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Abstract 

The past decades of cancer research were primarily focused on identifying and understanding 

the role of protein-coding mutations. However, cancer development is characterized by 

extensive changes of regulatory landscapes, which are poorly understood at the functional 

level. Even more challenging than decrypting the tumor’s regulome, is the discovery of the 

cancer’s cell of origin or of subtle regulatory processes during cancer evolution. 

Likewise, although advances have been made in the genetic characterization of T cell acute 

lymphoblastic leukemia (T-ALL), genetic subtypes are clinically not yet considered as different 

disease entities due to a lack of understanding of subtype evolution and biology. 

Building on new mouse models, genetic tools, screening technologies and data analysis 

pipelines, this thesis addressed these challenges at different levels enabling high-throughput 

functional mapping of regulatory landscapes and evolutionary principles in oncogenesis. 

In the first part of this thesis, a genome-wide transposon screen was performed. To uncover 

regulatory landscapes of T-ALL, a method for the systematic perturbation of the non-protein 

coding regulatory genome was developed. Thereby, hundreds of regulatory elements and 

cancer genes involved in T-ALL were identified creating a comprehensive resource. Further, 

the evolutionary principles were interrogated in a prospective manner by mapping the stage 

and cell of origin at which transposon insertions occur. This approach enabled the discovery 

of molecular determinants of phenotypic diversification (T-ALL subentities). Modelling human 

T-ALL heterogeneity in mice revealed tumor subtype-specific clonal structures, driver genes, 

pathway hierarchies, genetic interactions and sequentialities. Unlike early T precursor 

leukemias, tumors developing from committed T cells display a dominance of insertions in 

regulatory elements, indicating context-specific roles of subtle gene regulation. 

The second part focused on functional analysis of newly discovered regulatory elements and 

the validation of their relevance in human T-ALL. To this end, CRISPR-based perturbation of 

non-protein coding elements such as lncRNAs or enhancers was performed in cell lines and 

their link to potential target genes, such as Pten, Ikzf1 or Zeb1, established. To investigate 

human relevance, cancer risk variants described in human genome-wide association studies 

(GWAS) were intersected with the gene list of regulatory elements identified in the screen. Of 

note, target genes of regulatory transposon insertions were highly significantly enriched for 

human GWAS hotspots highlighting subtle gene regulatory effects. 

Taken together, this study created comprehensive functional maps of the genetic and 

regulatory principles orchestrating T-ALL evolution and phenotypic diversification. The 

developed concepts, analytical methods and computational tools as well as connected 
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pathological insights describe the first survey of its kind for any cancer type and can be applied 

to other tumor types in the future. 
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Zusammenfassung 

In den vergangenen Jahrzehnten konzentrierte sich die Krebsforschung in erster Linie auf die 

Identifizierung und das Verständnis der Rolle von Protein-kodierenden Mutationen. Die 

Krebsentwicklung ist jedoch durch weitreichende Veränderungen der regulatorischen 

Landschaften gekennzeichnet, die auf funktioneller Ebene nur unzureichend verstanden sind. 

Eine noch größere Herausforderung als die Entschlüsselung des Tumor-Reguloms ist die 

Entdeckung der Krebs-Ursprungszelle oder subtiler regulatorischer Prozesse während der 

Krebsentwicklung. 

Obwohl bei der genetischen Charakterisierung der akuten lymphoblastischen T-Zell-Leukämie 

(T-ALL) Fortschritte erzielt wurden, werden die genetischen Subtypen klinisch noch nicht als 

unterschiedliche Entitäten betrachtet, da die Evolution und Biologie der Subtypen nicht 

verstanden ist. 

Basierend auf neuen Mausmodellen, genetischen Werkzeugen, Screening-Technologien und 

Datenanalysepipelines wurden diese Herausforderungen in der vorliegenden Arbeit auf 

verschiedenen Ebenen angegangen, um eine funktionelle Hochdurchsatzkartierung von 

regulatorischen Landschaften und evolutionären Prinzipien in der Onkogenese zu 

ermöglichen. 

Im ersten Teil dieser Arbeit wurde ein genomweiter Transposon-Screen durchgeführt. Um die 

regulatorischen Landschaften der T-ALL aufzudecken, wurde eine Methode zur 

systematischen Untersuchung des nicht-proteinkodierenden regulatorischen Genoms 

entwickelt. Auf diese Weise wurden Hunderte von regulatorischen Elementen und 

Krebsgenen, die an T-ALL beteiligt sind, identifiziert und eine umfassende Daten-Ressource 

geschaffen. Darüber hinaus wurden die Prinzipien der Tumorevolution in einer prospektiven 

Weise untersucht, indem das Stadium und die Ursprungszelle, in denen Transposon-

Insertionen auftreten, kartiert wurden. Dieser Ansatz ermöglichte die Entdeckung der 

molekularen Determinanten der phänotypischen Diversifizierung (T-ALL-Subentitäten). Die 

Modellierung der menschlichen T-ALL-Heterogenität in Mäusen ergab tumorsubtypspezifische 

klonale Strukturen, Treibergene, Signalweghierarchien, genetische Interaktionen und 

Sequentialitäten. Im Gegensatz zu frühen T-Vorläuferleukämien weisen Tumoren, die sich aus 

reifen T-Zellen entwickeln, eine Dominanz von Insertionen in regulatorischen Elementen auf, 

was auf eine kontextspezifische Rolle subtiler Genregulation hinweist. 

Der zweite Teil konzentrierte sich auf die funktionale Analyse der neu entdeckten 

regulatorischen Elemente und die Validierung ihrer Bedeutung für die menschliche T-ALL. Zu 

diesem Zweck wurde eine CRISPR-basierte Perturbation von nicht-proteinkodierenden 

Elementen wie lncRNAs oder Enhancern in Zelllinien durchgeführt und ihre Verbindung zu 
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potenziellen Zielgenen wie Pten, Ikzf1 oder Zeb1 hergestellt. Um die Relevanz für den 

Menschen zu untersuchen, wurden Krebsrisikovarianten, die in genomweiten 

Assoziationsstudien (GWAS) beim Menschen beschrieben wurden, mit den hier entdeckten 

Zielgenen der regulatorischen Elemente, überlappt. Bemerkenswerterweise waren diese 

Zielgene der regulatorischen Hits hoch signifikant angereichert in Regionen menschlicher 

GWAS-Hotspots, was subtile genregulatorische Effekte betont. 

Insgesamt wurden in dieser Arbeit umfassende funktionelle Karten der genetischen und 

regulatorischen Prinzipien erstellt, die die Evolution und phänotypische Diversifizierung der 

T-ALL steuern. Die entwickelten Konzepte, Analysemethoden und computergestützten 

Systeme sowie die damit verbundenen pathologischen Erkenntnisse stellen die erste 

Erhebung dieser Art für eine Krebsart dar und können in Zukunft auch auf andere Tumorarten 

angewendet werden. 
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1. Introduction 

Cancer is the first or second leading cause of death in most countries of the world (Bray et al., 

2021) with an increasing tendency due to the aging population. In 2020, almost 10 million 

cancer death occurred worldwide confirming that cancer is a crucial barrier to increasing life 

expectancy (Sung et al., 2021). Although tremendous advances have been made in the field 

of targeted and specific therapies for some entities, other cancer types are still treated with the 

therapeutic approaches (high-dose chemotherapy) discovered decades ago. Bottlenecks for 

improved diagnostics and personalized therapy include the multifaceted molecular processes 

and the interplay of multiple factors underlying cancer evolution.  

Already five decades ago, cancer was shown to be an evolutionary process with parallels to 

Darwinian natural selection (Nowell, 1976). Cancer evolves by a multistep process of clonal 

expansion and genetic diversification. This dynamic tumor progression is complex and 

characterized by highly variable patterns of clonal architecture (Greaves and Maley, 2012). 

The importance of this process became more and more clear as tumor heterogeneity was 

found to be a major cause of therapeutic resistance. 

Tumors are characterized by specific features, described as “hallmarks of cancer” by Hanahan 

and Weinberg (2000; 2011). These features include, among others, increased proliferative 

signaling, limitless replicative potential, evading apoptosis and genome instability. Very 

recently, the hallmarks were updated and now also include non-mutational epigenetic 

reprogramming and phenotypic plasticity (Hanahan, 2022). This latest update underlines the 

complexity behind the molecular principles driving cancer and demonstrates the importance of 

the epigenome/non-protein-coding genome and the phenotypic evolution in cancer research. 

While in recent years, many innovative methods and techniques for cancer gene discovery 

have brought important advances in cancer genetics, there is still a need for methods and tools 

to functionalize the (epi-)genome in the course of cancer evolution. 

1.1 Sequencing and screening technologies in cancer research 

Next generation sequencing (NGS) enabled large-scale studies and created enormous 

catalogues of mutated genes for all major cancer entities (Alexandrov et al., 2020; Alexandrov 

et al., 2013; Lawrence et al., 2014; Stratton et al., 2009). Genomic approaches include whole 

exome sequencing (WES) to detect mutations in protein-coding (PC) genes, while 

transcriptomic approaches such as RNA sequencing (RNA-Seq) reveal which genes are 

dysregulated, but not necessarily mutated. As sequencing costs decreased substantially, also 

whole genome sequencing (WGS) approaches were applied to detect all classes of genetic 
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alterations, including single nucleotide variants in non-exonic regions and structural changes 

such as copy number variations (CNVs). 

Now, that for most cancer entities a plethora of samples were sequenced and these extensive 

efforts are close to completion, it is realized that we are still far from fully understanding the 

underlying pathogenic mechanisms. It became clear that the processes driving tumorigenesis 

are difficult to capture at the molecular, cellular and organismal level. Moreover, we still 

struggle, for example, to (i) interpret the extensive changes of the non-coding regulatory 

landscapes in cancer development and (ii) assess the temporal order of mutation acquisition. 

As many of these fundamental questions cannot be addressed systematically on a genome-

wide scale by “omics” based approaches, unbiased genetic screening became an attractive 

solution to overcome these limitations (reviewed in Weber et al. (2020)). Genome-wide forward 

genetic screening in a model organism can be seen as a complementary cancer gene 

discovery approach to classical sequencing.  

Screening approaches can be differentiated into library-based screening and mutagenesis 

screens (Weber et al., 2020). CRISPR/Cas9 knockout screening is the most widely used 

library-based screening technology. However, one major disadvantage of CRISPR screening 

includes the limit of guide RNAs that can be used. Covering the non-protein-coding genome, 

which is around 50 times larger than the coding part, exceeds the capacities of guide libraries. 

This thesis focuses on the application of insertional mutagenesis screening to identify non-

protein-coding, epigenetic driver alterations in cancer evolution. 

1.2 The non-protein-coding genome in cancer 

1.2.1 Elements in the non-coding genome 

The non-protein-coding (nPC) genome is defined as the collection of nucleotides not belonging 

to protein-coding (PC) sequence (exons) and represents the majority of the genome 

(~98-99%). Within the nPC genome, regulatory elements can be differentiated by specific 

histone modifications representing epigenetic indicators of chromatin state (Kimura, 2013). 

Examples include histone 3 lysine 27 (H3K27) acetylation and H3K4 monomethylation at 

enhancers, H3K4 trimethylation at promoters, H3K36 trimethylation at gene bodies and H3K27 

trimethylation at repressed sequences (Kimura, 2013). 

Cis-regulatory elements represent all DNA sequences that regulate gene expression 

(enhancer, promoter, insulator, silencer) by recruiting specific proteins and thereby influencing 

the 3D structure of the genome and target gene expression. The cis-regulatory code is also 

known as the genome’s second code providing necessary information to read regulatory 

information (Zeitlinger, 2020). The most abundant cis-regulatory sequences are enhancers. 
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Enhancers represent short DNA sequences and regulate gene expression from a distance 

through binding of transcription factors and juxtaposition of enhancer and nearby promoter 

DNA (Shlyueva et al., 2014). Enhancers are located in the intergenic area or in intronic 

sequence. Super-enhancers (SEs) are defined as an especially large and important enhancer 

cluster containing multiple transcription factor binding sites and high H3K27 acetylation levels 

(Pott and Lieb, 2015; Whyte et al., 2013). The location of potential (super-)enhancers can be 

inferred from histone modifications or the binding of transcription factors in open chromatin 

(Shlyueva et al., 2014). However, the genome-wide prediction based on chromatin states 

should be interpreted with caution. None of the features is perfectly predictive and their 

functional role still needs to be validated as enhancers are cell type specific and context 

dependent (Long et al., 2016). 

Moreover, it has been demonstrated that the genome is pervasively transcribed producing, in 

addition to mRNA, many different types of non-protein-coding RNA (Kapranov et al., 2007). 

Despite their important roles in translation (rRNA, tRNA), many non-coding transcripts harbor 

gene regulatory function. The class of long non-coding (lnc) RNAs can be further subdivided 

as lincRNAs (long intergenic), antisense or sense intronic RNA depending on their genomic 

location in the intergenic area or antisense/sense to a protein-coding gene, respectively. In 

addition to classical non-coding RNAs, RNA transcription is also observed at enhancers 

although the function of this enhancer RNA (eRNA) is still under investigation (Li et al., 2016). 

lncRNAs show tissue specific expression patterns with levels generally much lower than 

protein-coding genes. Their widespread roles in cell homeostasis and gene regulation is 

mediated through interactions with DNA, mRNA or proteins and can affect multiple stages 

including chromatin modification/structure and protein biogenesis (Mattick and Rinn, 2015; 

Quinn and Chang, 2016). Thus, lncRNAs are important molecules in transcriptional regulation 

in cis and trans. High-throughput characterization of functional lncRNAs is, however, hindered 

by several challenges: (i) low sequence conservation among species hinders the 

establishment of animal models, (ii) the low expression levels require sequencing approaches 

with an extremely high coverage (iii) the functional effect might be rather the act of transcription 

than the lncRNA itself (not detectable in in vitro genetic engineering experiments). 

A second class of non-coding transcripts are micro RNAs (miRNA) a well-defined cohort of 

small RNAs. As lncRNAs are defined as transcripts with more than 200 nucleotides, miRNAs 

only harbor around 20 nucleotides. MiRNAs have a well-established role in gene regulation 

influencing transcript translation and degradation (Ameres and Zamore, 2013). 

As both, cis-regulatory elements and non-protein-coding transcripts can contribute to the 

regulation of gene expression, they are referred to as ‘regulatory elements (REs)’ in this study. 
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The definition ‘regulome’ in analogy to genome comprises regulatory elements but also genes 

important for gene regulation such as transcription factors.  

1.2.2 Reasons to study the non-coding genome 

Chromatin remodeling plays a major regulatory role in cell-type specific function and 

differentiation (Ho and Crabtree, 2010). In development, differentiation is a gradual transition 

from open to condensed chromatin states, first described in detail in the hematopoietic system 

(Lara-Astiaso et al., 2014). Cancer evolution is characterized by extensive changes of these 

regulatory landscapes. 

Non-protein coding regions make up almost 99% of the genome. However, so far there is little 

consensus regarding the percentage of functional elements. Large-scale studies such as the 

ENCODE project suggest that the majority of ncDNA is functional (ENCODE Project 

Consortium (2012)), while mutational load analysis indicated that a maximum of 25% harbors 

functional elements (Graur, 2017). 

Non-coding mutations affecting the regulatory genome are frequent in cancer (Weinhold et al., 

2014). However, the analysis of several WGS datasets revealed that the interpretation still 

remains challenging (Elliott and Larsson, 2021). Due to the non-recurrent nature of non-coding 

mutations, it is still difficult to distinguish drivers from the high number of passengers, or real 

mutations from background noise (Rheinbay et al., 2020; Stratton et al., 2009). 

The majority of trait-associated genetic variants (>90%) map to the non-protein-coding genome 

(Gallagher and Chen-Plotkin, 2018; Maurano et al., 2012) underlining the importance of the 

nPC genome and the great significance to solve the problem of deciphering the cis-regulatory 

code (Zeitlinger, 2020). Likewise, the transcription of non-coding regions is very complex, with 

up to 90% of the genome being transcribed (Lee, 2012) increasing the need for the annotation 

of functional non-coding regions. 

The effect of variations in regulatory elements is most likely only subtle compared to mutations 

directly affecting the protein-coding genome. For tumor-suppressors, it was shown that only 

one allele or even a more subtle dysregulation is enough for interference with the tumor 

suppressing function (Alimonti et al., 2010). Therefore, regulatory alterations might contribute 

to this subtle gene regulation of tumor suppressors. Moreover, also for oncogenes it was 

reported that the dosage is very important for tumor progression (Berger et al., 2011). 

1.2.3 Tools to study the non-coding genome 

In the last decades a wide range of NGS techniques for epigenomics was developed. These 

technologies can be distinguished into different categories analyzing the accessibility of the 
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chromatin (ATAC, DNAse-Seq) or histone modifications and transcription factor binding 

analysis (ChIP-Seq) (reviewed in Elkon and Agami (2017)). 

While regulatory elements (REs) can be identified easily by the above mentioned techniques, 

a major challenge includes the determination which RE controls which gene due to large 

distances between these elements in the genome. Chromosomal conformation capture (3C) 

techniques are crucial to understand the link between nuclear structure and function (reviewed 

in (Bonev and Cavalli, 2016; Davies et al., 2017)). 

Global run-on sequencing (GRO-Seq) represents a method for nascent RNA sequencing 

mapping the position, amount and orientation of RNA polymerases transcribing DNA (Core et 

al., 2008). Using labelled nucleotides, GRO-Seq provides a snapshot of genome-wide 

transcription by capturing all kinds of transcripts, also instable ones such as enhancer RNA 

(eRNA) (Core et al., 2008; Kaikkonen et al., 2013). 

In this study, regulatory activity is defined as a signal in one of the epigenomic assays such as 

ChIP-Seq (H3K27ac, H3K4me1), ATAC/DNase-Seq or GRO-Seq. However, all described 

techniques are only descriptive. This leads to a fast annotation of the non-coding genome but 

functional consequences or relevance of changes are still unexplored due to the lack of tools 

to systematically assess which regions/transcripts are functional. There is a lack of scalable 

methods capable to perturb the epigenome and capture the relevant phenotype: cellular 

transformation in an organism. Major bottlenecks in the analysis of the technologies mentioned 

in Table 1 include the restriction of many of these tools to the protein-coding or transcribed 

genome.  

Table 1: Selection of sequencing and screening tools used in cancer research. Technologies used in cancer 
research. Methods used in this study are indicated. * Publicly available GWAS datasets, **Publicly available 
datasets used; ***used for functional validation, not for screening. Only methods relevant to this study are 
mentioned. 

Technique Analysis Interpretation Used in this 

study 

    

Genomics    

Whole exome sequencing 

(WES) 

Point mutations, indels Protein-coding genes No 

Whole genome 

sequencing (WGS) 

Structural variation, 

nc mutations 

Alteration in the 

complete genome 

Yes* 

    

Transcriptomics    

RNA-Seq Differential expression Dysregulated genes Yes 

GRO-Seq Nascent RNA transcription Regulatory activity Yes 

    

Epigenomics    

ATAC/DNase-Seq Open chromatin Chromatin accessibility Yes** 

ChIP-Seq Histone modifications, 

Transcription factor binding 

Chromatin activity Yes** 
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HiC 3D chromatin capture Interacting genomic 

areas in 3D space 

Yes** 

    

Genetic screening    

CRISPR Mostly gene inactivation, 

essential genes 

Mostly focused on PC 

genome 

Yes*** 

Transposon Activation and inactivation Whole genome Yes 

 

1.3 PiggyBac transposon screening 

The challenges of genome-wide genetic screening for cancer gene discovery were described 

in 1.1. Mutagenesis screens represents a versatile tool to overcome the limitations of 

“omics”- and library-based screening approaches (missing functional readout and impossibility 

to cover the complete genome, respectively) and include irradiation or chemical approaches 

as well as insertional mutagenesis (reviewed in (Weber et al., 2020)). Insertional mutagenesis 

is defined by virus- or transposon-mediated creation of mutations by the addition of a specific 

sequence to the genome. Viruses or transposons integrating into the genome are attractive 

mutagens due to their molecular fingerprint allowing a simple recovery of insertion sites by 

splinkerette-based PCR approaches. 

1.3.1 Transposons used for insertional mutagenesis 

Transposons are mobile genetic elements, which were first discovered as ‘jumping genes’ by 

Barbara McClintock in maize in the 1940s (McClintock, 1950). Their ability to change the 

position within the genome through mobilization by an enzyme called “transposase” can be 

exploited for insertional mutagenesis screening approaches. Transposon recognition and 

binding by the transposase for mobilization occurs at specific sites within the inverted terminal 

repeats (ITRs). In nature, the sequence between the ITRs encodes for the transposase. 

Transposable elements were used in invertebrates for the discovery of key pathways in 

development (Thibault et al., 2004).  

Due to inactivation in vertebrate genomes millions of years ago, transposons were not 

available in mice until the late 1990s (Ding et al., 2005; Dupuy et al., 2001; Ivics et al., 1997). 

The development of transposon technologies that are active in vertebrates was a key advance 

for genetic screening in mammals. In engineered mice, the transposase gene is encoded 

separately (in trans) and the genomic sequence in between the ITRs can be replaced with any 

DNA cargo. Upon bringing the systems (transposase and transposon) together by mouse 

crossing, transposition starts and the transposon “jumps” across the genome. Transposon 

mobilization is a continuous process: Whenever the transposon hits a position leading to a 

growth advantage, the insertion will be selected and a tumor evolves from a pre-malignant 

clone. The generation of bifunctional transposons containing a promoter for gene activation 
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and gene trapping elements (splice acceptors and polyadenylation sites) for gene inactivation 

enables the possibility to screen for oncogenes and tumor suppressor genes at the same time. 

Gene inactivation is achieved by trapping/truncation (upon insertion in introns) or frameshift 

(upon insertion in exons) whereas gene activation is realized through the promoter and the 

splice donor that were introduced into the transposon. Gene expression can be driven by the 

promoter if the transposon integrates upstream of the gene. Importantly, the precise mutagenic 

effect depends on the integration pattern, transposon orientation and spatial relationship to 

functional genetic elements (Friedrich et al., 2017; Rad et al., 2010; Weber et al., 2020). This 

represents a benefit over the detection of single nucleotide variants in next generation 

sequencing, where the functional consequences of such point mutations are often very difficult 

to extrapolate. 

 

 

Figure 1: Available PiggyBac transposon mouse lines for cancer gene discovery. Bifunctional 
(ATP) and only inactivating (ITP) mouse lines for PiggyBac transposon screening. This study focuses 
on ATP2 mouse lines containing a promoter derived from the MSCV 5’-LTR inducing predominantly 
hematopoietic malignancies. ATP, activating transposon; ITP, inactivating transposon; MSCV, murine 
stem cell virus; LTR, long terminal repeat. adapted from Weber et al., 2020, Nature Reviews Cancer. 

For genetic engineering of mouse lines, transposon sequences from fish and insect genomes 

were used. Sleeping Beauty (SB) was the first transposon engineered in mice and used for 

cancer gene discovery (Collier et al., 2005; Dupuy et al., 2005; Ivics et al., 1997). PiggyBac 

(PB) originates from the cabbage looper moth Trichoplusia ni and was also modified to be 

active in mammalian cells (Ding et al., 2005). Allan Bradley’s group was the first to use the PB 

transposons to develop genetic tool kits for insertional mutagenesis in mice including 19 

different activating transposon (ATP) mouse lines (Rad et al., 2010). Depending on the type of 

promoter used in individual ATP transposon lines, double transgenic Rosa26PB;ATP mice 

develop solid and/or hematopoietic cancers (Figure 1). In this study, the Rosa26PB;ATP2 

cohort was expanded and a large collection of transposon-induced hematopoietic tumors was 

analyzed.  
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1.3.2 Characteristics of PiggyBac transposition 

PiggyBac is characterized by a largely unbiased coverage of the genome. Genomic integration 

of PiggyBac is dependent on the minimal sequence TTAA with only 2% of insertions identified 

in non-TTAA sequence (Li et al., 2013). During excision, PB leaves no footprint mutations 

(Yusa et al., 2011), a difference compared to the widely-used Sleeping Beauty transposons. 

PiggyBac shows an integration bias towards open chromatin and the transcriptional start site 

(TSS) of genes (de Jong et al., 2014; Wang et al., 2008). Additionally, it was shown that 

PiggyBac is biased to transcriptional units, actively transcribed loci as well as interfaces of 

topologically associated domains in previous studies (de Jong et al., 2014). Despite the bias 

for highly expressed genes, PB shows characteristics in line to use this system for 

genome-wide screening for open chromatin and active regulatory elements. This is in contrast 

to Sleeping Beauty, which only showed minimum preference to chromatin states and seems 

less suitable for chromatin accessibility screening based on a study in embryonic stem cells 

(Yoshida et al., 2017). 

Thus, this in vivo screening approach is largely unbiased with respect to localization in the 

genome and a powerful and versatile tool for the discovery of functionally relevant open 

chromatin. The focus of this thesis was the application of transposon tools to study regulatory 

changes in cancer evolution. 

1.3.3 Analysis of insertional mutagenesis data 

1.3.3.1 Evolution of an individual tumor 

Transposon screening is based on a random mutagenesis in large cell pools and subsequent 

clonal selection. Transposon mobilization starts in context to a specific phenotype and 

continues in premalignant clones leading subsequently to full-blown tumors. To identify the 

causative mutations, insertion site sequencing is applied. The improvement of the insertion 

site sequencing strategy and the drop of sequencing costs enabled semi-quantitative analysis 

(Friedrich et al., 2017; Klijn et al., 2013; Koudijs et al., 2011). Transposon insertion sites in a 

tumor can be identified using a high-throughput and high-resolution sequencing approach of 

PCR-amplified transposon-genome junctions. At the level of an individual cancer, 

semi-quantitative insertion site sequencing was a key innovation to understand the tumor’s 

genetic complexity and intratumor heterogeneity (Friedrich et al., 2017). The sequence read 

coverage determined by QiSeq supporting one individual insertion can range from one to tens 

of thousands reflecting the frequency of this insertion within one cancer sample. This gives 

insights into the clonal architecture and evolutionary trajectory. A high read coverage can 

indicate an early occurrence of the insertion (=insertion at the trunk of the evolutionary tree) 

and the presence of selective pressure against remobilization indicating a biological relevance. 
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Linking genes to their position at a tumor’s evolutionary tree allows inferring a more detailed 

understanding of the biological role of the respective gene in early or late tumor development. 

