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Abstract
Representative hazard scenarios are essential for many tasks in risk manage-
ment, such as preparedness and emergency response planning. However, criteria
and methods for systematically selecting such scenarios for natural hazards are
lacking. From a risk perspective, such scenarios should be selected considering
the losses they incur. Hence, we propose to define a scenario that is represen-
tative for a certain degree of loss, for example, the 100-year loss, as the most
likely one among all possible scenarios leading to this loss. Taking basis in a
generic model of natural hazards and their impact on engineering systems, we
formally introduce the representative scenarios.We then develop algorithms that
enable an efficient evaluation of these scenarios. The method and algorithms
are demonstrated on a hypothetical example considering a spatially distributed
infrastructure system subjected to earthquakes.
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1 INTRODUCTION

Natural hazards pose significant risks to engineering systems in general and infrastructure systems in particular. Past
infrastructure failures caused by storms, floods and seismic events, or combinations thereof, attribute to this fact, for
example during hurricane Kathrina in 20051,2 or the 2010 Chile earthquake and tsunami.3–5
To limit the impact of these failures, authorities and utility operators aim at an effective risk management.6 In this

context, risk managers commonly work with representative scenarios to assess the risk7–9 and resilience,10 to test and
validate risk management procedures,11–13 and for effective risk communication.6,14 Such scenarios are usually selected
based on expert knowledge15 and past events.16
Surprisingly, there has been little research on how to systematically identify representative scenarios for risk manage-

ment in general, and for natural hazard events in particular. Miller and Baker8 propose to identify a limited set of hazard
and damage scenarios that best approximate the loss exceedance curve, with application to seismic hazards. Romero
et al.17 develop an optimization approach for selecting seismic hazard and damage scenarios. Seismic hazards scenarios
are selected as those that best approximate the annual exceedance probability (AEP) curve of the PGA, based on Vaziri
et al.18 Damage scenarios are selected as those that best approximate the component vulnerabilities, following Brown
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et al.19 All these approaches aim at an accurate risk estimation with only a limited set of (computationally expensive)
evaluations of the full hazard and damage models.
Salgado-Gálvez et al.,9 in the context of probabilistic seismic hazard analysis (PSHA), select a single scenario ‘based on

choosing the loss corresponding to a return period of 1000 years from the fully probabilistic analysis as the target loss, and
then, a single event from the complete stochastic set which caused a similar value of loss’.
Berk et al.20 propose a method to identify representative rainfall events for flood analysis. Their approach is based on

inverse FORM (first-order reliability method),21 which identifies the hazard event that is the most likely one among all
possible events leading to a demand of a certain return period.
In this contribution, we propose a risk-oriented definition of representative hazard scenarios, which takes up ideas

from these previous approaches. In line with Miller and Baker8 and Salgado-Gálvez et al.,9 we identify hazard scenar-
ios that are associated with a given loss return period; for example, the seismic event that is representative for the loss
with a 100yr return period. In contrast to these approaches, we define the representative scenario as the most likely
one to lead to such a loss. This definition is inspired by the inverse FORM approach, which, however, does not con-
sider losses but failure events and assumes that the system performance is deterministic for given parameters. Our
proposed definition addresses the uncertainty in the system response for given hazard parameters. This leads to addi-
tional computational challenges in evaluating these scenarios. Therefore, we also develop efficient algorithms to estimate
the scenarios.
To enable a systematic and generic definition of representative hazard scenarios, Section 2 presents a general framework

for risk assessment of (spatially distributed) engineering systems subject to natural hazards, which is inspired by the PEER
framework.22,23 On this basis, we introduce and discuss the definition of the representative hazard scenarios in Section 3.
In Section 4, we propose a workflow for identifying such scenarios based on a combination of surrogatemodels with active
learning (AL) techniques. In Section 2.5, we investigate and demonstrate the methodology on an idealized example of a
power network subject to earthquakes. We end this contribution in Section 6 with a discussion on the limitations and
possible extensions of the proposed definitions and methods.

2 PROBABILISTIC HAZARD AND RISK ANALYSIS

2.1 General framework

Risk analysis of infrastructure systems subject to natural hazards requires the combination of models from multiple
domains, including models of hazard occurrence, hazard propagation, response of system components, overall system
performance and losses. In order to identify hazard scenarios that are representative for losses with a certain return period,
it is necessary to combine the different models. In this Section 2, we present a framework for combining these models as
a basis for identifying representative hazard scenarios.
In the context of earthquake engineering, PSHA is a methodology for identifying ground motions with a specified

exceedance probability. First formulated by Cornell,24 it is a widely used framework for hazard analysis of engineering
structures under seismic hazards.25–28 On this basis, the Pacific Earthquake Engineering Research Center (PEER) for-
mulated a performance- or risk-based framework for seismic hazard, which systematically integrates the different model
components to assess the seismic risk.22,23,28,29
For other types of hazards, risk analysis is also based on a similar combination of models. Examples found in the

literature include wind storms,30,31 floods32,33 and volcanoes.34,35
In Figure 1, we present a generic framework for risk analysis of infrastructure systems under natural hazards. It is

inspired by the PEER framework, yet is compatible with modelling approaches used for different natural hazards. It is
applicable to different types of engineering systems and infrastructure; in particular, it allows consideration of the spatially
distributed nature of most infrastructure systems. The framework establishes the connection between the probabilis-
tic model of the hazard occurrence (the hazard rate 𝜆𝐻 and the hazard parameters 𝚯) and the target variable (the loss
measure 𝐿).
The framework consists of a hazard occurrence analysis described in Section 2.2, a hazard propagation analysis (Sec-

tion 2.3), the component fragility and damage analysis (Section 2.4) and the system response and loss analysis (Section 2.5).
The models resulting from these analyses are combined in the risk analysis summarized in Section 2.6. Since the interest
is ultimately in the relation between the hazard parameters 𝚯 and the loss 𝐿, Section 2.7 discusses the sensitivity of the
losses to the uncertainty in 𝚯.
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F IGURE 1 General framework for risk
assessment of spatially distributed
engineering systems under natural hazards.
𝑃𝑟(⋅|⋅) indicates a conditional probability.

