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Abstract: Model-based verification uses a model to reason about the correctness of a real system.
This requires the model and the system to be conformant, such that verification results on the model
can be transfered to the real system. Especially for hybrid systems, which combine discrete and
continuous behavior, defining and checking conformance is a difficult task. In this work, we present
reachset conformance for hybrid systems that transfers safety properties from a model to the real
system. We show how a model can be adapted to be conformant to measurements of a real system
and demonstrate this for a real autonomous vehicle. The obtained reachset conformant model can be
used for the verification of safety-critical properties, such as collision avoidance.

Keywords: conformance; reachability analysis; formal verification; hybrid systems; automated vehi-
cles; uncertain systems
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1. Introduction

The amount of technical systems operating autonomously and without human in-
terference is continuously growing. It is of utmost importance to demonstrate that such
autonomous systems cannot harm people, cause damage, or breach any other important
specification. Autonomous vehicles and moving robots are examples of such safety-critical
applications, where the discrete and continuous aspects are tightly intertwined—these
systems are often referred to as hybrid systems.

Model-based formal verification is an important approach toward safer systems. In
particular, reachability analysis computes the set of reachable states of a model and can be
used to check whether unsafe states are possible [1,2]. To include different possible behav-
iors of the real system, verification models for reachability analysis are non-deterministic.
This means that at each point in time, there might be multiple evolutions of the model, and
one has to reason about all of them. The basic assumption of model-based verification is
that the model is related to the system in a way that the safety of the system can be implied
if the safety of the model has been shown. We call a relation between a system and a model
conformance relation and argue that it should also be defined formally. Otherwise, one cannot
be sure that the used conformance relation allows to transfer safety properties from the
model to the real system, which would make the formal verification effort useless. Hence,
the conformance relation connects the formal world of reasoning with the real world.

A major challenge of a verification model is that it simultaneously has to be amenable
to verification and conformance. This is challenging because (i) a model with significant
non-determinism is conformant, but it might have too many reachable states to verify
properties (model 1 in Figure 1) and (ii) a model with insignificant non-determinism is
amenable for verification, but it might not be conformant to the real system because some
states cannot be produced by the model (model 4 in Figure 1). Between these two extremes
are the most useful models, amenable for both verification and conformance (model 2 and
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model 3 in Figure 1). We argue that an optimal model has just enough non-determinism
such that reachset conformance holds to sustain the most freedom possible for verification.
A method is needed to build verification models maximizing verification capabilities while
ensuring conformance.

determinism increases

model is verifiable

model is conformant

model 1: too big model 2: suboptimal model 3: optimal model 4: too small

Figure 1. The reachable states (gray area) of several verification models as well as the unsafe states
(dotted area) are shown. For increasing determinism, the set of reachable states is becoming smaller.
When the reachable set is too small to contain all possible states of the real system, it is no longer
conformant. Also, when the reachable is too big, it intersects with the unsafe state, and thus, it
cannot be used for successful verification. The optimal model has the most determinism while being
conformant.

In a previous paper [3], we introduced reachset conformance and showed how to test
it for a given (hybrid-system) model M and measurements of a (real) system S. Here, we
extend these results in several aspects:

Natural choice: We show that safety properties can be transfered from M to S exactly
in the case when reachset conformance between M and S holds. Therefore, reachset
conformance is the natural choice to transfer safety properties.

Quantified reachset conformance check: A robustness measure is introduced, which
is based on the distance of a point to the boundary of a reachable set. In our setting,
reachable sets are represented as zonotopes, and as a result, exclusion can be checked using
linear programming techniques. This is computed for the measured data of the real system
of some input and the output of the verification model for the same input, cf. Figure 2.

Model adaptation: We show how to automatically adapt the non-determinism of a
model M, such that M becomes reachset-conformant to S. This is computed by identifying
bounds on non-deterministic parameters. The bounds are optimized using Bayesian
optimization to minimize the non-determinism while being conformant, Figure 1. In
addition to building a reachset-conformant model, the method maximizes the verification
capabilities of the model, cf. model 3 in Figure 2. Thus, our method helps to overcome the
burden of building a formal verification model.

Autonomous vehicle application: We apply our methods to a real automated ve-
hicle and construct a verification model of the vehicle. Measured driving data of the
automated vehicle were recorded, and our model adaptation was applied to identify the
non-determinism of the verification model such that the model is reachset-conformant to
the automated vehicle. Our verification model is amenable to verification, showing that
our approach is applicable to the highly relevant use case of autonomous vehicles. This is
the first work showing reachset conformance for a real (autonomous) vehicle.

