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Abstract
Elevated atmospheric CO2 (eCO2) influences the carbon assimilation rate and stoma-
tal conductance of plants, thereby affecting the global cycles of carbon and water. 
Yet, the detection of these physiological effects of eCO2 in observational data re-
mains challenging, because natural variations and confounding factors (e.g., warming) 
can overshadow the eCO2 effects in observational data of real-world ecosystems. In 
this study, we aim at developing a method to detect the emergence of the physiologi-
cal CO2 effects on various variables related to carbon and water fluxes. We mimic the 
observational setting in ecosystems using a comprehensive process-based land sur-
face model QUINCY to simulate the leaf-level effects of increasing atmospheric CO2 
concentrations and their century-long propagation through the terrestrial carbon and 
water cycles across different climate regimes and biomes. We then develop a statisti-
cal method based on the signal-to-noise ratio to detect the emergence of the eCO2 ef-
fects. The eCO2 effect on gross primary productivity (GPP) emerges at relatively low 
CO2 increase (∆[CO2] ~ 20 ppm) where the leaf area index is relatively high. Compared 
to GPP, the eCO2 effect causing reduced transpiration water flux (normalized to leaf 
area) emerges only at relatively high CO2 increase (∆[CO2] >> 40 ppm), due to the high 
sensitivity to climate variability and thus lower signal-to-noise ratio. In general, the 
response to eCO2 is detectable earlier for variables related to the carbon cycle than 
the water cycle, when plant productivity is not limited by climatic constraints, and 
stronger in forest-dominated rather than in grass-dominated ecosystems. Our results 
provide a step toward when and where we expect to detect physiological CO2 effects 
in in-situ flux measurements, how to detect them and encourage future efforts to 
improve the understanding and quantification of these effects in observations of ter-
restrial carbon and water dynamics.
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1  |  INTRODUC TION

Plants are tightly coupled to the ambient atmosphere through their 
exchange of energy, water, and carbon. Through this coupling, plants 
play an essential role in controlling the global cycles of carbon and 
water, and also modulate earth's surface energy balance (Denissen 
et al., 2022; Friedlingstein et al., 2019; Gedney et al., 2006; Williams 
& Torn,  2015). Changing atmospheric conditions such as rising air 
temperature, or increasing dryness in turn directly impact on plants 
and their functioning (Bastos et al.,  2020; Novick et al.,  2016; 
Reichstein et al., 2013). Also changes in the atmospheric composi-
tion, such as elevated atmospheric CO2 (eCO2), alter plant productiv-
ity, for example by stimulating carbon assimilation and by reducing 
stomatal conductance (Ainsworth & Long, 2005; Norby & Zak, 2011; 
Walker et al., 2021). As a result, the light-use efficiency (LUE; Drake 
et al.,  1997) and the water-use efficiency (WUE) of plants (WUE; 
Peñuelas et al.,  2011; Ueyama et al.,  2020) increase under eCO2. 
The combined effect is referred to as the CO2 fertilization effect 
(Körner et al., 2007; Walker et al., 2021). This study aims to identify 
the change in atmospheric CO2 concentrations at which the eCO2 
effects are distinguishable from the short-term and long-term cli-
mate effects.

Plant leaves respond directly to eCO2 through the physiologi-
cal mechanisms associated with the CO2 fertilization effect, which 
could potentially translate into changes in gross primary productivity 
(GPP) and transpiration (Tr) that can propagate further into the car-
bon and water cycles (Fernández-Martínez et al., 2017; Lemordant 
et al., 2018; Walker et al., 2021). Throughout this paper, the eCO2 
effects indicate particularly physiological effects. Specifically, the 
eCO2 effect alters the carbon cycle by triggering changes in GPP 
resulting in changes in net primary production (NPP) and various 
aspects of biomass production, accumulation, and allocation (e.g., 
leaves or roots). The increased biomass production can potentially 
contribute to an increased leaf area index (LAI). Observational evi-
dence suggests that this effect can vary substantially across differ-
ent biomes and plant functional types (De Kauwe et al., 2014; Norby 
& Zak,  2011; Winkler et al.,  2021). The water cycle is affected as 
eCO2 is triggering changes in the leaf-level Tr flux which controls 
the largest fraction of the land–atmosphere water exchange (Good 
et al., 2015). The eCO2-induced change of Tr implies a potential influ-
ence on other components in the water cycle, such as soil evapora-
tion, run-off, and consequently soil moisture (Lemordant et al., 2018; 
Leuzinger & Körner, 2007). However, reduced transpiration at the 
leaf level due to reduced stomatal conductance and stomatal den-
sity in response to eCO2 (Ainsworth & Rogers, 2007; Woodward & 
Kelly, 1995) could be offset by a simultaneous increase in leaf area, 
and thus transpiration at canopy level as more carbon is invested in 
leaf growth in response to eCO2 (Wullschleger et al., 2002). These 
competing effects of eCO2 could potentially compensate each other, 
resulting in a non-detectable effect on the water cycle. On the other 
hand, the increasing leaf area enhances GPP by controlling light in-
terception (McCarthy et al., 2006).

The emergence of the effects of eCO2 on carbon and water 
cycles in experiments and observations remain inconsistent. The 
intrinsic WUE inferred from 21 flux site measurements shows 
strong increase (Keenan et al.,  2013), while the study by Knauer 
et al.  (2017) indicates a smaller magnitude of WUE response at a 
recent large scale. Increased biomass is found in many free-air CO2 
enrichment (FACE) experiments (Walker et al.,  2019). However, 
tree-ring studies indicate the increased intrinsic WUE does not 
translate into the increased tree biomass (Peñuelas et al.,  2011; 
van der Sleen et al., 2015). The diverse response of plant physiol-
ogy to eCO2 is observed in many other aspects. Results from field 
experiments show the magnitude of eCO2 stimulation on carbon 
assimilation rate varies considerably across species and experi-
mental conditions (Leakey et al., 2009; Norby et al., 1999; Norby & 
Zak, 2011; Walker et al., 2021). Meta-analysis indicates that stoma-
tal conductance in young trees shows stronger response to eCO2 
than old trees, and deciduous forest shows stronger response than 
conifer forest (Medlyn et al., 2001). Furthermore, photosynthesis 
in C4 plants is close to being saturated, while plants in the C3 car-
bon pathway are expected to show a greater increase in carbon as-
similation rate (Ainsworth & Rogers,  2007; Kramer,  1981; Leakey 
et al., 2009). C4 plants may have more potential response to eCO2 
associated with high WUE (Way et al., 2014). Overall, the uncertain 
strength of eCO2 effects across different climate zones and biomes 
prevents us from better understanding the governing processes, 
but this is necessary to anticipate future changes of carbon and 
water fluxes in the system.