2.2 Hazard occurrence analysis

The occurrence of natural hazard events can be described by random processes. For most hazards, the occurrence of
extreme events𝐻 is well-described by a stationary Poisson process, or more generally a point process.36–38 We denote the
mean rate of occurrence of hazard events by 𝜆𝐻 .
Each hazard event is described by a set of parameters 𝜃 = [𝜃1; 𝜃2;⋯ ; 𝜃𝑚]. For instance, parameters describing a seismic

hazard are earthquakemagnitude, location and slip type (among others); similarly, for flood hazards, example parameters
are rainfall intensity and duration. The selection of these parameters is application-specific and might depend on the
model and data availability. For example, for floods, the hazard parameters could also be maximum discharge instead of
rainfall parameters. The hazard parameters are modelled as random variables𝚯with conditional joint probability density
function (PDF) 𝑓𝚯|𝐻(𝚯).
In some cases, the analysis includes only a single hazard parameter Θ, for example, in a fluvial flood risk assessment,

the hazard might be characterized only by the maximum discharge.39,40 In this case, one can find the hazard parameter
corresponding to a return period 𝑡 by

𝜃𝑡 = 𝐹−1
Θ

(
1

𝜆𝐻𝑡

)
(1)

where 𝐹−1
Θ is the inverse cumulative distribution function (CDF) of Θ. If the relation between hazard parameter 𝜃 and

resulting losses 𝐿 is deterministic andmonotonously increasing, then 𝜃𝑡 is also the hazard leading to the losses with return
period 𝑡. This corresponds to an AEP neutrality between the losses and the hazard parameter.41
In general, however, the hazard parameters form a vector and the losses 𝐿 are not deterministic for given 𝜽. As a con-

sequence, AEP neutrality does not hold and Equation (1) is not applicable. This motivates the criterion and methods for
identifying representative hazard scenarios that we propose in Section 3.

2.3 Hazard propagation analysis

To assess the performance of the engineering system, the impact of the hazard at the locations 𝐳𝑖 = [𝑥𝑖, 𝑦𝑖] at any of the 𝑛

system components must be determined, for 𝑖 = 1, … , 𝑛. The impact is quantified through one ormore intensity measures
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𝐼𝑀 at each of the locations 𝐳𝑖 . Examples of intensity measures are the PGA in seismic hazard analysis or the inundation
depth in flood risk analysis.
For given hazard parameters, the intensity measure 𝐼𝑀𝑖 at a location 𝐳𝑖 is evaluated through a model. One example

of such a model is the so called ground motion prediction equation (GMPE) that predicts the PGA for a given seismic
event. We represent such models by a function 𝜉, which can be either deterministic or stochastic, depends on additional
deterministic and stochastic parameters, such as shear velocity and roughness, and maps the hazard parameters 𝜽 to the
intensity measure at 𝐳𝑖:

𝐼𝑀𝑖 = 𝜉(𝜽, 𝐳𝑖) (2)

The intensity measure is evaluated at all 𝑛 locations 𝖹 = [𝐳1;⋯ ; 𝐳𝑛], resulting in a vector 𝐈𝐌 = [𝐼𝑀1;… ; 𝐼𝑀𝑛]. In the
general case, 𝜉 is a stochastic function and 𝐈𝐌 is a discrete representation of a random field, defined conditional on the
hazard parameters 𝜽. A commonly used random field model for a scalar intensity measure is based on multiplying a
deterministic model 𝜇𝜉 with a lognormal random field:

𝐈𝐌 = 𝜉(𝜽, 𝖹) = 𝜇𝜉(𝜽, 𝖹) exp [𝜎𝑈(𝖹)] (3)

where𝑈(𝖹) is a standard normal random field, and 𝜎 controls the variance of the random field. This model is commonly
used in seismic risk analysis,42,43 wherein 𝜇𝜉 is the deterministic GMPE.
More generally, the hazard intensity at a location 𝐳𝑖 can be described by a vector of intensity measures 𝐈𝐌𝑖 =

[𝐼𝑀𝑖1, … , 𝐼𝑀𝑖𝑟]. For example, both PGA and PGV might be used as intensity measures in a seismic risk analysis. In this
case, applying themodel 𝜉 to all locations𝖹, one obtains thematrix of intensitymeasures 𝖨𝖬, whose 𝑖𝑗th entry corresponds
to the 𝑗th intensity measure evaluated at the location of the 𝑖th component.
Based on a model such as given in Equation (3), the intensity measures at all 𝑛 components can be summarized by a

conditional joint PDF 𝑓𝐈𝐌|𝚯(𝐢𝐦|𝜽).
2.4 Component vulnerability analysis

The performance of the system components is represented by fragility models in function of the intensity measures at the
component locations. Fragility functions for different hazard types and system components are described extensively in
the literature.25,27,44–48
In agreement with the PEER framework, we use the term damage measure 𝐷𝑀𝑖 to describe the performance of the

𝑖th system component. In the simplest case, one distinguishes only between a functioning 𝐷𝑀𝑖 = 0 and a failed 𝐷𝑀𝑖 = 1

component. However, consideration of multiple damage states is straightforward.27
For a scalar intensity measure 𝐼𝑀𝑖 at a location 𝐳𝑖 , and considering only a failure state𝐷𝑀𝑖 = 1, the fragility function is

𝐹𝑟(𝑖𝑚𝑖) = Pr(𝐷𝑀𝑖 = 1|𝐼𝑀𝑖 = 𝑖𝑚𝑖) (4)

In spatially distributed systems, the damagemeasure is a random vector𝐃𝐌 = [𝐷𝑀1;… ;𝐷𝑀𝑛]. Commonly, it is assumed
that the damage states are conditionally independent among the components given the vector of intensity measures 𝐈𝐌.
Consideration of such dependence among components is, however, possible46 and can be included in the framework.
The fragility functions for all components define a conditional joint PMF of component states given the vector of

intensity measures, 𝑝𝐃𝐌|𝐈𝐌(𝐝𝐦𝑘|𝐢𝐦).

2.5 System vulnerability analysis

The performance of the overall system is represented by a lossmeasure 𝐿. It can bemeasured, for example, by connectivity
loss,49–52 efficiency loss,53–55 or a factor describing the impact on the population.51 For power networks, it can bemeasured
by the energy not supplied (ENS),56 and for road networks by the travel time delay.57 Examples of further metrics can be
found in the literature.50,58 The 𝐿 can also consider the resilience of the system, that is, time until the system recovers.56,59
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Depending on the scope of the analysis, 𝐿 can include only direct or additionally indirect consequences associated with
system disruptions.
In the loss analysis, 𝐃𝐌 is mapped to 𝐿 by means of a system model 𝜈, which can be deterministic or stochastic:

𝐿 = 𝜈(𝐃𝐌) (5)

A large variety of system models 𝜈 can be found in the literature, ranging from simple connectivity-based
models51,52,54,55,60 to fully physics-based network models.61,62 In the numerical investigations presented in Section 2.5,
we utilize a generic network model that allows accounting for cascading effects.
In the general case of a stochastic loss model, 𝜈 defines the conditional PDF of 𝐿 given the vector of component damage

states, 𝑓𝐿|𝐃𝐌(𝑙|𝐝𝐦𝑘).

