OAT
Reconstruction

from sub-sampled
measurements

SSPR Reconstruction Machine
Learning 2016

[61], Dictionary learning sparse-sampling
reconstruction method for in-vivo 3D
photoacoustic computed tomography

3D OAT
Reconstruction

from sub-sampled
measurements

SSPR Reconstruction
Machine
Learning,

Sparsity-based
2019

[60], Compressed sensing photoacoustic
tomography in vivo in time and frequency
domains

3D OAT
Reconstruction

from sub-sampled
measurements

SSPR Reconstruction Sparsity-based 2012

[48], Compressed-sensing photoacoustic
computed tomography in vivo with partially
known support

3D OAT
Reconstruction

from sub-sampled
measurements

SSPR Reconstruction Sparsity-based 2012

[57], Three-dimensional optoacoustic
reconstruction using fast sparse representation 3D OAT

Reconstruction
from sub-sampled

measurements
SSPR Reconstruction Sparsity-based 2017

[63], Compressed Sensing With a Gaussian Scale
Mixture Model for Limited View Photoacoustic
Computed Tomography In Vivo

3D OAT
Reconstruction

from sub-sampled
measurements

SSPR Reconstruction Sparsity-based 2018

[64], Photoacoustic Reconstruction Using
Sparsity in Curvelet Frame: Image Versus Data
Domain

3D OAT
Reconstruction

from sub-sampled
measurements

SSPR Reconstruction Sparsity-based 2021

[71], Photoacoustic clutter reduction using
short-lag spatial coherence weighted imaging 2D OAT Elimination of

clutter SART

Hybrid
(signal domain
analysis, post-

processing)

Other 2014

[77], Optoacoustic image segmentation based on
signal domain analysis 2D MSOT

Accounting for
large acoustic

mismatches around
and inside tissue

SACM

Hybrid
(signal domain

analysis,
reconstruction)

Other 2015

[78], Modeling the variation in speed of sound
between couplant and tissue improves the
spectral accuracy of multispectral optoacoustic
tomography

2D MSOT

Accounting for
acoustic mismatch
between couplant

and tissue

SACM Reconstruction Other 2019

[76], Accounting for speed of sound variations
in volumetric hand-held optoacoustic imaging 3D OAT

Accounting for
acoustic mismatch
between couplant

and tissue

SACM Reconstruction Other 2017

[32], Efficient 3-D Model-Based Reconstruction
Scheme for Arbitrary Optoacoustic Acquisition
Geometries)

3D OAT

Improvement of
resolution, CNR,

and overall quality
by accounting for
finite transducer

geometry

SRES Reconstruction Other 2017

[31], A Synthetic Total Impulse Response
Characterization Method for Correction of
Hand-Held Optoacoustic Images

2D OAT

Accounting for the
total impulse

response of the
imaging system,

including acoustic
mismatch between
couplant and tissue

SACM

Hybrid
(pre-processing,
reconstruction)

Other 2020

[81], Soft ultrasound priors in optoacoustic
reconstruction: Improving clinical vascular
imaging

2D OAT

Improvement of
limited-view

reconstruction
quality

SLVB Reconstruction Other 2020

[50], Superiorized Photo-Acoustic
Non-NEgative Reconstruction (SPANNER) for
Clinical Photoacoustic Imaging

2D MSOT
Reconstruction in
limited-view and
low-SNR settings

SLVB Reconstruction Other 2021

[87], Opto-Acoustic Image Reconstruction and
Motion Tracking Using Convex Optimization 2D MSOT

Simultaneous 3D
reconstruction and

probe motion
tracking

- Reconstruction Other 2021
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4.3.1. Beamforming Approaches

In conventional delay-and-sum (DAS) beamforming, the images are formed by sum-
mation, at each spatial location, of the back-projected recorded signals. Back-projection is
based on signal time-of-flight calculations and delaying. The signals are expected to add up
coherently at the locations they originated from. A quantitative measure of phase alignment
between signals is the Coherence Factor [88], calculated as the ratio of the squared coherent
sum to the incoherent sum of the signals. The coherent sum is a regular sum, whereas the
incoherent sum is defined as the sum of the squared signals.

Wang et al. [70] integrated focal-line-based 3D reconstruction with coherent weighting
to improve the elevation resolution of a linear array. In focal line 3D reconstruction, the
time of flight of the signals to be added by the DAS algorithm is corrected by considering a
propagation path that crosses the focal line of the cylindrically focused transducer element,
rather than a direct straight path. Weighting the reconstructed image with the coherence
factor of the signals added at each location further enhances the elevation resolution.

