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Genomic selection is an integral tool for breeders to accurately select plants

directly from genotype data leading to faster and more resource-efficient

breeding programs. Several prediction methods have been established in the

last few years. These range from classical linear mixedmodels to complex non-

linear machine learning approaches, such as Support Vector Regression, and

modern deep learning-based architectures. Many of these methods have been

extensively evaluated on different crop species with varying outcomes. In this

work, our aim is to systematically compare 12 different phenotype prediction

models, including basic genomic selection methods to more advanced deep

learning-based techniques. More importantly, we assess the performance of

these models on simulated phenotype data as well as on real-world data from

Arabidopsis thaliana and two breeding datasets from soy and corn. The

synthetic phenotypic data allow us to analyze all prediction models and

especially the selected markers under controlled and predefined settings. We

show that Bayes B and linear regression models with sparsity constraints

perform best under different simulation settings with respect to explained

variance. Further, we can confirm results from other studies that there is no

superiority of more complex neural network-based architectures for

phenotype prediction compared to well-established methods. However, on

real-world data, for which several prediction models yield comparable results

with slight advantages for Elastic Net, this picture is less clear, suggesting that

there is a lot of room for future research.
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1 Introduction

Currently, the agricultural industry is under great pressure to

deliver new crop varieties quickly for a changing climate and a

fewer resource use. Genomic selection (GS) offers breeders the

ability to accurately select plants with the potentially highest

return on investment for the traits they are interested in, such

as yield and drought tolerance, directly from genotype data

(Asseng et al., 2015; Parent et al., 2018). By using GS, crosses

can be planned with precision, leading to faster and more

resource-efficient breeding programs. For these reasons, modern

plant breeding programs rely on GS to guide the development of

improved crops (R2D2 Consortium et al., 2021). GS uses genome-

wide markers to predict phenotypes or breeding values and was

first proposed by Meuwissen et al. (2001). Since then, several

prediction methods have been established and used in animal as

well as plant breeding (Hayes et al., 2009; Gianola and Rosa, 2015;

Heslot et al., 2015; Arruda et al., 2016). Commonly used statistical

methods are linear mixedmodels, such as the so-called Best Linear

Unbiased Predictor (BLUP) and its variations, e.g., genomic BLUP

(GBLUP) or Ridge-Regression BLUP (RR-BLUP) (Meuwissen

et al., 2001), and Bayesian linear regression models, also known

as the Bayesian alphabet (Meuwissen et al., 2001; Gianola et al.,

2009). GBLUP uses a genomic relationship matrix calculated from

genetic markers. All marker information is incorporated in these

models, and their model coefficients are assumed to be normally

distributed and to explain an equal amount of variance. RR-BLUP

also uses genomic information but additionally implements a

penalizing function to equally shrink the markers’ coefficients.

The shrinkage factor is estimated to be the ratio of the residual

variance and the variance of the regression coefficients of the

marker effects. Under certain conditions, RR-BLUP has been

proven to be mathematically equivalent to GBLUP (Goddard,

2008; Hayes et al., 2009).

Even though these models only consider additive effects,

they show a good performance for a variety of species and traits

and are considered as state-of-the-art in GS (Ma et al., 2018;

Molenaar et al., 2018). In order to capture more complex genetic

architectures, several machine learning (ML) approaches were

included in phenotype prediction studies (Azodi et al., 2019).

For instance, several researchers employed regularized linear

regression models, e.g., in combination with L1-regularization

for an implicit feature selection (Mcdowell, 2016; Liu et al.,

2019). Furthermore, kernel-based techniques, e.g., Support

Vector Machines (SVMs) respective Support Vector

Regression (SVR), were often included in phenotype

prediction studies. Beyond that, ensemble-based methods, such

as Random Forests (RF) and gradient boosting, e.g., XGBoost

(XGB), are widely applied in research and industry (Azodi et al.,

2019; Crossa et al., 2019; Liu et al., 2019; Montesinos-López

et al., 2019). Recently, several studies regarding deep learning

(DL) approaches for phenotype prediction in animals (Gianola
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et al., 2011; Abdollahi-Arpanahi et al., 2020), plants (Ma et al.,

2018; Montesinos-López et al., 2018a; Azodi et al., 2019), and

even humans (Bellot et al., 2018) have been published with

varying results. In an early work, Mcdowell (2016) applied

feedforward Multilayer Perceptrons (MLPs) for the prediction

of different phenotypes in Arabidopsis thaliana. In their study,

the neural networks performed similarly compared to linear

regression-based approaches. Ma et al. (2018) showed that

Convolutional Neural Networks (CNNs) performed better or

at least comparable to BLUP-based methods in several wheat

traits. For complex traits in Holstein bulls, DL-based approaches

were outperformed by XGB (Abdollahi-Arpanahi et al., 2020).

Azodi et al. (2019) compared CNNs andMLPs with RR-BLUP as

well as additional statistical and classical ML approaches for

several traits in six different plant species. In their comparison,

there is no predominant model for all phenotypes and species.

However, they concluded that linear models perform well on all

kinds of traits, whereas the performance of non-linear

algorithms varies depending on the trait and number of

available samples. Montesinos-López et al. (2018a) compared

MLP architectures and GBLUP for maize and wheat datasets,

where they considered models with and without genotype–

environment interaction. They showed that GBLUP performs

best for most considered traits when taking the interaction

between the genotype and environment into account. In

contrast, DL-based approaches outperformed GBLUP in six

out of nine traits when ignoring the environment interaction.

Furthermore, Sandhu et al. (2020) showed that both CNNs and

MLPs outperformed RR-BLUP in five different traits in spring

wheat, when considering different years of planting.

Additionally, with respect to multi-trait GS models, Sandhu

et al. (2021) showed that Random Forests and MLPs outperform

GBLUP and Bayesian alphabet methods. Pook et al. (2020) tried

to capture the influence of marker variants in different genomic

regions by using Local Convolutional Neural Networks

(LCNNs) with a region-specific filter. Although LCNNs

outperformed CNNs and MLPs on several Arabidopsis

thaliana traits, GBLUP still delivered better results. However,

with an increasing number of samples, the advantage of GBLUP

decreased. In summary, as long as the availability of genomic

and phenotypic data in plants is still limited, there is no

consistent evidence on advantages using DL-based techniques

(Montesinos-López et al., 2018a; Azodi et al., 2019; Pook et al.,

2020). Although several studies showed the advantage of

artificial neural nets for prediction tasks (Montesinos-López et

al., 2018a; Sandhu et al., 2020), the results are hardly

comparable. The studies were performed on different species

with different traits (Montesinos-López et al., 2018a; Azodi et al.,

2019; Pook et al., 2020; Sandhu et al., 2020), varying ways of

evaluation and hyperparameter optimization, and different

feature sets, e.g., due to the inclusion of environmental effects

(Montesinos-López et al., 2018a; Sandhu et al., 2020) or multi-
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trait predictions (Montesinos-López et al., 2018b; Sandhu

et al., 2021).

In this work, we show a systematic comparison of 12

phenotype prediction models. For that purpose, we use both a

variety of synthetic as well as real-world data, including the

model organism Arabidopsis thaliana and two real breeding

datasets from soy and corn. Regarding phenotype prediction

models, we include RR-BLUP and models from the Bayesian

alphabet, classical ML-based methods, such as regularized linear

regression and SVR as well as two ML-based ensemble learners

and three different neural network architectures. Consequently,

we are able to evaluate the behavior of different types of

phenotype prediction models under distinct circumstances.

Beyond that, we employ Bayesian Optimization for

hyperparameter selection of the prediction models. This is a

state-of-the-art approach in ML but with limited spread in plant

phenotype prediction (Bergstra et al., 2011; Turner et al., 2021;

Westhues et al., 2021). By doing so, we minimize a potential bias

of our study due to not ideal hyperparameters, which might

especially impede the performance of ML-based approaches

with a higher number of parameters. A focus of this research

is on the analysis of phenotype prediction based on synthetic

data. In contrast to real-world data, synthetic data enable the

analysis under predefined settings. Beyond that, we analyze the

single-nucleotide polymorphisms (SNPs) that were considered

important by prediction models in comparison with effect sizes

of synthetic data and results of genome-wide association studies

(GWAS) for real-world data.