2.6 Risk analysis

The components of the probabilistic hazard analysis described in Sections 2.2–2.5 can be combined to determine the CDF
of 𝐿 conditional on a hazard event𝐻:

𝐹𝐿|𝐻(𝑙|𝐻) = ∫
ℝ𝑚

𝐹𝐿|𝚯(𝑙|𝚯)𝑓𝚯|𝐻(𝜽||𝐻)
𝑑𝜽 (6)

wherein

𝐹𝐿|𝚯(𝑙|𝜽) = ∫
ℝ𝑛

2𝑛∑
𝑘=1

𝐹𝐿|𝐃𝐌(𝑙|𝐝𝐦𝑘)𝑝𝐃𝐌|𝐈𝐌(
𝐝𝐦𝑘

||𝐢𝐦)
𝑓𝐈𝐌|𝚯(𝐢𝐦||𝜽)𝑑𝐢𝐦 (7)

is the conditional CDF of the losses given 𝚯.
A commonmeasure of risk is the loss exceedance rate.8,26 Under the common (albeit not necessarily correct) assumption

of independence between the number of hazard events and the losses in any given hazard event, the loss exceedance rate
is

𝜆𝐿(𝑙) = [1 − 𝐹𝐿|𝐻(𝑙)]𝜆𝐻 (8)

From the inverse of 𝜆𝐿(𝑙), one can derive losses 𝑙𝑡 with given return period 𝑡 as

𝑙𝑡 = 𝜆−1
𝐿

(
1

𝑡

)
(9)

2.7 Sensitivity of the losses to the hazard scenarios

Equation (6) represents the uncertainty in the losses given a hazard event 𝐻, whereas Equation (7) corresponds to the
uncertainty in the losses due to all factors different from𝚯. In this section, we showhow one can quantify the contribution
of the uncertainty in 𝚯 to the overall uncertainty in the losses. For ease of notation, we drop the explicit conditioning on
the hazard occurrence 𝐻 in the following. One can decompose the conditional variance of 𝐿 given a hazard occurrence
by the law of total variance:

𝜎2
𝐿 = 𝕍𝚯(𝜇𝐿(𝚯)) + 𝔼𝚯

(
𝜎2
𝐿(𝚯)

)
(10)

wherein 𝕍𝚯 and 𝔼𝚯 are the variance and expected value with respect to 𝚯; whereas 𝜇𝐿(𝜽) = 𝔼𝐿|𝚯(𝐿|𝜽) and 𝜎2
𝐿(𝜽) =

𝕍𝐿|𝚯(𝐿|𝜽) are, respectively, the conditional mean and variance of 𝐿 given 𝜽.
The first term in Equation (10) corresponds to the combined effect of 𝚯 on the variance of 𝐿. One can observe that if

𝜎2
𝐿 = 𝕍𝚯(𝜇𝐿(𝚯)), then 𝜎2

𝐿(𝜽) = 0 and the losses are a deterministic function of 𝜽.
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Normalizing Equation (10) by the total variance 𝜎2
𝐿, one obtains the following equality:

1 =
𝕍𝚯(𝜇𝐿(𝚯))

𝜎2
𝐿

+
𝔼𝚯

(
𝜎2
𝐿(𝚯)

)
𝜎2
𝐿

= 𝑆𝚯 + 𝑆𝑡𝑜𝑡
−𝚯 (11)

The term 𝑆𝚯 is the closed Sobol’ index of𝚯, that is, the sum of the Sobol’ sensitivity indices of all orders involving only the
hazard parameters.63 The term 𝑆𝑡𝑜𝑡

−𝚯 is the total effect sensitivity index of −𝚯, that is, the sum of the remaining Sobol’
sensitivity indices, which are those that consider at least one input random variable that is not a hazard parameter.
One can observe that 0 ≤ 𝑆𝚯 ≤ 1, and that 𝑆𝚯 = 1 corresponds to the case where the loss function is deterministic for
given 𝚯, whereas 𝑆𝚯 = 0 is the (hypothetical) case where the uncertainty in the hazard parameter has no effect on the
expected losses.

3 REPRESENTATIVE HAZARD SCENARIOS

3.1 Definition

The aim of this section is to define hazard scenarios that are representative of specific loss values, typically losses 𝑙𝑡 with
a specified return period 𝑡 following Equation (9). A hazard scenario is characterized by a vector 𝜽, and we denote the
representative scenario of a loss 𝑙𝑡 by 𝜽𝑡. We present and later investigate the definition of a representative hazard scenario.
All distributions utilized in the following are conditional on the occurrence of a hazard event 𝐻. For readability, we do
not write out this condition.
We define the representative scenario 𝜽𝑡 as the most likely parameter values leading to a loss 𝑙𝑡, that is,

𝜽𝑡 = argmax
𝜽

𝑓𝚯|𝐿(𝜽||𝑙𝑡) (12)

Here 𝑓𝚯|𝐿(𝜽|𝑙𝑡) is the conditional joint PDF of the hazard parameters, given that the loss equals 𝑙𝑡.
By Bayes’ rule, 𝑓𝚯|𝐿(𝜽|𝑙𝑡) is equal to

𝑓𝚯|𝐿(𝜽||𝑙𝑡) = 𝑓𝐿|𝚯(𝑙𝑡||𝜽)𝑓𝚯(𝜽)

𝑓𝐿(𝑙𝑡)
(13)

Combining Equations (12) and (13), and noticing that 𝑓𝐿(𝑙𝑡) is constant, 𝜽𝑡 equals

𝜽𝑡 = argmax
𝜽

𝑓𝐿|𝚯(𝑙𝑡||𝜽)𝑓𝚯(𝜽) (14)

𝑓𝚯(𝜽) can be derived from historical records, literature and expert knowledge; 𝑓𝐿|𝚯(𝑙𝑡|𝜽) corresponds to the derivative of
Equation (7) with respect to 𝑙, evaluated at 𝑙𝑡.
Equation (14) shows that 𝜽𝑡 depends on the uncertainty in 𝚯, as well as the uncertainty associated with the condi-

tional density 𝑓𝐿|𝚯(𝑙|𝚯). In fact, if 𝑆𝚯 = 1, that is, if all uncertainty in 𝐿 comes from𝚯, then 𝑓𝐿|𝚯(𝑙𝑡|𝚯) = 𝛿(𝑙𝑡 − 𝑙(𝚯)) and
Equation (14) becomes a constrained optimization problem:

𝜽𝑡 = argmax
𝜽

𝑓𝚯 (𝜽)

s.t. 𝑙(𝜽) = 𝑙𝑡
(15)

Equation (15) is analogous to the inverse FORM approach20,21 for finding representative design parameters. Thereby,
𝑙𝑡 − 𝑙(𝜽) would be equal to the limit state function.

