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Long-Duration Progressive Supranuclear
Palsy: Clinical Course and Pathological

Underpinnings
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Objectives: To identify the clinical characteristics of the subgroup of benign progressive supranuclear palsy with
particularly long disease duration; to define neuropathological determinants underlying variability in disease duration
in progressive supranuclear palsy.
Methods: Clinical and pathological features were compared among 186 autopsy-confirmed cases with progressive
supranuclear palsy with ≥10 years and shorter survival times.
Results: The 45 cases (24.2%) had a disease duration of ≥10 years. The absence of ocular motor abnormalities within
the first 3 years from disease onset was the only significant independent clinical predictor of longer survival. Histopath-
ologically, the neurodegeneration parameters in each survival group were paralleled anatomically by the distribution of
neuronal cytoplasmic inclusions, whereas the tufted astrocytes displayed anatomically an opposite severity pattern.
Most interestingly, we found significantly less coiled bodies in those who survive longer, in contrast to patients with
less favorable course.
Interpretation: A considerable proportion of patients had a more ”benign” disease course with ≥10 years survival.
They had a distinct pattern and evolution of core symptoms compared to patients with short survival. The inverted
anatomical patterns of astrocytic tau distribution suggest distinct implications of these cell types in trans-cellular
propagation. The tempo of disease progression appeared to be determined mostly by oligodendroglial tau, where the
high degree of oligodendroglial tau pathology might affect neuronal integrity and function on top of neuronal tau
pathology. The relative contribution of glial tau should be further explored in cellular and animal models.
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Progressive supranuclear palsy (PSP) is a rapidly
progressive neurodegenerative disease characterized by

a specific four-repeat (4R) tau neuropathology affecting
neurons, astrocytes, and oligodendrocytes.1–3 The progres-
sion of PSP is thought to be driven by cell-to-cell and
region-to-region spreading of tau pathology, analogous to
the prion-like spreading mechanism observed in many neu-
rodegenerative diseases.4,5 Recently, significant progress has
been made in the understanding of the clinical heterogene-
ity within this entity, comprising variable combinations of
akinetic-rigid, cognitive, behavioral, speech/language, and
ocular motor symptoms.2

The prognosis of PSP is generally poor with a mean
survival of 7 to 8 years.2,5 However, several studies
reported individual cases of autopsy-confirmed PSP that
survived longer than 10 years,2,6,7 which further speaks in
favor of the surprisingly vast variability within this entity.

So far, there are no systematic studies dealing with
clinico-pathological determinants of long-duration PSP
(LD-PSP). We addressed this issue by exploring the char-
acteristics of PSP subgroups with different disease dura-
tion, aiming to define biological determinants underlying
the variability in disease duration and prognostic factors,
which would allow risk stratification in PSP. At the same
time, we explored neuropathological underpinnings associ-
ated with the heterogeneity in disease duration.

Methods
Patient Consent and Collection of Data
This study included 186 pathologically confirmed patients
with PSP, collected from five brain banks: Center for Neuro-
pathology and Prion Research, Ludwig-Maximilians-Univer-
sity, Munich, Germany; MRC London Neurodegenerative
Diseases Brain Bank, King’s College, London, UK;
Netherlands Brain Bank, Amsterdam in collaboration with
the Department of Neurology, Erasmus Medical Center,
Rotterdam, The Netherlands; Neurological Tissue Bank of
the Biobanc–Hospital Clinic–IDIBAPS, Barcelona, Spain in
collaboration with the Neurology Department of the Hospi-
tal Clínic Barcelona, Spain; Brain Bank of the Royal Univer-
sity Hospital, University of Saskatchewan, Canada. The
brain samples, which were available for further detailed path-
ological analysis, were sent to the Center for Neuropathology
and Prion Research, Munich (the German national reference
center for neurodegenerative disorders and the coordinating
center of the BrainNet Europe), where standardized central
verification of the pathological diagnosis of PSP and further
neuropathological assessments were performed. The neuro-
pathological diagnosis of PSP was confirmed according to
the National Institute of Neurological Disorders and Stroke
neuropathological criteria8 with the specifications in Dickson

and colleagues.9 For this study, the major criterion for the
neuropathological diagnosis of PSP was the presence of
tufted astrocytes in the anterior striatum (preferably in the
head of the caudate nucleus) and/ or in the cortex of the
anterior medial frontal gyrus. All cases were previously publi-
shed.2,5,10–12 However, these studies did not analyze the
research question of the current manuscript, i.e., the patho-
logical and clinical features in different survival groups.

Written informed consent was obtained from all
donors or their next of kin before death, according to the
Declaration of Helsinki for the use of the brain tissue and
clinical records for research purposes. The work was
approved by local institutional review boards and ethics
committees at each participating center.

Clinical Data
Detailed clinical information was extracted in standardized
manner from the 186 patients’ medical records. The clini-
cal features listed in Supporting Information Table S1,
which is available online,3 were recorded and considered
present if specifically mentioned in the clinical notes.
They were considered absent if they were specifically men-
tioned as absent, or if they were not mentioned (“not
available”). The onset of features relative to disease onset
was recorded. If the onset of a symptom or sign could not
be abstracted from the files, the year of onset was excluded
from the analysis of their temporal evolution.

