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Abstract

Change detection in terms of construction progress documentation and evaluation is currently
of great value for the construction industry and BIM. Not only many positive experiences in
construction practice indicate a strong correlation between permanent construction monitoring
and compliance with project schedule, but careful researches and case studies con�rm this positive
e�ects also from a scienti�c point of view. Nevertheless, in practice, progress monitoring and
geometric evaluation are only poorly automated yet. Although 3D point clouds are well suited
for fast and high resolution "as-built" scene capture on site, especially in indoor environments,
these techniques still lack deliberate analysis, computer aided interpretation and strategies for
metric evaluation.

This thesis aims to develop and investigate novel methods in the �eld of 3D point cloud based
change detection and geometric evaluation for indoor BIM. The conducted research provides con-
tributions to three major aspects: (i) an optimization procedure for image-to-BIM co-registration,
(ii) a high resolution 3D point cloud based change detection approach and (iii) a method for the
geometric veri�cation of a given BIM.

An estimation model for the re�nement of image-to-BIM co-registration is developed. It is based
on the incidence condition between model edges and corresponding straight lines in an image.
3D model edges are considered to be statistically uncertain and assigned a standard deviation
according to the Level of Accuracy (LOA) speci�cation for BIM. Given an optimal alignment
between a 3D point cloud and a BIM, a high-resolution change detection for indoor progress
monitoring is achieved through a voxel based discretization of space and occupancy modeling.
In order to evaluate the geometric quality of a BIM, the e�ects of geodetic point measures on the
occupancy of space are mathematically modeled by belief functions and evaluated by utilizing
the Dempster-Shafer theory of evidence. This novel method considers statistical uncertainties of
both the measurement and the given model under test itself. It is adapted and adjusted for the
usage of 3D point clouds from terrestrial laser scanning and photogrammetry.

The presented methods are demonstrated and evaluated on the basis of multi temporal point
cloud datasets that were obtained from surveys on real construction sites and synthetic data
as ground truth for accuracy assessment regarding image-to-BIM co-registration. The results
show that 3D point clouds are suitable to verify a given BIM up to LOA 30/40 (σ = 7.5mm/
σ = 2.5mm), if special attention is paid to the geometry during the acquisition by laser scanning
or photogrammetry. A voxel based change detection application with 1 cm voxel size meets
LOA 30. Furthermore, an image co-registration can be improved as long as the BIM compliant
geodetic reference meet the requirements of LOA 30 or higher.
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Kurzfassung

Änderungsdetektion im Sinne von Baufortschrittsdokumentation und -evaluation ist derzeit
von groÿem Wert für die Baubranche und BIM. Nicht nur viele positive Erfahrungen aus der
Baupraxis zeigen einen starken Zusammenhang zwischen permanenter Bauüberwachung und der
Einhaltung des Projektzeitplans. Untersuchungen und Fallstudien bestätigen diese positiven
E�ekte auch aus wissenschaftlicher Sicht. Dennoch sind Baufortschrittsüberwachung und die
geometrische Evaluation in der Praxis bisher nur wenig automatisiert. Obwohl 3D-Punktwolken
für die schnelle und hochau�ösende Erfassung des Ist-Zustandes auf der Baustelle, insbesondere
in Innenräumen, gut geeignet sind, fehlt es diesen Verfahren noch an kontextbezogener Analyse,
computergestützter Interpretation und Strategien zur metrischen Bewertung.

Ziel dieser Arbeit ist die Entwicklung und Untersuchung neuer Methoden im Bereich der
3D-Punktwolken-basierten Änderungsdetektion und geometrischen Bewertung für BIM im In-
nenbereich. Die durchgeführte Forschung liefert Beiträge zu drei Hauptaspekten: (i) ein
Optimierungsverfahren für die Bild-zu-BIM-Koregistrierung, (ii) einen hochau�ösenden 3D-
Punktwolken-basierten Ansatz zur Änderungsdetektion und (iii) eine Methode zur geometrischen
Veri�zierung eines gegebenen BIM.

Zunächst wird ein Schätzmodell für die Verfeinerung einer Ko-Registrierung von Bild-zu-BIM
entwickelt. Es basiert auf der Inzidenzbedingung zwischen Modellkanten und entsprechenden
Linien in einem Bild. 3D-Modellkanten werden als statistisch unsicher angesehen und mit einer
Standardabweichung gemäÿ der Level of Accuracy (LOA) Spezi�kation für BIM versehen. Unter
der Voraussetzung einer optimalen Georeferenzierung einer 3D-Punktwolke im Gebäudereferen-
zsystem wird durch voxelbasierte Diskretisierung des Raums und Belegungsmodellierung eine
hochau�ösende Änderungserkennung für die Überwachung von Fortschritten in Innenräumen er-
reicht. Um die geometrische Qualität eines BIM zu bewerten, werden die Auswirkungen geodätis-
cher Punktmessungen auf die Raumbelegung mathematisch durch Glaubensfunktionen modelliert
und unter Verwendung der Dempster-Shafer-Evidenztheorie bewertet. Diese neuartige Methode
berücksichtigt statistische Unsicherheiten sowohl der Messung als auch des zu prüfenden Modells
selbst. Sie wird jeweils für die Verwendung von 3D-Punktwolken aus terrestrischem Laserscan-
ning und Photogrammetrie optimiert.

Die vorgestellten Methoden werden anhand von multitemporalen Punktwolkendatensätzen
demonstriert und evaluiert, die aus Vermessungen auf realen Baustellen gewonnen wurden.
Darüber hinaus werden synthetischen Daten als Ground Truth für die Genauigkeitsbewertung
der Bild-zu-BIM Ko-Registrierung genutzt. Die Ergebnisse zeigen, dass 3D-Punktwolken geeignet
sind, ein gegebenes BIM bis hin zu LOA 30/40 (σ = 7, 5mm/ σ = 2, 5mm) zu veri�zieren, wenn
der Aufnahmegeometrie bei der Erfassung durch Laserscanning oder Photogrammetrie besondere
Beachtung zukommt. Ein voxelbasierter Ansatz zur Erkennung von Änderungen mit einer Voxel-
gröÿe von 1 cm erfüllt die Anforderungen von LOA 30. Darüber hinaus kann die Ko-Registrierung
von Bildern mit dem Modell verbessert werden, solange die BIM-konforme Modellreferenz den
Anforderungen von LOA 30 oder höher gerecht wird.
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1 Introduction

Within the framework and process of Building Information Modeling (BIM), modern construction
projects bene�t from Building Information Models (BIMs). Such a model represents a hierarchical
structure of building and construction related objects, which are composed of both 3D geometry
and semantics, including comprehensive information regarding the relationships between elements
[Borrmann et al., 2021]. BIMs are considered fundamentally important as they act as a central
and multidisciplinary database and digital platform for all project participants such as architects,
engineers, trades, manufacturers and construction managers. The BIM is used over the entire
life cycle of a building - from design and planning to execution and operation. Therefore, it is
supposed to represent the planned state of building objects in their various phases of construction
and operation. To conduct spatio-temporal analysis properly and in order for the construction
management to be able to react to possible deviations from the planning at an early stage, a regular
comparison of the as-planned and as-built project status must be carried out, because a BIM is
only as valuable as the degree of its correspondence to real world conditions is high. In this context,
this thesis addresses the comparison of BIM related 3D geometry and geodetic observations of the
real building object, which is in the following referred to as construction progress documentation.
In particular, the geometric-statistical evaluation of given model geometry with respect to the
veri�cation of metric tolerances is of great importance.

as-planned BIM as-built BIM

Figure 1.1: BIM transition from as-planned (left) to as-built (right) using image data and generated 3D
point clouds

1.1 Motivation

Change detection and geometry veri�cation in terms of construction progress documentation and
evaluation is currently of great interest for the branch of Architecture, Engineering and Construc-
tion (AEC) and BIM processes. Not only many positive experiences in construction practice indi-
cate a strong correlation between permanent construction monitoring and compliance with project
schedule, but careful researches and case studies such as presented in Alizadehsalehi & Yitmen
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A

B

C

Figure 1.2: As-built point clouds for BIM: BIM objects superimposed with a 3D point cloud as a result of
construction progress documentation; detail A: A piece of wall marked as going to be demolished in the
course of a reconstruction (transparent red); detail B: From the captured reinforcement steel, it can be
seen that a new wall is in its �rst state of construction (transparent yellow); detail C: Model of an existing
wall from the BIM (solid white) with scanning artifacts in front of it (surveying engineers with tripod).

[2019] con�rm this positive e�ects also from a scienti�c point of view. Nevertheless, progress mon-
itoring and evaluation during the construction phase are usually time-consuming and still only
poorly automated. So far progress monitoring either comes with visual inspections performed
by construction workers or time and cost-intensive professional surveys using total stations and
leveling devices. 3D laser scanning and image-based 3D scene captures are good alternatives for
fast and high resolution as-built recording on site and there are many approaches and techniques
for reconstruction from 3D point clouds, e.g. assembled and discussed in Xu et al. [2021].

In a building constructions interior however, monitoring e�ort based on 3D point clouds is
greater compared to exterior, and therefore mostly assumed unsuitable for high-frequency mon-
itoring. This is due to very limited views in con�ned indoor environments, which usually cause
weak scanning geometries, occlusions, low observational redundancies and hence the need for many
scanning and observation stations. At the same time there is a great demand for the documen-
tation of detailed interiors which require even higher geometric resolution and reliably con�rmed
accuracy. Additionally, the georeferencing of point clouds in a BIM reference system has been
identi�ed as a particular bottleneck indoors, as a traverse survey is necessary in the GNSS-denied
environment in order to determine 3D coordinates of temporally mounted control point markers,
e.g. checkerboard targets. Once 3D point cloud data is generated though, it is commonly over-
laid and visualized with the BIM geometry in specialized 3D software so that trained users can
make individual and subjective interpretations of the supposed construction progress (Fig. 1.2).
However, these procedures are time-consuming and labor-intensive. Point cloud based approaches
for BIM still lack deliberate analysis and computer aided interpretation, which is why there is a
great demand for automation in monitoring based on point clouds and for the evaluation of metric
tolerances in engineering practice.

Especially when it comes to design and construction in existing contexts, e.g. in the course of a
conversion project, reliably as-built geometry serves as highly valuable planning basis. A so called
"as-built BIM" is considered to represent the actually built conditions up to a certain level of detail
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and accuracy. Since the generation of model geometry requires a spatial sampling by some kind of
geodetic measurement and a digital model �tting, which is usually characterized by some degree
of generalization, as-built BIMs strongly di�er in geometric quality. Generally, with the ongoing
development of BIM processes, the demand on geometric model qualities are constantly increasing
as as the geometric aspect of BIM is essential for connectivity, localization, spatial networking and
monitoring of assets. This is especially true for the modeling of detailed structures in building
interiors as they continue to be maintained beyond the construction phase as a central database
for many applications such as, for example, indoor navigation, asset tracking, Location Based
Services (LBS) and the Internet of Things (IoT). However, it is understandable that for planning
purposes it is crucial whether the as-built geometry is reliably true to form or consists only of
rough geometric primitives. In this context, standardized approaches for the geometric validation
of as-built BIMs considering both measurement and modeling related uncertainties are needed.

1.2 State-of-the-art

A BIM compliant model is object-oriented and the spatial relationship of those geometric objects
within a buildings interior, in addition to their spatial appearance are subject of this work. In
particular, the subject area involves issues of automated co-registration, change detection and
geometric model validation with special attention to statistical uncertainties. These aspects are
considered the central �elds of research. Many authors have already contributed to these �elds
and related sub-topics, which shall be presented and summarized in the following. They are an
important foundation and framework without which this work could not have begun at this point.

1.2.1 Image-to-model co-registration

3D object recognition and localization in images depends on corresponding features between model
and image. Through model-to-image matching, inferences can be made about scenes beyond what
is explicitly available in the image. Model-to-image methods are often cited in the literature as
a precursor to tracking, change detection, texture mapping, as well as sensor orientation and
positioning applications. Lowe [1991] refers to the term Model-based Vision.

Geometric feature matching: Points can be used as correspondence features for the assign-
ment between image and model: Hoegner & Stilla [2015] re�ne GPS camera positions of a thermal
infrared image sequence, which is matched with 3D vertex coordinates of a pre-known building
model. Avbelj et al. [2010] improve the exterior orientation of infrared images by point-to-point
matching with 3D wireframe models using Förstner points and intersections of straight segments.
Lerner et al. [2006] presented a method for accurately determining sensor pose and motion using
homologous image points and an already given digital terrain model, and Unger et al. [2016] use
Tie Points (TP), which they assign to levels of a generalized building model using a distance
criterion. Edge detection is a standard task of digital image processing, which is why line features
are particularly suitable in the context of building model matching. Iwaszczuk & Stilla [2017] use
corresponding image lines and 3D model edges to re�ne the coarse camera pose of thermal infrared
images for texture extraction. In Läbe & Ellenbeck [1996], lines from approximately oriented aerial
images are extracted and edges are assigned from 3D wireframe models of buildings. Li-Chee-Ming
& Armenakis [2013] use vertical lines from video streams from a UAV-borne First-Person-View
(FPV) camera in urban areas, which they match with extracted lines from synthetic images of 3D
building models. For this purpose, the authors realize in Li-Chee-Ming & Armenakis [2014] an
e�cient model-to-image matching using geometric hashing. Li-Chee-Ming & Armenakis [2017] use
vertical lines matched with a 3D model to determine a sensor pose indoors. Other related works
with examples of successful line matching are Gerke [2011], Schickler [1992], Lee et al. [2002],
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Kada & Haala [2005], Iwaszczuk [2015], Nyaruhuma et al. [2012], Boerner & Kröhnert [2016] and
Koch et al. [2016].
A-priori information about the parallelism of object lines extracted in the image can be exploited
by applying automatic vanishing point detection. This technique can be used for both 3D re-
construction and determination of external orientation parameters and is used in van den Heuvel
[1998], Rother [2000], and Förstner [2010], among others. The combination of points and lines is
also described in the literature: Jung et al. [2016] extract building corners with associated edges
(edged corner feature) from aerial images, which they map to corresponding elements from 3D
building models, and Tian et al. [2008] combine reliably mapped point features with edges in video
sequences, aiming to reconstruct the 3D structures of objects. Edge matching in this case is only
between images and not with an a priori 3D object model. However, linked vertices and edges
represent valuable topological constraints for the reconstruction of 3D structures. Lowe [1991], on
the other hand, extracts contours in the image and uses them to determine projection and model
parameters of objects to be detected and tracked. Unger et al. [2017] generate sparse point clouds
from UAV images using Structure from Motion (SfM), in which planes are estimated and assigned
to the corresponding planes (facades) of 3D building models. Furthermore, there are also works
that utilize textures: DeGol et al. [2016] combine 2D and 3D information from oriented images,
which they use in di�erent ways for material classi�cation. A given object model is not included.
However, the authors give an outlook that this new method can be further improved with the in-
troduction of context-based constraints. Nakagawa & Shibasaki [2008] detect changes in buildings
using aerial images and given textured 3D reference models. However, the exact orientation of the
new comparison images is a basic requirement in this work. Molton et al. [2004] use locally planar
patch features instead, where the image texture is attached to small, local 3D surfaces and the
current estimates of camera and feature position are used to predict and search for the texture on
the expected appearance.

Relational matching: The information from images and 3D models can be available in vari-
ous degrees of abstraction - from simple gray values (e.g. gradients), to extracted points, lines and
regions, to relational descriptors. Relational feature mapping uses contextual information between
features. The features are therefore not considered to be independent of each other. For example, a
polygon can represent the outline of a region. When searching for the corresponding elements, the
search can be limited to such pairs of polygons and regions that have similar attributes and are in
the same relationship. Vosselman [1992] gives an overview of the relational matching method, and
in particular addresses the qualitative evaluation of correspondences. He also presents a method
for evaluation that combines matching strategies, approaches from information theory (mutual
information), and hierarchical search methods. Eugster & Nebiker [2009] use relational matching
for matching UAV-borne video images to 3D virtual city models. They state that this approach
is computationally intensive compared to simple feature-based matching, but robust with respect
to poor approximations of sensor orientation. Finally, Jung et al. [2016] realize feature matching
with geometric hashing and context features, which, in addition to local edged corner features,
give global structural information about the building object.