This study aims to develop a methodology that would be helpful 
to define the detectable imprint of CO2 on land–atmosphere fluxes 
of carbon and water given the natural variabilities. Such a detec-
tion is challenging with real-world data, mostly due to confounding 
factors impacting on long-term plant productivity, such as climatic 
variability, nitrogen deposition, and land cover change (Fernández-
Martínez et al., 2017; Liu et al., 2021; McCarthy et al., 2010; Schimel 
et al., 2015). FACE experiments provide the opportunities to observe 
the response of ecosystems to eCO2 in the field exposed in open-air 
conditions (Ainsworth & Long, 2005). Nevertheless, in these exper-
iments, ecosystems are pushed into an “accelerating mode” where 
plants are exposed to a much higher rate of CO2 concentration in-
crease (≈550 ppm) in a short time period while the climate condi-
tions are changing at a relatively slow speed. Process-based models 
provide the opportunity to conduct factorial experiments to isolate 
the role of individual drivers, which allows us to test a statistical 
trend-detection method. Using this method, we develop the con-
cept of the emergence of the eCO2 effect (EoC), which allows us to 
determine to which extent the eCO2 effect can exceed the natural 
variability and confounding factors. Here, we perform three simu-
lations with the terrestrial biosphere model QUINCY (QUantifying 
Interactions between terrestrial Nutrient CYcles and the climate 
system; Thum et al., 2019) to isolate the eCO2 effects: (i) a refer-
ence simulation with transient CO2 concentrations and observation-
based meteorological forcing, (ii) a simulation where the CO2 is kept 
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constant at the level of 1901 while the meteorological forcing is 
identical to the reference simulation; and (iii) a simulation with the 
same set up of (i) but CO2 is kept constant after the year 1988 at 
the level of 1988. The simulation (iii) is used to test our method in 
the recent time period, when the FLUXNET observations start to be 
recorded (Baldocchi et al., 2001). Additionally, the simulation (iii) is 
designed to study the role of the baseline CO2 concentration in our 
findings. Analyzing the differences of carbon and water fluxes be-
tween simulations with transient and constant CO2 concentration, 
we develop a statistical method based on the signal-to-noise ratio 
to detect the emergence of significant eCO2 effects on these fluxes 
given their natural variability. The signal refers to the eCO2 effects, 
and the noise indicates the inter-annual variability which is related 
mostly to climate variations. In other words, we seek to identify the 
point in time when the signal is distinguishable from the noise. We 
concentrate on the two variables which are most directly affected 
by rising CO2, GPP, and Tr at annual, seasonal, and diurnal scales. 
To exclude the potential compensation effect of increasing LAI, we 
normalize Tr by LAI (Trnorm) to obtain the transpiration flux per leaf 
area. Subsequently, we analyze eCO2 effects on ecosystem proper-
ties (Table 1) which are important in the carbon and water cycle and 
investigate controls of the EoC. We also include Earth system mod-
els (ESMs) from the most recent Coupled Model Intercomparison 
Project (CMIP6) to examine the controls of the EoC in other mod-
els than QUINCY with different process formulations. In this way, 
we validate to which extent the controls of spatial variations in EoC 
found from QUINCY also apply for CMIP6 simulations. Overall, this 
analysis will guide the investigation of the eCO2 effects in measure-
ments of water and carbon fluxes as being conducted at the various 
eddy covariance sites.

2  |  MATERIAL S AND METHODS

2.1  |  QUINCY model

2.1.1  |  Model description

The terrestrial ecosystem model, QUINCY (Thum et al.,  2019), is 
designed to represent the coupled carbon, nitrogen, and phospho-
rus cycles and their interactions with energy and water balances 
in terrestrial ecosystems. QUINCY simulates half-hourly carbon, 
water and energy fluxes as well as longer-term ecosystem dynamics 
across climate regimes and different plant functional types (PFTs), 
representing different plant growth forms (tree, grass), leaf types 
(leaves, needles), and phenology (evergreen, cold and drought de-
ciduous, perennial). Calculation of coupled photosynthesis (Kull & 
Kruijt, 1998) and stomatal conductance (Medlyn et al., 2011) are tak-
ing for sunlit and shaded leaves separately along the vertical canopy 
gradient of light, foliar chlorophyll, and photosynthetic N. QUINCY 
accounts for limitations of photosynthesis by light, CO2, tempera-
ture, and water availability. Light attenuates in the canopy with 
exponentially increasing layer thickness when the canopy depth in-
creases as a function of the cumulative LAI. GPP at the canopy level 
is integrated from leaf-level gross photosynthesis. The simulated di-
urnal and seasonal patterns of GPP have been evaluated against a 
number of benchmarks, including several FLUXNET sites. Leaf area 
development is dynamically dependent on plant production (and 
thereby its response to changing atmospheric CO2, climate and water 
availability) as well as stand structural development and turnover 
through mortality and establishment. Transpiration is calculated as 
a function of the stomatal conductance of the canopy, aerodynamic 
conductance, and other parameters in terms of air density and hu-
midity. Soil physics, moisture, and biogeochemistry are modelled for 
15 layers with exponentially increasing depth. QUINCY calculates 
the litter and soil organic matter turnover by first-order kinetics with 
temperature and moisture dependencies. For more detailed expla-
nations of the process representations in QUINCY, please refer to 
the model description by Thum et al. (2019). The code version used 
in this study (see code availability statement) corresponds to that of 
Thum et al. (2019), with minor bug fixes affecting the stability of the 
energy balance calculation, the calculation of grassland phenology 
as well as the use of the stomatal model by Medlyn et al. (2011).