The remainder of this paper is organized as follows: In

Section 2, we describe the material and methods. Then, we

outline and discuss our results in Section 3. In Section 4, we draw

conclusions and give a future outlook.
2 Materials and methods

In the following section, we first summarize the real-world

data used for our analyses and describe the method used for

generating synthetic phenotypes. Next, we outline the different

phenotype prediction models that we used for our comparative

study as well as the experimental settings. Finally, we give details

on how we analyzed the importance of selected features.
2.1 Real-world data

We evaluated the performance of different classical and

machine learning-based models for phenotype prediction on

simulated data as well as on three different plant species,

including inbred data from the model organism Arabidopsis

thaliana and two real-world datasets from plant breeders.

Dataset statistics for all phenotypes, such as the number of

samples and SNPs, as well as histograms showing the
Frontiers in Plant Science 03
distribution of the phenotype values can be found in the

Supplementary (Supplementary Table S1 and Figure S1).

2.1.1 Arabidopsis thaliana
As genotypic data, a fully imputed SNP matrix with 2,029

samples and about three million homozygous SNPs was used

(Arouisse et al., 2020). On that data, we applied a linkage-

disequilibrium (LD) pruning using PLINK v1.9 to exclude

highly correlated markers (Purcell et al., 2007; Chang et al.,

2015). Phenotypic data was downloaded from the publicly

available AraPheno database (Seren et al., 2016; Togninalli et al.,

2020). We used four different quantitative traits from the 1001

Genomes Project in Arabidopsis thaliana (The 1001 Genomes

Consortium, 2016): the flowering time at 10°C (FT10, https://

www.doi.org/10.21958/phenotype:261), the days to flowering

(DTF1, https://www.doi.org/10.21958/phenotype:703), the

rosette leaf number (RL, https://www.doi.org/10.21958/

phenotype:704), and the flower diameter (Diameter, https://

www.doi.org/10.21958/phenotype:707). After matching of the

genotypic and phenotypic data, we filtered the SNP matrix for

duplicates, i.e., markers which are identical after encoding, and

excluded all SNPs with a minor allele frequency of less than 10%.

Thus, between 44k and 67k markers and between 656 and 1,058

samples remained per phenotype (see Supplementary Table S1 for

the exact numbers).
2.1.2 Corn
The first dataset of our commercial plant breeding partners

contains genotype and phenotype data for 1,411, respective

1,797 unique samples of hybrid corn from the same

environment (i.e., the same test field location and planting

season). Phenotype values for yield and percentage water

content (PWC) were observed for each hybrid, while the

genotypes were determined for the parental lines. The

genotype data consists of 8,708 chip-based SNP markers from

870 female and 569 male parental lines. The parents are a mix of

doubled haploid homozygous lines and inbred F4/F5 lines that

contain some heterozygous loci. Genotypes of the hybrids were

constructed in silico from the corresponding parental

combination using the ×SeedScore® (Computomics)

technology. After matching the samples and filtering for

duplicates, approximately 8k markers remained.

2.1.3 Soy
The second breeding dataset contains approximately 500

unique parental lines from a soy line breeding program

consisting of 810 genetic markers each. The parental lines

are after several generations of selfing and are therefore quite

homogeneous. All lines were growing in the same environment

as well. The markers were selected based on a quantitative trait

locus (QTL) analysis and show a high correlation with the

traits of interest. Phenotype values for yield, maturation
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group(MatG), and plant height (Height) were observed for each

parent. After matching the samples and filtering for duplicate

SNPs, approximately 600 markers remained.
2.2 Synthetic data

Additionally, we simulated artificial phenotypes with different

configurations using real homozygous Arabidopsis thaliana

markers from the LD-pruned genotype matrix described above.

We removed all duplicated markers (markers that are identical

after encoding) and markers with no variation. Then, we

randomly sampled 10,000 SNPs across all chromosomes with a

minor allele frequency greater than 10%. The resulting genotype

matrix was used both for the simulation of artificial phenotypes

and as input of the different prediction models. For the simulation

of artificial phenotypes, we employed the following underlying

linear mixed model (LMM). Let n be the number of samples, k the

number offixed effects, and b the number of random effects. Then,

y = Xb + u + ϵ,   (1)

where y ∈ Rn denotes the vector of phenotyic values, X∈ Rn×k

is the design matrix of the fixed effects b ∈ Rk, and u := Zg
denotes the random effects (i.e., the genetic similarity between

the samples), where Z∈Rn×b is the design matrix of the random

effects and the parameters g ∈ Rb follow a Gaussian

distribution. Further, ϵ ∈ Rn is a vector of residuals following

a known probability distribution.

First, we randomly chose n samples from the genotype

matrix and randomly selected 1,000 markers across all

chromosomes to simulate the polygenic background (i.e., the

design matrix of the random effects). The corresponding

parameters g were drawn from a Gaussian distribution with

zero mean and a standard deviation of 0.1. Then, we drew
Frontiers in Plant Science 04
random noise, either from a normal distribution or, for skewed

phenotypes, from a gamma distribution. This was parameterized

so that the random effect explained a fixed amount h of the

phenotypic variance via the following formula:

s 2 = Var ϵð Þ = 1 − h
h

Var uð Þ : (2)

To adjust the skewness, we additionally considered different

shape parameters for the gamma distribution. Finally, we added

one or several fixed effects xi in a pure additive manner or with

additional multiplicative effects, to explain a ratio of about c=0.3

of the total phenotypic variance. For this, we computed the

parameters via

bi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

1 − c
·
Var yð Þ
Var x ið Þ

s
:   (3)

To analyze different scenarios, we simulated various

phenotypes for three different heritabilities (h=0.7, h=0.85,

h=0.95). For this purpose, we created 12 different

configurations, as summarized in Table 1. For better

readability, the simulations are subsequently named as follows:

A (#100), B (#500), C (#1000), D (#2000), E (MultWeak), F

(MultStrong), G (SkewedWeak), H (SkewedStrong), I (Add5), J

(Add20), K (Add50), L (Add100).
2.3 Phenotype prediction models

Since literature does not show a predominant phenotype

prediction model (see Introduction), we included 12 different

prediction models in our comparative study. In the following, we

first describe classical, statistical prediction models. Afterward,

machine learning- and deep learning-based approaches

are outlined.
TABLE 1 Overview of simulation settings to create synthetic phenotypes for real Arabidopsis thaliana genotypes.

Sim n k y c ϵ

A 100 1 b1x1 + u + ϵ c1 = 0.3 N (0, s2)

B 500 1 b1x1 + u + ϵ c1 = 0.3 N (0, s2)

C 1,000 1 b1x1 + u + ϵ c1 = 0.3 N (0, s2)

D 2,000 1 b1x1 + u + ϵ c1 = 0.3 N (0, s2)

E 1,000 2 b1x1 + b2x2 + b3x1 ◦ x2 + u + ϵ c1 = c2 = 0.05, c3 = 0.2 N (0, s2)

F 1,000 2 b1x1 + b2x2 + b3x1 ◦ x2 + u + ϵ c1 = c2 = 0.01, c3 = 0.28 N (0, s2)

G 1,000 1 b1x1 + u + ϵ c1 = 0.3 G(0, s2/4)

H 1,000 1 b1x1 + u + ϵ c1 = 0.3 G(0, s2)

I 1,000 5 S5
i=1bixi + u + ϵ ci ∼ N (6, 22)/100, i = 1, . . . , 5 N (0, s2)

J 1,000 20 S20
i=1bixi + u + ϵ ci ∼ N (1.5, 0.52)/100, i = 1, . . . , 20 N (0, s2)

