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Abstract: Since their initial description by Elie Metchnikoff, phagocytes have sparked interest in a
variety of biologic disciplines. These important cells perform central functions in tissue repair and
immune activation as well as tolerance. Myeloid cells can be immunoinhibitory, particularly in the
tumor microenvironment, where their presence is generally associated with poor patient prognosis.
These cells are highly adaptable and plastic, and can be modulated to perform desired functions
such as antitumor activity, if key programming molecules can be identified. Human clear cell renal
cell carcinoma (ccRCC) is considered immunogenic; yet checkpoint blockades that target T cell
dysfunction have shown limited clinical efficacy, suggesting additional layers of immunoinhibition.
We previously described “enriched-in-renal cell carcinoma” (erc) DCs that were often found in tight
contact with dysfunctional T cells. Using transcriptional profiling and flow cytometry, we describe
here that ercDCs represent a mosaic cell type within the macrophage continuum co-expressing M1
and M2 markers. The polarization state reflects tissue-specific signals that are characteristic of RCC
and renal tissue homeostasis. ErcDCs are tissue-resident with increasing prevalence related to tumor
grade. Accordingly, a high ercDC score predicted poor patient survival. Within the profile, therapeutic
targets (VSIG4, NRP1, GPNMB) were identified with promise to improve immunotherapy.

Keywords: mononuclear phagocyte system; macrophage plasticity; tissue macrophage; tumor
microenvironment; gene expression; VSIG4; NRP1; GPNMB

1. Introduction

Elie Metchnikoff first formulated his phagocyte theory in 1882. While his family
visited a circus, he observed with his microscope so-called “mobile cells” in transparent
star-fish larva [1,2]. He was studying these cells in the context of digestive processes and
on that day, the idea crossed his mind that these cells might also eat microbes. He then
performed a simple experiment piercing a thorn into the transparent starfish. The next day,
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the thorns were surrounded by mobile cells. He concluded that these cells take up and
digest invasive bacteria and, thus, considered his theory confirmed. Over the following
years, Metchnikoff continued studying “his” mobile cells, which were eventually named
phagocytes, a term still in use today [1,2].

His first article on the phagocyte hypothesis was published in 1883. In this report,
he provided evidence that mobile cells from frogs were involved in host defense as well
as the elimination of dying or degenerating endogenous cells [3]. In 1887, he proposed
the idea that macrophages and microphages were capable of phagocytosis [3]. From 1888
to 1916, Mechnikoff conducted his research in Paris at the Pasteur institute [2,4]. It was
during this time that he established his theory of innate immunity and, together with
Paul Ehrlich, received the Nobel Price “in recognition of their work on immunity” in
1908 [2–4]. Since their initial description, much has been learned about the biology of
phagocytes, but many mysteries have yet to be explored. While initially thought to be one
cell type, a plethora of variations have been identified that are summarized by the concept
of the mononuclear phagocyte system (MPS) [5–12]. By responding to innate signals and
lymphocyte mediators, phagocytes act as integral components of the immune response to
microbes, tissue injury and cell transformation. They play a central role in the control of
tissue homeostasis, wound healing and damage prevention. These processes are mediated
in part through their capacity to remove cellular debris and induce angiogenesis, as well as
by their ability to activate or tolerize relevant immunocytes. The effector activities of MPS
cells are strongly dependent on the cell’s polarization state, imprinted by signals from their
local environment [13–16].

Clear cell renal cell carcinoma (ccRCC) arises from the epithelial cells of the renal tubu-
lointerstitium. This tumor type is generally richly infiltrated by immune cells, including T,
NK and myeloid cells. However, despite an abundance of CD8+ T cells that can recognize
and destroy tumor cells when taken out of the ccRCC environment [17–19], control of
tumor progression fails, suggesting local suppression of T cell effector activity [20–22].
Invigorating the T cell response through a blockade of the immune checkpoint molecules
PD-1 or PD-L1, in combination with a blockade of the checkpoint CTLA-4 or with ty-
rosine kinase inhibition (TKI) has been approved as a first line treatment for advanced
and metastatic RCC [23,24]. Despite some improvements in management of the disease
through these T cell targeting therapies, only a fraction of patients has been shown to
respond [23–26], suggesting that mechanisms beyond those directly targeting the T cells
control the antitumor response. This underscores the critical need to better understand the
tumor environment and to identify additional therapeutic targets beyond CTLA-4, PD-1
and PD-L1 to expand the range of patients that can be effectively treated.

We have previously reported an unusual myeloid cell type in the ccRCC tissue [27]
that co-expresses the macrophage marker CD14 and several DC markers, such as CD209, a
marker of interstitial DCs with cross-presentation ability [28], as well as the costimulatory
molecules HLA-DR and CD40. We designated this myeloid subpopulation “enriched-in-
renal-carcinoma DCs” (ercDCs), due to its strong enrichment in the tumor center, where they
represent over 60% of the CD209+ population (mean, 62%; range, 26% to 80%), compared
to non-tumor kidney cortex (mean, 19%; range, 0% to 43%). In ccRCC tissues, ercDCs have
often been found to be tightly engaged with T cells, suggesting intercellular communication
in situ [27].

In murine kidney interstitium, DCs with dual macrophage (F4/80) and DC (CD11c)
markers have been described as conveying tolerogenic and tissue protective functions [29,30].
Considering this marker analogy, and the observed ercDC/T cell contacts, we hypothesized a
functional analogy whereby ercDCs could contribute to tumor immune evasion by shielding
emerging tumor cells from immune attack.

If such a scenario is correct, ercDCs could represent a promising therapeutic target if
molecules or pathways underlying their functional modulation could be identified. Previous
experiments suggested that ercDC were able to cross-present antigen for T cell recognition.
However, they did not secrete IL-12 and were unable to perform allogeneic T cell priming
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in vitro. Further evidence of immunomodulation was seen in co-culture with tumor cells and
T cells where the presence of ercDCs enhanced tumor cell proliferation and reduced CD8 T
cell recruitment. Immune histology supported this evidence as lower numbers of CD8+ and
NK cells have been seen in ccRCC tissues with high ercDC content [27].

To help clarify the functional attributes of ercDCs and to identify markers for targeted
approaches, as well as to position them within the MPS continuum, the CD14+CD209+ cell
population was sorted from ccRCC tissue by flow cytometry and subjected to transcrip-
tomic profiling. Transcript profiles have been useful in defining subsets and polarization
states within the MPS continuum [6] and helped assign functional characteristics as demon-
strated, e.g., by Houser et al. who described two distinct subsets of CD14+ decidual
macrophages, CD11cHI and CD11cLO, with distinct functions in tissue remodeling, growth
and development [31].

In the present study, we provide a molecular characterization of ercDCs isolated from
ccRCC tissues. A definition of functional characteristics as well as their relationship to
myeloid subtypes from other human tissues was established. The transcriptomic profiling
identified ercDCs as a unique myeloid subset within the macrophage spectrum, and placed
them in close relationship to inflammatory macrophages from the ascites of human ovarian
cancer. The identified ercDC-specific gene expression profile was predictive for patient
survival and suggests potential targets for therapeutic intervention that may help improve
clinical efficacy of immunotherapy.