Approximate sensor orientation: To obtain approximate values for sensor pose, many au-
thors use direct georeferencing of the mapping system. The parameters of the external orientation
are determined with GNSS receiver (only outdoors) and an Inertial Navigation Systems (INS) if
necessary. In addition, Ground Control Points (GCPs), besides the given 3D model, can be used
in the object space. Gerke [2011] combines linear structures in urban aerial scenes (as �ctitious
observations in the bundle block adjustment) with some reduced number of GCPs. In Iwaszczuk
[2015], model edges are projected into an oblique aerial image using coarse exterior orientation
parameters obtained by direct georeferencing to reveal corresponding image line segments for each
model edge. Similar approaches, where the sensor pose is approximately known before model-to-
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image matching, can also be found in: Lerner et al. [2006], Avbelj et al. [2010], Braun et al. [2015],
Unger et al. [2017, 2016] and Hoegner et al. [2017].
Due to signal shading, it is usually not possible to receive su�ciently good GNSS signals in build-
ing interiors. An (approximate) indoor positioning can be used in this case alternatively with
technologies like Radio Frequency Identi�cation (RFID) [Olszewski et al., 2013], WLAN [Youssef
et al., 2003], radar [Bahl & Padmanabhan, 2000] or also infrared [Want et al., 1992], provided
that a corresponding infrastructure is installed, which is usually not the case for construction
scenarios. Retscher & Kistenich [2006] compare in their article di�erent systems and technologies
for positioning and navigation in buildings.

There are many valuable works on the topic of image-to-model matching from points and lines
to surfaces and textures, but no specializations of these methods to interior BIM can be found in
the literature yet.

1.2.2 Change detection and construction progress documentation

Change detection: Dense 3D point clouds can be analyzed to derive knowledge about the
occupancy of space through voxel-based discretization. The origins of change detection based on
3D point clouds and occupancy grids are mainly in the �eld of informatics and robot navigation and
were �rst introduced by Moravec & Elfes [1985]. Due to the practicality of this method, it has also
already been used for several years in the �eld of engineering and geodesy to process high-quality
point clouds from multi view photogrammetry and 3D laser scanning. Aijazi et al. [2013] process
3D point clouds based on occupancy grids for change classi�cation in urban landscapes whereas
Kromer et al. [2017] apply near-real-time detection for monitoring landslides from laser scanning
point clouds. Also related to large-scale areas is the work of Hebel et al. [2013], who presented a
method for automatic change detection from Airborne Laser Scanning (ALS) point clouds. They
used a relatively coarse voxel space for comparing point clouds from di�erent epochs and re�ned
the change detection result by considering single points in pre-selected areas of interest. Gehrung
et al. [2020, 2022] build up on the work of Hebel et al. [2013] and combined change detection based
on single points and occupancy grids for Mobile Laser Scanning (MLS) data in order to e�ciently
handle occlusions and at the same time providing fast runtimes. A point based comparison for
3D change detection is also presented by Liu et al. [2021], who address the problem of point
density variations in point clouds of buildings from Terrestrial Laser Scanning (TLS). They propose
the calculation of adaptive thresholds to determine whether changes occurred between two point
clouds and consider registration errors. The tremendous advances in voxel or single point based
comparison of point clouds have created many opportunities for specialized applications in change
detection, including buildings. However, the comparison of changes with respect to a speci�c
model is not yet or hardly addressed in these publications. Wysocki et al. [2022] have contributed
to the improvement and enhancement of 3D building models by comparing co-registered point
clouds from mobile laser scanning with modeled building facades. The authors do not refer to
BIM, however, the work in the �eld of 3D urban modeling can certainly be considered strongly
related work.

Construction progress monitoring: Change detection in the context of BIM and site mon-
itoring is a common application and wide-ranging research topic. Braun et al. [2015] and Tuttas
et al. [2017] show how change detection based on photogrammetric point clouds, occupancy grids
and visibility analysis is integrated into the BIM process where it has a positive impact on project
progress. The change detection method introduced by Hebel et al. [2013] is also adopted to the
�eld of construction site monitoring. Huang et al. [2022] utilized photogrammetric observations.
They developed a method for point cloud registration as a prerequisite for geometric and semantic
change detection based on voxel and occupancy grids on construction sites. Golparvar-Fard et al.
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[2015] modeled the occupancy of space from unordered site images and analyzed the scene with
a given BIM based on a robust registration approach and a proposed machine-learning scheme
that automatically detects physical progress. Machine-learning and point based algorithms are
also used by Shirowzhan et al. [2019], who track building and construction progress from airborne
LiDAR point clouds. Other authors focus on point clouds from terrestrial laser scanning for con-
struction progress documentation as well. Bosche & Haas [2008] contributed a method for the
comparison of as-planned and as-built data based on terrestrial laser scanning. In a subsequent
publication [Bosché et al., 2015], the authors focus on detecting and identifying cylindrical BIM
objects that are not built in their intended location and considering their completeness based on
TLS. Zhang & Arditi [2013] presented an automated process that measures construction progress
in terms of percentage of completion by using TLS data which is superimposed on the reference
model. Although they demonstrate feasibility, their experiments relate only to laboratory con-
ditions and not to real construction projects. A comprehensive overview of change detection in
construction industry based on point clouds and voxel representation is given in Xu et al. [2021].

Indoor applications and models: There are many works considering outdoor observations
and the observation of sites that are still open and easily accessible in all areas because, for exam-
ple, ceilings and roofs have not yet been installed. In recent years, more and more authors have
taken up this issue and started to particularly address closed indoor scenarios and related point
cloud applications. Nikoohemat et al. [2020, 2018] addressed processing 3D point clouds espe-
cially of indoor environments for reconstruction and analysis applications. They do not examine
construction site applications, but rather exploit the indoor topology of existing buildings. Jung
et al. [2018] claim that complex indoor environments still remain an open challenge for automated
as-built BIM. The authors propose a method for 3D volumetric indoor reconstruction based on
3D point clouds, room segmentation and noise �ltering. Yang et al. [2019] extended existing
methods and resolved the special case of indoor reconstruction of multi-room environments with
curved walls based on 3D point clouds. Tran & Khoshelham [2020] focus especially on indoor
applications, because indoor point clouds are typically erroneous and incomplete. Therefore, they
propose a novel method based on the combination of shape grammar and a data-driven process
for procedural reconstruction of 3D indoor models from point clouds.

1.2.3 Uncertainty evaluation and evidence-based decision making

Measurement accuracy: A priori knowledge of the stochastic properties of the measuring sensor
is important to detect outliers as well as to separate statistically signi�cant deformations from the
measurement uncertainty. Many authors such as Gordon & Lichti [2007], Golparvar-Fard et al.
[2011], Soudarissanane et al. [2011] and Záme£níková et al. [2014] have comprehensively investi-
gated error sources, in�uencing parameters and their e�ects on the geometric quality of 3D point
clouds in order to allow for proper handling, compensation and prior accuracy assumption. Wujanz
et al. [2018] and Tan et al. [2018] introduce intensity-based stochastic models while other authors
particularly address systematic error models and propose calibration strategies for reducing the
e�ect of systematic e�ects on practical deformation analyses [Lichti, 2007; Koch, 2008; Holst et al.,
2018]. All of this work provides a valuable scienti�c basis for evaluating TLS-only accuracy. Pho-
togrammetric applications for BIM commonly appear directly in context of construction progress
monitoring. Dai & Lu [2010] assessed the general accuracy of image-measurements for as-built
observations on construction sites by an analytical assessment based on regression and correla-
tion coe�cient in comparison to corresponding tape measurements. They already point out that
for construction tasks, it is important to mind error tolerances and that the accuracy achievable
by photogrammetry must be weighed against the accuracy desired for a particular engineering
application. Another relatively early contribution is that of Golparvar-Fard et al. [2011] who com-
pared image-based and TLS borne point clouds for modeling the as-is condition on construction
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sites. They state image-based point clouds to be less accurate compared to TLS point clouds.
Later, Golparvar-Fard et al. [2015] integrated occupancy analyzes and propose a machine-learning
approach for automated progress detection with an available BIM.

Uncertainty of the reference model: The subject of the research presented in this thesis
is related to geodetic applications given a general geometric model. In particular, model related
uncertainty is a main aspect. In this context previous works have also already considered the
statistical uncertainty of model information. Therefore, uncertainty assessment is an important
topic in "scan-to-BIM" applications, which is increasingly getting more and more attention. Sester
& Förstner [1989] used mathematical statistics and probability theory to deal with the problem
of uncertainty encountered during the pose estimation of objects from digital images, for which
models are known and Meidow et al. [2009] discuss representations of uncertain geometric image
features. A later work of Iwaszczuk & Stilla [2017] picks up on that topic and considers the un-
certainty of 3D building models as geometric constraint for camera pose optimization of aerial
thermal images. The valuable contributions of Förstner & Wrobel [2016] and Heuel & Förstner
[2001]; Heuel [2004] are not necessarily related to BIM but with focus on reasoning with uncer-
tain given model features. The geometric quality of a given BIM is crucial when it comes to a
comparison of as-planned and as-built. The overall accuracy of this process depends not only on
the measurement accuracy, but in particular signi�cantly on the geometric quality of the given
BIM. Esfahani et al. [2021] address this problem and assess the impact of levels of automation and
modeller training on the accuracy and precision of generated BIMs. A related approach is visual
localization from indoor images in combination with an available BIM based on line-features as
introduced by Acharya et al. [2019].

Evidence based reasoning: In order to manage di�erent sources of uncertainty properly,
a special theory following Shafer [1976] and Dempster [1976] can be used. It is a mathematical
theory of evidence and a theory of probable reasoning. It deals with weights of evidence and
with numerical degrees of support based on evidence. Reineking [2014] gives an overview of
belief function theory and demonstrates its application in di�erent contexts. In the context of
computer vision Zlato� et al. [2006] presented a framework for perceptual grouping, on region-
based segmented images based on evidence from multiple sources. Using Dempster-Shafer theory
for geodetic applications has been introduced by Hebel et al. [2013], who have incorporated the
theory for change detection of airborne laser scanning (ALS) point clouds. They formulated
belief functions to derive belief masses pointing to both the states occupied" and "empty". They
processed every single ALS point in the vicinity of arbitrary targeted locations and evaluated the
result from the combination multiple evidence. Huang et al. [2022] transferred evidence theory
and belief masses on the modeling of photogrammetric observations. They developed a method
for point cloud registration as prerequisite for geometric and semantic change detection based on
voxel and occupancy grids on construction sites. These previous works represent the basis for the
methodology presented in this thesis, where the belief function theory is adopted for TLS and
photogrammetric observations.

The problem of statistical uncertainty has been successfully addressed in many contexts, so
that standardized methods have been established for many practical problems of engineering and
construction. However, in the speci�c area of as-built documentation of building interiors and the
associated accuracy requirements, there is still a research gap to be identi�ed.

1.3 Objectives and contributions

In contrast to related work in the �eld of monitoring and evaluation for BIM, this research project
is characterized in particular by two major aspects:
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1) This thesis adresses change detection primarily in indoor scenarios, because a building's in-
terior, especially when it is under construction, is a much more challenging environment compared
to its exterior. This is due to constraint scanning geometries, low observational redundancy and
weak georeferencing whilst high architectonic symmetry resulting in ambiguities during processing
and analysis. Related work and approaches addressing change detection for BIM largely rely on
outside observations.

2) Uncertainties are explicitly considered and integrated using classical probability theory and
the Dempster-Shafer evidence theory. On the one hand, these uncertainties refer to the physical
properties of the geodetic measurements, the coordinate reference frame and the point cloud
alignment but on the other hand, the novelty of our research results from the consideration of
the indoor model to be checked and validated itself as statistically uncertain. In contrast to
previous works in the �eld of change detection for BIM, we are particularly capable of evaluating
the signi�cance of detected changes by considering the quality of the reference model itself.

Focusing on these aspects, we aim to answer the following research questions, which have not
yet been considered or fully addressed in state of the art literature:

I To what extend do geometric uncertainties of BIM related reference objects e�ect the ac-
curacy of an image-to-model co-registration? Is the geometric quality of common BIM-
compliant interior models su�cient to serve as a geodetic reference itself and to make state-
ments about the compliance with metric tolerances?

II What are the limits of automated 3D point cloud based change detection in terms of detail
and resolution? Is it su�cient for interior building documentation with associated accuracy
requirements?

III Which accuracy classes for BIM can still be veri�ed with su�cient con�dence using common
laser scanners and RGB cameras?

1.4 Structure and organization

This thesis is structured as follows: Chapter 2 provides theoretical background on selected topics
that represent important foundations to the methodologies described in the following chapters.
These mainly include projective mappings with homogeneous representations of points and lines,
estimation theory for bundle adjustment including accuracy assessment, and an introduction to
evidence theory according to Dempster and Shafer.

Chapter 3 represents the starting point for the scienti�c work of this thesis. It deals with an
approach for image-to-BIM co-registration based on corresponding straight line features, where not
only extracted image lines are supposed to be statistically uncertain but also the BIM related model
edges. The main contribution of this �rst part is the derivation and formulation of the functional
model for an optimization procedure in the projective space that is based on a constraint Gauss-
Helmert model. This is followed by a guide back to the Euclidean interpretation of the results.

In Chapter 4, the focus is shifted to terrestrial laser scanning, 3D point clouds and a change
detection approach for construction progress monitoring. High resolution occupancy modeling for
voxel based change detection is introduced and it is investigated whether the geometric resolution
meets common accuracy requirements in professional building documentation for BIM processes.

Chapter 5 deals with a novel method for the geometric validation of a BIM. It is demonstrated
how to model the occupancy of space from single laser and image points with belief functions
prior to an evidence based reasoning pipeline. This involves an accuracy assessment of single
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point qualities and a proposal for the separate treatment of photogrammetric tie points and the
image based dense cloud. In particular, it is shown how to integrate the uncertainty of a given
BIM and how to combine potentially con�icting and non-con�icting evidence properly in order to
make a �nal decision.

In order to verify the theses and methods, a series of experiments was conducted partially
with synthetic data as ground truth for accuracy evaluation but also carried out on real indoor
construction sites. Chapters 6, 7 and 8 introduce and discuss the used point cloud and BIM data,
the di�erent experimental designs and the achieved results. Finally, Chapter 9 answers the speci�c
research questions of Sec. 1.3 and gives general conclusions and an outlook on future work and
open topics in this research �eld.





27

2 Basics

This chapter provides theoretical background of selected subjects that built an important foun-
dation for the methodology of this thesis. The topics relate to photogrammetric observations
of geometric features, followed by according estimation and accuracy assessment strategies, the
generation of 3D point clouds from active and passive sensor technologies, and an introduction
to evidence based reasoning according to Dempster-Shafer theory. The chapter closes with an
overview of requirements and speci�cations for as-built documentation for BIM.

2.1 Representation and estimation of geometry from images

An essential prerequisite for applications and approaches based on photogrammetry is a suitable
representation of geometrical features. Geometric observations are then processed in bundle block
adjustment for parameter estimation and evaluated in terms of accuracy. The results can then be
used in further analysis and processing.

2.1.1 Homogeneous representation of points and lines

A 2D point with Euclidean coordinates χ = [x, y]T can be represented homogeneously x → x:

x =

[
xo
xh

]
=

uv
w

 =

λxλy
λ

 (2.1)

xo represents the Euclidean part, whereas xh denotes the homogeneous part of the homogeneous
vector.

Analogously, 3D point with Euclidean coordinates X = [X,Y, Z]T can be represented homo-
geneously X → X:

X =

[
Xo

Xh

]
=


U

V

W

T

 =


λX

λY

λZ

λ

 (2.2)

Xo represents the Euclidean part, whereas Xh denotes the homogeneous part of the homogeneous
vector.