The paper is structured as follows: First, we discuss related work on conformance
and verification in Section 2. In Section 3, we present the underlying formalism of hybrid
automata and other preliminaries. In Section 4, we present reachset conformance, prove
that it is necessary and sufficient to transfer safety properties, and compare it to trace con-
formance, which is discussed in [4]. In Section 5, we present a testing method for reachset
conformance. In Section 6, we introduce our model adaptation algorithm. In Section 7, we
apply the presented techniques to a real vehicle and build a reachset-conformant vehicle
model. Finally, we give some conclusions and future directions.
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Figure 2. Overview of the reachset conformance testing and model adaptation methods.

2. Related Work
2.1. Verification

An overview of safety verification for hybrid systems is provided by Guéguen et al. [1].
Schupp et al. [5] give an overview of methods for the reachability analysis of hybrid
systems and discuss their challenges with respect to verification. In this work, we focus
on reachability-based verification techniques. In the context of our application example
autonomous vehicles, the reachability analysis tool CORA [6] has been used for the verification
of cooperative and non-cooperative maneuvers of autonomous vehicles [7]. The reachability
analysis computations are fast enough to allow online verification while the vehicle is
driving [7].

2.2. Conformance

A variety of conformance relations have been defined. For brevity, we are only
mentioning the most important ones here and refer to the survey by Roehm et al. [8]
for a detailed overview of different conformance relations. Since properties are typically
specified on output traces, one important notion of conformance is the trace conformance for
hybrid automata [4] and similarly hybrid input–output conformance [9]. It requires that all
possible output traces of one system S are also output traces of the other system M. Trace
conformance reflects the conventional notion of conformance of discrete automata where
traces of one system also have to be traces of the other one [10]. When trace conformance
holds, universally quantified properties are transfered, such as metric temporal logic
formulas [11].

Trace conformance has been generalized to approximate versions, which do not require
the traces of one system to be included in the other but allow some deviation. The (τ, ε)-
closeness [12] allows for some value-differences as well as time-shifts. (τ, ε)-closeness
testing is performed by using a robustness value as a heuristic to guide the testing to
non-conformant behavior [13]. ε-δ-similarity is a similar notion to (τ, ε)-closeness but
does not allow local time disorder in the comparison of two traces [14]. The ε-Skorokhod
conformance [15] uses the Skorokhod metric to quantify the distance between traces. The
Skorokhod distance can be also computed between reachpipes [16], which are for instance
traces with an ε-ball around them. One problem is that approximate relations do not
transfer properties directly, but the property alters on transference [11,15].

So far, we only reviewed conformance relations applied to the output space. On the
contrary, there are a variety of other conformance relations relating states of the systems
which are called simulation relations [17–22]. The basic idea is that states of both systems
are related such that evolutions from any state of one system can be mirrored by evolu-
tions of a related state of the other system. There also exist approximative versions of
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simulation relations, which require the states to just be approximately similar [23–25]. On
one hand, simulation relations transfer more properties compared to trace conformance.
On the other hand, they require the systems to be more similar to each other than trace
conformance. Since simulation relations require knowledge of the states, real systems
cannot be considered since their exact state is unaccessible, except when all states can be
measured. Hence, we will focus on comparing the reachset conformance relation to trace
conformance (cf. Section 4). For a discussion between simulation relation and reachset
conformance, we refer to the survey by Roehm et al. [8].

While we have introduced reachset conformance in 2016 [3], there is already some
work in the direction of identification of non-determinism for reachset conformance. Liu
and Althoff [26] have published a method to identify non-determinism for dynamical
systems to be reachset conformant and applied it to the reachset conformance of robots.
Kochdumper et al. [27] have shown a synthesis algorithm for the reachset conformance
of linear hybrid systems leveraging the internal structure of the hybrid system. Further-
more, methods to bound additive errors for discrete-time dynamical models have been
published [28,29]. Contrary to these methods, our method does not require any special
knowledge on the hybrid system and is not restricted to a subclass of hybrid systems.

There exist methods for finding the parameters of a deterministic hybrid system to
approximate measured data [30]. Our work differ in that we are identifying the non-
determinism needed to include measurements in a non-deterministic model.