The high sequencing depth in QiSeq therefore enables to assess each tumor’s clonality and 

dissect differences in evolutionary landscapes (Figure 2, (Friedrich et al., 2017)). 

Although transposon insertions can be used as markers of clonal size and branched evolution, 

so far the predominant application rather was cancer gene discovery than evolutionary 

dynamics. However, deciphering the chronological order of genetic alterations in tumor 

evolution is crucial to understand stage- and context-specific roles of cancer genes and will be 

addressed in this thesis. 

 

Figure 2: Transposon insertions reveal clonal architecture and tumor evolution. Two pancreatic 
tumors are shown with different clonal architecture. Insertions are ranked by read coverage. In the left 
panel, the tumor is characterized by few high coverage insertions (high clonality) whereas the tumor in 
the right panel shows many high coverage insertions (multiclonal). Adapted from Friedrich et al., 2017 

1.3.3.2 Common insertion sites 

The most common approach to pinpoint candidate cancer genes from insertion data is the 

analysis of insertions across multiple tumors. So called ‘common insertion sites (CISs)’ 

represent genomic regions harboring more insertions than expected by chance (regions that 

are hit by the transposon in multiple tumors). Statistical models based on Gaussian Kernel 

Convolution (de Ridder et al., 2006) or Poisson distribution (Bergemann et al., 2012; Sarver et 

al., 2012) are used to assess whether the insertion density at any position of the genome differs 

from random (background) distribution. 

In standard analysis workflows, protein-coding genes located in or overlapping with CISs are 

taken as putative cancer drivers. There are even methods available, which only focus on 

protein coding genes (gene-centric approaches such as described in Brett et al. (2011)). 

However, insertions into DNA most likely interferes with regulatory function in several ways. 

The activation and disruption of non-coding transcripts might be similar to protein-coding 

genes. The interference with cis-regulatory elements is based on the disruption of either 

binding sites (of transcription factors or other DNA binding proteins in enhancers) or the 3D 

organization of the genome (Figure 3, (Weber et al., 2020)). 
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Figure 3: Effect of transposon insertions on the protein-coding and non-coding genome. Insertion 
pattern, orientation of transposon insertions and genomic location are important to infer the effect on 
target gene expression. Oncogenes can be activated when the transposon integrates sense-orientated 
upstream of an exon with a translational start site (ATG). The transposon is spliced to the next exon 
using the splice donor (SD) on the transposon and the splice acceptor (SA) of the exon and drives 
expression through the promoter (Prom) on the transposon. Tumor suppressor gene inactivation is 
mediated by truncation using bidirectional polyA (pA) sites on the transposon, which are spliced to the 
transcript mediating gene disruption from intronic positions. However, the effect of transposon insertion 
in the intergenic area remains unclear. An interference with regulatory elements through steric DNA 
properties or an (in-) activation of non-coding transcripts represent possible mechanism for transposon-
induced tumorigenesis. 

Due to the characteristics described above, the PiggyBac screening technology is suitable to 

screen for regulatory regions (intergenic insertions) and to study cancer evolution (sequencing 

coverage distinguishes early and late hits). 

1.4 Acute leukemias 

1.4.1 General classification of leukemias 

Hematopoietic malignancies develop from different cells of the hematopoietic tree (Figure 4). 

Whereas aberrations in myeloid cells such as common myeloid progenitors (CMPs), 

granulocytes or monocytes/macrophages and their progenitors give rise to various subtypes 

of acute myeloid leukemia (AML), aberration in B and T cells can lead to the development of 

immature lymphoblastic neoplasms (acute lymphoblastic leukemia, ALL) or mature T or B cell 

lymphomas (Figure 4). Decisive for the classification of hematopoietic neoplasms are the 

morphology of the diseased cells as well as genetic characteristics. 
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Figure 4: The hematopoietic system and connected malignancies. The hematopoietic system can 
be divided into the myeloid and the lymphoid lineage. In a simplified manner, myeloid cells give rise to 
different subtypes of acute myeloid leukemia (AML) while lymphoid cells either induce immature acute 
lymphoblastic leukemias (ALL) or mature T or B cell lymphomas (BCL). The subtypes of T cell 
malignancies are displayed in Figure 6. 

Leukemia, first described in 1845 by Rudolf Virchow is the cancer of white blood cells and can 

be sub-grouped into ‘acute and chronic’ (associated with their clinical course) and into ‘myeloid 

and lymphoid’ (dependent on their cell of origin). The pathogenesis of acute leukemias can be 

described by different steps: (i) malignant transformation of hematopoietic stem cells (HSCs) 

or progenitor cells, (ii) impaired differentiation of immature blood cells, (iii) suppression of 

normal hematopoiesis, (iv) hematopoietic insufficiency like anemia, granulocytopenia, 

thrombocytopenia, and (v) clinical symptoms like paleness, infections, bleeding, sepsis and 

organ dysfunction due to infiltration.  

Hematopoietic tumors are responsible for approximately eight percent of all cancer deaths in 

the Western World. The 5-year survival rate of leukemias differs between leukemia subtypes 

(Figure 5). Whereas for chronic leukemias targeted therapy approaches are available and used 

for a long time, most subtypes of acute leukemia are still treated with high-dose chemotherapy. 
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Figure 5: Different leukemia types and their associated survival rates, incidence and age of 
onset. Average age of diagnosis in years and 5-year survival in percent is shown for different leukemia 
types. Circle size is proportional to incidence. Colors discriminate between the four major types of 
leukemia: chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), acute myeloid 
leukemia (AML) and acute lymphoblastic leukemia (ALL). ALL is further separated into pediatric and 
adult cases. Adapted from Omar Abdel-Wahab, Overview of the Lymphoid Leukemias.  

 

Acute lymphoblastic leukemia (ALL) is a malignant transformation and proliferation of lymphoid 

precursors in the bone marrow. The incidence follows a bimodal distribution peak affecting 

children and adults around the age of 50 (Terwilliger and Abdul-Hay, 2017). 

1.4.2 Epidemiology and genetic landscapes of T-ALL 

ALL represents the most common malignancy of childhood and is differentiated in B cell (85%) 

and T cell (15%) lineage (Pui et al., 2008). T cell acute lymphoblastic leukemia (T-ALL) 

represents a clonal expansion of immature T cells and accounts for 10-15% of childhood and 

20-25% of adult ALL cases (Ribera et al., 2007; Vadillo et al., 2018). T-ALL belongs to the 

precursor T cell neoplasms according to the latest WHO classification of hematolymphoid 

neoplasms (Alaggio et al., 2022). Precursor neoplasms include immature groups such as T cell 

lymphoblastic lymphoma (T-LBL)/T cell acute lymphoblastic leukemia (T-ALL) and Early 

T-precursor lymphoblastic leukemia/lymphoma (ETP-ALL). T-ALL and T-LBL only differ in the 

percentage of bone marrow infiltration but are considered as the same entity. ETP-ALL 

accounts for 10-13% of pediatric and 5-10% of adult T-ALL cases (Wenzinger et al., 2018). 

Despite important advances in the understanding of the genetic basis of T-ALL, in the latest 

WHO classification WHO-HAEM5 there still was not sufficient evidence for distinguishing 

clinically-relevant genetic subtypes of T-ALL (Alaggio et al., 2022). Adult T-ALL patients with 

relapsed disease have dismal outcomes with <10% of patients surviving long term and a 6-9 

months median survival (Gökbuget et al., 2012). 
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The immunophenotype characteristic for T-ALL shows positivity for CD3 and TDT. Based on 

immunophenotyping, T-ALL can be further subdivided according to the stage of thymic 

maturation into early cortical, late cortical or mature T cell stage (Liu et al., 2017). Markers to 

differentiate between a pro/pre-T cell phenotype or rather a cortical or mature phenotype are 

CD7, CD2, CD1a and cyCD3 (Patel et al., 2012). CD4 and CD8 characterize mature T-ALLs 

and are usually not expressed in immature T-ALLs and ETP-ALL (Haydu and Ferrando, 2013; 

Wenzinger et al., 2018). The WHO subgroup ETP-ALL (early T cell precursor), has recently 

been described and is characterized by poor outcome, a distinct gene expression profile and 

immunophenotype similar to HSCs or myeloid progenitor cells (Coustan-Smith et al., 2009; 

Jain et al., 2016; Zhang et al., 2012). Within the ETP-ALL subtype, expression of oncogenic 

transcription factors as well as surface marker expression was highly variable (Coustan-Smith 

et al., 2009). 

The number of somatic mutations is generally low in leukemias compared to solid cancers 

(Vogelstein et al., 2013). Despite this low number of mutations, leukemias are complex genetic 

diseases due to their multifaceted pattern of co-existing mutations, the functional interplay 

between mutated genes and the clonal heterogeneity and evolution (Papaemmanuil et al., 

2016). 

The genetic landscape of T-ALL is mainly characterized by gain-of-function mutations in genes 

of the NOTCH signaling pathway. More than 60% of T-ALL patient carry a NOTCH1 mutation 

what is often accompanied by deletions of the CDKN2A locus (Liu et al., 2017; Weng et al., 

2004). A genetic hallmark of T-ALL additionally is the activation of oncogenic transcription 

factors (discussed in chapter 1.5.2). Commonly affected pathways in T-ALL include 

transcriptional regulation (91%), cell cycle regulation (84%), NOTCH1 signaling (79%), 

epigenetic regulation (68%) and PI3K-AKT-mTOR signaling (29%) (Liu et al., 2017). The 

mutational spectrum of ETP-ALL is similar to myeloid tumors (Zhang et al., 2012) what can be 

explained by the retained ability of ETP cells to differentiate to the T cell and myeloid lineage 

(Wada et al., 2008). ETP-ALL is further characterized by less frequent NOTCH1 mutations 

(compared to “classical” T-ALL) (Zhang et al., 2012). 

Leukemias are often initiated by deregulation of transcriptional machinery including enhancers 

(Bhagwat et al., 2018). Human T-ALL cases harbor on average only six protein-coding, but 

almost 1000 non-coding mutations (Hu et al., 2017) showing the relevance for mutations in the 

non-coding, regulatory genome.  

1.4.3 T cell development and cell of origin of genetic T-ALL subgroups 

T cells and their very distinctive development in the thymus are well conserved and appear to 

be a signature feature of vertebrates (Rothenberg, 2019). T cell development is a segmented 
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process and starts with hematopoietic stem cells (HSCs) and multipotent progenitors (MPP) in 

the bone marrow. Common lymphoid progenitors (CLPs) and early T cell progenitors (ETPs) 

begin to migrate to the thymus but still keep features of their multilineage potential (Figure 6). 

T cell fate in the thymus is predominantly promoted by the Notch pathway. The thymus consists 

of an outer cortex and an inner medulla region surrounded by a capsule and provides a very 

specific microenvironment for the different steps of T cell maturation. However, a complex 

interplay of gene regulatory networks and chromatin state changes is necessary that T cells 

gradually acquire their specific characteristics (Rothenberg, 2019). Especially transcription 

factors play a crucial and well-established role during this complicated process (explained in 

more detail in chapter 1.5.2). A very specific time point during T cell development is a step 

called ‘commitment’. While post-commitment T cells are functionally distinct from myeloid cells, 

pre-commitment T cell precursors express substantial levels of myeloid genes and still keep 

multilineage potential although discussed controversially (Schlenner and Rodewald, 2010). 

T cell development is characterized by pre-commitment stages where T cells lack both CD4 

and CD8 expression, known as double negative (DN) cells. The double negative stage is 

further subdivided into four phenotypically distinct steps (DN1-DN4 by the expression of CD44, 

KIT/CD117 and CD25) (Rothenberg et al., 2008). Whereas in the early stages (DN1-DN2a) 

chromatin of multipotency sites is still open, at commitment (DN2b/DN3a) T cell sites open. 

Subsequently, these cells acquire CD4 and CD8 expression and become double positive cells 

(DP). Then, cells differentiate into CD4 and CD8 single positive cells (SP). Another 

characteristic of this very specific developmental step in the thymus is the extensive 

proliferation. Only few immature progenitor cells enter the thymus but they proliferate 

extensively. 
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Figure 6: T cell development and T-ALL subtypes. T cells develop from hematopoietic stem cells 
(HSCs) and multipotent progenitors (MPPs) in the bone marrow. Common lymphoid cells (CLPs) start 
to migrate to the thymus and further differentiate into double negative (DN) T cells. In the DN1, also 
called early T cell precursor (ETP), and DN2 stage, these immature T cells still show multilineage 
potential. Between DN2 and DN3 T cell commitment takes place. Further differentiation is characterized 
by CD4 and CD8 expression, first as double positive (DP) cells, later as single positive CD4 or CD8 
cells. Early T cell precursor (ETP-) ALL develops from early DN stages, where cells are not yet 
committed to T cells. “Classical” T-ALLs develop from stages around or after T cell commitment. Mature 
T cell lymphomas originate from mature CD4 or CD8 cells. In immunohistochemistry, immature T cell 
malignancies are characterized by the expression of Tdt, while more mature forms of T-ALL express 
CD4 and/or CD8. Adapted from Fischer et al. 

Although later steps of T cell development contain crucial processes such as TCR 

rearrangement, positive and negative selection, activation and differentiation into diverse T cell 

subsets such as CD4+ T helper cells or CD8+ cytotoxic T cells, these concepts are beyond the 

scope of this thesis. The development of T cell leukemias is restricted to several steps before 

and shortly after T cell commitment. 

Bringing this complex system of T cell development in context with disease remains, however, 

a major challenge. At the commitment stage, abrupt genome-wide changes of chromatin 

organization were found indicating a drastic change (Hu et al., 2018; Johnson et al., 2018). It 

is not yet clear how this chromatin reorganization contributes to T-ALL leukemogenesis, 

barring few examples (Kloetgen et al., 2020; Petrovic et al., 2019). The functional 

consequences of these genome-wide chromatin changes and the interplay of transcription 

factors still remain unclear and represent a focus of this study. 

Different steps of T cell differentiation are also related to different cells of origin in T-ALL. Cell 

of origin (COO) is defined as the normal cell that acquires the first cancer-promoting 

mutation(s) (Visvader, 2011). Depending on the COO, tumors arising in the same organ can 

be very variable (intertumoral heterogeneity). This heterogeneity can be explained by either 
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different mutations occurring in the same cell or different subtypes developing from different 

cells of origin (Visvader, 2011). While for myeloid malignancies, the concept of leukemia 

initiating cells and the cell of origin are well-established, for ALL our understanding is limited 

(Lang et al., 2015). Especially for T-ALL, the cell of origin of different T-ALL subgroups is still 

discussed controversially (Berquam-Vrieze et al., 2011; Booth et al., 2018; Tan et al., 2017). 

The discovery of the ETP subgroup added an additional layer of complexity to this discussion. 

Model systems to analyze the cell of origin in the different subgroups of T-ALL are lacking. 

However, understanding the origins of T-ALL subtypes in more detail might be important for 

future treatment decisions. 

1.5 Transcription factors in leukemogenesis 

1.5.1 Transcriptional dysregulation in cancer development 

Transcriptional dysregulation is a hallmark of nearly all types of cancer. While direct alterations 

to the DNA sequence are well reported due to enormous international sequencing efforts, the 

effect of genes not mutated, but dysregulated at the epigenetic or epitranscriptomic level, is 

still far from being understood. Cell identity and transcriptional homeostasis is controlled by 

the action of transcription factors (TFs), which directly interpret the genome (Lambert et al., 

2018; Lee and Young, 2013). These genes specifically bind to genomic sequences thereby 

regulating gene expression. As transcription factors are (i) the core of developmental programs 

often hijacked by cancer cells, (ii) usually not mutated but dysregulated by other mechanisms 

and (iii) at the center of a cell’s transcriptional circuit which can be exploited for therapy, they 

are crucial to understand cancer development but difficult to pinpoint with commonly used 

techniques. In previous screens, we observed a strikingly high number of CISs involved in 

transcriptional regulation (Weber et al., 2019). 

1.5.2 Transcription factors in T cell and T-ALL development 

T-cell development is characterized by a sequence of changes in transcriptional gene 

regulatory networks and chromatin states (as described in chapter 1.4.3). A core group of TFs 

has essential roles in this process by directly activating or repressing specific genes 

(Hosokawa and Rothenberg, 2021). Recent studies deciphered mechanisms of chromatin 

opening by transcription factor binding as well as differential co-binding and collaboration of 

transcription factors (reviewed in Rothenberg et al. (2019)). Specific expression patterns of 

TFs and successive chromatin changes that guide T-lineage commitment are beginning to be 

understood in more and more detail. As described above, T cells are dependent on a balance 

between precursor expansion and quality-controlled differentiation (Hosokawa and 

Rothenberg, 2021). Therefore, transcription factors have a highly stage-specific and context-
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dependent role in T cell differentiation. In contrast to other hematopoietic lineages, for early 

T cell development there is no defined ‘master TF set’. Here, an ensemble of TFs rather acts 

in combination with each other and Notch signaling in a coordinated manner (Hosokawa and 

Rothenberg, 2021). Indispensable for an early phase of T cell development are factors 

including E2A, HEB, GATA3, TCF1, BCL11B, RUNX family, IKZF family and PU.1. The 

modular interaction of these TFs contributes to the irreversibility of T cell lineage commitment 

(Hosokawa and Rothenberg, 2021). However, the contribution of this complex system in 

context of T-ALL is not yet fully understood. 

Finding novel, cancer-relevant but non-mutated or -translocated TFs is challenging. Although 

ALL is characterized by a rather small number of mutations (Hu et al., 2017), these 

disproportionally affect transcription factors (Inaba et al., 2013). In contrast to B-ALL, where 

mainly tumor-suppressive TFs are affected by translocations and mutations, the activation of 

oncogenic transcription factors is a hallmark of T-ALL. These include TAL1/2, LYL1, TLX1/3, 

NKX2-1/2-2/2-5, LMO1/2, MYB and MYC, which are commonly activated from rearrangement 

to T cell receptor loci (Liu et al., 2017). Genetic T-ALL subgroups are named according to their 

main TF rearrangement and can differ in their immunophenotype (Belver and Ferrando, 2016).  

In human T-ALL, TAL1/SCL is one of the most prevalent oncogenic transcription factors 

(Brown et al., 1990). In the last decade the complex interplay between TAL1 and other T cell 

lineage transcription factors was beginning to be understood and core transcriptional 

regulatory circuits were revealed (Sanda et al., 2012) underlining the importance of TF 

networks in T-ALL pathogenesis.  

1.5.3 SPIC as candidate leukemia transcription factor 

The SPI-C Transcription Factor (SPIC, SPI-1/PU.1 Related) is an important paralog of SPI-1 

(PU.1) and belongs to the ETS (Erythroblast transformation specific) family of transcription 

factors. SPIC is mainly described to control the production of red-pulp macrophages (RPMs) 

in the spleen and required for red blood cell recycling and iron homeostasis (Kohyama et al., 

2009). Monocyte differentiation into this specific type of macrophages is promoted by heme-

mediated Spic induction (Haldar et al., 2014). 

SPIC was also shown to influence B cell differentiation and immune response (DeKoter et al., 

2010; Li et al., 2015). In early B cell development, SPIC is responsible for a RAG-induced 

transcriptional change (Soodgupta et al., 2019). In more detail, RAG induced double-strand 

breaks activate SPIC which recruits BCLAF1 to gene-regulatory elements (Soodgupta et al., 

2019). 

SPIC function is not described in the T cell lineage. However, the SPIC family member PU.1 

(encoded by SPI-1) has a broad role in hematopoiesis. In T cells, PU.1 is expressed in early 



29 

stages of development and required for the generation of early T cell precursors (ETPs). At 

this stage, myeloid differentiation is restricted through NOTCH1 signaling in the thymus. 

However, PU.1 expression needs to be turned off for T cell lineage commitment (Ungerbäck 

et al., 2018). 

 

Figure 7: Spic as candidate oncogene in PiggyBac-induced acute myeloid leukemias. Insertion 
pattern at the Spic locus. Insertions cluster sense-oriented close to the Spic promoter. Transposon-Spic 
fusion transcripts were confirmed by reverse transcription PCR and Sanger sequencing. Expression of 
Spic was analyzed using qPCR and compared to control tumors without Spic expression. Myeloid origin 
(MPO staining) of Spic driven tumors were shown in spleen and lymph nodes. Adapted from Rad et al., 
2010 

Spic was found as common insertion site in the AML subgroup of the ATP2 transposon screen 

published earlier (Rad et al., 2010). Insertions were clustered close to the Spic promoter and 

transposon-Spic fusion transcripts as well as an increased Spic expression in samples with 

insertions was shown (Figure 7). In this published study, Spic insertions were exclusively 

associated with a myeloid origin of the leukemias. 

In this thesis, Spic was validated as a leukemia oncogene using different mouse models. 
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1.6 Aims of this thesis 

Despite crucial advances in the ‘omics’ field in last decades, tools to systematically study the 

function of the regulatory genome were still lacking. Accordingly, while significant progress has 

been made in the genetic characterization of T-ALL, patients are still treated with intensive 

chemotherapy protocols as genetic subgroups so far could not be related to the clinical course. 

Transposon-based insertional mutagenesis screening became a powerful tool for the 

discovery of novel cancer genes. Although earlier studies described the preference of 

PiggyBac for open chromatin and punctuated analyses are available which identified 

regulatory elements in transposon screen, a systematic application was still missing. 

Additionally, PiggyBac screening was so far not applied to systematically study tumor 

evolution. 

Therefore, this thesis aimed to investigate whether: 

 the PiggyBac system is suitable for in vivo interrogation and functionalization of the 

non-protein-coding genome; 

 a large cohort of hematopoietic tumors can be used to establish an annotation tool for 

functional regulatory common insertions sites; 

 identified regulatory regions have functional relevance in leukemia cell lines; 

 transposon insertions can be used to study T-ALL subtype-specific tumor evolution and 

differential sequentiality of driver genes; 

 the screening system identifies novel leukemia subtype-specific transcription factors; 

 engineered mouse models of a selected transcription factor recapitulate the leukemia 

phenotype observed in the screen. 

 

The overall aim was to use transposon data to study subtle gene regulation and its cancer 

promoting role in a living organism. Different methodological bottlenecks were addressed and 

the first genome-wide in vivo screening approach interrogating the regulatory genome was 

described in this study. Studying T-ALL, large catalogues of cancer-relevant regulatory 

elements and non-coding transcripts were assembled – constituting the first survey of its kind 

for any cancer type. By thoroughly investigating the regulatory and evolutionary aspects in 

T cell leukemogenesis, this study aimed for a better understanding of T-ALL pathogenesis. 
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2. Material and Methods 

2.1 Material 

2.1.1 Technical Equipment 

Table 2: Technical Equipment 

Instruments Source 

BD FACSAria™ III High Sensitivity Flow Cytometer BD Biosciences 

Centrifuge 5424  Eppendorf 

Centrifuge 5810 R  Eppendorf 

Class II Biological Safety Cabinet  Thermo Fisher Scientific 

CO2-incubator Heracell™ VIOS 250i Thermo Fisher Scientific 

CyAn™ ADP Analyzer Beckman Coulter 

CytoFLEX LX Flow Cytometer Beckman Coulter 

Homogenisator Precellys® 24  Bertin Instruments 

Incubator NCU-Line® IL 23  VWR International 

MiSeq System  Illumina 

NextSeq 550 System Illumina 

Nucleofector™ 2b Device Lonza 

NU-5500 Incubator NuAire 

Primovert Microscope  Carl Zeiss 

Qubit® 2.0 Fluorometer  Thermo Fisher Scientific 

scil Vet abc Plus™ Hematology Analyzer Scilvet 

StepOne Plus Real-Time PCR System  Applied Biosystems 

Thermocycler TProfessional Basic 96 Biometra 

ThermocyclerTProfessional Basic Gradient 96  Biometra 

ThermoMixer® comfort 5355  Eppendorf 

Ultra Low-Temperature Freezer Innova® U725  Eppendorf 

UVsolo 2 Gel Documentation System  Analytik Jena 

Vortex-Genie 2  Scientific Industries 

Weighing Scale A120S  Sartorius 

 

2.1.2 Consumables 

Table 3: Consumables 

Consumables Source 

ABgene Storage Plate, 96-well, 2.2 mL, square well, 

conical  

Thermo Fisher Scientific 

Adhesive PCR Plate Foils  Thermo Fisher Scientific 

Biopsy/tissue embedding cassettes  Simport 

Cell culture dishes (100 mm)  Greiner Bio-One 

Cell culture flasks (50 mL, 250 mL, 550 mL)  Greiner Bio-One 

Cell culture plates (6-well, 12-well, 24-well, 96-well)  Corning 

Cell scrapers  Sarstedt 

Cell strainers (70 μm, 100 μm)  Corning 

Combitips advanced® (0.2 mL, 0.5 mL, 1 mL, 5 mL)  Eppendorf 
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Conical tubes (15 mL, 50 mL)  Greiner Bio-One 

Cover slips  Gerhard Menzel B.V. 