Pathological Evaluation and
Immunohistochemistry
Detailed pathological examination was performed on
97 out of 186 brain samples. All immunohistochemical
stainings for hyperphosphorylated microtubule-associated
protein tau, using the mouse monoclonal AT-8 antibody,
were performed as previously described.11

Neuropathological Assessment of Tau Inclusion
Frequency and Neurodegenerative Changes
The tau pathology scores were determined in PSP samples
using a semi-quantitative four-point severity scale
(0 = none, 1 = mild, 2 = moderate, and 3 = severe), as
it is previously described.

Scores were assessed separately for each of the following
tau-lesion types: neuronal cytoplasmic inclusions (NCIs),
pre-inclusions, neuropil threads (NTs), tufted astrocytes
(TAs), and cytoplasmic oligodentroglial inclusions in the
form of coiled bodies (CBs) together with threads in the
white matter, as well as for spongiosis, gliosis and neuronal
loss as parameters for neurodegenerative changes.

The following anatomical regions were examined:
cortex and subcortical white matter of (a) the medial fron-
tal gyrus (level of nucleus accumbens), (b) the anterior
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cingulate gyrus (GC), (c) the inferior parietal lobe, (d) the
medial and superior temporal gyri, and (e) the striate and
adjacent peristriate area, insular cortex at level of pallidum,
amygdala, hippocampus region divided into 4 areas
(CA1/2, CA3/4, dentate gyrus, and subiculum), (trans)
entorhinal cortex, claustrum, putamen, globus pallidus
(GP), caudate nucleus (CAU), nucleus basalis Meynert
(NbM), nucleus accumbens, thalamus, subthalamic
nucleus (STN), hypothalamus, cerebellum, substantia
nigra (SN), superior colliculus, nucleus ruber, oculomotor
nucleus, inferior colliculus, locus coeruleus (LC), pontine
nuclei, dorsal raphe nucleus, dorsal nucleus nerve X, nucleus
nerve XII, and medulla oblongata at obex level.

The Assessment of Co-Pathology
Diagnoses and stages of co-pathologies were established
according to standardized criteria, as follows:

• Alzheimer’s disease-related pathology (Thal phases of amy-
loid beta plaques;13 Consortium to Establish a Registry
for Alzheimer’s Disease [CERAD] neuritic plaques fre-
quency scores;14 and Braak & Braak stages based on
the localization and density of neuropil threads immu-
nopositive for hyperphosphorylated tau visualized by
clone AT-8 antibodies.15 Braak & Braak stages were
confirmed by the immunohistochemical detection of
3-repeat tau-isoform positive neurofibrillary tangles
visualized by clone RD3 antibodies;

• Argyrophilic grains (Saito stages);16

• Lewy-related pathology (Braak stages);17

• Presence of TDP-43 and fused in sarcoma (FUS)-
positive inclusions;

• Cerebral amyloid angiopathy (Thal stages);18

• Small vessel disease (SVD stages).19

Details on the evaluation of co-pathology are given
in previously published paper.11

Conceptual Approach and Statistical Analysis
Our investigation contained several steps:

1. Defining survival groups

LD-PSP was defined by the neuropathological diag-
nosis of PSP and a disease duration ≥10 years after onset
of first PSP-related symptoms (considering any new onset
neurological, cognitive, or behavioral deficit that subse-
quently progresses during the clinical course in absence of
other identifiable causes).3 This threshold was used as it
represented the 75th percentile of normally distributed dis-
ease duration in our cohort. In addition to this, the
10-years disease duration threshold represents longer sur-
vival compared to the commonly reported average range
of 7 to 8 years in the litterature.2,5

The LD-PSP survival group was compared to two
additional survival groups, i.e., short-duration PSP
(SD-PSP) with survival of <5 years (25th percentile), and
intermediate PSP (IM-PSP) with disease duration of 5 to
10 years.

2. Clinical characteristics of LD-PSP

We analyzed the differences in frequency and tem-
poral evolution of main clinical milestones in the defined
survival groups. Therefore, we relied on clinically obvious
and meaningful features, which were commonly docu-
mented in the available records.2,3 These clinical features
included clinical diagnoses (first and last ante mortem
record), age at symptom onset, age at death, disease dura-
tion, postural instability with falls, abnormal saccades or
pursuits, supranuclear gaze palsy (SNGP), frontal lobe
dysfunction, cognitive dysfunction, dysarthria, dysphagia,
bradykinesia, tremor, asymmetry at onset, and levodopa
responsiveness. These features were considered present if
specifically mentioned in the clinical notes. They were
considered absent if they were specifically mentioned as
absent or if they were not mentioned (“not available”).
The onset of features relative to disease onset was
recorded. If the onset of a symptom or sign could not be
abstracted from the files, the year of onset was excluded
from the analysis of their temporal evolution. The clinical
predominance type for each patient was assigned using the
operationalized Movement Disorders Society PSP diagnos-
tic criteria (MDS-PSP criteria).3,10

The proportional distribution of categorical variables
was analyzed with the chi-squared (χ2) test or Fisher’s exact
test where applicable. To compare non-parametric or para-
metric data between two groups, Mann–Whitney-U test or t
test (with Bonferroni correction) was used, respectively. If
necessary, one-way analysis of covariance was used to control
differences between groups while considering potential
covariates. The associations between all clinical characteristics
listed in Supporting Information Table S1 (present vs absent
within the first 3 years) and respectively a long (≥10) and
short (<5 years) disease duration were examined by binominal
logistic regression models (multiple comparison problems in
these models, were taken into account using Holm’s
approach; the models were adjusted for age at onset).