3. Preliminaries

In this paper, we use hybrid automata as a modeling formalism. A hybrid automaton
can be seen as a finite automaton whose discrete states are annotated with differential
inclusions that define the non-deterministic evolution of the continuous states [31]. An
overview of definitions of hybrid automata and their differences has been presented by
Frehse [17]. In our work, a (non-deterministic) hybrid automaton H consists of

• A finite set of locations Q ⊂ N;
• A continuous state space X ⊆ Rn;
• An initial set IH ⊆ Q× X;
• A continuous input space U ⊆ Rm;
• A flow function FH : Q× X×U → P(X), where P(X) is the power set of X;
• An invariant set inv(q) ⊆ X for each location q;
• A set of discrete transitions T ⊆ Q×Q;
• A guard set guard((q, q′)) for each transition (q, q′) ∈ T ;
• A jump function jump(q,q′) : X → P(X) for each transition (q, q′) ∈ T ;
• An output space O ⊆ Rl ;
• An output map out : Q× X → O.

For a given input function u : R+ → U, which maps each point in time to an input
value, a state trace x of H is

x = (q0, x0(.))(q1, x1(.)) . . . (1)

with discrete states qi ∈ Q, continuous state functions xi : [ti, ti+1] → X, and with the
initial state (q0, x0(0)) ∈ IH . The transitions from qi to a new state qi+1 have to satisfy
(qi, qi+1) ∈ T . The continuous state function xi(.) has to satisfy the invariant set xi(t) ∈
inv(qi) and the differential inclusion ẋi(t) ∈ FH(qi, xi(t), u(t)). Upon a discrete transition
(qi, qi+1), the continuous state satisfies xi(ti+1) ∈ guard((qi, qi+1)) as well as xi+1(ti+1) ∈
jump(qi ,qi+1)

(xi(ti+1)). Note that we have a non-deterministic initial state, non-deterministic
flow and jump functions, so there are multiple state traces possible for a given input
trajectory u(.). The set of state traces for a given hybrid automaton H with initial set IH
under input u(.) is denoted by straces(H, u(.), IH).
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While state traces represent the internal states of the system, they are not observable.
Instead, we are able to observe the output trace τ : R+ → O which is the mapping of the
state trace x onto the observable output space via the map out:

∀i ∀t ∈ [ti, ti+1) : τ(t) = out(qi, xi(t)). (2)

The set of all output traces under an input trajectory u(.) and the initial set IH is
denoted by otraces(H, u(.), IH). Therefore, the set otraces(H, u(.), IH) represents all possible
observable behaviors over time for the given u(.) and IH . If otraces(H, u(.), IH) has one
element only for every u(.) and a single initial state, the hybrid automaton H is called
deterministic and non-deterministic otherwise.

The already existing trace conformance, which we talked about in the overview section,
can now be defined formally:

Definition 1 (trace conformance [4]). Let S and M be two systems with the same input set and
output space, and with the initial sets IS and IM, then S is trace conformant to M, which is denoted
by S �T M, if

otraces(S, u(.), IS) ⊆ otraces(M, u(.), IM) (3)

holds for all u(.) ∈ U(.).

This means when trace conformance holds, all observable behavior over time of S is
also observable of M. A safety property consists of a set of unsafe output states Bt for every
time t. If this set is never reachable, i.e.,

∀τ ∈ otraces(H, u(.), IH) ∀t ≥ 0 : τ(t) 6∈ Bt . (4)

then H is considered safe.
Given such a safety property with Bt and a model M, verification deals with algorith-

mically checking that (4) holds. When reasoning about the future evolution of a system H,
one has to consider all—potentially infinitely many—output traces. With infinitely many
traces, dealing with the output traces directly is intractable. One important approach to
solve this problem is to use reachability analysis. For one point in time t, the reachable set
(or shorter: reachset) of outputs of the hybrid automaton H at time t contains all output
states which are possible at time t for a given input trajectory u(.):

Reacht(H, u(.), IH) = {τ(t) | τ ∈ otraces(H, u(.), IH)}. (5)

We call the sequence of these reachable sets Reacht(H, u(.), IH) over time t as the reach
sequence of H. Note that the elements of otraces are functions over time, whereas the set
Reacht consists of output states for one point in time t only. Reachable sets can be used
to reason about properties of H by verifying that no unsafe set Bt of a safety property is
reachable:

∀t ≥ 0 : Reacht(H, u(.), IH) ∩ Bt = ∅ .

Since the reach sequence is an abstraction of the output traces otraces(H, u(.), IH),
trace conformance is not the best relation for transference between reach sequences, as
described in Section 4. Therefore, we present reachset conformance in the following section.