Jeon et al. [66] enhanced the delay-multiply-and-sum (DMAS) beamformer with a
modified coherence factor to improve resolution and reduce noise by suppressing sidelobes.
DMAS beamforming involves the combinatorial coupling and multiplication of the time-
delayed recorded signals. Products between in-phase signals have higher magnitude; thus,
they contribute more to the final output, i.e., the sum of the products. The coherence
factor is employed to weigh the DMAS outputs, in accordance with the coherence of the
summed terms.

Mozaffarzadeh et al. [67] acknowledged the inherent existence of DAS procedures
in the algebraic expansion of the DMAS beamformer. Considering that the nonadaptive
nature of DAS will, therefore, implicitly limit the performance of DMAS, they proposed to
modify the latter by replacing the DAS algebra terms with the superior minimum variance
(MV) beamformer to reduce sidelobes and improve resolution.

Fournelle and Bost [65] presented a technique to improve the reconstruction of targets
resembling point sources. The technique is based on the analysis of the time-delayed signal am-
plitudes that are summed to reconstruct individual pixels in DAS beamforming. A confidence
measure, corresponding to the likelihood of an individual pixel for being an optoacoustic
source, is derived by comparing the distribution of measured amplitudes to a theoretical
model. The resulting confidence map is multiplied pixelwise with the DAS beamformed
image, lowering the amplitudes where the confidence is low. Three candidate confidence
parameters with varying degrees of modeling accuracy are experimentally evaluated.

Ma et al. [44] designed a beamforming algorithm to suppress sidelobes and artifacts,
and to improve the separability of adjacent structures. In contrast to common beamforming
techniques that only calculate a single value for the initial optoacoustic pressure, the
proposed method calculates an N-shaped waveform for each pixel of the reconstructed
image. The estimated bipolar N-shaped signals are enveloped with the Hilbert transform
to obtain positive pulse signals. The location, in the time axis, of the maximum pulse
amplitude determines the distance from the considered pixel to the actual location of the
acoustic source, and is used to narrow the signal envelope accordingly: a large distance
will manifest itself as sidelobes and artifacts; therefore, suppression is required. The initial
value of the resulting pulse is finally chosen as the reconstructed pixel intensity.

Yang et al. [51] introduced a lag-based DMAS beamformer with a coherence factor
(DMAS-LAG-CF) to enhance resolution and contrast. Lag-based DMAS [89] is a two-
stage algorithm that first employs channel-wise correlation of the original input signals to
synthesize new signals, which are then input to a filtered DMAS (F-DMAS) beamformer. In
the latter, the output of DMAS is band-pass filtered to suppress the DC and higher frequency
components [90]. The coherence factor is embodied in the first stage of DMAS-LAG-CF,
where it weighs the input signals prior to the correlation operations.

Tordera Mora et al. [69] considered two coherence-based beamforming approaches,
i.e., short-lag spatial coherence (SLSC) [91] and F-DMAS, and studied their merits and
limitations: the first is robust against noise, but does not preserve relative signal magnitude
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(which prevents quantitative interpretation), whereas the second preserves signal magni-
tude, but suffers from reduced contrast. They proposed a mathematical unification of both
beamformers into a single equation. The developed generalized spatial coherence (GSC)
algorithm aims to address both limitations by combining the technical elements that give
each technique its advantages.

4.3.2. Machine Learning Approaches

Hauptmann et al. [59] incorporated learned regularization in an iterative model-based
reconstruction approach to improve results in limited-view and sub-sampling scenarios.
Each iteration is performed by a separate Convolutional Neural Network (CNN) model that
receives two inputs: the current iterate image and the gradient of the data fit term. The latter
measures the deviation of the forward model’s output to the observed data, and is typically
used to perform updates in a gradient descent scheme. It is argued that the gradient
information introduces robustness to perturbations. The CNN models output the next
iterate image, and are individually trained to minimize the difference between their output
and the ground truth. Segmented vessel images are used to generate synthetic training
data, therefore making the approach suitable for imaging vessel-rich targets. Additional
fine-tuning with real measurements from human subjects is also considered.

In an identical learned iterative reconstruction framework [58], an approximate k-space
(Fast Fourier Transform (FFT)-based) forward model is used to achieve fast reconstruction
from sub-sampled data, and to have the CNN learn to correct for the highly structured
artifacts introduced to the gradient information by the approximate model. The CNN are
initially trained on synthetic data generated by segmented vessel images, and fine-tuned
with sub-sampled data from human measurements.

With microvessels as the target of interest, and the limited-view and -bandwidth
problems in scope, Kim et al. [79] proposed a reconstruction framework based on the
UNET [92] encoder–decoder CNN architecture. The 2D raw data matrix is transformed into
a 3D form with two spatial dimensions and a channel dimension, basically consisting of one
2D image slice for each transducer element (channel), or, viewed otherwise, one 1D vector
of delayed signals (the propagation delay profile) for each image pixel. This preprocessing
is proposed to retain the information in the raw data while providing a convenient input
structure to the CNN. The CNN is trained on data synthetically generated from the target
vascular images.