2. Materials and Methods
2.1. Tissues, Cells and Cell Culture

Tissue and blood collection were approved by the local ethics commission of the LMU
München, and patients/donors consented to the donation. Tissue samples of histologically
diagnosed clear cell renal cell carcinoma (ccRCC) (n = 15) were obtained from untreated
patients who underwent surgery at the Urology clinic Dr. Castringius Planegg (Munich,
Germany). Patient characteristics including TNM classification are shown in Table S1.
Fresh postoperative material was used to prepare cell suspensions and cryosections [27].
Peripheral blood mononuclear cells (PBMCs) from healthy donors (HD) were used to
isolate monocytes (using CD14+ microbeads, Miltenyi Biotec, Bergisch Gladbach, Germany)
and to sort CD1c+ DC and slanDCs using FACS (Aria IIIu from BD Biosciences, Franklin
Lakes, NJ, USA). Before cell sorting, PBMCs were depleted of B and NK cells via CD19+ and
CD56+ microbeads according to the manufacturer’s protocol (Miltenyi Biotec). M1- and
M2-macrophages were generated from blood monocytes in vitro, as described [32]. Briefly,
monocytes were cultured in 6-well plates (Nunc by Thermo Fisher Scientific, Waltham,
MA, USA) in serum-free medium (5 × 106/4 mL of AIM-V) supplemented with M-CSF
(50 ng/mL; R&D Systems, Minneapolis, MN, USA) over 7 days followed by 18 h treatment
with IFN-γ (20 ng/mL; R&D Systems) plus LPS (100 ng/mL; Sigma-Aldrich, Darmstadt,
Germany) for M1-polarization, or IL-4 (20 ng/mL; PromoKine by PromoCell GmbH,
Heidelberg, Germany) for M2-polarization.

2.2. Cell Sorting

ErcDCs and macrophages were sorted from ccRCC tissue-cell-suspensions stained
with CD45-PeCy7, CD11c-APC, CD3-PB, CD209-PE (all BD Biosciences), CD14-PerCPCy5.5
(eBioscience, San Diego, CA, USA) and LIVE/DEAD® Fixable Near-IR Dead Cell Stain
Kit (Thermo Fisher Scientific). Sorting gates were set on CD209+CD14+ cells (ercDCs)
and CD209−CD14+ cells (macrophages), among pre-gated CD45+, live, single CD11c+

CD3− cells. CD1c+ DC and slanDCs were sorted from B- and NK-depleted PBMCs of
healthy donors (HD) using anti-CD11c-PE, anti-CD3-PB (all BD Biosciences), anti-CD56-
APC (Beckman Coulter, Brea, CA, USA), anti-CD19-PB (Dako by Agilent, Santa Clara,
CA, USA), anti-CD1c-PeCy7 (Biolegend, San Diego, CA, USA), anti-slan-FITC (Miltenyi
Biotec) and LIVE/DEAD® Fixable Near-IR Dead Cell Stain Kit. The gating strategy and
instrument parameters are in Supplemental Figure S1. Gates were set very strictly, not
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covering the whole population, to avoid contamination with other cell populations. Cell
population purity varied between 98–100%. Cells were directly sorted into 250 µL of RLT
lysis buffer with ß-mercaptoethanol (RNeasy Micro Kit by Qiagen, Venlo, The Netherlands)
using FACSAria IIIu (BD Biosciences), then homogenized (QIAshredder by Qiagen) and
stored at −80 ◦C. Details about sorted cell types and numbers of biological replicates are
listed in Table S2.

2.3. Polychromatic Flow Cytometry

Polychromatic Flow Cytometry involved 1–5 × 105 cells being incubated with respective
antibodies for 30 min/4 ◦C and LIVE/DEAD® Fixable Near-IR or Blue fluorescent Dead Cell
Stain Kit, washed, optionally incubated with secondary antibodies and acquired at LSRII (BD
Biosciences). In tissue-cell-suspensions, CD45 was used to identify leukocytes after exclusion
of dead cells and doublets. Myeloid cells were selected based on CD11c (pan-myeloid marker
in human) with exclusion of CD3+ T cells. Within CD11c+ cells, ercDCs and macrophages
were distinguished as CD209+CD14+ double-positive cells (ercDCs) and CD14 single-positive
cells (macrophages). For M1/M2-macrophages, live cells where selected and doublets were
excluded before marker analysis. Antibodies are listed in Table S3.

2.4. Immunofluorescence Histology and Confocal Microscopy

Cryosections were fixed with 4% paraformaldehyde (PFA, Merck, Darmstadt, Germany)
and stained with primary and fluorescent-labeled secondary antibodies as described [27]. The
antibody combinations were goat-anti-human VSIG4 (IgG by R&D Systems) and mouse-anti-
human CD209/DC-SIGN (mouse IgG2a by SantaCruz Biotechnology, Santa Cruz, CA, USA)
followed by secondary antibodies donkey anti-goat-A488 (Thermo Fisher Scientific) and rat
anti-mouse-IgG-Cy5 Slides were mounted with ProLong® Gold Antifade (Thermo Fisher
Scientific). Fluorescence images were captured with a laser scanning microscope TCS SP5
(Leica Microsystems, Wetzlar, Germany) with settings as described [27].

2.5. RNA Isolation, Microarray Hybridization

RNA was prepared using RNeasy Micro Kit (Qiagen). RNA quantity and quality
was assessed using a Nanodrop 1000 Spectrometer (Peqlab, Erlangen, Germany) and
Agilent 2100 Bioanalyzer. From in vitro-generated cells (M1-, M2-macrophages) and CD14+

monocytes, three replica pools (each consisting of RNA from 5 different HD) were generated.
RNA from flow-sorted cells was not pooled (Table S2). RNA (30 ng of each replica pool;
0.5–15 ng of sorted cells) was subsequently amplified and converted into cDNA by a
linear amplification method using WT-Ovation PicoSL System in combination with the
Encore® Biotin Module (both from NuGen, San Carlos, CA, USA). cDNA was hybridized
to Affymetrix GeneChip® Human Gene 1.0 ST Arrays.

2.6. Microarray Data Preprocessing and Probe Set Filtering

Raw intensity data were processed with R/Bioconductor (Bioconductor.org (accessed
on 7 September 2022)). If not stated otherwise, functions were called with default parame-
ters. We calculated normalized expression values for each study group (in-house generated
and external data sets, see Table S2B and Supplemental Experimental Procedure) indepen-
dently using Robust Multichip Average (RMA, library “oligo”) preprocessing including
background correction and quantile normalization. Technical control probe sets as well as
probe sets whose values did not vary between arrays (variance = 0) were excluded from
all further analyses. Many-probe-sets-to-one-gene relationships were resolved by keeping
only one probe set with the highest variance for each gene. Further analyses included only
informative genes, which we defined as the group with the 50% most variable expression
within the respective study group.

Bioconductor.org


Cells 2022, 11, 3289 5 of 27

2.7. Combining Microarray Studies

For comparing transcript levels across studies, gene expression values were merged
based on annotated gene entrez ids and study batch effects were removed using the
COMBAT method [33] (library “inSilicoMerging”). We included all samples of a study in
the merge and selected samples of interest afterwards.

2.8. Hierarchical Clustering and Heatmaps

Gene and samplewise hierarchical clustering of expression profiles used Euclidean
distances and the complete agglomeration method. Heatmaps represent color-coded
genewise standardized expression levels (mean = 0, standard deviation = 1; z-score).

2.9. Marker Genes

Nearest shrunken centroid classifiers [34] were constructed with the function “pamr.train”
and cross-validated with the function “pamr.cv” (library “pamr”) (Figure S1C) on informative
genes of compared data sets. The classification threshold (1.88) was set such that the false
positive classification rate was smaller than 20% and a preferably small number of genes
was obtained.

GeneMANIA network analysis [35] was conducted based on the ercDC_ccRCC marker
genes with default parameters (data as of May 2014).

Differentially expressed genes (DEGs) between ercDC_ccRCC&infMΦ_ascOvCa and
the control group (all other samples/groups listed in Table S2) were identified by a linear
model using empirical Bayes moderated t-tests (R package “limma”) and Benjamini-Hochberg
correction for multiple testing. DEGs were defined by an adjusted p-value < 0.05.