3.2 Illustration

We illustrate the definition of Section 3.1 through a simple example. The goal is to determine a representative seismic event.
At a seismic fault, strong earthquakes occur with a rate of 𝜆𝐻 = 1.0 yr−1. The engineering system under consideration
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consists of a single component. The hazard parameters𝚯 = [𝑀, ln 𝑅]⊺ are themagnitude𝑀 and the log of the hypocentral
distance 𝑅 from the earthquake source to the component. The distribution of 𝚯 is normal with mean vector 𝝁𝚯 and
covariance matrix Σ𝚯 given as follows:

𝝁𝚯 =

[
7.00

4.38

]
, Σ𝚯 =

[
0.36 −0.08

−0.08 0.49

]
(16)

The intensity measure 𝐼𝑀 is the PGA in m∕s2. The GMPE from Esteva and Villaverde64 is taken as the hazard
propagation model of Equation (2):

𝑃𝐺𝐴(𝜽) = 56
exp(0.8𝑚 + 𝑄𝑃𝐺𝐴)

𝑟2

= 56 exp (𝐚⊺𝜽 + 𝑄𝑃𝐺𝐴)

(17)

wherein 𝜽 = [𝑚, ln 𝑟]⊺ are realizations of the hazard parameters𝚯, 𝐚 = [0.8, −2]⊺, and 𝑄𝑃𝐺𝐴 is a normal random variable
with zero mean and standard deviation 𝜎𝑄,𝑃𝐺𝐴.
For illustrative purposes and to obtain analytical solutions, we assume here that the damagemeasure𝐷𝑀 is continuous

and proportional to the intensitymeasuremultiplied with a lognormal random variable.We furthermore take the losses to
be proportional to the damage measure, also multiplied with a lognormal random variable. Omitting the proportionality
constant, it follows that the losses are

𝐿(𝜽) = exp (𝐚⊺𝜽 + 𝑄𝑃𝐺𝐴 + 𝑄𝐷𝑀 + 𝑄𝐿) (18)

wherein 𝑄𝐷𝑀 and 𝑄𝐿 are normal random variables with zero mean and standard deviations 𝜎𝑄,𝐷𝑀 , 𝜎𝑄,𝐿, respectively.
They represent the uncertainty in the damage state given the PGA and the losses given the damage state. Equation (18)
can be re-written in terms of a single standard normal random variable 𝑈 and a single standard deviation 𝜎:

𝐿(𝜽) = exp (𝐚⊺𝜽 + 𝜎𝑈)

𝜎 =
√

𝜎2
𝑄,𝑃𝐺𝐴

+ 𝜎2
𝑄,𝐷𝑀

+ 𝜎2
𝑄,𝐿

(19)

For given values of the hazard parameters, 𝐿(𝜽) is a lognormal random variable with parameters:

𝜇ln𝐿|𝚯(𝜽) = 𝐚⊺𝚯, 𝜎ln 𝐿|𝚯(𝜽) = 𝜎 (20)

The unconditional loss 𝐿 is also lognormal with parameters 𝜇ln 𝐿 = −3.16, 𝜎ln 𝐿 =
√

2.46 + 𝜎2.
Unless otherwise noted, we set 𝜎 = 1 in the following and we consider a scenario with return period 𝑡 = 100yr. The loss

associated with this return period is 𝑙𝑡 = 3.21.
Because the parameters 𝚯 and the log-loss ln 𝐿 are jointly normal, the conditional 𝑓𝚯|𝐿(𝚯|𝑙𝑡) can be evaluated

analytically. It is normal with mean 𝝁𝚯|𝐿=𝑙𝑡 and covariance matrix Σ𝚯|𝐿=𝑙𝑡 equal to

𝝁𝚯|𝐿=𝑙𝑡 =

[
7.57

3.07

]
, Σ𝚯|𝐿=𝑙𝑡 =

[
0.30 0.05

0.05 0.17

]
(21)

Figure 2 compares this conditional distribution to the unconditional distribution of 𝚯. Following Equation (12), the
representative hazard scenario is 𝜽𝑡 = [7.57; 3.07]. In this model, 𝜎 reflects the uncertainty from all sources except𝚯. For
𝜎 = 0, the only uncertainty in the losses given an earthquake event comes from 𝚯. In contrast, as 𝜎 becomes large, the
contribution of the uncertainty in 𝚯 to the total uncertainty in 𝐿 becomes small.
Following Section 2.7, the relative contribution of the uncertainty in𝚯 to the uncertainty in the losses can be expressed

by the closed Sobol’ sensitivity index of 𝚯. This index is

𝑆𝚯 =
10.71

11.71 exp (𝜎2) − 1
(22)

𝑆𝚯 is shown in Figure 3 as a function of 𝜎. For 𝜎 = 1, it is 𝑆𝚯 = 0.347.
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F IGURE 2 The conditional distribution of 𝚯 given 𝐿 = 𝑙𝑡 and the representative hazard scenario 𝜽𝑡 , with 𝜎 = 1

F IGURE 3 Closed Sobol’ sensitivity index 𝑆𝚯 for different values of 𝜎

In the following, we investigate the effect of 𝜎 on 𝜽𝑡. Figure 4 shows 𝜽𝑡 for different values of 𝜎. One can observe that
for increasing values of 𝜎, 𝜽𝑡 approaches the mode of the distribution of 𝚯. When 𝜎 = 0, 𝐿(𝜽) is a deterministic function
𝑙(𝜽), and 𝑙𝑡 can be evaluated following Equation (15), that is, as the value 𝜽 with the highest density along the black line
shown in Figure 4. For values 𝜎 → 0, that is, as the combined effect sensitivity index of 𝚯 tends to 1, 𝜽𝑡 approaches the
solution on this line.
Figure 4 illustrate how the relative share of the uncertainty that is associated with the hazard parameters affects the

representative scenario. If 𝜎 is large, and hence 𝑆𝚯 is small, then the representative hazard scenario for any loss return
period is close to the mode of 𝑓𝚯(𝜽). In this case, the extent of the loss is not determined by the intensity of the hazard,
but by other factors. In contrast, if 𝜎 is small, and hence 𝑆𝚯 is large, then extreme losses will always be associated with
extreme hazard scenarios.
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F IGURE 4 Representative hazard scenarios 𝜽𝑡 shown as red dots for different values of 𝜎. The black line corresponds to the values of 𝚯
for which 𝑙(𝜽) = 𝑙𝑡 when 𝜎 = 0. The shade indicates the value of 𝑙(𝜽) for 𝜎 = 0.