K 1,000 50 S50
i=1bixi + u + ϵ ci ∼ N (0.6, 0.22)/100, i = 1, . . . , 50 N (0, s2)

L 1,000 100 S100
i=1bixi + u + ϵ ci ∼ N (0.3, 0.12)/100, i = 1, . . . , 100 N (0, s2)
front
The first column Sim indicates the simulation setting, n is the number of samples, k the number of causal markers, y the formula of the phenotype, c the effect size of the causal markers, and
ϵ the added noise. Here, xi denotes a single marker and xi ◦ xj is the Hadamard product of two markers.
iersin.org

https://doi.org/10.3389/fpls.2022.932512
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


John et al. 10.3389/fpls.2022.932512
2.3.1 Statistical prediction models
As baseline comparison partner, we included RR-BLUP

(Meuwissen et al., 2001). Given n individuals and m markers,

RR-BLUP is based on the following linear mixed model:

y = m + Xw + ϵ, (4)

wherey ∈ Rndenotes the vector of phenotypicobservations, ∈ Rn

denotes a vector of ones, andm ∈ R is the overallmean. Further, X∈
Rn×m is the genotype matrix, w ∈ Rm contains the

corresponding marker effects which are assumed to follow a

Gaussian distribution with zero mean and a variance of s2
gI, with

identity matrix I ∈ Rn×n, and ϵ ∈ Rn denotes the vector of

residuals, with ϵ ∼ N (0, s2eI).
Bayesian linear regression models are based on the same

linear mixed model as RR-BLUP (see Equation 4). However,

here the variance s2e of the residuals is commonly assigned a

scaled-inverse chi-squared distribution and the prior

distribution of the marker effects w differs for each Bayesian

model (Gianola, 2013). For instance, the prior distribution of w

in case of Bayes A is a scaled t-distribution (Meuwissen et al.,

2001). On the other hand, the priors of the models Bayes B and

Bayes C both consist of a mixture of two distributions: one with a

point of mass at 0 and 1 with a large variance. For Bayes B, this is

a scaled t-distribution (Meuwissen et al., 2001), and Bayes C uses

a normal distribution (Habier et al., 2011).

2.3.2 Machine learning methods
In addition to RR-BLUP and Bayesian models, we included

regularized linear regression models, namely, the Least Absolute

Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996)

and Elastic Net (Zou and Hastie, 2005). For both models, the

weights w can be estimated via

argmin
w

1
2
∥ y − X*w ∥22 + aW wð Þ,   (5)

where w = (w0,w1,..,wm)
T ∈ Rm+1 contains the bias term w0 ∈

R as well as the model’s coefficients wk ∈ R and X* ∈ Rn×m+1

contains a vector of ones and the genotype matrix X ∈ Rn×m.

For regularization, both models employ a penalty term W(w)

weighted by a ∈ R>0. LASSO adds a sparsity constraint, which

means that the absolute value of the weights (L1-norm) is used

for penalization, i.e.,W(w) = ∥w∥1. This is often considered as an
automatic feature selection, as the weights of unimportant

features are pushed toward zero. Elastic Net employs a

weighted sum of the L1- and L2-norm (quadratic term

penalizing the weights’ size), i.e., W(w) = l∥w∥22 + (1-l)∥w∥1.
As a consequence, Elastic Net combines the automatic feature

selection effect of LASSO as well as a distribution of the influence

among correlated features due to the L2-norm (James et al.,

2017). While the hyperparameter a controls the strength of the

regularization term W(w), l gives the ratio between L1- and L2-

regularization in Elastic Net.
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Further, we included Support Vector Regression (SVR) as a

kernel-based approach (Smola and Schölkopf, 2004). SVR allows

the usage of non-linear kernel functions, via the so-called kernel-

trick, enabling to find solutions for non-linear problems in an

implicit higher-dimensional space. The aim is to construct a

function that is at most a certain threshold away from the target

values of the training data, while at the same time penalizing too

complex models. Specifically, a hyperplane with the goal of

maximizing the number of samples within a certain decision

boundary is fitted. This is achieved by minimizing the term

min  
1
2
∥w ∥22 + Co

n

i=1
xi + x*i

� �
  (6)

subject to

yi −wTx i½ � − w0 ≤ ϵ + xi

wTx i½ � + w0 − yi ≤ ϵ + x*i

xi, x*i ≥ 0

8>><
>>: (7)

where x[i] ∈ Rm is the genotype vector of the ith sample, w0 ∈ R
denotes the bias, w ∈ Rm denotes the parameters of the SVR

model, xi, x*i  ∈ R are so-called slack variables, and ϵ ∈ R
determines the allowed deviation for any sample from the true

targets yi (all slack variables for samples within the decision

boundary are set to zero). C ∈ R denotes the strength of the

penalization due to deviations from the decision boundary and is

usually optimized during hyperparameter tuning. Smaller C

values focus more on the minimization of the L2-norm of the

model parameters and thus may lead to a smoother and flatter

decision function while allowing more prediction errors. By

contrast, if C is larger, more emphasis is put on the

penalization of model errors, which is more prone to

overfitting (Drucker et al., 1997; Smola and Schölkopf, 2004).

Beyond that, ensemble learners, such as Random Forest (RF)

(Breiman, 2001), showed a good performance in several

phenotype prediction studies (Liu et al., 2019). For RF, an

ensemble is constructed with Decision Trees, based on a

random subsample of the training data. In the case of a

regression task, the final prediction value is the mean over all

these weak learners, which shall prevent overfitting. Similarly,

XGBoost (XGB) (Chen and Guestrin, 2016) consists of multiple

Decision Trees but employs gradient boosting. This means that

weak learners are added sequentially, guided by the reduction in

the gradient of the loss function to specifically focus on

weaknesses of the current ensemble. With respect to the bias-

variance trade-off, RF’s bagging strategy reduces variance,

whereas boosting employed by XGB aims to reduce bias

(James et al., 2017).
2.3.3 Deep learning approaches
Eventually, we included three different types of neural networks,

i.e., a feedforward Multilayer Perceptron (MLP), a Convolutional

Neural Network (CNN), and a Local Convolutional Neural
frontiersin.org
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Network (LCNN). We designed the architecture of the MLP with

different building blocks, consisting of fully connected, batch

normalization and dropout layers. The number of these blocks

and the number of neurons in each of the fully connected layers

were considered as hyperparameters for optimization. After these

blocks, a fully connected output layer is added, which delivers the

final prediction (Srivastava et al., 2014; Ioffe and Szegedy, 2015;

Goodfellow et al., 2016). For CNN and LCNN, the SNP matrix is

encoded differently compared to the other methods, using a one-hot

encoding (see Experimental settings). The CNN is composed of an

optimized number of blocks, which consists of a convolutional

layer, followed by a batch normalization and a dropout layer. After

these blocks, max pooling is used for downsampling prior to a

flattening layer. The prediction value is determined by a fully

connected output layer with a preceding block of another fully

connected, a batch normalization and a dropout layer (Srivastava

et al., 2014; Ioffe and Szegedy, 2015; Goodfellow et al., 2016).

Important parameters such as the kernel size and the stride are

optimized. From a theoretical perspective, LCNNs provide an

interesting property for phenotype prediction as they consist of

region-specific filters. This addresses that certain sequences of

markers can have totally different effects in different genome

regions (Pook et al., 2020). Locally connected layers quickly lead

to a large number of parameters. Consequently, we designed the

architecture of the LCNN with a locally connected layer, followed

by batch normalization, dropout, and max pooling layer. The

output of this network part is flattened and further processed by

an optimized number of blocks of fully connected, batch

normalization and dropout layers, prior to a fully connected

output layer. Due to the large amount of input features in

relation to the sample size, regularization techniques are essential

for phenotype prediction tasks. Besides the abovementioned

dropout layers, we applied early stopping. Thereby, the loss on a

validation set (independent data) is monitored during training, and

if there is no improvement for a certain period, the optimization

gets terminated (Bergstra et al., 2011). Preliminary experiments

with an additional L1-regularization, penalizing the size of the

neural network weights, did not show an improvement. For the

training of the neural networks, we applied the Adam optimizer

(Kingma and Ba, 2015). A rectified linear unit (ReLU) and a

hyperbolic tangent were used as the non-linear activation

function, with the selection depending on the hyperparameter

optimization.
2.3.4 Hyperparameter optimization
For hyperparameter search, we applied Bayesian

Optimization using the framework Optuna (Akiba et al.,

2019). In contrast to common optimization techniques, such

as Random Search (Bergstra and Bengio, 2012), Bayesian

Optimization tries to guide the search into promising

directions using knowledge of already tested parameter

settings. For that purpose, an objective value needs to be
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defined, in our case the performance on the validation data.