To combine the merits of signal and image domain processing, Lan et al. [80] designed
a CNN architecture with two inputs: the measured raw data and the corresponding DAS
reconstructed image. The features extracted from the inputs via two separate encoder
networks are subsequently concatenated and forwarded to the decoder, which produces
the output image. Skip connections between layers of the decoder and the two encoders
provide an information sharing channel between the component networks. The data
and images used to train the network are generated via simulation of limited-view and
bandwidth acquisition, based on segmented blood vessel images, which are also used as
ground truth targets.

Meng et al. [62] provided an efficient, non-iterative method to improve reconstruction
quality in 3D optoacoustic tomography under sparse sampling conditions. The method
assumes a scanned acquisition procedure, where successive B-scan frames comprise the
3D volume. One every two or three frames is obtained with fully sampled measurements,
whereas the rest of the frames are obtained with sparse measurements. Backprojection is
used for the initial reconstructions. The fully sampled frames are then used as training
samples to construct a PCA basis, on which the sparsely sampled frames are projected
and subsequently recovered from. The PCA basis represents a low-dimensional feature
space that describes the principal characteristics of the training data, exploiting useful
information across frames.

In a similar direction and experimental setting, Liu et al. [61] significantly reduced the
number of required fully sampled frames by incorporating a Dictionary Learning approach
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in an iterative model-based optimization scheme. Approximately 5% of the B-scan frames
are uniformly selected from the imaged volume, and are reconstructed from fully sampled
measurements. A dictionary is trained on the fully sampled frames, and is afterwards
employed in the objective function with two terms that promote consistency between the
image and the dictionary domains and sparsity to reconstruct the remaining undersampled
frames. The dictionary provides an adaptive sparse representation mechanism that encodes
prior information from the training data.

4.3.3. Compressed Sensing (Sparsity-Based) Approaches

Compressed Sensing (CS) techniques exploit the inherent sparsity that natural signals
and images exhibit in certain transform domains, to obtain accurate reconstructions from
sub-Nyquist sampled data. A representation vector is considered sparse if it primarily
consists of zero elements. Thus, CS can be applied to image reconstruction problems with
a constrained optimization approach by searching for solutions that are both consistent
with the measured data and sparse in an appropriate transform domain, therefore utilizing
sparsity for regularization. Jing et al. [60] applied Total Variation-based CS in both time
domain (TD) and frequency domain (FD) reconstruction, and demonstrated the superiority
of the FD-CS variant over the TD-CS and conventional backprojection approaches.

Meng et al. [48] reported on a CS reconstruction framework that, besides sparsity,
incorporates partially known support (i.e., known nonzero locations in the transformed
sparse domain) as an additional prior. The optimal sparse image vector in the wavelet
domain is solved via minimization of an objective function whose sparsity-promoting term
only penalizes the number of non-zero elements that do not belong to the partially known
support. The latter is determined in each iteration by thresholding the sparse vector. This
further confines the space of candidate sparse solutions, and results in less undersampling
artifacts. An iteratively reweighted conjugate gradient descent technique was developed
for minimization.

Han et al. [57] developed a sparsity-based approach for 3D optoacoustic reconstruction,
highlighting the suitability of such approaches in the 3D case, where images are naturally
more compressible. A sparse representation of the reconstructed image in the wavelet
domain is iteratively optimized. The step size for the gradient descent minimization
procedure is calculated via the Barzilai–Borwein line search approach, which takes the
previous and current solutions, as well as the gradient of the objective function, into account.

Meng et al. [63] implemented an advanced CS reconstruction technique that exploits
structural dependencies between wavelet coefficients located adjacently across different
subbands and scales, via a Gaussian Scale Mixture model (GSM). The structured sparsity
is incorporated as prior information in the objective function by weighting the wavelet
coefficients in the sparsity-promoting term. The diagonal weighting matrix is refined on
each iteration by filtering the current iterate wavelet coefficient images with a Wiener linear
estimation-based GSM (wGSM) operator. The filtering clears the wavelet coefficient images
from sparse-sampling artifacts.