3. Neuropathological characteristics of LD-PSP

Patients were removed from neuropathological anal-
ysis if they had >50% missing data across defined neuro-
anatomical regions for the given tau pathology measure
and/or neurodegenerative changes (see Supporting Infor-
mation Figure S1: Flow chart of the study).

In order to perform regional distribution analyses,
34 investigated regions across the brain were further
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grouped into the following four brain regions: (1) Cortical:
the medial frontal gyrus (level of nucleus accumbens), GC,
the inferior parietal lobe, the medial and superior temporal
gyri, the striate and adjacent peristriate area, insular cortex
at level of pallidum; (2) Temporomesial: amygdala, hippo-
campus divided into 4 areas (CA1/2, CA3/4, dentate gyrus,
subiculum), (trans)entorhinal cortex; (3) Subcortical: claus-
trum, putamen, GP, CAU, NbM, nucleus accumbens,
thalamus, STN, hypothalamus; and (4) Brainstem/cerebel-
lum: cerebellum, SN, superior colliculus, nucleus ruber,
oculomotor nucleus, inferior colliculus, LC, pontine nuclei,
dorsal raphe nucleus, dorsal nucleus nerve X, nucleus nerve
XII and medulla oblongata at obex level.

The semiquantitative scores of each of the cellular tau
lesion types and each of the neurodegenerative lesions in those
four brain regions were compared: (1) within the survival
group: if the average score for a certain lesion in one region
was significantly higher than for the other, we displayed that
with different color coded heatmaps (Kruskal-Wallis test, with
posthoc pairwise comparison between anatomical brain
regions, p values adjusted for multiple comparisons, p < 0.05);
and (2) between two survival groups: the differences of average
severity score in 4 anatomical regions were investigated by
Mann–Whitney U test, p < 0.05.

Nonparametric Spearman correlation was used to
analyze correlations between disease duration and each
investigated pathological lesions (the significance of p set
as p < 0.01).

All data were analyzed using the IBM SPSS statistical
software package (version 23.0; IBM Corp., Armonk, NY).

Results
Demographic Features
The demographic features are shown in Table. Of 186 PSP
patients with sufficient clinical data, 45 (24.2%) had a long
disease duration of ≥10 years (mean: 13.8 [10–27] years)
and are referred to as LD-PSP group. On average, LD-PSP
were younger at disease onset, when compared to those
with SD-PSP, and significantly older at the time of death
when compared to both groups with less favorable disease
course. More than 2/3 of cases died after 2000, with a simi-
lar proportion of such cases in all survival groups. Only
4 of the 186 cases included in this study died in the 1970s
and 1980s, all in the SD-PSP group. No differences were
found in sex distribution between the groups.

Frequency of Clinical Milestones
The frequency of important clinical milestones in the differ-
ent survival groups of the 186 definitive PSP cases are pres-
ented in Figure 1 and Supporting Information Table S2.

When analyzing the entire clinical course, patients
with LD-PSP more often had asymmetric onset, L-dopa

responsiveness, bradykinesia and falls, in comparison to
SD-PSP patients. On the other hand, in contrast to IM-
PSP, SNGP and dysphagia were less prevalent in the
overall disease course of LD-PSP, while levodopa
responsiveness consistently occurred more frequently in
LD-PSP, when compared to both groups with less
favorable disease course.

When analyzing only the first 3 years of the clinical
course, LD-PSP showed the lowest prevalence of the
majority of investigated clinical features (ocular motor
abnormalities, frontal/cognitive dysfunction, dysarthria,
and dysphagia), but there were no differences between the
prevalence of falls, tremor, and bradykinesia, even when
compared to the most progressive group of SD-PSP.

Temporal Evolution of Clinical Milestones
The typical clinical disease course differed markedly
between LD-PSP and both groups with less favorable dis-
ease course (SD-PSP, IM-PSP), whereas the latter 2 did
not differ from one another (Fig 2, Table S2).

The time to reach essential clinical milestones were sig-
nificantly prolonged in LD-PSP, compared to those with less
favorable disease course, while the latency to onset of tremor,
did not differ significantly between survival groups.

The earliest milestones in LD-PSP were tremor,
followed by bradykinesia, while clinical hallmarks of PSP,
such as onset of falls, cognitive and frontal dysfunction,
bulbar dysfunction, and SNGP, occurred after more than
5 years from the disease onset, on average. In contrast,
both groups with shorter survival presented with identical
sequencing of clinical features in their timelines: falls were
the earliest clinical manifestation and all clinical milestones
developed within 4 years from disease onset. Additionally,
we observed close temporal association of the occurrence
of dysphagia and SNGP, which preceded the onset of
death in all investigated groups (Fig 2).

