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Abstract: Coding theory where the alphabet is identified with the elements of a ring or a module has
become an important research topic over the last 30 years. It has been well established that, with the
generalization of the algebraic structure to rings, there is a need to also generalize the underlying
metric beyond the usual Hamming weight used in traditional coding theory over finite fields. This
paper introduces a generalization of the weight introduced by Shi, Wu and Krotov, called overweight.
Additionally, this weight can be seen as a generalization of the Lee weight on the integers modulo 4
and as a generalization of Krotov’s weight over the integers modulo 2s for any positive integer s. For
this weight, we provide a number of well-known bounds, including a Singleton bound, a Plotkin
bound, a sphere-packing bound and a Gilbert–Varshamov bound. In addition to the overweight,
we also study a well-known metric on finite rings, namely the homogeneous metric, which also
extends the Lee metric over the integers modulo 4 and is thus heavily connected to the overweight.
We provide a new bound that has been missing in the literature for homogeneous metric, namely the
Johnson bound. To prove this bound, we use an upper estimate on the sum of the distances of all
distinct codewords that depends only on the length, the average weight and the maximum weight of
a codeword. An effective such bound is not known for the overweight.

Keywords: rings; coding theory; Johnson bound; Plotkin bound

1. Introduction

Coding theoretic experience has shown that considering linear codes over finite fields
often yields significant complexity advantages over the nonlinear counterparts, particularly
when it comes to complex tasks such as encoding and decoding. On the other side, it
was recognized early [1,2] that the class of binary block codes contains excellent code
families, which were not linear (Preparata, Kerdock codes, Goethals and Goethals–Delsarte
codes). For a long time, it could not be explained why these families exhibit formal duality
properties in terms of their distance enumerators that occur only on those among linear
codes and their duals.

A true breakthrough in the understanding of this behavior came in the early 1990s
when, after preceding work by Nechaev [3], the paper by Hammons et al. [4] discovered
that these families allow a representation in terms of Z4-linear codes.

A crucial condition for this ring-theoretic representation was that Z4 was equipped
with an alternative metric, the Lee weight, rather than with the traditional Hamming
weight, which only distinguishes whether an element is zero or non-zero. The Lee weight
is finer, assigning 2 a higher weight than the other non-zero elements of this ring.

The fact that the traditional settings of linear coding theory (finite fields endowed with
the Hamming metric) are actually too narrow, which suggests expanding the theory in at
least two directions: on the algebraic part, the next more natural algebraic structure serving
as alphabet for linear coding is that of finite rings (and modules). On the metrical part, the
appropriateness of the Lee weight for Z4-linear coding suggests that the distance function
for a generalized coding theory requires generalization as well.
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Since these ground-breaking observations, an entire discipline arose within algebraic
coding theory. A considerable community of scholars have been developing results in
various directions, among them code duality, weight-enumeration, code equivalence,
weight functions, homogeneous weights, existence bounds, code optimality and decoding
schemes, to mention only a few.

The paper at hand aims at providing a further contribution to this discipline, by
introducing the overweight on a finite ring. This weight is a generalization of the Lee
weight over Z4, as well as of the weight introduced in [5] by Krotov over Z2s for any
positive integer s, which was further generalized to Zpk in [6].

We study the relations of this new weight to other well-known weights over rings and
state several properties of the overweight, such as its extremal property. We also develop a
number of standard existence bounds, such as a Singleton bound, a sphere-packing bound,
a Plotkin bound and a version of the (assertive) Gilbert–Varshamov bound.

In the final part of this article, we derive a general Johnson bound for the homogeneous
weight on a finite Frobenius ring. This result is important, as it is closely connected to list
decoding capabilities.

2. Preliminaries

Throughout this paper, we will consider R to be a finite ring with identity, denoted
by 1. If R is a finite ring, we denote by R× its group of invertible elements, also known
as units.

Let us recall some preliminaries in coding theory, where we focus on ring-linear
coding theory.

For a prime power q, let us denote by Fq the finite field with q elements and, for a
positive integer m, we denote by Zm the ring of integers modulo m.

In traditional coding theory, we consider a linear code to be a subspace of a vector
space over a finite field.

Definition 1. Let q be a prime power, and let k ≤ n be non-negative integers. A linear subspace C
of Fn

q of dimension k is called a linear [n, k] code.

We define a weight in a general way.

Definition 2. Let R be a finite ring. A real-valued function w on R is called a weight if it is a
non-negative function that maps 0 to 0.