Let us now more formally and generally specify the problems addressed in this paper.
Given a non-deterministic model M of a hybrid system S, the type of relation S � M
between S and M needed to transfer any safety property ψ from M to S is:

S � M ∧ M |= ψ ⇒ S |= ψ, (6)

where S |= ψ means system S has the property ψ.
Let us also introduce a Gaussian process (Section 6.4, [32]) with parameter vectors

P = (p1, . . . , pn) and V = (v1, . . . , vn) as a function gp mapping the input p to a Gaussian
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distribution with mean m(p) and variance σ2(p). The (p1, v1) are the samples, and the
Gaussian process generalizes the mapping by estimating the similarity between different
values for p. The functions m(p) and σ2(p) are defined as [32]:

m(p) = k(p)TK−1c, σ2(p) = k(p, p)− k(p)TK−1k(p), (7)

where T is the matrix transposition, and k(p, p′) is a kernel function defined (in our case) as

k(p, p′) := θ0 exp(−θ1‖p− p′‖2) + θ2 + θ3 pT p′, (8)

k(p)T = (k(p1, p), . . . , k(ps, p)), c = (c1, . . . , cs), and the matrix K contains the entries
k(pi, pj) in the ith row and jth column. The parameters θi can be computed using hyperpa-
rameter optimization with P and V (Section 6.4.2, [32]).

4. Reachset Conformance

With the preliminaries from Section 3, we are now able to formally define the notion
of reachset conformance.

Definition 2 (reachset conformance [3]). Let S and M be two systems with the same input
space and output space. Let IS and IM be the initial sets of S and M, respectively; then, S is
reachset-conformant to M, denoted by S �R M, if for all possible inputs u(.) and t ≥ 0:

Reacht(S, u(.), IS) ⊆ Reacht(M, u(.), IM). (9)

Reachset conformance directly considers the non-determinism of models while still
being able to transfer safety properties.

Proposition 1. Let two systems S and M be given with S �R M and initial sets IS and IM,
respectively. Let a safety property with forbidden state sets Bt be given for all t. For any input
trajectory u(.), the following transference holds for every t:

Reacht(M, u(.), IM) ∩ Bt = ∅ ⇒ Reacht(S, u(.), IS) ∩ Bt = ∅. (10)

Proof. Since S is reachset conformant to M and thus Reacht(S, u(.), IS) is a subset of
Reacht(M, u(.), IM) for all t, the proposition follows immediately.

The following theorem shows that reachset conformance is the natural choice for the
transference of safety properties.

Theorem 1. Let two systems S and M be given. The transference of safety properties is equivalent
to reachset conformance: (10) holds for all t and all possible Bt ⇔ S �R M.

Proof. One direction follows from Proposition 1. Let us assume that (10) holds for all t
and all possible Bt. Choosing B′t := Rm \ Reacht(M, u(.), IM), which is the complement of
the reachable set of M at time t, the intersection of B′t and Reacht(M, u(.), IM) is obviously
empty. Since this property is transferable from M to S, the equation

Reacht(S, u(.), IS) ∩ (Rm \ Reacht(M, u(.), IM)) = ∅

holds, and thus, Reacht(S, u(.), IS) ⊆ Reacht(M, u(.), IM). This works for every t, and thus,
S is reachset conformant to M.

Although we are mainly interested in the transference of safety properties, there are
temporal fragments which transfer with reachset conformance. For instance, temporal prop-
erties formalizable in reachset temporal logic, which were introduced by Roehm et al. [33].
However, temporal properties cannot be transfered in general, as the reach sequence is an
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abstraction of the output traces. Reachset conformance is a weaker conformance notion
than trace conformance:

Theorem 2. Let S and M be two systems with the same input set and output space; then,

S �T M ⇒ S �R M (11)

holds. The converse holds if the system M (and thus S) is deterministic.

Proof. Let u(.) be an input trajectory, t be a point in time, y ∈ Reacht(S, u(.), IS) and
S �T M. Then, there is a τ ∈ otraces(S, u(.), IS) with τ(t) = y. From S �T M, it follows
that τ is also a trace of M and y ∈ Reacht(M, u(.), IM). The proposition follows, because the
aforementioned implication holds for all y, t, and u(.). When the system M is deterministic,
there is only one trace in otraces(M, u(.), IM), and the reachable set for any time consists of
only one state. Hence, S has the same trace and is also deterministic.

This shows that reachset conformance is weaker compared to trace conformance and
that we can transfer properties between reachsets in cases where trace conformance does
not hold.

