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Abstract: Glioblastoma (GBM) is a highly aggressive disease and is associated with poor prognosis
despite treatment advances in recent years. Surgical resection of tumor remains the main therapeutic
option when approaching these patients, especially when combined with adjuvant radiochemother-
apy. In the present study, we conducted a comprehensive literature review on the state-of-the-art
and future trends of the surgical treatment of GBM, emphasizing topics that have been the object of
recent study.

Keywords: glioblastoma; surgery; extent of resection; residual tumor volume; intraoperative magnetic
resonance imaging; intraoperative fluorescence

1. Introduction

Glioblastoma (GBM) is the most common and malignant primary brain tumor in
adults with a 5-year mortality rate > 90% [1,2]. Annually, more than 10,000 cases are
reported in the United States [3].

For many decades, the standard treatment of GBM consisted of adjuvant radiotherapy
following surgical resection [4]. However, since 2005, the introduction of adjuvant temo-
zolomide combined with postoperative radiotherapy became the new standard treatment
and improved the median survival of these patients [5,6].

Maximum safe resection remains a fundamental part of this treatment and represents
the main objective when surgically approaching these patients due to its association with
longer survival [7].

In order to achieve this goal, new techniques and surgical adjuncts (e.g., fluorescence-
guided surgery, intraoperative magnetic resonance imaging (iMRI), brain mapping strate-
gies, intraoperative ultrasound (IOUS), confocal intraoperative microscope (CIM), and
intraoperative mass spectrometry (IMS)) have been investigated and employed over the
last few years. Intraoperative radiotherapy (IORT) may reduce the incidence of local re-
currence and prolong survival. However, the results of clinical studies are still conflicting.
Experimental methods such as Raman spectrometry (RS) and optical coherence tomog-
raphy (OCT) have shown promising results in small experimental and clinical studies.
Nevertheless, there is still a lack of high-quality evidence on these topics.

In the present article, we offer a comprehensive literature review on the state-of-the-art
and future trends of the surgical treatment of GBM.

2. Extent of Resection and Residual Tumor Volume: Agreements and Controversies

The extent of resection (EOR) is one of the most investigated topics regarding the
surgical treatment of GBM. On the one hand, it has been already demonstrated that EOR
affects the overall survival (OS) of patients with GBM; on the other hand, there has been
much debate about the optimal threshold of the EOR. The highly cited paper by Lacroix et al.
described that an EOR ≥ 98% improved median survival from 8.8 months (95% confidence
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interval (CI) 7.4–10.2) to 13 months (95% CI 11.4–14.6), p < 0.0001 (see Table 1) [8]. In
addition, they reported a stronger association between the EOR and survival when other
prognostic factors such as age and Karnofsky Performance Score (KPS) were favorable.
However, care must be taken when interpreting the results, since newly diagnosed and
recurrent GBMs were not evaluated separately. Orringer et al. retrospectively evaluated
46 patients with newly diagnosed GBM and concluded that an EOR greater than 90% was
significantly associated with greater 1-year survival [9].

Table 1. Main studies evaluating EOR and RV in patients with GBM.

Author, Year Study Type Patient Population Conclusion

Lacroix et al., 2001 [8] Retrospective 416 patients with GBM EOR ≥ 98% improved median survival
Sanai et al., 2011 [10] Retrospective 500 patients with newly diagnosed GBM EOR ≥ 78% improved OS

Oppenlander et al., 2014 [11] Retrospective 170 patients with recurrent GBM EOR ≥ 80% improved OS

Bloch et al., 2012 [12] Retrospective 107 patients with recurrent GBM GTR improved OS regardless of
initial EOR

Lu et al., 2019 [13] Meta-analysis 1507 patients with GBM Maximal resection at reoperation
improved OS

Chaichana et al., 2014 [14] Retrospective 84 patients with newly diagnosed GBM RV < 2 cm3 and EOR > 95% presented the
greatest reduction in the risk of death

Orringer et al., 2012 [9] Retrospective 46 patients with GBM EOR ≥ 90% improved 1-year survival
Li et al., 2017 [15] Meta-analysis 1618 patients with GBM GTR improved 1-year OS and PFS

Grabowski et al., 2014 [16] Retrospective 128 patients with newly diagnosed GBM RV < 2 cm3 and EOR > 98% improved OS

Bette et al., 2018 [17] Retrospective 209 patients with newly diagnosed GBM RV was significantly associated
with survival

Chaichana et al., 2013 [18] Retrospective 259 patients with newly diagnosed GBM RV < 5 cm3 and EOR > 70% improved
OS and PFS

Woo et al., 2019 [19] Retrospective
(multicenter cohort) 147 patients with newly diagnosed GBM

MGMT methylation and RV < 3.5 cc
improved OS. (EOR was not an
independent prognostic factor)

Xing et al., 2018 [20] Retrospective 292 patients with newly diagnosed GBM RV, but not EOR, was associated
with survival

Pessina et al., 2016 [21] Retrospective 64 patients with recurrent GBM RV, but not EOR, was associated with OS
and PFS in a multivariate analysis

Sales et al., 2019 [22] Retrospective 126 patients with newly diagnosed
MGMT-unmethylated GBM RV, but not GTR, improved OS

Esquenazi et al., 2017 [23] Retrospective 86 patients with newly diagnosed GBM GTR and near-total resection improved OS

Kreth et al., 2013 [24] Retrospective 345 patients with newly diagnosed GBM
GTR improved OS; patients who received
STR did not show a better OS than those

who received biopsy only

Shah et al., 2020 [25] Retrospective 69 patients with non-eloquent GBM
Supramaximal resection improved OS and

PFS compared to matched controls
(propensity-matched analysis)

GBM: glioblastoma; EOR: extent of resection; OS: overall survival; GTR: gross total resection. RV: residual tumor vol-
ume; PSF: progression-free survival; MGMT: O-6-methylguanine-DNA-methyltransferase; STR: subtotal resection.

Oppenlander et al. studied 170 patients with recurrent GBM and reported improved
OS in patients with EOR ≥ 80% [11]. They emphasized the fact that patients with
EOR ≥ 80% showed a higher risk of developing neurological morbidity in the early post-
operative period than patients with EOR < 80% [11]. However, this increased risk did not
last beyond 30 days [11]. Another study with 500 patients with newly diagnosed GBM
showed similar results regarding the impact of EOR on OS [10]. Even though greater EOR
was associated with higher survival rates, the role of subtotal resection (STR) in patients
with GBM was demonstrated, since benefits were seen with as little as 78% EOR [10]. This
is particularly important in patients with tumors located adjacent to or within eloquent
areas, where achieving EOR ≥ 98% may not be possible. However, a study involving
345 patients with newly diagnosed GBM showed that complete tumor resection correlated
with significantly improved survival (HR: 0.6, p = 0.003), while patients who underwent
incomplete resection did not show a longer OS than those who received needle biopsy [24].