It is natural to identify w with its additive extension to Rn, and so we will always write
w(x) = ∑n

i=1 w(xi) for all x ∈ Rn. Every weight w on R induces a distance d : R× R −→ R
by d(x, y) = w(x − y). Again, we will identify d with its natural additive extension to
Rn × Rn.

If the weight additionally is positive definite, symmetric and satisfies the triangular
inequality, that is,

1. w(0) = 0 and w(x) > 0 for all x 6= 0,
2. w(x) = w(−x) for all x ∈ R,
3. w(x + y) ≤ w(x) + w(y) for all x, y ∈ R,

then the induced distance inherits these properties, i.e.,

1. d(x, y) ≥ 0 for all x, y ∈ R and d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x) for all x, y ∈ R,
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ R.

The most prominent and best studied weight in traditional coding theory is the
Hamming weight.
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Definition 3. Let n ∈ N. The Hamming weight of a vector x ∈ Rn is defined as the size of
its support

wH(x) = |{i ∈ {1, . . . , n} | xi 6= 0}|,

and the Hamming distance between x and y ∈ Rn is given by

dH(x, y) = |{i ∈ {1, . . . , n} | xi 6= yi}| = wH(x− y).

The minimum Hamming distance of a code is then defined as the minimum distance
between two different codewords

dH(C) = min{dH(x, y) | x, y ∈ C, x 6= y}.

Note that the concept of minimum distance can be applied for any underlying dis-
tance d.

In the paper at hand, we focus on a more general setting where the ambient space is a
module over a finite ring.

Definition 4. Let n ∈ N and let R be a finite ring. A submodule C of RRn of size M = |C| is
called a left R-linear (n, M) code.

The most studied ambient space for ring-linear coding theory is the integers modulo 4,
denoted by Z4, endowed with the Lee metric.

Definition 5. For x ∈ Zm, its Lee weight is defined as

wL(x) = min{x, | m− x |}.

One of the most prominent generalizations of the Lee weight over Z4 is the homoge-
neous weight.

Definition 6. Let R be a Frobenius ring. A weight w : R −→ R is called (left) homogeneous of
average value γ > 0, if w(0) = 0 and the following conditions hold:

(i) For all x, y with Rx = Ry, we have that w(x) = w(y).
(ii) For every non-zero ideal I ≤ RR, it holds that

1
|I| ∑

x∈I
w(x) = γ.

We will denote the homogeneous weight with wt.

The homogeneous weight was first introduced by Constantinescu and Heise in [7]
in the context of coding over integer residue rings. It was later generalized by Greferath
and Schmidt [8] to arbitrary finite rings, where the ideal I in Definition 6 was assumed to
be a principal ideal. In its original form, however, the homogeneous weight only exists
on finite Frobenius rings. It can be shown that a left homogeneous weight is at the same
time right homogeneous, and for this reason, we will omit the reference to any side for the
sequel. In [9], Honold and Nechaev finally generalized the notion of homogeneous weight
to some finite modules, called weighted modules, over a (not necessarily commutative)
ring R with identity.

Since we will establish a Plotkin bound for a new weight, let us recall here the Plotkin
bound over finite fields equipped with the Hamming metric.
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Theorem 1 (Plotkin bound). Let C be an (n, M) block code over Fq with minimum Hamming
distance d. If d > q−1

q n, then

M ≤ d

d− q−1
q n

.

For the homogeneous weight, the following Plotkin bound was established in [10].

Theorem 2 (Plotkin bound for homogeneous weights, [10]). Let wt be a homogeneous weight
of average value γ on R, and let C be an (n, M) block code over R with minimum homogeneous
distance d. If γn < d, then

M ≤ d
d− γn

.

3. Overweight

As the Hamming weight defined over the binary can be generalized to larger ambient
spaces in different ways resulting in different metrics, such as the Hamming weight over
Fq or the Lee weight over Zps ; in addition, the Lee weight over Z4 can be generalized in
different ways. For example, the weight defined in [5] over Z2m for any positive integer m
is a possible generalization, but the most prominent generalization is the homogeneous
weight (see for example [10]). In this section, we introduce a new generalization, called
the overweight. This weight shows some interesting properties and relations to the homoge-
neous weight and can additionally be seen as a generalization of the weight defined in [5]
over Z2s for any positive integer s and the weight defined in [6] over Zps .

Definition 7. Let R be a finite ring. The overweight on R is defined as

W : R −→ R, x 7→


0 if x = 0,
1 if x ∈ R×,
2 otherwise.

We also denote by W its additive expansion to Rn, given by W(x) = ∑n
i=1 W(xi).