Based on this, a probabilistic model that maps certain parameter

combinations to a probability of a score on the objective function

can be formulated. This enables the determination of promising

parameter settings for further trials. In summary, Bayesian

Optimization is computationally more expensive regarding the

determination of candidate parameters but potentially more

efficient as hyperparameters are suggested considering prior

performances. For efficiency reasons, we also included a

pruning strategy that stops trials if the intermediate result is

worse than the 80th percentile of previous trials at the same step.

For all prediction methods, we ran 200 trials each. In

Supplementary Tables S2 and S3, we show an overview of the

hyperparameters and their ranges for each prediction model.
2.4 Experimental settings

After the data was prepared as described in Synthetic data

and Real-world data, we encoded the SNP data using an additive

genotype encoding, i.e., 0 for the homozygous major allele, 1 for

the heterozygous allele, and 2 for the homozygous minor allele

(for RR-BLUP -1/0/1, respectively). For CNN and LCNN, we

used an alternative one-hot encoding. For instance, the

nucleotide sequence ACGT is encoded as follows with a one-

hot encoding: A ! [1,0,0,0], C ! [0,1,0,0], G ! [0,0,1,0], T !
[0,0,0,1]. The one-hot encoding allows to preserve the whole

nucleotide information from the input data and might thus be

more informative than the commonly used additive encoding.

This encoding can be easily handled by a CNN and an LCNN.

To obtain an empirical estimate for different data splits, we

performed a nested cross-validation with three outer folds and

five inner folds. In order to guarantee that the phenotypic

distribution stays approximately the same across all data splits,

we first grouped the samples into bins with respect to the

phenotypic values and used stratified splits afterward. We

chose a nested cross-validation for performance estimates that

are less biased by the random selection of the test samples. The

mean performance on the inner folds was used as an objective

value for the Bayesian hyperparameter optimization, with a

potential pruning based on the intermediate result on each of

them. Finally, the prediction model was retrained on the whole

training and validation data using the best hyperparameters

found in the 5-fold inner cross-validation. Then, each model’s

performance was estimated using the hold-out test data. All

optimizations were performed in Python 3.8 using the

phenotype prediction framework easyPheno, which is

publicly available at https://github.com/grimmlab/easyPheno.

Bayesian methods are included using the R package BGLR

(Pérez and de los Campos, 2014).

As evaluation metric, we determined the variance of the

target variable y that can be explained with the prediction values

ŷ . Thus, the explained variance v is defined as follows:
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n y, ŷð Þ = 1 −
Var y − ŷð Þ
Var yð Þ (8)

Due to the nested cross-validation, we calculated the average

and standard deviation of the test results on the three outer folds

for an estimate of the model performance in the simulated

circumstances.
2.5 Evaluation of selected features

In addition, we evaluated the importance of the features

selected by the statistical prediction models RR-BLUP and Bayes

B, the regularized regression approaches LASSO and Elastic Net,

and the ensemble learners RF and XGB. To evaluate which

markers were considered predictive by the models, we used the

learned coefficients of LASSO, Elastic Net, RR-BLUP, and Bayes

B as well as the feature importance of RF and XGB. For RF and

XGB, we considered the normalized reduction in the

optimization criterion by a certain feature. This reduction is

averaged over all weak learners where the feature is used in the

ensemble (Breiman, 2001). We then ranked the markers based

on their feature importance and selected the top 1,000. For a

better comparison between the results of the different models, we

applied a min–max normalization. With regard to nested cross-

validation, we assigned a feature importance averaged over all

outer folds to each marker that was among the top 1,000 in at

least one fold. If this averaged feature importance differs from

zero, we subsequently consider the related feature as an

important feature for the specific prediction model. However,

for some prediction models, it is difficult to set a feature

importance exactly to zero. To address this issue, we

additionally filtered the abovementioned important features

for those whose absolute values are at least 1% of the largest

feature importance of that model.

For the synthetic phenotypes, we compared the importance

of the selected features with the simulated effect sizes b and g.
With this, we can assess if the models captured the underlying

structure of the simulated phenotypes by evaluating whether the

causal and background SNPs were considered as important

features with a similar magnitude by a prediction model. Since

we do not know the ground truth regarding important SNPs for

the real-world data, we performed genome-wide association

studies (GWAS) to estimate which of the markers are

statistically associated with the trait of interest and compared

the selected features with the GWAS results. For this purpose, we

used permGWAS (John et al., 2022), a permutation-based linear

mixed model for phenotypes with normal or skewed

distributions, and EMMAX (Kang et al., 2010). In contrast to

the phenotype prediction models used in this study, in GWAS

one only performs univariate statistical tests to test whether a

single marker is associated with a certain phenotype, while at the

same time correcting for population structure. Hence, for each
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SNP we obtain a p-value, where a smaller value indicates a

stronger association. For all Arabidopsis thaliana traits, we

checked the feature importance of the selected markers against

the top 1,000 GWAS results (i.e., the 1,000 markers with the

lowest p-values). For the corn and soy traits, we compared the

feature importance of the algorithms with the top 100 GWAS

results, since both datasets contain less than 10,000 markers.
3 Results and discussion

In the following section, we first summarize and discuss the

results on synthetic data, including analyses of the selected

features. Next, we provide an overview of the real-world

results and discuss them and compare GWAS results with the

selected features of some of the prediction methods. As is

observed in Supplementary Tables S4 and S5, both our

experiments on synthetic and real-world data only showed

minor differences between the methods from the Bayesian

alphabet with Bayes B slightly outperforming the others.

Hence, we subsequently focus on Bayes B, where we used

6,000 iterations and a burn-in of 1,000 for the training.

Detailed results of the whole hyperparameter optimizations for

all models and phenotypes can be found in our GitHub

repository: https://github.com/grimmlab/phenotype_prediction.
3.1 Synthetic data

As described in Materials and methods, we conducted

several experiments on synthetic data to analyze the behavior

of phenotype prediction models under predefined settings. A

detailed description of the synthetic data generation and all

simulation configurations can be found in Synthetic data in

Materials and methods.
3.1.1 Prediction results
We compared the results of 10 phenotype prediction

methods on synthetically generated phenotypes for three

different heritabilities h ∈ {0.7, 0.85, 0.95}. Explained variance

estimates v for all prediction methods and simulation settings

are summarized in a heatmap (see Figure 1 for h=0.95 and

Supplementary Figures S2 and S3 for h=0.7 and h=0.85,

respectively) Across all the simulated heritability settings,

Bayes B showed the best performance in 29 out of 36

simulations (for h=0.7 in 9 out of 12, for h=0.85 in 10 out of

12, and for h=0.95 in 10 out of 12). RR-BLUP was the best-

performing method in three cases (once for h=0.85 and twice for

h=0.95), XGB on two phenotypes for h=0.7, and LASSO as well

as SVR for one trait each, for h=0.7 and h=0.85, respectively. The

top performer Bayes B is often closely followed by LASSO,

Elastic Net, SVR, and XGB across all three heritabilities.
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Furthermore, RR-BLUP showed a good overall performance in

several cases. Interestingly, none of the three neural network-

based approaches wins in any of the 36 simulation settings.