For Gene ontology enrichment (GO) analysis, hypergeometric p-values for enrichment
or depletion of differentially expressed genes in GO categories of the group “biological
process” were calculated with the function “hyperGTest”, Bioconductor package “GOstats”.
Informative genes served as background and p-value threshold was set to 0.001.

Enrichment of differentially expressed genes within InnateDB [36–38] signaling path-
way gene sets (from “KEGG”, “BioCarta”, “Reactome”, “NetPath”, “INOH” and “PID”)
was defined with default settings at InnateDB.com (data as of May 2014). Informative genes
served as background.

GSEA analysis was performed with GSEA 1.0 R-script 2014 of the Broad Institute with
default parameters [39] (http://www.broad.mit.edu/gsea/ (accessed on 8 April 2014)).

For describing gene-expression-module-to-cell-type relationships, we first calculated
median expression values per gene for each cell type. Eigengene values for gene expression
modules as described [40] were calculated with the function “moduleEigengens” from the
R-package “WGCNA” [41]. Eigengenes were correlated to cell types using Pearson’s method.

2.10. ercDC Ccore in the Cancer Genome Atlas (TCGA) and the Validation (Rostock) Cohort

Transcriptome profiling data (“HTSeq-FPKM-UQ”) of the TCGA ccRCC cohorts (KIRC,
LAML) were downloaded from the Genomic Data Commons Portal https://gdc-portal.
nci.nih.gov/ (accessed on 9 December 2016 and 15 December 2016, respectively). Clinical
data were obtained from the same platform on 10 October 2016 and 3 November 2016,
respectively. To be used in this study, TCGA samples had to meet the following criteria:
Patients with neoadjuvant therapies (“history_of_neoadjuvant_treatment”) were excluded.
Moreover, only subjects with available survival data were considered (overall survival, OS,
for the LAML cohort; cancer-specific survival (CSS) as defined in [42] for the ccRCC cohort).
Follow-up time was required to be greater than 0. Missclassified patients [42,43] revealed
by cluster analysis and/or by re-evaluation of tissue histology were also discarded from
the TCGA ccRCC cohort. Characteristics of the final TCGA ccRCC cohort (n = 442 patients)
are summarized in Table S4.

http://www.broad.mit.edu/gsea/
https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
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The validation cohort included a collection of selected G1 and G3 ccRCC tissues
(n = 14 each) and corresponding normal kidney tissue (n = 14) microarray data (“Rostock
cohort”, Array GeneChip HG U133 Plus 2.0, Affymetrix) [44,45]. Clinical data and follow
up are found in Table S4.

An ercDC score was established by gene expression deconvolution. Expression val-
ues of the 61 marker genes in the ercDC arrays were first collapsed by taking the me-
dian. FPKM-UQ expression values in the TCGA ccRCC cohort were log-transformed
(log2(x + 1)). Subsequently, using the marker gene set, a simple linear regression model was
fit with “expression in ercDC cell type” as predictor and “expression in sample” as regressor.
Finally, the slope of the linear model constituted the ercDC score of a sample. Conditional
inference trees from R-package partykit_1.1-1 [46,47] were used to identify groups with
significantly varying CSS curves in both the TCGA ccRCC cohort and the validation cohort.
The p-value criterion of the conditional inference tree method was weakened (0.1) and
the minimum group size was set to 10. Kaplan–Meier curves and corresponding log-rank
tests using R-package survival_2.40-1 [48] were applied for survival analysis. Further,
R-package coin_1.1-3 [49] was used to perform a linear trend test between ercDC score and
tumor grade.

2.11. Public Access to Raw Data of Data Sets Analyzed in This Paper

Our data sets of human ercDCs and macrophages from ccRCC tissue, myeloid cells
from PBMCs and in vitro-generated M1- and M2-macrophages are accessible via super
series GSE108312.

3. Results
3.1. The ercDC Transcriptional Profile Identifies Them as a Unique Myeloid Subset within the
Macrophage Spectrum

The CD14+CD209+ ercDCs and CD209−CD14+ macrophages were sorted from ccRCC
tissue cell suspensions (Figure S1A, Tables S1 and S2A) using flow cytometry and subjected
to genome-wide gene expression analysis. Reference transcriptomes were generated from
sorted blood monocytes (CD14+), slanDC and CD1c+ DC (all from PBMCs of healthy
donors (HD)), and from in vitro-polarized M1- and M2-macrophages as described [11,32]
(Figure S1B, Table S2A). CD1c+ DCs and slanDCs have been described to exhibit proin-
flammatory DC characteristics with IL-12 production and T cell priming capacity [50,51].
They were used as DC reference cell types in the comparison, to substitute for interstitial
DCs, i.e., CD209+CD14− cells, which could not be sorted from ccRCC tissue cell suspensions
due to low cell frequency. In comparison to ercDCs, they were expected to be opposite to
the ercDCs, for which a lack of IL-12 secretion and priming capacity has been observed [27].

Previously, using flow cytometry analysis, it was difficult to assign ercDCs to ei-
ther macrophages or DC subgroups as they co-expressed markers of both cell types, i.e.,
CD209, CD14, and the co-stimulatory molecules CD80, CD86 and CD40. Analysis of
their transcriptome with respect to core macrophage and DC genes [40,52,53] now re-
vealed that ercDC_ccRCC strongly expressed most of the human macrophage-associated
core genes and showed expression of some of the established DC-associated core genes
(Figure 1A). Protein expression of selected macrophage (CD64A, CD14, MerTK, CD32A)
and DC markers (ANPEP/CD13, FLT3) was confirmed by flow cytometry (Figure 1B,C).

The assumption that ercDCs more closely represent a macrophage rather than a DC
subtype was confirmed by analyzing transcription and growth factors from a second MPS
classification scheme [54]. Macrophage-associated factors MAF, MAFB, CREG1 and CSF1R
were robustly expressed, DC-associated transcription factors IKZF1, BCL6 and IRF4 showed
weak expression (Figure S2).

It is recognized that macrophages represent a continuum of different subtypes, wherein
M1- (classical) and M2- (alternatively activated) macrophages are positioned at the op-
posing ends of the polarization spectrum [12,55]. In addition, tissue macrophages are
extremely heterogeneous and may adopt specialized functions as they respond to a variety
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of signals that change during homeostasis and inflammation [5,15,16]. A classification
system based on the fundamental homeostatic macrophage activities—host defense, wound
healing/tissue modulation and immunoregulation—has been established to help address
this complexity [10]. To position the ercDC_ccRCC within these classification schemes,
we analyzed the transcriptome with regards to gene lists associated with biologic func-
tion [10,56,57] (Tables S5–S7) including also an invasive signature gene list [57] which
we supplemented with key angiogenic genes taken from the GSEA MSigDB database
(Table S8). Notable was the strong expression of the prototypic M1-gene CD64A [7,58]
(Figure 2A) and M2-associated markers, including MerTK, CD204, CD206 and CD36
(Figure 2B). Validation of surface expression was performed for CD64A (Figures 1B and 2C)
and M2-markers CD204, CD206 and CD36 (Figure 2B, bottom). Single cell flow cytometry
of ccRCC tissue suspensions confirmed on protein level that the majority of CD14+CD209+

cells co-expressed CD64A (M1-marker) with MerTK and MSR1/CD204 (both M2-markers)
(Figure 2C) indicating that ercDCs are mosaic cells on the single cell level.