Let us call the distance which is induced by the overweight the overweight distance, and
denote it by D, i.e., D(x, y) = W(x− y).

The motivation of introducing this new weight is twofold: on one hand, it is the-
oretically interesting to explore a new generalization of the Lee weight over Z4 and its
connections to other known weights over rings. On the other hand, the overweight would
also be perfectly suitable for a channel, where unit errors are more likely.

Note that the overweight is designed to satisfy the following criteria: it is positive
definite, symmetric, satisfies the triangular inequality and distinguishes between units and
non-zero non-units. Furthermore, it is extremal in the sense that, on a big family of rings,
any increase of the weight of non-zero non-units would violate the triangular inequality,
thus the name overweight. We will now study this extremal property in more details.

We can consider weights with values in {0, 1, α}, for some α > 0, without fixing
the subsets of R where these values are attained. Thus, we are considering the generic
weight function

f (x) =


0 if x = 0,
1 if x ∈ A1,
α if x ∈ A2,

where A1 ⊂ R \ {0} and A2 = R \ (A1 ∪ {0}). Such a weight is always positive definite. In
addition, the weight is symmetric if and only if A1 and A2 contain all additive inverses of
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their elements. Let us now consider the triangular inequality: if there exist x, y ∈ A1 such
that x + y ∈ A2, then we must have

α = f (x + y) ≤ f (x) + f (y) = 2.

Thus, in order for f to be an extremal weight, one chooses α = 2.
The overweight is a special case of such a weight function f with the choice A1 = R×.

The existence of elements x, y ∈ R× such that x + y ∈ R \ ({0} ∪ R×) is satisfied for many
rings—for example, for rings with a non-trivial Jacobson radical.

Relations to Other Weights

Clearly, the homogeneous weight and the overweight coincide with the Lee weight on
Z4, with the Hamming metric on finite fields Fq, and finally with the weight [6] on Zps .

Proposition 1. The overweight over finite chain rings gives an upper bound on the normalized
homogeneous weight.

Proof. Over a finite chain ring with socle S and residue field size q, we have that the
normalized homogeneous weight is defined as

wt(x) =


0 if x = 0,

q
q−1 if x ∈ S \ {0},
1 else.

If x ∈ S \ {0}, then also x ∈ R \ R×, and

wt(x) =
q

q− 1
≤ 2 = W(x).

If x ∈ R×, then wt(x) = 1 = W(x) and finally, if x ∈ R \ (S ∪ R×), we have that

wt(x) = 1 ≤ 2 = W(x),

which implies the result.

In [11], Bachoc defines the following weight on Fp-algebras A, with units A× as follows:

wB(x) =


0 if x = 0,
1 if x ∈ A×,
p else.

This is in the same spirit as the overweight. The weight of Bachoc is, however, only
assuming positive definiteness. We note that, whenever we have a F2-algebra, the two
weights coincide. The overweight can thus also be seen as a generalization of Bachoc’s
weight to a general finite ring.

Let us illustrate this connection with some examples: we consider the ring M2(Fp)
of 2× 2 matrices over Fp and the ring Fp[x]/(x2). In both cases, the Bachoc weight only
coincides with the homogeneous and the overweight in the case p = 2.

Finally, in [5], Krotov defines the following weight over Z2m, for any positive integer m:

wK(x) =


0 if x = 0,
2 if 2 | x, x 6= 0,
1 else.
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Clearly, this is a further generalization of the Lee weight over Z4 and thus coincides
there with the homogeneous and the overweight. However, even more is true: the weight
of Krotov and the overweight coincide over Z2s , for any positive integer s. Thus, the
overweight may be considered as a generalization of Krotov’s weight over Z2s for any
positive integer s.

Let us give some examples to illustrate the differences between the above-mentioned weights.

Example 1. In the following table, wH denotes the Hamming weight, wt the normalized homoge-
neous weight, wL denotes the Lee weight, wK denotes Krotov’s weight, wB denotes Bachoc’s weight
and finally W denotes the overweight. Let us consider two easy but pathological cases, namely Z6
for Table 1 and Z2 ×Z2 for Table 2.

Table 1. Comparison of weights in Z6.

wH wt wL wK W

0 0 0 0 0 0
1 1 1/2 1 1 1
2 1 3/2 2 2 2
3 1 2 3 1 2
4 1 3/2 2 2 2
5 1 1/2 1 1 1

Table 2. Comparison of weights in Z2 ×Z2.

wH wt wB W

(0,0) 0 0 0 0
(0,1) 1 2 2 2
(1,0) 1 2 2 2
(1,1) 2 0 1 1

Finally, another interesting connection to the Hamming weight arises by considering
the following linear injective isometry.