5. Reachset Conformance Testing

In this section, we show how to check the reachset conformance of a real system S
against a model M. Additionally, we introduce a robustness measure which quantifies
conformance. Since proving a physical model against the real world is not possible, the
goal is to check if the non-conformance S 6�R M can be shown by a counter-example for a
given input u(.). Hence, we have to prove that the negation of (9) holds, which is

∃u(.) ∈ U(.) ∃t ≥ 0 : Reacht(S, u(.), IS) 6⊆ Reacht(M, u(.), IM). (12)

Our test to check reachset conformance consists of three steps:

1. Obtain measurements of the system S as an underapproximation Reachu
t (S, u(.), IS) ⊆

Reacht(S, u(.), IS) of the reachable states of S for a finite set T of points in time t ∈ T.
2. Compute an overapproximation Reacho

t (M, u(.), IM) ⊇ Reacht(M, u(.), IM) of the
reachable set of M for all t ∈ T.

3. Check if Reachu
t (S, u(.), IS) 6⊆ Reacho

t (M, u(.), IM) holds for any t ∈ T.

If for any t a non-inclusion is found, a counter-example is found, and non-conformance
is proven. In the following, we discuss the steps in detail.

5.1. Obtain Measurements of S

Real measurements are subject to noise, and we assume there exists an error ε, which
bounds the deviation of all measurements (ti, τi) to the true trace τ:

max
i

d2(τi − τ(ti)) ≤ ε. (13)

In our case, we consider d2(.) to be the Euclidean 2-norm. Taking all runs of S for the
same input u(.), this approach builds up reachable sets underapproximations.

5.2. Overapproximation of the Reachable Sets of M

An overapproximation of M can be efficiently computed using reachability analysis.
Our work builds on the tool CORA [6] to compute reachable set overapproximations
for hybrid automata with nonlinear continuous dynamics. CORA uses zonotopes to
represent reachable sets due to their efficiency in linear transformations and Minkowski
additions [34].
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Definition 3 (Zonotope). An n-dimensional zonotope Z in generator representation (G-representation)
is the set

Z = z(c, 〈g1, . . . , gm〉) :=

{
c +

m

∑
i=1

λigi

∣∣∣∣∣λi ∈ [−1, 1]

}
, (14)

where c ∈ Rn is called the center and g1, . . . , gm ∈ Rn are called the generators of Z.

5.3. Exclusion Check

For a given t ∈ T, we have to check if a given measurement τi with t = ti is excluded
from Reacho

t (M, u(.), IM). Since we consider the measurement error, we have to check that
all possible candidates for the real value are not contained to prove exclusion. Hence, the
ε ball around τi has to be completely outside the reachable set to prove that a counter-
example exists.

The distance is important information, which we will use for the model adaptation.
Therefore, we are using support functions to define a distance metric (note that the approach
using support functions can be applied to other convex (reach-)sets representations as
well) [35].

Definition 4 (robustness). Let a vector d ∈ Rn \ {0}, a point x ∈ Rn, and a zonotope Z with
center c and m generators gi be given. Then

ρd(Z, x) :=
dTc + ∑m

i=1 |dT gi| − dTx√
dTd

(15)

is the directed robustness of Z and x in direction d. The robustness of x and Z is defined as
ρ(Z, x) := mind ρd(Z, X).

If the robustness metric ρ(Z, x) is negative, x lies outside of Z and the robustness
gives the negative of the minimal distance between Z and x in the Euclidean norm. If x is
contained in Z, the robustness is the distance of x to the surface of Z. Hence, the robustness
metric enables us to check exclusion.

Theorem 3. A point x ∈ Rn is not contained in a zonotope Z if and only if the robustness
is negative:

x 6∈ Z ⇔ ρ(Z, x) < 0 ⇔ ∃d : ρd(Z, x) < 0

Proof. Let us assume that x ∈ Z and Z has the generators gi. Then, there exists λi with
x = c + ∑ λigi and |λi| ≤ 1. For any d holds

ρd(Z, x) =
dTc + ∑ |dT gi| − dT(c + ∑ λigi)√

dTd

= ∑
|dT gi| − λi dT gi√

dTd
) ≥ 0

The other direction follows analogously.

For a given point τi with error ε, we are able to show exclusion of the real measurement
by checking ρ(Z, τi) > ε (see Proposition 5, [3]). Hence, ρ(Z, τi) has to be computed. This
can be achieved by sampling directions d and approximating the robustness, as shown in [3].
Another approach is to use linear programming to find the direction d which minimizes
ρd(Z, x).
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6. Model Adaptation

As the verification capabilities of a model are highly dependent on the sizes of the
reachsets, the measure mver(M) on the reachsets is used to determine the verification capa-
bilities:

mver(M) = avg
t

Vol(Reacht(M, u(.), IM)), (16)

where the volume function Vol is a metric on the reachable sets. Here, we are using the
volume of the reachsets