The distribution of the first and last ante mortem
recorded PSP predominance types in LD-PSP according
to the MDS-PSP criteria, differed significantly from
both groups with poorer survival (Supporting Information
Table S3, Fischer’s exact test, p ≤ 0.05). PSP with
Richardson’s syndrome (PSP-RS) and PSP-postural instabil-
ity (PSP-PI) were the most common phenotypes at initial
record in SD-PSP and IM-PSP, while LD-PSP patients
mainly had PSP-PI and PSP-parkinsonism (PSP-P) variants
as initial presentation. At final record, the most prevalent
phenotype was PSP-RS in all survival groups, but
PSP-P, PSP-speech/language disorder (PSP-SL) and
PSP-corticobasal syndrome were more frequent in
LD-PSP. On the other hand, pure PSP-frontal cognitive/
behavioral presentation (PSP-F) was observed only in
SD-PSP and IM-PSP.
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Predictors of Survival
Data from binominal logistic regression models are pres-
ented in Supporting Information Table S4. The absences
of SNGP and of abnormal saccades or pursuits in the first
3 years from disease onset were the only significant

independent predictors of LD-PSP. On the other hand,
presence of ocular motor dysfunction and of frontal dys-
function in the first 3 years from disease onset, highly
predicted poor survival of less than 5 years. Patients pre-
senting frontal lobe dysfunction in the first 3 years from

TABLE. Demographic Data of the Clinical Analysis Cohort of Autopsy-Confirmed Patients with Progressive
Supranuclear Palsy, Subclassified by Their Survival Times

Data
p Values

[95% Confidence Interval for Difference]a

All PSP LD-PSP IM-PSP SD-PSP LD Versus IM LD Versus SD IM Versus SD

Patients, N (%) 186 45 (24.2) 101 (54.3) 40 (21.5)

Female: male 93:93 25:20 48:53 20:20 0.3701 0.6091 0.7911

Age at disease
onset

66.2 � 8.6 63.9 � 8.0 66.3 � 8.2 68.6 � 9.6 0.0932 0.0142 0.1542

[41–91] [41–78] [47–87] [51–91] [�0.414, 5.334] [0.973, �8.554] [�0.877, 5.474]

Age at death 74.0 � 8.6 77.6 � 8.0 73.2 � 9.4 71.9 � 9.4 <0.0032 0.0042 0.4332

[54–94] [59–92] [54–94] [55–93] [�7.341,-1.591] [�9.460,-1.979] [�4.402, 1.895]

Disease duration 7.8 � 4.5 13.8 � 4.6 6.9 � 1.4 3.3 � 0.8 <0.0013 <0.0013 <0.0013

[1–27] [10–27] [5–9] [1–4] [�7.915,-5.938] [�11,937, �9.018] [�4.024,-3.079]

Initial clinical
diagnosis

Correct, N (%) 32 (17.2) 2 (4.4) 23 (22.7) 7 (17.5) 0.0131 0.1101 0.6441

Not correct,
N (%)

77 (41.4) 26 (57.8) 37 (36.7) 14 (35.0) 0.0271 0.0591 0.9901

Not reported,
N (%)

77 (41.4) 17 (37.8) 41 (40.6) 19 (47.5) 0.8901 0.4921 0.2731

Final clinical
diagnosis

Correct, N (%) 110 (59.2) 21 (46.7) 67 (66.3) 22 (55.0) 0.0391 0.3021 0.2871

Not correct,
N (%)

51 (27.4) 18 (40.0) 19 (18.8) 14 (35.0) 0.0121 0.8021 0.0671

Not reported,
N (%)

25 (13.4) 6 (13.3) 15 (14.9) 4 (10.0) 0.9881 0.8891 0.6261

Cause of death

PSP-related,
N (%)

164 (88.2) 43 (95.5) 88 (87.1) 33 (82.5) 0.2101 0.1101 0.6581

PSP-unrelated,
N (%)

22 (11.8) 2 (4.5) 13 (12.9) 7 (17.5)

Note: Values are presented in years, as means � standard deviations [range], unless noted otherwise. IM, intermediate duration (survival ≥5
and <10 years); LD, long duration (survival ≥10 years); PSP, progressive supranuclear palsy; SD, short duration (survival <5 years). p values: 1 χ2 test,
2Two-sample t-test, 3Mann-Whitney-U-test.
a95% Confidence intervals for difference are presented in the table, except for χ2 test.
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FIGURE 1: Cumulative risk of acquiring important disease milestones in the clinical analysis cohort of autopsy-confirmed
patients with progressive supranuclear palsy, subclassified by their survival times. Abbrevations: IM, intermediate duration
(survival ≥5 and <10 years); LD, long duration (survival ≥10 years); PSP, progressive supranuclear palsy; SD, short duration
(survival <5 years). [Color figure can be viewed at www.annalsofneurology.org]
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the disease onset had over 250% higher odds to get into
the group of SD-PSP.