Lemma 1. The map

ψ : (F2[x]/(x2), W)→ (F2
2, wH)

a + bx 7→ (a + b, b)

is a linear isometry.

Recall that, over F2[x]/(x2), the overweight coincides with the weight of Bachoc and
the homogeneous weight.

4. Bounds for the Overweight

In this section, we develop several bounds for the overweight, such as a Singleton
bound, a sphere-packing bound, a Gilbert–Varshamov bound and a Plotkin bound.

For this, let us first define the minimum overweight distance of a code.

Definition 8. Let C ⊆ Rn be a code. The minimum overweight distance of C is then denoted by
D(C) and defined as

D(C) = min{D(x, y) | x, y ∈ C, x 6= y}.

4.1. A Singleton Bound

The Singleton bound usually follows a puncturing argument, which is possible for the
overweight, but gives the same result as applying the following observation:
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Remark 1. For all x ∈ R, we have that

0 ≤ wH(x) ≤W(x) ≤ 2wH(x) ≤ 2n,

where wH denotes the Hamming weight.

Hence, using the Singleton bound for the Hamming metric directly gives a Singleton
bound for the overweight.

Proposition 2. Let C ⊆ Rn be a code of size M and minimum overweight distance d. Then,

d ≤ 2(n− dlog|R|(M)e+ 1).

Example 2. A trivial example for a code achieving the Singleton bound in Proposition 2 is given by
C = 〈(p, . . . , p)〉 ⊂ Zn

ps , having logps(| C |) = s−1
s and minimum overweight distance d = 2n.

However, if we define the rank of a linear code C, denoted by rk(C), to be the minimal
number of generators of C, then the following bound is known for principal ideal rings [12,13]

dH(C) ≤ n− rk(C) + 1.

Codes achieving this bound are called Maximum Distance with respect to Rank (MDR)
codes, in order to differentiate from MDS codes. This is a sharper bound than the usual
Singleton bound, since for non-free codes we have rk(C) > log|R|(M).

In the case of linear codes, the rank thus also leads to a sharper Singleton-like bound
for the overweight.

Proposition 3. Let R be a principal ideal ring. Let C ⊆ Rn be a linear code of rank rk(C) and
minimum overweight distance d. Then,

d ≤ 2(n− rk(C) + 1).

Example 3. As an example for a code, we can consider C = 〈(3, 6, 3, 0), (6, 6, 0, 3)〉 ⊂ Z4
9, having

minimum overweight distance d = 6.

4.2. A Sphere-Packing Bound

The sphere-packing bound as well as the Gilbert–Varshamov bound are generic bounds,
and we are able to provide them for the overweight in a simple form involving the volume
of the balls in the underlying metric space.

We begin by defining balls with respect to the overweight distance.

Definition 9. For a given radius r ≥ 0, the overweight ball Br,D(x) of radius r centered in x is
defined as

Br,D(x) := {y ∈ Rn | D(x, y) ≤ r}.

Clearly, the volume of such a ball is invariant under translations, i.e.,

|Br,D(x)| = |Br,D(y)|,

for all x, y ∈ Rn.
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Moreover, setting u := |R×| and v := |R| − 1− u, we have the generating function
fW(z) = 1 + uz + vz2 for this weight function, so that the generating function for W on Rn

takes the form

f n
W(z) = (1 + uz + vz2)n

= ∑
k0+ku+kv=n

(
n

k0, ku, kv

)
1k0(uz)ku(vz2)kv

=
n

∑
k=0

n−k

∑
`=0

(
n
k

)(
n− k
`

)
ukv`zk+2`,

where we have set k = ku and ` = kv, and where the condition k0 + ku + kv = n is
transformed in 0 ≤ k ≤ n, 0 ≤ ` ≤ n− k. Now, setting t = k + 2`, we obtain the simplified
expression for the generating function

f n
W(z) =

2n

∑
t=0

b t
2 c

∑
`=0

(
n

t− 2`

)(
n− t + 2`

`

)
ut−2`v`zt.

Lemma 2. The foregoing implies that the ball of radius e (centered in 0) has volume exactly

|Be,D(0)| =
e

∑
t=0

b t
2 c

∑
`=0

(
n

t− 2`

)(
n− t + 2`

`

)
ut−2`v`. (1)

We thus provided an explicit formula for the cardinality of balls in Rn with respect to
the overweight distance.

We now obtain the sphere-packing bound for the overweight distance by combining
the previous results. As before, R is a finite ring and u = |R×|, whereas v = |R| − 1− u
represents the number of non-zero non-units.