Vol(Reacht(M, u(.), IM)) =
∫

Reacht(M,u(.),IM)
1dx, (17)

but the P-radius [36] and F-radius [37] can be used as well in case of computational
limitations. Similarly, the conformance measure mcon f (M) is defined as

mcon f (M) = min
ti ,τi

ρ(Reachti (M, u(.), IM), τi) (18)

to show how robust the model is conformant for given measurements (ti, τi) of the real
system S under input u(.) and initial condition IM. Hence, an optimal model Mg (with
respect to Figure 1) can be defined as

Mg := min
M∈M

mver(M), with mcon f (M) ≥ 0 (19)

whereM is the set of all possible models. For computational feasibility, we assume thatM
can be represented by a parametrization that is a surjective projection π : Rl →M, π(p) =
M. The idea is to represent possible amounts of non-determinism by parameters as shown
in the following example.

Example 1. Let us consider the toy example of a bouncing ball. At one point in time, it has a
certain height h over the ground and a velocity v. Over time, it is accelerated by the gravity and
bounces off when reaching the ground. As non-determinism can be involved in the acceleration
(continuous part) and the bouncing off (discrete part), the possible choices of the non-determinism
can be modeled with parameters (p1, p2)

T ∈ R2 resulting in the differential inclusions ḣ(t) = v(t),
v̇(t) ∈ [−8.5− p1,−8.5 + p1] and jump function jump(h, v) = (−h, [0.75− p2, 0.75 + p2]v)
with guard h = 0. Using measurements of a real bouncing ball, p1 and p2 can be obtained by
solving (19).

In this paper, Equation (19) is solved using Gaussian processes (see Section 3) and
Bayesian optimization with inequality constraints [38]. The central idea of Bayesian opti-
mization is to use existing function evaluations to build probabilistic regression models.
These models are Gaussian processes and are used to select the next parameter to test. In our
setting, the Gaussian processes gpcon f and gpver are built to approximate the conformance
measure and the verification measure:

gpcon f (p) ≈ 3
√

mcon f (π(p)) and gpver(p) ≈ mver(π(p)).

As the most interesting region for gpcon f is near zero, approximating the cube root
instead of mcon f (π(p)) has been shown beneficial in our application in Section 7 for the
learning process.

The model adaptation works by executing the following steps:

1. Initialize vectors P = p1, . . . , pn with random values and calculate the vectors V =
v1, . . . , vn, C = c1, . . . , cn via vi = mver(pi), ci = mcon f (pi).

2. Generate gpcon f and gpver using P, V, and C.
3. Find pn+1 minimizing gpcon f with gpver > 0 using Bayesian optimization [38], add

pn+1 to P, and add vn+1 = mver(pn+1), cn+1 = mcon f (pn+1) to V and C, respectively.
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This iteration is completed iteratively until the probability is high that pj with vj = mini vi
is the solution of (19). Using gpcon f and gpver, this is measured using

isMin(vj) = 1−max
p

P(gpver(p) < vj)P(gpcon f (p) > 0)

as an end criterion.

7. Application of Reachset Conformance to an Autonomous Vehicle

Automated vehicles are an important application of hybrid systems. One main verifi-
cation task for automated vehicles is to ensure safe operation without collisions with other
traffic participants. Since there are too many real-world situations to verify all of them
beforehand, methods have been created to verify the automated vehicle online [39,40]. The
verification approach is model-based, which creates the necessity to check that the model
and the real vehicle are conformant such that verification results can be transfered.

The following demonstrates when to apply reachset conformance by measuring data
of a real automated vehicle and building a reachset conformant model for it with the model
adaptation method. As we have a limited amount of experimental data, one should increase
the amount of measurements for real-world verification applications.

7.1. Experimental Setup

Four different types of maneuvers with a velocity of vx = 10 m/s and a maximum
lateral acceleration ay = 2 m/s2 have been considered. As visualized in Figure 3, the four
maneuvers are

1. Single lane-change maneuver: One single lane-change from a right lane to the left
lane, which is a typical maneuver for automated vehicles.

2. Double lane-change maneuver: After a single lane-change, the vehicle stays on the
left lane for 4 s and switches back to the initial lane. This is a standard overtaking
maneuver.

3. Fast double lane-change maneuver: This maneuver is similar to the double-lane
change maneuver, but it immediately switches back to the right lane when on the
left lane. Such a maneuver occurs when avoiding obstacles on the road and is more
dynamic than the double-lane change.

4. Slalom maneuver: To challenge the model with measurements of a more dynamic
maneuver, a slalom maneuver was additionally included.