Cryotubes (1.6 mL)  Sarstedt 

Disposable blades  Swann-Morton 

Disposable reservoirs  Integra Biosciences 

Disposable scalpels  B. Braun Melsungen 

Disposable spatulas  Carl Roth 

DNA LoBind Tubes (1.5 mL)  Eppendorf 

Glass slides SuperFrost™ Plus  Thermo Fisher Scientific 

Hard-Shell® 96-Well PCR Plates, high profile, semi 

skirted  

Bio-Rad Laboratories 

Hard-Shell® Low-Profile Thin-Wall 96-Well Skirted 

PCR Plate  

Bio-Rad Laboratories 

MicroAmp® optical 96-well reaction plate  Thermo Fisher Scientific 

MicroAmp® Optical Adhesive Film  Thermo Fisher Scientific 

Microtome blades S35  Feather Safety Razor 

microTUBE AFA Fiber Snap-Cap 6x16mm Case  Covaris 

Needles 27 gauge  Seidel medipool 

Pasteur pipettes  Brand 

PCR stripes (8 tubes)  Sarstedt 

Petri dishes (100 mm)  Greiner Bio-One 

Pipette tips (10 μL, 200 μL)  Biozym 

Pipette tips with filter (10 μL, 100 μL, 200 μL, 300 μL, 

1250 μL)  

Biozym 

Reaction tubes safe-seal (0.5 mL, 1.5 mL, 2 mL)  Sarstedt 

Reaction tubes safe-seal (5 mL)  Eppendorf 

S-Monovette® Sarstedt 

Serological pipettes (5 mL, 10 mL, 25 mL, 50 mL)  Greiner Bio-One 

Syringes (1 mL, 30 mL)  B. Braun Melsungen 

 

2.1.3 Reagents and enzymes 

Table 4: Reagents and enzymes 

Reagent/Enzyme Source 

1 kb DNA Ladder  New England Biolabs 

100 bp DNA Ladder  New England Biolabs 

2-Mercaptoethanol, 98% Sigma-Aldrich 

Acetic acid  Sigma-Aldrich 

Agarose  Sigma-Aldrich 

Ampicillin  Sigma-Aldrich 

BbsI (10,000 units/mL)  New England Biolabs 

BsaI-HF®v2 (20,000 units/ml) New England Biolabs 

Collagenase Type II Worthington Biochemical 

CutSmart Buffer New England Biolabs 

Deoxynucleotide Mix, 10 mM each  Sigma-Aldrich 

Dimethyl sulfoxide (DMSO)  Carl Roth 

DirectPCR Lysis Reagent (Cell)  Viagen Biotech 
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Doxycycline food 625 mg/kg Ssniff 

Eosine  Waldeck 

Ethanol absolute  Carl Roth 

Ethidium bromide  Sigma-Aldrich 

Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich 

Forene® isoflurane  Abbott 

Formalin  Carl Roth 

Gel Loading Dye, Purple (6x)  New England Biolabs 

Glycerol  Sigma-Aldrich 

Haematoxylin  Merck 

Isopropanol absolute  Carl Roth 

KAPA2G Fast Genotyping Mix Sigma-Aldrich 

LB-Agar (Luria/Miller)  Carl Roth 

LB-Medium (Luria/Miller)  Carl Roth 

NEBuffer 2  New England Biolabs 

Phenol:Chloroform Thermo Fisher Scientific 

Phosphate buffered saline  Sigma-Aldrich 

Polyethylene glycol 4000  Sigma-Aldrich 

Propidium iodide Thermo Fisher Scientific 

Proteinase K  Sigma-Aldrich 

Q5® High-Fidelity DNA Polymerase  New England Biolabs 

RBC Lysis buffer (1x) Thermo Fisher Scientific 

RNAlater  Sigma-Aldrich 

RNase-free DNase set Qiagen 

Roti®-Histofix 4%  Carl Roth 

SuperScriptII Thermo Fisher Scientific 

SYBR® Select Master Mix  Thermo Fisher Scientific 

T4 DNA Ligase  New England Biolabs 

T4 DNA Ligase buffer New England Biolabs 

Taq DNA Polymerase  New England Biolabs 

TaqMan™ Fast Advanced MM (1ml) Thermo Fisher Scientific 

 

2.1.4 Cell culture reagents 

Table 5: Cell culture reagents 

Reagent  Source 

DMEM, high-glucose  Sigma-Aldrich 

DPBS, no calcium, no magnesium  Thermo Fisher Scientific 

FBS Superior  Biochrom 

Penicillin-Streptomycin (5,000 U/ml)  Thermo Fisher Scientific 

RPMI 1640 Medium  Thermo Fisher Scientific 

Trypsin-EDTA (0.5%)  Thermo Fisher Scientific 
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2.1.5 Oligonucleotides 

All oligonucleotides were synthesized by Eurofins Genomics. 

 

Table 6: qPCR primer 

qPCR Primer Forward sequence  Reverse Sequence 

Gapdh-murine TGTGTCCGTCGTGGATCTGA CACCACCTTCTTGATGTCATCATAC 

Bcl11b-murine GCCAGTGTGAGTTGTCAGGTAAA GAACCAGGCGCTGTTGAAG 

Pten-murine TAACTGCAGAGTTGCACAGTATCC CTTTACAGTGAATTGCTGCAACAT 

Zeb1-murine AGGTGATCCAGCCAAACG GGTGGCGTGGAGTCAGAG 

GAPDH-

human TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 

RNLS-human TGCAGCTTCAAGGTGACATC CCCAGAGCATATCGAGAGGA 

PTEN-human GCAGAGTTGCACAATATCCTTTTG CCAGCTTTACAGTGAATTGCTG 

Ikzf1-murine TGGACAGGCTGGCAAGCAAT GTTGGCACTGTCATAGGGCA 

Spic-murine ATCCTCACGTCAGAGGCAAC AAGAAGGGGGGTTGTACCAG 

 

Table 7: Genotyping primer intergenic knockouts 

KO Genotyping Forward sequence  Reverse Sequence 

KO_PtenEnh_mus GTGGTATGCACAGTTGAGTG GCACCAAACCCAAAGATTCA 

KO_Gm10125_mus GAGGGCTCTATGCTTGTTGA GATCCCAATGAGTCACAGGT 

KO_PTENenh_hum TTTCTGAGTAGCTCATTTGTTTCCC TTTTCATTATCACCCCATGTCCTC 

KO_Gm11998_mus CTCTGCAAATTACATGCCTGG CCATGGAAGGACTGGGTATT 

 

Table 8: CRISPR sgRNAs 

sgRNA Forward sequence  Reverse Sequence 

sgLacZ CACCGTGCGAATACGCCCACGCGAT AAACATCGCGTGGGCGTATTCGCAC 

Pten_Enh_

mus_g1 CACCGAACAGCATTAGATCCACGTT AAACAACGTGGATCTAATGCTGTTC 

Pten_Enh_

mus_g2 CACCGTTAGCAATCGGCCTGCTATG AAACCATAGCAGGCCGATTGCTAAC 

Pten_Enh_

mus_g3 CACCGCTGCTGTGTTACTCATTAGC AAACGCTAATGAGTAACACAGCAGC 

Pten_Enh_

mus_g4 CACCGCTTTTGGGCGATCCAACCCC AAACGGGGTTGGATCGCCCAAAAGC 

Pten_Enh_

mus_g5 CACCGTTTTTAAGCAGGATCTCGTT AAACAACGAGATCCTGCTTAAAAAC 

Pten_Enh_

mus_g6 CACCGGCTGTTCTTTAAGCAACCA AAACTGGTTGCTTAAAGAACAGCC 
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Gm10125_

mus_g1 CACCGTGATTTGATAGTACCACCTA AAACTAGGTGGTACTATCAAATCAC 

Gm10125_

mus_g2 CACCGCCCCTTATTCTCTTACTAAC AAACGTTAGTAAGAGAATAAGGGGC 

Gm10125_

mus_g3 CACCGGCCTACATGATTTGCATCA AAACTGATGCAAATCATGTAGGCC 

Gm10125_

mus_g4 CACCGTGAACCTCGAGCCGCATACA AAACTGTATGCGGCTCGAGGTTCAC 

Gm10125_

mus_g5 CACCGGAATTCTGACATACTCGAC AAACGTCGAGTATGTCAGAATTCC 

Gm10125_

mus_g6 CACCGCTCAGCGAGCTCAGCGTTTG AAACCAAACGCTGAGCTCGCTGAGC 

PTEN_Enh

_hum_g1 CACCGAGATGTGTTCCAATAGACGG AAACCCGTCTATTGGAACACATCTC 

PTEN_Enh

_hum_g2 CACCGAATATTTTACCACCGTCTAT AAACATAGACGGTGGTAAAATATTC 

PTEN_Enh

_hum_g3 CACCGTATTCATCAGCGGTGCTTTG AAACCAAAGCACCGCTGATGAATAC 

PTEN_Enh

_hum_g4 CACCGATGCTTGGGGACAACTACAC AAACGTGTAGTTGTCCCCAAGCATC 

PTEN_Enh

_hum_g5 CACCGATGATTAACAATTCTCAGTA AAACTACTGAGAATTGTTAATCATC 

PTEN_Enh

_hum_g6 CACCGAGTCTTCAGTTAGTTTACAT AAACATGTAAACTAACTGAAGACTC 

Gm11998_

mus_g1 CACCGCTAGCTAGAACACATCTCAC AAACGTGAGATGTGTTCTAGCTAGC 

Gm11998_

mus_g2 CACCGATATTGACTGTCCCTTCCCA AAACTGGGAAGGGACAGTCAATATC 

Gm11998_

mus_g3 CACCGGGAGGCACCTGTTCAGAGA AAACTCTCTGAACAGGTGCCTCCC 

Gm11998_

mus_g4 CACCGCACATAAGTCAGGGGCATAT AAACATATGCCCCTGACTTATGTGC 

Gm11998_

mus_g5 CACCGTTATATACCAAGATTGCAGC AAACGCTGCAATCTTGGTATATAAC 

Gm11998_

mus_g6 CACCGAAAACTCTTATCAAATTAG AAACCTAATTTGATAAGAGTTTTC 
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Table 9: Genotyping primer mouse lines 

Genotyping primer Forward sequence Reverse sequence 

Rosa26-LSL-Spic ATCCCCATCAAGCTGATCC GCGTTGCCTCTGACGTGAGG 

TET-Spic TAGGGTTAAAATCTAGATAGGCG
TGTACGGTGGGAG 

GCGTTGCCTCTGACGTGAGG 

Vav-iCre GGTGTTGTAGTTGTCCCCACT CAGGTTTTGGTGCACAGTCA 

Rosa26-rtTA3 GTTCGGCTTCTGGCGTGTGA CGCTTGTTCTTCACGTGCCA 

Rosa26-PB GCTGGGGATGCGGTGGGCTC GGCGGATCACAAGCAATAATAA

CCTGTAGTTT 

Rosa-26 (WT) CTCTCCCAAAGTCGCTCTG TACTCCGAGGCGGATCACAAGC 

ATP2 CTCGTTAATCGCCGAGCTAC GCCTTATCGCGATTTTACCA 

 

2.1.6 Library preparation and sequencing 

Table 10: Reagents for library preparation and sequencing 

Reagent Source 

Agilent High Sensitivity DNA Kit Agilent Technologies 

EB Puffer Qiagen GmbH 

KAPA DNA standards Kapa Biosystems 

KAPA HiFi HotStart ReadyMix (2x)  Kapa Biosystems 

KAPA SYBR Fast qPCR ABI Mix (2x) Kapa Biosystems 

MiSeq Reagent Kit v2 (300 cycle) Illumina 

NEBNext® Ultra DNA Library Prep Kit for Illumina® New England Biolabs 

NEBNext® Ultra II DNA Library Prep Kit for Illumina® New England Biolabs 

Nextera XT Kit Illumina 

Sodium hydroxide (NaOH) Carl Roth 

 

2.1.7 Plasmids 

Table 11: Plasmids 

Plasmid Source 

pX333 #64073 Addgene  

pENTR1A no ccDB #17398 Addgene 

pRosa26-DEST #21189 Addgene 
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2.1.8 Bacteria and Cell lines 

Table 12: Bacteria and Cell lines 

Cell line Source 

One Shot® Stbl3™ chemically competent E. coli Thermo Fisher Scientific 

EL4 ATCC® TIB-39™ ATCC 

Jurkat ATCC® TIB-152™ ATCC 

HEK293T ATCC® CRL-3216™ ATCC 

Fibroblasts (primary) Mouse lines 

 

2.1.9 Mice 

Table 13: Mouse lines 

Mouse Strain Source 

PB Rad et al., 2010 

ATP2-S1 Rad et al., 2010 

ATP2-H27 Rad et al., 2010 

ATP2-H32 Rad et al., 2010 

Rosa26-CAG-rtTA3 #:029627 The Jackson Laboratory 

Vav-iCre #:008610 The Jackson Laboratory 

Col1a1-TRE-Spic unpublished 

Rosa26-Spic unpublished 

 

2.1.10 Antibodies 

Table 14: Antibodies 

Antibody target Conjugate Company 

Flow cytometry 

CD8a PE Invitrogen 

CD4a PE Cy7 eBioscience 

B220 FITC Invitrogen 

CD11b APC Cy7 Invitrogen 

TER119 PE Cy5.5 Invitrogen 

CD48 Biotin Invitrogen 

Gr1 PB eBioscience 

Streptavidin  PB  eBioscience 

CD150 PE Invitrogen 

Sca1 PE Cy7 eBioscience 

c-Kit  APC eBioscience 

CD34 FITC eBioscience 

   

Immunohistochemistry 

Primary Antibodies 

Rat anti-B220/CD45R  BD Bioscience 

Rabbit anti-CD3 (Sp7)  DCS 
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Rabbit anti-MPO (A0398)  DAKO 

Rat anti-CD138 (281-2)  BD Bioscience 

Rabbit anti-Tdt (005)  Supertechs 

Rat anti-CD4 (GHH4)  Dianova 

   

Secondary Antibodies   

AffiniPure Goat Anti-Rabbit IgG 

(H+L) (111-005-003)  
 Jackson ImmunoResearch 

AffiniPure Rabbit Anti-Rat IgG (312-

005-045)  
 Jackson ImmunoResearch 

 

2.1.11 Kits 

Table 15: Kits 

Kit Source 

AllPrep DNA/RNA Mini Qiagen 

Amaxa® Cell Line Nucleofector® Kit L Lonza 

Amaxa® Cell Line Nucleofector® Kit V Lonza 

DNeasy Blood & Tissue Kit  Qiagen 

MinElute Reaction Cleanup Kit  Qiagen 

mirVana™ miRNA Isolation Kit Thermo Fisher Scientific 

QIAprep Spin Miniprep Kit  Qiagen 

QIAquick Gel Extraction Kit  Qiagen 

QIAquick PCR Purification  Qiagen 

Qubit® dsDNA BR Assay Kit  Thermo Fisher Scientific 

Qubit® RNA BR Assay Kit Thermo Fisher Scientific 

RNeasy Plus Mini Kit Qiagen 

TaqMan™ Advanced miRNA cDNA Synthesis 

Kit 

Thermo Fisher Scientific 

 

2.1.12 Databases and Software 

Table 16: Software, databases and programs 

Software/Database/Program Source 

CIMPL https://github.com/NKI-CCB/cimpl 

dbSUPER https://asntech.org/dbsuper/ 

deepTools https://github.com/deeptools/deepTools 

FlowJo Version 10.2 FlowJo, LLC 

Genomic Workbench 7 Agilent Technologies 

GSEA v4.0.3 Broad Institute 

GWAS catalogue https://www.ebi.ac.uk/gwas/ 

Immgen https://www.immgen.org/ 

Inkscape https://inkscape.org/ 

Office 2016 Microsoft Corporation 

R Software Environment 4.0.1 The R Project, The R Foundation 
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Snapgene 5.0.8 GSL Biotech 

StepOne v2.3 Thermo Fisher Scientific 

 

Table 17: R packages 

R package Version 

BiocManager 1.30.10 

biomaRt 2.44.0 

Circlize 0.4.9 

Cola 2.0.0 

ComplexHeatmap 2.4.2 

data.table 1.12.8 

DeSeq2 1.28.1 

devtools 2.3.1 

qdapTools 1.3.5 

GenomeInfoDbData 1.24.0 

GenomicRanges 1.40.0 

ggforce 0.3.1 

ggplot2 3.3.1 

ggpubr 0.4.0 

ggrepel 0.8.2 

pheatmap 1.0.12 

S4Vectors 0.26.1 

scales 1.1.1 

Survival 3.1-12 

Survminer 0.4.7 

tidyverse 1.3.0 

tidyr 1.1.0 

RColorBrewer 1.1-2 

rio 0.5.16 

 

2.1.13 Publicly available datasets 

Publicly available (epi-)genomic datasets used in this study. 

Table 18: Publicly available murine datasets 

Dataset murine Accession 

number 

Publication 

Dnase-Seq HSC GSE79422  Hu et al., Immunity 2018 

Dnase-Seq MPP GSE79422  Hu et al., Immunity 2018 

Dnase-Seq CLP GSE79422  Hu et al., Immunity 2018 

Dnase-Seq ETP GSE79422  Hu et al., Immunity 2018 

Dnase-Seq DN2 GSE79422  Hu et al., Immunity 2018 

Dnase-Seq DN3 GSE79422  Hu et al., Immunity 2018 

Dnase-Seq DN4 GSE79422  Hu et al., Immunity 2018 

Dnase-Seq DP GSE79422  Hu et al., Immunity 2018 

RNA-Seq HSC GSE79422  Hu et al., Immunity 2018 
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RNA-Seq MPP GSE79422  Hu et al., Immunity 2018 

RNA-Seq CLP GSE79422  Hu et al., Immunity 2018 

RNA-Seq ETP GSE79422  Hu et al., Immunity 2018 

RNA-Seq DN2 GSE79422  Hu et al., Immunity 2018 

RNA-Seq DN3 GSE79422  Hu et al., Immunity 2018 

RNA-Seq DN4 GSE79422  Hu et al., Immunity 2018 

RNA-Seq DP GSE79422  Hu et al., Immunity 2018 

Hi-C HSC GSE79422  Hu et al., Immunity 2018 

Hi-C MPP GSE79422  Hu et al., Immunity 2018 

Hi-C CLP GSE79422  Hu et al., Immunity 2018 

Hi-C ETP GSE79422  Hu et al., Immunity 2018 

Hi-C DN2 GSE79422  Hu et al., Immunity 2018 

Hi-C DN3 GSE79422  Hu et al., Immunity 2018 

Hi-C DN4 GSE79422  Hu et al., Immunity 2018 

Hi-C DP GSE79422  Hu et al., Immunity 2018 

H3K27ac DP GSE61428  Ing-Simmons et al., Genome Research 2015  

H3K4me1 DP GSE20898 Wei et al., Immunity 2011 

ChrAccess.increase GSE79422  Hu et al., Immunity 2018 

ChrAccess.decrease GSE79422  Hu et al., Immunity 2018 

EL4 CTCF GSE66343 Ren et al., Molecular Cell 2017 

EL4 H3K27ac GSE125384 Sidoli et al., Scientific Reports 2019 

EL4 H3K36me2 GSE125384 Sidoli et al., Scientific Reports 2019 

EL4 H3K27me3 GSE125384 Sidoli et al., Scientific Reports 2019 

EL4 H3K9ac GSE125384 Sidoli et al., Scientific Reports 2019 

EL4 H3K4me4 GSE125384 Sidoli et al., Scientific Reports 2019 

EL4 ATAC GSE125384 Sidoli et al., Scientific Reports 2019 

EL4 RNAseq GSE125384 Sidoli et al., Scientific Reports 2019 

Thymus CTCF GSE49847 Yue et al., Nature 2014 

Thymus POL2RA GSE49847 Yue et al., Nature 2014 

Thymus H3K36me3 GSE49847 Yue et al., Nature 2014 

Thymus H3K4me1 GSE49847 Yue et al., Nature 2014 

Thymus H3K4me3 GSE49847 Yue et al., Nature 2014 

Thymus H3K27ac GSE49847 Yue et al., Nature 2014 

Thymus H2K27me3 GSE49847 Yue et al., Nature 2014 

H3k27ac_DP1 GSE79422  Hu et al., Immunity 2018 

H3k27ac_DP2 GSE79422  Hu et al., Immunity 2018 

H3K27ac_LT_HSC GSE59636 Lara-Astiaso et al., Science 2014 

H3K27ac_ST_HSC GSE59636 Lara-Astiaso et al., Science 2014 

H3K27ac_MPP GSE59636 Lara-Astiaso et al., Science 2014 

H3K27ac_CLP GSE59636 Lara-Astiaso et al., Science 2014 

H3K27ac_CD4 GSE59636 Lara-Astiaso et al., Science 2014 

H3K27ac_CD8 GSE59636 Lara-Astiaso et al., Science 2014 

ATAC-Seq-DP-1 GSE99159 Johnson et al., Immunity 2018 

ATAC-Seq-DP-2 GSE99159 Johnson et al., Immunity 2018 
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ATAC-Seq-BM-HSC-1 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-HSC-2 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-MPP-1 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-MPP-2 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-CLP-1 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-CLP-2 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-B-1 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-B-2 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-NK-1 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-BM-NK-2 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-SP-CD4-1 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-SP-CD4-2 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-SP-CD8-1 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-SP-CD8-2 GSE77695 Shih et al., Cell 2016 

ATAC-Seq-ETP-T-1 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-ETP-T-2 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-DN2a-T-1 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-DN2a-T-2 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-DN2b-T-1 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-DN2b-T-2 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-DN3-T-1 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-DN3-T-2 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-DN4-T-1 GSE100738 Yoshida et al., Cell 2019 

ATAC-Seq-DN4-T-2 GSE100738 Yoshida et al., Cell 2019 

 

Table 19: Publicly available human datasets 

Dataset human Accession number Publication 

GRO-Seq-HEK293T GSE92375 Bouvy-Liivrand et al., Nucleic 

Acids Res. 2017 

GRO-Seq-Jurkat EGAS00001005864 Fischer et al. 

GRO-Seq-T-ALL-patient1 EGAS00001005864 Fischer et al. 

GRO-Seq-T-ALL-patient1 EGAS00001005864 Fischer et al. 

 

2.1.14 Manufacturers 

Table 20: Manufacturers 

Manufacturer Location 

Abbott GmbH Ludwigshafen, Germany 

Addgene  Cambridge, Massachusetts, USA 

Agilent Technologies, Inc. Santa Clara, CA, USA 

Analytik Jena AG  Jena, Germany 

Applied Biosystems, Inc.  Carlsbad, CA, USA 

ATCC Manassas, VA, USA 

B. Braun Melsungen AG  Melsungen, Germany 



42 

BD Biosciences, BD, Inc.  Franklin Lakes, NJ, USA 

Beckman Coulter Pasadena, CA, USA 

Bertin Instruments  Montigny-le-Bretonneux, France 

Biochrom GmbH  Berlin, Germany 

Biometra GmbH  Göttingen, Germany 

Bio-Rad Laboratories, Inc.  Hercules, CA, USA 

Biozym Scientific GmbH  Hessisch Oldendorf, Germany 

Brand GmbH  Wertheim, Germany 

Carl Roth  Karlsruhe, Germany 

Carl Zeiss AG  Oberkochen, Germany 

Corning, Inc.  Corning, NY, USA 

Covaris, Inc.  Woburn, MA, USA 

DAKO, Agilent Technologies, Inc.  Santa Clara, CA, USA 

DCS Hamburg, Deutschland 

Dianova Hamburg, Deutschland 

eBioscience San Diego, CA, USA 

Eppendorf AG  Hamburg, Germany 

Eurofins Genomics GmbH  Ebersberg, Germany 

Feather Safety Razor Co., Ltd.  Osaka, Japan 

Greiner Bio-One GmbH  Kremsmünster, Austria 

GSL Biotech LLC  Chicago, IL, USA 

Illumina, Inc.  San Diego, CA, USA 

Invitrogen Carlsbad, CA, USA 

Integra Biosciences AG  Biebertal, Germany 

Jackson ImmunoResearch, Inc.  West Grove, PA, USA 

Leica Biosystems Nußloch, Germany 

Lonza Basel, Switzerland 

Merck KGaA  Darmstadt, Germany 

Microsoft Cooperation  Redmond, WA, USA 

New England Biolabs, Inc.  Ipswich, MA, USA 

NuAire  Plymouth, MN, USA 

Qiagen GmbH  Hilden, Germany 

R&D Systems, Inc.  Minneapolis, MN, USA 

Sarstedt AG  Nümbrecht, Germany 

Sartorius AG  Göttingen, Germany 

Scientific Industries, Inc.  Bohemia, NY, USA 

Scil animal care company Scilvet Viernheim, Germany 
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2.2 Methods 

All procedures were performed according to manufacturer’s instructions unless specified 

otherwise. 

2.2.1 Generation of mouse models 

The generation of transposon mice and available lines was described earlier (Rad et al., 2010). 

Transposon mice were kept in the animal facilities of the Wellcome Trust Sanger Institute, 

Hinxton/Cambridge, UK under specific-pathogen-free conditions on a 12-h light/dark cycle, 

receiving food and water ad libitum. Experimental (ATP2;Rosa26PB/+) and control 

(Rosa26PB/+ and ATP2 single transgenic) mice were maintained on a mixed C57BL/6 x 129Sv 

x FVB background. Different ATP2 lines were used to generate final cohorts, which differ in 

their number of transposon copies and the donor locus (ATP2-S1: donor locus chr17, 15 

copies; ATP2-H27: donor locus chr4, 20 copies; ATP2-H32: donor locus chr2, 25 copies). 

Necropsy of transposon mice was performed by Roland Rad, Lena Rad and Alexander Strong. 

To generate Rosa26-Spic knock-in mice (Gt(ROSA)26Sortm1(Spic)Rrad), the Spic sequence 

(murine open reading frame) was cloned into a Gateway-compatible entry vector (Addgene 

#17398), which was then shuttled into a Rosa26-targeting Gateway destination vector with 

loxP-flanked puromycin resistance-containing stop cassette (modified after Addgene #21189). 

Embryonic stem (ES) cell (JM8) targeting, blastocyst injections, and subsequent breeding 

steps were performed using standard protocols/techniques. Crossing of Rosa26-Spic mice 

with a Cre recombinase leads to tissue-specific expression of Spic. 