Bloch et al. demonstrated that gross total resection (GTR) at recurrence is associated
with improved survival regardless of initial EOR [12]. They reported that patients with
initial STR had improved survival (15.9 months to 19 months, p = 0.004) when receiving
GTR at recurrence [12]. A meta-analysis that included 1507 patients, of whom 1335 had
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recurrent tumor, described that maximal resection at recurrence was significantly associated
with improved survival [13].

Another meta-analysis studied 1618 patients of three retrospective and three random-
ized controlled trials and concluded that GTR was associated with greater 1-year OS and
PFS when compared with STR [15].

The role of residual volume (RV) in the surgical treatment of GBM has also been
investigated in many previous studies. Grabowski et al. reported that RV was the most
significant predictor of survival compared with EOR, T2/FLAIR residual volume, and
contrast-enhanced preoperative tumor volume [16].

Chaichana et al. evaluated the association between RV and EOR with the survival of
patients with newly diagnosed GBM and established minimum EOR and maximum RV
thresholds. They reported that the minimum EOR threshold for survival and recurrence
was 70%, while the maximum RV threshold for survival and recurrence was 5 cm3 [18]. In
another retrospective study, Chaichana et al. evaluated 84 patients with newly diagnosed
GBM who were considered amenable to GTR based on preoperative imaging. RV and EOR
were independently associated with survival. In addition, they reported that the RV and
EOR with the greatest impact on OS was <2 cm3 and >95%, respectively [14].

Bette and colleagues retrospectively studied 209 patients with newly diagnosed GBM
and confirmed that surgical resection remains a major prognostic factor, since RV remained
significantly associated with survival even after adjusting the model for other prognostic
factors such as age, KPS, MGMT-status, and adjuvant radiochemotherapy [17].

A retrospective study investigated which parameter is more important for the prog-
nosis of newly diagnosed GBM: RV or EOR [20]. The authors reported that regardless
of STR or GTR, EOR was not significantly associated with OS and PFS, in contrast to RV,
which showed potential to provide greater predictive power for the prognosis of GBM [20].
These results were confirmed by another retrospective review of 147 GBM patients that
demonstrated a significant association between RV < 3.5 cc and survival of patients who
received incomplete tumor resection [19]. A significant association between EOR and
survival could not be demonstrated in this study [19]. In addition, another retrospective
study of 64 patients with recurrent GBM reported that RV, but not EOR, showed prognostic
power in both univariate and multivariate analyses [21].

Orringer et al. demonstrated the influence of tumor location on EOR. They reported
that EOR was less for tumor located in eloquent areas and those touching ventricles [9]. It
is well known that aggressive resection of these tumors may increase the risk of postopera-
tive neurological morbidity. Therefore, neurosurgeons may be more conservative when
operating on these lesions, resulting in lesser EOR.

The role of molecular features in the surgical treatment of GBM has also been inves-
tigated. A retrospective study evaluated 126 patients with MGMT-unmethylated GBM
and revealed that complete tumor resection was not associated with improved survival.
However, they emphasized that maximum safe resection should always be attempted, since
RV is significantly associated with OS [22].

Shah et al. explored the influence of supramaximal resection or anatomic lobectomy
on the survival of patients with non-eloquent gliomas. Their propensity-matched analysis
showed that supramaximal resection resulted in improved OS (30.7 vs. 14.1 months)
and PFS (17.2 vs. 8.1 months) compared to the GTR group (p < 0.001) [25]. Another
study reported that the subpial technique extended tumor resection beyond the contrast
enhancement and is associated with longer OS compared to similar series where resection
of contrast-enhanced tumor was performed [23]. Contrastingly, a retrospective study
demonstrated that the EOR of FLAIR-hyperintense areas did not improve the survival of
patients with GBM [26]. Prospective randomized studies are necessary in order to further
investigate this topic.

The role of EOR and RV in the surgical treatment of GBM has been the subject of
debate in the field of neurosurgery for years. The conflicting results presented in this
review reflect the different methodologies of the presented studies on the one side and the
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heterogeneity of examined populations on the other side. It is important to emphasize,
however, that there is a consensus with respect to the principle of maximum safe resection.
The golden rule regarding the extent of resection of GBM in the year 2022 is: to resect as
much contrast-enhanced tumor as possible without causing neurological deterioration.
The level of evidence provided by the medical literature on this topic is limited due to the
fact that most published studies are based on retrospective analyses. New prospective
randomized studies are needed to address this important issue related to the surgical
treatment of patients with GBM.

3. Fluorescence-Guided Surgery: An Indispensable Innovation

Given the fact that greater EOR and lesser RV improve the OS and PFS of GBM patients,
the development of new techniques intending to improve resection rates without causing
neurological morbidity is necessary. 5-aminolevulinic acid (5-ALA), a natural precursor
of hemoglobin, is a fluorescent dye that is preferably picked up by tumor cells after being
orally administered 2–3 h prior to surgery [7,27]. See Figure 1.
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Figure 1. A 61-year-old patient with a left temporal glioblastoma. The upper row shows the operative
field in white light prior to (A) and after (B) tumor resection. The lower row shows the corresponding
fluorescence images (C,D).

A modified neurosurgical microscope can visualize the fluorescence originating from
tumors cells, thus improving EOR [27]. In this context, Stummer et al. conducted a
multicenter randomized controlled trial with 322 patients with suspected malignant glioma
in order to investigate whether 5-ALA-induced fluorescence had a significant impact on
EOR and 6-month progression-free survival, as assessed by MR images (Table 2) [27].
GTR was achieved in 65% of patients in the 5-ALA group in comparison with 36% in the
white light group (p < 0.0001) [27]. Moreover, patients assigned to the 5-ALA group had
higher 6-month PFS (41%) than those in the white light group (21.1%), p = 0.0003 [27].
The incidence of neurological deterioration did not differ significantly between groups
7 days after surgery (18% 5-ALA group vs. 10% control group, p = 0.2) or 6 weeks after
surgery (17% 5-ALA group vs. 12% control group, p = 0.3) [27]. This clinical trial provided
high-level evidence regarding the benefits of using 5-ALA-guided resection in patients
with malignant gliomas. Another study with 36 GBM patients analyzed the efficacy of
5-ALA-guided resection and reported complete resection of the contrast-enhanced lesion
in 83% of cases, EOR over 98% in 100% of cases, and mean EOR of 99.8% [28]. In addition,
it was demonstrated that strong fluorescence identified solid tumor with 100% positive
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predictive value based on histopathological and immunohistochemical analyses of biopsies
with different fluorescence intensities [28].