Neuropathological Features of LD-PSP
Detailed histopathological analysis was performed in
97 patients out of 186 PSP cases. No differences were
found between PSP cases included in clinical and PSP
included in neuropathological analysis, in terms of base-
line demographic characteristics (Supporting Information
Table S5).

Given that patients with SD-PSP and those with
IM-PSP showed remarkably similar clinical patterns (see
the Results, Temporal evolution of clinical milestones sec-
tion), these two groups were merged into one (labeled
SD/IM-PSP) in order to analyze the pathological charac-
teristics of this shared phenotype in contrast to the clini-
cally distinct LD-PSP group. Therefore, pathological
characteristics of 23 LD-PSP patients were further com-
pared with 74 SD/IM-PSP patients (Table S6). The aver-
age disease duration in LD-PSP and SD/IM-PSP was 13.1
and 5.8, respectively. There were no significant differences
between LD-PSP and SD/IM-PSP in age at onset, age at
death, nor in the sex distribution. Non-PSP-related causes
of death were similar between groups.

The distribution of PSP phenotypes in the patho-
logical analysis cohort, according to the MDS-PSP
criteria, did not differ between LD-PSP and SD/IM-
PSP (Supporting Information Table S7, Fischer’s exact
test, p > 0.05).

Since different clinical syndromes of PSP are closely
associated with the distribution and severity of underlying
pathology,5 we aimed to analyze differences in regional
severity of neurodegenerative changes and tau specific

lesions, which could account for different clinical pattern
in two survival groups (LD-PSP and SD/IM-PSP) (Fig 3).

Neuronal Tau Inclusions
The regional distribution analysis of pre-inclusions scores rev-
ealed the same pattern in both survival groups. Brainstem/
cerebellum and temporomesial areas were equally affected,
followed by less prominent findings in cortical and subcorti-
cal areas (Fig 3A).

The pattern of NCIs findings was also consistent
across two survival groups. Brainstem/cerebellum regions
were found to be most affected, followed by subcortical
and temporomesial areas, which were involved at similar
extent (Fig 3A, B). Among these regions, the highest rates
of NCIs were found in mesencephalic nuclei (including
SN), cerebellum, STN, LC, NbM, GP, and CAU. The
cortical lobar areas were less involved, with the highest
score found in GC.

NTs had high densities in brainstem/cerebellum and
subcortical regions, while cortical areas were relatively
spared, in both survival groups (Fig 3A).

In summary, there was no difference in neuronal tau
load between the survival groups.

Glial Tau Changes
The regional pattern of TA revealed an opposite gradient
of severity compared to neurodegenerative and neuronal
tau changes, with a downward gradient from cortical to
brainstem regions, with frontal cortex being most affected
(Fig 3A, B).

CBs were most prominent in subcortical structures
in both survival groups. However, we found that patients
with LD-PSP had lower CB-load in subcortical, cortical,
and infratentorial regions, when compared to SD/IM-PSP
(Fig 3A, C). Moreover, GP, which is found to be one of
the regions of interest deemed most specific to CBs, was
significantly less affected in LD-PSP (p = 0.013, Mann–
Whitney U test).

Neurodegenerative Changes
The highest scores of neuronal loss, gliosis, and spongiosis
were found in the brainstem/cerebellum areas, followed by
the subcortical areas. Cortical lobar and temporomesial
areas were affected at similar extent (Fig 3A, B). The most
severe scores were found in GP, STN, SN, mesencephalic
nuclei, and cerebellum.

Both survival groups had a similar pattern of neu-
rodegeneration throughout the brain, except that LD-PSP
had higher rate of spongiosis in the brainstem/cerebellum
and higher rate of neuronal loss in the temporomesial
region.

FIGURE 2: Average sequence of reaching disease milestones
in the clinical analysis cohort of 186 autopsy-confirmed
patients with progressive supranuclear palsy, subclassified by
their survival times. Abbreviations: IM, intermediate duration
(survival ≥5 and <10 years); LD, long duration (survival
≥10 years); PSP, progressive supranuclear palsy; SD, short
duration (survival <5 years); SNGP, supranuclear gaze palsy
[Color figure can be viewed at www.annalsofneurology.org]
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Correlation of Disease Duration and Pathological
Findings
Among all investigated tau-lesion types across 4 different
brain regions, only neuronal loss (Spearman’s rho = 0.293,
p = 0.004) and CBs (Spearman’s rho = �0.259,
p = 0.009) in cortical lobar areas (Supporting Information
Figure S2) correlated significantly with disease duration.

Co-Pathology Findings in Different Survival
Groups
The severity and prevalence of co-pathology findings were
similar among survival groups, except that CERAD posi-
tive findings were more frequent in LD-PSP (39.1% vs
16.2%, χ2 test, p = 0.02), without differences in the
severity scores (Supporting Information Figure S3).