2.1.2  |  Model setup

Boundary conditions and meteorological forcing
The QUINCY model is a 1D model applied at individual sites (336 
sites) distributed across climate zones and biomes for the time 
period 1901–2018. As an offline land surface model, QUINCY 
takes time-dependent observation-based meteorological forcing 
variables as input such as short- and longwave radiation, air tem-
perature, precipitation, vapor pressure deficit (VPD), atmospheric 
CO2 concentration, as well as other boundary conditions such as 

TA B L E  1  Variables and metrics analyzed for the emergence of 
the elevated CO2 effects

Variable or metric Abbreviation

Gross primary productivity GPP

Transpiration Tr

Normalized transpiration per leaf area (Tr∕LAI) Trnorm

Leaf area index LAI

Net primary production NPP

Biomass

Evaporation

Interception loss

Root-zone soil moisture

Light-use efficiency
(GPP/Absorbed photosynthetically active radiation 

(APAR))

LUE

Underlying water-use efficiency (GPP ×
√

VPD∕Tr) uWUE

Normalized canopy conductance
(canopy conductance (gc)/(VPD × LAI))

gcnorm

95th percentile of daily GPP values in each year GPP95

95th percentile of daily Trnorm values in each year Trnorm
95
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geographic coordinates, PFTs, and soil physical and chemical pa-
rameters. At each site, a specific boundary condition and mete-
orological forcing are taken from the Climate Research Unit and 
Japanese reanalysis product (CRU JRA V2.1; Harris et al., 2020), 
and disaggregated to the model time step (half-hourly) using the 
statistical weather generator (Zaehle & Friend,  2010). The an-
nual atmospheric CO2 concentration is obtained from the Global 
Carbon Project (Le Quéré et al., 2018). Soil physical and chemical 
properties are derived from soil texture (Saxton & Rawls, 2006). 
The texture data are taken from the nearest grid cell of SoilGrids 
dataset (Hengl et al., 2017). To improve the interpretability of the 
model simulations with respect to the occurrence of the eCO2 
signal, we reduce the model complexity and set the soil-soluble 
NH4, NO3, and PO4 concentrations at a prescribed level so that 
the plant growth is not limited by the nutrient availability, and dis-
regard the N and P deposition in the model.

Model simulation experiments for hypothesis testing
We conduct three factorial model experiments to disentangle 
the effects of eCO2 from other drivers: (a) transient-CO2 experi-
ment. This simulation can be considered as a historical run that 
aims to approximate the observed system and thus takes the tran-
sient climate and CO2 concentration for the period 1901–2018 as 
forcing. The transient-CO2 experiment simulates an increase in 
atmospheric CO2 of 110.63 ppm over 118 years; (b) constant-CO2 
experiment. This simulation includes the same transient climate 
as the transient-CO2 experiment. However, the atmospheric CO2 
concentration does not change and is fixed to the initial value of 
1901 (296.8  ppm) for the entire simulation period. The climate 
forcing data contain the effects of rising CO2. (c) freeze-CO2 ex-
periment. Here, the atmospheric CO2 increases until 1988, as in 
the transient-CO2 experiment, but is then kept constant at this 
value in the years thereafter. The year 1988 was chosen as the 
time close to the setup of the first FLUXNET sites (Baldocchi 
et al., 2001).

2.2  |  Statistical analysis

2.2.1  |  The effect of elevated CO2 on annual 
average GPP and Trnorm

We first calculate the difference in annual average values of GPP 
and normalized transpiration (Trnorm = Tr/LAI) between the transient-
CO2 and the constant-CO2 experiments. The difference indicates 
the eCO2 effect on the target variable for the period 1901–2018. We 
cluster the sites based on site-PFT in four vegetation groups: tropi-
cal forest, temperate forest, boreal forest, and grasses (Table S1). We 
further classify the sites of each vegetation group into three tem-
perature classes, “hot,” “warm,” and “cold” based on the quantiles 
of long-term mean 2 m air temperature between the sites in each 
group. Subdividing the temperature classes further based on the 
long-term mean annual precipitation (“low,” “middle,” and “high”), we 

are able to assess the role of water availability in controlling the vari-
ability in GPP and normalized transpiration. While the CO2-induced 
change of LAI compensates the reduced leaf-level water loss at can-
opy Tr, it governs GPP in an opposite way. The structural change of 
increased LAI increases the amount of absorbed photosynthetically 
active radiation (APAR) and therefore vegetation productivity. We 
also evaluate the eCO2 effect on annual average LUE (LUE = GPP/
APAR). The part of increased GPP related to increased LAI can be 
thus disentangled.