In the Euclidean plane, a line representing the x-axis has the form lx(θ, r), with θ = 90◦ and
r = 0. A straight line with the parameters θ and r is given in Hessian normal form, where θ is the
direction of the normal (counterclockwise direction from the x-axis) and r is the shortest distance
from the origin.
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A straight line can also be described homogenously by ax + by + c = 0 and represented by a
homogeneous vector:

l =

ab
c

 =

cos(θ)sin(θ)

−d

 (2.3)

In homogeneous coordinates lx(θ, r) has the form:

lx =

01
0

 (2.4)

Based on the representation for the x-axis (lx), any straight line l can be represented by rotation
through an angle α and translation with a vector xt = (tx, ty).

l = T (xt)R(α)lx =

 1 0 0

0 1 0

−tx −ty 1

  sin(α) cos(α) 0

−cos(α) sin(α) 0

0 0 1

 01
0

 (2.5)

A 3D line is expressed with Plücker coordinates by a 6-parameter vector:

L = (L1, L2, L3, L4, L5, L6)
T (2.6)

with the homogeneous part Lh = (L1, L2, L3)
T and the Euclidean part LO = (L4, L5, L6)

T . A
3D line has a start and an end point X and Y. In homogeneous coordinates, a 3D line L is most
easily described by connecting two 3D points (X and Y):

L = X ∧Y =

[
Lh

LO

]
= Π(X)Y (2.7)

with

Π(X) :=
∂X ∧Y
∂Y

=



T 0 0 −U

0 T 0 −V

0 0 T −W

0 −W V 0

W 0 −U 0

−V U 0 0

 (2.8)

where U , V , W and T are the elements of the homogeneous 3D point vector.

In the projective space, a 3D line can be described by the Plücker matrix as well:

Γ(L) = XYT −YXT =

[
−SL0 −Lh

LT
h 0

]
(2.9)

with the 3× 3 skew matrix SL0 :

SL0 =

 0 −L6 L5

L6 0 −L4

−L5 L4 0

 (2.10)
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2.1.2 Bundle adjustment using Gauss-Markov model

Photogrammetric methods are very popular for fast, �exible and above all cost-e�cient 3D scene
capture. It allows obtaining geometric and radiometric object information from images. The pre-
requisite is a mathematical modeling of the camera and the mapping process.

Mapping an object point Xi(Xi) to an image point χit(xit) with a pinhole camera (t) is achieved
by multiplication with the projection matrix Pt:

xit = PtXi (2.11)

With calibration matrix K, rotation matrix R, identity matrix I3 and the inhomogeneous 3D
coordinates of the projection center O, the homogeneous P-matrix results from:

Pt = KPc
t = KRt [I3| −Ot] (2.12)

Bundle adjustment is applied to process an arbitrary number of images in order to reconstruct
a 3D scene with respect to a superior coordinate system, e.g. the BIM's reference system. The
parameters to be estimated are camera poses (exterior orientation), 3D object point coordinates
and commonly a camera's interior orientation. In the following, the adjustment is based on the
nonlinear Gauss-Markov functional model for the (inhomogeneous) coordinates of the obtained
image points x′

it for observed 3D scene points Xi.

x′
it = c(KPc

t Xi) (2.13)

with c(x) = xo/xh where xo denotes the Euklidean and xh the homogeneous part of the ho-
mogeneous representation. Equation 3.5 is equivalent with the well known collinear equations.
The measured image coordinate is considered a stochastic variable and therefore indicated by
an underscore. For the adjustment, the observations are described as functions of the unknown
parameters:

x′
it + v̂it = f it(Xi,pt, s) (2.14)

The term x′
it + v̂it relates to the observed inhomogeneous image coordinates, e.g. automatically

detected from an interest operator, with their corresponding residuals, which are returned from
the mathematical model. Besides the unknown coordinates of the 3D scene points Xi, the six
pose parameters per image pt as well as the interior orientation parameters s of the camera are
to be adjusted and processed in the function f it. Based on approximate values for the unknown
parameters (denoted by superscript (a)), the linearized model for bundle adjustment is obtained:

∆x′
it + v̂it = Cit∆̂Xi + Dit∆̂pt + Hit∆̂s (2.15)

where ∆x′
it := x′

it − x̂′a
it with x̂′a

it = f it(X̂
a
i , p̂

a
t , ŝ

a). Cit, Dit and Hit are the Jacobians of the
model function with respect to the unknowns Xi, pt and s. Since f it is nonlinear, the Jacobians
are recalculated at each iteration based on the current estimates of the parameters.

Cit =
∂f it(Xi,pt, s)

∂Xi
, Dit =

∂f it(Xi,pt, s)

∂pt

,

Hit =
∂f it(Xi,pt, s)

∂s

The Gauss-Markov model is achieved by rewriting the notation within the estimation:

∆̂y = ∆y+ v̂ = A ∆̂β = [CDH]

∆̂X∆̂p
∆̂s

 (2.16)

with the vectors ∆y := [∆x′
it] referring to the observations and ∆̂β = β̂ − β̂

a
referring to the

unknown parameters.
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2.1.3 Accuracy assessment

A proper uncertainty assessment is the general basis for the veri�cation of a geometric model and
a-priori standard deviations σa

y are a �rst intuitive quality indicator for the observations. They
are based on past experiences and speci�cations and re�ect the estimated uncertainty, e.g. 1
pixel* for tie point (TP) observations and 15 mm� for Object Point (OP) observations in a spatial
reference system. The covariance matrix of the observations Σyy results from the approximate
initial covariance matrix and an initial variance factor which is chosen to be σ2

0 = 1:

Σyy = σ2
0 Σ

a
yy (2.17)

As there are di�erent observation types involved (TP and OP), the a-priori covariance matrix has
the form

Σa
yy =

(
σ2
TPΣ

a
TP 0

0 σ2
OPΣ

a
OP

)
The individual variance components σ2

TP and σ2
OP can be evaluated for their corresponding group

of observations.

The stochastic model is supposed to increase the in�uence of individual observations with
higher accuracy. This is achieved by integrating the weight matrix Wyy = Σ−1

yy into the normal
equations:

AT Wyy A ∆̂β − AT Wyy ∆̂y = 0 (2.18)

The unknown parameters result from β̂ = βa + ∆̂β with

∆̂β = (AT Wyy A)
−1 AT Wyy∆y (2.19)

with the assigned covariance matrix of the estimated parameters:

Σβ̂β̂ = σ̂2
0(A

T Wyy A)
−1 (2.20)

Using the initial weight matrix Wa
yy of the observations, the estimated variance factor is given

by the weighted sum of the squared residuals and the overall redundancy R = N −U (N number
of observations, U number of unknowns):

σ̂2
0 =

v̂T Wa
yy v̂

R
(2.21)

where v̂ = A∆̂β−∆y is the vector with the estimated corrections. The estimated variance factor
is used to end up with the estimated covariance matrix of the observations:

Σ̂yy = σ̂2
0 Σ

a
yy (2.22)

2.2 Generation and characterization of 3D point clouds

3D point clouds are considered the basic data for the change detection and veri�cation approaches
of this thesis. There are mainly two sources for 3D point clouds, namely laser scanning, which is an
active measurement technique, and passive image-based dense matching. Both types of 3D point
clouds have individual characteristics, especially in close range indoor applications, that have to
be considered during analysis and evaluation.

*σa
x′ = σa

y′ = 1 pixel
�σa

X = σa
Y = σa

Z = 15mm
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Table 2.1: Sources of error of a laser scanner and their e�ects in close-range applications using the example
of a Z+F Imager 5016® (https://www.zofre.de/)

Source Error/ e�ect

Range noise 0.25mmrms

Beam divergence ≈ 3.5mm@1m

Range resolution 0.1mm

Linearity error ≤ 1mm+ 10ppm

De�ection vertical accuracy 0.004◦

De�ection horizontal accuracy 0.004◦

2.2.1 Terrestrial laser scanning

Terrestrial laser scanning (TLS) is commonly used for indoor scene documentation as it is not as
sensitive to a limited range of sensor motion and constraint viewing conditions as passive, image
based techniques usually are. Nevertheless, the quality of TLS point clouds does also su�er from
this "indoor conditions". The surface of an object is scanned in a certain pattern when using TLS.
The density of the resulting 3D point cloud depends on the pre-de�ned angular resolution and the
distance between the scanning device and the object to be measured. A common point-to-point
distance is 6 mm at 10 m. Due to constraint geometric conditions in a buildings interior, the
average point-to-point density highly varies within the 3D point cloud of a single 360° scan.

There are some typical basic error sources on TLS measurements which are related to the
scanning device (Tab. 2.1) and the quality of point cloud registration but there are also some
that are more di�cult to assess and are very individual, such as re�ectivity depending on surface
material, angle of incidence of the incoming laser beam and even meteorological e�ects [Wujanz
et al., 2018]. However, for geodetic applications related to civil engineering and construction, the
magnitude of systematic deviations and according measurement uncertainty can be assessed by
following the Guide to the Expression of Uncertainty in Measurement (GUM) [ISO, 2008], as for
example estimated and described by Koch [2008] for a deformation analyses of motorways based
on TLS.

2.2.2 Dense image matching

For reasons of e�ciency realistic 3D modeling for BIM is based on 3D point clouds rather than
on discretely measured individual points. There exist two types of image based 3D point clouds.
Type 1 is composed of tie points, which result from the application of an interest operator that
automatically detects pixel correspondences in overlapping images for triangulation. Tie point co-
ordinates and associated accuracies are estimated via the bundle adjustment procedure (Sec. 2.1.2
and 2.1.3). Many photogrammetric software relies on Scale Invariant Feature Transform (SIFT)
for automatic tie point generation prior to image orientation. The number and spatial distribu-
tion of TPs cannot be controlled directly. Rather, their successful generation largely depends on
the degree of overlap between images, the lighting conditions and object textures in the scene.
Therefore, quality and quantity of TPs can be quite heterogeneous in close range applications. As
there are usually several hundreds up to thousands TPs per image pair, in their entirety, 3D TP's
coordinates are also referred to as a sparse cloud.

Point cloud type 2 is considered a dense cloud. It results from a dense image matching method
that aims to reveal comprehensive pixel-to-pixel correspondences in order to derive depth values
per pixel and thus an image-based dense 3D point cloud. After image orientation from bundle

https://www.zofre.de/
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adjustment, dense matching is applied on recti�ed images where the epipolar lines exactly corre-
spond with pixel rows to reduce the search space for matching pixel pairs. 3D point coordinates
are calculated from the disparity, which is the distance in pixel of one image point in an image from
another. A commonly implemented dense matching algorithm is Semi Global Matching (SGM),
which approximates a global optimization of matching costs along several 1-dimensional path di-
rections thru images, also across the epipolar line [Hirschmüller, 2008]. Due to weak texture areas
and occlusions, resulting depth maps are usually error prone. Therefore, consistency checks based
on redundant information from multiple images, smoothness constraints and distance weighted
interpolation of gaps are necessarily applied in the phase of post-processing. Due to the di�erent
ways of generating the photogrammetric 3D point clouds of type 1 and 2, di�erent analysis and
evaluation strategies are to be chosen in further processing steps.

2.3 Evidence based reasoning according to Dempster and Shafer

Dempster-Shafer Theory (DST) [Shafer, 1976] uses belief, indicated by a number between zero
and one, rather than probability. It is a mathematical theory of evidence and a theory of probable
reasoning that deals with weights of evidence and with numerical degrees of support based on ev-
idence. In accordance with Bayesian probability theory, a number between zero an one indicates
the degree of support a body of evidence provides for a proposition. If a part of belief is confessed
to a hypothesis in Bayesian theory, the rest must be assigned to its corresponding negation. A
portion of belief that is tied to a proposition is thus also tied to every other proposition that it
implies. At this point DST di�ers in the way that there is no such limiting constraint. Instead,
DST focuses on the combination of degrees of belief, which are based on bodies of evidence with
those based on entirely distinct bodies of evidence. This combination is e�ected by Dempster's
rule [Shafer, 1976].
The advantage of DST is relative �exibility as vague states may exist and ignorance is explicitly
measured, which requires an unknown state to exist for the calculation. When using DST, uncer-
tainty is modeled by belief functions, quantifying belief masses and the combination of belief for
evidence based reasoning.

The theory formally begins with a set of possible events Θ, also referred to as frame of dis-

cernment. A hypothesis is a subset A ⊆ Θ and the power set P(Θ) denotes the set of all subsets
of Θ. If Θ = {a, b} then P(Θ) = {∅, {a}, {b}{Θ}}.

A function is called a mass function or basic probability assignment whenever m(0) = ∅ and∑
A∈P(Θ)

m(A) = 1 (2.23)

Therefore, m is a mapping m : P(Θ) → [0; 1] and called normalized [Reineking, 2014].

Given several belief functions over the same frame of discernment Θ but based on distinct
bodies of evidence, a new belief function based on the combined evidence can be computed with
Dempster's rule of combination: m1⊕2 = m1 ⊕m2 [Dempster, 1976].

Let m1 and m2 be two basic probability assignments associated with belief functions over Θ
and let Ai denote focal elements ofm1 while Bj those ofm2. The joint mass resulting in hypothesis
C is obtained from:

m1,2(C) =

∑
Ai∩Bj=C

m1(Ai)m2(Bj)

1− k
(2.24)
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LOA 50

LOA 40

LOA 40

LOA 30

LOA 30

-5 mm

-15 mm

-1 mm
1 mm

5 mm

15 mm

Figure 2.1: The Level of accuracy speci�cation: The geometric accuracy of an as-built model depends on
both, the accuracy of measurement (red dots) and the degree of generalization in the modeling process
(blue dotted line). The degree of correspondence between the real object surface and the model is expressed
by the project speci�c Level of Accuracy (LOA).

where
k =

∑
Ai∩Bj=∅

m1(Ai)m2(Bj) (2.25)

is the con�ict degree, also called normalization constant. This constant tends towards 1 when
belief functions are de�ned over sets of hypotheses that contradict each other.

Dempster's rule is a rule for combining a pair of belief functions, but by repeatedly applying
it, it can be used to combine any number of belief functions. The operation ⊕ is commutative
and associative.

m1 ⊕m2,

(m1 ⊕m2)⊕m3,

((m1 ⊕m2)⊕m3)⊕m4,

...

2.4 As-built documentation for BIM

It is a common practice to represent building objects in a geometrically generalized and orthogonal
fashion, although of course real world existing conditions are seldom perfectly homogeneous and
orthogonal. Design software packages are limited in their ability to represent real world condi-
tions, especially with BIM compliance. Additionally, maximum realistic modeling is commonly
associated with too high e�ort. Even if a BIM is considered to come with as-built geometry, error
is introduced because real world conditions are usually represented in a more or less generalized
and simpli�ed fashion.

The U.S. Institute of Building Documentation (USIBD) provides the Level of Accuracy spec-
i�cation (LOA) in order to specify the accuracy and means by which to represent and document
existing building conditions in context of BIM. Knowing reliably as-built conditions is important
when dealing with analyzable building models and metric tolerance requirements. Generally, in
construction, tolerances (T ) specify allowable variations of materials, components, systems, in-
stallation techniques, buildings types etc. to ensure for example that neighboring component
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Table 2.2: The Level of Accuracy according to the U.S. Institute of Building Documentation [USIBD, 2019]

Level Lower range Upper range

LOA 10 5 cm 15 cm

LOA 20 15 mm 5 cm

LOA 30 5 mm 15 mm

LOA 40 1 mm 5 mm

LOA 50 0 mm 1 mm

elements really do �t together when installed on site, e.g. �atness deviation of a surface. In or-
der to prove compliance with metric tolerances of individual components, the con�dence interval
of the measurement should be signi�cantly smaller than the speci�ed tolerance of the object to
be tested: σ ≤ T/15 [Witte et al., 2020]. The LOA, on the other hand, refer to the acceptable
tolerance range for the building measurements acquired during the "scan-to-BIM" acquisition pro-
cess, and the tolerance range for the representation of these measurements in the model (Fig. 2.1
and Tab. 2.2). The LOA speci�cation not only takes up common measurement accuracy stan-
dards (DIN 18710), but especially provides detailed guidance on the representation, modeling and
veri�cation of as-built measurement data and refers to a sensor accuracy of σ ≤ T/5 assuming
a con�dence bound of 95%. There are �ve LOA, speci�ed at the 95 con�dence level (2σ). A
LOA either relates to the measurement (e.g. TLS) or to the model accuracy (also referred to as
"represented accuracy"). The LOA are especially important for detecting and evaluating changes
when it comes to a comparison of LOA compliant model and its represented surface and captured
as-built data, e.g. 3D point clouds.
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3 Image-to-BIM co-registration

Photogrammetric applications can meet general requirements of accuracy and e�ciency and there-
fore, are becoming more and more popular for visual localization and 3D data generation for
building documentation. A camera's orientation is required in order to determine the spatial cor-
respondence between an image and a 3D model (Fig. 3.1). However, the estimation of a camera's
pose within a BIM's reference system is indoors much more di�cult than outdoors. The lack of
direct geo-referencing as a result of signal shading as well as occlusions and ambiguities due to
general indoor structures are challenging circumstances for image based measurements within a
building's interior and related accuracy requirements. This chapter presents an estimation model
for camera pose re�nement based on straight line references [Meyer et al., 2021], given a coarse
orientation, e.g. from sensors of the Inertial Measurement Unit (IMU) and visual odometry. The
stochastic model includes the individual uncertainty information of BIM related objects according
to the Level of Accuracy speci�cation for BIM [USIBD, 2019]. The approach is supposed to sup-
port future developments of image based change detection in indoor environments with available
BIM. In line with compliance checking for BIM, the focus here is on structural and topological
changes to the geometry of BIM-compliant 3D models.