Corollary 1 (Sphere-Packing Bound). Let C ⊆ Rn be a (not necessarily linear) code of length n,
and minimum overweight distance d = 2e + 1. Then, we have

|C| ≤ |R|n
|Be,D(0)|

,

where the cardinality of Be,D(0) is given in Equation (1).

If the minimum distance is even and R is a finite local ring with maximal ideal J, this
bound can be adapted as follows.

Corollary 2. Let R be a local ring with maximal ideal J, q = |R/J| and C ⊆ Rn+1 be a (not
necessarily linear) code of length n + 1 and minimum overweight distance d = 2e + 2. Then,

|C| ≤ |R|n+1

q|Be,D(0)|
,

where Be,D(0) is the overweight ball of radius e in Rn, and its volume is given in Equation (1).

Proof. Pick x1, . . . , xq such that the cosets x1 + J, . . . , xq + J form a partition of R. For all
m ∈ J, define the set

Sm := {x1 + m, . . . , xq + m}.
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Notice that the sets Sm form a partition of R and that all elements of Sm have mutual
overweight distance 1. Thus, given r ∈ R, we denote with S(r) the unique set Sm that
contains r. Furthermore, let

π : Rn+1 → Rn

be the projection that removes the n + 1’th coordinate and

Z(x) := {z ∈ Rn+1 | D(π(z), π(x)) ≤ e, zn+1 ∈ S(xn+1)}.

Now, if x 6= y ∈ Rn+1 are two codewords, then Z(x) and Z(y) are disjoint. In-
deed, if z ∈ Z(x) ∩ Z(y), then S(xn+1) = S(yn+1) as they cannot be disjoint. Hence,
D(xn+1, yn+1) ≤ 1. Furthermore, both D(π(x), π(z)) and D(π(y), π(z)) are less than or
equal to e, implying that D(π(x), π(y)) ≤ 2e. It follows that D(x, y) ≤ 2e + 1, which is a
contradiction.

To find non-trivial examples of perfect codes is as notoriously hard as over finite fields
in the Hamming metric. Clearly, in the case R = Fq, there are non-trivial perfect codes, as
the overweight coincides with the Hamming weight. Examples of such codes can be found
in [5] (Section IV). Furthermore, in the case R = Zpk , linear 1-perfect codes are classified in
terms of their parity-check matrix in [6] (Theorem IV.1).

4.3. A Gilbert–Varshamov Bound

With arguments similar to those for the sphere-packing bound, we can also obtain a
lower bound on the maximal size of a code with a fixed minimum distance.

Proposition 4 (Gilbert–Varshamov bound). Let R be a finite ring, n a positive integer and
d ∈ {0, . . . , 2n}. Then, there exists a code C ⊆ Rn of minimum overweight distance at least
d satisfying

|C| ≥ |R|n∣∣Bd−1,D(0)
∣∣ ,

where the volume is given in Equation (1) for e = d− 1, i.e.,

∣∣Bd−1,D(0)
∣∣ =

d−1

∑
t=0

b t
2 c

∑
`=0

(
n

t− 2`

)(
n− t + 2`

`

)
ut−2`v`.

Proof. Assume C ⊆ Rn of minimum overweight distance of at least d is a largest code
of length n and minimum distance d. Then, the set of balls Bd−1,D(x) centered in the
codewords x ∈ C must already cover the space Rn. Since, if this were not the case, one
would find an element y ∈ Rn that is not contained in the ball of radius d− 1 around any
element of C. This word y would have distance at least d to each of the words of C, and
thus C∪ {y}would be a code of properly larger size with distance at least d, a contradiction
to the choice of C.

From the covering argument, we then see that

|C| ≥ |R|n∣∣Bd−1,D(0)
∣∣ ,

as desired.

Let us consider the special case where R is a finite chain ring. Since the overweight is an
additive weight, and the conditions of [14] are easily verified, we can use [14] (Theorem 22)
to obtain that random linear codes over Rn achieve the (asymptotic) Gilbert–Varshamov
bound with high probability.

Example 4. As an easy example, we can consider Rn = Z2
8. The maximal minimum overweight

distance is given by d = 2n = 4. The Gilbert–Varshamov bound states for this example that
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there exists a code C with | C |> 1, as | B3,D(0) |= 55. For example, the code C = 〈(2, 2)〉 has
four elements.

4.4. A Plotkin Bound

Over a local ring, we can use methods similar to the ones used for the classical
Plotkin bound to obtain an analogue of the Plotkin bound for (not necessarily linear) codes
equipped with the overweight.