To generate inducible Spic mice, the TET system was used (TET-Spic mice). The Spic 

sequence was first cloned into the pENTR1A vector (Addgene #17398) and then shuttled to 

the Col1a targeting vector containing a minimal CMV promoter together with the Tet response 

elements (TRE) cassette (under a PGK promoter). Using recombinase mediated cassette 

exchange embryonic stem cells with a modified Col1a locus (MESKH2-VJ1, Jaenisch cells, 

(Wu et al., 1994)) were targeted. Crossing of TET-Spic mice with reverse transactivator mice 

(rtTA3) will lead to Spic expression only after doxycycline administration. Doxycycline 

containing food (625 mg/kg) was administered to TET-Spic rtTA3 double transgenic animals 

starting at 8 weeks of age until the termination criteria of the experiment were reached. Cloning 

of Spic sequences and generation of ES cell was performed by Rupert Öllinger. 

Blastocyst injections were performed at Wellcome Trust Sanger Institute, Hinxton/Cambridge, 

UK (by Mathias Friedrich and Allan Bradley). Mice were kept in the animal facilities of the 

Klinikum rechts der Isar, Technical University Munich, Munich, Germany. All animal 

experiments were carried out in compliance with the requirements of the European guidelines 

for the care and use of laboratory animals and were approved by the Technical University 
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Munich (Regierung von Oberbayern, Munich, Germany, license number AZ ROB-55.2Vet-

2532.Vet_02_17-84). For a small subset of mice, genotyping (3/31) and necropsy (1/31) was 

performed by Majdaddin Rezaei. All other mice were genotyped and analyzed by myself. 

2.2.2 Necropsy and histology 

All animals were monitored regularly and all signs of sickness (e.g., inactivity, pale paws, 

hunched posture, palpable/visible masses and poor grooming) were reported. Mice were 

anesthetized with Isoflurane (Abbott) before being euthanized. During necropsy, a thorough 

inspection of all hematological organs (thymus, spleen, lymph nodes) was carried out. For later 

DNA/RNA isolation, tissue samples were stored in RNAlater (Sigma). For histology, tissue 

samples were fixed in 4% formaldehyde, paraffin-embedded, sectioned, and stained using 

hematoxylin and eosin following standard protocols. Blood was drawn from the heart and 

stored in S-Monovettes (Sarstedt) at -20°C. Bones (femur and tibia) were isolated and stored 

in FACS buffer until bone marrow isolation. Ear and/or tail samples for later re-genotyping or 

germline control DNA was also stored in RNAlater.  

2.2.3 Immunohistochemistry 

Immunohistochemistry (IHC) was performed on a Bond Rxm (Leica) using a Polymer Refine 

detection kit without post-primary antibody. Slides were deparaffinized and pretreated with 

Epitope retrieval solution 1 (ER1, citrate buffer, pH = 6) or solution 2 (ER2, EDTA buffer, 

pH = 9) as indicated. The following primary antibodies were used: rat anti-B220/CD45R (B220, 

BD Bioscience, 1:50 dilution, ER1, 20 min), rat anti-CD138 (281-2, BD Bioscience, 1:50, ER2, 

20 min), rat anti-MPO (A0398, DAKO, 1:100, ER2, 20 min), rabbit anti-CD3 (Sp7, DCS, 1:100, 

ER1, 20 min), rabbit anti-Tdt (005, Supertechs, 1:100, ER2, 20 min) and rat anti-CD4 (GHH4, 

Dianova DIA-404, 1:50, ER2, 40 min). Rabbit anti-rat secondary antibody (Vector, 1:400) was 

applied for primary rat antibodies. Slides were counterstained with hematoxylin and 

coverslipped after manual rehydration. Slides were scanned with a Leica AT2 scanning 

system. HE stainings and IHCs were evaluated by experienced mouse pathologists. Professor 

Leticia Quintanilla de Fend and her team at University Tübingen histopathologically analyzed 

the large ATP2 cohort and provided the first diagnoses. Subsequent in detail analysis of T cell 

leukemias was performed by Dr.med.vet. Hsi-Yu Yen and PD Dr.med.vet. Katja Steiger 

(Pathology department, Klinikum rechts der Isar, TUM). All pathologists were blinded to the 

mouse genotypes. 

2.2.4 DNA/RNA isolation from tissue and cell lines 

DNA and RNA from RNAlater stored tissue samples were isolated using the Qiagen Allprep 

DNA/RNA Mini Kit according to manufacturer’s instructions. miRNA isolation of tissue samples 
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was performed using the mirVanaTM miRNA Isolation Kit (Thermo Fisher Scientific) according 

to manufacturer’s instructions. DNA and RNA concentrations were measured using the Qubit® 

fluorometer. 

2.2.5 Quantitative insertion site sequencing (QiSeq) 

To obtain the exact location as well as the abundance of transposon insertions in the genome, 

we previously developed a semi-quantitative sequencing approach (QiSeq, (Friedrich et al., 

2017)). Briefly, DNA samples were sheared with a Covaris AFA sonicator to a mean fragment 

length of 250 bp. The fragmented DNA was then end-repaired, A-tailed and a splinkerette 

adapter was ligated to each DNA end. For the 5’ and 3’ transposon end, subsequent steps 

(amplification and sequencing of transposon-genome junctions) were conducted separately. 

The specific structure of the splinkerette adapter (Y-shaped design with a template and a 

hairpin strand) ensures that only transposon-genome junction fragments (and not genomic 

fragments without transposon insert) can be amplified in the following first PCR step (which 

was conducted with transposon- and splinkerette-specific primers). Afterwards, a second 

nested PCR step was performed for further amplification, barcoding of samples and extension 

with Illumina flow cell binding sites P5 and P7. Each sample was then quantified with 

quantitative real-time PCR (using P5- and P7-specific primers). Subsequently, samples were 

equimolarly mixed and the library pool was again quantified. Libraries were sequenced on the 

Illumina MiSeq sequencer (75 bp, paired-end). Mapping of integrations to the mouse genome 

was performed using the SSAHA2 algorithm and sequences containing transposon-genome 

junctions were selected for downstream analyses. For these analyses, the Wellcome Trust 

Sanger Institute Bioinformatics Pipeline was used (scripts generated by Hannes Ponstingl and 

Mathias Friedrich). 

2.2.6 Common insertion sites (CISs) and downstream analysis 

To identify regions in the genome that are more frequently hit than observed by change, we 

performed CIMPL (Common Insertion Site Mapping Platform) CIS analysis, which is based on 

a Gaussian kernel convolution framework (de Ridder et al., 2006). Therefore, raw files resulting 

from QiSeq analysis were processed. Processing included the removal of insertions 3 Mb 

around the donor locus (chr17) and the application of a read coverage cut off. CISs were 

ranked according to the number or samples of contributing insertions. Sfi1, a known artefact 

frequently detected in insertional mutagenesis screens, was removed from the list of CIS 

genes. Additionally, Arid1b and Mmp16 were excluded due to their close proximity to the donor 

locus on chr17 and chr4, respectively. A scale parameter of 30 k was used for CIS 

identification. Profile plots and profile heatmap plots for visualization of ChIP-Seq peak 

enrichment in CIS regions were created using deeptools (Ramírez et al., 2016). Subgroup 
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specific CIS analysis were performed using a scale parameter of 5 k and were ranked 

according to the number of contributing insertions. 

2.2.7 Annotation of regulatory common insertion sites 

The computational part of the ARCIS tool (data preprocessing, chromHMM run and 

overlapping using the GenomicRanges package) was conducted by Niklas de Andrade 

Krätzig. Analysis strategies, ranking scores and manual inspection rules were developed by 

myself. 

2.2.7.1 Computational pipeline to annotate CISs 

For the identification of regulatory regions using CIMPL, the scale parameter was set to 5 k to 

identify narrow regions with regulatory potential. The resulting CIS coordinates were 

overlapped with a collection of publicly available datasets using the GenomicRanges R 

package (Lawrence et al., 2013). The data was post-processed into a BED3 format with an 

additional column for name assignment. For overlap with peak-based files (ChIP-Seq, DNase-

Seq), the number of overlapping peaks and the distance to the closest peak were reported. 

For interaction datasets (Hi-C from different stages of development and data from dbSUPER 

[mouse thymus]), linked target genes are annotated. Chromatin regions specifically increasing 

or decreasing during T cell development (change in A and B compartment scores called from 

Hi-C data in Hu et al. (2018)) were also overlapped with CIS regions. 

Additionally, we run a chromatin Hidden Markov Model (chromHMM) (Ernst and Kellis, 2012) 

with a collection of ChIP-Seq data from ENCODE to define chromatin states, based on distinct 

combinations of histone marks. We used six thymus-specific ChIP-Seq datasets: H3K4me1, 

H3K27ac, H3K4me3, H3K27me3, H3K36me3 and CTCF. The observed chromatin 

combinations resulted in eight manually assigned chromatin states: 

active/weak/poised/insulated enhancer, active promotor, gene body, CTCF binding sites and 

quiescent. The number of overlaps as well as the distance to the closest element was reported. 

ARCIS calculates a score for each CIS region. The score is based on selected elements: 

overlap with an annotated super-enhancer (dbSUPER) or increasing chromatin accessibility in 

T cell development (from Hu et al. (2018)) was scored with +1, a weak and active enhancer 

(chromHMM) was scored with +1 and +2, respectively, any reported Hi-C connection was 

scored with +2. To avoid that inactivated PC genes are reported as intronic enhancer, the 

overlap with more than two exons was penalized with -2. The sum represents the final ARCIS 

RE-score. If the ARCIS RE-score is greater than or equal to 3, the CIS is putatively harboring 

a regulatory region. CIS can be ranked based on the score. To report the type of the element, 

the GENCODE M24 annotation type is used. According to the type, the CIS gets annotated as 

intergenic enhancer, as non-coding transcript, which is potentially overlapping with an 
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enhancer or as protein-coding transcript, which might additionally harbor an intragenic or an 

intergenic RE in close proximity. The category ‘non-coding’ is defined by the overlap with an 

annotated nPC transcript but does not exclude the presence of an additional enhancer 

element. In contrast, the annotation as enhancer element cannot exclude the presence of so 

far not annotated nPC transcripts. Assessing the expression of identified nPC-transcripts 

represents further implication for the nPC transcript to play a functional role. 
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Figure 8: Workflow for the identification of regulatory CISs using ARCIS and manual evaluation. 
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2.2.7.2 Manual refinement and classification of regulatory CISs 

The manual evaluation was based on the visualization of different datasets in the UCSC 

genome browser (Figure 8). Here, the exact position of the insertions, their orientation and 

clustering within the CIS were inspected. In a first step, it was assessed whether or not the 

majority of the insertions overlaps with an intergenic/intronic region, non-coding transcript or 

with multiple types. For intergenic enhancers, next the clustering of the insertions was 

investigated, a characteristic for insertion peaks in REs. To exclude that this insertion peak is 

activating a transcript, we assessed the orientation of the insertions. If the orientation is 

unbiased, it is highly unlikely that these insertions activate a transcript. If any of these steps 

leads to a ‘no’ answer meaning that either insertions are not clustered or the orientation is 

biased, the CIS needs to be manually reclassified to the better matching category. If all steps 

were answered with ‘yes’, the target gene of the RE is reported based on the visible Hi-C 

connection. An optional step includes the investigation if the reported target gene is expressed 

in T cell development (based on RNAseq data from Hu et al. (2018)). A target gene expressed 

at any stage in T cell development represents a highly interesting candidate. For intronic REs, 

the steps are comparable. If insertions are not clustered, the PC gene most likely gets 

inactivated by the transposon insertions, classifying this CIS as PC. If the insertions are 

clustered, but show strong orientation bias, the transposon might activate the PC gene (based 

on availability of a transcript with an ATG in exon 2 or higher). These CISs were classified as 

activating PC. If all steps were answered with ‘yes’, it needs to be assessed if the target gene 

is a distant gene (not connected to own promoter). If so, the target gene is reported. An optional 

step includes the investigation if the CIS gene (not the target gene) is expressed in T cell 

development. For genes not expressed, an inactivating function of the transposon insertions 

is highly unlikely, increasing the confidence to classify this CIS as intronic regulatory element. 

For non-coding transcripts, potentially activating or rather inactivating patterns were 

differentiated based on insertion clustering and orientation. An optional step includes the 

investigation if the non-coding transcript is expressed in T cell development. Of note, nPC 

transcripts are expressed at low levels compared to PC genes. Identifying a transcript with 

detectable expression therefore increases the confidence that the nPC transcript is relevant 

for T cell biology. If insertions overlap with multiple transcripts (PC and nPC) or with a PC 

transcript and the intergenic area, these CIS were classified as ‘PC + ncRNA’ or ‘PC + 

intergenic enhancer’, respectively. Ambiguity in the ARCIS output often cannot be resolved by 

manual annotation. Here, functional validation is necessary. 

2.2.8 RNA-Seq 

Library preparation for bulk 3’ poly(A)-RNA sequencing was done as described previously 

(Parekh et al., 2016). Briefly, barcoded cDNA of each sample was generated with a Maxima 
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RT polymerase (Thermo Fisher) using oligo-dT primer containing barcodes, unique molecular 

identifiers (UMIs) and an adaptor. Ends of the cDNAs were extended by a template switch 

oligo (TSO) and full-length cDNA was amplified with primers binding to the TSO-site and the 

adaptor (Weber et al., 2019). NEB UltraII FS kit was used to fragment cDNA. After end repair 

and A-tailing a TruSeq adapter was ligated and 3’-end-fragments were finally amplified using 

primers with Illumina P5 and P7 overhangs. In comparison to Parekh et al. (2016), the P5 and 

P7 sites were exchanged to allow sequencing of the cDNA in read1 and barcodes and UMIs 

in read2 to achieve a better cluster recognition (Weber et al., 2019). The library was sequenced 

on a NextSeq 500 (Illumina) with 63 cycles for the cDNA in read1 and 16 cycles for the 

barcodes and UMIs in read2. 

For data analysis, Gencode gene annotations M25 and the mouse reference genome 

GRCm38 were derived from the Gencode homepage (EMBL-EBI). Data was processed using 

the published Drop-Seq pipeline (v1.12) to generate sample- and gene-wise UMI tables 

(Macosko et al., 2015). The resulting UMI filtered count matrix was imported into R v3.4.4. 

Lowly expressed genes were filtered so that 80% of samples have at least three read counts 

per gene. Dispersion of the data was estimated with an intercept only model using DESeq2 

v1.18.178 (Love et al., 2014). Principal Component Analysis (PCA) was conducted with the 10 

percent top variable genes in the rlog transformed dataset. PAM algorithm (k parameter set to 

4) was used to determine cluster membership in the PCA embedding (clusters were confirmed 

using the cola R package (Gu et al., 2021)). Cluster assignments were then used as 

explanatory variable during model fitting with DESeq2. The Wald test was used for determining 

differentially regulated genes between all pairwise clusters. Shrunken log2 fold changes were 

calculated afterwards. Rlog transformation of the data was performed for visualization and 

further downstream analysis. 

Bioinformatic analyses were performed by Thomas Engleitner and myself. 

2.2.9 aCGH for copy number analysis 

Array comparative genomic hybridisation (aCGH) was carried out by the group of Kristian 

Unger (Helmholtz Zentrum München, Neuherberg/München, Germany). For this, Agilent 60k 

mouse CGH arrays were used. CGH data was pre-processed with the Agilent Genomic 

Workbench software v7.0.4.0. Raw log ratios were re-centered to ensure that the zero point is 

reflecting the most common ploidy state. Segmentation and aberration calling were performed 

with the implemented ADM-2 algorithm. Visualization of curated data was performed in R. 



51 

2.2.10 Gene set enrichment analysis 

Gene set enrichment analysis (GSEA) was performed using the GSEA program (v4.0.3). The 

preranked mode with the apeglm shrunken log2 fold changes as ranking metric was used. 

Hallmark gene sets (h.all.v7.2.symbols.gmt) were selected for pathway analysis. 

Hematopoietic gene signatures were obtained from Laurenti et al. (2013) 

(http://www.jdstemcellresearch.ca/node/32) and Novershtern et al. (2011). A pathway was 

considered to be significantly associated with an experimental condition if the FWER was 

below 0.05. 

2.2.11 cDNA synthesis and qPCR 

For mRNA, cDNA synthesis was conducted using SuperScript II Reverse Transcriptase 

(Thermo Fisher Scientific). A total of 1 µg RNA and a mixture of oligo dT primers and random 

hexamers was used for cDNA synthesis, which was performed according to standard 

protocols. Real-time qPCR was conducted with SYBR Select Master Mix (Thermo Fisher 

Scientific). Murine and human GAPDH were used as housekeeping genes for normalization. 

For microRNAs, expression was assessed using the TaqMan™ technology. cDNA was 

synthesized using the TaqMan™ Advanced miRNA cDNA Synthesis Kit (Thermo Fisher 

Scientific). Expression was assessed using the TaqMan™ Advanced miRNA assays hsa-miR-

29a-3p and hsa-miR-29b-3p for microRNA29a and microRNA29b, respectively. Expression 

was normalized to microRNA16 using the hsa-miR-16-5p assay (all Thermo Fisher Scientific). 

2.2.12 CRISPR/Cas9 based knockout of regulatory regions 

2.2.12.1 Cloning 

For functional validation of intergenic regions, CRISPR/Cas9 knockout experiments were 

performed using the double-guide vector pX333 (Addgene plasmid #64073). Here, two 

sgRNAs can be expressed from two independent U6 promoters and Cas9 is expressed from 

the Cbh promoter. Sequences for forward and reverse oligonucleotides were designed using 

the CRISPOR tool (Concordet and Haeussler, 2018) with target sequences from the mouse 

(mm10) and human (hg38) genome. For each knockout experiment, six guides were selected 

(three on each site of the knockout region). Vectors of different guide combinations were 

pooled before electroporation. Annealing of single-stranded oligonucleotides was performed 

by an initial denaturing step at 95°C for 5 minutes in a PCR cycler followed by a slow cool-

down back to room temperature. 

http://www.jdstemcellresearch.ca/node/32
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Candidate region specific guides or lacZ control guides were sequentially cloned into the 

pX333 vector. Annealed oligonucleotides were diluted (1:50) and Golden Gate reaction was 

performed (Table 21/22). 

Table 21: Golden Gate protocol for cloning of sgRNAs into the pX333 vector. 

Component Volume (µl) 

pX333 vector (90 ng/µl) 1 

Annealed and diluted oligonucleotides 1 

T4 DNA ligase buffer 2 

Restriction enzyme BbsI or BsaI 1 

T4 ligase 1 

H2O 14 

     

 

Table 22: Thermocycler program for Golden Gate cloning protocol. 

Temperature (°C) Time (min) Cycles 

37 5  10 x 

16 10 

55 5 1 

80 5 1 

10 ∞ 1 

 

Golden Gate product was used for transformation of the newly assembled plasmid into 

chemically competent bacteria (homemade Stbl3). Bacteria were thawed on ice and 5 µl of the 

Golden Gate product was mixed with 10 µl 5x KCM buffer (500 mM KCl, 150 mM CaCl2, 

250 mM MgCl2) and 35 µl H2O. 50 µl chemically competent bacteria were added and the 

mixture was incubated 20 minutes on ice and additionally 10 minutes at room temperature 

(RT). After adding 300 µl of LB medium (without antibiotics), bacteria were incubated in a 

horizontal shaker (800 rpm) at 33°C for 60 minutes. After centrifugation, bacteria were plated 

on Agar plates containing the selection antibiotic (100 µg/mL ampicillin) at 33°C over night. 

Bacterial colonies were picked and incubated in LB medium for subsequent plasmid DNA 

isolation using the QIAprep Spin Miniprep Kit (Qiagen) according to manufacturer’s 

instructions. Guide sequences in the vector were confirmed using Sanger sequencing 

(Eurofins Genomics). Plasmid DNA containing both sgRNAs (confirmed by Sanger 

sequencing) were used for further electroporation of cell lines. 

2.2.12.1 Cell culture 

The human T-ALL cell line Jurkat (ATCC® TIB-152™) and the murine T cell lymphoma cell 

line EL4 (ATCC® TIB-39™) were used for knockout experiments. HEK293T cells (ATCC® 

CRL-3216™) were used as a control. Jurkat and EL4 suspension cell lines were maintained 

in uncoated flasks in RPMI1640 medium. HEK293T cells were cultured in coated flasks and 
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dishes in DMEM medium. All cell lines were cultured in media supplemented with fetal bovine 

serum (FBS, 10%) and 1% penicillin/streptomycin and maintained at 37°C with 5% CO2. Cell 

counting was performed using an improved Neubauer counting chamber. 

2.2.12.3 Electroporation and sorting of cells 

Cell lines were electroporated using the Amaxa® Cell Line Nucleofector® Kit V (Jurkat and 

HEK293T cells) and Kit L (EL4 cells) (Lonza). For each knockout, the pX333 vector (2 µg 

mixture of three double-guide vectors) and a GFP vector (0.5 µg) were co-electroporated into 

2×106 cells (EL4) or 1x106 cells (Jurkat and HEK293T) according to manufacturer’s protocol. 

Briefly, cells were mixed with the electroporation solution (82 µl solution and 18 µl supplement) 

and the plasmids. Cells were nucleofected using program X-005 (Jurkat and HEK293T) or the 

C-009 (EL4) of the Amaxa NucleofectorTM 2b (Lonza). 

The next day (24-36 h after nucleofection), GFP positive cells were single-cell sorted in 96-well 

plates and cultured with conditioned medium and 20% FCS. Sorting was performed at the Cell 

Core Facility at TranslaTUM, Klinikum rechts der Isar, Munich by Markus Utzt. Colonies grown 

from single cell clones were screened for the knockout using PCR with region specific primers 

flanking the target sequence (using the protocols for mouse genotyping). 

2.2.12.4 RNA isolation and qPCR 

Positive clones (knockout was confirmed by PCR amplification and Sanger sequencing of the 

product) were expanded for RNA isolation. Expression of the target gene was determined by 

real-time quantitative PCR (qPCR) using primers specific for the target transcripts. For 

normalization of RNA input, Gapdh qPCR was performed. Expression of the target gene was 

compared to cell clones electroporated with lacZ guides. 

2.2.13 Mouse genotyping 

Ear punches of mice were taken 21-28 days after birth. Tissue biopsies were lysed in 50 µl 

DirectPCR Lysis Reagent (Viagen) with 20 µg/ml Proteinase K and overnight incubated at 

55°C followed by a subsequent incubation at 95°C for 15 minutes for heat inactivation of the 

enzymatic activity of proteinase K. Samples were 1:10 diluted with ddH2O and long term stored 

at -20°C. Standard genotyping was performed using the 2x Kapa 2G Genotyping Mastermix 

(Sigma) according to Table 23/24. 

Table 23: PCR setup for genotyping PCR 

Component Volume (µL) 

Kappa 2G Mastermix 5 

Primer forw 0.5 

Primer rev 0.5 

H2O 2 

DNA (1:10 diluted) 2 
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Total 10 

 

Table 24: Touchdown PCR thermocycler program. 

Step Temperature (°C) Time (s) Cycle 

Initial Denaturation 95 180 1 

Denaturation 95 20  

13 (Δ-1°C per cycle) Annealing 65 20 

Extension 72 45 

Denaturation 95 20  

26 Annealing 55 20 

Extension 72 45 

Final Extension 72 120 1 

Hold 10 ∞ 1 

 

2.2.14 Fibroblast isolation from mouse tissue 

To isolate fibroblasts from mice, the tail tip was cut and thoroughly washed with 80% Ethanol. 

The tail tip was transferred to a cell culture dish, cut into very small pieces and incubated with 

collagenase type II (200 U/ml) at 37°C overnight. The next day, the sample was centrifuged at 

450 x g for 5 minutes, resuspended with RPMI medium, filtered (30 µm) and plated into a well 

of a 6-well plate. After 2-3 days, medium was changed. Fibroblasts grew out of tissue after a 

few days and were further cultured. As soon as fibroblasts grew reliably, doxycycline (1 mg/ml) 

was added to induce expression of Spic in a 1:5,000 dilution.  

2.2.15 Tissue preparation and staining for FACS 

During necropsy of sick or control mice, blood was drawn from the heart. Analysis of mouse 

blood values was performed using the scil Vet ABC ™Hematology Analyzer. 

Spleen and bones (tibia and femur) were harvested for further flow cytometric analysis. Bone 

marrow was washed out from the bones with FACS buffer (PBS + 2% FCS) using a syringe. 

Cell separation of bone marrow cells was performed by repeated drawing using a needle. 

Separation of spleen tissue was achieved using a 30 µm filter. After filtering, samples were 

centrifuged for 10 minutes at 450 x g at 4°C. Erythrocytes from blood and bone marrow 

samples were lysed by incubating the samples with Red Blood Lysis buffer (Thermo Fisher) 

for 10 minutes at 4°C. Cells were counted using the Neubauer counting chamber before 

antibody staining. Then, 1 to 10 x106 cells were mixed with respective antibody panel mixes. 

Single stains of each fluorophore were used for compensation. Antibodies were incubated for 

1 h. Cells were then washed with FACS buffer, centrifuged, and pellets were resuspended in 

500 µl FACS buffer with 0.2 µg propidium iodide (Thermo Fisher) and filtered before flow 
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cytometric analysis. FACS analysis was performed on a BeckmanCoulter CyAn, equipped with 

405 nm, 488 nm, and 633 nm lasers. 

FACS data analysis was performed by Michele Buck. 

2.2.16 Statistical analysis 

All statistical analyses were performed using R v4.0.1 with the package version indicated in 

the material section. Methods used for statistical hypothesis testing are directly stated in the 

figure legends. In general, the significance level was set to 0.05. Boxplots were generated 

using the default ggplot2 geom_boxplot settings (middle, median; lower hinge, 25% quantile; 

upper hinge, 75% quantile; upper/lower whisker, largest/smallest observation less/greater than 

or equal to upper/lower hinge ± 1.5 * IQR).  