(a) (b)

Figure 3.1: Image sequence within a BIM environment: a) image orientation with respect to a BIM's
reference system, b) image overlayed with BIM

3.1 Concept of image-based co-registration and change detection

for BIM

For an overall image based indoor change detection application a camera or stereo camera system
with an IMU shall be used to obtain the relative orientation, an image based 3D point cloud by
SfM and Multi View Stereo (MVS) and optionally the model scale. Indoor environments can be
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Figure 3.2: Concept of image-to-BIM co-registration for change detection for BIM

characterized by their large number of straight edges e.g. on windows, door, walls and furniture.
3D lines as geometric primitives can be used to describe the building interior in an abstract way.
This brings advantages over unstructured 3D point clouds in terms of matching an co-registration
with a corresponding 3D model. Therefore, the approach presented by Hofer et al. [2015] shall
be integrated in the process in order to generate an abstract 3D line model. With the results of
a semantic segmentation, detected an extracted 3D lines will be further enriched with semantic
information. This approach is similar to what is described by Iwaszczuk et al. [2012]. The coarse
absolute orientation of an image sequence in the BIM's reference system will be determined from
matching corresponding 3D line segments. 3D scene reconstruction shall also be supported by
the available BIM information in an object based procedure. Finally, the change detection can
be realized by the comparison with last version of the BIM before it is updated with the new
information. Altogether, this procedure is supposed to result in a positive feedback loop because
the higher the quality of the initial BIM, the faster and more precisely it can be updated again.
The overall concept is depicted in Fig. 3.2.

3.2 Feature extraction

Line features usually serve well as geodetic references in indoor scenes in order to estimate a
camera's pose with respect to a superior coordinate system. They are su�ciently available in
man-made environments and corresponding models and can be detected easily by common image
processing algorithms.
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3.2.1 Straight line detection

For image-to-BIM co-registration, corresponding line features are to be uncovered. As a prepro-
cessing step, image pixels on edges are identi�ed using the Canny Edge detector [Canny, 1986].
Using the Sobel operator, the algorithm provides boundaries of image areas with di�erent inten-
sities. For each pixel, the gradient is calculated from the magnitude of the partial derivatives in
X and Y. High gradient values represent strong edges.

G(x, y) =
√

gx(x, y)2 + gy(x, y)2 (3.1)

The number and quality of detected elements varies with the minimum edge strength. It acts
as a threshold to discard weak edge pixels with too little contrast and must be set speci�cally
for the respective circumstances, such as individual room equipment, camera parameters, shoot-
ing perspective, lighting situation, etc. The actual line segments are estimated from the Hough
transformation [Hough, 1962]. They are represented as straight lines in the Hessian normal form:

r = x cos θ + y sin θ (3.2)

θ is the angle between the normal of the straight line and the x-axis, r is the distance from the
origin to the plumb bob. θ and r span a two-dimensional parameter space. For each x and y of
the previously detected edge pixels, r is computed in a quantized range 0 < θ < 2π, resulting
in a sinusoidal curve in parameter space for each pixel. When multiple pixels lie on a common
straight line, their curves intersect at a point. In Hough accumulation, each intersection is entered
as a frequency point in a voting matrix. The more curves pass a point (θ, r), the more likely
it is a distinct line in the image. Not all detected line segments are suitable for input into the
correspondence analysis. Especially short segments are suspicious, which are often caused by
interfering objects in the scene and image noise. To identify �good� features and discard �bad�
ones, the line segments can be analyzed and weighted e.g. as in Iwaszczuk & Stilla [2017] with

gi =
1

2

(
li

dmax
+

ai
255

)
(3.3)

gi represents the weight of the i-th line in the image, li represents the length of the i-th line,
ai ∈ [0, 255] denotes the threshold value of the minimum edge strength used for the extraction of
the i-th line, and dmax is the length of the image diagonal.

3.2.2 Uncertain BIM edges

BIMs are assigned to di�erent expansion stages and while there are planning models from the
phase of early conceptual design to detailed fabrication, those that come with as-built geometry
are most sophisticated. As-built BIMs are commonly challenging because these models require a
3D capture of the real scene and subsequently a careful BIM compliant modeling that is based
on the obtained 3D data. Building edges are never perfectly built as planned, often geometrically
generalized for BIM-compliant representation and errors can occur during both measurement and
modeling. As a result, line correspondences for image-to-BIM co-registration must be considered
statistically uncertain entities as this is essential for dealing with metric con�dences in the �eld of
civil engineering and BIM.

In the following, extracted edges from BIM related objects such as walls, ceilings, windows
and doors are enriched with individual uncertainty information. Although the information on the
statistical geometric uncertainties can theoretically come from any source, in case of doubt it is
advisable to refer to the LOA speci�cation as introduced Sec. 2.4.
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Figure 3.3: Statistically uncertain model edges: A real image of an indoor scene with detected uncertain
straight lines (green lines and transparent red areas) overlayed with model edges (black lines) from the
BIM

3.3 Constraint estimation based on Gauss-Helmert model

The exterior orientation parameters of a monocular camera (X0, Y0, Z0, ω, ϕ, κ) are implicitly avail-
able in the projection matrix P. The approximate projection matrix gets optimized in the BIM's
reference system through the observation of straight lines in the image (li) and corresponding
3D model edges (Li). The incidence condition of corresponding line features is used as input for
the formulation of a functional model within a generic estimation model for homogeneous entities
according to Meidow et al. [2009].

3.3.1 Functional model

The estimation is based on a Gauss Helmert model with constraints. The corrected observations
(ŷ = y + v̂) and the estimated unknown parameters (β̂) have to ful�ll certain conditions. The
G-conditions g(ŷ, β̂) = 0 describe the relation between the observations and the parameters. The
H-restrictions h(β̂) = 0 concern only the parameters and the C-constraints c(ŷ) = 0 are imposed
on the observations alone. The incidence condition of a 3D model edge, which is projected into
the image with an observed corresponding straight line in the image serves as G-condition. It
represents two independent constraints [Förstner & Wrobel, 2016]:

Γ(L) PT l = 0 (3.4)

where 0 is a 4 x 1 zero vector.

For the handling of singular covariance matrices, the homogeneous observation entities as well
as the parameters must be spherically normalized (normalized to 1). Therefore, the H-restrictions
for the parameters is:

pTp− 1 = 0 (3.5)

where p = vec(P), a column vector with the reshaped elements of P.
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Respectively the C-constraints for the observations result in:

lTj lj − 1 = 0 (3.6)

XT
i Xi − 1 = 0 (3.7)

YT
i Yi − 1 = 0 (3.8)

The optimal solution for β is given by the minimum of the weighted squared residuals subject to
the given constraints. This is achieved by minimizing the Lagrange function with the Lagrangian
vectors λ,µ and ν:

L =
1

2
v̂T Σ+

yy v̂ + λTg(y+ v̂, β̂) + µTh(β̂) + νT
1 c1(y+ v̂) + νT

2 c2(y+ v̂) + νT
3 c3(y+ v̂) (3.9)

The corrections for the observations and parameters are calculated in an iterative procedure ac-
cording to Meidow et al. [2009]. In every iteration, the Jacobians are calculated:

A =
∂g(y,β)

∂β
,BT =

∂g(y,β)

∂y
,CT =

∂c(y)

∂y
,HT =

∂h(β)

∂β

Additionally, in every iteration (τ) the residuals of the constraints and the auxiliary variable a:

gτ = g(y(τ),β(τ)), hτ = h(β(τ)), cτ = c(c(τ))

a = BTC(CTC)−1(CT (y− y(τ)) + cτ )−BT (y− y(τ))− gτ

The normal equation system is solved by using a and matrix LU decomposition in order to receive
the corrections for the estimated parameters:[

ATΣ−1
ggA H

HT 0

][
∆̂β

µ

]
=

[
ATΣ−1

gga

−hτ

]
(3.10)

With the covariance matrix of the contradictions: Σgg = BTΣyyB. Finally, the residuals:

v̂(τ) = −ΣyyBλ−C(CTC)−1(CT (y− y(τ)) + cτ ) (3.11)

with:
λ = Σ−1

gg (A∆̂β − a) (3.12)

3.3.2 Stochastical model

The limited accuracy of the reference lines such as the inherent uncertainty of straight line detection
have to be considered in the estimation. The homogeneous representations of 2D and 3D lines are
therefore extended with individual stochastic information using covariance matrices.

A 3D point with Euclidean coordinates X = [X,Y, Z]T has the Euclidean covariance matrix:

ΣXX =


σ2
X σXY σXZ

σXY σ2
Y σY Z

σXZ σY Z σ2
Z

 (3.13)

The homogeneous representation of a 3D point X → X is:

X = [XE , Xh]
T = [U, V,W, T ]T = [λX, λY, λZ, λ]T (3.14)



40 3. Image-to-BIM co-registration

where XE = [U, V,W ]T is the Euclidean and Xh = T is the homogeneous part. It follows the
homogeneous covariance matrix ΣXX:

ΣXX = λ2


σ2
X σXY σXZ 0

σXY σ2
Y σY Z 0

σXZ σY Z σ2
Z 0

0 0 0 0

 = λ2

[
ΣXX 0

0T 0

]
(3.15)

For converting a homogeneous vector back in a Euclidean representation X → Xe, the Jacobian
Je at X is needed, as the normalization is a non-linear function:

Xe =
X

Xh
=

[
X

1

]
(3.16)

Je(X) =
1

Xh

[
I3 − 1

Xh
XE

0T 0

]
(3.17)

ΣXeXe = Je(X)ΣXX Je(X)T (3.18)

A two dimensional straight line with the homogeneous vector l = [a, b, c]T has the homogeneous
covariance matrix Σll:

Σll =


σ2
a σab σac

σab σ2
b σbc

σac σbc σ2
c

 (3.19)

If an uncertain straight line is given by its homogeneous parameters, the parameters of the Hessian
form can be derived form: ((l, Σll) → ([θ, r], Σhh))[

θ

r

]
=

arctan2(b, a)
− c√

a2+b2

 (3.20)

The Jacobian Jlh is needed at l:

Jlh(l) =
1

s3

[
−bs as 0

ac bc −s2

]
with s =

√
a2 + b2 (3.21)

The covariance matrix Σhh results from:

Σhh = Jhl(l)Σll Jhl(l)
T (3.22)

3.3.3 Parameter estimation

For each pair of corresponding lines, the vector with the observations is

y = [li,Xi,Yi, ...]
T (3.23)

and the related covariances respectively

Σyy = Diag[Σlili ,ΣXiXi ,ΣYiYi , ...] (3.24)

The elements of P are as p in β.
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Conditioning

As the homogeneous entities relate to Euclidean BIM objects, their coordinates are expressed with
respect to the BIM's reference coordinate system. A big di�erence between the Euclidean and the
homogeneous part causes the calculation to be numerical instable, which is why conditioning as
proposed by Förstner & Wrobel [2016] is applied:

xc = T2D x and yc = T2D y (3.25)

For 2D points T2D is composed with the centroid coordinates µx and µy and the maximum distance
to the centroid smax:

T2D =


1 0 −µx

0 1 −µy

0 0 smax

 (3.26)

The procedure is analogous to 3D points.

Straight lines are conditioned and re-conditioned using:

lc = L2D l (3.27)

l = L−1
2Dlc with L2D = (T−1

2D)
T (3.28)

Conditioning is applied on the observations. For the projection matrix results:

Pc = T2D PT−1
3D (3.29)

Spherical Normalization

According to (3.5) and (3.6) the observations and initial parameters have to be spherically nor-
malized prior to the adjustment

lsc := lc/|lc| (3.30)

Σll = JcΣll J
T
c (3.31)

With the Jacobian Jc:

Jc(l) =
1

|lc|

(
I3 −

lc l
T
c

lTc lc

)
(3.32)

In the same way it is done for the parameters and 3D model points with:

Xs
c := Xc/|Xc| (3.33)

with

ΣXX = JcΣXX JTc (3.34)

and

ps
c := pc/|pc| (3.35)

In the following sections we assume the homogeneous coordinates to be conditioned and spher-
ically normalized and omit the indices c and s.
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Jacobians

The A-Matrix includes the �rst derivatives of the G-constraints according to the unknown pa-
rameters of p. As eq. 3.4 corresponds to 4 constraints of which two are chosen, the matrix has as
twice as many rows as observed line correspondences and the number of columns corresponds to
the number of parameters:

A =

[(
x1i 0

0 x2i

) (
l1iY

T
i l2iY

T l3iY
T

l1iY
T
i l2iY

T l3iY
T

)
−

(
y1i 0

0 y2i

) (
l1iX

T
i l2iX

T l3iX
T

l1iX
T
i l2iX

T l3iX
T

)
, ...

]T
(3.36)

The B-Matrix includes the �rst derivatives of the G-constraints (3.4) according to the observations
li, Xi and Yi. It is a diagonal matrix where each main diagonal element has 2 rows (2 constraints)
in (3.4) and 11 columns (11 elements in the homogeneous vectors l, X and Y).

B = diag
[(
(XiY

T
i −YiX

T
i ) P

T ,YT
i PT li I−Yi l

T
i P,Xi l

T
i P−XT

i PT li I
)
, ...
]

(3.37)

The C-Matrix includes the �rst derivatives of the C-constraints (3.5) according to the observations
li, Xi and Yi. The derivatives for each observation triple form diagonal sub-matrices of dimension
(3× 11), which in turn are written to the main diagonal matrix.

C = diag
[
diag[2 lTi , 2X

T
i , 2Y

T
i ], ...

]
(3.38)

The H-Matrix includes the �rst derivatives of the H-constraints according to p. It has one row
and 12 columns.

H = [2pT ] (3.39)

3.4 Euclidean interpretation

The initial projection matrix is optimized during the adjustment. The homogeneous matrix as
well as the uncertain observations in the form of 3D points and 2D straight lines, are thereby
conditioned and spherically normalized. For the application of the results in engineering practice,
the output data should be interpreted Euclidean. After the adjustment, an estimated projection
matrix (P̂s

c) is available, which is also conditioned and normalized. It is reconditioned with (3.29).

From the estimated projection matrix, the improved parameters of the exterior orientation can
be derived by decomposing the matrix:

P = [A|a] = [KR| −KRX0] (3.40)

[Förstner & Wrobel, 2016].

The projection center X0 is obtained from

X0 = −A−1 a (3.41)

Factorizing A by QR decomposition, which expresses a matrix A as multiplication of an orthogonal
matrix Q and an upper triangular matrix R, results in the rotation matrix R. A should have a
positive determinant: Ā = sign(|A|)A. The inverse Ā is decomposed:

[R̄T , K̄−1] = qr(Ā−1) (3.42)

The sign s (here: s = +1) of principal distance needs to be speci�ed for the calculation of the
diagonal matrix D:

D = diag(sign(diag(K)))diag([s, s,+1])
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Finally, the rotation matrix R results from: R = DR̄.