Discussion
The present study is first to summarize the detailed clinico-
pathological characteristics of patients with autopsy-confirmed

PSP with regard to disease duration. As many as 24.2% of
PSP patients had an unexpectedly long disease duration of
≥10 years (LD-PSP), presenting with a distinctive pattern and
timeline of core clinical features. The absence of ocular motor
abnormalities in the first 3 years from disease onset was the
only significant independent predictor of longer survival. We
observed no significant difference in neuronal loss between
the LD and SD/ID subgroups, indicating that – at time of
death – both groups were equally affected by neu-
rodegeneration. The neurodegeneration parameters were para-
lleled anatomically by the distribution of neuronal tau deposits
(specifically NCIs), but not TAs and CBs, suggesting that neu-
ronal more than glial tau deposits relate to neurodegeneration.
Interestingly, there were no differences in the severity of TAs
between the LD and SD/ID, but TAs displayed an opposite
anatomical severity pattern than NCIs, indicating distinct
implications of these cell types in trans-cellular propagation.
CBs, in contrast, displayed a similar anatomical severity pat-
tern as NCIs, pointing that oligodendroglial and neuronal tau

FIGURE 3: Heat mapping of different cellular tau pathologies in PSP, subclassified by their survival times. (A) Severity of specific
lesion is coded by a heat map, according to the presented legend. Different graphical/color tones also indicate the presence of
significant differences between average scores of observed pathology in predefined 4 brain regions, within the survival groups
(Kruskal-Wallis test, with posthoc pairwise comparison between regions, p values adjusted for multiple comparisons, for more
details please see Supporting Information Table S8). *Significant differences were found for certain subregions between survival
groups (Mann–Whitney U test, p < 0.05, Table S8). (B) Pseudo-colored brain diagrams: the opposite pattern of
neurodegeneration and tufted astrocytes, observed in both survival groups. (C) Pseudo-colored brain diagrams: the pattern of
coiled bodies in patients with progressive supranuclear palsy, subclassified by their survival times. Note that the only significant
differences between survival groups were found in coiled bodies pathology, whereas cases with long disease duration had lower
scores. Abbreviations: LD, long-duration PSP, progressive supranuclear palsy; SD/IM, short duration/intermediate duration.
[Color figure can be viewed at www.annalsofneurology.org]
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spreading may be linked via joint mechanisms and follow
similar propagation pathways. Most interestingly, we found
significantly more CBs in SD/ID than in LD patients,
suggesting that patients with less oligodendroglial tau
pathology appear to survive longer.

Clinical Background of LD-PSP
Disease duration of PSP ranges in the literature between
7 and 8 years on average.2,20 However, these and other
clinico-pathological studies on PSP reported a high variabil-
ity of disease duration, with individuals who survived
considerably longer than 10 years.2,6,21–24 In our cohort,
21.5% of PSP patients died within 5 years, increasing to
75.8% within 10 years, whereas 24.2% of patients survived
≥10 years from symptom onset. The high percentage of
LD-PSP found here is higher than expected by prior clinical
studies and might be explained by the inclusion of only
pathologically confirmed cases.

The more favourable disease course of LD-PSP was
highlighted by the lower prevalence of clinical milestones
reached in the first 3 years of the disease, different
sequencing of clinical features over time, and by the pro-
longed latency to onset of clinical milestones. Interest-
ingly, by the time patients with both median and short
survival had developed all debilitating clinical milestones
(4 and 3 years on average, respectively), PSP-specific clini-
cal features had not even started to appear in LD-PSP.
These results are consistent with other studies,25–27 show-
ing us that the tempo of accumulation of clinical features
in the early phase of PSP plays an important role in deter-
mining the further disease course.

Previous studies trying to assess the likelihood of sur-
vival, have used very heterogenous methodologies and have
identified different clinical parameters as possible determi-
nants of short disease duration: occurrence of falls,28,29

speech and swallowing problems,27,28,29 SNGP,27,30,31,32

PSP-RS phenotype,25,27 older age of onset,25,29 male
gender,25 a short interval from disease onset to reaching the
first clinical milestone,25,26 early insertion of the percutane-
ous gastrostomy,29 motor severity score,33 and early cogni-
tive symptoms.27,34 We were able to control for the
majority of these factors in our study. However, in our PSP
cohort the only significant predictor of survival was the
early presence or absence of ocular motor abnormalities,
which were important in the further dichotomy of survival
groups. Several studies have already suggested our main
finding, i.e. the predictive value of oculomotor dysfunction
for life expectancy in PSP,35,30,31,32 but the prior evidence
for such an association was based on small case numbers
and /or lack of autopsy confirmation.27 The reason why
absence or presence of ocular motor dysfunction in PSP is
so decisive about the prognosis and future rate of disease

progression remains elusive so far. In light of recent evi-
dence suggesting that tau pathology is spreading along neu-
ronal pathways,36 the affection of brainstem ocular motor
centers might facilitate the spread of PSP pathology into
vital brainstem centers, e.g., such leading to dysphagia,
which we found to occur in close temporal association with
SNGP in our study and which is marked as a poor prog-
nostic sign in PSP, preceding the death.26,27,37 Delayed
onset of dysphagia in benign PSP could be responsible, at
least to some degree, for longer disease duration in this par-
ticular group.