Furthermore, when comparing the results of these three

prediction models to each other, we cannot determine a clear

winner but slight advantages for the MLP with a good

performance in general for some traits.

Overall, the results show an improvement with an increasing

heritability h, which represents a stronger relationship among

samples and less influence of random noise in case of our

synthetic data generation model. In the following, we will

discuss the results for a heritability of h=0.95 in more detail.

Results for h=0.7 and h=0.85 can be found in the Supplementary

(Supplementary Figures S2, S3). First, we analyzed the effect of

increasing sample sizes, i.e., simulation settings A (#100) to D

(#2000). The results show in general an improvement of the

prediction results with an increasing number of samples across

all heritabilities. However, we also observed a drop in

performance for the simulation setting C (#1000) with h=0.95

for four out of 10 prediction models. One hypothesis in plant

phenotype prediction is that neural network methods have great

potential and might outperform other approaches with a higher

number of samples being available (Montesinos-López et al.,

2018b; Pook et al., 2020; Montesinos-López et al., 2021).

However, we cannot confirm this in our simulations with

increasing sample sizes (A (#100) to D (#2000)), since a deep

learning-based method is never best overall (see Figure 1). In

general, we can see that neural networks perform better with

increasing sample sizes, but the same is true for other prediction
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methods. This suggests that the phenotype prediction is at least

not only impeded by the comparably low amount of available

data but also by the underlying genomic architecture.

We simulated weak (E) and strong multiplicative (F) effects.

These differ regarding the effect size of the multiplicative term of

the simulated causal SNPs, which is 0.2 for E and 0.28 for F. In

Figure 1, we observe an improvement of the results for the

scenario with the stronger multiplicative effect. This does not

apply for h=0.7 and h=0.85. Across all three heritabilities, the

results of the neural network-based methods improved relative to

the best-performing approaches for strong multiplicative effects

(setting F). This suggests that neural networks might be a valid

option in case of highly non-linear phenotypic architectures. For

all six scenarios with a skewed distribution of the simulated

phenotype (G (SkewedWeak) and H (SkewedStrong)), Bayes B

showed the best performance. For the stronger skewed scenario

H with h=0.95, the performance of the MLP and CNN drops,

while this does not apply for the LCNN.

Considering traits with multiple additive causal SNPs

(I (Add5) to L (Add100)) across all three heritabilities, we

observe that Bayes B performs best, mainly followed by RR-

BLUP, LASSO, Elastic Net, and SVR with a similar performance

and outperformed once by the former. If also considering

configuration C (#1000) with similar settings but one causal

SNP, the advantage of Bayes B tends to decrease with a growing

number of causal SNPs. The formulation of Bayes B usually

forces unimportant weights toward zero (but potentially not

exactly to zero). This effect seems to be more profitable for

scenarios with less causal SNPs for which the effect sizes of the
FIGURE 1

Results on synthetic data with h=0.95 shown in a heatmap: Each cell gives the explained variance v that the prediction model given on the
horizontal axis achieved for the simulation configuration specified on the vertical axis. The color of each cell ranging from dark red to dark blue
represents the prediction performance. The best result for each simulated phenotype is highlighted by a black frame around the cell.
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causal SNPs also differ more from the background.

Consequently, Bayes B can better capture the lower number of

causal SNPs with larger effect sizes for scenarios C (#1000) and I

(Add5), while this advantage is smaller for scenarios J (Add20),

K (Add50), and L(Add100) with more causal markers that have

smaller effect sizes. Beyond that, the performance of the MLP

and the CNN is rather comparable to the top result for

simulation configurations with multiple additive markers. Less

causal SNPs can be considered as more noise in the features,

which is hard to deal with for the neural network-based

approaches if also considering the relatively low number

of samples.

In summary, the results of the synthetic data suggest a better

performance for less complex methods, such as Bayes B. More

advanced approaches, such as deep learning-based models, do

not seem to improve the predictions, which is in accordance with

existing literature (Ma et al., 2018; Azodi et al., 2019; Crossa

et al., 2019; Pook et al., 2020). In most cases, classical ML-based

techniques, such as Elastic Net, SVR, and XGB, show a

comparable or even the best outcome. The good performance

of Bayes B, RR-BLUP, and the classical ML-based approaches

might be explained in parts by the smaller number of

hyperparameters that need to be optimized in comparison

with the neural network-based models, having the relatively

low number of samples in mind. With Bayesian Optimization,

we applied a state-of-the-art hyperparameter search. However,

as all prediction models were optimized using the same number

of trials, we might still get a better hyperparameter setting for

less complex approaches.

A further reason for the success of Bayes B, LASSO, and

Elastic Net might be the inbuilt feature selection. This is

especially beneficial in phenotype prediction settings because
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of the large amount of features in comparison with available

samples. Nevertheless, L1-regularization did not show an

improvement for preliminary experiments on neural network-

based approaches.

3.1.2 Feature importance analysis
To evaluate how well the different models are able to capture

the determinant markers of synthetic phenotypes, we compared the

effect sizes b and g with the feature importances of RR-BLUP, Bayes

B, LASSO, Elastic Net, RF, and XGB, as described in Evaluation of

selected features. For the subsequent analysis, we focused on Bayes

B, Elastic Net, and XGB as the top performers of the statistical

prediction models, regularized linear regression approaches, and

ensemble learners, respectively. In Table 2, we summarize the

results for a heritability of h=0.95. Similar statistics for all three

heritabilites and all six prediction models can be found in

Supplementary Tables S6–S8. In these Supplementary Tables, we

show both all selected features with a weight not equal to zero and

results when filtering out all features that are less than 1% of the

largest feature importance. Across all three heritabilities, we

observed in almost every simulation setting that LASSO selects

the least number of features. This is not surprising due to the

sparsity constraint of the LASSO model. Furthermore, besides

scenarios with few samples (A (#100) and B (#500)) and multiple

additive markers (K (Add50) and L (Add100)), Elastic Net tends to

select the second least features, indicating a strong effect of the L1-

regularization part. Without filtering out feature importances

smaller than 1% of the largest feature importance, Bayes B selects

many features, similar to RR-BLUP, RF, and XGB. However, when

considering this filter, the number of important features for Bayes B

decreases significantly in many simulation settings (see

Supplementary Tables S6-S8). This effect tends to become weaker
TABLE 2 Analysis of feature importances of Elastic Net, Bayes B, and XGB for synthetic data with h=0.95.

Sim Important features Background SNPs Causal SNPs

ElasticNet BayesB XGB ElasticNet BayesB XGB ElasticNet BayesB XGB

A (#100) 733 2327 87 90 (12%) 265 (11%) 11 (13%) 1/1 [2] 1/1 [1] 1/1 [49]

B (#500) 1466 2124 890 152 (10%) 243 (11%) 105 (12%) 1/1 [1] 1/1 [1] 1/1 [1]

C (#1000) 541 2134 1749 94 (17%) 274 (13%) 232 (13%) 1/1 [1] 1/1 [1] 1/1 [3]

D (#2000) 1004 2112 2479 186 (19%) 322 (15%) 357 (14%) 1/1 [1] 1/1 [1] 1/1 [4]

E (MultWeak) 1639 2080 1928 220 (13%) 260 (12%) 236 (12%) 2/2 [1,2] 2/2 [1,2] 2/2 [9,18]

F (MultStrong) 1595 2094 1897 192 (12%) 260 (12%) 221 (12%) 2/2 [1,134] 2/2 [1,57] 2/2 [30,250]

G (SkewedWeak) 441 2072 2528 82 (19%) 258 (12%) 316 (12%) 1/1 [1] 1/1 [1] 1/1 [3]

H (SkewedStrong) 387 2028 1993 64 (17%) 217 (11%) 259 (13%) 1/1 [1] 1/1 [1] 1/1 [2]

I (Add5) 1775 2105 2590 237 (13%) 268 (13%) 333 (13%) 5/5 [1,3,6,10,17] 5/5 [2,4,6,7,10] 5/5 [5,66,328,693,2195]