After the adjustment, Euclidean interpretation of uncertain, homogeneous, conditioned and
spherically normalized 3D points and 2D lines is achieved through Euclidean normalization and
re-conditioning.

3D point 2D line

State after adjustment Xs
c, ΣXs

cX
s
c

lsc, Σlsclsc
1. Euclidean normalization Xc, ΣXcXc with Je(Xs

c) lec, Σlclc with Je(lsc)

2. Re-conditioning X, ΣXX with T3D l, Σll with L2D

3. Euclidean interpretation Xe, ΣXeXe with Je(X) [θ, r]T , Σhh with Jhl(l)

Table 3.1: Euclidean interpretation of uncertain 3D points and 2D lines





45

4 Construction progress

documentation

Progress monitoring of construction projects is a challenging and rapidly growing �eld of activity
for geodesists. This chapter is about a change detection method based on 3D point clouds and
the discretization of the object space by voxels, speci�cally adapted here for indoor building
applications [Meyer et al., 2022a,b]. The occupancy of voxel space is determined using point
clouds from terrestrial laser scanning at di�erent construction stages. By detecting occupancy
con�icts between two measurement epochs, it is determined whether changes have occurred at a
particular location.

4.1 High resolution occupancy modeling

Up to now, construction progress documentation has mostly been done by visual inspections and
control measurements carried out by construction workers or by very time-consuming and cost-
intensive professional surveys with total stations and leveling devices. For several years now,
TLS has been a popular alternative for fast and high-resolution as-built surveys of construction
sites, but this technique still lacks focused analysis procedures, computer-aided interpretation, and
strategies for automated evaluation in engineering practice. Accordingly, the challenge with TLS
is the interpretation of these massive 3D data sets with the goal of being able to make automated
statements about detected changes. Particularly in interior construction, there are many detailed
changes in the condition of building components. Therefore, the accuracy requirements are partic-
ularly high there. 3D point clouds of indoor scenes are characteristically dense and very detailed.
This is due to the fact, that modern devices provide enormous measurement rates that enable the
generation of up to millions of 3D points per second, and that the average scanner-object distance
is indoors usually very short. For this reason, a high-resolution analysis based solely on voxels is
aimed.

4.1.1 Discretization of terrestrial laser scanning point clouds

A voxel relates to a cell in a regular 3D grid and a voxel based approach inherently comes with the
decision and acceptance of discretization of actually continuous data. Otherwise, a "voxelization"
is applied in the phase of pre-processing to speed up spatial queries and to reduce the amount
of data for sophisticated analysis in certain regions of interest, hence, serves a 3D index, e.g.
for point-level applications such as presented in Chapter 5. If an application is supposed to work
exclusively on voxel level, the chosen voxel size is crucial for its accuracy and level of detail. Figure
4.1 depicts the e�ects of di�erent voxel sizes on the resolution in terms of sharpness of detail of
the result.

In the context of change detection a 3D point cloud is transformed into a generalized and well
structured voxel grid in order to infer knowledge about the occupancy of space. In the beginning



46 4. Construction progress documentation

(a) (b) (c)

Figure 4.1: Resolution of a change detection application with respect to voxel size: a) 20 cm, b) 10 cm, c)
2.5 cm

the voxel space V is initiated i.e. the entire 3D space of the study site is tiled and resampled
according to the speci�ed voxel size. Every 3D point is assigned to its corresponding grid cell. In
contrast to an octree based discretization, the actual distribution and cluster of 3D points is not
taken into account at this initial step. Every 3D point votes for occupied space in its associated
voxel. The more 3D points located within a voxel the higher the indication of real occupancy.
A threshold should be found for a �nal decision through binarization, i.e. not occupied (0) or
occupied (1). This threshold highly depends on the point density. If a voxel only contains a
limited number of 3D points e.g. only isolated points that appeared due to noise, it is not going
to be labeled instead of erroneously indicating occupied space.

4.1.2 Indoor voxel classi�cation

3D point clouds from laser scanning bring the advantage of additional knowledge about non-
occupied space as the laser ray r obviously traverses empty space due to the fact that a laser
point p only appears when the beam hits an object's surface. Starting from a scanner source s
resp. its corresponding voxel sV , rV traverses empty voxel until pV is met, which is obviously
occupied (Fig. 4.2). Given a start point and an end point Bresenham's line algorithm [Bresenham,
1965] approximates a straight line between these points, using only addition, subtraction and bit
shift. In this way, all raster cells that are traversed by a laser range measurement are accordingly
labeled. Voxel that are neither traversed nor occupied remain unknown. In this way, the states of
non-occupied voxel can be distinguished into empty and unknown (Fig. 4.3).

From one single point cloud a lot of valuable spatial information about a scene is already
derived. A second point cloud, which covers the same spatial extend enables even more analysis
as it either con�rms the initial assumptions about the occupancy of space or evokes a contradiction.
There are two types of con�icts:

i A new ray −−−−→sV 2pV 2 traverses voxel which have previously been marked as occupied.

ii New points pV 2 occur in voxel that have actually been labeled as empty in the �rst point
cloud (Fig. 4.4).

A detection of changes from voxel results form the exposure and evaluation of such con�icts.
Vanished points form con�ict type i) indicate a demolition whereas ii) indicates new built elements
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sV

rV

pV

Figure 4.2: Principle of voxel space: Scanner source sV and a laser point pV in voxel space V . Voxel that
are traversed by the laser ray rV on its way from sV to pV are marked empty with magenta colored lines
whereas occupied voxel are depicted cyan and occluded ones indicated as unknown in blue color.
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Figure 4.3: Principle of modeling the occupancy of space with voxel: Di�erent scenarios can occur during
acquisition: a) laser point on target object "wall", b) laser point on site equipment (ladder), c) no laser
return on target object "wall" because of its demolition. The colored squares indicate the voxel states: cyan
= occupied, magenta = empty and blue = unknown. There is always a discrepancy due to discretization
between the actual measured beam (red) and the connection of source and target in voxel space (black).

or clutter, e. g. ladders or shovels. The result of this change detection approach is a voxel cloud
consisting of the centroids of the labeled voxels.

The architectural condition inside buildings, especially during (re)construction, is generally a
challenging environment for TLS. Con�ned spaces, strongly varying object distances and usually
a lot of clutter and artifacts such as furniture and possibly construction site material cause low
overlap of neighboring point clouds, gaps, occlusions, heterogeneous point densities and weak
scanning geometries possibly resulting in small incident angles between measuring beam and object
surface normal. The latter occurs in case the distance between scanner and object is too small
(e. g. in a narrow, long hallway) and results not only in reduced measurement accuracy, but
also incorrectly classi�ed voxel for change detection. Small incidence angles result in occupied
voxel also being traversed at the same time and, depending on the threshold, point density and
voxel size, incorrectly classi�ed as empty as depicted in Fig. 4.5. To avoid this e�ect, care should
be taken to have a su�cient number of viewpoints during acquisition, a high point density and
small voxel size respectively, and to pre-process the point clouds before further processing with a
distance �lter. This additional e�ort pays o� in favor of an automated voxel based interpretation.
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sV 2

(i) (ii)

pV 2

sV 2

sV 1

sV 1

pV 2

Figure 4.4: Con�icting occupancy of space from two epochs: i) demolished (red): new ray traverses voxel
which have previously been marked as occupied ii) new (yellow): new point pV 2 indicates occupancy
whereas former voxel have been labeled as empty.

sV

pV (1) pV (2) pV (3) pV (4) pV (5) pV (6)

Figure 4.5: E�ect of a low incidence angle of incoming laser rays on a �at surface: Occupied voxel also being
traversed at the same time are incorrectly classi�ed as empty and are therefore considered ambiguous.

4.1.3 Change detection given a BIM

The occupancy of space can not only be modeled from measurement data, e.g. 3D point clouds
from di�erent epochs, but can also be derived from a given BIM. The model then corresponds to
the target occupancy and can thus be used not only for change detection but also for veri�cation
of the model in the course of progress documentation. In such an application, each measurement
epoch would be compared against the BIM in order to recognize in an evaluation to what extent
the situation already re�ects the planned state (e.g. in a conversion project). For a comparison
of one 3D point cloud with a model state, the BIM's geometry itself is also transferred into the
voxel space V and discretized according to the target resolution in terms of voxel size.

The voxelization procedure is carried out in individual height layers. The layer thickness
corresponds to the pre-de�ned voxel size. The model geometry, usually provided in the IFC
format, is sliced and discretisized in order to result in a series of two-dimensional occupancy
grids (Fig. 4.6). The comparison of point cloud vs. BIM has the advantage over the comparison of
point cloud vs. point cloud that the occupancy of space from the BIM is volumetrically completely
described, while the occupancy of space from two point clouds is usually incomplete and incomplete
only in their overlap area and also only on the basis of the scanning on the object surface. In a
complete occupancy model the interior of an object body, e.g., a wall, is also described, so that
laser rays traversing the space indicate volumetrically complete truncation. This completeness is
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(a)

(b)

1.40m 1.95m

(c)

Figure 4.6: Modeling the occupancy of space from a given BIM: a) 3D visualization of a piece of wall with
openings for doors and showcases as part of a BIM, b) Exemplary occupancy grid on 1.40m above the
�oor level (black pixel indicate occupancy, whereas white areas indicate emptiness of space), c) Exemplary
occupancy grid on 1.95m above the �oor level.

particularly valuable when classi�ed voxels are used for spatial queries and operations in a spatial
building database.

4.2 Accuracy discussion in context of BIM

In the course of voxel based modeling the occupancy of space from a TLS point cloud, an un-
avoidable discretization error occurs because all calculations and spatial queries refer to the voxel
center and no longer to the original measured 3D points. The model of spatial occupancy is only
an approximation of the real situation and varies depending on voxel size, origin and orientation
of the voxel space (Fig. 4.7). Even if the original points would be labeled according to their as-
signed voxel class, the occupancy state would still refer to the assumption of a discretized model.
Whether a voxel is labeled empty, occupied or unknown might change with a di�erent initialization
of the voxel space V . Depending on the voxel size and the individual density of the point cloud,
the deviation of an actually generated 3D point from its voxel centroid is more or less signi�cant.
Additionally, as the geometric e�ect of a discretization by voxel also depends on the location and
shape of the target object itself, the exact discretization error for every individual 3D point can
only be predicted to a limited extend. However, the maximum point shift error d is:

d =

√
3 a

2
(4.1)

where a is the voxel size, i.e. the length of the side of the regular 3D grid cell.

The discretization error, together with the error in�uences of TLS, must conform to the con-
struction project's requirements in the individual case. With reference to the LOA speci�cation
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Figure 4.7: E�ect of di�erently initalized voxel spaces: rV connects sV and pV in voxel space (black) while
r represents the actual laser measurement from s to p (red): a) Voxel based of the occupancy of space, b)
Voxel based modeling of the occupancy of space using a di�erently initalized voxel space.

(Sec. 2.4), the requirements for the maximum permissible error of TLS and voxelization can be
well estimated in advance. In the context of modeling a subsystem or single object, the correct
description of its individual shape, independent of its absolute position in the building, can be
far more important for many tasks. For example, the relative accuracy is crucial for the distance
between two walls, while the positions of the walls within the building reference system can be
described by the absolute accuracies. While the absolute accuracy of a measurement and an ac-
cording model are easily to be assessed from Tab. 2.2, the speci�cation document proposes two
approaches for tolerance computation in case of relative measurements.

The squared approach is considered the standard method. It is assumed that the tolerance T

is small with respect to the underlying nominal dimension and that the actual sizes are randomly
distributed around the nominal value.

T =

√√√√ n∑
i=1

T 2
i (4.2)

The linear approach to tolerance calculation is used for a kind of pessimistic extreme value cal-
culation. It assumes that all or almost all deviations from the nominal value occur with either a
positive or negative sign.

T =
n∑

i=1

∣∣∣∂yi
∂xi

∣∣∣Ti (4.3)

In the case of a distance calculation (object 1 and object 2), the upper and lower limits of the
relative tolerance T range are obtained using the quadratic approach:

Tdist =
√

T 2
1 + T 2

2 (4.4)

And with the linear approach, which estimates the situation more pessimistically:

Tdist = T1 + T2 (4.5)

[USIBD, 2019]

Assuming for a BIM object the distance between the measured points, the voxel centers, and
the model is 5mm or less, the modeling accuracy would still meet the requirements of LOA40
(1-5mm). Referring to Fig. 4.8, the distance between the models of object 1 and object 2 could



4.2. Accuracy discussion in context of BIM 51

Figure 4.8: Relative accuracy between two BIM objects according to the LOA speci�cation: The calculated
distance and relative accuracy between two walls varies with the entity point cloud (red dots) or model
(yellow lines). In this way, the relative accuracy of using voxels instead of points can also be estimated
[USIBD, 2019].

be a maximum of 10 mm too long, or 10mm too short, due to the absolute LOA40 and a linear
tolerance calculation. The relative distance accuracy would exceed the maximum permitted 5mm
of LOA40 and would be in the range of LOA30. To achieve LOA40 for relative accuracy, an
absolute modeling accuracy of LOA50 would be required. When using a voxel approach for
e�cient construction progress documentation, it is important to pay attention to and agree with
the client on the absolute and relative accuracies to be maintained.
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5 Geometric BIM veri�cation

This chapter focuses on the geometric veri�cation of a given BIM from geodetic observations.
Dempster-Shafer theory is used for the fusion and handling of uncertainties from laser range
measurements and image rays with uncertainties related to the geometry of a given BIM (Fig. 5.1)
[Meyer et al., 2022a,c]. The chapter includes a detailed insight in the mathematical and numerical
formulation of appropriate belief functions for TLS measurements and image rays according to
DST. In particular a separate treatment and weighting of the photogrammetric sparse cloud and
the estimated dense cloud is proposed. Furthermore, it is shown how to apply Dempster's rule for
combining bodies of evidence based on TLS and photogrammetric speci�c belief masses for �nal
decision making.

5.1 Modeling the occupancy of space

A 3D point is actually a 0-dimensional entity and does not represent an object's surface directly
as is it is not assigned any kind of spatial expression, e.g. a surface or a volume. However, a
bunch of assumptions about the occupancy of space from 3D point clouds can be made, which
usually consist of millions of individual 3D points. Laser range measurements and image based
observations can be used to obtain belief masses about occupancy and emptiness of space and
applying DST helps to �nd con�rmation for either one of the hypothesis by the combination and
fusion of multiple evidence from 3D point clouds.

P1 P2

P3

Q

r1

r2

r3

S

Figure 5.1: Principle of uncertain TLS point measures and uncertain BIM: Laser rays rn and TLS points
Pn on the true wall surface and the according BIM implied with an exemplary corner point Q. Obviously,
the model (blue dashed line) does not exactly �t the real world conditions. These inherent discrepancies
must be considered in a point cloud based evaluation approach.
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dy
dx

Q

Pr
S

Figure 5.2: Impact of a single laser range measurement on the occupancy of space: The impact of a single
laser range measurement from S to P on a query position Q is determined. In order to infer knowledge
about either occupancy or emptiness at Q, the longitudinal distance dx and transverse distance dy from
P to Q are to be calculated.

5.1.1 Belief from laser range measurements

According to Hebel et al. [2013] mass functions are used for modeling the occupancy of space from
statistically uncertain laser range measurements. Obviously, a 3D point cloud from TLS provides
a lot of information including evidence about the occupancy of space: It is assumed that the space
along the laser ray r is empty while the space at the scanner source S and at a 3D point's location
P are occupied. Anywhere else the occupancy remains unknown.

It is aimed to decide whether a query position Q in 3D space is occupied (occ) or empty
(emp). As a result, the set of possible events is Θ = {occ, emp}. In contrast to the Bayesian
probability framework, the belief in a hypothesis and the belief in its complement can be less
than 1. Therefore, belief functions provide an additional "dimension of uncertainty", which allows
for making ignorance explicit. In the context of reasoning from TLS point clouds this brings
the advantage that occlusions in the laser range measurement (e.g. caused by site equipment)
are implicitly handled as they simply cause a lack of evidence instead of erroneously pointing to
empty space at Q.