For the rest of this section, R is a finite local ring with maximal ideal J. The notation
stems from the Jacobson radical of the ring R. Note that the factor ring R/J is a finite field,
whose cardinality will be denoted by q.

Similarly to the Hamming case, for a subset A ⊆ R, we will denote by

W(A) =
∑a∈A W(a)
|A|

the average weight of the subset A.

Lemma 3. Let I ⊆ R be a left or right ideal. Then,

W(I) =


|R|+|J|−2
|R| if I = R,

2
(

1− 1
|I|

)
if {0} ( I ( R,

0 else.

Proof. Note that the last case is trivial as I = {0}. If {0} ( I ( R, then all non-zero
elements of I have weight 2, so this case follows as well.

Finally, if I = R, then there are |R \ J| = |R| − |J| elements of weight 1 and |J| − 1
elements of weight 2. Hence, the total weight is |R| − |J|+ 2(|J| − 1) and dividing by |R|
yields the claim.

Corollary 3. Let R be a local ring with maximal ideal J and assume that |J| ≥ 2. Then, we have
that W(J) ≥W(I) for all left or right ideals I ⊆ R.

Proof. We immediately see that W(J) ≥W(I) for all I ⊆ J. Now, consider the case I = R.
We have that

W(R) =
|R|+ |J| − 2
|R| =

|R \ J|
|R| + 2

|J| − 1
|R|

=
|R \ J|
|R| + 2

|J| − 1
|J| ·

|J|
|R|

≤ 2
|J| − 1
|J| ·

|R \ J|
|R| + 2

|J| − 1
|J| ·

|J|
|R|

= 2
|J| − 1
|J| = W(J),

where we used that 2 |J|−1
|J| ≥ 1.

To ease the notation, let us denote by η the following

η = W(J) = 2
(

1− 1
|J|

)
.

In what follows, we provide a Plotkin bound for the overweight over a local ring R
with maximal ideal J. The case |J| = 1 is already well studied, since, in this case, R is a field
and D is simply the Hamming distance. Hence, we will assume that |J| ≥ 2.
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We start with a lemma for the Hamming weight. The proof of it follows the idea of
the classical Plotkin bound, which can be found in [15], and for the homogeneous weight
in [10].

Lemma 4. Let I ⊆ R be a subset and P be a probability distribution on I. Then, we have that

∑
x∈I

∑
y∈I

wH(x− y)P(x)P(y) ≤ 1− 1
|I| .

Proof. We have that

∑
x∈I

∑
y∈I

wH(x− y)P(x)P(y) = ∑
x∈I

P(x)(1− P(x)) = ∑
x∈I

P(x)− ∑
x∈I

P(x)2.

If we apply the Cauchy–Schwarz inequality to the latter sum, we obtain that

∑
x∈I

P(x)− ∑
x∈I

P(x)2 ≤ 1− 1
|I|

∣∣∣∣∣∑x∈I
P(x)

∣∣∣∣∣
2

= 1− 1
|I| .

From which we can conclude.

We are now ready for the most important step of the Plotkin bound. As before, R is a
local ring with non-zero maximal ideal J and η = W(J).

Proposition 5. Let P be a probability distribution on R. Then, it holds that

∑
x∈R

∑
y∈R

W(x− y)P(x)P(y) ≤ η.

Proof. Let q = |R/J| and pick x1, . . . , xq such that xi + J 6= xj + J if i 6= j. Then, it follows
that the cosets xi := xi + J form a partition of R. For all k ∈ {1, . . . , q}, we denote by

Pk = ∑
x∈xk

P(x).

It follows that
q
∑

k=1
Pk = 1. By rewriting the initial sum as sum over all cosets, we

obtain that

∑
x∈R

∑
y∈R

W(x− y)P(x)P(y)

=
q

∑
k=1

∑
x∈xk

∑
y∈R

W(x− y)P(x)P(y)

=
q

∑
k=1

∑
x∈xk

 ∑
y∈xk

2wH(x− y)P(x)P(y) + ∑
z∈R\xk

wH(x− z)P(x)P(z)


=

q

∑
k=1

2 ∑
x∈xk

∑
y∈xk

wH(x− y)P(x)P(y) + ∑
x∈xk

∑
z∈R\xk

P(x)P(z)


=

q

∑
k=1

(
2 ∑

x∈xk

∑
y∈xk

wH(x− y)P(x)P(y) + ∑
x∈xk

P(x)(1− Pk)

)
.
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If Pk 6= 0, then P̃(x) := P(x)/Pk defines a probability distribution on xk. In this case,
we apply Lemma 4 to obtain that

∑
x∈xk

∑
y∈xk

wH(x− y)P(x)P(y)

=P2
k

(
∑

x∈xk

∑
y∈xk

wH(x− y)
P(x)P(y)

P2
k

)

≤P2
k

(
1− 1
|J|

)
.