Pan et al. [64] provided theoretical evidence supporting the appropriateness of the
Curvelet frame as an optimal sparse representation of both the initial pressure distribution
image and the volume of recorded pressure data. Building on this, they designed and com-
pared two CS reconstruction approaches, both in a variational framework, representing the
solution in the Curvelet basis. Because the latter is overdetermined, they employed an itera-
tively reweighted l1 minimization process, in which the solution’s coefficients are weighted
according to their magnitude, to enhance sparsity. In the first two-step approach, the full
volume of optoacoustic data is initially recovered from the subsampled measurements, and
the final reconstructed image is then obtained via time reversal. Thus, computationally
expensive iterations involving the forward and adjoint acoustic operators are avoided. In
the second approach, the image is reconstructed directly from the subsampled data. A
non-negativity constraint is considered for the objective function of the latter approach.
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4.3.4. Other Approaches to Optoacoustic Image Quality Improvement

To distinguish between signal and clutter, Alles et al. [71] introduced a hybrid method
that exploits the relatively lower coherence of clutter signals across channels of the array
transducer. SLSC is calculated to quantify the signal coherence in each spatial location, and
is used as a weighting map to selectively suppress clutter in reconstructed optoacoustic
images. The amplitude-insensitive SLSC map is normalized prior to multiplication with
the image in order to minimize distortion of the true amplitude values.

To incorporate the acoustic properties of the imaged object in the reconstruction
process, Lutzweiler et al. [77] proposed a segmentation algorithm in the signal domain. The
algorithm analyzes characteristic features of the hilbert-transformed unipolar sinogram,
to produce, via an iterative optimization process, an SoS map that consists of up to three
homogenous SoS compartments separated by convex and smooth boundaries. The derived
SoS map is then deployed during image reconstruction. The applicability of the method is
limited due to requirements on the number, geometric arrangement, as well as optical and
acoustic properties of the compartments. Large angular coverage of the detection surface
around the imaged object is also desirable.

Yang et al. [78] studied the impact of assuming uniform SoS during reconstruction in
the context of multispectral optoacoustic imaging, and developed a model-based recon-
struction technique to account for the acoustic mismatch between the heavy water coupling
medium and the tissue, and to eliminate spectral smearing artifacts. Assuming linearity of
the wave equation with respect to SoS variation, the pressure distribution is taken as the
superposition of two contributing terms, corresponding to the heavy water and the tissue.
This is incorporated into the model matrix of the discretized forward expression, which is
inverted via regularized optimization.

Also concerned with minimizing image distortion due to SoS variation, Deán-Ben et al. [76]
corrected the time of flight of back-projected signals in a volumetric imaging setup: the
wave propagation path is estimated, taking acoustic refraction at the interface between the
coupling medium and the tissue into account. The propagation is modelled by means of
the Fermat’s principle, and an iterative method is used to determine the location of the
point of incidence on the acoustic boundary. The application of pre-processing techniques,
including impulse response deconvolution and band pass filtering, was also reported.

The simplifying assumption of point-like transducers during acoustic inversion results
in the deterioration of reconstruction accuracy. To account for the 3D shape and frequency-
dependent directional sensitivity of transducers used in practice, Ding et al. [32] proposed
to realistically model the finite size of transducer elements by subdividing the transducer
surface into discrete elements. The signal measured by each transducer is, therefore,
approximated by the integral of the pressure on the transducer surface. Equivalently, in the
discrete forward model, the model matrix is expressed as a weighted (by surface area) sum
of multiple model matrices, one for each discrete surface element.

Chowdhury et al. [31] proposed to use the total impulse response (TIR) to model
the effects of different system components on image reconstruction. TIR can be decom-
posed into the spatial impulse response (SIR) and the electrical impulse response (EIR)
components, which capture the geometrical and electrical particularities of the system,
respectively. They derived the theoretical SIR by mathematically modelling the effect of
acoustic refraction at the interface between tissue and the coupling medium. Subsequently,
they experimentally obtained the TIR at a few measured locations, combined it with the
simulated theoretical SIR to extract the approximate EIR, and finally generated a synthetic
TIR (sTIR) by combining the simulated SIR with the derived EIR. The sTIR is incorporated
in the forward model in a model-based reconstruction scheme.

Considering that ultrasound images are naturally less prone to the limited-view
problem, Yang et al. [81] developed an ultrasound-driven optoacoustic inversion scheme
to compensate for the effects of incomplete data acquisition in a limited-view acquisition
scenario. Co-registered ultrasound images are segmented into regions of homogenous
acoustic properties, which may be reasonably expected to also exhibit homogeneity in
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terms of optical properties. The segmented images are used to derive a regional Laplacian
regularization matrix that incorporates this prior structural information in the model-based
inversion process, promoting the reconstruction of images that are smooth inside each
such region.

Steinberg et al. [50] demonstrated a real-time reconstruction technique appropriate
for limited-view and low-SNR acquisitions. A detailed forward model matrix accounts
for the acoustic absorption properties of the medium, as well as the effect of transducer
element size, shape, sensitivity, directivity, and impulse response. For physically accurate
reconstructions and robustness to noise, non-negativity and anisotropic total variation regu-
larization are incorporated. The notion of mathematical superiorization is used to enhance
the performance of a non-linear conjugate gradient algorithm and achieve fast convergence.