Table 2. Main studies evaluating the use of 5-ALA in patients with malignant gliomas.

Author, Year Study Type Patient Population Conclusion

Stummer et al., 2006 [27] Multicenter, randomized,
controlled trial

322 patients with suspected
malignant glioma

5-ALA group: higher rate of GTR and
higher 6-month PFS

Díez Valle et al., 2010 [28] Prospective 36 patients with GBM
GTR achieved in 83% of patients,

EOR > 98% in 100% of cases, and mean
EOR was 99.8%

Eljamel, 2015 [29] Meta-analysis 565 patients with GBM GTR rate of 75.4% and mean OS gain of
6.2 months

Aldave et al., 2013 [30] Retrospective 118 patients with HGG GTR + no residual fluorescence
improved OS

Stummer et al., 2000 [31] Prospective 52 patients with GBM
GTR achieved in 63% of patients; residual

fluorescence was a significant
prognostic factor

Panciani et al., 2012 [32] Multicenter, prospective, study 23 patients with suspected HGG
5-ALA-guided surgery showed a

sensitivity of 91.1% and a
specificity of 89.4%

Stummer et al., 2011 [33] Randomized, controlled trial * 349 patients with
malignant glioma 5-ALA improved OS and 6-month PFS *

5-ALA: 5-aminolevulinic acid; GBM: glioblastoma; GTR: gross total resection; HGG: high-grade glioma; OS:
overall survival; PSF: progression-free survival. * Post hoc analysis of the original RCT.

A meta-analysis of 20 studies including a total of 565 patients who underwent 5-ALA-
guided resection reported a mean GTR rate of 75.4%, mean time to tumor progression of
8.1 months, and mean overall survival gain of 6.2 months [29]. Additionally, the evaluation
of 800 histological samples showed a sensitivity of 82.6% (95%CI: 73.9–91.9, p < 0.001) and
specificity of 88.9% (95%CI: 83.9–93.9, p < 0.001) [29]. Another meta-analysis reported
similar results regarding sensitivity (87%) and specificity (89%) [34].

When compared with iMRI, 5-ALA had higher sensitivity and specificity for detecting
tumor infiltration at the border of the resection cavity in patients with high-grade gliomas
(HGGs) [35]. The impact of the combined use of 5-ALA-guided resection and iMRI on EOR
was demonstrated in a prospective study with 33 GBM patients eligible for GTR [36]. In this
group of patients, a combined approach with 5-ALA and iMRI was performed. The control
group was selected through a retrospective matched pair assessment in 144 patients with
iMRI-assisted surgery. Mean EOR was significantly higher in the combined therapy group
(99.7%) than in the iMRI-alone group (97.4%), p < 0.004. Additionally, the rate of GTR was
significantly higher in the combined therapy group (100% vs. 82%, p < 0.01) [36]. Another
study with 72 patients with GBM demonstrated that higher rates of GTR can be achieved
when 5-ALA-guided resection is combined with intraoperative monopolar mapping in
tumors located adjacent to the corticospinal tract [37].

Aldave et al. investigated whether the presence of residual fluorescent tissue in
patients with GTR as confirmed by postoperative MRI had a significant impact on OS and
neurological complication rate. The median OS was significantly higher in patients with
GTR and no residual fluorescent tissue (27.0 months, CI= 22.4–31.6) than in those with GTR
and residual fluorescent tissue (17.5 months, CI= 12.5–22.5), p = 0.015 [30]. Age, tumor
volume, and 18F-FET PET uptake are predicting factors for 5-ALA fluorescence in tumors
without typical GBM radiological features [38,39].

In patients with recurrent GBM, 5-ALA is also a valid adjunct tool, although care
must be taken when trying to differentiate reactive tissue changes caused by adjuvant
radiochemotherapy from true disease progression [40]. In addition, 5-ALA is considered a
useful adjunct during iMRI-guided resection of malignant gliomas, since it allows identifi-
cation of tumor tissue beyond its radiological borders [41]. Roder et al. compared EOR, RV,
and neurological outcomes of patients who underwent GBM surgery with 5-ALA, iMRI, or
conventional white light and reported better results in the group of patients in the iMRI
group [42].
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5-ALA-guided surgery is associated with high sensitivity and specificity for identifying
malignant tumor tissues and represents an intraoperative tool independent of neuronaviga-
tion for achieving maximal EOR without causing neurological deterioration [31–33,43,44].
Additionally, this surgical adjunct seems to be cost-effective in comparison with con-
ventional white light surgery in patients with HGG [45,46]. Thereby, it has become an
indispensable innovation in the surgical treatment of GBM.

Fluorescein is also used as a fluorescent-tracer, and it accumulates in areas where the
blood–brain barrier is damaged [47].

In neurosurgery, it was first used in Japan in the late 1990s in a series of 30 patients and
showed promising results [48]. A prospective study evaluated the influence of fluorescein-
guided surgery on GTR and survival in a series of 80 patients with GBM. The authors
reported a significantly higher rate of GTR in patients who had fluorescein-guided surgery
than those who had conventional surgery (83 vs. 55%). However, survival did not differ
between the two groups [49]. Other studies confirmed that fluorescein sodium is safe and
allows a high rate of complete removal of contrast-enhanced tumor [47,50].

The use of tumor-targeted molecular imaging, in the form of near-infrared (NIR)
fluorescent dyes, can improve detection, margin control, and survival in many cancer
subtypes [51]. Recently, Miller et al. published the first-in-human study with cetuximab-
IRDye800, an antibody against the epidermal growth factor receptor (EGFR). They reported
that this method presented feasibility and safety in patients with GBM [51].

Intraoperative MRI: Technological Advance versus Medical Evidence
Intraoperative MRI has been used as an adjunct tool in the context of glioma surgery

since 1993, when it was first introduced by the Brigham and Women´s Hospital [52].
It is well known that the brain shift phenomenon reduces the accuracy of conventional

neuronavigation during resection of brain tumors. Therefore, the main idea behind this
innovative technique is the possibility of improving EOR by means of intraoperative
updated MR images. This real-time assessment allows the possibility of further resection in
the same surgery [53]. However, current evidence supporting this practice is still limited by
the fact that most studies on iMRI are retrospective cohorts and case–control studies [52].