Note that the same inequality also trivially holds if Pk = 0. Applying this and using
that ∑

x∈xk

P(x) = Pk, we obtain that

q

∑
k=1

(
2 ∑

x∈xk

∑
y∈xk

wH(x− y)P(x)P(y) + ∑
x∈xk

P(x)(1− Pk)

)

≤
q

∑
k=1

(
P2

k · 2
(

1− 1
|J|

)
+ Pk(1− Pk)

)

≤
q

∑
k=1

Pk · 2
(

1− 1
|J|

)
= 2

(
1− 1
|J|

)
= η,

where we used that 2
(

1− 1
|J|

)
≥ 1 since |J| ≥ 2 in the last inequality.

To complete the Plotkin bound for the overweight, we now follow the steps in [10].
Using Proposition 5, we obtain the following result:

Proposition 6. Let C ⊆ Rn be a (not necessarily linear) code of minimum overweight distance
d. Then,

|C|(|C| − 1)d ≤ ∑
x∈C

∑
y∈C

D(x, y) ≤ |C|2n η.

Proof. The first inequality follows since the distance between all distinct pairs of C is at
least d.

For the second inequality, let pi : Rn → R be the projection onto the ith coordinate.
Note that

Pi(z) :=
|p−1

i (z) ∩ C|
|C|

defines a probability distribution on R for all i ∈ {1, . . . , n}. Using Proposition 5, we
obtain that

∑
x∈C

∑
y∈C

D(x, y) =
n

∑
i=1

∑
x∈C

∑
y∈C

W(xi − yi)

=
n

∑
i=1

∑
r∈R

∑
s∈R

W(r− s)Pi(r)Pi(s)|C|2

≤ |C|2
n

∑
i=1

η = |C|2nη.

Thus, we obtain the claim.

From this inequality, we obtain a Plotkin bound for the overweight distance. As before,
R is a local ring with non-zero maximal ideal J and η = 2

(
1− 1

|J|

)
.
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Theorem 3 (Plotkin bound for the overweight distance). Let C ⊆ Rn be a (not necessarily
linear) code of minimum overweight distance d = D(C) and assume that d > nη. Then,

|C| ≤ d
d− nη

.

Proof. We divide both sides of the inequality in Proposition 6 by |C| to obtain that

|C|(d− nη) ≤ d.

The result then follows from the assumption that d− nη > 0.

By rearranging the same inequality, we also obtain the following version of the Plotkin
bound, which does not require the assumption that d > nη.

Corollary 4. Let C ⊆ Rn be a (not necessarily linear) code with | C |≥ 2 and let d = D(C). Then,

d ≤ |C|nη

|C| − 1
.

Proof. We obtain this by dividing both sides of the inequality in Proposition 6 by |C|(|C| − 1),
which is non-zero by assumption.

Remark 2. Note that W is a homogeneous weight on Z4, and thus our bound coincides with the
bound from [10] for the homogeneous weight on Z4.

Example 5. If we consider codes over Z9 and fix |C| = 9, n = 3. We obtain that d ≤ 9/2 and
hence by the integrality that d ≤ 4. The linear code

C = 〈(1, 1, 3)〉

attains this bound.

5. A Johnson Bound for the Homogeneous Weight

Another interesting bound is the Johnson bound due to its relation with list-decodability.
In the classical form, the Johnson bound gives an upper bound on the largest size Aq(n, d, w) of
a constant-weight w code over Fq of length n and minimum Hamming distance d. However,
for the list-decodability of a code, we are interested in codes having codewords of weight at
most w. In fact, if the largest size of such a code A′q(n, d, w) is small, e.g., at most a constant L,
then every ball of radius w contains at most L codewords and hence one can decode a list of a
size at most L. In more detail, the Johnson bound for list-decodability in the Hamming metric
states that, if

w
n

< (1− 1
q
)

(
1−

√
1− q

q− 1
δ

)
= Jq(δ),

where δ denotes the relative minimum distance, then A′q(n, d, w) ≤ n(d− 1).
This famous bound is still missing for the well-studied homogeneous weight, which

is, like the overweight, a generalization of the Lee weight over Z4. In this section, we prove
a Johnson bound for the homogeneous weight from Definition 6, denoted by wt and let γ
be its average weight on R. By abuse of notation, we denote with wt also the extension of
wt to Rn, that is,

wt(x) =
n

∑
i=1

wt(xi).