Considering that multiple surface measurements could be valuable in addressing a
range of limitations, including interference from out-of-plane absorbers and decreased
contrast at depth, Zalev and Kolios [87] implemented a framework for simultaneous 3D
image reconstruction and probe motion tracking. The process is formulated as a convex
optimization problem, in which the reconstructed image, as well as the probe configuration,
are jointly solved via a combined minimization objective. The developed system matrix,
which models acoustic signal generation and acquisition in the objective function, accounts
for wavelength-specific optical absorption, probe position and orientation, radiant fluence
distribution, and spatio-temporal transducer impulse response.

4.4. Rating and Selection of Studies

Figure 7 synoptically illustrates the distribution of the normalized total ratings against
the corresponding box plot, which defines the threshold (Q3 = 1.1) used to select the
studies that are finally featured. Points that correspond to ratings above the threshold
are colored red. The selected studies are referenced in Table 7, with their subgroups and
normalized total ratings. Figure 8 gives an all-encompassing overview of the individual
criteria ratings for the human-involving experiments in all studies of all subgroups. The
analytical rating tables for all subgroups, experiment categories, and criteria are given in
the Appendix A.
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5. Discussion
5.1. Close Inspection of Featured Works

We initiate the discussion with a close inspection of the works that surpassed the
selection threshold (Figure 7, Table 7), selecting and mentioning key characteristics that
contributed to their deviation from the rest of the studies in the respective subgroup.

The work by Chowdhury et al. [31] stands out in SACM, primarily due to the experi-
ments with both numerical and physical (printed) phantom targets that uniformly cover the
entire field of view with point absorbers. Imaging such targets enabled objective baseline
validation of the method’s correction capacity, and could constitute a universally applicable
preliminary step to evaluate a wide range of quality enhancement approaches. The avail-
ability of a reference image for the printed phantom target allowed quantitative assessment
of structural fidelity with the Structural Similarity Index Measure (SSIM) [93], applied usu-
ally in simulated settings only. Extensive simulations rendered the beamforming approach
by Ma et al. [44] distinct in SRES; in addition to the typically used arrangement of point
targets on the axial direction, a large circular source was simulated to assess shape distor-
tion. Additionally, closely situated numerical and physical point targets were imaged to
investigate improvement in the separability of adjacent structures, a commonly overlooked,
but important, feature. In SSPR, the learning-based reconstruction technique by Hauptmann
et al. [59] is also set apart, owing to numerical experiments in which a dataset of vessel-rich
volumetric images was generated using a collection of lung CT scans to simulate optoa-
coustic measurement data. Such data may more closely resemble measurements obtained
in real practice, and could be useful for the initial evaluation of various approaches, besides
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learning-based ones. Another advantage comes from the availability of multiple different
images to evaluate with, making statistical quantitative analysis possible.

Two approaches [49,75] were featured in SMOT. The OR-PAM motion correction
technique by Cheng et al. [75] was validated with a well-balanced set of experiments in
both artificial and realistic settings. The former examined the robustness of displacement
estimation to synthetically added noise at varying levels, as well as the tolerance to different
magnitudes of misalignment. In the latter, both the back of a human hand and a palm were
scanned, adding to the variety. The calculation of the PSNR and SSIM metrics between
all consecutive pairs of adjacent B-scans provided a measure of inter-B-scan similarity, a
useful means to quantify the increase in alignment and its consistency. Three distinct depth
layers in the reconstructed volume were visualized separately to demonstrate the correction
effects on the vascular networks of three different scales. Resolution was quantified with the
full width at half-maximum (FWHM) metric at six randomly selected vessel profiles in each
depth layer. This depth-wise qualitative and quantitative assessment showcases diligence
and attention to detail, also seen in the evaluation of the RSOM motion correction algorithm
by Schwarz et al. [49]. An interesting addition therein is the separation of low- and high-
frequency sub-bands in the visualization and calculation of the depth-wise contrast-to-noise
ratio (CNR), again facilitating assessment at different scales and depths. Nevertheless,
what distinguishes this study further is the examination regarding quantification capacity
and clinical utility; first, images of healthy skin and a psoriasis plaque were compared to
observe that the broadening of capillary loops, a typical biomarker of psoriatic skin, was
only visible after motion correction. In addition, using a multispectral RSOM configuration,
blood oxygenation measurements across a single vessel were shown to exhibit less abrupt,
more biologically plausible variations that were spatially associated with regions of vessel
bifurcation. Though analysis on a single vessel might not be considered sufficient to provide
significant evidence, this is a step in the right direction, exploiting the full potential of
multispectral optoacoustic imaging.