The first randomized controlled trial on this topic was conducted by Senft et al. and
enrolled 58 adult patients with contrast-enhanced gliomas for which GTR was planned
(Table 3). Patients in the iMRI group had a higher rate of GTR (96%) than those in the
control group (68%), p = 0.023. Moreover, the incidence of postoperative neurological
deficits did not differ between groups (13% in the iMRI group vs. 8% in the control group),
p = 1.0 [54]. An important limitation of this study was the fact that neurosurgeons were not
blinded to treatment allocation, which may lead to treatment bias. Additionally, an ultra-
low-field MRI device was used, which provides inferior images resolution in comparison
with high-field devices. Lastly, the sample size did not allow subgroup analysis of different
glioma grades.

Table 3. Main studies evaluating the use of iMRI in patients with malignant gliomas.

Author, Year Study Type Patient Population Conclusion

Senft et al., 2011 [54] Randomized controlled trial 58 patients with contrast-enhanced
gliomas

GTR rate 96% in the iMRI group vs. 68% in the
control group

Wu et al., 2014 [52] Randomized, triple-blind, controlled
trial 87 patients with malignant gliomas iMRI group: Trend toward improved 6-month

PFS and higher rate of GTR
Schatlo et al., 2015 [55] Retrospective 200 patients with HGG iMRI had no impact on OS

Kuhnt et al., 2011 [56] Retrospective 153 patients with GBM iMRI contributed to optimal EOR with low
postoperative morbidity

Corburger et al., 2017 [57] Prospective 170 patients with GBM
Surgery with iMRI presented higher OS and

lower complication rates than previously
published data

Kubben et al., 2014 [58] Randomized, controlled trial (interim
analysis) 14 patients with suspected GBM iMRI group: no advantage with respect to EOR,

clinical performance, and survival
Marongiu et al., 2016 [59] Retrospective 114 patients with GBM iMRI improved both EOR and 6-month PFS

Li et al., 2017 [60] Meta-analysis Patients with glioma iMRI improved rate of GTR and 6-month PFS

iMRI: intraoperative magnetic resonance image; GTR: gross total resection; PSF: progression-free survival; HGG:
high-grade glioma; OS: overall survival; GBM: glioblastoma; EOR: extent of resection.



J. Clin. Med. 2022, 11, 5354 7 of 24

A recent prospective, triple-blind, controlled trial analyzed 87 patients randomly
assigned to either the iMRI group or control group. The rate of GTR was significantly
higher in the iMRI group (86.36%) than in the control group (53.49%), p < 0.001 [52]. The
benefit of 3.0-T iMRI-guided resection in improving EOR was significant for LGG (p = 0.01),
and there was a slight, but non-significant trend for HGG (p = 0.2). Furthermore, no
significant difference was found regarding the occurrence of postoperative neurological
deficits between treatment groups [52]. PFS analysis as estimated by Kaplan–Meier curves
indicated a trend toward improved 6-month PFS of patients with GBM in the iMRI group
(p = 0.24) [52]. Another study involving 200 patients with HGG has shown that iMRI had
no significant impact on OS after adjusting baseline discrepancies in preoperative KPS [55].

In another study, 135 patients with GBM underwent 1.5T-iMRI-guided resection.
Tumor remnant was found in 88 patients of whom 19 underwent extended resection. In
9 of these 19 patients, further resection resulted in GTR, which represented an increase in
the GTR rate from 34.80% to 41.49% [56].

A prospective study involving 14 patients investigated the importance of combining
5-ALA-fluorescence- and iMRI-guided resection in glioblastoma surgery. After complete
resection of 5-ALA fluorescent tissue, iMRI was performed in order to identify areas with
suspicion of remnant tumor [61]. These suspicious lesions underwent biopsy and were
sent to histopathological evaluation. iMRI showed areas suspicious for tumors in 91.6% of
cases after complete resection of 5-ALA fluorescent tissue [61]. However, histopathological
confirmation of remnant tumor occurred in only 64.3% of cases [61]. This fact highlights the
low predictive value of iMRI for identifying tumor remnants, which has to be considered
when performing extended resection of contrast-enhanced lesions near eloquent areas.

In another study, patients who were 5-ALA fluorescence-negative had better resection
rates when undergoing combined iMRI-guided resection (89.2%) than those without iMRI
(68.7%) [62]. Coburger et al. evaluated a series of 170 surgeries for GBM with iMRI
and concluded that surgery in a contemporary setup using iMRI and standard adjuvant
treatment presented higher OS and lower complication rates, as previously published [57].
On the other hand, Kubben et al. published an interim analysis of a randomized trial on
iMRI-guided GBM surgery compared to conventional neuronavigation and reported no
advantage with respect to EOR, clinical performance, and survival in the iMRI-guided
group [58]. However, the low statistical power due to the small sample size (14 patients)
may have led to a type 2 error (false negative result). A retrospective study including
114 patients who underwent GBM surgery reported that the use of iMRI enhanced both
EOR (overall GTR: 88.5% vs. 44%) and 6-month PFS (73% vs. 38.9%) [59]. Moreover, a
meta-analysis of RCTs and retrospective studies described a positive impact of iMRI on
6-month PFS and the rate of GTR, but no difference in EOR, tumors’ size reduction, or time
required for surgery between the two neuronavigation approaches [60].

Although it has been shown that iMRI increases EOR in patients with brain tumors,
there is a lack of high-level evidence supporting that the use of this technological advance
results in significant improvement in PFS, OS, and quality of life. Furthermore, iMRI
is associated with a longer operation time and implies the use of appropriate surgical
instruments, which may lead to higher treatment costs [63].

New randomized controlled trials with a larger sample size and long-term follow-up
are needed in order to investigate whether iMRI provides significant survival benefits to
patients with GBM.

4. Intraoperative Ultrasound: A Widely Available and Inexpensive Tool

Intraoperative ultrasound (IOUS) is considered a widely available and inexpensive
adjunct tool in the surgical treatment of brain tumors. Its benefits have been demonstrated
by several studies in the last few decades [64]. In the early 1990s, Le Roux et al. investigated
the impact of IOUS on the identification of tumor margins in 33 patients with low-grade
glioma (LGG). They reported that 85% of patients who were eligible for complete resec-
tion (20 patients) had ultrasound-defined margins that were free of solid tumors in the
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histopathological analysis. Therefore, it was concluded that IOUS may enhance delineation
and EOR in patients with LGG [65]. Another study from the 1990s showed that IOUS
improved the identification of tumor margins beyond falsely underestimated margins
defined by preoperative T1 images [66]. Solheim et al. observed that there is an important
association between image quality and clinical and radiological results. They suggested
that better ultrasound promotes better surgery [67]. In addition, a prospective study with
88 patients undergoing surgical resection of glioma detailed that the use of navigable
ultrasound was associated with significantly better PFS and OS (Table 4) [68]. Another
study retrospectively analyzed 192 GBM patients and reported an improvement in survival
rates within the period that IOUS and neuronavigation were introduced and established in
their department (Figure 2) [69].