56 

3. Results 

Parts of the results of this chapter have been submitted in the research article “In vivo 

interrogation of regulatory genomes reveals extensive quasi-insufficiency in cancer evolution”, 

Fischer et al (Cell Genomics 2023). This study comprises the characterization of a PiggyBac 

transposon cohort with 256 mice, which were generated by Roland Rad in the laboratory of 

Professor Allan Bradley at the Wellcome Trust Sanger Institute in Cambridge, UK. The analysis 

of this transposon screen data, validation experiments, data interpretation, and the 

experiments including studies on the characterization of the Spic mouse model were 

performed by myself. 

3.1 Rosa26PB;ATP2 mice develop a broad spectrum of hematopoietic 

tumors 

To enable subtype-specific analysis of hematopoietic malignancies, the previously described 

transposon cohort (Rad et al., 2010) was expanded and a large screening cohort with a total 

of 256 Rosa26PB;ATP2 mice was generated (Figure 9a). Mice were aged and monitored for 

signs of sickness and tumor development. At the time of necropsy, most mice presented with 

enlarged spleen, lymph nodes and/or thymus confirming the previously observed 

predominance of hematopoietic tumors using ATP2 mouse lines (Rad et al., 2010). Tumors 

were characterized using an immunohistochemistry (IHC) panel including the markers CD3 

(T cells), B220 (B cells), and MPO (myeloid cells). Murine counterparts of human T cell 

lymphoblastic lymphoma, acute myeloid leukemia (AML) with and without maturation, acute 

myeloid leukemia with erythroid or megakaryoblastic differentiation, histiocytic proliferation, 

and a heterogeneous group of mature B cell lymphomas (BCLs) and B cell lymphoblastic 

leukemia (B-LBL) were diagnosed (Figure 9b/c, Table 25). 

Tumors were classified dependent on their cell-of-origin (myeloid, B or T) or to the ‘mixed’ 

category comprising mice with a combination of myeloid and lymphoid malignancies. 
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Table 25: Histopathological diagnoses of 256 ATP mice preselected for hematologic malignancies during 
necropsy. Histopathological assessment was performed by Professor Leticia Quintanilla de Fend and her team at 

Tübingen University. Samples classified as ‘others’ represent samples where no diagnosis was possible due to (i) 
tissue lysis, (ii) the diagnosis of a benign immunological phenomenon such as spleen hyperplasia or (iii) the 
diagnosis of a lymphoblastic proliferation that could not be further characterized. 

 

Origin Diagnosis Differentiation/maturation Number 

Myeloid AML  With maturation 40 

  Without maturation 38 

  With histiocytic proliferation 6 

  With megakaryocytic differentiation 25 

  With erythroid/erythrocytic differentiation 5 

Mixed Myeloid-lymphoid AML + B cell 40 

 Myeloid-lymphoid AML + T cell 8 

Lymphoid T cell T-LBL/T-ALL and MTL 53 

 B cell BCL, B-LBL 29 

 Unknown  3 

Others   9 

Total   256 

 

AMLs represent the largest subgroup in the cohort followed by T cell malignancies. Of note, 

survival correlated with the tumor subtype. Median tumor-related survival was lowest in mice 

developing T cell malignancies (203 d), followed by AML (301 d), mixed (386 d), other (418 d) 

and B cell (498 d) mice (Figure 9d). 

Taken together, the large size of the screen allowed the collection of a diverse spectrum of 

hematologic malignancies and provided sufficient sample numbers for detailed subgroup 

analysis. 
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Figure 9: Histopathological characterization of the Rosa26PB;ATP2 screening cohort. a) Mating 
scheme for PiggyBac screening using ATP2 mouse lines. In Rosa26PB;ATP2 double positive mice 
transposon mobilization is active and mice develop hematopoietic cancers. b) Histopathological 
diagnoses of hematopoietic malignancies in Rosa26PB;ATP2 mice. Spectrum of 256 hematopoietic 
tumors diagnosed in the ATP2 screening cohort. The category ‘mixed’ describes tumors with myeloid 
and lymphoid origin. Details for cases where no diagnosis was possible are given in Table 25. c) 
Representative images of tumors from all major subgroups. The first row shows an acute leukemia 
(AML) case with MPO expression. Additionally, the shown AML case expresses the B cell marker B220. 
The second row represents a diffuse large B cell lymphoma (DLBCL) characterized by B220 expression. 
The additional expression of CD138 led to the classification of DLBCL with plasmacytoid differentiation. 
The third row shows a T cell (lymphoblastic) lymphoma characterized by strong CD3 expression and 
the absence of B220 expression. Magnifications: first column: 25x; second: 630x; third: MPO 400x, B220 
50x (insert 400x), CD3 25x (insert 400x); fourth: B220 200x, CD138 25x, B220 25x. d) Survival of 
Rosa26PB;ATP2 mice with different types of hematopoietic tumors (AML n = 107, mixed n = 46, B cell n 
= 26, T cell n = 45, other n = 12). Mice in the other group comprise ‘other’ and ‘unknown’ categories 
from Table 25. Mice with NA values were excluded from the analysis. All pairwise comparisons using 
the Log-Rank test are shown. Benjamini-Hochberg (FDR) was used to adjust for multiple testing.  
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3.1.1 Mouse T cell malignancies recapitulate human T-ALL subtypes 

ATP2 induced T cell malignancies (CD3 positive cases, 53/256, 21%) were selected for further 

in detail analysis. Based on staining with the terminal deoxynucleotidyl transferase Tdt (marker 

for lymphoid precursors) the majority of these cases was diagnosed as T cell lymphoblastic 

lymphoma (T-LBL)/T cell acute lymphoblastic leukemia (T-ALL) (Figure 10a). As according to 

the WHO T-LBL and T-ALL constitute the same disease entity and only differ in their clinical 

manifestation and the degree of bone marrow infiltration (Morse et al., 2002), hereafter Tdt 

positive T cell malignancies are referred to as T-ALL cases. Only two tumors were CD3 positive 

but lacked Tdt expression and were therefore classified as mature T cell lymphomas (MTL) 

(Figure 10a). To further subclassify the T-ALL cases based on their cell of origin, IHC of the 

mature T cell marker CD4 was performed. Expression of CD4 is associated with later stages 

of T cell development (compare Figure 6 introduction) and was only found expressed in a 

subgroup of samples (described in more detail in chapter 3.5). 

Additionally, array comparative genomic hybridization (CGH) was performed to further 

characterize murine T-ALLs at a genomic level. DNA was isolated from all T-ALL tumors for 

which tissue and matching tail samples were stored in RNAlater. This analysis revealed 

recurrent deletions on chromosome 6qB1 (35/43 samples; 81%) and chromosome 14qC2 

(41/43 samples; 95%) (Figure 10b). These deletions are caused by T cell receptor (TCR) 

rearrangement and are also found in 96% of human T-ALL cases (biallelic 91%) (Szczepański 

et al., 2000), demonstrating the validity of the model. Besides deletions in the TCR gene loci, 

recurrent genomic alterations were rare. The only recurrently altered region was an 

amplification on chromosome 10 (18/43 samples; 42%) (Figure 10c). A subgroup of mice with 

chr10 alterations showed whole-chromosome amplifications of chromosome 10 (5/18; 28%), 

whereas the majority was characterized by specific amplifications of 10qC (13/18; 72%). The 

2 Mb large minimal overlap region contains 82 protein-coding genes, including Tcf3, a well-

studied transcription factor in T cell development. 

Thus, the screen revealed a cohort of T-ALLs, which recapitulate human T-ALL based on 

immunohistochemical and genomic analysis. 
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Figure 10: Histopathological and genomic characterization of T cell malignancies from 
Rosa26PB;ATP2 mice. a) Microscopic immunohistochemical images of representative cases. The upper 
4 cases were classified as T-ALL/T-LBL and the case presented in the last row was classified as mature 
T cell lymphoma (MTL). T-ALL/T-LBL cases were characterized by medium sized cells, round to ovoid 
nuclei and a scant cytoplasm. The nuclei were characterized by fine or dispersed (salt and pepper) 
chromatin and usually one central nucleolus. MTLs were negative for Tdt and showed either small cell 
size and inconspicuous nuclei or medium cell size with irregular nuclei. Tumors are negative for the B 
cell marker B220 and show strong positivity for the T cell marker CD3. CD3 expression was membrane 
associated, but was also found in the cytoplasm. The early T cell marker Tdt was found in the cytoplasm 
and was used to differentiate between T-ALL/T-LBL and T cell lymphomas developing from mature T 
cells. Infiltration in lung (third panel) and kidney (fourth panel) was observed for T-ALL cases. Tumors 
were classified according to the Bethesda proposals for classification of lymphoid neoplasms in mice 
(Morse et al., 2002) by PD Katja Steiger. Scale bar, 50 µm. b) Array CGH data from 43 mice showing 
TCR rearrangement deletions on chromosome 6 and 14 at the locus of the TCR beta and alpha chain, 
respectively. The proportion of samples with the deletion is shown on the y axis. Copy number changes 
were normalized to CGH profiles from the matching tail sample. c) Array CGH data showing an amplified 
region on chromosome 10. The minimal overlap region includes 2 Mb (chr10:79,117,736-81,076,707). 
The proportion of samples with the alteration is shown on the y axis. a, adapted from Fischer et al. 

 

3.2 Screen analysis reveals candidate T-ALL driver genes 

Next, insertion landscapes were analyzed in the T-ALL cohort. To determine the exact location 

and the associated read abundance of each insertion, semi-quantitative insertion site 

sequencing (QiSeq) (Friedrich et al., 2017) was performed (Figure 11a). QiSeq of all T cell 

tumors (n = 51) revealed 170,075 non-redundant transposon integration sites. Genome-wide 

insertion profiles from all tumors showed that genes harboring the highest insertion peaks are 

known T-ALL drivers including Ikzf1, Notch1, Pten or Myb confirming the power of the screen 

(Figure 11b). 
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Figure 11: Insertion data analysis identifies known and novel T-ALL genes. a) Scheme showing 
workflow for transposon screen analysis. DNA was isolated from all samples diagnosed as T-ALL based 
on histology and aCGH and subsequently QiSeq was performed. After insertion mapping, insertions are 
submitted to statistical analysis to identify common insertion sites (CIS). Next, the expression and 
pathway contribution of identified CIS genes is assessed. b) Insertion density of 179,075 insertions from 
51 samples. Highest peaks are labeled with the annotated gene in this region. The donor locus on 
chromosome 17 was excluded. c) Expression analysis of putative T-ALL candidate genes (upper panel) 
in T cell development from murine hematopoietic stem cells (HSCs) to mature CD4 positive T cells. 
Lower panel shows well-described T cell genes as a comparison. Mean-normalized heatmaps were 
created using the immunological genome project website (http://rstats 
immgen.org/MyGeneSet_New/index.html) b, c, adapted from Fischer et al. 
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To identify genomic regions affected by transposon insertions more significantly than expected 

by chance, statistical analyses based on Gaussian Kernel Convolution (GKC) was performed 

(de Ridder et al., 2006). The CIMPL algorithm identified 1,062 common insertion sites (CIS). 

Of these CISs, 994 were found in at least 10% of samples. The top 50 CIS genes are listed in 

Table 26 according to their predicted or suggested molecular function and putative role in the 

development of hematopoietic malignancies. This list includes well-described T-ALL genes 

(Bcl11b, Rasgrp1, Ezh2, Stat3/5b) additionally to the ones mentioned above (Figure 11b). In 

contrast, several genes that have not been linked to T-ALL development so far, but are known 

to trigger leukemogenesis of other lineages were identified. Especially, an accumulation of 

genes linked to AML (including Cux1, Mecom, Crebbp) was observed. This myeloid 

enrichment will be discussed in more detail in chapter 3.6.4. Notably, of the top 50 CIS genes 

18 have not yet been linked to hematopoietic malignancies. The majority of these genes are 

poorly studied, however, some have been proposed to be involved in general signaling 

(Sh3kbp1, Sipa1l1) or immune function (Slamf6, Ly6e, Mgat5). Moreover, some of these genes 

were found to be strongly regulated during T cell development (Gfra1, Nck2, Prim2, Serbp1, 

Fam169b) (Figure 11c) comparable to genes with well-known roles in T cell leukemogenesis. 

This indicates a potential function of these novel genes in T cell maturation. 

Table 26: Top 50 CIS genes classified according to their (predicted) molecular function and relevance in 
leukemogenesis. The categories for the molecular function were adapted from Liu et al. Molecular function was 

assigned using literature research. 

Molecular function Known T-ALL gene 

Novel in T-ALL 

Associated with non-T 
hematopoietic 
malignancies 

Novel in other 
hematopoietic 
malignancies 

Transcriptional 
regulation 

Ikzf1, Myb, Tcf12, 
Mef2c, Ets1, Bcl11b, 

Satb1 

Ikzf2, Cux1, Foxp1, Ikzf3, 
Bach2, Ncoa2 

 

Cell cycle   Cdk17 

Epigenomic Kmt2a, Ezh2 
Chd2, Mecom, Hmgb2, 

Crebbp 

 

Signaling 
Notch1, Pten, 

Stat3/Stat5b, Rasgrp1, 
Nf1 

Pip4k2, Akap13 
Sh3kbp1, Gfra1, Rapgef2, 

Sipa1l1, Nck2, Srgap2 

Ribosomal Rpl5   

RNA processing  Mbnl1 Serbp1 

Immune system Tnfsf11, Cxcr4 Icos, Cd74/Camk2a Slamf6, Ly6e 

Other/unknown 
function 

Nr3c1, Lncpint 
Nrip1 Prim2, Rcbtb2, 

Fam169b/Igf1r, Tmem131, 
Mgat5 

 

To globally inspect the function of the identified genes, pathway enrichment analysis was 

performed using the top 50 CIS genes as an input. The analysis confirmed their involvement 

in cancer, more specifically in immune system cancer and T-ALL (Table 27). Moreover, the 

importance of the JAK/STAT and the estrogen signaling pathway was highlighted. Of note, the 

top 50 gene list shows an accumulation of genes involved in gene regulation as indicated by 
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the ontology terms ‘regulation of transcription by RNA polymerase II’, ‘Cis-regulatory region 

sequence-specific DNA binding’ and ‘nucleus’ as the cellular compartment (Table 27; the 

accumulation of transcriptional regulators among CIS genes is discussed in chapter 3.7). 

Thus, the screen identified well-known and novel genes in T cell leukemogenesis and provides 

lists of putative candidate genes for further experimental validation. 

Table 27: Pathway enrichment analysis using the top50 CIS genes. Analysis was performed using Enrichr and 

top hits and the corresponding adjusted p values of different pathways and ontology databases is listed. 

Database Name Adjusted p value 

   

Pathways   

KEGG 2021 Pathways in cancer 0.00001424 

Elsevier Pathway Collection Proteins involved in T-ALL 6.289e-7 

Panther 2016 JAK/STAT signaling pathway 0.005939 

MSigDB Hallmark 2020 Estrogen Response Early 0.0004176 

   

Ontologies   

Jensen DISEASE Immune System cancer 0.00001143 

GO Biological Process 2021 Regulation of transcription by RNA 

polymerase II 

6.820e-10 

GO Molecular Function 2021 Cis-regulatory region sequence-specific 

DNA binding 

5.096e-8 

GO Cellular Component 2021 Nucleus 0.00001545 

 

3.3 Using PiggyBac for systematic interrogation of screening the non-

protein-coding genome 

3.3.1 The PiggyBac screening system is suitable to interrogate the regulatory 

genome. 

To examine the suitability of the PiggyBac screening system to interrogate the nPC genome, 

general characteristics of PiggyBac integration bias were assessed. PiggyBac recurrently 

targets active genes (de Jong et al., 2014; Yoshida et al., 2017). However, the genomic 

features and major determinants of PiggyBac integration were so far not examined using an in 

vivo dataset and until now, analyses were focused on the protein-coding genome. 

The initial analysis of the global distribution of insertions in the T-ALL cohort found that nearly 

half of all insertions (48.2%) are located in intergenic regions defined as overlapping neither 

with exons nor with introns of protein-coding genes (Figure 13a). Next, the sequencing read 

coverages derived from protein-coding and non-protein coding insertions were compared. Of 

note, no significant difference was detected suggesting a comparable functional relevance 

(Wilcoxon test, p = 0.45, Figure 12b). Subsequently, PiggyBac insertion profiles were 

compared to epigenomic features to investigate the integration preference. First, the 
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epigenomic features of protein-coding genes overlapping with a common insertion site (gCIS) 

were compared to PC genes without PB insertions. Here, a substantial accumulation of active 

chromatin marks and depletion of repressive marks at CIS-overlapping genes was detected 

(Figure 12c). Higher levels of H3K27ac, H3K4me1, H3K4me3 and Pol2R ChIP-Seq signals 

were detected at the transcriptional start site (TSS) of CIS-overlapping genes, while 

H3K36me3 was enriched throughout the gene body of CIS-overlapping genes. In contrast, the 

repressive mark H3K27me3 was lower at CIS-overlapping genes compared to non-

overlapping genes (Figure 12c). 

Additionally, the gene expression level of genes overlapping a CIS and not-overlapping a CIS 

also varied substantially. Genes overlapping a CIS and therefore more frequently hit by the 

transposon, were generally expressed at higher levels (Figure 12d). This even became more 

drastic when looking at the top100 genes of the screen. 

To explain the correlation of insertions in genes expressed at a high level, the distance to the 

next super-enhancer (SE) was assessed assuming that highly expressed genes are regulated 

by an active SE. Murine thymus-specific SEs were obtained from dbSUPER and overlapped 

with CIS genes. Genes targeted by the PiggyBac system more often had a SE in close 

proximity (defined as either overlapping or harboring a SE within 5 kb upstream of the TSS; 

Figure 12e). Whilst only 3.8% of genes non-overlapping CISs had a SE in close proximity, 

genes overlapping a CIS harbored a proximal SE in 27.5%. Genes ranked in the top100 of the 

screen even had a SE in close proximity in 46% (Figure 12e, outer ring). Thus, genes targeted 

by PB are transcriptionally active and proximal to super-enhancers. 

Finally, all CIS regions – independent of their genomic location and their overlap with protein-

coding genes - were overlapped with H3K27ac enhancer histone marks in healthy (double 

positive T cells) and malignant T cells (EL4 cell line). This revealed a general enrichment of 

active chromatin in CISs and showed that also non-coding insertions are close to enhancer 

marks (Figure 12f). 

Thus, beyond its preference for transcribed genes, PiggyBac has a general propensity for 

active chromatin, supporting its application to perturb cancer-relevant regulatory elements in 

the nPC genome.  



65 

 

Figure 12: PiggyBac's suitability to screen for non-coding regulatory elements. a) Proportion of 
protein-coding insertions (n = 92,758; 52.8%) and non-protein-coding insertions (n = 86,317; 48.2%). 
Protein-coding is defined as overlapping with exons or introns of PC genes. b) Read coverage similarity 
between protein-coding and non-protein-coding insertions. High-coverage insertions were selected 
(> 1,000 reads). P value = 0.445, Wilcoxon test. c) Epigenomic features compared between genes 
overlapping a CIS (n = 859) with genes not overlapping a CIS (n = 12,465). Murine thymus ChIP-Seq 
datasets were downloaded from ENCODE. A region of 2 kb around the transcriptional start site (TSS) 
and transcriptional end site (TES) is shown. d) Genes targeted by PiggyBac (genes overlapping a CIS) 
are expressed at higher levels in T cell development. RNA-Seq data from DN2 T cells was used (Hu et 
al. 2018). Rlog expression of (the top100) protein-coding genes overlapping or not overlapping a CIS 
are shown (****P < 0.0001, ***P < 0.001, Wilcoxon test). ‘gCIS’ defines a protein-coding gene 
overlapping a CISs. ‘ng’ defines genes non-overlapping a CISs. e) Proportion of genes with a SE in 
close proximity. Only 3.8% of genes not overlapping a CIS have a proximal SE (inner circle). Genes and 
top100 ranked genes overlapping a CIS have a proximal SE in 27.5% and 46% (middle and outer circle), 
respectively. f) Profile heatmap plot showing enrichment of H3K27ac ChIP-Seq data from healthy double 
positive T cells and the T cell lymphoblastic lymphoma cell line EL4 in CIS regions (n = 1062). A region 
of 10 kb around the CIS center is shown. a, b, c, f adapted from Fischer et al. 
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3.3.2 Development of a computational pipeline to annotate non-coding CISs 

Statistic algorithms used so far to identify cancer genes based on insertional mutagenesis 

data, focused on protein-coding genes. Some approaches are even gene or region-centric and 

do not allow the identification of non-annotated intergenic regions (Brett et al., 2011). As these 

algorithms rely on genomic regions, the size differences of genomic elements might be 

responsible for these constricted analyses. The average size of protein-coding genes is around 

8 kb, while regulatory elements are characterized by a maximal length of 1.5 kb. For CIMPL 

analysis, usually scale parameters ranging between 30 and 240 k were used. As the relevant 

scale for regulatory elements might be smaller, different CISs scale parameters (window sizes) 

were compared. A scale parameter of only 5 k substantially increased the number of regulatory 

CISs that can be identified using CIMPL (Figure 13a/b). However, the CIMPL output only 

includes the information that a region is located ‘intergenic’ without any further details or 

annotation. 

For an improved understanding of intergenic CISs, the annotation of overlapping regulatory 

regions is a central aspect. To accelerate the future analyses of the regulatory potential of a 

CIS (as commonly used tools to identify CISs lack this ability), a novel computational 

framework named ARCIS (Annotation pipeline for Regulatory Common Insertion Sites) was 

developed (Figure 13c). ARCIS integrates CIS regions with any type of (epi)genetic 

information. As input files CIS coordinates (from CIMPL) as well as publicly available 

epigenetic data characterizing different developmental stages of the T cell lineage or T-ALL 

were used. Chromatin accessibility, histone modifications, annotated super-enhancers and 

information on 3D organization was included (technical details on ARCIS performance and 

datasets can be found in the Methods chapter 2.2.7). Moreover, a Hidden Markov Model on a 

collection of thymus ChIP-Seq data (chromHMM) was run to define chromatin states, which 

were additionally used as input information in ARCIS. 
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Figure 13: A computational tool to annotate regulatory common insertion sites. a) Proportion of 
protein-coding, regulatory (non-coding) and intronic regulatory CISs dependent on the analysis method. 
Decreasing the CIMPL scale parameter from 30 k to 5 k increases the percentage of regulatory CISs 
(first vs second bar). The top100, top300 and top500 CIS genes were analyzed. When using the 5 k 
scale parameter, more (intronic) regulatory CISs can be identified when analyzing more CISs. For some 
CIS, classification was ambiguous and the category ‘mixed’ was assigned. b) Effect on CIS size when 
changing the scale parameter in the CIMPL analysis. The result of the reduction of the scale parameter 
from 30 k to 5k is shown for three genomic loci. 30 k CISs are depicted in blue, 5 k CISs in green. HiC 
connections are schematically shown as red arcs. Approximate distance between putative regulatory 
element and the promoter of the target gene is indicated. c) Scheme of the computational ARCIS tool. 
CIMPL-called CISs are overlapped with listed epigenomic datasets and chromatin states from a 
separately run chromHMM analysis. The output includes the annotation of the target gene (based on 
HiC connections), the putative type of the regulatory element (multiple in case of overlaps) and a RE-
score (based on listed characteristics). Additionally, putative regulatory elements can be liftovered to 
the human genome for cross-species comparison. Adapted from Fischer et al. 

ARCIS computes for each CIS, the overlap with all input datasets and reports numbers of 

peaks/intersections with the dataset or the distance to the closest element/peak. Additionally, 
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ARCIS reports the connected target genes and information on chromatin access change 

during T cell development. To rank the CISs according to the probability of having regulatory 

potential, ARCIS calculates a ‘RE-score’ based on a combination of features taking into 

account if the region overlaps with chromHMM-predicted enhancers or dbSUPER SEs, if the 

region gains chromatin accessibility during T cell development and if there is a HiC connection 

starting from this region. Additionally, the score is penalized if the region is overlapping with 

more than two exons as this indicates that rather the gene is the actual transposon hit. The 

ARCIS output includes the type of genomic element found in the CIS region (PC gene, nPC 

transcript or intergenic region) and the score indicating a putative regulatory activity. However, 

the ARCIS output file is not only useful for fast sorting and ranking of potential regulatory CIS 

using the score, but also allows the search for a target gene of interest which is not directly hit 

by the transposon itself but regulated by identified REs. 

Thus, this novel computational tool offers the possibility to pre-select CIS with potential 

regulatory activity for further in detail analysis.  

3.3.3 Individual inspection and verification of identified regulatory elements 

Although the preselection of CISs with regulatory regions represents a crucial advance, the 

final classification of regulatory CISs remains challenging. As functional genomic elements 

often overlap or are found in close proximity to each other, differentiation between these 

elements required individual inspection (Figure 14).  

To understand and judge the result of the ARCIS pipeline in detail, all CISs above a specific 

threshold (insertions in ≥ 7 tumors; 537 CISs) were evaluated manually/individually following 

the rules described in the Methods chapter 2.2.7.2 (Figure 8). Briefly, main criteria for 

discrimination were the position of insertions within the CIS region and their overlap with 

functional genomic elements, their orientation and their insertion pattern across samples. 

Additionally, epigenetic marks and HiC connections were considered to evaluate a putative 

RE. 

In case classification is still ambiguous, the integration of lncRNA and mRNA expression levels 

from developing T cells can further aid the discrimination. Examples include the discrimination 

between intronic and PC CISs using mRNA expression data (if no expression is detected 

during the course of T cell development, the intronic element is most likely the hit of the 

transposon) and the discrimination between lncRNAs and enhancers (if the lncRNA is not 

expressed, the intergenic enhancer is most likely the hit of the transposon). However, in some 

cases no definitive classification is possible. Here, downstream experimental interrogation is 

necessary. Figure 14 lists the main RE categories and target genes or transcripts of the highest 

scoring REs. 