In addition to SNGP, early presence of frontal dys-
function also predicts poor outcome in PSP, which is in line
with previous findings,27,34 probably reflecting the presence
of widespread pathological changes, from brainstem to the
frontal cortex, in the early stages of the disease.

We were unable to identify falls as an important
determinant of disease duration in our study. However,
our data showed that falls emerged significantly later in
patients who survived longer.

Although the timeline and pattern of symptoms in
LD-PSP observed in this study, highly resemble the course
of the PSP-P phenotype, only one-third of LD-PSP pres-
ented with PSP-P at initial presentation, and even less (21%)
at final record.2,3,38 High diversity of phenotypes observed in
all survival groups, both at initial and final records, demon-
strates that differences in survival could not be explained by
the PSP-P phenotype alone, despite the fact that this is the
most common initial manifestation of LD-PSP, together
with PSP-PI. In support of this, initial absence of oculomo-
tor abnormalities, which is found to be the only significant
determinant of longer survival in our cohort, is not exclu-
sively characteristic of PSP-P phenotype, but has been
described in other phenotypes, such as PSP-PGF, PSP-SL,
and PSP-PI (ref).3,39,40,41 Moreover, asymmetric onset,
bradykinesia, and tremor, which belong to the core clinical
features of PSP-P,38 were not useful in distinguishing differ-
ent survival groups in our study.

Neuropathological Background and
Pathophysiological Implications of LD-PSP
Several significant observations emerged from our neuro-
pathological analysis of LD-PSP.

In our series, the parameters of neurodegeneration
followed the expected pattern (subcortical > brainstem/
cerebellum > temporomesial > cortical),42 and at the same
time paralleled the distribution and density of neuronal tau
inclusions (Fig 3A, B). Again, no major differences were
found between 2 survival groups in neurodegeneration
and neuronal tau inclusions, except that LD-PSP had
more spongiosis in brainstem/cerebellum regions and
more neuronal loss in temporomesial area. However, our
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results indicated that the speed of the pathological
process differed between investigated survival groups,
because a similar pathologic endpoint was reached in
both groups, despite differing disease duration. Analo-
gous conclusions were reached in previous studies which
correlated clinical progression with pathologic findings in
PSP and other neurodegenerative disorders.38,43

The most interesting findings of our analysis are
related to glial tau changes between survival groups,
despite the lack of obvious differences in neuronal tau and
neurodegeneration. It has been shown recently that the
phenotypes in PSP are primarily conditioned by the
dynamics of neuron–glia tau changes in brain regions,
with oligodendrocytic tau showing highest variability
between subtypes.5 In that regard, our neuropathological
analysis also revealed that survival variability is mainly
influenced by pathology of oligodendrocytes, in the sense
that LD-PSP had less CBs (Fig 3A, C). This finding was
further confirmed by the negative correlation found
between disease duration and the amount of CBs on the
cortical level (Supporting Information Figure S2). More-
over, GP, which is found to be one of the regions of inter-
est deemed most specific to CBs, was significantly less
affected in LD-PSP.

Our findings on significance of CBs in the progres-
sion and clinical heterogeneity in PSP had already been
suggested in prior clinico-pathological series. Josephs et al.
pointed to the inverse relationship of disease duration and
CBs burden in PSP.44 Additionally, the PSP-tau score
proposed by Williams and colleagues, which actually
reflects the severity of CBs and threads throughout the
brain, was found to be lower in PSP-P patients which gen-
erally shows a slower disease progression than PSP-RS.34

The question remains whether oligodendrocytic tau
precedes, parallels, or follows neuronal tau in the process
of neurodegeneration in PSP. Two possible hypotheses
regarding the role of oligodendrocytes in PSP, which we
pictured in Figure 4, emerge from our study.

The first hypothesis could be that neuronal tau pathol-
ogy is likely to be primary in PSP, since tau expression is
much higher in neurons than glial cells.45 One may specu-
late that oligodendrocytes are removing toxic tau from neurons
and dictate the speed of axonal dysfunction and ultimately
neuronal loss. At that moment, when tau spreading also
affects oligodendrocytes, consequent axonal dysfunction
likely complicates neuronal dysfunction, leading to earlier
onset of clinical symptoms and earlier death, observed in
PSP patients with higher CB load (might be linked to
oligodendrocyte-affine tau strains or an oligodendrocyte-
intrinsic capacity to clear tau aggregates).

The second hypothesis starts from the assumption
that oligodendrocytes could be a starting point and

determinant of progression of tau-related neurodegeneration,
which was proposed as possible scenario in glial-tau ani-
mal models.46 These models suggest in the initial disease
stages a primary oligodendrocyte-phenotype responsible for
the onset and initiation of functional deficits. At later time
points, through the influence of oligodendrocytic tau on
neuronal integrity, a secondary neuronal degenerative pheno-
type may evolve.46 Accordingly, PSP might be considered
as primary oligodendrogliopathy. Although there is only
rare evidence to support the relevance and extent of
oligodentdrocytic contributions to the seeding and spread-
ing of tau pathology,46,47 our data firmly suggest that the
tempo of progression of PSP is strongly related to CB
pathology.