ErcDC_ccRCC were found to express a number of chemokines (CXCL9, CXCL10
and CXCL11) that are characteristic of M1-macrophage subtypes associated with host de-
fense activity and help in the recruitment of Th1-polarized immune cells (Figure 2A).
ErcDC_ccRCC also expressed genes linked to wound healing and tissue remodeling
(i.e., STAB1, FN1, F13A) (Figure 2D), thus resembling CD11cLO MΦ_decidua, which have
been linked to wound healing and tissue remodeling [8,31,59,60]. In addition, ercDCs
showed a strong signature of angiogenesis and invasion-associated genes (Figure 2E, top).
These included genes associated with the recruitment of proinflammatory monocytes, e.g.,
CCL2, CCL8 and NRP1, as well as proinflammatory factors such as TNF, IL6 or IL1B.
Genes involved in degradation of the extracellular matrix (e.g., MMP2, MMP9), hypoxia
regulated genes (HIF1A) and proangiogenic genes (GPNMB, VEGFA, IGF1) were also
part of the ercDC profile. High mRNA expression of MMP2 and MMP9 confirmed our
previously described protein data and, together with the angiogenic signature, supports the
hypothesis that ercDCs help promote tumor growth [27]. Of note was the robust expression
of VSIG4 in ercDC_ccRCC. Surface protein expression of VSIG4, GPNMB, NRP1 and CD9
was validated by flow cytometry (Figure 2E, bottom).

The ercDC transcriptome also contained a number of immunoregulatory genes (i.e., MAF,
VSIG4, TREM2, CD206) (Figure 2F) [9,61,62]. The strong expression of factors linked to the
induction of T cell tolerance, MAF [63] and VSIG4 [64], support an immunoregulatory role for
ercDCs in ccRCC tissue. VSIG4 was strongly expressed on the protein level. Multiparameter
immunofluorescence histology of ccRCC tissues showed that the majority (85–98%) of CD209+

cells co-expressed VSIG4. Tumors of advanced stage harbored more CD209+VSIG4+ cells
(abs. median number 45.7, range 21–75) than those of earlier stages (median number 35,
range 31–58) (representative images, Figure 2G). Well described markers of immunoinhibition
(PD-L1/B7-H1 and PD-L2/B7-DC) [65,66] were only marginally expressed. TIM-3 showed
weak expression, B7-H3 was strongly expressed (Figure 2H).

3.2. ErcDCs Have a Gene Expression Signature Similar to Inflammatory Macrophages from Ascites
of Ovarian Cancer with Characteristics of Immune Tolerance

Renal tubulo–interstitial DCs are described to act as sentinels maintaining homeostasis
and protecting the renal tubuli from immune-induced injury through tolerogenic mecha-
nisms [27,67]. To investigate whether ercDCs arising in the tubulointerstitial milieu of ccRCC
similarly exhibit tolerizing features that might confer tumor immune protection, we con-
ducted a global analysis across published transcriptomes. The reference data comprised
human myeloid cell types from blood and various non-lymphoid tissues, including myeloid
subsets originating from tissues with described tolerogenic milieus (detailed information
together with the rationale for their selecting are in supplemental procedures and Table S2B).
In brief, the subsets tested were CD11cHI and CD11cLO decidual macrophages [31], three
DC subtypes from the lamina propria distinguished by their expression of CD103 and Sirpα
(CD103+Sirpα+ DCs, CD103−Sirpα+ DCs, CD103+Sirpα− DCs) [68], alveolar macrophages
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from non-smokers, smokers and COPD or asthma patients [69,70], human tumor associated
macrophages (TAMs) from gastrointestinal stromal tumors (GIST) [71], two myeloid cell types
from the ascites of ovarian cancer patients (inflammatory macrophages (infMΦ_ascOvCa) and
inflammatory DCs (infDC_ascOvCa)) [72,73], and CD141+ DCs from peripheral blood [74] rep-
resenting DCs with the capability of cross-presentation and activation of CD8+ T cells [75,76].
We supplemented the published data sets with in-house expression profiles of PBMC-derived
monocytes, slanDCs and CD1c+ DCs.
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Figure 1. Human macrophage and DC core genes in ercDC_ccRCC. (A) Clustered heatmaps depict
the relative gene expression levels of human macrophage and DC core genes comparing ercDC
from ccRCC tissue (ercDC_ccRCC), in vitro-generated M1- and M2-macrophages (M1−MΦ_in vitro,
M2−MΦ_in vitro), and CD1c+ DC from blood (CD1c+ DC_blood). Genes whose expression was
validated on protein level (B,C) are set apart. (B,C) Protein surface expression by flow cytome-
try. In vitro-generated M1- and M2-macrophages, PBMCs and ccRCC tissue cell suspensions were
stained with marker combinations and gated on ercDCs (CD209+CD14+ cells among CD45+ live
single CD3−CD11c+ cells of ccRCC cell suspension), CD1c+ DCs (CD1c+ cells among live single
CD3−CD11c+ of PBMCs) and on M1- and M2-macrophage population among live single cells. De-
picted are representative histograms of human macrophage markers CD64A, CD14, MerTK, CD32A
(B) as well as DC markers ANPEP/CD13 and FLT3 (C) from at least 6 different patient tissues
or PBMCs. Black line histogram: specific staining, gray filled histogram: isotype or fluorescence
minus one (FMO) control staining. Numbers indicate the control-corrected median fluorescence
intensity (MFI).
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Figure 2. DC- and macrophage-associated genes and genes associated with angiogenesis and invasion
in ercDC_ccRCC. (A,B) Clustered heatmaps depicts relative expression levels of genes associated with
M1- and M2-macrophage polarization. See Tables S5 and S6 for M1- and M2-genes. (A, bottom) Linear
expression of chemokines associated with host defense activity of macrophages. M1-macrophages are



Cells 2022, 11, 3289 10 of 27

the positive reference. Bars: median of each group; symbols correspond to individual array replicates
of a cell type. (B, bottom) Surface protein levels of indicated markers validated by flow cytometry.
(C) Dot plot of polychromatic flow cytometry demonstrates co-expression of M1- (CD64A) and
M2-macrophage markers (CD204/MSR1 and MerTK) on ercDCs in ccRCC tissue cell suspensions
(n = 4). Overlay of MerTK+ cells on gated CD64A+CD204+ double-positive CD209+CD14+ ercDCs
(upper right quadrant) depicted in pink. (D) Clustered heatmap of relative expression levels of
genes associated with wound healing and tissue remodeling (F) and immunoregulation. (D,F)
References are M2-macrophages and CD11cLO macrophages from decidua (CD11cLO MΦ_decidua).
(E) Clustered heatmap depicting relative expression levels of genes associated with angiogenesis
and invasion. Positive reference: in vitro-generated M2-macrophages; negative control: CD1c+ DCs
from blood. (E, bottom) Surface expression of indicated proteins on ercDCs by flow cytometry of
ccRCC tissue-cell suspensions and gating on ercDCs (CD209+CD14+ cells among CD45+ live single
CD3−CD11c+ cells). (G) Confocal images of ccRCC tissues stained with CD209 (red), VSIG4 (green)
and DAPI (blue). Original magnification, ×400. Cells co-expressing CD209 and VSIG4 are yellow.
Images are merged fluorescent channels and maximal projection of 6–9 z-planes (z-step size = 0.7 µm).
Top image: early stage ccRCC (RCC90, pT1aG2), bottom image: late stage ccRCC (RCC114, pT3cG2).
(H) Markers associated with immunoinhibition. Exemplary histograms of ercDCs (CD209+CD14+

cells among gated CD45+CD11c+CD3−live single cells) from ccRCC tissue cell suspensions (n = 6) is
shown. Histograms or dot plots are representative of at least 6 different tissue suspensions. Grey
filled histogram is the isotype staining or FMO (fluorescence-minus-one), black line is the specific
antibody. Numbers indicate the median of control-corrected median fluorescence intensity (delta
MFI). Numbers indicate the control-corrected median fluorescence intensity.