Note that wt does not necessarily satisfy the triangle inequality. In [7] (Theorem 2), it
is shown that the homogeneous weight on Zm satisfies the triangle inequality if and only if
m is not divisible by 6.
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We define the ball of radius r with respect to a homogeneous weight wt to be the set of
all elements having distance less than or equal to r.

Definition 10. Let y ∈ Rn and r ∈ R≥0. The ball Br,wt(y) of radius r centered in y is defined as

Br,wt(y) := {x ∈ Rn | wt(x− y) ≤ r}.

Our aim is to provide a Johnson bound for the homogeneous weight over Frobenius
rings. Thus, we begin by defining list-decodability.

Definition 11. Let R be a finite ring. Given ρ ∈ R≥0, a code C ⊆ Rn is called (ρ, L) list-decodable
(with respect to wt) if, for every y ∈ Rn, it holds that

|Bρn,wt(y) ∩ C| ≤ L.

Over Frobenius rings, the following result holds, which will play an important role in
the proof of the Johnson bound.

Proposition 7 ([10] (Corollary 3.3)). Let R be a Frobenius ring, C ⊆ Rn a (not necessarily linear)
code of minimum distance d and ω = max{wt(c) | c ∈ C}. If ω ≤ γn, then

|C|(|C| − 1)d ≤ ∑
x,y∈C

wt(x− y) ≤ 2|C|2ω− |C|
2ω2

γn
.

With this, we obtain an analogue of the Johnson bound for the homogeneous weight.

Theorem 4. Let R be a Frobenius ring and C ⊆ Rn be a (not necessarily linear) code of minimum
distance d. Assume that ρ ≤ γ. Then, it holds that C is (ρ, dγn) list-decodable if one of the
following conditions is satisfied:

(i) We have that γ n(d− γ n) ≥ 1.

(ii) It holds that ρ ≤ γ−
√
(γ− d

n )γ + 1
n2 .

Proof. Assume that e ≤ ρn and let y ∈ Rn. We have to show that, under the given conditions,
|Be,wt(y) ∩ C| ≤ dγn.

Note first that we may assume that y = 0; otherwise, simply consider the translate

C′ = {c− y | c ∈ C}.

Assume that x1, . . . , xN are in Be,wt(0) ∩ C. We have that wt(xi − xj) ≥ d for i 6= j, thus
using Proposition 7 and wt(x− y) = wt(y− x), we obtain that

N(N − 1)d ≤ 2 ∑
i<j

wt(xi − xj) ≤ 2N2e− N2e2

γn
.

Hence, it follows that
N(dγn− 2eγn + e2) ≤ dγn.

It holds that
dγn− 2eγn + e2 = (nγ− e)2 − nγ(nγ− d).

If we assume that nγ(nγ− d) ≤ −1, then we clearly have

(nγ− e)2 − nγ(nγ− d) ≥ 1.
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If this is not the case, we see that
√
(γ− d

n )γ + 1
n2 is well-defined. Thus, if

e
n
≤ γ−

√(
γ− d

n

)
γ +

1
n2 ,

then
nγ− e ≥

√
(nγ− d)nγ + 1,

and hence
(nγ− e)2 − nγ(nγ− d) ≥ 1.

It follows that N ≤ dγn.

Remark 3. Note that the second condition already forces ρ ≤ γ.

Example 6. As an easy example, we can consider the code C = 〈(1, 1), (4, 0)〉 ⊂ Z2
8 of minimum

homogeneous distance 2 and γ = 1. The second condition of Theorem 4 is clearly satisfied by
choosing ρ = 1/2 since

γ−

√(
γ− d

n

)
γ +

1
n2 =

1
2

,

implying that the code is (1/2, 4) list decodable. For example, when setting y = (1, 2), we see that

B1,wt(y) ∩ C = {(1, 1), (2, 2), (1, 5), (6, 2)},

so the bound is attained.

6. Open Problems

We conclude this paper with some interesting open questions for the newly defined
overweight that we have encountered.

Problem 1. Classify the codes that attain the bounds derived in this paper.

Problem 2. Give a Griesmer bound, an Elias-Bassalygo and a Johnson bound for the overweight.

Proving an analogue of a Griesmer, Elias-Bassalygo and Johnson bound poses a
difficult challenge over rings and in particular for the overweight, due to the necessity of
an effective upper bound on the sum of the distances.
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