2.2.2  |  Emergence of the elevated CO2 effects

Based on the CO2 fertilization effect, we hypothesize that the 
continuous CO2 increase over a long period of time exerts a sig-
nificant influence on the ecosystem (e.g., GPP), which stands 
out as the eCO2 effect from natural variability and other factors 
after a given time and strength of atmospheric CO2 concentra-
tion increase. We define the EoC (ppm) as the change in CO2 
concentration (Δ[CO2]) required so that the annual mean values 
of a simulated variable in the transient-CO2 experiment diverges 
significantly from the constant-CO2 experiment. The significant 
divergence between the annual mean values is defined by the 
point in Δ[CO2] when the signal exceeds the noise. The noise is in-
tended as the interannual variability of the signal around the long-
term changes. We retrieve the signal and noise from the linear fit 
in the historical time period for each experiment. The calculation 
of EoC consists of four steps: (1) for each site, we calculate annual 
averages for the target variable (e.g., GPP) from daily model out-
put for both transient-CO2 and constant-CO2 experiments for the 
time period 1901–2018. We calculate the absolute increase of the 
annual mean CO2 level (i.e., ∆[CO2]) compared with the CO2 con-
centration in the initial year in the transient-CO2 experiment; (2) 
we apply linear least squares regressions to retrieve the trend in 
the evolution of the target variable along ∆[CO2] from both tran-
sient- and constant-CO2 experiments, respectively, over a given 
time period (Figure 1). We start with the time period 1901–1910 
and iteratively expand this time period year by year by advancing 
the final year of the time window. For each time period, we com-
pute the linear trend between the target variable and the ∆[CO2] 
and the uncertainty of the estimation. Accordingly, we obtain an 
estimate of the trend and its uncertainties for a total of n = 108 
points in time for each experiment at each site. The trend b and 
its standard error �bin the linear regression model are given by 
(Weisstein, n.d.):
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where x is the ∆[CO2] at time step i , and y is the value of target 
variable at time step i ; (3) the signal is retrieved as the absolute 
difference in the regression slopes Δb (b in transient-CO2 minus b 
in constant-CO2) as a function of ∆[CO2], while the noise is esti-
mated based on twice the sum of two �b from the transient-CO2 
and constant-CO2 experiments to represent the statistical signifi-
cance (two-sigma rule); (4) the EoC is defined as CO2 concentration 
difference (∆[CO2]) between the time when the signal exceeds the 
noise for 5 consecutive years for the first time and the year 1901 
(see Figure 1 for example). We also test the sensitivity of the ar-
bitrary choice of 5 years in the calculation of EoC and present re-
sults also for n (n = 3, 5, 7, 9) years (Figure S4). We show that the 
impact of our arbitrary choice is negligible on the results. Even 
though there could be a meteorological extreme event that has a 
strong impact in individual years, it has a limited influence on the 
slope of the linear regression over many years. For analyzing the 
freeze-CO2 experiment, we use the same approach to derive the 
EoC. The only difference is that we set the initial year of keeping 
CO2 constant to 1988 instead of 1901.

This freeze-CO2 approach makes sure that both experiments 
(transient and freeze-CO2) share the same initial state and memory 
in the system. In addition and comparison to the freeze-CO2 ex-
periment, we assess this aspect also using the transient and con-
stant-CO2 experiments and derive the sensitivity of EoC over time 
by advancing the initial year (i.e., 1901, 1930, 1960, and 1988) in 
the analysis. In doing so, we shift the time series of the dependent 
variable (e.g., GPP) in the constant-CO2 experiment along the y-axis 

to match the value in the transient-CO2 experiment in the respec-
tive initial year. In this analysis, we calculate EoC with varying initial 
states (Figure S13).

In this study, we mainly focus on the CO2-induced change on an-
nual average values of the relevant variables and metrics for all sites. 
Based on existing knowledge, we select variables or metrics (Table 1) 
that are hypothesized to be most sensitive to eCO2 (Drake et al., 1997; 
Knauer et al.,  2017; Migliavacca et al.,  2021; Novick et al.,  2016; 
Ueyama et al., 2020) to investigate the first manifestations of eCO2. 
In addition, to analyze the variation of the CO2 fertilization effect at 
different time scales, we apply the same detecting method at specific 
times-of-day in each year (e.g., 1 May, 8 am) instead of annual means, 
to derive the EoC at seasonal and diurnal scales for representative 
sites from each vegetation classes (Table S1).

Next to this trend-detection method, an alternative method is 
implemented to test the robustness of the current method. The al-
ternative method defines the signal as the mean of the difference 
between the time series of the target variable from the transient- 
and constant-CO2 experiments. The noise is estimated using twice 
the sum of the standard error in residuals from both time series 
after removing the long-term trend using the LOWESS fit function 
(Cleveland,  1981). The time of emergence is determined by the 
year when the signal exceeds the noise for 5 consecutive years for 
the first time. The EoC is defined as the CO2 concentration differ-
ence (Δ[CO2]) between the time of emergence and the year 1901 
(Figure S14).

2.2.3  |  Variable importance determined with 
random forest analysis

After determining EoC for each site-level simulation, we obtain 
the respective spatial distribution of EoC across sites. We evalu-
ate the relative contribution from all drivers to the spatial variabil-
ity in EoC by applying SHapley Additive exPlanation (SHAP) value 
analysis based on the random forest (RF) model. First, we train 
the RF model (scikit-learn RandomForestRegressor API in Python; 
Pedregosa et al.,  2011) to predict the previously computed EoC 
patterns across sites using site-specific long-term (1901–2018) 
means of climate factors (i.e., temperature, precipitation, soil 
moisture, VPD, aridity index [evapotranspiration/precipitation]) 
and vegetation related factors (i.e., GPP, LAI, growing season 
length) as predictors (Figure S10). The long-term mean values are 
computed over the entire simulation period from the transient-
CO2 experiment. The out-of-bag score estimates the accuracy of 
the prediction from the RF model as compared with the actual 
EoC values, where a higher value (the maximum score equals 1) 
represents a better performance of the model. Finally, we use the 
module “SHAP TreeExplainer” from the software package shap in 
Python (Lundberg et al., 2020; Lundberg & Lee, 2017) to examine 
the influence of all the involved predictors. The average of the 
absolute SHAP values for each predictor indicates its impact on 
the target variable (i.e., spatial variability of EoC).

F I G U R E  1  Illustration of detection of emergence of the elevated 
CO2 effects (EoC). The solid lines depict the evolution of annual 
mean gross primary productivity (GPP) along increasing CO2 levels 
for one example site in QUINCY (80.75°W, 37.75°N, temperate 
broadleaved summer green tree). Black color denotes the evolution 
of GPP from the transient-CO2 experiment, while gray color 
denotes the evolution of GPP from the constant-CO2 experiment 
(for details, see Section 2.1.2.2), in which CO2 is used as the proxy 
of time. The shaded area represents the standard error of the linear 
regression slope (black or gray dashed line). The vertical dashed red 
line indicates the EoC, that is, the value of ∆[CO2] where the black 
and gray trends deviate significantly.
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2.3  |  Comparison with simulations from ESMs 
(CMIP6)