Hierarchical clustering revealed similarity of ercDC_ccRCC with MΦ_ccRCC, infMΦ_
ascOvCa and infDC_ascOvCa (Figure 3A). CD11cLO MΦ_decidua, TAM_GIST, CD103+Sirpα+

DC_gut and MΦ_asthma_avlung formed a separate subgroup. Blood-derived cell types,
together with CD103+Sirpα− DC_gut and CD103−Sirpα+ DC_gut clustered distinct from all
other cell types. CD141+ DC_blood more closely resembled CD103+Sirpα−DC_gut, confirm-
ing the similarity in characteristics previously described, including expression of markers asso-
ciated with cross-presentation [68]. Principle component analysis (PCA) (Figure 3B) provided
further evidence that ercDC_ccRCC are most similar to MΦ_ccRCC and infMΦ_ascOvCa,
and are clearly different from blood-derived cells.

To assess if expression states of specific genes can distinguish ercDC_ccRCC from
other myeloid subtypes, we used the nearest shrunken centroids method (NSCM) [34], a
supervised machine learning approach suited to define subsets of genes that best charac-
terize specific cellular states. Feature selection on the classifier that we trained to predict
ercDC_ccRCC revealed 61 marker genes as predictive for ercDCs (Figure S1C). Hierarchical
clustering of all myeloid cell types based on expression of the 61 marker genes (Figure 4A)
showed that ercDC_ccRCC clearly separated from the other human cell types analyzed
with the exceptions of infMΦ_ascOvCa and CD11cLO MΦ_decidua. Despite originating
from the same tissue, MΦ_ccRCC were positioned in a different cluster together with
infDC_ascOvCa, and were thus not classified as ercDC_ccRCC. The tumor-associated
macrophages from GIST (TAM_GIST), which are described as an antitumoral M1-like
TAM subtype, did not show similarities with the ercDC_ccRCC profile. Blood-derived
myeloid cells, slanDC_blood, CD1c+DC_blood and Mono_blood, exhibited the strongest
differences to the ercDC_ccRCC profile, with an almost inverse expression of many of the
marker genes.

Of the 61 marker genes, 39 were upregulated while 22 were downregulated in er-
cDC_ccRCC as compared to the other cell types (Figure 4A, Table S9). As expected,
CD209/DC-SIGN, which was used to distinguish ercDC_ccRCC from MΦ_ccRCC in flow
cytometry, was present in the marker gene list and showed increased expression (Figure 4A).
The macrophage core gene SEPP1, the M2-associated gene MAF and the M1-associated
gene CXCL9 were present in the ercDC_ccRCC marker gene list, as well as genes associated
with immunoinhibitory and proangiogenic functions, like GPNMB and NRP1.
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Figure 3. Transcriptome relationship of ercDC_ccRCC and myeloid cell types from blood and non-
lymphoid healthy and pathological tissues. (A) Hierarchical clustering of indicated cell types based
on median expression values of replicate samples considering only the top 50% of genes with highest
variation across cell types (6107 “informative” genes). (B) PCA on same data set as described in (A).
Shown are the first two PC that describe 28% and 15% of the variance, respectively.

Given the strong similarity of ercDCs and infMΦ_ascOvCa, we defined a list of DEGs
between these two cell types and the other myeloid cell types. The genes with significantly
different expression (FDR < 0.05) in ercDC&infMΦ_ascOvCa as compared to the other samples
(control group) are shown in Figure 4B and were designated ercDC_ccRCC DEGs. They include
788 genes, with 431 showing upregulation and 357 downregulation (Tables S10 and S11). The
DEG list includes 54 of the 61 marker genes (89%), which are shown in bold letters with yellow
background in the volcano plot (Figure 4B). Most of the marker genes showing the strongest and
most significant expression differences were upregulated DEGs, e.g., CD209/DC-SIGN, FOLR2,
GPNMB and SEPP1. The upregulated DEGs included genes associated with anti-inflammatory
function and macrophage recruitment. These include CD204/MSR1, MERTK, CD163, CCL2,
CCL8 and CCL18 (Figure 4B). Downregulated DEGs included ercDC_ccRCC marker genes
(FAM65B, FGR, CFP) and DC-associated genes, including BCL11A and FLT3.

Superposition of M1- and M2-associated genes (Tables S5 and S6) on the list of informa-
tive ercDC_ccRCC genes again illustrated the mosaic expression of M2- and M1-associated
genes by the ercDC_ccRCC myeloid subtype (Figure 4C). Among the most significantly
upregulated genes were the M2-associated genes CD209/DC-SIGN, SLCO2B1, SLC38A6,
SEPP1, CCL18, MAF, MS4A4A and IGF1, but also the M1-associated genes IL2RA and
CXCL9. These M1/M2-associated genes also belonged to the ercDC_ccRCC marker genes.
Overall, 2.6% of the M1-associated genes and 12.9% of the M2-associated genes were among
the ercDC_ccRCC marker genes. Moreover, 23.7% of M1-associated genes and 45.2% of
M2-associated genes were part of the ercDC_ccRCC DEGs. GSEA analysis provided ev-
idence of significance for the difference in expression of the M2-gene set (p = 0.02) and
enrichment of the M1-gene set (p = 0.09) in the ercDC_ccRCC&infMΦ_ascOvCa. This
suggests that ercDC_ccRCC represent a hybrid myeloid subtype with mosaic features of
M2- and M1-polarization.



Cells 2022, 11, 3289 12 of 27

Cells 2022, 11, x FOR PEER REVIEW 12 of 28 
 

 

supervised machine learning approach suited to define subsets of genes that best 
characterize specific cellular states. Feature selection on the classifier that we trained to 
predict ercDC_ccRCC revealed 61 marker genes as predictive for ercDCs (Figure S1C). 
Hierarchical clustering of all myeloid cell types based on expression of the 61 marker 
genes (Figure 4A) showed that ercDC_ccRCC clearly separated from the other human cell 
types analyzed with the exceptions of infMΦ_ascOvCa and CD11cLO MΦ_decidua. 
Despite originating from the same tissue, MΦ_ccRCC were positioned in a different 
cluster together with infDC_ascOvCa, and were thus not classified as ercDC_ccRCC. The 
tumor-associated macrophages from GIST (TAM_GIST), which are described as an 
antitumoral M1-like TAM subtype, did not show similarities with the ercDC_ccRCC 
profile. Blood-derived myeloid cells, slanDC_blood, CD1c+DC_blood and Mono_blood, 
exhibited the strongest differences to the ercDC_ccRCC profile, with an almost inverse 
expression of many of the marker genes. 

 
Figure 4. Marker gene profile and DEGs of ercDC_ccRCC. (A) Clustered heatmap of relative expres-
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levels of ercDCs_ccRCC with those of the other cell types listed in Table S2 (control group). Dashed box
highlights the gene CD209/DC-SIGN, which was used to distinguish ercDC_ccRCC from MΦ_ccRCC
in flow cytometry. (B) Volcano plot depicting differences in gene expression across informative genes
of ercDC_ccRCC&infMΦ_ascOvCa (n = 11) and control group (n = 177). DEGs are red symbols
(adjusted p < 0.05). Symbols with assigned gene name have a grey edge. ErcDC_ccRCC marker
genes are in bold and highlighted in yellow; green: genes discussed in the text. (C) Volcano plot
depicting M1- and M2-macrophage-associated genes (orange and green); (grey): informative genes
resulting from the comparison of ercDC_ccRCC&infMΦ_ascOvca and the control group. DEGs
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(“Translational initiation”) of the top 20 significantly enriched terms. Significance of GO category 
enrichment is depicted as −log10 (p-value). (B) Functional associations of ercDC_ccRCC marker 
genes (black) and their computed related genes (grey) by GeneMANIA network analysis. Yellow 
circles highlight related genes mentioned in the text. Associations were defined based on different 
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The results of InnateDB and GSEA (based on the data bases “KEGG”, Reactome” and 
“Biocarta”) analyses overlapped with GO term analysis (Table S12). Most of the enriched 

Figure 5. GO categories and functional network of ercDC_ccRCC. (A) Upregulated DEGs were
enriched in 19 of the top 20 categories. Downregulated DEGs were only enriched in one category
(“Translational initiation”) of the top 20 significantly enriched terms. Significance of GO category
enrichment is depicted as −log10 (p-value). (B) Functional associations of ercDC_ccRCC marker
genes (black) and their computed related genes (grey) by GeneMANIA network analysis. Yellow
circles highlight related genes mentioned in the text. Associations were defined based on different
criteria (colored lines, see Table).