69 

 

Figure 14: Resulting categories of regulatory CISs using ARCIS and individual inspection. The 
ARCIS output including the type and RE-score of each potential RE further needs manual inspection to 
classify CISs to one of the five listed categories. During manual inspection the location and orientation 
of insertions in relation to protein-coding genes and non-coding transcripts is assessed. CISs (n = 537) 
were individually inspected and classified to one of the listed categories. Additionally, the target gene or 
transcript is identified based on 3D data (HiC, depicted as red arcs). Selected examples of each category 
with a high RE-score are listed on the right. Adapted from Fischer et al. 

Thus, these analyses showed the suitability of the PB system to screen for regulatory cancer 

drivers and generated large catalogues of cancer-relevant REs in T-ALL. 

3.3.4 Human relevance of intergenic CISs 

Before experimental targeting of selected regions, human relevance of the target genes was 

evaluated by comparing identified regions to cancer-risk variants in publicly available genome-

wide association studies (GWAS). First, to assess if identified REs and their putative target 

genes are relevant in human leukemogenesis, genetic variants associated with cancer in 

GWAS were analyzed. Intergenic CISs most likely lead to a more subtle gene dysregulation 

than insertions in protein-coding genes. Equally, GWAS variants often affect the non-coding 

sequence, indicating a similar subtle gene regulatory effect. Genes associated with human 

GWAS variants were intersected with the target genes of the regulatory CIS lists. Indeed, 

regulatory CIS target genes (n=149, a selection is listed in Figure 14) were significantly 

enriched for GWAS associated cancer variants in humans (P=0.0001 pan-cancer variants; 

p = 3*10-5 hematopoietic cancer variants; Fisher’s exact test). In contrast to the analysis using 

the reported gene of the GWAS variants, all CISs (n = 1056) were also lift-overed to the human 
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genome and overlapped with unique cancer-associated GWAS variants (n = 6,221). A 

significant enrichment (Chi squared test, p = 0.0001) was detected when comparing the 

number of CISs found in all CIS regions (3,7 variants/Gb) to the complete genome 

(2 variants/Gb). 

Second, identified regulatory regions were cross-compared to regulatory activity in T-ALL 

patients. GRO-Seq data showing nascent RNA transcription including enhancer RNA (eRNA) 

of two T-ALL patients and the T-ALL cell line Jurkat was used for cross-species analysis. 

Identified CIS regions (n = 50, ranked according to ARCIS score) were manually inspected 

and size-reduced to only comprise the regulatory regions instead of the complete CIS region 

(reduction from ~16 kb to ~4 kb). Liftover to the human genome was performed for these 

smaller regions, which were subsequently analyzed for GRO-Seq expression peaks. In 41/50 

regions (82%) clear regulatory activity was detected in human T-ALL. 

These results demonstrate the human relevance of identified regulatory regions and their 

importance in human cancer evolution. 

 

3.4 Functional characterization of identified REs 

3.4.1 An intronic RE of the tumor-suppressor Pten 

The integration of 3D data to the transposon analysis workflow opened the new possibility to 

identify regulatory elements within introns and assign their putative distant target gene. So far, 

CIS algorithms assigned CISs to a gene based on the location ignoring the possibility of intronic 

REs with long-range effects. The combination of ARCIS and manual inspection led to the 

identification of 30 CISs likely to harbor an intronic RE. The most relevant characteristics of 

intronic regulatory CIS include their clustered insertion peak with unbiased orientation (to 

exclude activation peaks) and the often negligible gene expression of the CIS gene (where the 

insertion is located but not the target gene) in murine T cell development. Several genes, which 

are potentially regulated by a cancer-relevant intronic RE were identified (Figure 14). Examples 

include the well-known tumor-suppressor Pten, as well as genes not described in T-ALL so 

far, but either known in T cell biology (Themis, Nrp1) or generally associated with tumor 

suppression (Txn1, Iqgap2). 
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Figure 15: Targeting an regulatory element of Pten located in an intron of Rnls. a) The murine 
Pten locus showing CISs (green boxes) and insertions (black) from the transposon screen together with 
publicly available epigenomic datasets including DNase-Seq, ChIP-Seq and Hi-C data. DNase-Seq data 
is shown for hematopoietic stem cells (HSC), double negative stage 2 (DN2) and double positive (DP) 
T cells. ChIP-Seq datasets are shown for DP cells. Hi-C data is separated into data from early (HSC-
DN2) and late T cell development (DN3-DP). The putative RE is located in an intron of Rnls and 
highlighted in blue. b) The human PTEN locus showing CIS regions from the transposon screen 
liftovered to the human genome and four tracks of GRO-Seq data from two T-ALL patients, the T-ALL 
cell line Jurkat and HEK293 cells. The region of the syntenic regulatory element is highlighted in blue. 
c) Scheme showing the human knockout (KO) region targeting the putative PTEN enhancer element. 
Three CRISPR/Cas9 guides flanking the KO region were designed for each site (guides depicted in red 
and green). To confirm the knockout, PCR was performed with KO primers flanking the KO region (dark 
blue) and wild type primers within the KO region (light blue). The result of the PCR is exemplary shown 
for 8 positive clones in HEK293 cells. A knockout band (~900 bp) can be detected in all samples, the 
wild type band (~500 bp) is missing in the last clone suggesting a homozygous KO. The Sanger 
sequencing trace is shown for one clone and sequences of the guide1 and guide4 are indicated. d) 
Knockout of the putative RE using CRISPR/Cas9 in different cell lines. Knockout was performed in the 
T cell lymphoblastic EL4 cell line (KO n = 26, ctrl n = 18), the human T-ALL cell line Jurkat (KO n = 12, 
ctrl n = 10) and human HEK293 cells (KO n = 38, ctrl n= 14). A 7-8 kb intronic region was knocked out 
and targeted cells were single cell sorted based on GFP expression. Expression of the target gene was 
assessed using qRT-PCR. Each dot represents expression in a single cell-derived clone. Pten 
expression was normalized to Gapdh expression. *P < 0.05, **P < 0.01, ****P < 0.0001, Wilcoxon test. 
Adapted from Fischer et al. 

To functionally characterize these intronic elements, a potential intronic RE in the Rnls gene 

was selected. This RE showed a Hi-C connection to the ~400 kb distant Pten promoter 

(Figure 15a) and was recently described (Tottone et al., 2021). To confirm one of the main 
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characteristics, Rnls expression levels were checked first. Indeed, Rnls was not expressed 

during T cell development confirming the hypothesis that this CIS is not influencing Rnls but 

rather regulating Pten expression (data not shown). Next, cross-species functionality was 

assessed by analyzing GRO-Seq data of two T-ALL patients. A double peak of short-lived 

enhancer RNA, a characteristic of enhancer activity, was detected in the syntenic human 

region. Of note, there was additionally evidence for a cell-type specificity as GRO-Seq peaks 

were not present in HEK293T cells (Figure 15b). To finally prove functional relevance, the 

7-8 kb intronic region in Rnls harboring the putative RE was knocked out using CRISPR/Cas9 

(Figure 15c). A significant decrease of PTEN expression was observed in human and murine 

T-cells, while in HEK293 cells the knockout resulted in only a slight decrease of PTEN levels 

(Figure 15d). 

3.4.2 T-ALL-relevant non-coding RNAs identified by the screen 

Next, the expression level of the 54 nPC transcripts identified by ARCIS was assessed. 

Therefore, publicly available RNA-Seq data from T cells were used (Hu et al., 2018). 

Expression was detectable for more than 70% of this non-coding transcripts in developing 

T cells (Figure 16a). Many of these transcripts were found in close proximity to well-known 

T-ALL genes, including Myb, Myc, and Ptprc (compare Figure 14). However, also transcripts 

in the neighborhood of genes so far not linked to T-ALL were identified, including Fam126a, 

Il6st and Kctd1.  

First, an antisense RNA at the Zeb1 locus was selected for further in detail analysis. This CIS 

was classified as “PC transcript plus ncRNA” (compare Figure 14). The manual inspection of 

the locus revealed two insertion peaks. One insertion peak was predicted to activate Zeb1 

expression, while the insertions in the other peak showed an opposite orientation more likely 

to activate the Zeb1 antisense transcript Gm10125 (Figure 16b). In the human system, 

ZEB1-AS RNA was described to activate ZEB1 expression by recruiting the H3K4 

methyltransferases to its promoter (Su et al., 2017). To examine whether the mouse antisense 

transcript also has a similar functional role, two Zeb1-AS exons were knocked out in EL4 cells 

using CRISPR/Cas9. Importantly, an appropriate distance of 8 kb to the Zeb1 promoter was 

considered in order to avoid direct interference with Zeb1 transcription. Zeb1 expression level 

were compared between knockout and control cells. Cells harboring the deletion in the 

antisense transcript showed decreased Zeb1 levels indicating that the murine transcript 

(Gm10125) has a similar function as ZEB-AS1 in the human system (Figure 16c). 
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Figure 16: Functional relevance of identified ncRNAs. a) rlog transformed expression values of non-
coding transcript in different stages of T cell development (HSC-DP, Hu et al.(2018)). The CIS non-
coding transcript identified by ARCIS and the PC gene located in close proximity are annotated. ARCIS 
identified 54 non-coding RNAs, 44 were annotated in the dataset and 32 were found expressed (73%). 
In total, the dataset includes 12,170 lncRNAs and miRNAs, of which only 1,925 are expressed (16%) 
with a median rlog expression level of 2,8. For in detail analysis selected transcripts (Gm11998-Ikzf1 
and Lincpint-miR29) are highlighted (red arrow). The antisense transcript of Zeb1 (Gm10125) was not 
found expressed. b, d, f) The indicated genomic locus showing CISs (green boxes) and insertions (black) 
from the transposon screen together with publicly available epigenomic datasets including DNase-Seq 
and ChIP-Seq data. b) The Zeb1 locus is characterized by a CIS with a double peak with opposite 
transposon orientations (indicated by arrows). The Zeb1 antisense transcript Gm10125 is shown. c+e) 
CRIPSR/Cas9 mediated knockout of a genomic region compared to cells targeted by lacZ control 
guides. Nucleofected cells were single cell sorted and each dot represents RNA expression level of the 
target gene in one clone. Target gene expression levels were normalized to Gapdh. c) Zeb1 expression 
in clones with CRISPR/Cas9-based knockout of exon 2 and 3 of the antisense transcript Gm10125 (18 
kb) in EL4 cells (KO n = 17, ctrl n = 16). d) The Ikzf1 locus with the distant lincRNA Gm11998. e) Ikzf1 
expression in EL4 cells (KO n = 8, ctrl n = 14). f) The Lincpint/miR29 locus with multiple CIS regions. 
The vast majority of insertions in CIS peaks are oriented in sense with the Lincpint transcript with the 
promoter oriented into the direction of the miRNA29a/b. g) MicroRNA was isolated from tumor tissue 
with and without insertions in the miR29/Lincpint locus. Specific Taqman assays were used for 
quantification by qPCR. Expression was normalized to miR16. *P < 0.05, **P < 0.01, ***P < 0.001, ****P 
< 0.0001, Wilcoxon test. Adapted from Fischer et al. 

Second, a lincRNA close to the well-known leukemia-associated transcription factor Ikzf1 was 

analyzed. Recently, a critical enhancer of the Ikzf1 gene was found using laborious high-

throughput enhancer assays and 4C-Seq (Alomairi et al., 2020). Here, CISs in the Ikzf1 locus 

were not only identified in the coding gene (one of the top hits of the screen) but also in a 

lincRNA (Gm11998) more than 100 kb upstream of Ikzf1 (Figure 16d). Additionally, this 

lincRNA was found expressed during T cell development indicating a functional role of not only 

the enhancer element but also the non-coding transcript (Figure 16a). CRISPR/Cas9-mediated 

knockout of Gm11998 led to a reduction of Ikzf1 expression suggesting a positive regulatory 

effect of the lincRNA on Ikzf1 expression (Figure 16e). 

Finally, CISs with sense-oriented insertions were found located in the lincRNA Lncpint, more 

than 150kb upstream of the miRNA29 (Figure 16f). As Lncpint is described as a tumor-

suppressor in T-ALL cells (Garitano-Trojaola et al., 2018), it was hypothesized that the 

transposon is activating miR29 expression through activation of the pri-miRNA transcript 

overlapping Lincpint (Bouvy-Liivrand et al., 2017). Performing a microRNA specific qPCR, 

microRNA29 expression levels were found increased in samples with PiggyBac insertions 

compared to samples without insertions (Figure 16g). Thus, the PiggyBac is able to activate 

miRNA expression from a far distance. 

These results provide evidence that (i) transposon insertions mark functionally important non-

coding transcripts, (ii) the identified transcripts alone have an effect on target gene expression 

upon knockout and (iii) dosage of target genes might be important for leukemia development 

and insertions in these regulatory transcripts might fine-tune gene expression by not inserting 

in protein-coding genes but rather in regulatory transcripts. 
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3.5 Phenotypic diversification of T-ALL subtypes 

As mentioned in chapter 3.1.1, a subgroup of transposon-induced T-ALL samples showed 

expression of the mature T cell marker CD4 in histopathological analysis. This sporadic CD4 

expression let to the hypothesis that the identified T-ALL cohort consists of multiple subtypes. 

To prove this, RNA sequencing of tissue samples was performed and expression patterns 

were analyzed. RNA from the thymus of five healthy wild type mice was used as a control. A 

first analysis of the data revealed that two samples behaved differently than the others. The 

Tdt negative samples, which were diagnosed as mature T cell lymphomas (MTLs) earlier, 

cluster apart from the T-ALL samples in a principal component analysis (PCA) (Figure 17a) 

confirming their different origin. After removing these MTL samples from the cohort, a 

heterogeneity especially along the second principal component was observed (Figure 17b). To 

detect subgroups within the T-ALL cohort, PAM clustering was conducted revealing three 

major subtypes (Figure 17c). To understand the underlying biology of the subtypes and to 

assign subtypes to the human counterparts, gene expression profiles (GEPs) were analyzed 

in detail. First, the three main clusters were compared using gene set enrichment analysis 

(GSEA). Hallmark gene sets from the Broad Institute and hematopoietic gene signatures were 

used (Figure 17d+e, respectively). The two biggest subgroups showed differentially enriched 

pathways in line with the human ETP-ALL versus classical T-ALL comparison. Therefore, 

these subgroups are referred to as ‘ETP-like’ and ‘classical’. The ETP-like subtype showed an 

enrichment for interleukin, Jak/Stat signaling as well as Kras and inflammatory pathways 

(Figure 17d). In contrast, the classical group was characterized by an enrichment of cell cycle 

related pathways including G2M and E2F associated genes (Figure 17d). Using the 

hematopoietic signatures for the GSEA confirmed the subtype assignment. The GEP of the 

ETP-like group seems to be comparable to that of early T cells (ETP, DN1), hematopoietic 

stem cells (HSC) and precursors of other lineages (GMP, pro-B cells), while the classical 

subtype is characterized by a GEP similar to double positive (mature) T cells (Figure 17e). Due 

to the lack of a murine genetic classifier, a 20-gene classifier was built to differentiate between 

the ‘ETP-like’ and the classical subtype. Genes enriched in ETP were linked to early T cell 

development (Mef2c, Il7r, Il2ra, Lmo2), the B cell lineage (Syk, Lyn, Bcl3), HSCs (Spi1, Cd34, 

Cebpa, Id2) and the innate immune system (Lyz2), whilst classical T-ALL showed enrichment 

for genes associated with T cell commitment (Tcf7, Bcl11b, Satb1, Cd4), TCR 

rearrangement/signaling (Rag1, Themis) or specific oncogenes (Rasgrp1, Myb) (Figure 17f). 

The characteristics of the third subgroup were less clear from the initial GSEA analysis as most 

comparisons performed were not leading to a significant result (Figure 17c+e). Therefore, a 

thorough inspection of the insertion data was performed and revealed high-coverage activating 

Mef2c insertions (Figure 17g). The significantly increased Mef2c expression in this group 
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compared to the ETP-like and classical group confirmed this observation (Figure 17h). For 

further analyses, this group was referred to as ‘Mef2c-driven’. 

 

Figure 17: Phenotypic diversification of T-ALL. a-c) Gene expression analysis of thymus samples of 
healthy mice and mice with T cell malignancies. RNA was isolated from 42 T-ALLs (34 from thymus 
tissue), 2 MTLs and 5 healthy thymi and RNA-Sequencing was performed. a) Principal component 
analysis (PCA) showing that healthy samples cluster together (red) and apart from T-ALL samples (dark 
blue), while the two MTL samples cluster apart from the T-ALLs. b) PCA showing only healthy and 
T-ALL samples. T-ALL samples show a variance along the PC2. c) PCA only showing T-ALL samples. 
PAM clustering was performed using k = 4 and cluster assignment is indicated by color. As one cluster 
only had three samples (grey) this cluster was excluded from further analysis. d+e) Gene set enrichment 
analysis (GSEA) to compare the three major subtypes. The size of the circle indicates the FWER value 
(big circles reflect high significance). Color indicates the group where the gene set is enriched (positive 
vs negative normalized enrichment score). d) Hallmark gene sets from the Broad institute (MSigDB) 
were used for three pairwise comparisons. e) Hematopoietic gene signatures obtained from Laurenti et 
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al. (2013), and Novershtern et al. (2011), were used for three pairwise comparisons f) A murine classifier 
gene set (n = 20) was generated to differentiate classical and ETP-ALLs. The heatmap shows z-
transformed expression values. g) Location and orientation of insertions in the Mef2c gene in samples 
from the Mef2c-driven subgroup. Mef2c possesses several different isoforms starting in different exons. 
Arrows show direction of insertion and arrow size indicates sequencing read coverage supporting 
individual insertions. h) Mef2c expression level is increased in Mef2c-driven subtype. Rlog expression 
from all samples of each group is shown (***P < 0.001, Wilcoxon test). Adapted from Fischer et al. 

Expression-based analysis confirmed the previous histology-based observation that multiple 

subtypes are present in the T-ALL cohort. Indeed, CD4 expression was only found in samples 

of the classical subtypes but not in samples developing from earlier T cells including the 

ETP-like and Mef2c-driven subtype (Figure 18, compare Figure 6). 

 

Figure 18: CD4 expression correlates with molecular subtype. Microscopic immunohistochemical 
images of one representative case of each subtype. All cases were classified as T-ALL/T-LBL. Tumors 
are negative for the B cell marker B220 and show strong positivity for the T cell marker CD3 and the 
early T cell marker Tdt. CD4 positive T-ALL/T-LBL reflect the classical human T-ALL subtype. CD4 
negative T-ALLs are immature T-ALLs. Scale bar, 50 µm. Adapted from Fischer et al. 

 

To summarize, PiggyBac induced T-ALLs show heterogeneous gene expression profiles and 

recapitulate human T-ALL subtypes. 

3.6 Differential evolution of T-ALL subtypes 

Next, it was explored whether the PiggyBac-induced T-ALLs can be used to study subentity-

specific biology. Different subtypes triggered in the same experimental system allow for direct 

side-by-side comparisons. To investigate whether transposon insertion data can be exploited 

to understand evolutionary principles, several aspects of evolution were analyzed. 

3.6.1 Cell of origin 

Although it is well known that T-ALL can arise from different developmental precursor cells, it 

remains difficult to infer the cell-of-origin with standard sequencing approaches. As shown in 

Figure 12, PiggyBac has a preference for open chromatin. It was aimed to investigate whether 

transposon insertions profiles represent an approximation of global chromatin conformation at 
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the stage of genome integration. To analyze whether these profiles thereby can give an 

indication on a tumor´s cell of origin, CISs identified specifically in one subtype were 

overlapped with regions of accessible chromatin in different cell types along the T cell 

developmental lineage (Stage-specific ATAC-Seq from Johnson et al. (2018)). ETP-specific 

CISs (79%) predominantly overlapped with open chromatin regions detected in progenitor, 

natural killer, B or early T cells. In contrast, the majority of CISs from classical T-ALL (68%) 

overlapped, as expected, with ATAC-peaks specific for intermediate and late stages of T cell 

development (Figure 19a). These results suggest that although transposition is ongoing during 

the course of tumor development, insertions contain a specific level of “historical information”. 

Using this integrated information from open chromatin in evolution and PiggyBac insertion 

data, it is possible to infer the developmental origin of the tumors. 

3.6.2 Sequentiality 

The molecular drivers of individual stages of T-ALL subtype evolution are poorly understood 

barring few examples (Albertí-Servera et al., 2021; De Bie et al., 2018). To extract information 

on evolutionary principles from the PiggyBac dataset, clonal deconvolution of transposon 

insertions is required. However, standard CIS calling algorithms such as CIMPL ignore the 

information on supporting read counts for single insertions and only consider insertions as non-

quantitative events. This means that these algorithms used to search for genomic “insertion 

hotspots” in a cohort of mice are not able to differentiate between early and late events. In this 

study, a second type of analysis was established to overcome this problem. The quantitative 

data for each of the 170,000 insertions based on QiSeq (Friedrich et al., 2017) was integrated 

into the analysis as for each sample these read counts (ranging between 2 to 10,000) reflect 

their clonal distribution. 

These analyses identified distinct clonal variances between the top CIS genes depending on 

the subtype. Although these top genes were identified as CISs in all T-ALL subtypes indicating 

a comparable insertion number, their supporting read counts and therefore the clonal 

distribution showed striking differences, indicating unique evolutionary hierarchies 

(Figure 19b). For instance, in essentially all ETP-like tumors Ikzf1 was identified as a dominant 

hit based on read counts (Figure 19c). In classical T-ALL, however, insertions in Pten showed 

the highest dominance in read counts. In contrast, Pten showed only subclonal insertions in 

ETP-like tumors (Figure 19c), indicating differential sequentiality of tumor driving events in 

T-ALL subtypes. 
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Figure 19: Exploiting insertional landscapes to understand evolution of different T-ALL 
subtypes. a) Insertional landscapes predict cell of origin. Subtype specific and mutual exclusive 
common insertions sites (CISs) from ETP-like (n = 30) and classical (n = 117) samples were overlapped 
with stage-specific ATAC-Seq peaks from five different precursor stages (obtained from Johnson et al., 
2018). Proportional overlap with stages is shown. (*P = 0.046, Fisher’s exact test). b) Top CIS genes 
show different read coverage support in the three indicated subtypes. Normalized coverage of top CIS 
genes (Ikzf1, Pten, Notch1, Mef2c) is shown. The PI3K signaling and proliferation genes Rasgrp1 and 
Rpl11 were assigned to ‘Pten’. c) Sum of read coverages supporting the top CIS genes for each 
individual sample. Read coverage of all 4 genes (or Rasgrp1/Rpl1 instead of Pten) were added together 
and proportions are shown for each sample. d) Number of unique insertions for each sample from the 
three indicated subtypes (*P < 0.05, Student’s t test). e) Number of insertions required to describe 95% 
of reads in the tumors. The mean normalized coverage was calculated for each ranked insertion within 
one group. Differences in the number of insertions necessary to cover 95% of sequencing reads are 
shown in more detail in the inlet. a)-e) CIS and insertions used for all the described analyses were 
obtained from 14 ETP-like samples, 7 Mef2c-driven samples and 8 classical samples. Adapted from 
Fischer et al. 

3.6.3 Clonality 

To additionally analyze differences in intratumor heterogeneity and the insertional burden 

characterizing each subtype, the number of CISs and insertions was assessed as a proxy for 

these characteristics. Therefore, transposon data was exploited to infer clonal architecture. 

First, this approach revealed that samples of the Mef2c-driven subgroup showed reduced 

numbers of total insertions per tumor (Figure 19d). Additionally, the clonal distribution shown 

by the normalized mean coverage revealed that the number of insertions in Mef2c-driven 

samples constituting 95% of the tumor is less than for the other subgroups (Figure 19e). 

Second, the Mef2c-driven group differs from the other subtypes as it was characterized by 

fewer CISs (Figure 20a). This observation also held true in sample-size matched permutation 

analyses (Figure 20b). The lower number of insertions and CISs are a measure for clonality 

as tumors with a very strong driver gene or combination of strong drivers (such as Mef2c) are 
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less prone for additional passenger mutations in other genes, which would lead to additional 

insertions. 

3.6.4 Regulatory principles of subtype-specific driver genes 

The subgroup-specific CISs used for clonality analyses, were examined in more detail to 

identify genes characteristic for the ETP or classical T-ALL subtype (Figure 20c).  

The classical subgroup was characterized by two prominent features: First, CISs were found 

in genes linked to late thymocyte development (Tcf12, Rpl5), This finding is consistent with the 

hypothesis that the cell of origin of these classical T-ALLs is the post-commitment DP cell 

(Figure 20c). Second, an enrichment of CISs from the classical group were found in intergenic 

regulatory elements. This effect was especially pronounced among the top CISs (Figure 20d). 

This indicates that subtle gene regulation is especially important in classical T-ALL. The fact 

that these intergenic insertions were found in T cell commitment genes (such as Bcl11b, Satb1, 

Ptprc or Runx1) (Figure 20c) further suggests that classical T-ALLs depend on fine-tuned 

expression levels. In contrast to this, complete gene inactivation might lead to another 

phenotype or even can be deleterious at this specific stage. 