Among the featured works, those that exhibited exemplar attention to clinical and
quantification aspects are discussed in the following. The evaluation of the beamformer by
Yang et al. [51] attained the highest rank in SRES, with the quantitative analysis in terms
of discrimination capacity being a key determining factor; in an experiment involving a
cohort of 28 patients, descriptive features of histograms of optoacoustic image regions cor-
responding to cancerous and non-cancerous ovaries were analyzed to test for a statistically
significant difference between the two groups. In addition, a logistic regression analysis
on sets of features was performed, and area under the receiver operating characteristic
curve (AUROC) metrics were compared between methods. Overall, the proposed method
performed favorably. In SLVB, attention to clinically relevant aspects also distinguished
the two featured studies [50,81]. The prior-integrated reconstruction approach by Yang
et al. [81] was first assessed visually by confirming an enhancement in clarity of the radial
artery at three different depths, as well as in visibility of the carotid artery lumen and, if
present, atherosclerotic plaque. Quantitatively, between groups of three healthy volunteers
and five atherosclerotic patients, a statistically significant difference in the lipid content
of the carotid region could only be detected with the proposed approach. Lastly, the
quantification capacity, in the work of Steinberg et al. [50], was initially evaluated in vitro
with multispectral measurements of an indocyanine green (ICG) tube in chicken breast
tissue, demonstrating that sufficient correlation between the measured and the known
reference ICG spectra could only be achieved using the proposed reconstruction technique.
In the clinically relevant in vivo assessment, ten patients with suspected prostate cancer
lesions were scanned with multiple optical wavelengths before and after injection of ICG.
A statistically significant difference in optoacoustic amplitude in the prostate region, as
well as a dependence between relative optoacoustic amplitude and ICG dose, was only
observable in images reconstructed with the proposed method.



Biosensors 2022, 12, 901 25 of 33

5.2. Broader Assessment of the Analyzed Works Per Individual Criteria

Following the inspection of notable details in the featured studies, a broader assess-
ment through the distribution of individual criteria ratings (Figure 8) is also valuable
to reveal significant shortcomings and challenges. Concerning quantitative evaluation
adequacy, expressed by criterion C3, the relatively large number of studies in the low-end
of the rating spectrum indicates a scarce availability of objective, quantitative measures of
image fidelity. This is not unexpected, considering the absence of true reference images
when imaging subjects in vivo. Remarkably, the distribution of C4 ratings clearly reveals
an almost universal absence of evaluation in terms of anatomical verity, quantification
capacity, or clinical utility. In other words, image quality was rarely examined in the context
of clinical value. This highlights an area with great potential for improvement on the way to
more mature evaluation procedures. Another significant observation is that little attention
was given to the effect of absorber depth on image quality, as made evident by the ratings
for criterion C5. However, the highly depth-dependent optical and acoustic attenuation
properties of tissue call for more granular assessment, ideally at multiple depth levels, to
fully investigate a method’s correction capacity.

5.3. Recommendations

In light of the aforementioned, a set of recommendations for the comprehensive
evaluation of future research efforts in optoacoustic image quality improvement can be
assembled. In the preliminary stage, experiments with numerical and physical phantoms
may assess the resolution, existence of artifacts, and overall structural fidelity of the images.
This would be greatly facilitated by widely available, standardized targets that cover the
entire field of view with absorbers of multiple scales, in a variety of simple and complex
geometric arrangements, and situated in realistic, lossy media. Such standardization
would provide common references for an objective comparison of different methods,
which is currently unfeasible. Absorbing substances with known spectral responses could
be involved to enable further validation of the quantification capacity in multispectral
configurations. Following the preliminary phase, advancing with evaluation in relevant
clinical settings, designed with clinical utility in scope, is preferable. Experiments with
one or few individuals can demonstrate possible improvement in clinical utility, especially
if findings are reported at multiple depths and scales, and if the enhancement is visually
obvious. Nevertheless, studies involving multiple participants and reporting quantitative,
statistically significant findings will provide more substantial evidence, less prone to bias.