4 NUMERICAL EVALUATION OF REPRESENTATIVE HAZARD SCENARIOS

Generally, analytical solutions to Equation (12) are not available and the representative scenarios must be found numer-
ically. Furthermore, the loss exceedance rate 𝜆𝐿 is also not available in analytical form; it must be evaluated numerically
to determine 𝑙𝑡. In this section, we propose a procedure for doing so efficiently. The procedure assumes that the hazard
rate and the probability distribution of the hazard parameters are available.
The procedure starts with an initial Monte Carlo sampling. The resulting sample evaluations of the losses are used for

estimating 𝑙𝑡 and to set up an initial surrogate model of the losses using Gaussian process (GP) regression. Depending on
the variance in 𝐿 given𝚯, the procedure chooses between two approximationmethods. When this conditional variance of
the losses is small, that is, for large 𝑆𝚯, the procedure employs a GP surrogate of the losses for given 𝜽. If the conditional
variance is large, the procedure approximates𝑓𝐿|𝚯(𝑙𝑡|𝜽)with a kernel-density estimation (KDE),which requires additional
model evaluations, and learns a GP surrogate of 𝑓𝐿|𝚯(𝑙𝑡|𝜽) in function of 𝜽.
To efficiently learn the GP surrogates, an AL method is utilized, which optimally chooses additional samples of 𝚯 for

which the system should be evaluated. AL is a commonly used strategy for improving the predictions of GP regression in
optimization65,66 and reliability analysis.67,68 At the core of AL is the learning or acquisition function, which determines
the best next point to be evaluated for reducing the prediction error of the GP regression. The implemented AL methods
are detailed in Sections 4.2 and 4.3. The final surrogate model learned from all sampled scenarios is then employed to
solve the optimization problem defined by Equation (14), resp. Equation (15).
Figure 5 shows the different steps of the procedure, which are detailed in Sections 4.1–4.3.

4.1 Initial sampling

The first step is to generate 𝑛0 random samples of 𝚯, denoted by 𝜽(1), … , 𝜽(𝑛0). For each sample, one evaluates the losses
with the model, resulting in loss samples 𝑙(1), … , 𝑙(𝑛0).
The choice of 𝑛0 depends on the computational cost of one model evaluation. If the computational budget allows it,

we recommend 𝑛0 ≥ 10𝜆𝐻𝑡 and generate the samples independently from the distribution 𝑓𝚯(𝜽). Then one can obtain an
estimate of 𝑙𝑡 from the ordered samples 𝑙(1) ≤ … ≤ 𝑙(𝑛0):

𝑙𝑡 = 𝑙(𝑞−1)(1 − 𝜔) + 𝜔𝑙(𝑞), (23)

where 𝑞 is the smallest integer larger or equal than 𝑛0(1 −
1

𝜆𝐻𝑡
), and 𝜔 is their difference, that is, 𝜔 = 𝑛0(1 −

1

𝜆𝐻𝑡
) − 𝑞.
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F IGURE 5 Scheme of numerical
approximation of the representative hazard
scenario associated to return period 𝑡

Following the initial sampling, it must be decided if the conditional variance of the losses given the hazard parameters
is small or large. Quantitatively, this is expressed by 𝑆𝑡𝑜𝑡

−𝚯, see Section 2.7. In many cases, it will be clear to the analyst prior
to the analysis whether 𝑆𝑡𝑜𝑡

−𝚯 is small or large. If not, 𝑆𝑡𝑜𝑡
−𝚯 can be estimated with a sampling approximation based on the

generated samples of 𝚯 and 𝐿.
If the conditional variance is deemed to be small, the procedure proceeds with learning a surrogate of the losses

given 𝜽 following Section 4.2 (deterministic approximation). Otherwise, a surrogate modelling of the objective function is
employed as described in Section 4.3 (stochastic approximation). If one is unsure aboutwhether the conditional variance is
‘large’ or ‘small’, one should choose the stochastic approximation, since it works in all cases (but at a higher computational
cost than the deterministic approximation).

4.2 Deterministic approximation of the conditional losses

If the conditional variance of the losses given 𝜽 is small, it is justified to replace 𝑓𝐿|𝚯(𝑙|𝜽) with a deterministic model of
the losses in function of 𝜽, that is, 𝑙(𝜽) ≈ 𝔼[𝐿|𝜽]. With this approximation, the representative scenario can be found by
solving Equation (15).
To model 𝑙(𝜽), we employ GP regression69 and obtain the mean 𝜇(𝜽) and standard deviation function 𝜎(𝜽). The loss

function is approximated by the mean function, and Equation (15) is replaced with the approximation:

𝜽𝑡 ≈ argmax
𝜽

𝑓𝚯 (𝜽) ,

s.t. 𝜇(𝜽) = 𝑙𝑡
(24)

The approximation of the loss function with a GP introduces a prediction error. However, one can reduce it near the
equality constraint of Equation (24) by adding more scenarios in this region. One can achieve this with an AL method
whose acquisition function looks for new scenarios close to the constraint. For that purpose, we employ the Expected
Feasibility Function 𝐸𝐹𝐹 as acquisition function,67 defined as

𝐸𝐹𝐹(𝜽) =∫
𝑙𝑡+𝜖

𝑙𝑡−𝜖

𝜖 − |𝑙𝑡 − 𝑢|
𝜎(𝜽)

𝜙

(
𝑢 − 𝜇(𝜽)

𝜎(𝜽)

)
𝑑𝑢 (25)

wherein 𝜖 ∝ 𝜎(𝜽).
An optimization algorithm is employed to find the scenario 𝜽 with the maximum 𝐸𝐹𝐹(𝜽). This scenario is added to

the training set and the GP is re-trained. This procedure is repeated until the computational budget 𝑛3 is exceeded. After
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F IGURE 6 Scheme for finding the
representative hazard scenario with the
deterministic approximation of the losses

adding sequentially 𝑛3 new scenarios with AL, one solves Equation (24) and finds the numerical approximation of 𝜽𝑡.
Figure 6 summarizes the approach.