 

Figure 20: T-ALL subtypes differ in their clonal architecture and regulatory principles. a) Number 
of common insertion sites in samples from the ETP-like subgroup (n = 14), the Mef2c-driven subgroup 
(n = 7) and the classical subgroup (n = 8). Only CISs with at least two insertions were considered. b) 
Permutation test to assess number of CISs in ETP-like tumor cohorts with the same sample size. 
Number of CISs in seven randomly selected samples from the ETP-like group. Ten different random 
selections of 7 ETP samples were generated and submitted to CIMPL analysis. Number of CISs was 
compared to the Mef2c group (n = 7). c) Comparison of subtype specific CISs. Shared and unique CISs 
are shown. Regulatory CISs are labelled with ‘Int’ for intergenic and ‘intronic’ for intronic CISs. For 
regulatory CISs the potential target gene is reported. d) Percentage of intergenic CISs amongst all and 
the top 50 CIS regions in the classical and ETP-like subgroup. Only intergenic CISs were considered 
(not overlapping with protein-coding genes). The number of intergenic CISs in each group is indicated. 
**P =0.009, Fisher’s exact test. Adapted from Fischer et al. 
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CISs specific for ETP-ALL affected mature T cell genes (inactivation of Ikzf2, Ikzf3), Ras 

pathway components (Rapgef2, Nf1) and potential negative regulators of Wnt signaling 

(Kremen1, Tmem170b; not linked to T-ALL so far). Moreover, several genes linked to 

stemness or the myeloid lineage were among the top hits in this group (Cnr2, Chd2, Crebbp, 

Mecom) (Figure 20c). 

Here, the transposon insertion landscapes were exploited to map the evolutionary history of 

different subentities and to identify molecular forces in evolution, including cell of origin, 

clonality (intertumoral heterogeneity), temporal sequence (hierarchy of events) and key drivers 

(genes and their regulatory principles). 

3.7 ETP-ALL induction by the transcription factor Spic 

3.7.1 Transcription factors identified in the T-ALL cohort 

As outlined in the introduction, transcription factors represent common hits of PiggyBac 

integration and were found enriched within top common insertion sites. To investigate if this 

holds true for the T-ALL cohort, the number of genes involved in transcriptional regulation was 

assessed (Figure 21a). Among the top 50 CISs, 15 genes (30%) were involved in 

transcriptional regulation. Additionally, TFs were quantified across the complete CIS list. Whilst 

only 8% of all protein-coding genes are annotated TFs in the murine genome, more than 50% 

of the top 10 CISs across all T-ALL samples (and 25% of the top 100 CISs) were found to be 

TFs (Figure 21b). These results show that PiggyBac screens are a suitable tool to discover 

TFs. 

3.7.2 Subtype-specific transcription factors in T-ALL with overlap to AML 

To gain deeper insight into the transcription factor landscape of ETP and T-ALL subtypes and 

to examine whether perturbation of transcription factors differs depending on the cell-of-origin, 

subtype-specific TFs were assessed (Figure 21c). For the ETP-like subgroup, inactivation of 

the T cell specific factors Gata3 and Ikzf3 and activation of the HSC/AML-related factor Erg 

was observed. Additionally, novel ETP-ALL candidate TFs including Spic, Foxb1 and Zfp217 

were found. For the classical T-ALL subgroup well-described TFs like Lef1, Ets1 and Tcf12 but 

also novel candidates like Zfp608, Jazf1 and Baz2b were detected (Figure 21c). 
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Figure 21: Transcription factors identified in the transposon screen. a) Heatmap showing top 50 
T-ALL genes and their molecular class (compare Table 26). Genes belonging to the class of 
transcriptional regulation are shown at the left. The heatmap shows the number of samples in which the 
genes are hit. The annotation of the novelty in T-ALL is based on literature research. b) Percentage of 
transcription factors identified in PiggyBac-induced T-ALLs. Percentage is shown for the top 10, top 50, 
top 100 and top 500 CISs. Additionally, percentage of TFs amongst all genes in the genome is indicated 
(8%). c) Shared and unique transcription factors are shown for the different subtypes. Intergenic CISs 
are labelled with ‘Int’ and the putative target gene is listed. d) Insertion frequency of the PiggyBac 
transposon in selected transcription factors. Fold change of insertion frequency in T-ALL (n = 51) and 
AML (n =107) samples is shown. Genes with more insertions in the T-ALL cohort show a positive fold 
change and are colored in blue, whilst genes enriched in AML samples show a negative fold change 
and are colored in green. a) adapted from Fischer et al. 

As shown in chapter 3.6.4, genes driving ETP-ALL are often involved in pathways of other 

hematopoietic lineages. Especially the association of ETP-driver genes with the myeloid 

lineage was described previously (Zhang et al., 2012). To investigate these characteristics, 

transcription factors were overlapped with hits found in the AML subgroup (subtypes described 

in chapter 3.1). The insertion frequency in selected transcription factors were compared 
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between AML and T-ALL samples. All T-ALL samples were combined (and not analyzed 

separated into subtypes) to increase the cohort size. T-ALL specific transcription factors, 

including Gata3, Rorc, Bcl11b and Lef1, showed an enrichment of insertions in T-ALL samples, 

whilst myeloid specific TFs such as Mecom, Erg and Prdm16 were enriched in AML samples. 

Ikzf3 was found as top enriched transcription factor in T-ALL samples and seems to be 

exclusively inactivated in T cells. Of note, Spic was detected as top enriched transcription 

factor in AML samples and was also found as CIS in ETP-like T-ALLs. 

Taken together, this result exemplifies the power of the PiggyBac screen to uncover lineage-

specific TFs as critical cancer drivers. 

3.7.3 Spic as a candidate ETP-ALL and AML transcription factor 

The insertional mutagenesis screen revealed the transcription factor Spic as a CIS and 

therefore putative candidate gene for ETP-ALL and AML development. 

In both entities, transposon-based activation of Spic was found. The transposon insertion 

pattern in Spic suggests an oncogenic function in AML (Rad et al., 2010) and also in the T-ALL 

cohort (Figure 22a). Of note, AML samples showed a higher frequency of Spic insertions, 

especially for insertions with high coverage (Figure 22b). For AML, a significant increase of 

Spic expression level was detected in samples with Spic insertions (Rad et al., 2010). To 

investigate whether Spic expression is also increased in ETP-like ALL cases, expression of 

Spic and its family members and regulators was analyzed in the transposon cohort. While most 

samples of the classical subgroup express Bach1, a known negative regulator of Spic, Spic 

expression was only detectable in a subgroup of ETP-ALL samples (Figure 22c). To get more 

detailed insights into the role of Spic in T cells, open chromatin at the Spic locus was 

investigated in T cell development. As Spic is highly expressed in red pulp macrophages 

(RPMs), open chromatin in the course of T cell development was compared to RPMs. The 

Spic promoter seems only to be active during early progenitor stages (until ETP stage). In 

contrast, the upstream enhancer is active until T cells undergo commitment in stage DN2b 

(Figure 22d). As chromatin seems to be still open in early steps of T cell development, a role 

of Spic in these pre-commitment T cells is reasonable. 

To study the role of Spic overexpression in hematopoietic development, a series of Spic 

knockin mice were engineered. To compare germline and adult onset of Spic overexpression, 

an inducible and conditional mouse model was generated (Figure 22e). 
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Figure 22: Spic as a candidate AML and ETP-ALL transcription factor. a) Schematic transposon 
insertion pattern in the Spic gene. Murine Spic consists of 6 exons and the ATG is located in exon 2 
enabling splice-based activation by the transposon. All insertions are located in sense-orientation in 
close proximity to exon 1. b) Percentage of AML and T-ALL tumors in the PiggyBac screen with 
insertions in the Spic gene. Percentage is shown for different coverage cut offs ranging from no cutoff 
(0) to a cutoff of 50 and 500 read counts. c) Heatmap showing expression of Spi family members (Spi1, 
Spib, Spic) as well as upstream (Bach1) and downstream (Il18) regulated genes in ETP-like and 
classical tumors. The heatmap shows z-transformed expression values. d) Murine Spic locus showing 
open chromatin in T cell development. ATAC-Seq data for different stages of hematopoietic and T cell 
development were obtained from IMMGEN. Red pulp macrophages (RPM) with high Spic expression 
are shown as a control. The Spic promoter region (Prom) and a putative enhancer region upstream of 
the gene (Enh) are highlighted. e) Alleles of mouse models generated to overexpress Spic. In the 
conditional model, the Spic sequence was inserted in the Rosa26 locus after a loxP flanked stop 
cassette. Spic expression is activated upon Cre recombination. For inducible activation, Spic sequence 
was inserted into the Col1a1 locus after tet responsible elements (TRE) and a minimal CMV promoter. 
Spic expression is induced by doxycycline administration, which mediates expression through binding 
the rtTA protein and the operator. Here, Spic is expressed in a whole-body approach. f) Schematic 
workflow for the inducible and conditional mouse model. After induction of Spic expression through 
either Doxycycline (Dox) administration or Cre recombination in the hematopoietic system, animals are 
monitored for signs of sickness. Sick animals were euthanized and hematopoietic organs were isolated 
during necropsy. For further analysis, flow cytometry, histology and RNA-Seq was performed. 
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3.7.4 Spic mice develop hematologic malignancies 

To systematically investigate the role of Spic in the development of hematopoietic 

malignancies, an inducible and conditional mouse model was generated (Figure 22e/f). The 

inducible model Rosa26CAG-rtTA;Col1a1TRE-Spic (rtTA Spic, rtSP) allows the doxycycline 

dependent induction of Spic in a whole-body approach. The conditional Rosa26LSL-Spic; 

Commd10Vav-iCre (Vav-iCre Spic, VaSP) model, however, restricted Spic expression to the 

hematopoietic system using the Vav-Cre line. 

To prove that Spic expression can be induced by treatment with doxycycline, fibroblasts from 

rtSP mice were isolated and treated with doxycycline in vitro. Spic expression was measured 

with RT-qPCR after 3 days of doxycycline treatment. A more than 1000-fold increase of Spic 

expression was detected (Figure 23a) confirming the high sensitivity of the system. Next, Spic 

expression was induced in mice. High-dose doxycycline (625 mg/kg) was applied via food. 

While mice without doxycycline food did not show a phenotype over a period of one year (not 

shown), treated rtSP mice rapidly succumbed 4-6 days after doxycycline administration 

(Figure 23b). Histopathological analysis showed a degenerative architecture of the spleen 

accompanied with a sinus histiocytosis characterized by an activated macrophage system in 

the red pulp (Figure 23c). Flow cytometric analysis revealed an increase of granulocytes in the 

blood and monocytes in the bone marrow (Figure 23d). To understand this severe phenotype 

on a molecular level, RNA-Seq was performed. rtSP mice treated with doxycycline (n = 4) were 

compared to wild type age-matched control mice (n = 4) also treated with doxycycline 

(Figure 23e). GSEA revealed an increased expression of signaling pathways connected to 

inflammatory reactions (IL/Jak/Stat, Complement, Coagulation) in rtSP mice, while heme 

metabolism was found to be downregulated compared to control mice (Figure 23f). As Spic 

controls the production of RPMs, which are known to be involved in the recycling of red blood 

cells and heme metabolism, the drastic overexpression of Spic in all cells of the body might 

interfere with this process leading to a sudden and severe phenotype with detectable 

alterations in the hematopoietic system.  
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Figure 23: Spic-induced histiocytosis and ETP-like T cell leukemia. a) Spic fold change in 
doxycycline treated fibroblasts isolated from Col1a1TRE-Spic;Rosa26CAG-rtTA (rtSP) mice. Spic 
expression level was assessed by qRT-PCR and normalized to Gapdh. b) Kaplan-Meier plot showing 
survival of rtSP mice after start of doxycycline induction via food. rtSP mice (n = 8) were compared to 
control mice also treated with doxycycline. (p = 0.02, log-rank test). c) Histopathological analysis of 
spleens in mice with and without doxycycline-mediated Spic induction. HE stainings of one exemplary 
case is shown for each group. Spleens with Spic overexpression are degenerated and show sinus 
histiocytosis and activation of the mononuclear phagocyte system in the red pulp. Necrotic tissue partly 
with hemorrhages. d) Flow cytometric analysis of blood and bone marrow from mice with (n = 3) and 
without (n = 3) Spic induction. Proportion of B cells, T cells, granulocytes and macrophages are shown. 
e) Transcriptomic analysis of rtSP mice. PCA showing clustering of rtSP (n = 4) and control (n = 4) mice. 
f) GSEA comparing rtSP and control mice. Hallmark pathways from MSigDB are compared. FWER 
values are depicted as circles relative to significance. Enriched pathways in the control group are 
displayed with a positive normalized enrichment score (NES), pathways identified in the rtSP group are 
displayed with a negative NES. g) Spic fold change in spleens of Rosa26LSL-Spic;Commd10Vav-iCre mice 
(hetero- and homozygous VaSP) compared to wildtype mice. Spic expression level was assessed by 
qRT-PCR and normalized to Gapdh. h) Kaplan-Meier plot showing survival of hetero- and homozygous 
VaSP mice compared to wildtype mice (het, n = 7; hom, n = 3). (p value indicated, log-rank test). i) 
Immunohistochemical characterization and sub-classification of T cell malignancies. Samples show no 
or only partial CD4 expression and therefore were diagnosed as immature/ETP-like T-ALLs. j) 
Transcriptomic analysis of VaSP mice. PCA showing clustering of VaSP mice (thymus n = 6, spleen n 
= 5) and control (n = 5) mice. k) GSEA comparing VaSP and control mice. Hallmark pathways from 
MSigDB are compared. FWER values are depicted as circles relative to significance. Enriched pathways 
in the control group are displayed with a positive normalized enrichment score (NES), pathways 
identified in the VaSP group are displayed with a negative NES. 
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To restrict Spic expression to the hematopoietic system, the Vav-Cre line was used, which is 

active in all hematopoietic cells. To confirm Spic expression, spleens of VaSP mice were 

isolated. Spic expression was 5 to 10-fold increased in young hetero- and homogenous VaSp 

mice, respectively (Figure 23g). Next, mice were monitored for tumor development. Leukemia 

development started after 5-6 months of age (Figure 23h). Of note, the majority of mice (5/6) 

developed immature T-ALLs (B220-, CD3+, Tdt+, CD4-) (Figure 23i) with transcriptomic 

differences in the spleen and thymus (Figure 23j). A minority of tumors (1/6) also showed 

partial CD4 expression. Transcriptomic analysis showed upregulation of Myc, Notch1 and Kras 

signaling in T-ALLs compared to healthy thymi and a downregulation of interferon alpha and 

gamma response (Figure 23k). 

These results show that Spic overexpression can indeed lead to the development of T cell 

malignancies and overall indicate a dose dependent role of Spic in the hematopoietic system. 

The detailed mechanism of Spic-induced pathogenicity will be analyzed in future studies. 
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4. Discussion 

This thesis focused on the question if the PiggyBac system is suitable to screen for non-

protein-coding and subtype-specific hematopoietic cancer drivers. Although transposon 

screens have been performed for many organs, cancer entities and genetic contexts, this is 

the first study demonstrating that this system can be used to interrogate the cancer’s regulome. 

So far, technical and methodological constraints hindered us to study the cancer’s regulome 

during evolution and to compare cancer subtypes in living organisms. Here, numerous 

intergenic insertions were identified, their regulatory potential was annotated and selected 

regions were functionally validated providing evidence that there is a widespread role for subtle 

gene regulation in cancer.  

A second aspect of this thesis was the study of tumor evolution. A major challenge in cancer 

evolution research represents the distinction between driver and passenger mutations. This is 

a crucial task in order to understand the chronological order of accumulated genetic mutations 

during tumorigenesis and the biological and clinical implications. Despite novel techniques, 

most studies on human cancer evolution rely on retrospective (endpoint) analyses that are 

limited because of selection and clonal sweep during early cancer evolution. In this thesis, an 

approach was developed to interrogate evolution in vivo (in a living organism) and in a 

prospective manner overcoming several bottlenecks in the field. The presented advances in 

data analysis made it possible for the first time to reveal information on evolutionary principles 

such as the cell of origin, clonality and sequentiality of driver genes (Figure 24a). 

Together, by combining regulatory and evolutionary data, this study provides insights into the 

importance of subtle gene regulation in cancer evolution. Moreover, as the first T-ALL 

PiggyBac screen is presented here, the newly established technology was used to discover 

biological principles driving different subtypes of T-ALL. This screen assembled catalogues of 

T-ALL-relevant regulatory elements and non-coding transcripts. Additionally, the phenotypic 

plasticity of T cells and their different subgroups were directly studied in mice allowing for a 

side-by-side comparison of evolutionary characteristics. The three different subtypes showed 

very distinct features regarding their driver genes and the temporal acquisition of hits. The 

more differentiated subtype of classical T-ALL was more reliable on intergenic insertions than 

the ETP-like group confirming a context-specific role of subtle gene regulation. In contrast, 

ETP-ALL samples were characterized by hits in multi-lineage genes including Spic 

(Figure 24b). Spic was further validated as an ETP-specific oncogenic transcription factor in 

mouse models. The development of a mouse model overexpressing a rather myeloid specific 

transcription factor leading to T-ALL induction highlights the close proximity of different 

hematopoietic lineages. 
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Taken together, this study provides methodology and tools to understand regulatory effects in 

T-ALL subtype evolution. 

 

 

Figure 24: Methodological and biological conclusions drawn from this study. a) Insertion profiles 
in a cancer induced by insertional mutagenesis can be used to analyze multiple different parameters 
such as cancer genes, regulatory landscapes, the cell of origin and evolution (Hierarchy, Sequentiality, 
Clonality). Of note, all these parameters influence the phenotypic evolution. In one in vivo experimental 
system, all parameters can be compared side-by-side. b) Biological characteristics of the three identified 
T-ALL subtypes. Adapted from Fischer et al.    

4.1 T-ALL subtypes induced in a pan-hematopoietic screen 

In 2010, the PiggyBac transposon mice were first used for cancer gene discovery. By designing 

a transposon with a promoter especially active in the hematopoietic system (ATP2 transposon 

with MSCV promoter), more than 90% of mice developed aggressive leukemias and 

lymphomas without using specific Cre lines. Here, all hematopoietic tumors (n = 63) were 

analyzed together (Rad et al., 2010). To allow subtype-specific screening, this initial ATP2 

transposon screening cohort was expanded. With a cohort of more than 250 mice, this study 

represents the largest cohort of PiggyBac induced hematopoietic tumors. Different subtypes 

of hematopoietic malignancies are covered with a sufficient sample size. Although the sample 

size for T-ALL (n = 53) was still low compared to AML cases (n = 107), this size enabled the 

study of genetic subtypes of T-ALL. For some very specific questions regarding the differential 

evolution of the T-ALL subtypes, however, the sample size still restricted detailed analyses 

(e.g. n = 7 for Mef2c-driven T-ALL). 

Here, T-ALL was chosen as a model system to establish PiggyBac screening of the non-

protein-coding genome. In T-ALL, enhancers have been described as potential oncogenic 

drivers. In detail, the mechanisms include either chromosomal translocations where 

oncogenes are driven by juxtaposing a strong T cell specific enhancer element or the specific 

genomic amplification of oncogenic enhancers (reviewed in Bhagwat et al. (2018)). 
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T-ALL subtype screening was already performed exploiting the Sleeping Beauty transposon 

system (Berquam-Vrieze et al., 2011). Using different Cre lines activated in different potential 

cells of origins showed that the cellular origin strongly influenced lymphomagenesis. 

Interestingly, the Cd4 induced model showed similarities to human ETP, while Vav- and Lck-

Cre induced tumors did not show ETP characteristics. These results were unexpected as Cd4 

is expressed in later stages of T cell development whilst Vav-Cre is active already in 

hematopoietic stem cells. Therefore, these results were questioning whether ETP cells are the 

cell of origin of ETP-ALL as described initially by Coustan-Smith et al. (2009). Some years 

later, Booth et al. (2018) confirmed ETP cells as the cell of origin of ETP-like ALL in the murine 

system by the generation of an ETP mouse model. The study presented here, was different to 

the published ones in many ways: (i) here, no Cre line was used and the transposon system 

was active in all cells of the body, including all cells of the hematopoietic system, (ii) the 

PiggyBac instead of the Sleeping Beauty system was used, and (iii) the insertion site 

sequencing method used in this study (QiSeq) is much more sensitive allowing for a more 

detailed analysis (Friedrich et al., 2017). In this study, all subtypes were induced without 

specific Cre lines, but only the transposon insertions were driving subtype evolution. Therefore, 

it was possible to compare subtype evolution directly side-by-side in the same genetic mouse 

model. 

4.2 PiggyBac can be used to screen active chromatin 

As previously published and described in the introduction, transposons display insertion biases 

regarding sequence context and functional genomic elements (de Jong et al., 2014; Yoshida 

et al., 2017). PiggyBac was described to be biased for transcribed units and open chromatin 

(Li et al., 2013; Wang et al., 2008). Therefore, not all regions of the genome show an equal 

probability of transposon integration. This characteristic can be an advantage if screening of 

active chromatin is intended. Regulatory elements in open chromatin are more likely to be hit 

by the transposon, therefore insertions label regulatory regions. This feature of PiggyBac 

transposition was exploited in this study for the successful establishment of the PiggyBac 

system for non-protein-coding genome screening. However, there are also disadvantages of 

this characteristic. Unfortunately, existing statistical approaches to identify CISs do not 

sufficiently correct for these insertion preferences. It is assumed that all TTAA sites have an 

equal likelihood to be a target of insertion. de Jong et al. (2014) already discussed the problem 

of discerning between real CISs arising through tumorigenic selection and ‘spurious’ CISs 

resulting from the a priori integration bias of the transposon and described most intergenic 

CISs as ‘spurious’. However, at this time sensitive sequencing methods and functional data 

was not yet available. In this study, it was clearly shown that identified intergenic regions were 

not just hit by chance but label important functional elements with impact on cancer 

development – rather than spurious side effects. 
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Furthermore, during the course of this study, we developed a novel computational method 

(Transmicron) modelling neutral insertion probabilities based on chromatin state, 

transcriptional activity and sequence context (Bredthauer et al., 2023). Thereby, an appropriate 

background distribution of insertions was generated. Although Transmicron was superior in 

estimating oncogenic selection for each genomic region using Poisson regression, the 

background distribution was not significantly influencing resulting CISs (Bredthauer et al., 

2023). 

To conclude, experimental validation combined with novel computational tools showed that 

intergenic CISs are not artefacts of insertion probabilities but carry an important role in 

transposon-induced tumorigenesis. 

Understanding the integration biases of transposons in more detail is not only important for 

insertional mutagenesis screens. Integration patterns and their influence on epigenomics also 

affect other research areas. The ability of the PiggyBac and Sleeping Beauty transposons to 

insert into DNA makes them a widely used tool in cancer research but also an interesting 

opportunity for gene therapy (Sandoval-Villegas et al., 2021). Transposon systems are 

continuously modified to show less genotoxic risk in therapeutic applications (Miskey et al., 

2022). Additionally, retroviral integration sites in humans after gene therapy (Wünsche et al., 

2018) as well as HIV integration sites (Lucic et al., 2019) show similar characteristics. In both 

studies, viral integration sites clustered with enhancers and were used to identify regulatory 

elements. 

4.3 In vivo screening to study non-protein-coding genome 

Oncogenesis is driven by altered cellular signaling states, resulting from genetic or regulatory 

changes (Bradner et al., 2017). Within a single cell, thousands of genes are dysregulated at 

the epigenetic, transcriptional or epitranscriptional level (Miano et al., 2021) and identifying the 

critical players among them is difficult. Over the past two decades, much effort in cancer 

genetics has focused on identifying coding mutations, a process that had transformative impact 

in cancer biology. However, beyond the “mutanome” there is a vast layer of molecular 

dysregulations that is not understood at a functional level. For example, chromatin/regulatory 

landscapes undergo extensive changes during oncogenesis, but their global functional 

interrogation has been hampered due to a lack of methods. 

There is an increasing number of high-throughput CRISPR screening approaches targeting 

the non-protein-coding genome using catalytically inactive Cas9 proteins fused to different 

effector domains such as the Krüppel-associated box (KRAB) spreading repressive histone 

modifications (Montalbano et al., 2017; Thakore et al., 2015). However, the limitations of 

library-based approaches were discussed in the introduction. 
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This study aimed to use insertional mutagenesis to interrogate the non-coding genome. Until 

now, examples of transposon hits in the regulatory genome represented punctuated analyses 

(Weber et al., 2020), such as the discovery of miRNAs at the Rian locus in hepatocellular 

carcinoma (Dupuy et al., 2009) or a regulatory element downstream of Cdkn2a in pancreatic 

cancer (Rad et al., 2015). The low number of identified non-coding CISs in previous screens, 

can also be explained by the fact that there are two classes of methods for CIS detection. 

Here, we used a locus-centric approach where all regions in the genome are considered. 

However, so called gene-centric approaches focusing on regions with genetic annotation 

(mostly protein-coding genes) are easier to interpret and require less post processing steps 

(Newberg et al., 2018). Therefore, gene-centric approaches are popular but exclude the 

identification of non-coding drivers from the very beginning. 

This study presents the first systematic, genome-wide approach to functionalize the non-

protein-coding genome using transposon screening data. Beyond the results shown for T-ALL 

in this thesis, the abundance of these intergenic CISs could be shown in many different tumor 

types such as colorectal, liver, pancreatic and bile duct cancer, AML and B cell lymphomas 

(Fischer et al., 2023). 

Although the role of non-coding sequence variants became more and more important and the 

overwhelming majority of cancer variants are found in the non-coding genome, the 

interpretation of these variants still remains challenging (Rheinbay et al., 2020). The 

differentiation between drivers and passengers, the identification of the linked and most likely 

only slightly affected target gene and the difficulty of functional validation are main reasons 

why non-coding sequence variants received less attention compared to protein coding ones in 

the last decade (Khurana et al., 2016). The recent analysis of WGS data from more than 2,500 

tumors by the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium shed light on 

the reasons and difficulties in the detection of positive selection in ncDNA (2020; Elliott and 

Larsson, 2021). Association-based population studies also represent a popular method to 

identify non-coding cancer drivers. However, for T-ALL GWA-studies have only identified one 

significant intergenic T-ALL risk locus which affects USP7 (Qian et al., 2019) highlighting that 

GWA-studies are not the adequate method to systematically interrogate the effect of subtle 

gene dysregulation in oncogenesis – and of course exploring context-dependencies poses yet 

another level of complexity. 