Although a point is 0-dimensional, hence does not cover an area in 3D space nor indicate
any kind of occupancy directly, it can be associated with physical properties of the laser range
measurement. Every 3D point P is assigned a spatial appearance re�ecting the impact of typical
error sources on TLS measurements according to Table 2.1. Furthermore, it can be assumed that
the scanner resolution in indoor scenes (close range) results in a point density which allows for the
assumption that there is no empty space between neighboring points, e.g. on a wall surface. Hence,
the spatial extent of a point P should be modeled in accordance with the average point-to-point
distance.

Hebel et al. [2013] suggested to de�ne the impact of a laser range measurement P = S+ r on
a query position Q on the basis of the parameters dx and dy. The longitudinal distance of Q to
P is represented by

dx = (Q−P) · r0 where r0 = ||r|| (5.1)

Similarly, dy denotes the transverse distance Q to P (Fig. 5.2):

dy = ||(Q−P)× r0|| (5.2)

The parameters dx and dy are used to de�ne the following belief masses according to Hebel et al.



5.1. Modeling the occupancy of space 55

XQ
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x′1

x′2
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O1

Figure 5.3: Photogrammetric observation of a BIM object: Two cameras with projection centers O1 and
O2 map a 3D point X onto the image points x′

1 and x
′
2. The according BIM (blue dashed line) is implied

with an exemplary corner point Q. The inherent discrepancies between the true wall surface (grey) and
the model must be considered in a geometric veri�cation pipeline.

[2013]:

mQ,P(0) = ∅ (5.3)

mQ,P({occ}) =
(
1− 1

e−λ dx−c

)
· e−κ d2y (5.4)

mQ,P({emp}) =
(

1

1 + e−λ dx−c
− 1

1 + e−λ dx+c

)
· e−κ d2y (5.5)

mQ,P(Θ) = 1−mQ,P({emp})−mQ,P({occ}) (5.6)

c: controls the longitudinal extend of occupied space at Q.

λ: controls the gradual transition empty → occupied → unknown.

κ: controls the transverse extend of occupied space at Q.

5.1.2 Belief from image rays

Assuming oriented cameras (I1, ..., In), forward intersection of image rays from di�erent viewing
positions results in 3D point coordinates Xn (Fig. 5.3). Every 3D measurement indicates the
existence of a physical object as the space is obviously occupied at the intersection point X. Fur-
thermore, from the physical properties of the process of image creation, it can be assumed that the
space along corresponding image rays rn is empty. It can be further concluded that for arbitrary
locations Qn in the object space, one of the following states applies: occupied (occ), empty (emp)

or unknown (U), where the latter indicates a lack of information, thus Θ = {occ, emp}. This
set of possible states corresponds to modeling the occupancy of space from TLS measurements
(Sec. 5.1.1). It is depicted in Fig. 5.4.
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Figure 5.4: Areas of belief from the observation of a 3D point X by two cameras I1 and I2: The red area
indicates emptiness along r, whereas the green area depicts occupancy in the vicinity of X. Based on these
spatial belief assignments the query location Q1 is in an empty area (does not exist), Q2 appears occupied
(exists) and Q3 remains in an unknown state.

dy
dx

Q

Xr
O

Figure 5.5: Interrelation between a 3D point and a query location: the measures dx and dy are de�ned as
the longitudinal and transverse distances from point X to query location Q along the ray r.

The distance measures dx and dy are decisive for supporting or refuting either one of the
hypotheses {emp} or {occ} for each combination of Xn and Qn. According to Sec. 5.1.1 dx is
de�ned as the longitudinal distance from X to Q along the viewing ray r, whereas dy represents
the corresponding transverse distance as depicted in Fig. 5.5.

dx = (Q−X) · r0 (5.7)

dy = ∥(Q−X)× r0∥ where r0 = ∥(X−O)∥

Following the approach presented by Hebel et al. [2013] and Sec. 5.1.1, the variables dx and dy
are processed by sigmoid functions (Eq. 5.11) in order to model a gradual transition from one
state to another and to achieve a basic probability assignment, which quanti�es belief masses
according to Eq. 2.23. These functions are controlled by the parameters c (longitudinal extend),
λ (gradual transition) and κ (transverse extend). For photogrammetric observations, they should
be chosen such that the functions re�ect the individual point accuracy and the sampling resolution.
Figure 5.6 shows a 3D plot of the mass functionsm{emp} andm{occ} depending on dx and dy with
the exemplary parameters c = 5, λ = 800 and κ = 15.000. It depicts the situation of emptiness
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m({occ})
m({emp})

dy
dx

Figure 5.6: 3D plot of mass functions: m{emp} (red) and m{occ} (green) depending on dx and dy [m]
with the parameters c = 5, λ = 800 and κ = 15.000

along the image ray, while the space at the intersection point of two image rays is considered
occupied.

mQ,X(0) = ∅ (5.8)

mQ,X({occ}) =
(
1− 1

e−λ dx−c

)
· e−κ d2y (5.9)

mQ,X({emp}) =
(

1

1 + e−λ dx−c
− 1

1 + e−λ dx+c

)
· e−κ d2y (5.10)

mQ,X(Θ) = 1−mQ,X({emp})−mQ,X({occ}) (5.11)

5.1.3 Belief from photogrammetric dense cloud

Due to the complex process of disparity optimization (Sec. 2.2.2), the information about the in-
volved source images from which a 3D point from the image based dense cloud ("dense point"
(DP)) was actually generated is usually not accessible. Nor is there an estimated accuracy ac-
cording to Sec. 2.1.3 per DP available. This results in a necessary change in strategy for evidence
based evaluation:

1. The absence of image rays for DPs leads to a lack of information for m{emp} and thus to
an increase of m{U}.

2. A lack of accuracy measure leads to a lack of reasonable parameter setting for the mass
functions, con�dence levels and �nal belief assignments.

Interior scenes and corresponding building models consist mainly of planar surfaces, and this prior
knowledge can be used to derive belief masses in a similar way as suggested by Hebel et al. [2013].
In contrast to the approach of Sec. 5.1.2, the distance measures dx and dy are now based on the
surface normal n0 of a query location Q. dx is the shortest distance from a DP X to the surface
of Q and dy is de�ned as the distance from this perpendicular point to Q (Fig. 5.7).

dx = (X−Q) · n0 (5.12)

dy = ∥(X−Q)× n0∥
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dx
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n0

Figure 5.7: Distance measures dx and dy between X and a query location Q in case X is a "dense point"
considered on a plane with normal direction n0

The corresponding mass functions simplify to:

mQ,X(0) = ∅ (5.13)

mQ,X({occ}) =
(
1− 1

e−λ dx−c

)
· e−κ d2y

mQ,X({U}) = 1−mQ,X({occ})

The variable dx indicates the deviation of X from the surface of Q. A large dx should be punished
with low belief in occupancy at Q. A degradation of dx is achieved by increasing the trans-
verse extend and decreasing the longitudinal extend of occupied space at X in a way that the
function gets a narrow, elliptical shape that expands in the direction of dy. Figure 5.8 shows an
example of the e�ect of an adjusted parameter setting for DP belief assignment on a planar surface.

5.2 Fusion of multiple evidence

Whenever there is not only one TLS (P) or image based (X) observation but several observations
in the neighborhood of Q, it is necessary to calculate their joint belief mass. The fusion of
belief according to Dempster's Rule of Combination requires a separate treatment of potentially
con�icting and non-con�icting evidence.

5.2.1 Combining potentially con�icting evidence

Each individual consideration of a point measure P orX and a query locationQ results in a certain
amount of belief for {occ}, {emp} and {U}. However, there is more than only one observation in
the immediate vicinity ofQ expected. As the "heart" of DST, Dempster's rule for the combination
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m({occ})

dy dx

Figure 5.8: 3D plot of the mass function m{occ} depending on dx and dy for belief assignments on planar
surfaces with the adjusted parameters c = 5, λ = 1.200 and κ = 6.000

Table 5.1: Designations for the application of Dempster's rule of combination (eq. 2.24). For better
readability, the following abbreviations are used: m1({occ}) to m1(o), m1({emp}) to m1(e), etc.

m1(A) m2(B) m1,2(C)

m1(o) m2(o) m1,2(o)

m1(e) m2(e) m1,2(e)

m1(U) m2(U) m1,2(U)

of multiple evidence is applied to consider the in�uence of several belief assignments for a joint
interpretation of the observations.

m1⊕2 = m1 ⊕m2 (5.14)

The physical states {occ} and {emp} cannot exist simultaneously at one position Q . If one of
the hypotheses is true, this means that the other must be excluded. Therefore, the con�ict degree
k must be considered for belief functions that are de�ned over sets of hypotheses that contradict
each other according to Eq. 2.25.

k = m1(e)m2(o) +m1(o)m2(e) (5.15)

The application of eq. 2.24 on both TLS and photogrammetric observations with assigned mass
functions results in the following operations:

m1,2(o) =
m1(o)m2(o) +m1(o)m2(U) +m1(U)m2(o)

1− (m1(e)m2(o) +m1(o)m2(e))
(5.16)

m1,2(e) =
m1(e)m2(e) +m1(e)m2(U) +m1(U)m2(e)

1− (m1(e)m2(o) +m1(o)m2(e))
(5.17)

m1,2(U) =
m1(U)m2(U)

1− (m1(e)m2(o) +m1(o)m2(e))
(5.18)

Table 5.1 gives an overview for proper use and assignment of designations and abbreviations in
the formulas.
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bel({emp})pl({occ})

bel({occ}) pl({emp})

{occ} {U} {emp}

m({occ}) m({U}) m({emp})

1

Figure 5.9: Illustration of di�erent belief representations m, bel and pl associated with occ, emp and U .

5.2.2 Combining non-con�icting evidence

The number of image based depth points is usually signi�cantly larger than the number of tie
points. It is very likely to �nd several DP in the neighborhood of Q. Therefore, the application of
Dempster's combination rule is even more important here. In contrast to m{occ} and m{emp},
the hypothesis m{occ} and m{U} do not contradict each other. Therefore, the normalization
constant can be omitted for the joint mass calculation, which simpli�es to:

m1,2(o) = m1(o)m2(o) +m1(o)m2(U) +m1(U)m2(o)

m1,2(U) = m1(U)m2(U) (5.19)

5.3 Integration of model uncertainty

The representation of real-world conditions in a BIM is inherently uncertain. According to the
USIBD, each represented element of a BIM can be assigned to a certain LOA in order to properly
reason with its geometric accuracy (Sec. 2.4 and Fig. 2.1). The LOA are de�ned in terms of
standard deviation σ. This information from classical probability theory must now be related to
the available evidences about the occupancy of space from the TLS measurements.

In DST the degree of belief for a certain question is obtained from masses which refer to
subjective probabilities (Sec. 2.3). A hypothesis can be constituted by subsets. Otherwise, if a
hypothesis is consisting of only one element (A ⊆ Θ with |A| = 1) it is called a singleton. The
belief in a hypothesis bel(A) is constituted by the sum of the masses of all subsets Bi that may
exist (B ⊆ A):

bel(A) =
∑
Bi∈A

m(Bi) (5.20)

It forms a lower bound on the probability of a given hypothesis. The plausibility (pl) expresses
how plausible a hypothesis A is, i.e. how much belief mass potentially supports A because there
may be only a certain amount of evidence that completely contradicts that hypothesis. Plausiblity
is 1 minus the sum of all masses that can be committed to the complement

Ā : pl(A) = 1− bel(Ā) (5.21)

pl() can be interpreted as an upper bound for an unknown probability function [Shafer, 1976].
The functions bel() and pl() convey precisely the same information and may be obtained from
the other [Reineking, 2014]. Figure 5.9 illustrates the relationship between the di�erent belief
representations.
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Table 5.2: Probabilities for point cloud-to-BIM veri�cation for di�erent LOA

LOA 2σ [mm] Φ P (A)

50 1 0.9773 0.9545

40 5 0.6554 0.3108

30 15 0.5517 0.1034

20 50 0.5160 0.0319

Table 5.3: Numerical example for di�erent belief representations for a laser point P and a model edge Q
assigned to LOA 50.

m() bel() pl()

p q p q p q

occ 0.20 0.95 0.20 0.95 0.50 0.95

emp 0.50 0.05 0.50 0.05 0.80 0.05

U 0.30 0.00 1.00 0.00 1.00 0.00

A probability function P (A) is a normalized belief function with a focal set composed of
singeltons. Such a belief function is called Bayesian and satis�es the property of additivity:

bel(A ∪B) = bel(A) + bel(B) (5.22)

A belief function is called Bayesian if it is normalized and all of its focal sets are singletons,
i.e. if it is a probability function:

P (A) = bel(A) = pl(A) (5.23)

The hypothesis {occ} and {emp} are singeltons because they do not have any subsets. The
probability for a BIM element Q can be derived from its standard deviation according to its
assigned LOA. Assuming normally distributed observations, the standard deviation can be used
to de�ne a con�dence level. In agreement with the TLS and image measurements, it is assumed
that the occupancy of a location is con�rmed over 95%, assuming an accuracy of 1 mm. This
corresponds to LOA 50 with a con�dence of 0.9545 =̂ 2σ = 1mm. Starting from the con�dence
level for LOA 50, the con�dences for BIM elements that correspond to other accuracy levels can be
derived according to the standard normal distribution. For each multiple of σ = 0.5 mm the area
under the standard curve is determined in order to derive its probability e.g. using a unit table
which contains the values (Φ) of the cumulative distribution function of the normal distribution.
Table 5.2 shows the resulting probabilities for LOA 50 to LOA 20. The density function from
probability theory corresponds to the mass function in evidence theory. Refer to Table 5.3 for a
numerical example for di�erent belief representations for an exemplary P and a corresponding Q
of LOA 50.

Also for photogrammetric observations individual accuracy information of tie points (TP) and
depth points (DP) with σTP and σDP have to be put in a reasonable relation according to the belief
masses of the initial BIM representation Q. A fusion of belief masses from di�erent con�dence
levels is achieved by converting the belief assignments according to the cumulative distribution



62 5. Geometric BIM veri�cation

Table 5.4: Numeric example of the conversion of belief masses from di�erent sources

σTP = 2mm; bel(o)TP = 0.8500 σDP = 2.5mm; bel(o)DP = 0.7300

LOA 50 40 30 50 40 30

σi [mm] 0.5 2.5 15 0.5 2.5 15

Z 0.25 1.25 7.5 0.2 1 6

Φ(Z) 0.40129 0.10565 ≈ 1 0.42074 0.15866 ≈ 1

P (o) 0.19742 0.78870 ≈ 1 0.15852 0.68268 ≈ 1

bel(o)P 0.1766 0.7057 0.8947 0.1218 0.5246 0.7684

function of the normal distribution. An up- or downgraded belief mass bel()LOA for joint mass
calculation results from

bel()LOA =
P () bel()

2(Φ(1)− 0.5)
(5.24)

where P () = 2
√
(Φ(Z)− 0.5)2

Table 5.4 gives an numeric example for the conversion of belief assignments from di�erent sources.

5.4 Decision making from combined belief and BIM related un-

certainty

As-built building models, also referred to as digital twins, are playing a central role in the AEC
industry's digital revolution. The creation and maintenance of these 3D models is to already start
with the �rst construction works, so that the construction management can carry out progress
control, documentation and as-built analyses with the time of beginning early construction phases.
Geodesists are to answer the question of whether or not 3D measurements conducted on site con-
�rm an associated BIM-compliant model for certain tasks. In order to give a quali�ed assessment
on the basis of photogrammetric 3D point clouds and given BIM data, the following three aspects
have to be evaluated:

❑ Accuracy: The signi�cance of detected deviations between measurement and model depends
on both, the accuracy of the measurement (Sec. 2.1.3) and the accuracy of the reference
geometry, e.g. according to the LOA speci�cation (Sec. 2.4). The maximum belief in the
geometrical correctness of a BIM that is obtained from a single P−Q or X−Q combination
is limited by the individual measurement uncertainty in terms of standard deviation σ. In
decision making, however, evidence theory and Dempster's Rule of Combination allow for
the strengthening of �nal belief by combining multiple pieces of evidence, in case they do
not contradict each other (Fig. 5.10).