J (Add20) 1181 2217 1593 147 (12%) 262 (12%) 213 (13%) 20/20 [12 in top20] 20/20 [13 in top20] 19/20 [2 in top20]

K (Add50) 2122 2081 1991 263 (12%) 253 (12%) 244 (12%) 46/50 [15 in top50] 45/50 [15 in top50] 28/50 [0 in top50]

L (Add100) 2000 2091 1824 244 (12%) 260 (12%) 231 (13%) 70/100 [26 in top100] 67/100 [27 in top100] 43/100 [1 in top100]
For each simulation configuration and model, the table shows the number of SNPs deemed as an important feature for at least one of the outer folds in the nested cross-validation.
Furthermore, the number of background SNPs within the important features is stated as well as the ratio between the found background SNPs and the total amount of important features as
percentage value in parentheses, i.e., the true positive rate (TPR). For the causal SNPs, we show the number of causal SNPs deemed important by each algorithm and in brackets the ranking
of the causal SNPs within the important features. For configurations J, K and L, we give the number of causal SNPs within the k (total number of causal SNPs) most important features.
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or even to vanish with a larger number of samples (I (Add5) to L

(Add100)) and for scenarios with a stronger multiplicative effect (F

(MultStrong)). Furthermore, it cannot be observed for scenario A

(#100) with only 100 samples. We see a similar behavior for the

other prediction methods, but not as strong as for Bayes B.

Further, we analyzed how many of the actual background

SNPs were identified by each prediction model. We can observe

that both Bayes B and XGB usually recognized more of them.

However, setting the number of detected background SNPs in

relation to the number of selected features, which we

subsequently call the true positive rate (TPR) and which is

given in parentheses in Table 2, Elastic Net shows the best

performance for seven of the 12 scenarios. With respect to all

heritabilities and prediction models (see Supplementary Tables

S6-S8), LASSO mostly selected a larger amount of actual

background markers in relation to the total number of

important features in comparison with the other prediction

models, probably due to L1-regularization. Again, when

removing very small feature importances, the observation

regarding the TPR changes heavily (see Supplementary Tables

S6-S8). For most simulation settings, the TPR of Bayes B

increases significantly, generally outperforming the other

prediction methods. Again, as the filtering effect for

determining the important features is weaker with a growing

number of multiple causal markers (I (Add5) to L (Add100)),

stronger multiplicative effects (F (MultStrong)), and a small

number of samples (A (#100)), the increase in the TPR is also

less pronounced or not existing.

Without considering scenarios withmultiple additive effects (I

(Add5) to L (Add100)), the simulated causal SNPs were identified

by all prediction models except RR-BLUP in all 24 scenarios

(Supplementary Tables S6-S8). With respect to scenarios I (Add5)

to L (Add100), the number of detected causal SNPs decreased

with a growing amount of additive markers. This is expected, as

the individual effect sizes also decreased with a higher number of

causal markers. Consequently, they were harder to distinguish

from background or non-related SNPs. In general, Elastic Net and

Bayes B ranked the causal SNPs higher than XGB for these

scenarios. Considering all prediction models and heritabilities

(Supplementary Tables S6-S8), we observe that RF also ranks

the causal SNPs similar to XGB, whereas they are more important

for LASSO, Elastic Net, and Bayes B.

In summary, LASSO, Elastic Net, and Bayes B seem to

perform the best feature selection with respect to our

simulations. The good feature selection of LASSO and Elastic

Net is probably caused by the L1-regularization term, which

forces unimportant features to zero. When filtering out very

small feature importances, Bayes B shows the best feature

selection. Consequently, it is able to identify the predictive

markers but cannot set the weights of less important SNPs to

exactly zero. However, their weights are rather small (less than

1% of the largest coefficient), so their influence is limited.

Probably, this good feature selection is also a reason for the
Frontiers in Plant Science 10
good prediction performance of LASSO, Elastic Net, and

Bayes B.

To further analyze the actual values of the feature

importances and not only if an SNP was selected at all, we

show the min–max normalized feature importances (without

filtering) of Bayes B, Elastic Net, and XGB in comparison with

the effect sizes for h=0.95 in Figure 2. Similar plots for the other

heritabilities as well as plots showing only one of the prediction

models and consequently without overlap can be found in the

Supplementary (Supplementary Figures S4-S23).

As Elastic Net rates less features as important, we see a

smaller amount of points in the plots. The causal markers are

highlighted by a larger marker size and with a black frame. In all

plots, we can see that the causal markers are rated important by

every algorithm. However, especially for XGB and in some cases

for Elastic Net as well, we observe that background SNPs have

often a similar feature importance (values close to maximum of 1

on the horizontal axis). As the effect sizes of the causal and

background SNPs do not differ that much for scenarios with

multiple causal markers (I (Add5) to L (Add100)), the distance

between both types is also smaller in the plots. Further, we

observe that feature importances of Bayes B and Elastic Net for

the causal SNPs tend to be higher in comparison with XGB.

The majority of the background SNPs are similarly

important for the prediction models as we observe large

overlaps in all figures. In most cases, these clusters tend to be

rather on the left and middle sides of the plot, indicating a bigger

difference between the importance of the causal and background

SNPs. For Bayes B and XGB, there are more markers that have a

relatively high effect size but are rated unimportant (left upper

and left middle parts of the plots). Further, XGB rates several

SNPs with a low effect size important (right lower and right

middle parts of the plots). Overall, in most scenarios, there are

not many points in the lower range of the plots. This suggests

that selected background SNPs are rather those with larger

effect sizes.

In addition, we computed the Pearson correlation coefficient

between the effect sizes and feature importances. In almost all

cases, Elastic Net shows the highest correlation, closely followed

by Bayes B or placed second after Bayes B. As our evaluations

show that both Elastic Net and Bayes B perform a good selection

of the important features, we assume that the - often slighly -

better performance of Bayes B is caused by the selection of more

background features, which apparently also contain information

regarding the trait of interest.
3.2 Real-world data

Next, we compared the performance of the prediction

models for several traits in real-world data, including the

model organism Arabidopsis thaliana and two breeding

datasets of corn and soy.
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3.2.1 Prediction results
In general, no model performed best for all considered traits, as

illustrated in the heatmap in Figure 3. This is in accordance with

existing literature (Azodi et al., 2019). Especially for traits in

Arabidopsis thaliana, we observe that multiple models deliver
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similar results with differences within the standard deviations. For

corn and soy, this observation is not that clear. For three traits,

Elastic Net is the top performer, often closely following the

prediction models that led to the best results for the other

phenotypes. For the traits Diameter in Arabidopsis thaliana as
FIGURE 2

Min–max normalized feature importances of Bayes B, Elastic Net, and XGB in comparison with effect sizes on synthetic data for h=0.95: Each
subplot shows the results of one of the simulation configurations on a logarithmic scale. Only SNPs for which both the effect size and the
feature importance are not zero are shown. Causal SNPs are highlighted by a larger marker size and a black frame. The legend additionally gives
the Pearson correlation coefficient of the effect sizes and feature importances.
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well as for Yield in soy, none of the models performed considerably

well. The commonly used model Bayes B that performed best on

synthetic data showed a competitive performance for most of the

traits. Although LCNNs are supposed to better capture the

influence of different marker effects than CNNs and MLPs, the

LCNN was outperformed by at least one of the two other deep

learning-based approaches for every phenotype except Diameter

and corn’s Yield. Comparing the outcome of CNN and LCNN,

which both used one-hot-encoded data, to the MLP, we observe

that the MLP is superior in five cases. The MLP is furthermore

competitive to the top performer for three traits in Arabidopsis

thaliana. However, as the additive encoding still leads to a loss of

information, this indicates that further encoding strategies should

be investigated in the future.

If we recap the results on synthetic data, we observe that the

best-performing prediction methods on real-world data also

performed well. For instance, the top performer on real-world

data, Elastic Net, showed its best performance for scenarios with

strong multiplicative effects, skewed phenotype distributions, or

multiple additive markers. Hence, an explanation for its good

performance on real-world data might be that similar genotype–

phenotype relationships are present.