In addition, we perform the EoC analysis for GPP and Trnorm using 
simulations from 7 ESMs from the most recent CMIP6. We use simu-
lation output of the CMIP6 experiments 1pctCO2 and 1pctCO2-rad. 
In both experiments, the CO2 concentration increases gradually at a 
rate of 1% per year until quadrupling, starting at the pre-industrial 
equilibrium state (Meehl et al., 2014). The fully coupled model setup 
is used in the 1pctCO2 experiment, while for the 1pctCO2-rad ex-
periment the CO2 concentration is kept at the pre-industrial level for 
the carbon cycle and the increasing CO2 has only a radiative effect 
(i.e., CO2-induced climatic changes; Jones et al.,  2016). Therefore, 
the 1pctCO2 experiment is comparable to our transient-CO2 ex-
periment, and the 1pctCO2-rad experiment is comparable to our 
constant-CO2 experiment, although the QUINCY simulations fol-
low the observed CO2 concentration for the last 120 years. EoC is 
calculated by applying the same detection method as described in 
Section 2.2.2. To obtain comparability to the EoC results based on 
the QUINCY simulations, we select cells in gridded CMIP6 output 
which correspond to the locations of simulated sites with QUINCY. 
Furthermore, we only consider the CMIP6 time series from the year 
1850 until the doubling of the atmospheric CO2 concentration, that 
is, roughly 560 ppm. The ESMs used in this study are (1) Beijing 
Climate Center (BCC) BCC-CSM2-MR, (2) Institut Pierre Simon 
Laplace (IPSL) IPSL-CM6A-LR, (3) Centre National de Recherches 
Météorologiques (CNRM) CNRM-ESM2-1, (4) United Kingdom 
(UK) UKESM1-0-LL, (5) Canadian Centre for Climate Modelling and 
Analysis (CCCma) CanESM5, (6) Meteorological Research Institute of 
the Japan Meteorological Agency (MRI) MRI-ESM2-0, and (7) Max 
Planck Institute for Meteorology (MPI) MPI-ESM1.2-LR. More details 
on the used CMIP6 ESMs can be found in Arora et al. (2020). Due to 
missing respective output, the analysis for normalized transpiration 
(Trnorm) only involves the first four models in the CMIP6 archive.

3  |  RESULTS AND DISCUSSION

3.1  |  The effect of elevated CO2 on GPP

Our analysis based on model simulation experiments indicates that 
eCO2 generally increases GPP. This increase in GPP differs in magni-
tude and interannual variability across climate and vegetation types 
(Figure 2). The trend of increasing GPP over 118 years is clearly vis-
ible in all forested sites and less clear at grassland sites due to high 
year-to-year variability in GPP. In comparison to the forested sites, 
the variability in GPP is considerably higher at grassland sites, be-
cause grass-dominated ecosystems are more sensitive to climate 
variability partly related to shallower roots (Kulmatiski et al., 2020; 
Miguez-Macho & Fan, 2021) and less regulated by stomatal closure 
(Konings et al., 2017). Grasslands are also predominantly located in 
semi-arid regions, in which interannual variability of precipitation is 
large, and therefore has a larger imprint on GPP that it would have 
in mesic ecosystems with lower precipitation interannual variability 
(Maurer et al., 2020). The grassland sites that are located in relatively 
cold regions show less variability and more clear trends in GPP in 
contrast to grassland sites located in warmer (and drier) regions.

Overall, the results show that the CO2 fertilization effect is 
strong where vegetation productivity is not strongly limited by 
energy or water availability. Subdividing the temperature classes 
further based on the amount of annual precipitation, we are able 
to assess the role of water availability in controlling the variabil-
ity in GPP (Figure  S2). Sites located in relatively warm and wet 
regions in the temperate and the boreal forest vegetation class 
(Figure  S2b,c) also exhibit the sharpest increase in GPP. This is 
probably related to the temperature-dependent response of pho-
tosynthetic rate of CO2 uptake through the kinetics of the Rubisco 
enzyme (Baig et al.,  2015; Hickler et al.,  2008; Long,  1991). 
However, the difference of increase in LUE across temperature 
and precipitation classes is not apparent compared to where we 

F I G U R E  2  Differences in annual 
average gross primary productivity (GPP) 
between the transient-CO2 and the 
constant-CO2 experiments across climate 
and vegetation classes. All global sites 
(336 sites) are first grouped by vegetation 
type (a–d, Table S1) and then by long-
term mean temperature using quantiles 
within each group (cold in blue: ≤0.33; 
warm in orange: 0.33–0.66; hot in purple: 
≥0.66). The shaded area depicts standard 
deviation around the multi-sites mean 
value (solid lines).
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find the sharp increase in GPP, especially in the temperate forest 
vegetation class (Figure S1). The increased carbon assimilation due 
to rising CO2 leads to a build-up of more biomass, some of which 
is allocated to increased leaf growth resulting in an extension of 
the leaf area (Winkler et al., 2021). Canopies with higher LAI are 
more available for light interception and therefore it leads to en-
hancement of vegetation productivity. In temperate forest, the 
enhancement of GPP due to eCO2 is the combination of increased 
both LAI and photosynthetic efficiency (McCarthy et al.,  2006; 
Norby et al., 2005).

3.2  |  The effect of elevated CO2 on transpiration 
per leaf area

Decreased transpiration (Tr) due to down-regulated gas exchange 
with the atmosphere at the leaf level can be offset by an extension 
in leaf area at the canopy level. The simulated Tr exhibits both in-
creasing and decreasing trends in response to eCO2. To account for 
that, we normalized Tr by LAI which is denoted by Trnorm. Trnorm thus 
represents the transpiration per leaf area.