Table 4. Main studies evaluating IOUS in patients with brain tumors.

Author, Year Study Type Patient Population Conclusion

Jakola et al., 2011 [70] Retrospective 88 patients with glioma IOUS improved QOL

Saether et al., 2012 [69] Retrospective 192 patients with GBM IOUS improved survival since
introduced in their department

Moiyadi et al., 2015 [68] Prospective 88 patients with glioma Navigable US improved PFS and OS
Mahboob et al., 2016 [71] Meta-analysis 739 patients with glioma IOUS improved EOR

Prada et al., 2016 [72] Prospective 10 patients with GBM CEUS was extremely specific in
identifying residual tumor

Moiraghi et al., 2020 [73] Retrospective 60 patients with supratentorial gliomas N-ioUS improved EOR and
neurological outcomes

IOUS: intraoperative ultrasound; QOL: quality of life; GBM: glioblastoma; US: ultrasound; PSF: progression-free
survival; OS: overall survival; EOR: extent of resection; CEUS: contrast-enhanced ultrasound; N-ioUS: navigated
intraoperative ultrasound.

The influence of a 3D-ultrasonography-based navigation system on the quality of life
(QOL) of 88 patients with glioma was investigated by Jakola et al. They suggested that
the use of IOUS may be associated with a preservation of QOL in these patients [70]. In
addition, another study concluded that navigable 3D US is a versatile, useful, and reliable
intraoperative tool in the surgical treatment of brain tumors [74].

A meta-analysis of 15 studies including 739 glioma patients showed that the use of
IOUS was associated with improved EOR, especially when the lesion was solitary and
subcortical, with no history of surgery or radiotherapy [71]. Prada et al. investigated the
role of contrast-enhanced ultrasound (CEUS) in the identification of residual tumor mass
in 10 patients undergoing GBM surgery. The study detailed that in one case only, CEUS
partially failed to demonstrate residual tumor. Consequently, it was concluded that CEUS
is extremely specific in the identification of residual tumor mass [72].
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Another study compared the impact of navigated versus non-navigated IOUS on the
EOR of patients with HGG and reported no difference regarding tumor remnant sizes
between groups [75]. A recent study demonstrated that navigated intraoperative ultrasound
improved EOR and neurological outcomes when compared to standard neuronavigation [73].

It is important to mention that IOUS is a user-dependent tool. Therefore, the knowl-
edge, skills, and experience of the neurosurgeon play a decisive role in the utility of this
adjunct tool in the surgical treatment of GBM. Official diplomas and certification might be
offered by national and international neurosurgical societies in order to ensure teaching
standards, skill requirements, and revalidation practices [76].

Although many studies on this topic have been published in recent years, high-quality
evidence is still desirable. Further research will improve the usefulness of this method in
GBM surgery.

5. Intraoperative Radiotherapy: Targeting Infiltrative Margins

GBM is a highly aggressive disease, and despite the use of adjuvant radiochemother-
apy, local recurrence near the resection cavity remains a major clinical issue and is associated
with clinical deterioration and death [77].

The interval between surgical resection of the brain tumor and the beginning of
adjuvant treatments may have a crucial impact on local recurrence due to the presence of
remaining cells in the resection cavity and its margins [78]. Therefore, it was hypothesized
that the application of IORT could reduce the local recurrence of glial tumors (Figure 3).
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In this context, Japanese scientists conducted the first studies indicating a benefit of
using intraoperative radiotherapy in patients with malignant gliomas in the early 1990s
(Table 5) [79–81]. At that time, IORT was mainly delivered by means of electron-based
intraoperative radiotherapy (IOERT), which has several technical limitations, including
inadequate electron cone sizes, inadequate low energies, and areas of insufficient target
volume coverage [77]. Sakai et al. conducted a clinical study involving 73 patients with
glioblastoma and anaplastic astrocytoma and reported that IORT improved median survival
from 20.7 months to 26.2 months (p < 0.01) [79]. In another study, 20 or 25 Gy of irradiation
was delivered in a single fraction in 20 of 36 glioma patients. Median survival time of the
IORT group was 14 months vs. 10 months in the control group [80]. On the other hand,
Schueller et al. related that the OS of 71 patients treated with IORT (20–25 Gy) was not
improved compared to a historical control group. This study also described that rates of
postoperative complications were not increased in patients who had received IORT [82].
Other small studies from the 1990s demonstrated the efficacy and relative safety of IORT in
the treatment of malignant brain tumors [83–85]. A recent open-label, dose-escalation phase
I/II trial reported that the use of IORT (20 to 40Gy of low-energy photons) is associated
with manageable toxicity [86]. The main adverse events reported were: radionecrosis,
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wound dehiscence, CSF leakage, and cyst formation [86]. In addition, a retrospective study
reported that dose escalation with IORT was associated with significantly lower healthy
brain exposure in comparison to preoperative stereotactic radiosurgery [87]. Intraoperative
radiosurgery also allowed higher dose delivery to the surgical bed [87].

Table 5. Main studies evaluating the use of IORT in patients with brain tumors.

Author, Year Study Type Patient Population Conclusion

Sakai et al., 1991 [79] Prospective 73 patients with malignant glioma IORT improved median survival
Fujiwara et al., 1995 [80] Prospective 36 patients with glioma IORT improved median survival

Schueller et al., 2005 [82] Retrospective 71 patients with malignant glioma IORT did not improve OS compared to a
historical group

Nemoto et al., 2002 [88] Retrospective 32 patients with malignant glioma IORT did not improve survival compared to
matched control cases

Giordano et al., 2019 [86] Clinical trial 15 patients with newly diagnosed glioblastoma IORT was associated with manageable toxicity

Sarria et al., 2020 [89] Retrospective 51 patients with glioblastoma Improved efficacy and safety of IORT with low
energy X-rays compared to historical data

IORT: intraoperative radiotherapy; OS: overall survival.

Usychkin et al. analyzed 17 patients with newly diagnosed malignant gliomas and
15 patients with recurrent tumors who had received intra-operative electron beam radio-
therapy (IOERT). The median overall survival was 14 months and 10.4 months for the
primary and recurrent cohort, respectively. The study concluded that IOERT is a feasible
technique and may be used as a tool in the treatment of malignant gliomas [90].

An international pooled analysis of 51 patients suggested the improved efficacy and
safety of IORT with low-energy X-rays for newly diagnosed GBM [89]. A clinical study
involving 32 patients who were treated with IORT (12–15 Gy) followed by external radiation
therapy (median dose 60 Gy) reported no survival benefit compared to matched control
cases [88]. Much is expected from the use of radioenhancers and radiosensitizers, which
can increase the radiation delivery while sparing the surrounding normal brain tissue [91].