Similar to the synthetic data, the real-world experiments do

not reveal an advantage of neural network-based techniques over

the other approaches with an increasing number of samples.

Although all three neural networks improve with a growing

sample size for the Arabidopsis thaliana traits, so do the classical

ML approaches. Hence, the effect might rather be caused by the

genetic architecture or the typical amount of available samples

for plant phenotype prediction is still not enough.
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3.2.2 Feature importance analysis
To evaluate the feature importances of Bayes B, Elastic Net,

and XGB for the real-world data, we first compared how many

markers were found by each model and then checked these

against GWAS results.

For Arabidopsis thaliana, we took the 1,000 most

significantly associated markers, i.e., the 1,000 markers with

the lowest p-values. Figure 4 shows Venn diagrams for all

Arabidopsis thaliana traits with the number of markers

selected by each model (feature importance averaged over all

outer folds differs from zero) and the corresponding number of

top 1,000 GWAS results in parenthesis. Similar to the results on

synthetic data, Elastic Net selects less features in comparison

with Bayes B and XGB, probably due to the L1-regularization.

For the Arabidopsis thaliana traits, we observe that the

important SNPs overlap in many cases. For these intersections

of all three prediction models, we see the highest ratios of SNPs

also being within the top 1,000 GWAS results. Furthermore,

Bayes B and Elastic Net agree on the importance of many

features, which might be caused by similar underlying

assumptions. On average, with a value of 22.5%, Elastic Net

shows the highest ratio of selected features also being within the

1,000 considered GWAS results.

For soy and corn, around 600 and 7,000 SNPs were available,

respectively. Hence, we only took the top 100 GWAS results for

comparison. The results of the feature analysis for soy and corn

can be seen in Supplementary Figure S24. As expected, less SNPs

were considered important in general. For the corn trait PWC,

we see that Bayes B found most of the GWAS results and also

showed the best performance regarding the explained variance.
FIGURE 3

Results on real-world data for A. thaliana, soy, and corn shown in a heatmap: Each cell gives the explained variance v that the prediction model
given on the horizontal axis achieved on the phenotype specified on the vertical axis. The color of each cell ranging from dark red to dark blue
represents the prediction performance. The best result for each phenotype is highlighted by a black frame around the cell.
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However, Elastic Net only selects 12 top 100 GWAS results in

comparison with 24 for Bayes B, but Elastic Net also performs

comparably well for this phenotype. Further, XGB shows a low

explained variance for MatG on soy, for which it selects none of

the GWAS results, whereas the other two approaches select

much more and achieve a much better performance (again with

Bayes B selecting most of the top 100 GWAS results and the best

performance among these three techniques). For Yield in soy,

Bayes B selects most GWAS results but is outperformed by

Elastic Net in terms of explained variance. For Height in soy, all

three prediction models agree on most selected features and

deliver a comparable explained variance. Interestingly, despite

the preselection using QTL for soy, the ratios of top GWAS

results within the selected features are smaller than for

Arabidopsis thaliana.

Additionally, we compared the feature importances after

removing those smaller than 1% of the largest one (see

Supplementary Figure S25). However, similar to simulations J

(Add20) to L (Add100), the difference to the feature importance

without filtering is rather small. In general, there seems to be a

connection between the GWAS results and feature importances.

However, it is not clear to which extent this influences the

predictive ability of a model.
4 Conclusion and future outlook

In this paper, we conducted a comparative study of 12

different phenotype prediction models and evaluated their

performance on both synthetic and real-world data. Based on

the synthetic data, we can conclude that Bayes B was the best-

performing model, although it is a rather simple method. For

more complex neural network-based techniques, we could not

see an advantage within our simulations. With respect to real-

world datasets, this observation is less clear. No prediction

model performs best for all real-world traits, and many lead to

comparable results. While Elastic Net outperformed all other
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comparison partners for three phenotypes, SVR and RF

delivered the best result for two traits each. Both Bayes B and

LASSO performed best in one case. Beyond that, a neural

network-based approach never achieved the highest explained

variance for the real-world traits but competitive results for

some phenotypes.

Our results are in line with the findings of Azodi et al. (2019),

as they also showed that depending on the species–trait

combination, both linear and non-linear models perform

equally well for phenotype prediction in terms of Pearson

correlation coefficient. Contrary to our results on real-world

data and in line with the experiments on simulated data, their

best-performing model turns out to be a Bayesian approach.

Furthermore, SVR is their best non-linear approach. In

accordance with our study, deep learning-based approaches

are never among the top performers. On the other hand, Pook

et al. (2020) observed that LCNN has the highest average

prediction ability compared to CNN and MLP in A. thaliana

traits. However, we cannot confirm these results within our

study. In accordance with our findings, they also showed that

linear methods, e.g., Bayes B, outperformed all neural nets.

Sandhu et al. (2020) showed that MLP and CNN both on

average have an improved prediction performance compared

to RR-BLUP in all five wheat traits and environments they

considered. If comparing the explained variances for RR-BLUP

with those of MLP and CNN in our study, we can observe

similar results, although we do not consider additional

environmental effects. MLP and CNN perform better or

comparable to RR-BLUP in almost all nine traits. In general,

all studies show that the prediction ability of the different models

highly differs for the considered species and traits.

For both synthetic data as well as real-world data, we cannot

observe a stronger relationship between neural network-based

approaches and the number of available samples than we

observe for the other prediction models. This suggests that the

phenotype prediction capabilities are mainly influenced by the

genetic architecture. For instance, Ubbens et al. (2021) formulate
FIGURE 4

Comparison of feature importance of Elastic Net, Bayes B, and XGB with GWAS top 1,000 for Arabidopsis thaliana: For each phenotype, the
corresponding Venn diagram shows the number of SNPs which were deemed important by one or more algorithms. A SNP is considered
important if its related model parameter differs from zero in at least one of the outer folds in the nested cross-validation. The numbers of SNPs
that were additionally within the top 1,000 GWAS results are shown in parentheses.
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the theory that DL-based methods rather rely on genetic

relatedness instead of single marker effects, probably due to

so-called shortcut learning (Geirhos et al., 2020). Consequently,

this still suggests a potential in neural network-based approaches

if shortcut learning is overcome, even though sample sizes are

rather small compared to other tasks, e.g., image processing.

However, the performance of neural networks is highly

influenced by their architectural design. Tasks based on

genomic data might require the development of new neural

network architectures. For instance, the number of weights that

need to be optimized during training grows heavily with the

input size. With SNP matrices consisting of hundreds of

thousands or even millions of features, neural network training

quickly becomes computationally exhaustive or even impossible,

especially when considering the memory available on graphical

processing units. Currently, it is common to reduce the amount

of SNPs with methods such as LD pruning or dimensionality

reduction approaches. However, this can cause a loss of

information, which might lead to worse results on the

prediction task. Hence, the design of neural network

architectures that can handle larger SNP matrices is interesting

for future research.

The corn and soy data used in this study are taken from

commercial breeding programs. A breeding program aims to

commercialize a new variety within a few years. It is thus usually

highly focused on optimizing a population for the traits of

interest. The genetic diversity is narrower compared to the

Arabidopsis thaliana population. The relevant alleles for traits

of interest in a commercial breeding program are also much

more fixed, and SNP panels are preselected accordingly to save

costs. This dependence of samples can be seen critical from an

ML perspective, with a potential leak of information to test data.

However, plant breeding companies rather aim to create a model

that captures the genetics of their breeding program than one

that generalizes well for unknown samples.

Although the corn and soy data used in this publication

stem from the same environment, the whole breeding

programs were actually conducted under several conditions.