❑ Resolution: BIM objects are represented by continuous surfaces. However, a photogrammet-
ric scene capture comes with a point-wise sampling that largely depends on the camera-object
distance and the conditions on site. With prior knowledge of the object and a suitable tar-
get resolution, it is justi�ed to assume directly adjacent measurement points to represent a
closed surface. A reasonable resolution can be derived from the BIM's associated Level of
Detail (LOD), in order to �gure out the smallest detail yet to be modeled, captured and
veri�ed. The resolution is obtained from the average point-to-point distance of the 3D point
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(a)

(b)

Q1

Q2 Q3

Figure 5.10: Di�erent resolution of BIM veri�cation: a) low resolution, i.e. large point-to-point distance,
b) high resolution, i.e. small point-to-point distance. The green circles indicate belief around a 3D mea-
surement (red dots) that reinforces in overlapping areas of belief, therefore bel()Q1 < bel()Q2 < bel()Q3 .

cloud, e. g. 2mm. It is the basis for appropriate parameter setting of the belief functions (κ,
λ and c) in order to assure their su�cient spatial expression (Fig. 5.10).

❑ Completeness: Both accuracy and resolution are just as important as the completeness of
the object capture is. A critical value for the derived percentage should best be agreed
with the aimed resolution and the object's LOD. Indoor sites in particular are commonly
challenging environments due to clutter, occlusions, inaccessible areas and a limited range of
sensor motion. In order to di�er objects that are not observed from those that are actually
not there, it is reasonable to structure both the point cloud and the BIM by voxel, e. g. of
size 5 x 5 cm, and to perform a visibility analysis according to Chapter 4 in addition to the
point-wise evaluation presented in this chapter.
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6 Experiments

This chapter presents datasets and experiments that were carried out in order to evaluate the
introduced methods of Chapters 3, 4 and 5. All experiments relate to applications for BIM
processes, although the �rst experiment for accuracy investigation on image-to-BIM co-registration
is based on synthetic data. The other experiments were conducted at real construction sites with
di�erent laser scanners and image sensors and relate to change detection and geometric BIM
veri�cation.

6.1 Accuracy investigation on image-to-BIM co-registration

The estimation model presented in Chapter 3 for the optimization of an approximately known
camera pose was tested with synthetic data as ground truth for accuracy assessment. The basis
is a real test environment. In the following, the reference model, the generation of synthetic data
as well as the conducted pose optimizations are presented.

6.1.1 Synthetic images from a virtual camera

A laboratory for measurements with geodetic reference network is used as test environment
(Fig. 6.1). It has a local coordinate system whose main axes are aligned with the walls of the
building. The network is realized by permanently installed mini prisms and enables the stationing
of tacheometers in the lower millimeter range. The laboratory serves as a test environment for
validating image measurement techniques and achievable accuracies with respect to the detec-
tion of typical objects and component classes inside buildings. To obtain precise geodetic survey
data, the laboratory was captured by a 3D laser scanner in a high resolution. The registration of
the single scans was done by control points. The global, absolute measurement accuracy in the
reference system is 1.5 millimeters and the standard deviation of the relative orientation of the
individual scans is in the sub millimeter range when cloud-to-cloud adjustment is performed. The
resulting point cloud served as the basis for BIM compliant modeling. The modeling accuracy
depends on the respective object class and is based on the recommendations according to the LOA
speci�cation. For example, interior doors and windows are assigned to accuracy levels 30 and 40.

A virtual view of the interior model was rendered with 36 mm sensor width, 1600 x 1200 pixels
and 30 mm focal length. The projection center is located at position X̃0 = [43.907, 28.847, 8.053]T

in the reference system and the camera system is rotated by angles ω̃ = −67.318◦, ϕ̃ = 1.8◦ and
κ̃ = 29.498◦ with respect to the BIM system. The true projection matrix (P̃) was derived from
the parameters of the distortion-free virtual camera according to (2.12).

6.1.2 Parameter estimation from simulated uncertainty

36 model points (Xi) were projected with P̃ and (2.11) into the synthetic image in order to obtain
x̃i. For the simulation of inaccuracies in the detection of edges in the image, Gaussian noise of



66 6. Experiments

(a)

(b) (c)

Figure 6.1: Generation of synthetic data of a real BIM: a) 3D visualization of the BIM, b) set up of a
virtual camera within the BIM for rendering, c) synthetic image with projected 3D edges using P̃ (green)
and P (red)

varying magnitude is added to the Euclidean part of the true pixels (x̃i) in the further course.
Noisy pixels (xi) result with the normally distributed random number N :

xi = x̃i + σxi N (6.1)

Then, the uncertain image points (xi, Σxixi) were joined to lines by join operation and variance
propagation to obtain the uncertain image lines corresponding to the model edges (li, Σlili) as
observations. A standard deviation in translation of 0.15m and in rotation of 1◦ was then set for
the external orientation of the camera for arti�cial degradation (σcam). This resulted in the initial
projection matrix P which is used in the adjustment as approximate initial solution. Figure 6.1
c) shows the synthetic image with the model edges projected into it using P̃ (green) and P (red).

The estimation of the projection matrix is to be done several times with di�erent imprecise
model reference. For this purpose, Gaussian noise is also added to the model points (Xi) in several
simulations. The determination of the standard deviation is based on the LOA speci�cation:

Xi = Xi + σXi N (6.2)

The LOA are: 2σ = 15 cm (LOA 10), 2σ = 5 cm (LOA 20), 2σ = 15mm (LOA 30), 2σ = 5mm

(LOA 40), 2σ = 1mm (LOA 50) [USIBD, 2019].

P is put in the estimation model as initial value. The actual accuracy of the reference model
does not matter here when using synthetic data. For LOA 10 to LOA 50, 100 simulations each
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(a)

(b)

(c)

Figure 6.2: Laser scanning data for progress monitoring during demolition work inside of a building:
original survey point clouds with RGB color of construction site 1 of a) epoch 1, b) epoch 2, c) epoch 3.

were calculated with image lines of varying degrees of noise σl = 0.0, σl = 0.5, σl = 1.0, σl = 1.5

and σl = 3.0 pixel.

6.2 Progress monitoring based on laser scanning point clouds

The following data and experiments refer to progress monitoring based on voxel for two real indoor
conversion projects. The �rst scenario essentially involves the demolition of non-load-bearing wall
elements within a long hallway to create more space for an open seminar room in a university
building, whereas the second scenario is characterized by partial demolition and simultaneously
newly built structural components in the course of converting a former military barrack into rental
apartments.

6.2.1 Laser scanning data of construction sites

The demolition work of scenario 1 extended over a period of about 3 weeks within a buildings
interior and a FARO® Focus 3D* laser scanner was used to document the project's progress. This

*FARO: beam divergence: 0.19mrad; beam diameter at exit: 2.25mm
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Figure 6.3: Construction site: UAV based orthomosaic (top view) augmented with planning data as
overview of the construction site of scenario 2 (indoor conversion). The project mainly involves the de-
molition of existing walls (red) and the building of new walls (yellow) for new room layouts. The green
rectangle indicates the study area for which as-built measurements were conducted.

documentation included three scanning epochs: 1) at project start, i. e. old condition; 2)whilst
ongoing demolition work and 3) after completed demolition, i. e. new condition. The three states
are depicted in Fig. 6.2. Each survey epoch is composed of three overlapping point clouds. Scenario
2 is part of a major construction site in a city area. A number of old buildings are to be remodeled
and expanded in order to provide new living space. The ongoing construction work was captured
with a Z+F IMAGER® 5016� laser scanner. This project involves two scanning epochs: 1) phase
of gutting the interior and 2) construction of new structural elements, e.g. a new ceiling in the
area of a former staircase. An aerial orthomosaic of the major construction site, which is subject
of scenario 2, is given in Fig. 6.3. For both datasets, the relative orientations of the point
clouds within each epoch were realized with a "cloud-to-cloud" approach and consistently good
adjustments in the range of sub millimeters where achieved. In order to align the scanning data
with the BIM's reference system, tacheometric observed checkerboard targets were used. The
absolute orientation of each epoch yielded ≈ 1− 2.5mm. The measurements were performed with
a Trimble® S6 total station.

6.2.2 High-resolution voxel-based change detection

The available indoor point clouds each include several millions of points and thus reveal very
high resolution spatial information about the construction sites. In scenario 1, epoch 1 contains
≈ 33mio. points to process, epoch 2 ≈ 28mio. and epoch 3 ≈ 35mio. Each data set has a quite
heterogeneous point-to-point distance due to the highly varying scanner-object distances in the

�Z+F: beam diameter / divergence: ≈ 3.5mm at 1m/ ≈ 0.3mrad
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constraint indoor environment. However, in the main targeted region the average point-to-point
distance is ≈ 2mm. The overall investigation area of project 1 covers 11.46 × 15.25 × 3.38m. The
point clouds describing the as-is state of project 2 cover 19.95× 19.95× 10.13m of the construction
site and epoch 1 and 2 each include ≈ 200mio. 3D points. Both datasets were processed and
investigated based on 1 cm voxel size. The voxel space V is de�ned by the according BIM's
reference system, and does not take into account individual point densities or distributions as for
example it would be the case for an octree based space partitioning. Therefore, a co-registration
of voxel from di�erent epochs is not necessary. To calculate the path of the laser beam rV through
the voxel space V , a variant of Bresenham's algorithm was used [Bresenham, 1965]. In order
to automatically detect changes based on con�icting evidence, every voxel is compared with its
corresponding voxel from the other epochs and the BIM itself according to Sec. 4.1.2 and Sec. 4.1.3.

6.3 Experiments on geometric BIM veri�cation

Whenever there is a BIM, either a coarse one from an early planning phase or a more sophisticated
one supposed to represent the as-built state, it is usually necessary to verify the given model at
project start, e.g. for a conversion project. Although the veri�cation of a BIM is highly important
and a recurring demand in engineering practice, yet there are no proven guidelines and approaches
established in order to e�ciently solve for this task. Therefore, elaborate surveys and remodeling
of the entire scene are usually carried out. Since there is a need for practical solutions, this section
is focused on the application of the geometric veri�cation approaches proposed in Chapter 5 to
either con�rm or refute a given BIM and its associated LOA based on 3D point clouds that were
generated from both TLS and photogrammetry on real construction sites.

6.3.1 Parameter setting for laser scanning point clouds

The impact of a laser range measurement P on a query position Q, which represents an arbitrary
location in the BIM is determined according to Sec. 5.1.1. The evaluation of the states occupied,
empty and unknown are based on the longitudinal and transverse distances dx and dy. For the
point cloud data presented in Sec. 6.2.1, these parameters were processed in the mass functions
5.3 ideally to �nd clear con�rmation for one of these hypotheses.

The modeled impact of a laser range measurement on the occupancy of space should properly
re�ect its absolute point positioning accuracy and also the physical characteristics of the laser
beam. Considering the typical error sources on TLS measurements (Tab. 2.1) leads to σp =

2.5mm. The parameters c, λ and κ control the fuzziness and propagation of the modeled laser
beams. To �nd the correct values one should start with the parameter κ. According to Hebel
et al. [2013] κ should be chosen such that the full width at half maximum of e−κ d2y amounts twice
the average point-to-point distance, which is ≈ 2mm for the experiments. The parameters are set
to c = 3, λ = 600 and κ = 20000 (Fig. 6.4). This setting results in a realistic model, provided
a su�cient point density which allows for neighboring point masses to interfere, i.e. causing an
area �lling overlap.

6.3.2 Stochastic assessment of BIM related geometry

A BIM corresponds to a central spatial project database. Any structural or semantic changes to
the real building should be incorporated into the model. Experts feed in their specialized data, so
that all project participants can bene�t from it for their concerns. Above all, the geometric model
must be accurate and error-free if analysis and subsequent planning is to be based on it. Using
the examples of the conversion projects and corresponding BIMs, which include existing and to be
demolished elements, a point cloud-to-BIM veri�cation based on evidence theory was performed.
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Figure 6.4: Mass function parameters: a) transverse extend of occupied space based on the parameter
κ1 = 20000, κ2 = 40000 and κ3 = 100000, b) mass function m({emp}) (empty), c) mass function m({occ})
(occupied) assuming σp = 2.5mm: κ = 20000, λ = 600, c = 3.

(a) (b)

Figure 6.5: Selected part from the BIM to be veri�ed with belief masses from TLS point clouds: a) BIM
version 1 (old state, before demolition), b) BIM version 2 (new state where elements to be demolished are
marked red).

The subsequent stochastic assessment relates to the LOA speci�cations as it is recommended
for use in professional practice. The available BIMs, from both project 1 and project 2, refer to
previous as-built documentation that was expanded to include new design data for the remodeling
projects. The models could be assigned to LOA 30, which means that their structural elements
are supposed to be accurate within ± 15mm at 95% con�dence. According to the USIBD this
level of accuracy is the most common one for interior construction and �nishes such as �oorings
and walls. Therefore, LOA 30 also applies for the updated as-built BIMs, which are supposed to
represent the new construction state. In addition manufacturing tolerances and related accuracy
speci�cations for as-planned models or objects can be also considered. Depending on the project
and customer speci�c accuracy requirements, it is necessary to decide how densely the given BIM
should be sampled for veri�cation. A resolution level of ≈ 2mm average point-to-point distance
was created for the front of a wall surface with openings for doors and display cases (Fig. 6.5) in
scenario 1. BIM version 1 denotes the old state, i.e. before demolition and amounts ≈ 400, 000

locations (Qn) whereas version 2 corresponds to the state after demolition work and involves
≈ 160, 000 points. The laser points of scanning epochs 1-3 were processed with belief functions
and the parameters setting described in Sec. 6.3.1.

6.3.3 Photogrammetric data of construction sites

The presented concepts and methodologies of Chapter 5 were used for the evaluation of execution
work in three indoor construction projects from photogrammetric as-built data. All three datasets
that shall be presented in the following were acquired during as-built and progress documentation
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surveys that were carried out on real construction sites. The special characteristics of the scenarios
as well as the used cameras, geodetic instruments and resulting datasets slightly vary individually:

1. Interior work: Scenario 1 relates to the interior work phase of a new apartment building
(Fig. 6.6.a). The construction site was captured with an Apple IPhone's back camera in ad-
dition to a terrestrial laser scan performed with a Faro Focus 3D as reference for comparison
and evaluation.

2. Indoor conversion: Scenario 2 is part of a major conversion project taking place on former
barracks sites that will be converted into rental apartments (Fig. 6.3). New room layouts are
implemented structurally, including the bricking of openings and partial demolitions of walls.
The scene was captured with the unmanned aerial vehicle (UAV) DJI Inspire 2, equipped
with a Zenmuse camera (Fig. 6.6.c and Fig. 6.6.d). Additionally, a reference scan from a Z+F
Imager 5016 laser scanner is available.

3. Gutting of a building: In the course of a renovation, scenario 3 takes place within the gutting
phase of a building such that only load-bearing structural elements remain. This scenario
is characterized by the largest camera-object distance as the ongoing gutting had already
created wide empty areas. The scene was captured with a Sony alpha camera (Fig. 6.6.b) and
again, a reference point cloud created with a Z+F Imager 5016 laser scanner is additionally
available.

Initially, the images of the three test scenarios each were processed with the photogrammetric
software Agisoft Metashape Professional. This resulted in internal and external camera parame-
ters, tie point coordinates and dense 3D point clouds. Due to the fact that Metashape does not
provide su�cient insight into the performed calculations, the bundle block adjustments were re-
calculated for each scenario based on the Matlab implementation for bundle adjustment by Börlin
& Grussenmeyer [2014] in the Gauss-Markov variant (Sec. 2.1.2). All three camera sensors were
each calibrated simultaneously in the course of bundle adjustment. They di�er greatly in their
quality as can be seen from the tie point accuracies that range from 0.4 to 1.5 pixel. However,
these di�erences are partially compensated by the other project characteristics. For example, the
camera quality of scenario 1 is signi�cantly worse than that of scenario 3, but the latter has a much
smaller image scale. The properties of the datasets for scenarios 1-3 after �nal bundle adjustment
form the basis for all subsequent processing steps and are summarized in Tab. 6.1.