4.3 Stochastic approximation of the conditional distribution of the losses

If the conditional variance of the losses given 𝜽 is large, then one cannot utilize the deterministic approximation 𝑙(𝜽), and
a normal approximation of the conditional density of the losses is inappropriate in most cases. Therefore, we propose to
approximate 𝑓𝐿|𝚯(𝑙𝑡|𝜽) with KDE for selected scenarios 𝜽(𝑘), 𝑘 = 1,… , 𝑛1. At these scenarios, the objective function in
Equation (14) is approximated as

𝑓𝐿|𝚯(𝑙𝑡||𝜽(𝑘)
)
𝑓𝚯|𝐻(𝜽(𝑘)

)
≈ 𝑓𝐿|𝚯(𝑙𝑡|𝜽(𝑘)

)
𝑓𝚯|𝐻(𝜽(𝑘)

)
=

𝑓𝚯|𝐻(𝜽(𝑘)
)

𝑛2𝛾

𝑛2∑
𝑖=1

𝜅

(
𝑙𝑡 − 𝑙(𝑘,𝑖)

𝛾

)
= 𝑔

(
𝜽(𝑘)

) (26)

wherein 𝜅 is a kernel function and 𝛾 the bandwidth, which can depend on 𝜽(𝑘). 𝑙(𝑘,𝑖) are loss samples conditional on 𝜽(𝑘),
which are obtained from system model evaluations. 𝑛2 is the number of model evaluations at the scenario 𝜽(𝑘). Note that
one can use the same 𝑛2 model evaluations for estimating the conditional density at multiple loss values, corresponding
to different return periods.
To limit the number of evaluations of Equation (26), a GP surrogate of the objective function 𝑓𝐿|𝚯(𝑙𝑡|𝚯)𝑓𝚯(𝜽) is

constructed. One needs to select the training set for this GP regression efficiently, because each evaluation of 𝑔(𝜽) (Equa-
tion 26) requires 𝑛2 model evaluations. To this end, we propose to choose from the 𝑛0 scenarios of the initial sampling
the 𝑛𝑎 scenarios whose sampled losses are closest to 𝑙𝑡. One then clusters these 𝑛𝑎 scenarios into 𝑛1 clusters with k-
medoids,70 and takes the medoids of the clusters 𝜽(𝑐1), … , 𝜽(𝑐𝑛1 ) as the initial training set for learning the GP. We consider
𝑛𝑎 = min(𝑛0, 5𝑛1).
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Density estimation introduces uncertainty. We assess this uncertainty with bootstrapping.71 That is, at scenario 𝜽(𝑐𝑘)

and after estimating 𝑔(𝑘), one computes the standard deviation 𝑠
(𝑘)
𝑔 of 𝑛𝑏 KDEs from re-sampled loss values. The bootstrap

standard deviations of the KDEs 𝑠(1)𝑔 , … , 𝑠
(𝑛1)
𝑔 evaluated at the points 𝜽(𝑐1), … , 𝜽(𝑐𝑛1 ) are the training set for a surrogate GP

𝑆 to learn the noise variance over the hazard parameters.
We employ AL to select informative scenarios 𝜽 at which to evaluate the objective function. A suitable acquisition

function in the context of an optimization problem is the Augmented Expected Improvement 𝐴𝐸𝐼,65,66 which we employ
here. The 𝐴𝐸𝐼 is

AEI(𝜽) = 𝔼
(
max

(
𝜇𝐺(𝜽) − 𝜇∗

𝑞, 0
)) ⎛⎜⎜⎜⎝1 −

𝜏 (𝜽)√
𝜎2
𝐺
(𝜽) + 𝜏2 (𝜽)

⎞⎟⎟⎟⎠ (27)

wherein 𝜏2(𝜽) is the noise variance, which we approximate with the mean function of 𝑆, and 𝜇∗
𝑞 is a representative value

of the maximum observed value at AL iteration 𝑞. Based on a similar idea of Picheny et al.,72 with 0 ≤ 𝛼 ≤ 1, we consider
the following expression for 𝜇∗

𝑞 :

𝜇∗
𝑞 = max

𝑗=1,…,𝑛1+𝑞

(
𝑔(𝑗) + Φ−1(1 − 𝛼∕2)𝑠

(𝑗)
𝑔

)
(28)

We set 𝛼 = 0.01.
The scenario with the largest𝐴𝐸𝐼 is found via a standard optimization algorithm. The scenario is added to the training

set and the GP is re-trained. This procedure is repeated until the computational budget 𝑛3 is exceeded.
After adding sequentially 𝑛3 new scenarios with AL, we solve the optimization problem with the GP surrogate of the

objective function, that is,

𝜽𝑡 ≈ 𝜽𝑡 = argmax
𝜽

𝜇𝐺(𝜽) (29)

Figure 7 summarizes the method.
The total number of model evaluations 𝑛𝑡𝑜𝑡 is 𝑛0 + 𝑛2(𝑛1 + 𝑛3) − 𝑛1. The last term is related to the re-use of loss

evaluations from the initial sampling when evaluating the KDE at the 𝑛1 scenarios 𝜽(𝑐1), … , 𝜽(𝑐𝑛1 ).
The choice of 𝑛1 and 𝑛2 has a significant impact on the performance of the methodology. 𝑛1 is the number of scenarios

of the initial training size of the GP regression, hence it should be chosen in function of the dimensionality of𝚯. Based on
numerical investigations, we recommend to choose 𝑛1 in the range 20 ≤ 𝑛1 ≤ max(20, 0.1𝑛0). The reason for the upper
bound on 𝑛1 is to avoid including too many scenarios in the training set that are far from the solution. If one wants a large
𝑛1, then one should increase 𝑛0 as well.

𝑛2 is the number of loss evaluations necessary for a KDE of 𝐿 given𝚯 = 𝜽. For 𝑛2, the recommendation is to use a value
𝑛2 ≥ 20. 𝑛3 is the number of AL steps, which implies additional 𝑛3 KDEs. For that reason, we suggest a value 5 ≤ 𝑛3 ≤ 𝑛1.
We observed that the uncertainty in the density estimation dominates the overall uncertainty in the GP predictions,

together with the uncertainty in estimating 𝑙𝑡. Therefore, if the computational budget is large enough, additional model
evaluations should focus on 𝑛0 and 𝑛2, rather than on 𝑛1 and 𝑛3. Exemplary choices of the number of samples for different
computational budgets are shown in the next section.