The results of clinical studies regarding the use of IORT in patients with GBM are
still conflicting to date. This may be explained by the use of different methodologies in
previously published studies (e.g., radiation doses, IORT techniques). Moreover, most
available literature is based on non-randomized small studies, which do not provide a high
level of medical evidence. New prospective randomized trials are warranted in order to
evaluate the real impact of IORT on the survival outcomes of patients with GBM.

6. Brain Mapping, Monitoring Strategies, and Awake Surgery: Locating and
Preserving Critical Functions

While adjunct tools such as fluorescence-guided surgery, neuronavigation, and iMRI
attempt to technically simplify maximal tumor resection, the safety of these procedures is
mostly provided by brain mapping devices and techniques, especially for tumors located
near or within so-called eloquent areas. The role of these surgical adjuncts in the context
of GBM surgery has been becoming more important in the last few decades, and much
research has been devoted to this field. Consequently, tumors considered non-resectable
years ago are now eligible for resection with an acceptable rate of postoperative morbid-
ity [92]. The main objective of brain mapping is to determine which anatomical areas
are responsible for critical functions (e.g., motor and language) in order to preserve them
during surgical procedures. It is well known that tumor cells infiltrate areas beyond the
contrast-enhanced lesion. Therefore, functional-guided surgery using brain mapping and
monitoring strategies may overtake and replace imaging-guided surgery, especially in the
context of supratotal resection.

Didactically, brain mapping techniques can be divided into preoperative mapping
(navigated transcranial magnetic stimulation (nTMS), functional MRI (fMRI), magnetoen-
cephalography (MEG), and diffusion tensor imaging fiber tracking (DTI-FT)) and intraop-
erative mapping (direct cortical stimulation (DCS) and subcortical stimulation (SCS)) [93].
See Figure 4.
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nTMS has been shown to be a suitable and reliable technique for preoperative surgical
planning in patients with brain tumors. A study involving 14 patients with tumors located
close to the precentral gyrus mentioned a high correlation between nTMS and DCS (gold
standard) in locating the motor cortex. In addition, the attending neurosurgeons declared
that the intraoperative identification of the central region was simplified by using this
technique [94]. A systematic review of 11 publications reported that nTMS correlated well
with DCS in all included studies. Moreover, based on the data of 87 patients of two studies,
they also reported that surgical strategy was changed in 25.3% of cases, which emphasizes
the relevant role of nTMS in helping neurosurgeons in the decision-making process [95].

Some studies demonstrated that nTMS improves the outcome of patients with motor
eloquent lesions [96,97]. Krieg et al. related that patients who were preoperatively inves-
tigated by nTMS had a significantly lower rate of postoperative residual tumor volume
on MRI, a higher rate of postoperative clinical improvement, a lower rate of neurologi-
cal deterioration, and smaller craniotomies than those without preoperative nTMS [97].
Another matched case–control study has shown that the use of preoperative nTMS led
to a significant increase in the GTR rate from 42% to 59% (p < 0.05), improved PFS from
15.4 months to 22.4 months (p < 0.05), and helped neurosurgeons in the surgical planning.
This study also mentioned a non-significant reduction in the postoperative deficit rate from
8.5% to 6.1% [96].

Language mapping with repetitive nTMS is still under investigation in many neuro-
surgical departments around the world. Recent studies, however, demonstrated a high
correlation with DCS [98–100]. Furthermore, nTMS has been also used to investigate the
phenomenon of neuroplasticity before and after surgical removal of tumors located in
eloquent areas [101–103].

The role of fMRI as an efficient tool for preoperative brain mapping remains contro-
versial (Figure 5) [104–108]. Even though some studies have found a high correlation with
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intraoperative cortical mapping and high efficacy for locating motor and language areas,
other studies have failed to demonstrate such an association [104–107].

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 13 of 26 
 

The role of fMRI as an efficient tool for preoperative brain mapping remains contro-
versial (Figure 5) [104–108]. Even though some studies have found a high correlation with 
intraoperative cortical mapping and high efficacy for locating motor and language areas, 
other studies have failed to demonstrate such an association [104–107]. 

 
Figure 5. fMRI language task in a patient with high-grade glioma shows Broca’s area clearly lateral-
ized to the left side. 

In addition, false-negative activation on fMRI can occur due to vascular changes, 
which might lead to iatrogenic resection of eloquent tissues and, consequently, to postop-
erative morbidity [93,109]. 

While fMRI provides information based on hemodynamic parameters, MEG directly 
measures cortical activity through the detection of magnetic fields generated during neu-
ronal activation [110]. Schiffbauer et al. related that preoperative MEG correlated well 
with DCS in patients with brain tumors and may be considered an accurate adjunct for 
preoperative mapping [111]. In a prospective study involving 24 patients with tumors lo-
cated near the primary motor cortex, Tarapore et al. reported a high correlation between 
MEG and nTMS [112]. Nonetheless, the low availability due to the high costs of this 
method is still a limiting factor for its clinical use. MEG has been also used for predicting 
postoperative neurological outcome in patients with brain gliomas. Patients with in-
creased functional connectivity presented a higher rate of postoperative deficits at 1 week 
and 6 months than those with decreased functional connectivity [113].  

The clinical importance of DTI-FT in the surgical treatment of brain tumors was 
demonstrated in many previous studies [114–120]. Unlike nTMS, MEG, and fMRI, which 
are responsible for mapping the brain cortex, DTI-FT has a decisive role in mapping the 
subcortical white matter (see Figure 6). Bello et al. related that DTI-FT presented a high 
sensitivity for locating motor and language tracts when compared with intraoperative 
SCS. Moreover, surgery duration and rate of intraoperative seizures were reduced when 
utilizing both methods [115]. Another study emphasized the relevance of DTI-FT in the 
preoperative and intraoperative planning of patients with brain tumors. DTI-FT modified 
surgical approach in 6 of 37 patients (21%) and defined resection margins in 18 of 37 pa-
tients (64%) [120]. Recently, studies have reported promising results when combining 
DTI-FT and nTMS for cortical and subcortical mapping and surgical planning (Figure 7) 
[93,119,121]. 

Figure 5. fMRI language task in a patient with high-grade glioma shows Broca’s area clearly lateral-
ized to the left side.

In addition, false-negative activation on fMRI can occur due to vascular changes, which
might lead to iatrogenic resection of eloquent tissues and, consequently, to postoperative
morbidity [93,109].