To identify enriched biological processes associated with the DEGs, GO term analysis
was employed. The results showed “response to wounding” and “inflammatory response”
as the most significantly scored categories (Figure 5A). These effector processes correspond
with the described inflammatory milieu in RCC [77,78] and the well-recognized role for
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renal macrophages in normal tissue homeostasis and wound healing [79,80]. The third
most enriched category was “defense response”, underscoring a bactericidal activity of
ercDC_ccRCC, which agrees with the general expression of M1-associated genes.

The results of InnateDB and GSEA (based on the data bases “KEGG”, Reactome” and
“Biocarta”) analyses overlapped with GO term analysis (Table S12). Most of the enriched
pathways identified are associated with the complement system, lipid metabolism and
modulation of the extracellular matrix. Deregulated lipid metabolism has been described
to promote the development and progression of RCC [81].

GeneMANIA network analysis was conducted to better characterize the functional net-
work of ercDC_ccRCC marker genes, and to identify functionally related genes (Figure 5B).
The identified related genes (grey) included many macrophage-associated genes, particu-
larly those of M2-macrophages and their immunoinhibitory function, CD163, CD206/MRC1,
CD14 and VSIG4 (yellow circles in Figure 5B).

3.3. ErcDCs Are Distinct from Blood-Derived Monocytes from RCC Patients

Inflammatory blood monocytes can act as precursors for TAMs [82–84]. Chittezhath et al.
reported that blood-derived monocytes from RCC patients display a tumor-promoting tran-
scription profile [85]. Hierarchical clustering and PCA evaluation including the RCC-monocyte
transcriptome (designated as Mono_RCC_blood) clearly separated the Mono_RCC_blood
from the ercDC_ccRCC and clustered the Mono_RCC_blood with CD11cHI MΦ_decidua and
CD103−Sirpα+ DC_gut (Figure 6A,B).

Tissue-specific gene expression can obscure cell type-specific profiles. However, even
after exclusion of blood-specific genes (“tissue preferential expressed gene list (blood
genes)” [86]) Mono_RCC_blood remained clearly distinct from ercDC_ccRCC and retained
their similarity with CD11cHI_MΦ_decidua and CD103−Sirpα+ DC_gut (Figure S3A,B).
Clustering based on the ercDC_ccRCC marker genes positioned the Mono_RCC_blood
distant to ercDC_ccRCC in a subcluster together with CD11cHI MΦ_decidua (Figure 6C),
similar to the hierarchical cluster analysis on all informative genes (Figure 6A). Identical
clustering was observed after the exclusion of blood-specific genes (Figure S3C).

Mono_RCC_blood resembled ercDC_ccRCC in their expression of M1-associated
genes, but were more similar to CD1c+_DC_blood in their expression of M2-associated
genes, while ercDC_ccRCC clustered with M2-macrophages (Figure 6D). Removal of the
blood-specific genes again did not change this profile (Figure S3D). Chittezhath et al.
reported that Mono_RCC_blood derived protumoral activity through an interleukin-1
receptor (IL-1R)-dependent mechanism. This pathway was, however, less expressed in
ercDC_ccRCC compared to Mono_RCC_blood (GSEA, p = 0.0001) (Figure S3E).

3.4. The ercDC_ccRCC Polarization Profile Reveales Distinct Tissue Imprints

It is acknowledged that the phenotype and function of tissue-resident macrophages is
robustly influenced by factors present in the tissue micromilieus [13–16]. To investigate the
potential influence of the ccRCC milieu on the gene expression profile of ercDC_ccRCC,
predefined stimulus-specific human gene sets were used that are known to be induced by
distinct macrophage activation signals [40]. We correlated the module eigengenes (ME)
of the stimulus-specific gene sets (so-called modules) with the gene expression profile of
ercDC_ccRCC, various human myeloid cell types from non-lymphoid tissues, including
Mono_RCC_blood and in vitro-generated M1- and M2-macrophages (Figure 7, Table S13).
The ercDC_ccRCC clustered closest with infMΦ_ascOvCa, confirming the strong relation-
ship seen previously using the NSCM. Macrophages from the ccRCC tissues (MΦ_ccRCC),
M2-MΦ_in vitro and infDC_ascOvCA clustered within the same group (no. 4). All cell
types from this group also showed largely negative correlations with modules in cluster
A, linked to signals associated with the cytokine IL-4. On the other hand, they showed
predominantly strong positive associations with modules in cluster B. The modules of
cluster B were generally linked to signals from glucocorticoids (GC), palmitic acid (PA),
prostaglandin E2 (PGE2) or a combination of TNF, PGE2 and P3C (Pam3CysSerLys4, TLR2-
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ligand, TPP) (in orange letters). Other modules in cluster B are linked to M1-polarizing
stimuli (IFN-γ, TNF) (in brown letters); accordingly, a very strong positive correlation
was found with in vitro-polarized M1-macrophages (M1_MΦ_in vitro) and a negative
correlation with M2_MΦ_in vitro. ErcDC_ccRCC also correlated negatively or showed
no correlation, while infMΦ_ascOvCA, infDC_ascOvCA and MΦ_ccRCC showed some
positive correlation. Overall, Mono_RCC_blood showed much weaker and different polar-
ization than ercDC_ccRCC, likely reflecting their exposure to different local milieus.
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marker profile determined using NSCM and the upregulated DEGs. PGE2, for example, is 
described as inducing the transcription of MSR1/CD204 [93], a gene also strongly 
expressed in ercDC_ccRCC. Moreover, PGE2 and GC are known inducers of CD163 
[94,95], another marker strongly upregulated in ercDC_ccRCC. In addition, GC regulates 
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Figure 7. Polarization profile of ccRCC_ercDC reveals distinct tissue imprints. Heatmap of Pearson
correlation coefficients calculated between module eigengenes (ME) and myeloid cell types. Cell
types were clustered based on correlations with stimuli-associated eigengene modules. Depicted are
the numbered modules with up to two significantly positively correlated stimuli for each module.
Stimuli dominating in module group (A) are highlighted green, in module group (B) in orange and
brown. Stimuli negatively correlating with the modules as well as the correlation rules for stimuli
and modules are listed in Table S13.

In summary, the data provide evidence that the characteristic transcriptional profile
of ercDCs may be induced in part by GC, PGE2, PA and TPP, and low abundance of IL-4.
This is consistent with described characteristics of the RCC tissue milieu, featuring GC [87],
PGE2 [88] and TNF [89,90] and marginal IL-4 [91]. PA has been described as playing a
role in kidney fibrosis [92]. The emerging imprinting stimuli are also consistent with the
marker profile determined using NSCM and the upregulated DEGs. PGE2, for example, is
described as inducing the transcription of MSR1/CD204 [93], a gene also strongly expressed
in ercDC_ccRCC. Moreover, PGE2 and GC are known inducers of CD163 [94,95], another
marker strongly upregulated in ercDC_ccRCC. In addition, GC regulates the expression of
MERTK as well as C1QB, CCL8, VSIG4 and FCN1, all of which belong to the ercDC_ccRCC
marker genes or DEGs.