4.4 Illustration

We illustrate the performance of the proposed method by approximating the solution of the basic example presented in
Section 3. The analytical solution of Section 3 is utilized to assess the quality of the approximation method. The return
period of interest is 𝑡 = 100yr. To investigate the deterministic approximation (Section 4.2), we use the example with the
setting 𝜎 = 0.01, in which case the uncertainty of the losses given 𝜽 is small. To investigate the stochastic approximation
(Section 4.3), we set 𝜎 = 1.
In the deterministic case, we set a computational budget of 𝑛𝑡𝑜𝑡 = 103 model evaluations. From that budget, we generate

𝑛0 = 980 random scenarios with Monte Carlo Simulation (MCS), and the remaining 𝑛3 = 20with AL. Figure 8 shows the
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F IGURE 7 Scheme of stochastic approximation of the representative hazard scenario associated to return period 𝑡

variability of the estimation of 𝜽𝑡 with 20 experiments. One can observe in Figure 8 that 103model evaluations are sufficient
for obtaining an estimation near to the true solution in the deterministic case. The estimation lies close to the loss contour
line corresponding to 𝑙𝑡.
For the stochastic case, we evaluate the solution with different computational budgets 𝑛𝑡𝑜𝑡, as detailed in Figure 9. In

all cases, we compute the bootstrap standard deviation of the KDEs with a re-sampling size of 400.
The stochastic approximation requires 10 times more model evaluations than the deterministic approximation for

obtaining an acceptably accurate estimate of the representative hazard scenario, as seen from Figure 9. Most of the evalu-
ations are invested in conditional KDEs close to the solution. In terms of training set sizes, the stochastic approximation
utilizes between 20 and 60 scenarios for learning the initial GP surrogate, all of them selected close to the solution.

5 NUMERICAL EXAMPLE

We apply the methodology to the IEEE39 bus system, whose topology is displayed in Figure 10. It consists of 39 nodes
and 43 edges, which represent substations and transmission lines, respectively. The system is assumed to be exposed
to earthquake events, whose hazard parameters are the hypocenter location 𝐙0 = [𝑋; 𝑌;𝐻] and the magnitude 𝑀. We
consider only events with magnitudes between 6 and 9.5, with a hazard rate of 𝜆𝐻 = 1𝑦𝑟−1. The representative hazard
scenario is estimated for a loss return period of 𝑡 = 100 yr.
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F IGURE 8 Variability of estimation of 𝜽𝑡 , based on 20 runs, for the case of deterministic approximation (𝜎 = 0.01). 𝑛𝑡𝑜𝑡 = 103: 𝑛0 = 980,
𝑛3 = 20

TABLE 1 Shape parameters 𝛼 and 𝛽, mean, standard deviation and bounds of the beta distributed hazard parameters

Parameter Distr. 𝜶 𝜷 Min Max 𝝁 𝝈

x-coordinate, 𝑋 [km] Beta 2 5 −400 400 −171.43 127.77
y-coordinate, 𝑌 [km] Beta 2 5 −400 400 −171.43 127.77
Depth,𝐻 [km] Beta 2 6 −80 0 −60.00 11.55
Magnitude,𝑀 [-] Beta 1 3.5 6.0 9.5 6.78 0.62

The hazard model is presented in Section 5.1, and the system model in Section 5.2. The numerical results are shown in
Section 5.3.

5.1 Hazard model

The hazard parameters 𝚯 = [𝑋;𝑌;𝐻;𝑀] are summarized in Table 1. They all follow a beta distribution with parameters
𝛼 and 𝛽. The hazard parameters are assumed to be statistically independent.
The output of the hazard model is the PGA in m∕s2. A GMPE of the form described by Esteva and Villaverde64 is taken

as the hazard propagation model of Equation (2) at the 𝑖th system component with location 𝐳𝑖:

𝑃𝐺𝐴𝑖(𝜽) = 𝜉(𝜽, 𝐳𝑖, 𝑈𝑃𝐺𝐴(𝐳𝑖)))

= 56
exp(0.8𝑚 + 0.04 + 0.64𝑈𝑃𝐺𝐴(𝐳𝑖))

(‖𝐳0 − 𝐳𝑖‖2 + 40)2

(30)

wherein 𝐳0 = [𝑥, 𝑦, ℎ] is the hypocenter location and ‖ ⋅ ‖2 evaluates the Euclidian distance.𝑈𝑃𝐺𝐴(𝐳) is aGaussian random
field with zero mean, unit variance, and a squared exponential auto-correlation coefficient function with a correlation
length of 50 km.

5.2 Systemmodel

All substations have the same fragility function, represented by a lognormal CDFwith parameters 𝜇𝐹𝑟 = −1.77 and 𝜎𝐹𝑟 =

0.35. The parameters correspond to the fragility function of the extensive damage state for high voltage substations with
unanchored elements.73 No direct failures of transmission lines due to an earthquake are considered.
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F IGURE 9 Variability of estimation of 𝜽𝑡 with stochastic approximation, based on 20 runs. 𝑛𝑡𝑜𝑡 = 𝑛0 + 𝑛2(𝑛1 + 𝑛3) − 𝑛1

We simulate the system response with the generic model of cascading failures proposed by Crucitti et al.,54 using the
line reactances as edge weights. The loss measure 𝐿 depends on the network efficiency  :

𝐿 = 1 −
(𝐝𝐦)

(𝟎)
(31)

(𝐝𝐦) =
1||| | ∑

𝑠∈
𝑡∈
𝑠≠𝑡

𝜀𝑠𝑡(𝐝𝐦) (32)

where 𝜀𝑠𝑡(𝐝𝐦) is the efficiency of the most efficient path from source node 𝑠 to terminal node 𝑡,  is the set of source
nodes,  the set of terminal nodes. Equation (32) is the network efficiency associated with the component damage vector
𝐝𝐦 and (𝟎) is the efficiency of the intact system. In power networks, the efficiency of a path is equal to the inverse of
the sum of the reactance values along that path. Equation (31) is a modified version of the network efficiency.54
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F IGURE 10 Geolocation of the IEEE39 power system, with hypothetical coordinates in km. The edge thicknesses are proportional to
their reactance.