5.4. Limitations

Our work comes with limitations. It can be argued that the current design of the rating
procedure does establish an absolutely objective, infallible measure of study quality; an
alternative set of weights for the individual criteria or the experiment categories could
be proposed, potentially affecting the final selection of studies. Our choices reflect our
intent to minimize subjective bias by weighting the primary criteria equally, given that
they were elicited from, and were developed to be, applicable to works with a broad range
of purposes, as well as to emphasize the importance of evaluation with human subjects.
Future efforts could explore alternative designs and the standardization of such sets of
criteria to establish thorough study quality control pipelines. Nevertheless, works that
have demonstrated evaluation rigor can be reasonably expected to stand out in terms of
deviation from their subgroup mean rating, as expressed by the normalized total rating
scores. Furthermore, though the exclusive examination of studies that have reported
human-involving experiments allowed us to maximize clinical relevance, future work
could identify approaches with substantial potential for clinical application by seeking
studies that have performed validation with animal subjects in vivo, probing into the
domain of pre-clinical optoacoustics research.
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5.5. Overall Perspective

From an overall perspective, with image quality improvement and assessment ap-
proaches in clinical optoacoustic imaging as the core domain of interest, this review re-
trieved relevant research material through an extensive, systematic search and screening
process. An overview of limiting factors that contribute to optoacoustic image quality
deterioration was presented; they were categorized into limitations stemming from the
hardware, reconstruction algorithms, tissue, and acquisition process. The landscape of
the identified image quality improvement approaches was outlined, with concise descrip-
tions of each method’s purpose and key technical details. At a high level, the methods
were clustered into signal-domain, image-domain, reconstruction, and hybrid techniques,
depending on whether they were introduced prior to, after, or during image reconstruction.

Regarding image quality assessment, proper practices and prevalent shortcomings
were sought. In a systematic analysis of the included material, subgroups of studies with
common objectives and similarly structured evaluation procedures were composed. The
evaluation sections of each study were extensively analyzed, yielding a set of criteria that
enabled, inside each subgroup, a comparative rating in terms of evaluation sufficiency. The
rating process generated two primary outcomes: first, a selection of works that exhibited
significant positive deviation from their subgroup average in terms of total rating was
featured, feeding a discussion on characteristics that rendered them eminent, in context
with the corresponding criteria. Such characteristics were identified in numerical, physical
phantom, and human-involving evaluation experiments. Moreover, concentrating on the
latter, the inspection of the criteria-wise distribution of ratings revealed improvement po-
tential in the quantitative assessment; a substantial shortfall in depth-wise evaluation; and
a wide disregard of anatomical verity, quantification capacity, and clinical utility aspects.

6. Conclusions

Following an initiatory exploration of image-quality-limiting factors and improve-
ment approaches in clinical optoacoustic imaging, our review transitioned to an in-depth,
critical analysis in terms of image quality evaluation practices. Given the relative youth of
optoacoustic imaging, our findings reflect the naturally experimental, investigative form
of a technology still under development. Nevertheless, it is our view that taking them
into consideration is going to be integral in the process of advancing the modality towards
a more mature state. To this end, we proposed a set of realistic recommendations for
the comprehensive and objective evaluation of optoacoustic image quality improvement
approaches, with a view to establish solid ground for upcoming research, fostering the
transferability of optoacoustic imaging from labs to clinical practice. With respect to future
directions, our work may be extended towards preclinical, animal-involving studies. Addi-
tionally, keying in on research efforts that have attempted quantitative evaluation in terms
of clinical utility could yield a more clinically relevant body of material.
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Appendix A

Table A1. Analytical ratings for all studies included in SSPR. The color in the table rows indicates
the category of experiments as follows: numerical experiments , experiments with phantoms , and

experiments with humans in vivo .

SSPR: Improving Reconstruction from Sparse Data
Reference C1 C2 C3 C4 C5 C6 Subtotal Total Normalized Total

[59]
2.5 2.5 3 0 0 2 8.4

1.92 1.390
2 2.5 2.5 0 0 1 7.2

[61]
0

1.52 1.10
3 1.5 2.5 0 0.5 2 7.9

[57]
1.5 2 2 0 0.5 0 6

1.44 1.040
2 1.5 1.5 0 0.5 0 5.5

[48]
0

1.38 10
3 1.5 2 0 0.5 1 7.2

[63]
0

1.37 0.992 1.5 1.5 0 0 1 5.2
2 1.5 1 0 0.5 2 5.4

[64]
1.5 2.5 0.5 0 0.5 1 5.2

1.33 0.960
2 2.5 0.5 0 0 1 5.2

[62]
0

1.33 0.960
2 1.5 2.5 0 0.5 2 6.9

[58]
0

1.19 0.860
2 2 1.5 0 0.5 1 6.2

[60]
1.5 1 0 0 0 2 2.9

0.92 0.660
2 1 0 0 0.5 1.5 3.8

Table A2. Analytical ratings for all studies included in SRES. The color in the table rows indicates
the category of experiments as follows: numerical experiments , experiments with phantoms , and

experiments with humans in vivo . The evaluation criterion C6 was not applicable to this subgroup,
thus the corresponding column was left empty.