In addition to environmental effects, this also leads to

different field management practices. Consequently, in

contrast to Arabidopsis thaliana, which is typically grown

under controlled environments (i.e., greenhouse or climate-

controlled growth chambers), phenotypes in a commercial

breeding program are typically influenced by environmental

conditions impeding phenotype prediction. For this reason,

the integration of environmental features to phenotype

prediction models is highly relevant for future research.

Several studies show advantages when integrating such

additional information (Montesinos-López et al., 2018a;

Sandhu et al., 2020). However, we focused solely on

genotype information in this study, to get a better

understanding of the genotype–phenotype relationship. In
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this context, it is challenging to control the influence of

genomic data with probably way more features and the

environmental factors. Furthermore, this leads to datasets

with mixed input data types (e.g., continuous and discrete

inputs) and even larger dimensionalities. Thus, research on

representation learning for mixed data types to extract the

relevant information has potential for future research.

Beyond that, we focused on single-trait prediction in this

study. As already mentioned in the Introduction, there are

publications which show advantages of multi-trait prediction

(Montesinos-López et al., 2018b; Sandhu et al., 2021). Hence,

when further considering computational advantages of multi-

trait prediction, this is an interesting direction for

future research.

The analyses of the selected features in comparison with the

known effect sizes on synthetic data showed advantages of the

regularization in LASSO and Elastic Net. However, this was not

observed in preliminary experiments with L1-regularization for

neural network-based methods. Regularizing approaches such as

dropout and early stopping apparently did not lead to

competitive results. Nevertheless, as regularization is

important for data with such a high dimensionality, the

integration of further regularization measures could be

essential for all other ML-based approaches as well.

Despite the fact that we considered various different

simulated settings and three species, this study can only give

first insights. Currently, it is not clear that our results generalize

across further simulation designs and species. Additional

experiments and research are required for a more general

conclusion. As described above, this leads to many new

research questions and a lot of potential for future research.

Especially a further evaluation and design of neural network-

based approaches specifically for phenotype prediction

seem interesting.
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Pérez, P., and de los Campos, G. (2014). Genome-wide regression and prediction
with the bglr statistical package. Genetics 198, 483–495. doi: 10.1534/
genetics.114.164442

Pook, T., Freudenthal, J., Korte, A., and Simianer, H. (2020). Using Local
Convolutional Neural Networks for genomic prediction. Front. Genet. 11.
doi: 10.3389/fgene.2020.561497

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D.,
et al. (2007). Plink: a tool set for whole-genome association and population-based
linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795

R2D2 Consortium, Fugeray-Scarbel, A., Bastien, C., Dupont-Nivet, M.,
Lemari’e, S. (2021). Why and how to switch to genomic selection: Lessons from
plant and animal breeding experience. Front. Genet. 12. doi: 10.3389/
fgene.2021.629737

Sandhu, K. S., Lozada, D. N., Zhang, Z., Pumphrey, M. O., and Carter, A. H.
(2020). Deep learning for predicting complex traits in spring wheat breeding
program. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.613325

Sandhu, K., Patil, S. S., Pumphrey, M., and Carter, A. (2021). Multitrait
machine- and deep-learning models for genomic selection using spectral
information in a wheat breeding program. Plant Genome 14, e20119.
doi: 10.1002/tpg2.20119

Seren, Ü., Grimm, D., Fitz, J., Weigel, D., Nordborg, M., Borgwardt, K., et al.
(2016). Arapheno: A public database for arabidopsis thaliana phenotypes. Nucleic
Acids Res. 45. doi: 10.1093/nar/gkw986

Smola, A. J., and Schölkopf, B. (2004). A tutorial on Support Vector Regression.
Stat Computing 14, 199–222. doi: 10.1023/B:STCO.0000035301.49549.88

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res. 15, 1929–1958.

The 1001 Genomes Consortium (2016). 1,135 genomes reveal the global pattern
of polymorphism in arabidopsis thaliana. Cell 166, 481–491. doi: 10.1016/
j.cell.2016.05.063

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat.
Society: Ser. B (Methodological) 58, 267–288. doi : 10.1111/j.2517-
6161.1996.tb02080.x

Togninalli, M., Seren, Ü., Freudenthal, J. A., Monroe, J. G., Meng, D., et al.
(2020). Arapheno and the aragwas catalog 2020: A major database update
including rna-seq and knockout mutation data for arabidopsis thaliana. Nucleic
Acids Res. 48, D1063–D1068. doi: 10.1093/nar/gkz925

Turner, R., Eriksson, D., McCourt, M., Kiili, J., Laaksonen, E., Xu, Z., et al.
(2021). Bayesian Optimization is superior to random search for machine learning
hyperparameter tuning: Analysis of the black-box optimization challenge 2020. in
Proceedings of the NeurIPS 2020 competition and demonstration track, Eds. H. J.
Escalante and K. Hofmann (of Proceedings of Machine Learning Research) vol.
133:3–26.

Ubbens, J., Parkin, I., Eynck, C., Stavness, I., and Sharpe, A. G. (2021). Deep
neural networks for genomic prediction do not estimate marker effects. Plant
Genome 14, e20147. doi: 10.1002/tpg2.20147

Westhues, C. C., Mahone, G. S., da Silva, S., Thorwarth, P., Schmidt, M., Richter,
J.-C., et al. (2021). Prediction of maize phenotypic traits with genomic and
environmental predictors using gradient boosting frameworks. Front. Plant Sci.
12. doi: 10.3389/fpls.2021.699589

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the
elastic net. J. R. Stat. Society Ser. B 67, 301–320. doi: 10.1111/j.1467-
9868.2005.00503.x
frontiersin.org

https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.1534/genetics.109.103952
https://doi.org/10.1186/1471-2156-12-87
https://doi.org/10.1146/annurev-animal-022114-110733
https://doi.org/10.1007/S10709-008-9308-0
https://doi.org/10.1007/S10709-008-9308-0
http://www.deeplearningbook.org
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1017/S0016672308009981
https://doi.org/10.2135/cropsci2014.03.0249
https://doi.org/10.2135/cropsci2014.03.0249
https://doi.org/10.1093/bioinformatics/btac455
https://doi.org/10.1038/ng.548
https://doi.org/10.3389/fgene.2019.01091
https://doi.org/10.1007/s00425-018-2976-9
https://doi.org/10.31274/etd-180810-5600
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.3389/fpls.2018.01511
https://doi.org/10.1534/g3.118.200998
https://doi.org/10.1534/g3.118.200740
https://doi.org/10.1534/g3.118.200728
https://doi.org/10.1186/s12864-020-07319-x
https://doi.org/10.1186/s12864-020-07319-x
https://doi.org/10.1073/pnas.1720716115
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.3389/fgene.2020.561497
https://doi.org/10.1086/519795
https://doi.org/10.3389/fgene.2021.629737
https://doi.org/10.3389/fgene.2021.629737
https://doi.org/10.3389/fpls.2020.613325
https://doi.org/10.1002/tpg2.20119
https://doi.org/10.1093/nar/gkw986
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1016/j.cell.2016.05.063
https://doi.org/10.1016/j.cell.2016.05.063
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1093/nar/gkz925
https://doi.org/10.1002/tpg2.20147
https://doi.org/10.3389/fpls.2021.699589
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.3389/fpls.2022.932512
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	A comparison of classical and machine learning-based phenotype prediction methods on simulated data and three plant species
	1 Introduction
	2 Materials and methods
	2.1 Real-world data
	2.1.1 Arabidopsis thaliana
	2.1.2 Corn
	2.1.3 Soy

	2.2 Synthetic data
	2.3 Phenotype prediction models
	2.3.1 Statistical prediction models
	2.3.2 Machine learning methods
	2.3.3 Deep learning approaches
	2.3.4 Hyperparameter optimization

	2.4 Experimental settings
	2.5 Evaluation of selected features

	3 Results and discussion
	3.1 Synthetic data
	3.1.1 Prediction results
	3.1.2 Feature importance analysis

	3.2 Real-world data
	3.2.1 Prediction results
	3.2.2 Feature importance analysis


	4 Conclusion and future outlook
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