3.5. Expression of ercDC Marker Genes in ccRCC Tissue Is Predictive of Patient Survival

We have previously shown that CD209+ cell numbers were higher in advanced ccRCC
tumors with poor prognostic tumor stage [27]. Here, using an ercDC score based on
the marker gene expression, we support this finding in two independent cohorts, the
Cancer Genome Atlas (TCGA) cohort of 442 ccRCC samples (Table S4) and the Rostock
cohort, which is a preselected arrangement of 28 primary ccRCC tumor tissues equal
representation of G1 and G3 histology grades (Table S4). The ercDC score was higher in
ccRCC tissue compared to control non-tumor renal tissues and it enriched with increasing
tumor grade (Figure 8A,C). Significantly, in both cohorts, patients with high ercDC scores
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showed decreased cancer-specific survival (CSS) compared to patients with low ercDC
score (TCGA: HR = 1.8, p = 3.0 × 10−2; Rostock: HR = 4.8, p = 8.8 × 10−3).
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cytotoxic infiltrate. (A,C) Box plots of ercDC score values of TCGA KIRC (n = 439, no grading was
available for 3 samples of TCGA KIRC, see Table S4) and normal kidney (n = 65) or Rostock cohort
(n = 14 for grade G1 and G3) (p-value by linear trend test). (B,D) Kaplan-Meier estimates of CSS of
ccRCC tumors from TCGA KIRC (n = 442) and Rostock cohort (n = 28) predicted by the ercDC score.
Partitioning into ercDClow and ercDChigh risk groups using conditional inference trees with endpoint
CSS. (E,G) Boxplots of the average of CD8A and NKG7 expression of tumors with grade G1 (n = 9)
and G3 (n = 177) in TCGA KIRC or in Rostock cohort (each n = 14). Average expression values were
standardized (z-scores). (F,H) Relationship between cytotoxic infiltrate and ercDC in tumors with
grade G1 and G3 from TCGA KIRC or Rostock cohort. Average expression values and ercDC score
were standardized (z-scores) before calculating the difference (I) Correlation of ercDC score with
CD8A+NKG7 expression in TCGA KIRC (n = 442). A loess curve together with pointwise standard
error displays the relationship between standardized average of CD8A and NKG7 expression and
standardized ercDC score. Colors indicate the risk groups introduced in (B). PCC: Pearson correlation
coefficient. Boxes refer to median and interquartile ranges with whiskers extending to a maximum of
1.5 times the interquartile range.
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Early stage tumors (G1), as compared to later stage tumors (G3), not only showed a
lower ercDC score, but by trend also had a lower cytotoxic infiltrate, approximated by the
mean expression levels of CD8A and NKG7 (natural killer cell granule protein 7 expressed
by NK cells and CD8 T cells in ccRCC [22]) (Figure 8E,G).

Correlation analysis of ercDC score and cytotoxic infiltrate highlights a parallel expan-
sion of cytotoxic infiltrate and ercDC score (Pearson correlation coefficient = 0.42). This
relationship, however, was not proportional as the loess curve fitted using the standardized
values was above the diagonal at lower ercDC values and below the diagonal at higher
ercDC values (Figure 8I). Thus, the cytotoxic infiltrate dominated the ercDC score in earlier
stage tumors while the ercDC score offset the cytotoxic infiltrate in the later stage tumors,
as seen also by the calculated ratios (Figure 8F,H). This relationship may explain, in part,
the finding that a larger CD8 T cell infiltrate is not beneficially associated with survival in
ccRCC, contrasting most other tumors [96].

The relationship is consistent with our previous histology work where a proportion-
ally lower CD8 cell count was found in tumors with high ercDC numbers [27]. While
other reasons may cause this relationship, ercDCs may actively contribute by curbing the
cytotoxic immune cell recruitment through reducing Th1 recruiting chemokines previously
observed in in vitro T cell/tumor cell co-cultures.

The more favorable composition of the infiltrate in G1 tumors might contribute to the
prognostically better outcome of patients with early stage tumors. In G1, fewer ercDCs
may be sufficient for immunoinhibition in the context of a lower cytotoxic infiltrate and
ensuing interaction between T cells, macrophages and tumor cells, which can lead to tumor
progression through macrophage-secreted tumor promoting factors, such as CCL8, CCL18
and MMP9, which are part of the ercDC signature.

4. Discussion

Since the 1970s, RCC has been recognized as an immune-responsive tumor with a
well-documented sensitivity to T cell attack [97–99]. Yet, RCC patients do not benefit sub-
stantially more from the T cell activating immune checkpoint blockade therapy compared
to patients with tumors previously considered to be non-immunogenic [23,25,26,100,101].
This suggests the existence of additional layers of tumor-mediated immunosuppression
beyond targeted T cell checkpoints that hamper antitumor immune responses. These layers
need to be addressed to improve the efficacy of cancer immunotherapy.

Here we describe a myeloid cell type that was strictly resident to non-lymphoid
tissue and preferentially found in the tumor center of ccRCC. Its transcriptome exhibited a
unique mosaic expression pattern encompassing gene transcripts of various macrophage
polarization states. Thereby our analysis confirms and extends previous studies that have
reported diametrically polarized macrophages in RCC tissue [102–105]. The expressed
genes provide evidence for tumor-promoting qualities as well as immunoinhibition that
may translate to T cell dysfunction. A high ercDC score in ccRCC tissue was found to be
strongly associated with poor patient survival. Targeting ercDCs particularly in situations
where tumors have high ercDC content may expand the range of patients that can be
effectively treated with immunotherapy.

The ercDC transcriptome revealed details regarding their functional polarization and
positioning within the MPS. Contrary to our previous assignment of the ercDCs to the DC
lineage, the transcriptome suggests that ercDCs belong to the macrophage lineage. No-
tably, they showed combined features of M1-macrophages and M2-macrophages as well as
gene signatures associated with wound healing and tissue remodeling, immunoregulation
and bactericidal effector activities. The ercDC attributes could be clearly related to the
inflammatory milieu of RCC tissue [77,78] and the general role of macrophages in tissue
homeostasis and wound healing in kidneys [79,80]. Observed imprints of RCC characteris-
tics include altered lipid metabolism [106,107] and the accumulation of immune complexes
with associated complement activation, which is also seen in many inflammatory renal
diseases [108,109]. A relationship between the ercDC from RCC tumor tissue and myeloid
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cells from chronic inflammatory kidney pathologies was previously suggested based on the
triple marker staining of CD14, CD209 and CD163 [27,110]. CD14+CD209+CD163+ triple
positive cells are also described in the human dermis, in a murine leprosy model, and in
the decidua of early human pregnancy [27,111–113]. The presence of these cells was linked
to deviated immune responses, allowing bacterial or embryo persistence. As this seemed
to parallel the situation of tumors, available transcript data were compared to the ercDC
transcriptome. However, despite the conceptual similarity, the myeloid cells from these
tissues did not appear to be closely related to our ercDCs. Yet, the recently available single
cell sequencing data describing the immune landscape of lupus nephritis revealed five
clusters of myeloid cells [114], whereby cells in cluster 4 (CM4) were found to express the
index markers of ercDCs, CD14, CD209 and CD163, together with further ercDC marker
genes CD64, VSIG4, MSR1, STAB1, MerTK, FOLR2 and C1Q. The transcript profile of CM4
cells did not match any cell type found in peripheral blood, suggesting kidney residency of
this myeloid cell type. Likewise, we were not able to detect CD209+CD14+CD163+ ercDCs
among PBMC of healthy donors or patients by flow cytometry (data not shown) and the
ercDC score was very low in samples of acute myeloid leukemia of the TCGA collection
compared to ccRCCs (not shown). Moreover, by hierarchical clustering of the transcriptome
data of ercDC_ccRCC and other myeloid cell types, ercDCs clearly separated from all blood-
derived myeloid cells, including blood-derived monocytes from RCC patients, which were
described to potentially represent precursors of RCC-TAMs [85]. The Mono_blood_RCC
cell subset was clearly classified as blood-derived myeloid cells by hierarchical clustering
with a transcriptome distinct from tissue-derived cell types, including ercDCs_ccRCC, even
after elimination of blood-specific genes. Recent studies of breast, endometrial and lung
cancer-derived myeloid cells confirm our notion that myeloid subsets in patient blood
show limited overlap with those in their tumors [115,116].