These maneuvers were selected based on the experimental capabilities of the driving
location and can be seen as basic maneuvers in an urban multilane setting. Each maneu-
ver was repeated five times with the average duration of a maneuver being 14.16 s at a
rate of 100 Hz. Overall, the total driven distance of the dynamic maneuvers within the
measurement data was around 3 km. The data were collected by Deutsches Zentrum
für Luft- und Raumfahrt (DLR) with their test vehicle (FASCar II, a Volkswagen Passat
TDI), which is equipped with a combined differential GPS receiver (DGPS) and inertial
navigation system (INS). All maneuvers used for conformance testing have been executed
in automated driving mode, i.e., closed-loop tracking of a predefined reference trajectory,
which is sent from a PC to a closed-loop tracking controller on a dSPACE Autobox. We
estimate the sensor error for the position of the vehicle by 5 cm and for the orientation of
the vehicle by an angle of 0.5◦.
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Figure 3. The planned trajectory (red) and the driving data (gray, shifted by multiples of 30 cm
in py for presentation purposes) for the maneuvers. (a) Single lane-change maneuver. (b) Double
lane-change maneuver. (c) Fast double lane-change maneuver. (d) Slalom maneuver.

7.2. Verification Model

The verification model contains of a steered vehicle model, which is combined with a
tracking controller providing the steering inputs based on the ideal maneuver trajectory.
Our vehicle model is based on the bicycle model [7,39]. The state space of the vehicle model
is 6-dimensional and has the states x = (px, py, ψ, vx, vy, ω)T, where px, py is the position
of the vehicle’s rear axle center in an earth-fixed coordinate system, and ψ is the orientation
of the vehicle. The speed of the vehicle’s rear axle center is given as (vx, vy)T in the vehicle
coordinate system. The velocity components are the respective projections to the vehicle’s
longitudinal and lateral axis. The vehicle’s yaw rate is given as ψ̇ = ω. The vehicle model’s
input vector u = (ua, uδ)

T contains the longitudinal acceleration and the steering angle.
The differential equations of the vehicle model are
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ṗx = vx cos(ψ)− vy sin(ψ) + ex

ṗy = vx sin(ψ) + vy cos(ψ) + ey

ψ̇ = ω + eψ

v̇x = ua + vy ·ω
v̇y = f f + fr − vx ·ω− b · ω̇

ω̇ = a
m
J

f f − b
m
J

fr

f f = −c f µg
b

a + b

(
vy + (a + b) ·ω

vx
− uδ

)
fr = −crµg

a
a + b

vy

vx

with constants J/m = 1.5, a = 1.16, b = 1.54, c f = 10.8, cr = 17.8, µ = 0.8, and g = 9.81.
The tracking controller by Hess et al. [41] was used consisting of a feed-forward

controller and a PD feedback term for the deviation from the reference trajectory.
The state space of the combined model was divided into eight regions which represent

the discrete states of the verification model. In each part, a Taylor expansion of the differen-
tial equations of the combined model is used as the differential equations of the verification
model. Since the main dimensions of interest are the position px, py and orientation ψ of
the vehicle, e.g., to detect possible collisions, these dimensions are used as the outputs and
mapped onto this subspace with the output map out. The parameters ex, ey, and eω are
injected as additive non-determinism [−ex, ex], [−ey, ey], and [−eω , eω ] into the differential
equations for x, y, and ω, respectively.

7.3. Reachset Conformance Testing

The initial points of all runs of a maneuver are used to build the initial set for the
model for that maneuver. Since the measurements contain some sensor error, the bounding
box of the initial points enlarged by the sensor errors is used as initial set IM of the model.
The pairwise direction check as described by Roehm et al. [3] is used to check for the
exclusion of measured data from the reachable sets of the three-dimensional output space,
considering the sensor error.

The model adaptation method from Section 6 has been applied to the model and the
measurements of the automated vehicle. The measure gpcon f for the mapping from the
parameters to the conformance measure after 30 iterations is visualized in Figure 4. In
the figure, one can see the estimated robustness of each combination of non-deterministic
bound parameters (ex, ey, eω). The red line consists of all parameters with mcon f (M) = 0,
which are the boundary between the conformant and non-conformanct parameter areas.
All parameter combinations on the upper right side of the red line can be considered as
conformant.