While fMRI provides information based on hemodynamic parameters, MEG directly
measures cortical activity through the detection of magnetic fields generated during neu-
ronal activation [110]. Schiffbauer et al. related that preoperative MEG correlated well with
DCS in patients with brain tumors and may be considered an accurate adjunct for preoper-
ative mapping [111]. In a prospective study involving 24 patients with tumors located near
the primary motor cortex, Tarapore et al. reported a high correlation between MEG and
nTMS [112]. Nonetheless, the low availability due to the high costs of this method is still
a limiting factor for its clinical use. MEG has been also used for predicting postoperative
neurological outcome in patients with brain gliomas. Patients with increased functional
connectivity presented a higher rate of postoperative deficits at 1 week and 6 months than
those with decreased functional connectivity [113].

The clinical importance of DTI-FT in the surgical treatment of brain tumors was
demonstrated in many previous studies [114–120]. Unlike nTMS, MEG, and fMRI, which
are responsible for mapping the brain cortex, DTI-FT has a decisive role in mapping the
subcortical white matter (see Figure 6). Bello et al. related that DTI-FT presented a high
sensitivity for locating motor and language tracts when compared with intraoperative
SCS. Moreover, surgery duration and rate of intraoperative seizures were reduced when
utilizing both methods [115]. Another study emphasized the relevance of DTI-FT in the
preoperative and intraoperative planning of patients with brain tumors. DTI-FT modified
surgical approach in 6 of 37 patients (21%) and defined resection margins in 18 of 37 patients
(64%) [120]. Recently, studies have reported promising results when combining DTI-FT and
nTMS for cortical and subcortical mapping and surgical planning (Figure 7) [93,119,121].

Although this method has proven to be accurate and reliable, care must be taken when
utilizing intraoperatively due to the occurrence of brain shift. The concomitant use of SCS
is, therefore, strongly recommended.

DCS and SCS are considered the gold standard for intraoperative mapping and have
been shown to increase the safety of surgical procedures and EOR [93,122–126].
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Figure 7. Tractography based on nTMS is a useful adjunct tool in the surgical treatment of glioblastoma.

A meta-analysis involving 8091 adult patients with glioma demonstrated that individ-
uals who underwent resection with intraoperative stimulation mapping (ISM) had a better
neurological outcome and a higher rate of GTR than those without ISM [127]. Another
clinical report compared two series of patients who had undergone surgical resection of
LGG (with and without ISM) and found similar results regarding neurological outcome
and EOR [128].

While brain mapping aims to localize the anatomical areas that are responsible for
eloquent functions in order to preserve them during surgery, intraoperative monitoring
aims to check the functional status of relevant neuronal pathways (e.g., pyramidal, sensory,
and auditory) during neurosurgery.

Previous clinical studies reported that intraoperative monitoring with motor-evoked
potentials (MEPs) correlated well with postoperative outcome and influenced the course of
surgery in patients with glioma, brain metastasis, and intractable focal epilepsy [124,129,130].
Another study with 73 patients undergoing insular glioma surgery showed similar re-
sults [131]. The combined use of sensory-evoked potentials (SEPs) and MEPs has been
shown to be feasible, and its use is currently a routine in neurosurgical centers. In addition,
SEP phase reversal provides a reliable intraoperative localization of the central sulcus [132].
The use of intraoperative neurophysiology plays an important role in the surgical treatment
of GBM concerning quality of resection and survival [133]. A 171-patient series reported
that even though intraoperative neurophysiology led to transient motor impairment, it did
not affect functional outcome [133].
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Seidel et al. recently described a new method of intraoperative subcortical mapping,
which is performed synchronously with tumor resection [134]. They reported a 5-year
series of patients who underwent surgery for tumors located adjacent to the corticospinal
tract (CTS) (distance to CTS < 1 cm) [134]. The authors described a dynamic mapping by
integrating the probe at the tip of a new suction device [134]. One-hundred eighty-two
patients were operated with this new mapping technique [134]. At 3 months, only three
patients had a persisting motor deficit that was caused by direct mechanical injury [134].
Another mapping technique involves the use of monopolar stimulation with the train-
of-five technique. In this technique, motor thresholds are used to evaluate a current-to-
distance relation [135,136]. This enables the surgeon to adjust the speed of resection when
approaching the corticospinal tract [135,137]. Rossi et al. developed an advanced mapping
technique used for tumors located within the primary motor cortex or subcortical motor
pathways [138]. They used high-frequency stimulation (HF-To5 and HF-To2) in the exposed
motor cortex in order to establish the safe entry zone for the corticectomy [138]. In addition,
they used the same technique to map the subcortical structures and define when tumor
resection should be stopped [138].

Intraoperative language mapping has also been performed through a combination of
awake surgery (AS) and DCS with positive results and relative safety [125]. AS combined
with DCS, SCS, and intraoperative neuromonitoring (IONM) is considered a very effective
tool for the surgical treatment of highly eloquent brain tumors [121,139]. Studies have
demonstrated that AS is safe, well tolerated by patients, and may be associated with lower
costs than surgery under general anesthesia (GA) [140–142]. However, a comprehensive
cost-effectiveness analysis of this method has not been performed to date. Gerritsen et al.
suggested that surgical resection of GBM under AS is associated with greater EOR and less
late minor postoperative complications as compared with craniotomy under GA [143]. See
Figure 8.

Another clinical report with 309 consecutive patients who underwent AS for brain
tumors located near eloquent cortex (language, motor, and sensory) concluded that negative
mapping of eloquent areas provided a safe margin for tumor resection and was associated
with a low incidence of postoperative deficits [144]. Nevertheless, they reported that the
identification of eloquent areas increased the risk of postoperative deficits, likely indicating
the proximity of functional cortex to tumor [144]. Some other studies have reported lower
rates of postoperative complications, shorter hospitalizations, and greater rates of GTR [145–147].
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7. Confocal Intraoperative Microscope, Intraoperative Mass Spectrometry and Laser
Interstitial Thermal Therapy: Current Trends

Since GBMs are highly infiltrative primary brain tumors, scientists are developing
strategies for optimizing their surgical resection at a cellular level. The confocal intra-
operative microscope (CIM) emerges as a method that provides microscopic images of
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tissues in vivo during surgical procedures, thus improving the resection of tumor mar-
gins [148,149].

In 2010, Sankar et al. presented their initial experience with a handheld, miniaturized
confocal microscope in a murine brain tumor model [150]. They reported that the method
may help to avoid sampling error during the biopsy of heterogeneous glial tumors and may
assist surgeons in detecting infiltrative tumor margins during surgery [150]. Furthermore,
Sanai et al. described the results of their clinical study with 33 patients with suspected brain
tumors. All patients received intravenous sodium fluorescein, and optical biopsies were
obtained within each tumor and along the tumor margins [151]. Afterwards, corresponding
pathologic specimens were collected and compared by a neuropathologist in order to
identify the concordance for tumor histology, grade, and margins [151]. They described
that among HGGs, vascular proliferation, as well as tumor margins were identifiable
using CIM [151]. Another study detailed the experience with CIM in 50 microsurgical
tumor resections. A concordance rate of 92.9% with the blinded histopathological analysis
was reported [152]. Scientists are now working on strategies to automatize the tissue
differentiation through an algorithm based on the machine learning concept in order
to promote a rapid and reliable categorization of the histopathological findings during
CIM-assisted surgery [153].