As expected, we find consistently decreasing Trnorm across all veg-
etation types and temperature classes (Figure 3). Similar to the result 
in Section 3.1 (Figure 2), the variability in Trnorm is high in grasslands. 
In contrast to GPP, Trnorm responds to eCO2 strongly where tempera-
ture and precipitation are relatively low (i.e., cold and try regions) 
except for tropical forest sites (Figure S3). Barton et al. (2012) sug-
gested that the ratio of net photosynthesis to transpiration increases 
in proportion to the increase in atmospheric CO2 concentration. They 
further demonstrated that stomatal conductance responds to eCO2 
not as strongly as the photosynthesis apparatus. At the leaf level, the 
decreased stomatal conductance is likely to result in the increase of 
leaf skin temperature (Leakey et al.,  2009), which demands higher 
transpiration. However, the direct relationship between ambient 

temperature and eCO2 effect on stomatal regulation is still ambigu-
ous (Barton et al., 2012; Medlyn et al., 2001).

3.3  |  Emergence of the elevated CO2 effects (EoC) 
in GPP and Trnorm

A lower EoC indicates a detection of eCO2 effects earlier in the ana-
lyzed time period and thus a stronger response in the target variable 
to the eCO2 effects compared to its background or natural variabil-
ity. Our results show that the eCO2 effect in GPP is strongest in the 
tropical forests. In total, 34 in 174 detected sites exhibit an EoC of 
less than 20 ppm (Figure 4). This means that a change in atmospheric 
CO2 of 20 ppm is sufficient to detect the CO2 fertilization effect in 
the GPP time series for those sites. The forested northern mid- and 
high latitudes also exhibit significant changes in GPP, which, however, 
is only detectable at much higher ∆[CO2] (consistent with Schimel 
et al., 2015). GPP in arid regions is highly variable due to the high 
sensitivity toward intermittent water availability, and this prevents a 
detection of the CO2 fertilization effect. The effect of eCO2 on GPP 
further rarely emerges in regions dominated by C4 grasses, most 
likely because they are less responsive to eCO2 due to their different 
photosynthetic pathway (Leakey et al., 2009). Also, evidence from 
FACE experiments suggests that trees exhibit the greatest response 
to eCO2 compared to C3 and C4 grasses (Ainsworth & Long, 2005). 
The magnitude of plants' responses to eCO2 comes down to the vari-
ations of photosynthetic capacity, which is indicated by the maxi-
mum rate of RuBisCO carboxylase activity (Vcmax) and the maximum 
rate of photosynthetic electron transport (Jmax; Long, 1991). We find 
a similar pattern of distribution for EoC in LUE (Figure S5) with EoC 
in GPP, which could support the physiological effect of eCO2 on GPP 
rather than structural change, namely the change of LAI. The result 
from the alternative method (see Section 2.2.2) does not show ap-
parent difference (Figure S14).

F I G U R E  3  Differences in annual 
average Trnorm between the transient-
CO2 and the constant-CO2 experiments 
across climate and vegetation classes. All 
global sites (336 sites) are first grouped by 
vegetation type (a–d, Table S1) and then 
by temperature using quantiles (cold in 
blue: ≤0.33; warm in orange: 0.33–0.66; 
hot in purple: ≥0.66). The shaded area 
depicts standard deviation around the 
multi-sites mean value (solid lines).
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EoC in Trnorm is substantially higher compared to GPP, that is, 
the signal emerges only at considerably higher ∆[CO2]. Furthermore, 
the global spatial pattern of EoC is more homogeneous for Trnorm 
than for GPP. Several equatorial sites exhibit a relatively low EoC 
(some of them even less than 40 ppm), but for most sites (85 in 141 
detected sites) the signal only emerges at ∆[CO2] > 70 ppm or not 
at all. Especially at sites in arid and semi-arid regions, no significant 
effect of eCO2 can be detected, even though a strong response 
in WUE is expected to occur in these water-limited ecosystems 
(Medlyn et al., 2001). In the QUINCY model, canopy conductance 
and transpiration do not scale linearly with LAI at canopy level. So, 
the Trnorm could still be affected by increasing LAI to some extent. 
Next to this, transpiration can be affected by other factors which 
may overshadow the role of stomatal conductance. For example, 
transpiration is affected by incoming radiation particularly when 
vegetation is strongly decoupled with the boundary layer, that is, a 
low exchange rate between vegetation and atmosphere (De Kauwe 
et al., 2017; Jarvis, 1985). Due to the limited representation of the 

coupling between vegetation and the boundary layer in models, the 
reduced transpiration flux at the leaf-level might not scale to the 
canopy-level.

The freeze-CO2 experiment (see Section 2.1.2.2) reveals if the 
results are still informative for climate change in recent years (1988–
2018). Due to the limited length of the time period, there are only a 
few sites where the eCO2 effect on GPP can be detected (Figures S6 
and S13). Nevertheless, as the result shown in Figure  4a, the sig-
nal first emerges in the tropical regions, with a rather low EoC of 
around 20 ppm. Furthermore, the EoC for tropical GPP is consistent 
between two time periods (1901–2018 and 1988–2018). This en-
courages future study of the CO2 fertilization effect in recent years.

3.4  |  Seasonal and diurnal variation of EoC in GPP

We find plants respond differently to the effects of eCO2 across 
different climate zones and vegetation types, but also in different 

F I G U R E  4  Spatial distribution of emergence of the elevated CO2 effects (EoC) in (a) gross primary productivity (GPP) and (b) Trnorm. Bright 
color indicates an earlier detection (lower EoC), and dark color indicates a later detection (higher EoC). Non-colored points indicate sites 
where the elevated CO2 does not translate into significant changes in GPP or Trnorm within the historical time period.
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seasons and times of the day. For example, EoC in GPP is lower in 
summer than in other seasons at sites in the temperate and boreal 
forests (Figure S7a,d), which is obviously driven by favorable grow-
ing conditions. However, this is not always the case at the diurnal 
time scale where lowest EoC are partly found at other times than 
noon. For the sites in temperate and boreal forests, the strong signal 
already emerges early in the morning on some days during summer. 
It could be related to the increased aridity at midday. The excessive 
atmospheric moisture demand at high temperature results in the 
midday depression of carbon uptake, and thus stomatal limitation, 
which can be simulated by the model. Unlike for the boreal forest 
site, at the tropical forest site (Figure  S7b), the plant response to 
eCO2 can be detected for any time during the daytime and in all 
seasons. Although the effect of eCO2 on GPP cannot be detected 
at grass sites at the annual scale, we can detect it in the grow-
ing season, albeit only at very high ∆[CO2] > ~100 ppm (Figure  3, 
Figure S7c). The EoC in Trnorm however is not detectable at any point 
of the seasonal and diurnal cycle, probably related to high variability 
of the meteorological conditions, which can be reduced to some ex-
tent by the aggregation to annual values. In the future, researchers 
may explore the drivers of the variation across diurnal and seasonal 
scales. Furthermore, we find the EoC in GPP is lower at some points 
of the seasonal and diurnal cycle than EoC in GPP at the annual scale 
(Figure S7). This motivates future study of eCO2 effects in observa-
tions at the seasonal and diurnal time scale.