A comparative analysis across published transcriptome databases of human myeloid cell
types from blood and non-lymphoid tissues using the NSCM method identified an inflamma-
tory macrophage subtype from the ascites of ovarian cancer (infMΦ_ascOvCa) as the closest
relative to ercDC_ccRCC. Described features of ovarian TAMs include the expression of M2-
markers (CD14, CD206, CD11b, CD204), select M1-markers (CD86, TNF) [73,117–121], and
expression of the immunosuppressive and anti-inflammatory chemokine CCL18. These ex-
pression patterns are analogous to those seen in ercDC_ccRCC. Interestingly, cytokines shown
to induce the ercDC phenotype in vitro, IL-6, CXCL8/IL-8 and VEGF [27], are also present
in ovarian ascites [122–124]. Thus, the relatedness of ercDC_ccRCC and infMΦ_ascOvCa
may be explained in part by their exposure to a related tissue milieu. In addition, PGE2,
GC, TNF, PA and TLR2-ligands were identified as ercDC_ccRCC polarizing factors. PGE2
is an important factor in RCC biology [88]. The enrichment in PGE2 and GC is linked to
the expression of CD163 [94,95] in ercDCs. In addition, GC has been described to induce
MerTK [125] and VSIG4 [126], and may therefore be the reason for the expression of those
markers in ercDCs. The observed close relationship of ercDCs to the infMΦ_ascOvCa may
be explained in part as both are myeloid cells from epithelial tumors. The TAM_GIST are
from a mesenchymal tumor, and the dissimilar transcriptional data might result from the
different tissue milieu. It is, however, interesting that of the two myeloid cell types from
the ovarian cancer (infMΦ_ascOvCa and infDC_ascOvCa), only the infMΦ_ascOvCa was
computationally associated with ercDCs, showing stronger relationship than the MΦ_ccRCC.
This suggests that within the tumor microenvironments, different niches exist which shape
the transcriptional profile of the residing myeloid cells to become dissimilar to an extent
that they more closely match to cells in a different tissue. Since our analysis was performed,
additional transcriptomes of human myeloid cells from non-lymphoid tissue have become
available, including those of human breast [115,127] and hepatocellular carcinomas [128].
ErcDC share marker expression with these macrophages, including FOLR2, CCL8, MMP2
and MMP9 as well as APOE and SEPP1. It will be exciting to learn if the closeness seen
with the infMΦ_ascOvCa can be expanded to other macrophage populations as the field
develops and we learn more about the biology at work. As an overarching conclusion of
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current publications, our data of ercDC transcriptome confirms the notion that the profile of
tissue macrophages is very complex, integrating markers of various polarization states.

Due to our technical setup, we cannot formally exclude that this mosaic expression
pattern arises from the assembly of multiple cell types with different functions. However,
our analysis using polychromatic flow cytometry showed that the cells expressing the ercDC
index markers, CD209 and CD14, co-expressed the M1-marker (CD64) and M2-markers
(CD204 and MerTK). A separation of these markers over multiple cell populations was
not evident. This supports the interpretation that the ercDCs are a unique cell type on the
single cell level with mixed macrophage polarization. Chevrier et al. analyzed macrophages
from RCC tissues by highly multiplex mass cytometry [129]. Unfortunately, the analysis
did not include the CD209 marker nor the other relevant ercDC signature genes identified
here, thus precluding a comparative analysis of our ercDCs to the 17 TAM phenotypes
identified in this mass cytometry study. Mass cytometry is a powerful approach, but as
a front-line analysis tool, it is disadvantaged by its bias towards previously characterized
markers. Recently, single cell sequencing was applied to analyze the immune landscape of
RCC [102,104,105]. The results support our finding that RCC tissues harbor macrophages with
pro- and anti-inflammatory polarized phenotypes. Moreover, they support our observation
that specifically polarized myeloid cells are associated with poor patient prognosis, and
additionally provide evidence that RCC tissues with a high presence of macrophages are
resistant to checkpoint blockade therapy. While there are certainly additional mechanisms
related to tumor progression and therapy resistance, such as insufficient CD8 or NK cell
counts or T cell dysfunction or inhibiting tissue factors, such as lactic acidosis [27,130–132], the
finding by Braun et al. provides support for a role of macrophages as a mechanism of immune
therapy resistance [102]. Observed contacts between macrophages and exhausted T cells
suggest a T cell inhibitory communication that may be mediated by surface molecules. In this
respect, our report of a novel series of proteins expressed on ercDCs is of interest. Especially,
markers such as VSIG4 [64,133–135] and GPNMB [136,137], are discussed in the literature in
the context of T cell inhibition and cell cycle arrest. While PD-L1, PD-L2 and TIM-3 were only
marginally expressed by ercDCs, these new markers represent promising targets to moderate
the communication that ercDC might mediate through T cell contact. NRP1 [138] and CSF-
1R are additional possible targets expressed by ercDCs, for which therapeutic reagents are
currently in clinical studies (https://clinicaltrials.gov/, accessed on 7 September 2022). The
relevance of these markers for functional alteration of a T cell antitumor immune response will
need to be assessed in experimental settings. Knockdown of these newly identified markers
may reveal if ercDCs can be modulated to participate in productive antitumor immune
response. Combined with checkpoint blockade or other therapeutic strategies, targeting these
proteins may improve treatment outcome, especially for tumors with a high ercDC score.

5. Conclusions

Since the time of Metchnikoff, phagocyte biology has evolved tremendously. The
diversity and plasticity are now acknowledged hallmarks of phagocytes and, functionally,
they have taken center stage in tissue homeostasis and immune regulation. Our findings
support the continuum of myeloid cell polarization and indicate the strong relationship
between cell phenotype and tissue-derived signals. Single marker analysis is no longer
adequate to assign phagocyte identity. Based on the expression of CD209, which is a
marker of immature interstitial DCs in humans [28,139], and the association with murine
kidney immune regulatory DCs [29,140], ercDCs were previously thought to represent a DC
phenotype. The now described transcriptome identifies them as a macrophage phenotype
with the mosaic presentation of markers related to diverse functional attributes ranging
from antitumoral activities to tumor-promoting qualities as well as immunomodulation.
Based on this now available information, we suggest changing the name to ercMP (enriched-
in-renal-cell-carcinoma macrophages) for future reference. The high ercDC score in ccRCC
tissue was found to be strongly associated with poor patient survival, showing prognostic
value and suggesting that ercDCs may be targets for therapeutic intervention. Among

https://clinicaltrials.gov/
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the transcriptome, a novel series of potential targets was identified. As a correlation
may not necessarily equate to causality, the potential role that ercDCs might play in the
regulation of the antitumor response requires testing in experimental models. Targeting
ercDCs in combination with immunotherapy, particularly in situations where tumors
have high ercDC content, may expand the range of patients that can be effectively treated
with immunotherapy.
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