The white points represent the parameter combinations with which the exclusion
check has been executed to compute the robustness for the conformance measure. These
combinations were iteratively selected by gpcon f and used to update gpcon f . As one can
see in the figure, the white points are not uniformly distributed, but the density of points
is much higher near certain areas of the red line. This is a direct outcome of the model
adaptation algorithm. First, parameter combinations in the whole space of parameter
combinations are selected to obtain an initial understanding of the regions of interest. After
some iterations, the confidence of gpcon f increases, and more points near the expected
parameter combinations of the optimal model Mg are selected. Please note that the white
points in all subfigures are only projections of the three parameters to two parameters.
Even when the white points are sitting on the non-conformant side of the red line in the
subfigure, the non-projected parameters may not. In (a) and (b) in Figure 4, the red line
is winding in the lower part. This is due to approximation errors in gpcon f . However,
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this is not a problem for the method, as these areas do not contain the optimal parameter
combinations and thus are not explored further.

From Figure 4, the relation between the different parameters can be seen. The red
line in the subfigures with ex are mainly horizontal and vertical. This shows that the
non-determinism on x is independed to the non-determinism on y and ψ. Contrary, ey vs.
eω shows that when the lateral nondeterminism is increased, the nondeterminism of the
yaw rate can be reduced and vice versa. This shows that both have a similar impact on
the lateral movement of the vehicle in our maneuvers and is likely a result of the main
direction of travel in the x direction.

(a) (b) (c)
Figure 4. Conformance measure with respect to parameters as approximated by gpcon f . The red
line is the boundary between conformant and non-conformant parameters. (a) ex vs. ey, eω constant.
(b) ex vs. eω , ey constant. (c) ey vs. eω , ex constant.

The verification measure with respect to the parameters is visualized in Figure 5.
As in Figure 4, the verification measure is shown with the white points representing the
parameter combinations used. The shape of all projections is looking quite similar. This is
due to the monotonicity of the reachset sizes with respect to the non-determinism. When
one parameter is increased, the overall non-determinism increases, and thus, so does the
reachset size. In the origin, all parameters are zero, the model is deterministic, and the
reach sequence reduces to a trace, cf. Theorem 2.

(a) (b) (c)
Figure 5. Verification measure with respect to parameters as approximated by gpver. (a) ex vs. ey, eω

constant. (b) ex vs. eω , ey constant. (c) ey vs. eω , ex constant.

The reachsets of the optimal model are visualized together with the measurement
data in Figure 6. The optimal model has an interval width in the lateral position of 0.22 m
and in the longitudinal position of 0.47 m, which can be considered as good enough for all
considered driving tasks. Big uncertainty, such as over 0.5 m in the lateral position py, may
lead to situations where the vehicle could potentially be already on an adjacent lane and
a collision may be possible. Hence, we have built a reachset-conformant model which is
amenable for verification purposes.
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Figure 6. Projection of the measurements (black lines) and the reachsets of the model (gray area) to
the position for the single lane-change maneuver. (a) Overview. (b) Subfigure 1: Zoom on the initial
set (white box). (c) Subfigure 2: Zoom on the point in time, where the measured data comes closest to
the reachset boundary.

8. Conclusions

In this paper, reachset conformance was presented that is able to relate a model to the
system it models (and to other models as well). It was shown that reachset conformance is
the natural conformance relation for safety properties, because safety properties transfer
exactly in the case when reachset conformance does hold. Trace conformance implies
reachset conformance and is the same in the case of deterministic systems.

Reachset conformance testing of a verification model is completed by searching for
counter-examples with measurements of the real system. A robustness measure is intro-
duced to estimate the distance of the model to be conformant or non-conformant based
on the distance of a measurement to the reachable set of the verification model. Zono-
topes are used as the representation of reachable sets which makes the computation of the
robustness feasable.

A conformance measure is defined based on the robustness, and a verification measure
is defined based on the size of the reachable sets and used to estimate the applicability of
models for verification. The non-determinism of the model is considered as parametric,
and a model adaptation algorithm is introduced to search for an optimal model, which
minimizes the verification measure and has a positive value of the conformance measure.
The algorithm uses Bayesian optimization to approximate the conformance measure and
the verification measure and guides the search for the optimal parameters.

Finally, the presented methods are applied to an autonomous vehicle, for which data
measurements of real driving maneuvers have been recorded. A parametric verification
model is presented, and the methods of the paper are applied to find optimal parameters
for that model to maximize the verification capabilities while ensuring conformance. Since
the resulting reachable sets of the non-deterministic verification model have a size of at
most 0.22 m in the lateral direction and 0.47 m in the longitudinal direction, the model
produces small enough reachsets and can be used for verification purposes.

In future work, we want to collect extended amounts of driving data with a wider
range of maneuvers and build a verified model that can be run online. This will combine
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multiple existing research directions and show how complicated it is to run the full pipeline
for the verification of autonomous vehicles.
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