3.5  |  EoC in secondary variables triggered by plant 
physiological effects

Changes in GPP and Trnorm triggered by the effects of eCO2 can cas-
cade into secondary state and process variables of the carbon (e.g., 
LAI, biomass, NPP) and water cycles (e.g., evaporation, interception 
loss, soil moisture). The EoC in LAI and biomass are generally low 
(Figure S8a,b), even lower than in the case of GPP. Note that this 
does not mean that LAI responds more strongly to CO2 increases 
than GPP, but rather this finding illustrates the effect of the internal 
variabilities of each variable on our results where LAI and biomass 
as state variables are less influenced by short-term and interannual 
hydro-meteorological variations and therefore its variation has a 
substantially lower standard deviation. The higher signal-to-noise 
ratio enables the detection of the eCO2 effects already early in the 
time series where CO2 has not yet increased much. Additionally, 
there is a non-linear relationship between GPP and LAI when LAI 
is high. GPP tends to saturate with high LAI due to clumping and 
the increase in shaded leaves in the canopy (Chen et al., 2012; Lee 
et al., 2019; Street et al., 2007). Furthermore, the modeled carbon 
pathways do not always agree with observational evidence from el-
evated CO2 experiments (Norby & Zak,  2011). EoC in NPP shows 
a similar spatial pattern compared to EoC in GPP, only the EoC is 
overall higher due to the added variability from autotrophic respira-
tion (Figure S8c). We note that vegetation in the natural ecosystem 
is limited by nutrient availability. The primary way, in which nutrient 

availability would interfere with the detectability method, is that 
there is less of a change in LAI compared to the change simulated 
assuming that nutrients were not limiting plant growth. For the de-
velopment of the EoC method here, the complication of nutrient 
cycling in terrestrial biosphere models is equally unimportant as the 
question of ecosystem management. Thus, we simplify the setting in 
the model to pursue an understandable interpretation.

The natural variability of process and state variables in the 
water cycle (e.g., evaporation, interception, root-zone soil mois-
ture) is substantially higher than for the carbon cycle variables. 
The increasing LAI could provide more shading area, resulting 
in a cooling of the surface soil layer. The evaporation from bare 
soil decreases as a consequence of this reduced radiative energy 
input. Consequently, the EoC in evaporation can be detected in 
sites located mainly in tropical regions and mid-latitude regions 
(Figure  S8d). Evaporation from rainfall interception is expected 
to remarkably increase due to the substantial increase in LAI. 
However, the magnitude of increased interception loss does not 
stand out from the year-to-year variability controlled by stochastic 
precipitation events. Also, the root-zone soil moisture does not 
exhibit a clear response to eCO2. This is related to the complex 
and interacting effects on related water fluxes such as soil evap-
oration, transpiration, interception loss, and runoff. The interan-
nual variability in precipitation likely also overshadows the subtle 
changes in soil moisture in response to the effects of eCO2 (De 
Kauwe et al., 2021).

3.6  |  First manifestations of elevated CO2

In this section, we compare the EoC across several variables and 
metrics (Table 1) related to the carbon and water cycles. These vari-
ables and metrics include the underlying WUE (uWUE), the LUE, the 
normalized canopy conductance (gcnorm), LAI and the 95th percen-
tiles of GPP (GPP95), and Trnorm (Trnorm

95). EoC is lowest for LAI and 
GPP95 for most sites (159 in 250 detected sites; Figure 5). We con-
sider the 95th percentile of daily GPP values in each year (GPP95) to 
be representative of the maximum capacity of vegetation productiv-
ity, which is less affected by day-to-day weather variability. EoC in 
GPP95 is significantly lower since much of the variability is removed 
compared to annual mean GPP. EoC in GPP95 and LAI are compara-
ble in the vegetation classes tropical and boreal forests (Figure S9). 
However, EoC in LAI in the temperate forests and grass vegetation 
classes tends to be considerably higher. Probably, this is due to the 
different fraction of carbon allocated to foliage versus other plant 
components across vegetation types (De Kauwe et al., 2014).

EoC in LUE emerges first for sites located in the high latitudinal 
regions, where plant growth is considered to be energy limited. EoC 
in WUE and gcnorm emerges first for sites in arid regions, where plant 
growth is limited by water availability. Compared to variables related 
to the carbon cycle (e.g., GPP, GPP95, LAI), variables related to the 
water cycle (e.g., gcnorm, Trnorm, Trnorm

95) show weaker responses to 
the physiological effects of eCO2.
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3.7  |  Explaining the spatial variability of EoC in 
GPP and Trnorm

The ecosystem responses to eCO2 are complex and modulated by 
several concurrent effects. All drivers considered to explain the spa-
tial variability of EoC are calculated as long-term mean values (see 
Section 2.2.3). We find that the spatial variability of EoC in GPP and 
Trnorm between sites is mainly explained by varying levels of mean 
LAI and mean GPP, respectively (Figure S10). The higher the mean 
LAI (or mean GPP), the less ∆[CO2] is required such that the physi-
ological effects of eCO2 emerge in GPP, respectively, Trnorm fluxes. 
Next, we compare these relationships based on the QUINCY model 
with output from similar simulations of Earth system models con-
ducted in CMIP6 (see Section 2.3). Most CMIP6 models qualitatively 
agree with the QUINCY results, that is, the negative relationship 
between spatial EoC in GPP and LAI, and the negative relationship 
between spatial EoC in Trnorm and GPP (Figure 6). Four models in 
CMIP6 (Figure S11a,e,f,g) agree with QUINCY (Figure S11h), while 
the other three of them do not show a negative relationship between 