Mass spectroscopy is a method that provides the differentiation between normal tissue
and tumor based on their molecular profile. It is well known that normal tissue and cancer
present different molecular profiles, not only quantitatively, but also qualitatively. Agar
et al. introduced the integration of desorption electrospray ionization mass spectrometry
(DESI-MS) for in vivo molecular tissue characterization and intraoperative definition of
tumor boundaries [154]. They used the DESI-MS in a patient with recurrent left frontal
oligodendroglioma, World Health Organization grade II with chromosome 1p19q codele-
tion and reported that the measured data showed an association between lipid constitution
and tumor cell prevalence. Another advantage that they reported was the fact that patients
do not have to receive systemic injection of any agents [154]. Pirro et al. described the
results for 73 biopsies from 10 surgical resections and detailed that DESI-MS allows the
detection of glioma and the estimation of high tumor cell percentage at surgical margins
with 93% sensitivity and 83% specificity [155]. In addition, the study reported that more
than 50% of unresected tumor was found in one-half of the margin biopsy smears, even
when postoperative MRI suggested GTR [155]. Another study showed that DESI-MS was
able to detect the tumor metabolite 2-hydroxyglutarate (2-HG) from tissue samples of
gliomas [156]. Moreover, DESI-MS has also identified isocitrate dehydrogenase 1 mutant
tumors with high sensitivity and specificity within minutes, thus providing diagnostic,
prognostic, and predictive information [156].

The principle underlying laser-induced interstitial thermotherapy (LITT) is the cytore-
duction of the tumor tissue by local thermocoagulation [157]. Carpentier et al. investigated
the effects of LITT in four patients with recurrent GBM who were ineligible for a second
resection. They inserted a fiber-optic applicator within the tumor, and LITT was performed
under continuous magnetic resonance thermal imaging (MRTI). They reported that the
procedure was well tolerated with no deterioration of neurological function. Moreover,
postoperative MRI showed a decrease in tumor sizes [158]. A multicenter study retro-
spectively investigated 34 patients with difficult-to-access HGGs who underwent LITT.
The 1-year estimate of OS was 68 ± 9% and median PFS was 5.1 months [159]. LITT
is a minimally invasive treatment modality for patients with brain tumors that showed
promising results in clinical studies and is associated with decreased morbidity [159].

8. Raman Spectroscopy and Optical Coherence Tomography: The Future of
Glioblastoma Surgery?

Raman spectroscopy is an experimental method that provides a biochemical sig-
nature of a tissue, with the potential to provide intraoperative identification of tumor
margins [160]. Jermyn et al. developed a handheld contact Raman spectroscopy probe for
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intraoperative detection of brain tumors. They reported a sensitivity of 93% and specificity
of 91% in differentiating normal brain from dense cancer and normal brain invaded by
tumor cells [161]. The study concluded that this technology may be able to classify cell
populations in real time, thus guiding surgical resection and helping the decision-making
process [161]. In addition, other experimental studies with frozen samples demonstrated
similar results [160,162]. Neidert et al. established a workflow for stimulated Raman
histology (SRH) serving as an intraoperative diagnostic tool in the neurosurgical operating
theater of a large European neurosurgical center (see Figure 9) [163]. They reported an
easy implementation of the new experimental method into the workflow of neurosurgical
resection of tumors [163]. However, certain prerequisites related to the acquisition of tissue
samples, data processing, and interpretation must be considered [163]. In a subsequent
work of this group, Strähle et al. quantified the neuropathological interpretability of SRH
in a routine clinical setting [164]. They performed SRH on 117 samples from 73 cases of
brain and spine tumors. The authors reported an accuracy of neuropathological diagnosis
based on SRH images of 87.7%, which was not inferior to the current standard of fast-frozen
hematoxylin-eosin-stained sections (88.9%) [164]. The rise in the use of Raman spectroscopy
is highly interconnected with the development of machine learning models and techniques.
A study has reported results of a machine learning model with an ability to discriminate
cancer cells from healthy cells with an accuracy of 92.5% [165]. Although this method
has shown promising results in clinical and experimental studies, further investigation is
required in order to establish the real usefulness of this strategy.
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Optical coherence tomography (OCT) is an optical imaging technique that functions
as an optical biopsy and provides images of tissues in real time, without the need for the
excision and processing of the samples [166].

In 1998, Boppart et al. evaluated the feasibility of using OCT as a real-time intraopera-
tive technique to identify an intracortical melanoma. They used a cadaveric human cortex
with metastatic melanoma in this study and reported an effective differentiation between
normal cortex and tumor tissue [167]. Another experimental study evaluated the role of
OCT in differentiating normal brain and tumor tissue in a mouse model and human biopsy
specimens. It was concluded that OCT was able to identify and differentiate those tissues
in both murine and human models [168]. In addition, Kut et al. obtained fresh ex vivo
human brain tissues from 32 patients with grade II-IV brain cancer and 5 patients with
non-cancer pathologies [169]. The study demonstrated that pathologically confirmed brain
cancer had lower optical attenuation values at both the solid tumor and infiltrated zones
when compared with non-cancer white matter [169]. Afterwards, they used the attenuation
threshold (5.5 mm−1) to confirm the intraoperative feasibility of performing OCT-guided
surgery in a murine model [169]. The study concluded that OCT was able to differentiate
cancer from non-cancer tissue [169]. OCT is an emerging optical technology that may help
neurosurgeons achieve maximum safe resection of GBM in the near future. Its potential
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benefits were demonstrated in small experimental and clinical studies. Consequently,
high-quality studies on this topic are desirable.

9. Conclusions

GBM is a devastating disease with a poor prognosis despite advances in recent years.
The combination of surgery and standard radiochemotherapy represents the optimal treat-
ment for combating this lethal condition. Regarding surgical resection of GBM, maximum
safe resection represents the golden rule of this treatment modality. Surgical adjuncts such
as fluorescence-guided surgery, iMRI, IOUS, IORT, brain mapping techniques, CIM, IMS,
LITT, RS, and OCT may be used when properly indicated in order to improve the survival
and quality of life of these patients. Many clinical and experimental studies have been
published in recent years, and new strategies are released on a frequent basis. However,
high-quality evidence is still warranted for most of these new techniques.
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