SRES: Resolution Enhancement
Reference C1 C2 C3 C4 C5 C6 Subtotal Total Normalized Total

[51]
2.5 2.5 2 0 2 9

3.1 1.51 2.5 1 0 0 4.5
3 2.5 2.5 2.5 0.5 11

[44]
3 2 2 0 3 10

2.53 1.221.5 2 2 0 1.5 7
2 2 2 0 1 7

[67]
2.5 2.5 2 0 3 10

2.13 1.031.5 2.5 1.5 0 1.5 7
1.5 2.5 0 0 1 5

[66]
0

2.03 0.981.5 2 2 0 2.5 8
2 2 2.5 0 1 7.5

[65]
1.5 1 2 0 3 7.5

2 0.961.5 1 1.5 0 2 6
2 1 1.5 0 1 5.5

[70]
1.5 1.5 1 0 1.5 5.5

1.97 0.952 1.5 2 0 2 7.5
2 1.5 1.5 0 0.5 5.5

[32]
2 1.5 0 0 1.5 5

1.9 0.912 2 0 0 1.5 5.5
2 2 1.5 0 0.5 6

[69]
2.5 2.5 2.5 0 1 8.5

1.87 0.90
2 2.5 2 0 0 6.5

[68]
0

1.07 0.511.5 1.5 1 0 0 4
2 1.5 0 0 0.5 4
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Table A3. Analytical ratings for all studies included in SART. The color in the table rows indicates
the category of experiments as follows: numerical experiments , experiments with phantoms , and

experiments with humans in vivo . The columns corresponding to evaluation criteria that were not
applicable to this subgroup were left empty.

SART: Elimination of Overlaying Artifacts

Reference C1 C2 C3 C4 C5 C6 Subtotal Total Normalized
Total

[72]
2 2 0 2 6

1.5 1.10
2.5 0 1 0.5 4

[26]
3 2.5 0 2 7.5

1.5 1.10
2 0.5 0 1 3.5

[36]
0

1.38 1.013 0.5 0 1 4.5
2 0.5 1 0.5 4

[73]
0

1.29 0.953 1.5 0 0.5 5
2.5 0.5 0 0.5 3.5

[71]
0

1.13 0.822 0 0 1 3
2 0 1 0.5 3.5

Table A4. Analytical ratings for all studies included in SMOT. The color in the table rows
indicates the category of experiments as follows: experiments with synthetic motion , and

experiments with humans in vivo . The columns corresponding to evaluation criteria that were
not applicable to this subgroup were left empty.

SMOT: Motion Correction

Reference C1 C2 C3 C4 C5 C6 Subtotal Total Normalized
Total

[49] 2.4 1.420
4 3 2 3 12

[75] 2.3 1.362.5
3 3 0 3 9

[40] 1.7 1.012
2.5 2 0 2 6.5

[41] 1.3 0.770
3 2.5 1 0 6.5

[74] 0.7 0.412
1.5 0 0 0 1.5
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Table A5. Analytical ratings for all studies included in SACM. The color in the table rows indicates
the category of experiments as follows: numerical experiments , experiments with phantoms , and

experiments with humans in vivo . The columns corresponding to evaluation criteria that were not
applicable to this subgroup were left empty.

SACM: Acoustic Coupling Mismatch Modeling

Reference C1 C2 C3 C4 C5 C6 Subtotal Total Normalized
Total

[31]
3 2 0 2 7

2.17 1.222.5 2.5 0 2 7
3 0 0 1 4

[78]
0

1.71 0.962 1 1 0 4
2.5 1 1 1 5.5

[77]
2 2 0 1 5

1.63 0.911.5 0 0 1 2.5
2 1 0 1 4

[76]
1.5 0 0 2 3.5

1.58 0.891.5 0 0 2 3.5
2 1 0 1 4

Table A6. Analytical ratings for all studies included in SLVB. The color in the table rows indicates
the category of experiments as follows: numerical experiments , experiments with phantoms , and

experiments with humans in vivo . The evaluation criterion C6 was not applicable to this subgroup,
thus the corresponding column was left empty.

SLVB: Improving Reconstruction from Limited View/Bandwidth Data

Reference C1 C2 C3 C4 C5 C6 Subtotal Total Normalized
Total

[50]
2.5 2.5 2.5 0 0.5 8

3.57 1.512.5 2.5 2.5 1.5 2 11
3 2.5 2.5 3 0.5 11.5

[81]
3 2 2.5 0 0.5 8

2.93 1.240
3 2 2.5 2.5 2 12

[80]
2.5 2 3 0 1 8.5

1.53 0.651.5 2.5 0 0 0 4
1 2.5 0 0 0 3.5

[79]
2.5 2.5 2.5 0 1.5 9

1.37 0.581.5 2.5 0 0 0 4
1.5 1 0 0 0 2.5
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