Another important observation that arises from our
neuropathological analysis is the inverse gradient of TAs
density in contrast to neuronal tau pathology and neuro-
degenerative changes, above all to the severity of reactive
gliosis. These results suggest two possible mechanisms of
pathogenesis. First, the inverse gradient of TAs and gliosis
tells us that these 2 processes appear not to be directly
connected to one another. These findings are in line with
previous analysis in a smaller PSP cohort, confirming the
notion that astrocytic-tau accumulation does not seem to
contribute directly to reactive gliosis.48 Second, the inverse

FIGURE 4: Hypotheses of neuron–glia interactions in tau
spreading to explain the pathological patterns observed in
the current study in progressive supranuclear palsy.
(1) Oligodendrocytes, 2 hypotheses: (A) oligodendrocytes may
remove spreading tau originated in neurons; higher
oligodendrocytic tau degradation capacity may, thus, reduce
the tempo of neuronal degeneration, or (B) oligodendrocytes
may be targeted by tau-pathology; higher tau burden in
oligodendrocytes may lead to dysfunction of oligodendrocytes
and thus accelerate the tempo of neuronal degeneration;
(2) Alterations of the microtubule-associated protein tau and
axonal transport in neurons. Neurons are excreting the
spreading-competent tau into extracellular space to spread it
to neighboring cells; (3) Astrocytes may play a functional role in
modulating extracellular tau spreading by inhibiting the
propagation of spreading-competent tau; (4) Inflammatory
response, including microglial activation, resulting in gliosis and
neurodegeneration. [Color figure can be viewed at www.
annalsofneurology.org]
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gradient between neuronal and astrocytic tau pathology
observed in the selected regions, suggests there may be
transmission of pathological tau from neurons to neigh-
boring astrocytes. One may speculate that astrocytes have
a protective role by scavenging the toxic tau released from
neurons in a region-specific manner within the brain in all
PSP patients. Thus, astrocytes could potentially have the
ability to inhibit tau spreading and delay disease progression.
A simplified hypothesis could be that neurons remain pre-
served as long as astrocytes can protect them; at some
point, the astrocytes are overloaded and do not longer
have clearing capacity; this results in neuronal-tau accu-
mulation, inflammatory responses, neuronal loss, includ-
ing microglial activation (Fig 4). Therefore, in the areas
with the lowest density of TAs (brainstem/cerebellum
region), gliosis and neuronal loss are the predominant
lesion types in advanced disease. The direct neuron-to-
astrocyte transfer of aggregation-prone protein species has
already been demonstrated in the metabolism of alpha-
synuclein, tau, and beta-amyloid, with consequent inflam-
matory response and glial activation.49,50,51,52 Moreover, a
recent study suggested that astrocytes may play a func-
tional role in modulating extracellular tau and the propa-
gation of neuronal tau pathology in tauopathies such as
Alzheimer disease.53 Future studies on the possible inter-
play between astrocytic and neuronal tau changes are
needed to explain these opposite severity patterns. Diver-
gent brain gene expression patterns for neuronal and
astroglial tau have already been described in PSP.54

Given that PSP typically manifests later in life and has
the highest prevalence of additional neurodegenerative
disease-related proteins among tauopathies,55 the influence of
co-pathology to the progression rate of such disease needs to
be addressed as well. Analysis of comorbid pathology in this
PSP cohort showed no significant differences in prevalence
and severity of concomitant neurodegenerative protein aggre-
gations and cerebral vessel co-pathologies between survival
groups, suggesting that co-pathology was not contributory to
survival in PSP. Our previous study has also confirmed that,
despite the high prevalence, the co-pathologies in PSP do
not have major impact on disease progression.11

The important limitation of this study lies in the retro-
spective collection of data from clinical charts. To limit this,
we relied on robust disease milestones, which are commonly
reported by patients, caregivers, and/or documented by
treating physicians. At the same time, it is important to
emphasize that, due to the assimilation of the clinical picture
at final record, histopathological differences accounting for
clinical heterogeneity in different survival groups in the earlier
clinical course might be abolished at post-mortem examina-
tion. In other words, the results must be interpreted with
caution, since we are making the conclusions about disease

progression based on a single and terminal snapshot of this
dynamic condition. Therefore, the missing puzzles of the dis-
ease progression in PSP are the cases in their earliest stages,
including presymptomatic, incidental cases. No less impor-
tant, the type of care, the availability of aids and other techno-
logical advances, as well as family support, certainly affect the
disease duration, and these parameters should be included in
the design of future prospective studies considering survival.

In conclusion, our data demonstrate that PSP can
run a relatively benign course in a considerable proportion
of patients, although we are accustomed to think of PSP
as a rapidly progressive disorder with a very short life
expectancy. In clinical practice, the type of first symptoms
and the tempo of their onset in the initial disease stages
allow us to predict long-term disease progression and
make risk stratification in terms of survival. Our study also
underlines that initiation of the neurodegenerative process
and the tempo of disease progression may be determined
by oligodendroglial rather than neuronal tau in PSP. Yet,
future studies will have to address the functional impact
of oligodendroglial tau and options to specifically attempt
to target oligodendroglial tau therapeutically.
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