EoC in GPP and the long-term mean LAI. Also, there are considera-
ble differences between the magnitude of EoC across the models as 
well as the strength of the relationships vary among the individual 
models in CMIP6 (Figures S11 and S12). We note, however, that this 
direct comparison between the QUINCY and the CMIP6 simulations 
is limited due to the conceptually different setup of the analyzed 
simulations. Furthermore, in contrast to the QUINCY model, which 
is an offline terrestrial biosphere point model, the CMIP6 ensem-
ble comprises fully coupled Earth system models, which represent a 
gridded and coupled land–atmosphere system. Despite these con-
ceptual differences, the overall agreement between the QUINCY 
and CMIP6 models illustrated in Figure 6 corroborates our findings 
based on the QUINCY model formulation.

4  |  CONCLUSION

We evaluate the plant physiological effects of elevated CO2 (eCO2) 
on the land–atmosphere exchange of carbon and water. Increasing 

F I G U R E  6  EoC in QUINCY versus 
coupled Earth system models (ESMs). 
Spatially varying EoC is plotted against 
the predictor that explains most of its 
spatial variability according to the SHAP 
value analysis illustrated in Figure S10. 
The relationship of (a) EoC in gross 
primary productivity (GPP) is plotted 
against respective leaf area index (LAI) 
of each model; and (b) EoC in Trnorm is 
plotted against respective baseline GPP 
from each model. The dashed line denotes 
no significant relationship between EoC 
and the predictor.

F I G U R E  5  Comparison of EoC across variables and metrics. (a) Box plots depict the gross primary productivity (GPP), 95th percentile of 
daily GPP values in each year (GPP95), leaf area index (LAI), light-use efficiency (LUE), underlying water-use efficiency (uWUE), gcnorm, Trnorm, 
95th percentile of daily Trnorm values in each year (Trnorm

95). Box plots indicate medians and interquantile ranges, and are ordered according 
to the mean EoC across sites for each variable. Numbers above the boxplots indicate how many sites can be detected for each variable or 
metric (336 sites in total). (b) The map shows the first-emerging variable or metric with the lowest EoC. The white points on the map refer to 
the geographical locations of all sites.
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atmospheric CO2 stimulates plant carbon assimilation and reduces 
stomatal conductance, which both may result in a potential increase 
in ecosystem productivity and also affect ecosystem transpiration. 
Analyzing approximately the last 120 years simulated by the terres-
trial biosphere model QUINCY, we assess how strong the increase in 
CO2 needs to be such that the effects of eCO2 surpass the noise and 
effects induced by short and long-term meteorological conditions.

We find that the eCO2 effects on GPP can be earlier detected 
compared with transpiration (Tr). The eCO2 effects on GPP are 
different across climate and biomes, whereas eCO2 effects on 
normalized transpiration (Trnorm) exhibit less spatial variability. 
The eCO2 effects on GPP are detectable at relatively low CO2 in-
crease (∆[CO2] ~ 20 ppm) in regions where vegetation productivity 
is not strongly constrained by climatic conditions, that is, water- or 
temperature-limited plant growth. Carbon assimilation and carbon 
pools show stronger responses to eCO2 across sites while we do 
not find a widespread strong eCO2 effect in variables describing 
the water cycle. The transpiration at canopy level is regulated by 
the reduced stomatal conductance and meanwhile, the increasing 
LAI in response to eCO2. These two opposing effects appear to be 
cancelled each other out at ecosystem level and longer time scales, 
resulting in an insignificant eCO2 effect on transpiration and other 
water cycle variables (e.g., evaporation, interception loss and soil 
moisture) which are affected by the response of Tr. While mostly 
GPP and LAI are the first variables to exhibit detectable eCO2 ef-
fects, in northern high-latitude regions where vegetation growth is 
limited by radiation, LUE responds to eCO2 first among all the other 
variables, and the eCO2 effects on WUE emerges first in some sites 
located in semi-arid regions.

Climate variations can partly explain the spatial heterogeneity of 
the plant physiological effects of eCO2. The strongest response of 
GPP or Trnorm to eCO2 occurs dominantly where GPP is not limited 
by either temperature or precipitation (e.g., sites in tropical regions). 
The weakest response of GPP or Trnorm occurs in arid regions (e.g., 
grassland sites), where the high variability overshadows the eCO2 ef-
fect. In addition to climate factors, eCO2-induced plant physiological 
effects are amplified where vegetation productivity is already high. 
We find the long-term mean LAI is the dominant driver of spatial 
variability of the eCO2 effect on GPP, whereas the long-term mean 
GPP is the dominant driver of spatial variability of the eCO2 effect on 
Trnorm. Despite the different model structures and simulation setups, 
the CMIP6 models essentially are consistent with the insights gained 
from the QUINCY model about what drives spatial variance in the 
EoC. Overall, our results thus suggest that high-LAI regions, for ex-
ample, tree-dominated ecosystems are more sensitive to the eCO2 
effect than low-LAI, for example, grass-dominated ecosystems.

Models have the advantage for hypothesis testing by conduct-
ing idealized experiments. Using these experiments, we determine 
when and where we expect to detect the eCO2 effects according 
to our theoretical understanding formulated in the models. This 
knowledge provides a first step toward assessing long-term changes 
and trends in carbon and water flux observations using eddy cova-
riance measurements (Baldocchi et al., 2001). In a future study, we 

will apply this methodology to analyze whether eCO2 effects can al-
ready be detected in the time series of long-term measurement cam-
paigns of land–atmosphere exchange fluxes, focusing on the regions 
and time scales of eCO2 effects spotlighted in this precursory study. 
Overall, the model-based analyses presented here, along with the 
ongoing observational study focused on the detection and potential 
quantification of eCO2 effects, are critical and have long been called 
for to provide robust assessments of how the system will continue 
to change as CO2 continues to rise.
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