This study focused on enhancer and non-coding-transcripts within the non-coding genome. 

However, there are other non-coding elements with an important role in cancer development: 

Silencers represent regions with a negative impact on gene expression (opposite to enhancer), 

which are, however, difficult to identify explaining why a high-throughput annotation was 

realized only recently (Doni Jayavelu et al., 2020). Insulators represent ‘boundaries’ in the 

genome and separate so called topologically associated domains (TADs) (Dixon et al., 2012). 
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The disruption of such boundaries can lead to oncogene induction and was described in T cell 

leukemogenesis (Hnisz et al., 2016). Additionally, the human non-protein coding genome 

comprises largely interspersed repeats (Burns, 2017) with almost half our DNA representing 

repeated sequences from mobile DNA (Jurka et al., 2005). In future analyses these additional 

regulatory elements should be also included into the ARCIS annotation pipeline. 

Concerning regulatory activity, this study focused on open chromatin (ATAC-Seq, DNase-Seq) 

data as well as histone marks. However, DNA methylation at promoters and enhancers can 

also affect gene expression and was recently shown to be associated with T-ALL subtypes 

(Roels et al., 2020). Adding DNA methylation data was, however, beyond the scope of this 

study. 

4.4 Experimental validation of enhancers and non-coding transcripts 

In order to validate identified regulatory regions in experimental settings, the effect of intergenic 

insertions on target gene expression was first estimated dependent on the type of the target 

gene. The effect of intergenic transposon insertions on gene expression is relatively easy to 

trace for tumor suppressor genes. By the disruption of ‘positive’ regulatory elements such as 

enhancers, the target gene expression is diminished. For oncogenes, however, the effect can 

also be explained. The possibilities include several mechanisms such as (i) disruption of 

silencing elements, (ii) inactivation of activating non-coding transcripts or (iii) the disruption of 

chromosome neighborhoods as recently described in T-ALL (Hnisz et al., 2016). Moreover, 

the transposon itself contains strong promoter and enhancer elements, which might also 

influence gene expression of genes in close proximity. The detailed mechanism how intergenic 

insertions affect gene expression needs to be investigated in future studies. 

In addition to intergenic insertions in enhancers or non-coding transcripts, we found several 

regulatory elements in introns. Introns were shown to be involved in many steps of mRNA 

processing (Chorev and Carmel, 2012). However, the identification of functional introns 

remained challenging (Chorev et al., 2017). With the approach described in this study it 

became possible to identify intronic regions which are marked by an accumulation of insertions 

and most likely be specifically relevant in regulatory networks. Thereby, an intronic enhancer 

in the Rnls gene was identified regulating Pten expression. In contrast to the Pten example for 

distant enhancers in introns of other genes, we also identified intronic enhancers connected to 

the gene they are located in. Although these ‘own intronic enhancers’ were not investigated in 

detail in this study, they could be of further interest: it was shown that while extragenic 

enhancers positively contribute to transcriptional output, intragenic enhancers play an 

unanticipated role in attenuating host gene expression (Cinghu et al., 2017). The details on 

how insertions influence gene expression by inserting in intronic enhancers need further 

investigation.  
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Discerning functional noncoding transcripts from a vast transcriptome represents a priority for 

the lncRNA field (Kopp and Mendell, 2018). The transposon screening system described in 

this study identified many intergenic common insertion sites. We established a computational 

approach to annotate their function and manually and individually inspected all intergenic CISs 

to classify them to different categories such as intergenic enhancers, intronic enhancers or 

non-coding transcripts. However, many CISs remained ambiguous due to the overlap of 

multiple functional elements in the genome. Insertions in introns can overlap with enhancers 

and non-coding transcripts (antisense RNA or sense-intronic RNA) and intergenic lincRNAs 

may additionally harbor enhancers in their introns. As the annotation of non-coding transcripts 

is far from being complete, a nPC transcript can never be excluded even if there is no transcript 

annotated so far in the respective region. To resolve this ambiguity, gene expression data was 

used. High-coverage RNA-Seq or GRO-Seq data was used to detect polyA containing 

lncRNAs and other native transcripts, respectively. Some cases, however, were still difficult to 

classify. 

To prove enhancer activity, a selection of plasmid-based enhancer activity assays can be used 

where the candidate DNA fragment is placed downstream of a reporter gene (Muerdter et al., 

2018). However, many widely used assays were shown to be unreliable due to the specific 

characteristics of bacterial DNA and activation of an immune response (Muerdter et al., 2018). 

Here, CRISPR/Cas9-based knockout was used to functionally validate selected regulatory 

elements. Therefore, the complete regulatory region (6-18 kb) was deleted from the genomic 

DNA. Although this method worked with a surprisingly high efficiency and revealed a link 

between regulatory elements and target gene expression, unfortunately, it was unable to 

differentiate between the effect of enhancers and non-coding transcripts. To directly target 

non-coding transcripts in future studies, the RNA targeting CRISPR enzyme Cas13 

(Abudayyeh et al., 2017), which is efficiently binding and cleaving RNA instead of DNA, should 

be used. Targeted RNA knockdown will help to differentiate between the knockout effect of the 

regulatory DNA region (which might also contain enhancer regions) and the effect of the RNA 

transcript itself. During the course of this study, however, this method was not yet suitable for 

high-throughput applications. 

An ambiguous example for the challenge described above is the Ikzf1 locus. In this study, a 

potential lincRNA was identified regulating Ikzf1, a crucial transcription factor in the 

hematopoietic system. However, recently an Ikzf1 enhancer was published overlapping the 

lincRNA (Alomairi et al., 2020). Here, we show that this lincRNA is expressed supporting the 

hypothesis that the lincRNA is involved in leukemogenesis. However, due to the mentioned 

ambiguity, the mechanism was not solved and needs further investigation through direct 

targeting of the non-coding transcript with e.g. Cas13. 
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Another example is the Lncpint locus where multiple CISs overlap with the lncRNA Lncpint but 

also the pri-miRNA transcript of miR29a/b. There is evidence that members of the microRNA29 

family play a critical role in human cancer (Volinia et al., 2006), however, there are contrasting 

findings reported for miR29 levels in different hematopoietic malignancies. Whilst lower levels 

of miR29 members were described in aggressive subtypes of chronic lymphocytic leukemia 

and mantle cell lymphoma (Calin et al., 2005; Zhao et al., 2010), the ectopic expression of 

miR29a in murine HSCs led to AML (Han et al., 2010). In T-ALL, low miR29a levels were 

associated with an altered epigenetic status (Oliveira et al., 2015). Here, we found increased 

expression levels of miR29a/b driven by transposon insertions arguing for a tumor-promoting 

role of miR29 in this context. To clarify the role of miR29 in leukemogenesis, directly targeting 

the microRNAs and the Lincpint transcript in cell lines could reveal the function. 

4.5 PiggyBac screening exploited to study tumor evolution 

A disadvantage of studying tumor evolution in humans is the retrospective analysis only 

capturing the last events of the evolutionary tree. Here, a forward genetic screening approach 

was described where the timing of the lesion (insertion) and the connected effect can be 

assessed. Although insertion site sequencing was adapted to Illumina sequencing a long time 

ago (Brett et al., 2011), the sequencing depth has not yet been exploited for studying evolution. 

Now, for the first time, read coverage supporting single insertions were systematically analyzed 

to understand evolutionary hierarchies. Using this approach, Ikzf1 and Pten were found as 

major drivers of the ETP-like and classical T-ALL subgroup, respectively. Of note, these genes 

were found as top CISs in both subtypes and usual CISs methods were not able to identify any 

differences. Applying this novel approach, biologically relevant associations were identified: 

Strong positive selection for Ikzf1 insertions in virtually all ETP-ALL establishes a critical role 

of Ikzf1 in the initiation of this T-ALL subtype. In line with this, IKZF1 alterations were found to 

be enriched in human ETP-ALL as compared to classic T-ALL (Zhang et al., 2012). Here, two 

new dimensions are added to this association: a functional (in vivo relevance) and a temporal 

(stage). In contrast, the dominance of Pten inactivation in classical mouse T-ALLs reflects 

specific evolutionary constraints and rationalizes the enrichment of PI3K pathway alterations 

in mature forms of human T-ALL.  

Furthermore, a biologically striking observation was the fact that many genes typical for T-ALL 

were not hit by the transposon. T-ALL is a disease characterized by oncogenic transcription 

factors (Liu et al., 2017). However, the typical T-ALL transcription factors such as TAL1/2, 

LYL1, TLX1/3, NKX2-1/2-2/2-5, LMO1/2 were not hit by the transposon. This can be explained 

by the restriction of the PiggyBac transposon technology used in this study, which is only able 

to activate protein-coding genes that harbor an (alternative) ATG in the second or following 

exon. As PiggyBac activation is dependent on splicing and the first exon does not harbor a 
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splice acceptor, proteins containing their only ATG in exon 1 cannot be activated by the 

transposons (however, exceptions of cryptic activation are described) (Weber et al., 2020). To 

circumvent this problem in future studies, novel mouse models are being established which 

will enable the evolutionary tracking of all protein-coding genes (unpublished data: Roland 

Rad, Technical University Munich). 

In this study, tumor samples were analyzed presenting only a snapshot and not capturing 

dynamics of tumor evolution. To get more valuable insights into tumor evolution, not only the 

final tumor samples but also blood samples at specific time points can be isolated and analyzed 

with QiSeq. In an independent project, a cohort of mice developing B cell lymphomas was 

analyzed during the complete course of lymphomagenesis. This analysis gave interesting 

insights into the detailed sequentiality and remobilization of transposon insertions (unpublished 

data: Roland Rad, Technical University Munich, Munich, Germany and Ursula Zimber-Strobl, 

Helmholtz Center Munich). 

The combination of longitudinal sampling, sequential blood collection, high-resolution 

sequencing methods and newly developed analytical tools will give much more detailed 

insights into blood cancer evolution in future studies. The described concept that insertions 

carry historical information can in future studies be expanded to other cancer types. 

4.6 Biological characteristics of induced T-ALL subtypes 

4.6.1 Human counterparts of ETP-like and classical T-ALL 

The differentiation of the ETP-like and classical T-ALL subtypes was based on 

immunohistochemistry and gene expression profiling. Both methods clearly differentiated 

mature and immature T cell malignancies. Whereas all T-ALLs showed positivity for Tdt, 

classical T-ALL samples showed (partial) positivity for the mature marker CD4 in 

immunohistochemistry. In gene expression profiles, hallmark gene sets for ETP-ALL such as 

Jak/Stat and Kras signaling were identified in ETP-like murine leukemias. Additionally, the 

comparison of gene expression to human gene signatures of hematopoietic cells confirmed 

the mature origin of classical T-ALLs (double positive T cells) whilst ETP-like leukemias 

showed similarity to multiple immature lineages including hematopoietic stem cells, myeloid 

and B cell progenitors as well as early T cells. Moreover, this study established a murine 

classifier gene set to distinguish between ETP-like and classical T-ALLs. Therefore, genes 

were chosen which are described to be enriched in one of the two subtypes. For ETP, genes 

linked to early T cell development, the B cell lineage, HSCs and the innate immune system 

were selected. For classical T-ALLs, genes associated with T cell specific processes such as 

T cell commitment and TCR rearrangement/signaling were included. The established 20-gene 
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classifier has reliably distinguished between both subtypes and will facilitate future studies on 

T-ALL subtype evolution. 

In the copy number analysis using aCGH, however, deletions at the T cell receptor loci were 

found in almost all samples. According to literature, immature T-ALLs show lower frequencies 

of TCR rearrangements compared to more mature leukemias (Neumann et al., 2013). In this 

study, no difference in TCR deletion frequencies was observed between the subtypes. A 

possible explanation for the fact that comparable numbers of TCR deletions were found in the 

ETP and the classical subtype include the early activation of the Rag enzyme in T cell 

development (Welner et al., 2009). In the aCGH data, a deletion as a consequence of Rag 

activity rather than a fully rearranged locus is detected potentially explaining why the deletions 

can be found in all samples. T cell precursors initiate TCR rearrangements even before 

reaching the thymus but the rearrangement is not successful and not leading to TCR gene 

expression (Rothenberg, 2019). Most likely, aCGH only detects precursor rearrangements as 

deletions but is not able to differentiate between these precursor deletions and a fully 

rearranged T cell receptor locus. T cell receptor sequencing approaches would be necessary 

to clarify the difference of TCR rearrangements between subtypes. 

4.6.2. Mef2c-driven T-ALL as a single disease entity? 

In addition to the well-described T-ALL subtypes ‘ETP-like’ and ‘classical’, this study identified 

a subgroup of T-ALLs driven by Mef2c. The myocyte enhancer factor 2C was originally 

identified in muscle development but is also associated with an oncogenic function in different 

leukemias (Canté-Barrett et al., 2014). In hematopoietic development, Mef2c is highly 

expressed in HSCs, myeloid progenitors and B cells before commitment. However, Mef2c is 

absent in the T cell lineage (Canté-Barrett et al., 2014). 

In T-ALL, MEF2C is a downstream target of the cardiac homeobox gene NKX2-5 (Nagel et al., 

2008) and was itself found involved in chromosomal rearrangements (Homminga et al., 2011). 

However, in T-ALL patients there is controversy as to whether MEF2C-dysregulated and 

ETP-ALL feature a single disease entity. On the one hand, it was shown that ETP-ALLs and 

immature MEF2C-dysregulated T-ALL exclusively overlap (Zuurbier et al., 2014). In contrast, 

it was reported that MEF2C-dysregulated T-ALLs were only partially associated with the 

immunophenotype of ETP-ALL (Colomer-Lahiguera et al., 2017). Although all studies confirm 

an immature origin of both groups, the question arises whether these groups differ at the 

biological or genetic level. 

This study supports the view that Mef2c-dyregulated T-ALL should be considered as a 

separate disease entity from ETP-ALL. Differences between both groups were shown at the 

transcriptional level (clustering and enriched pathways), insertional level (high coverage, 
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activating Mef2c insertions as distinguishing factor between the groups) and based on the 

clonal architecture. The Mef2c subgroup was characterized by a lower number of insertions 

and common insertion sites what can be seen as a measure for clonality. Therefore, Mef2c-

driven tumors were highly clonal compared to the other subtypes confirming that Mef2c is a 

strong oncogene in hematopoietic malignancies. 

Investigating the molecular differences between both immature subtypes in more detail in the 

future might also have clinical relevance. It was shown that there are differences in treatment 

response and resistance between ETP-ALL and MEF2C T-ALL, with the latter responding 

poorly to glucocorticoids (Colomer-Lahiguera et al., 2017). Furthermore, the MEF2C status 

might be important as MEF2C phosphorylation (S222) was identified as biomarker for primary 

chemoresistance in AML, which can be circumvented by a selective inhibitor (Brown et al., 

2018). 

4.7 PiggyBac screening reveals extensive quasi-insufficiency in cancer 

evolution 

In this study, the relevance of intergenic transposon insertions disrupting regulatory elements 

was highlighted. The phenotypic impact of enhancer alterations was validated in vitro and in 

novel mouse models (described below) and differs substantially from coding sequence 

insertions. Alterations in regulatory elements can have additive effects and the modularity of 

enhancers allows fine-tuning of gene expression (Gordon and Lyonnet, 2014). It was 

speculated that many cancer genes rely on a very specific gene dosage to exert their tumor-

promoting effect (Berger et al., 2011). As transposons most likely disturb regulatory elements 

and abolish their activating effect on gene expression, a subtle decrease of gene expression 

is probably the most common effect of the transposon. Dynamic and subtle dosage changes 

of tumor suppressor genes were described earlier with the term ‘quasi-insufficiency’ (Berger 

et al., 2011). While haplo-insufficient tumor suppressors rely on the loss of one allele, a 

continuum model was described for quasi-insufficient genes (Berger et al., 2011). However, it 

is notable that since the definition of this term in 2011, this phenomenon was not described 

again. In the last decade, we looked at mutations in a binary way (heterozygous vs 

homozygous), but the role of quasi-insufficiency remained largely unexplored. A possible 

explanation is the lack of suitable tools enabling scalable interrogation of quasi-insufficiency, 

which requires genome-wide subtle perturbations and an experimental system that can 

capture the relevant readout: cancer development in an organism. The transposon screening 

approach fulfills these requirements and shows that subtle gene regulation is a major 

contributor to oncogenesis. A large part of screening hits are heterozygous hits in regulatory 

elements, leading to subtle gene dysregulations. It was shown that such subtle gene 

dysregulation can indeed be highly oncogenic, and we refer to this as quasi-insufficiency. This 
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study led to the creation of catalogues of quasi-insufficient cancer genes and showed their 

enrichment with human GWAS hotspots (which typically also have only subtle effects). 

Additionally, the relevance of intergenic CISs and subtle gene regulation shown for T-ALL in 

this thesis could be validated across multiple cohorts (Fischer et al., 2023). 

By comparing the induced T-ALL subtypes, context-dependencies of quasi-insufficiency were 

investigated. It was shown that there is an association of the cell-of-origin with the number of 

regulatory CISs identified in the respective subtype. In detail, classical T-ALL was 

characterized by an increased number of regulatory CISs. A similar dependency was found in 

AML samples where immature Erg-driven leukemias showed less intergenic CISs compared 

to more mature leukemias driven by Mecom or Prdm16 (Fischer et al., 2023). A possible 

explanation of this context-dependencies includes the decrease of multilineage potential 

during differentiation. While immature cells might need strong, genic hits to avoid 

differentiation, mature cells might ‘only’ need to fine tune gene expression of lineage-specific 

tumor genes. The cell of origin of classical T-ALLs lost multilienage potential and only needs 

to adjust the level of T cell tumor genes to proliferate. 

As it is extremely unlikely that the transposon inserts on both alleles of a regulatory region, it 

was assumed that interference with the function of the regulatory elements is generally 

mono-allelic. This suggests that malignant transformation can be promoted by very subtle 

interference with gene regulation. To address this, we engineered mice with kilo- to megabase 

scale germline deletions in the regulatory region downstream of Bcl11b ((Fischer et al., 2023), 

doctoral thesis of Robert Lersch). We found that deletions in the regulatory region of a 

well-described tumor suppressor gene on an otherwise wild-type background are sufficient to 

induce prominent cancer phenotypes. Intriguingly, the exact position and size of the deletion 

and the knockout dosage (hetero- or homozygosity) were profoundly affecting the tumor type 

and frequency. We observed a higher penetrance of T-ALL in mice with a larger deletion 

suggesting additive effects of enhancers and confirming a context-dependent role of 

quasi-insufficiency. 

Altogether, this data indicated widespread roles of quasi-insufficiency in tumor evolution and 

suggests a dependency on the cell of origin in oncogenic transformation. 

4.8 Spic in T cell leukemogenesis 

The transcription factor Spic was found as oncogenic CISs in the AML cohort of the first 

PiggyBac in vivo screen (Rad et al., 2010) and also in the T-ALL cohort of this study. Data from 

CRISPR/Cas9 drop-out screening in cancer cell lines showed a selective SPIC dependency 

of cell lines connected to the hematopoietic system (Source: Depmap, data not shown). This 

underlines a potential oncogenic function of Spic in hematopoietic malignancies. 
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In the AML cohort, the coverage of Spic insertions was high and the effect on Spic expression 

was clearly activating (Rad et al., 2010). However, Spic insertions were found to be of low 

coverage in T-ALL and Spic is not expressed in human and murine T cells (Immgen data, not 

shown). Therefore, the observation that conditional Spic overexpressing mice show a T-ALL 

phenotype was intriguing. The hypothesis to explain this phenomenon includes the possibility 

that Spic mimics Spi1 function in T cells. SPI1 is described as important transcription factor in 

early T cell development and SPI1 fusions were described in human ETP-ALL patients 

associated with poor outcome (Seki et al., 2017). Spi1 is expressed in prethymic progenitors 

and ETP cells and replaced by the expression of Tcf7 during T cell commitment (Rothenberg 

et al., 2019; Ungerbäck et al., 2018). The increased SPI1 expression keeps immature T cells 

in their pre-commitment state. An increased expression of Spic might have a similar effect on 

the differentiation block of T cells. In line with this, it was shown recently that PU.1 and Spic 

share a 5’-GGAA-3’ motif indicating that SPIC can compete with PU.1 binding (Laramée et al., 

2020). The fact that Spic overexpression leads to ETP-ALL rather than classical T-ALL in the 

model presented in this study might indicate that Spic imitates Spi1 function associated with 

early myeloid progenitors, but usually switched off in T cell maturation. 

A second hypothesis how Spic induction could lead to ETP-ALL development includes lineage 

plasticity of myeloid and early T cells. Although the development of T cell leukemias was 

intriguing as the screening data suggested a more prominent role of Spic in the myeloid 

system, there is extensive literature on the concept of lineage fate and plasticity between T 

and myeloid cells. Precursor T cells loose B cell potential early during differentiation but keep 

myeloid, dendritic cell and natural killer cell potential in early stages within the thymus 

(Rothenberg, 2019). This can be explained by a mixture of T cell- and stem cell transcription 

factors in early T cell progenitors (Laiosa et al., 2006). The resulting instability is the basis for 

alternative lineage fates of these uncommitted progenitor T cells. The reason to retain this 

plasticity is not yet fully clear. A possible explanation includes that the proliferation of early 

T cells is controlled by the same mechanism as the proliferation of multipotent progenitors 

(Rothenberg, 2019). However, contradictory studies are showing that T cell progenitors lack 

the potential for myeloid lineages in the thymus and that an early separation into lymphoid and 

myeloid branches is the correct in vivo scenario (Schlenner and Rodewald, 2010). Although 

not finally decided yet, it seems highly likely that there exists an overlap or lineage promiscuity 

between T cells and myeloid cells. This is further supported by the existence of mixed 

phenotype acute leukemias (MPALs) or acute leukemias of ambiguous lineage (ALAL). This 

disease entity comprises a collection of leukemias with features from both, ALL and AML. It 

was recently shown that the priming of these leukemia cells depends on the cell of origin and 

the founding deletion (Alexander et al., 2018). The cell of origin of theses MPALs is most likely 
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a multipotent progenitor cell (Granja et al., 2019). Defining the precise mechanism of Spic in 

this lineage ambiguity and induction of ETP-ALL needs further experimental investigation.  

Although the induction of ETP-ALL by Spic overexpression could not finally be resolved 

mechanistically, the fact that Spic overexpression led to an ETP-ALL phenotype in a mouse 

model might be an important information for future studies. Since transgenic mice 

overexpressing Spi1 develop erythroleukemias (Moreau-Gachelin et al., 1996), these animals 

cannot be used for ETP-ALL studies. So far, only complex genotypes combining several tumor 

suppressor and oncogenes (e.g. Ezh2, Runx1, Flt3) were able to induce ETP-like ALL in the 

mouse (Booth et al., 2018). The Spic mouse model might be of use for further studies on the 

Spi family of transcription factors and their role in ETP-ALL development. Finding alternative 

treatment options for the subsets of patient with increased SPI1 expression is of high 

importance and the proposed mouse model could be used to identify and test targets. 

In contrast to the ETP-ALL phenotype induced by the conditional overexpression of Spic in the 

hematopoietic system, the phenotype of the inducible whole-body overexpression of Spic was 

less clear. Mice succumbed very suddenly already 5 days after administration of doxycycline. 

Flow cytometry as well as histological examination indicated alterations in the hematopoietic 

system and expression analysis confirmed a dysregulation of the complement pathway and 

heme metabolism. Although heme metabolism is connected to leukemogenesis and therapy 

resistance (Lin et al., 2019), the cause of the very sudden death remained unclear. To 

investigate if the observed effect is only due to changes in the hematopoietic system, the 

inducible allele was combined with the Vav-Cre mouse to restrict the inducible expression of 

Spic to hematopoietic cells. Future experiments will clarify if these mice also show this very 

sudden and severe phenotype. 

 

4.9 Outlook 

This study can be seen as a natural evolution of previous PiggyBac screening efforts, which 

primarily interrogated the protein-coding genome (Rad et al., 2010; Rad et al., 2015; Weber et 

al., 2019). Here, novel tools and methods are described opening up two entirely new 

application areas for transposon-based in vivo screening: the cancer’s regulome and evolution. 

The developed methods, analytical approaches and computational pipelines are universally 

applicable for any cancer type and can also be used for retrospective data analysis of existing 

data. Additionally, the biological discoveries are of broad relevance, even beyond T-ALL. This 

was supported by the analysis of extensive data sets from a large number of genome-wide in 

vivo screens (~1450 solid and hematopoietic cancers from 15 in vivo screens from our 
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laboratory, the largest part yet unpublished; not shown), which reinforced, for example, the 

broad relevance of quasi-insufficiency across cancer types. 

In this study, a novel approach was developed to annotate the putative effect of regulatory 

common insertion sites. Therefore, a combination of a computational annotation part based on 

a large set of publicly available epigenomic data was implemented. Additionally, selected CISs 

were inspected manually and individually as often the overlap of transcripts and regulatory 

elements in the genome made a definitive conclusion difficult. Future approaches for CIS 

identification and annotation might use machine learning tools with the aim to better identify 

CISs and their potential effect. 

The study covers two of the newly defined hallmarks of cancer: non-mutational epigenetic 

reprogramming and phenotypic plasticity (Hanahan, 2022). This underlines the importance of 

the newly established analytical approach as both hallmarks are at the moment discussed as 

important reasons for therapy failure and resistance. The PiggyBac system is able to 

investigate mutation-driven and epigenetic regulation in the evolution of tumors in the same 

experimental approach. Additionally, it was shown that the PiggyBac system identifies genes 

important in multiple hematopoietic lineages (Spic) probably involved in dedifferentiation, block 

of differentiation and/or trans-differentiation, mechanisms crucial to understand cancer 

phenotypes in the future. 
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