F IGURE 11 Estimation of 𝜽𝑡 for one experiment with 104 model evaluations, showing contour lines of the GP mean function, the initial
training set, and the additional AL scenarios. The reference PDF contours correspond to sections at the reference solution

5.3 Estimation of 𝜽𝒕

A preliminary analysis of the system model clearly shows that the conditional variance of the losses given the hazard
parameters is considerable and the stochastic approximation should be employed. (While not necessary in practice, we
also evaluate the contribution of the uncertainty in the system model and the loss evaluation on the overall uncertainty
as 𝑆𝑡𝑜𝑡

−𝚯 = 0.45.)
We consider a computational budget of 𝑛𝑡𝑜𝑡 = 104 model evaluations, which we distribute as 𝑛0 = 2020, 𝑛1 = 20, 𝑛2 =

200, 𝑛3 = 20.
We compare the performance of the numerical approximation with a reference solution. This solution utilizes first

106 randomly sampled scenarios for estimating 𝑙𝑡. Thereafter, an additional 104 scenarios are evaluated in a full factorial
experimental design whereby each hazard parameter is discretized to 10 values. At each scenario, the losses are evaluated
220 times. Finally, linear interpolation is employed over the four-dimensional grid for finding 𝜃𝑡. In total, the reference
solution is based on 3.2 × 106 model evaluations.
Figure 11 shows the results of one computation of 𝜃𝑡. One can observe that the initial training set, which was selected

from the initial MCS, is spread, but not located around the prior mode. The scenarios added with AL show that the



3696 ROSERO-VELÁSQUEZ and STRAUB

F IGURE 1 2 Variability of estimation of 𝜽𝑡 , based on 20 runs. PDF contours correspond to sections at the reference solution.

chosen acquisition function balances well exploration and exploitation. The resulting GP estimate 𝜇𝐺(𝜽) matches well
the conditional distribution 𝑓𝚯|𝐿(𝜽|𝑙𝑡) obtained with the reference solution.
Figure 12 shows the resulting �̂�𝑡 from 20 repeated evaluations. One can observe that the variability is close to the

reference solution

6 CONCLUDING REMARKS

Representative hazard scenarios are of relevance for many tasks in risk management of engineering systems. In cases
where the hazard is characterized by one dominant parameter, such as the annual maximum discharge in fluvial flood
events, such scenarios are typically defined as those with a specific return period, for example, the 100-year flood event.
For hazards that are characterized by multiple stochastic parameters, such as the earthquake hazard for a given region, it
was unclear how a scenario can be associated to a given return period. In this contribution, we close this gap by proposing a
definition of representative hazard scenarios for engineering systems. The return period of a scenario is thereby evaluated
with respect to the losses, that is, a 100-year hazard scenario is one that leads to losses with an AEP of 100 years. The
representative scenario is then defined as the one with the highest probability among all scenarios leading to these losses.
The proposed definition is applicable to systems with a single location, such as buildings, as well as spatially distributed
systems, such as power networks, or even systems of systems. The definition also considers the uncertainty in the system
response and the losses.
It is important to realize that the proposed representative hazard scenario is a function not only of the hazard but also

of the considered system. One should not refer to a representative scenario without specifying the system for which it is
representative. A consequence of this definition is that any action that modifies the system (e.g., adding redundancy or
reinforcing component structures) can lead to a change of the representative hazard scenarios. Inmost cases, in particular
for small changes in the system, this change will not be large, and one can keep working with the previously determined
representative scenario. In some cases, when larger changes to the system are made, the representative scenario can
indeed change, but we see this as a positive feature of our definition. Assume that in a spatially distributed network, a
weak section is strengthened, then it can be that the representative earthquake scenario changes from one that it is in the
vicinity of this section to another one that is closer to another weak section. Such a change in the system should indeed
be reflected in the representative hazard scenario.
We developed a methodology for evaluating such representative hazard scenarios numerically. The focus of the pro-

posed algorithms is on an efficient evaluation; nevertheless, the necessary number of system performance evaluations is
still in the order of 103–104 when evaluating scenarios with a return period of 100 years.
This large number restricts the complexity of the system models that can be used within the framework. However,

using simplified systemmodels for identifying the representative hazard scenarios seems justified. Once the scenarios are
determined, more advanced models can be applied to these scenarios to assess the appropriateness of the simpler models.
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In this paper, we show how a single representative hazard scenario can be evaluated. The method can be extended
easily to obtain representative hazard scenarios for multiple return periods. Essentially, all model evaluations utilized for
determining the representative scenario for one return period can be re-usedwhen determining the one for another return
period. Only the AL steps need to be performed separately for each return period.
In some cases, one might also wish to obtain multiple hazard scenarios that are representative of the same return

period. Our definition does not cover this case. When the distribution of the hazard parameters given the losses 𝑙𝑡 is
multi-modal, our definition, which currently only identifies the highest mode, can be extended to cover these multiple
modes. If 𝑓𝚯|𝐿(𝜽|𝑙𝑡) has only a single mode, then one might identify additional ‘representative’ scenarios at some distance
around this mode. We leave this question for future research.
While the examples in this paper consider single-hazard scenarios, the scenario definition and the proposed method-

ology for evaluation are applicable to multi-hazard scenarios, for example, earthquake followed by tsunami, floods and
landslides. In this case, the hazard model corresponds to the combination of the models of the individual hazards.
At present, themethodology is applicable to hazards that are characterized by continuous parameters, whose joint prob-

ability distribution is available. Futurework should extend themethodology to discrete and categorical hazard parameters,
for example, if an earthquake can originate in multiple faults. Furthermore, in some cases, available information on haz-
ards is not in the form of models with continuous random input parameters, but rather in the form of selected scenarios,
for example, from an earthquake catalogue. In this case, the scenarios must be parameterized before the methodology
is applicable.
The methodology is also restricted to hazard scenarios described by a limited number of parameters, in the order of up

to 10 parameters. This is due to the use of GP regression, whose performance deteriorates with increasing dimensions.
For most hazards, this restriction is not crucial. However, the method might have difficulties when one wants to include
information about a spatial distribution of a hazard, for example, if onewouldwant to describe earthquake hazard in terms
of a ground motion map. In such cases, the methodology might be extended with dimensionality reduction techniques,
such as principal component analysis (PCA) or partial least squares regression (PLS).74,75
The general idea behind the definition of representative scenarios could also be extended beyond the hazard parameters

to system parameters, for example, to identify scenarios of network failures associated with a specific return period. In
these cases, the number of parameters describing these scenarios would be even higher. Therefore, it seems worthwhile
to further investigate the extension of the methodology to scenarios defined by a larger number of input parameters.
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