6.3.4 Empirical dense cloud evaluation

Prior to performing a Pho-to-BIM veri�cation based on photogrammetric dense points XDP
n , it

is important to determine both, the parameters c, λ and κ for the mass functions that model the
extend and spatial expression of belief in occupancy as well as the basic accuracy that is assigned
with an according DP. Unlike TPs, DPs do not come with an estimated standard deviation from
the bundle adjustment on which to base the parameter setup, and yet, there is no standardized
quality measure for DPs either. The photogrammetric software Agisoft Metashape indicates the
quality of a DP by the number of contributing combined depth maps, provided as a "con�dence"
value [Agisoft, 2022]. Although this value indicates somewhat reliability of DPs, it is not assigned
a metric accuracy. Another approach is described by James et al. [2017] who ascribe precision
values to the DPs based on the precision of their underlying TPs, interpolating uncertainty values
into grid cells.

To derive a reasonable spatial belief model for evidence based reasoning from DPs, the metric
qualities of dense clouds of scenarios 1-3 were empirically assessed based on corresponding 3D
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(a) (b)

(c) (d)

Figure 6.6: Di�erent scenarios on real construction sites: a) image based point cloud of scenario 1 (interior
works), b) image based point cloud of scenario 3 (gutting of a building), c) scene capture with UAV for
scenario 2 (indoor conversion), d) image based point cloud of scenario 2

Table 6.1: Characteristics of datasets for scenarios 1-3 after bundle adjustment

Scenario 1 (interior) 2 (conversion) 3 (gutting)

Camera Apple Iphone 7
back camera

DJI Zenmuse X4S Sony alpha 5100

Image size [px] 4,032 x 3,024 5,472 x 3,078 4,240 x 2,832

Principal distance [mm] 3.99 8.80 20.00

Number of images 25 57 8

Approx. object distance [m] 2.5 5.0 9.0

Approx. sampling distance [mm] 0.8 1.4 2.5

Number of GCP 5 4 7

GCP accuracy [m], [px] 0.01, 1.0 0.0015, 0.8 0.002, 1.0

Tie point accuracy [px] 1.5 1.0 0.4

Number of estimated TPs 7,371 11,490 9,415

Redundancy R 29,294 72,585 34,834

Estimated variance factor σ̂2
0 1.00121 1.17868 0.983674
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(a) (b)

Figure 6.7: Exemplary sample of a TLS cloud (a) and a corresponding photogrammetric dense cloud (b)
of a brick wall from scenario 2

point clouds from terrestrial laser scanning. The TLS clouds were created at the exact time that
the photogrammetric surveys were conducted. Therefore, both types of point clouds show the
same scene without any changes, e.g. due to ongoing construction works. The comparison of
corresponding point clouds was based on the Multiscale Model to Model Comparison (M3C2)
algorithm introduced by Lague et al. [2013]. M3C2 takes into account point cloud registration
error, surface roughness and point density. It also o�ers the possibility of locally estimating a
con�dence interval for the Level of Detection (LOD) to evaluate the statistical signi�cance of
detected local deviations d from one point cloud to another. These properties are advantageous
for close range point clouds of indoor constructions with objects of di�erent granularity, e.g. brick
walls with deep grooves in comparison to smooth surfaces of concrete elements. The M3C2 distance
measure d between two locations from di�erent point clouds is calculated along the surface normal,
which is estimated from one (or more) local neighborhood(s) of n points. The spatial variance
σ of the neighboring points and the associated point cloud registration error reg is used for the
statistical evaluation at a con�dence level of 95%.

LOD95(d) = ±1.96

√σ1(d)2

n1
+

σ2(d)2

n2
+ reg

 (6.3)

[Lague et al., 2013].

The evaluation was carried out on partial sections of the data sets, e.g. on individual wall
objects (Fig. 6.7). These sub-areas each represent di�erent conditions, especially in terms of
surface roughness, sampling resolution and quality of registration.

6.3.5 Parameter setting for photogrammetric point clouds

The number and spatial distribution of photogrammetric 3D points strongly depends on the survey
and object characteristics in terms of image scale, degree of overlap between consecutive images,
lighting conditions and object textures on site. Each sub-section of scenarios 1-3 contains several
hundreds up to thousands of TPs with estimated σx, σy and σz as a result of image matching
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dy

m({occ})

Figure 6.8: Parameter setting for belief functions of photogrammetric point clouds: spatial expression of
belief in occupancy along dy [m] with κ = 25, 000

and bundle adjustment, and millions of DPs from dense matching extended with interpolated and
veri�ed accuracies Although the surveys each resulted in a di�erent average point-to-point distance,
it is assumed that for each individual scenario neighboring 3D points represent a continuous
surface. Belief assignments from neighboring TPs and DPs should on the one hand interfere to
derive kind of area �lling information, on the other hand they should re�ect the inherent fussiness
of image based 3D point measurements. The individual uncertainty information is inferred in the
phase of combined reasoning in order to balance belief levels by appropriate up- or downgrading
and the spatial expression of belief in occupancy is in a �rst step determined from the average
point-to-point distance of the photogrammetric point cloud.

According to the procedure of Sec. 6.3.1, the parameter κ is set such that the distance between
points on the curve at which the function e−κ d2y reaches half its maximum value, corresponds to
the average point-to-point distance. An exemplary average point-to-point distance of 5 mm leads
to κ = 25, 000 to ensure an area �lling coverage of bel > 0.5 (Fig. 6.8). Whether the setting is
then suitable for the speci�c BIM veri�cation task and its requirements on resolution is not a
question of parameter selection. Rather this must be ensured at the project's pre-planning stage
in order to chose an appropriate camera and image scale. The parameters λ and c follow κ in a
way that m({occ}) takes on a smooth, circular shape (Fig. 5.6) for TPs, and a more compressed
appearance in the direction of dx for DPs (Fig. 5.8). A well balanced and appropriate parameter
setting will then appear as depicted in Fig. 5.10.
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7 Results

The experiments introduced in Chapter 6 relate to di�erent indoor scenarios, construction sites,
sensor technologies and methods. The variety of quantitative and qualitative outputs as results
of the experiments is subject of this chapter. These involve accuracy investigations on simulated
image data for image-to-BIM co-registration, voxel based progress monitoring of construction
works of two real conversion projects, and geometric model veri�cation for BIM based on 3D point
clouds that were generated from both laser scanning and photogrammetry. The latter comes with
the additional results of the empirical image based dense cloud evaluation of Sec. 6.3.4.

7.1 Image-to-BIM co-registration results

An accuracy investigation on image-to-BIM co-registration was conducted on synthetic data of a
virtual camera based on the estimation procedure with corresponding line features according to
Chapter 3. Simulated statistical uncertainties were used for the experiment of Sec. 6.1. These
uncertainties relate to both the geometric reference associated with the BIM, and the quality
of straight line detection in the image. After the constraint Gauss-Helmert optimization, the
parameters of the exterior camera orientation are only implicitly available in the vector containing
the estimated parameters β̂. The parameter vector β̂ relates to p̂ - the spherically normalized
column vector containing the conditioned elements of P̂. In order to derive the exterior orientation
parameters, p̂ is reshaped to the homogeneous 3 x 4 matrix P̂ and re-conditioned with Eq. 3.29.
Matrix decomposition results in the coordinates of the projection center and the rotation matrix
R with the rotation angles α, β and γ.

Figure 7.1 depicts the projection outcome of statistically uncertain model edges into the syn-
thetic image based on the adjusted projection matrix P̂. The quality of projection and thus
image-to-BIM co-registration increases with the assigned LOA of the BIM related reference edges.
A high LOA, e. g. LOA 40, results in projected model edges and image lines that coincide well in
the synthetic image. The visual e�ects of a low quality edge projection are clearly recognizable in
the pictures of Fig. 7.1. The detailed numerical results of di�erent LOA and simulated accuracies
of straight line detection are listed in Table 7.1 and 7.2. They were calculated from 100 simulation
runs each. The results show that the exterior orientation of the camera is optimized, provided the
reference model has su�cient geometric quality. In the presented example using synthetic data,
the camera pose is improved as long as the reference model can be assigned to at least LOA 30
(σ < 7.5mm) and the standard deviation of the image points (for image line construction) for this
camera is less than 3 pixels. While very good solutions are achieved with LOA 50 model accuracy,
practically this demanding level of accuracy is very rarely achieved in real projects. In practical
applications, however, it can be assumed that essential interior elements such as doors, windows
and walls are modeled at least LOA 30 compliant and are thus generally suitable as geometric
references.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1: Synthetic image with projected 3D model edges: a) projection with true projection matrix P̃
(green) and arti�cially degraded projection matrix P (red); b) adjusted projection matrix P̂ with σl = 1.0
and LOA 10 model; c) adjusted projection matrix P̂ with σl = 1.0 and LOA 20 model; d) adjusted
projection matrix P̂ with σl = 1.0 and LOA 30 model; e) adjusted projection matrix P̂ with σl = 1.0 and
LOA 40 model; f) adjusted projection matrix P̂ with σl = 1.0 and LOA 50 model



7.2. Construction progress monitoring results 77

Table 7.1: Results of image-to-BIM co-registration for LOA 50, 20 and 30 with di�erent image line quality
and di�erent LOA from 100 simulations each.

LOA 50 (σ = 0.5mm)

Orientation-

parameter
σcam

Empirical standard deviation (s) from n=100 simulations

σl=0.0 [px] σl=0.5 [px] σl=1.0 [px] σl=1.5 [px] σl=3.0 [px]

X0 [m] 0.15 0.003 0.015 0.026 0.045 0.086

Y 0 [m] 0.15 0.002 0.010 0.020 0.030 0.072

Z0 [m] 0.15 0.002 0.007 0.014 0.023 0.045

α [°] 1 0.031 0.137 0.251 0.464 0.901

β [°] 1 0.015 0.060 0.123 0.183 0.366

γ [°] 1 0.026 0.105 0.222 0.319 0.667

LOA 40 (σ = 2.5mm)

Orientation-

parameter
σcam

Empirical standard deviation (s) from n=100 simulations

σl=0.0 [px] σl=0.5 [px] σl=1.0 [px] σl=1.5 [px] σl=3.0 [px]

X0[m] 0.15 0.017 0.028 0.035 0.051 0.084

Y 0 [m] 0.15 0.012 0.017 0.025 0.038 0.063

Z0 [m] 0.15 0.009 0.014 0.018 0.025 0.047

α [°] 1 0.160 0.223 0.297 0.461 0.813

β [°] 1 0.072 0.093 0.126 0.199 0.394

γ [°] 1 0.124 0.148 0.216 0.385 0.706

LOA 30 (σ = 7.5mm)

Orientation-

parameter
σcam

Empirical standard deviation (s) from n=100 simulations

σl=0.0 [px] σl=0.5 [px] σl=1.0 [px] σl=1.5 [px] σl=3.0 [px]

X0 [m] 0.15 0.052 0.054 0.058 0.070 0.113

Y 0 [m] 0.15 0.041 0.040 0.048 0.053 0.066

Z0 [m] 0.15 0.026 0.030 0.033 0.041 0.060

α [°] 1 0.398 0.473 0.571 0.588 0.980

β [°] 1 0.203 0.241 0.284 0.310 0.452

γ [°] 1 0.372 0.442 0.506 0.487 0.767

7.2 Construction progress monitoring results

The progress of indoor construction work of two projects was documented with TLS point clouds
as described in Sec. 6.2. The change detection results refer to a voxel size of 1 cm. Essential
structural changes in the indoor environment that occurred during conversion project 1 could be
clearly detected. Through visual interpretation and inspection, it was determined that demolished
wall elements were correctly marked as disappeared. The evaluation was performed in the same
way for voxel classes new and con�rmed. The architectural structural condition indoors follows
a constraint sensor motion and this in turn results in weak overlap of neighboring point clouds.
Therefore, in the long, narrow hallway of scenario 1, a relatively large number of voxel were labeled
unknown as a result of lack of observation mostly due to occlusions. The visual results are depicted
in Figure 7.2.

Scenario 2 is characterized by a more open interior, compared to the con�ned conditions of
scenario 1. Nevertheless, optimal scanning geometries could not always be realized in this project
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Table 7.2: Results of image-to-BIM co-registration for LOA 20 and 10 with di�erent image line quality
and di�erent LOA from 100 simulations each

LOA 20 (σ = 2.5 cm)

Orientation-

parameter
σcam

Empirical standard deviation (s) from n=100 simulations

σl=0.0 [px] σl=0.5 [px] σl=1.0 [px] σl=1.5 [px] σl=3.0 [px]

X0 [m] 0.15 0.213 0.222 0.209 0.230 0.238

Y 0 [m] 0.15 0.138 0.156 0.128 0.145 0.136

Z0 [m] 0.15 0.117 0.152 0.150 0.152 0.144

α [°] 1 1.690 1.530 1.577 1.901 1.733

β [°] 1 0.807 1.103 1.057 1.023 1.012

γ [°] 1 1.336 1.691 1.576 1.633 1.554

LOA 10 (σ = 7.5 cm)

Orientation-

parameter
σcam

Empirical standard deviation (s) from n=100 simulations

σl=0.0 [px] σl=0.5 [px] σl=1.0 [px] σl=1.5 [px] σl=3.0 [px]

X0 [m] 0.15 0.607 0.970 0.959 0.820 0.653

Y 0 [m] 0.15 0.441 1.048 0.591 0.530 0.516

Z0 [m] 0.15 0.489 0.604 0.716 0.747 0.434

α [°] 1 5.353 6.636 4.863 5.087 5.138

β [°] 1 3.201 3.778 4.986 4.691 3.346

γ [°] 1 4.718 5.551 6.650 4.940 4.778

either. Due to the lack of a ceiling in survey epoch 1, the choice of an optimal scanning view
point was limited. Additionally, the scenes of construction site 2 were characterized by a lot of
clutter such as tools, machinery and building materials. Still, the change detection succeeded well
and resulted in a very detailed voxel-cloud. Although discretization by voxel usually results in a
signi�cant loss of geometric information, the high-resolution voxelization with only 1 cm voxel size
has left visible structures of the walls, demolition edges, formwork supports, safety fences, and
even thin reinforcing steel (Fig. 7.4). In total 13,243,632 voxel where classi�ed as either con�rmed
(65, 2%), new (8.7%), disappeared (5, 0%) or unknown (21.1%).

7.2.1 Threshold variation during voxel generation

Scenario 1 was processed in several runs, each with di�erent thresholds t to experience the e�ects of
voxel size and the heterogeneous point density within the scans, i.e. voxel with di�erent numbers
of associated points. The lower t the more voxel are considered to be relevant, thus the more
information comes from the output. The higher t, the higher the quality requirements on the
voxel, and the number of voxel that do not meet these requirements anymore. Therefore, a high
threshold goes hand in hand with a reduced amount of spatial voxel information as depicted in
Fig. 7.5. Nevertheless, the e�ects of noise and outlier points increase with decreasing t, and a high
threshold practically functions as a noise �lter. This e�ect is depicted in Fig. 7.6 where mixed
pixel that occurred during indoor scanning, e.g. at the handle of a broom, vanish with increasing
t. The threshold has a particularly strong e�ect on the areas that are far away from the scanner
viewpoints and therefore have only a low point density but at the same time a lot of noise. A
good compromise and satisfying results were achieved with t = 3. The detailed numerical results
of construction site 1 can be found in Table 7.3.
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(a)

(b)

(c)

A

Figure 7.2: Resulting voxel clouds from change detection of project 1: a) epoch 2 vs. epoch 1, b) epoch
3 vs. epoch 2, c) epoch 3 vs. epoch 1 (green = con�rmed, yellow = new, red = dissappeared, blue =
unknown); Detail A: the yellow voxel indicate a cable duct that had just been closed again; Buttom line:
original TLS point clouds from epoch 1, 2 and 3, originally depicted in Fig. 6.2.

Table 7.3: Adjusting the relevance of single measurements from voxel threshold: Results of voxel-based
change detection with 1 cm voxel size and di�erent thresholds t = 3 and t = 10.

epoch
con�rmed [%] new [%] disapp. [%] unknown [%] total [# points]

t = 3 th = 10 t = 3 t = 10 t = 3 t = 10 t = 3 t = 10 t = 3 t = 10

2/1 53.2 52.2 7.9 12.6 4.3 7.8 34.7 27.3 1712632 706100

3/2 49.7 42.9 1.5 2.3 8.4 15.6 40.4 39.2 2327731 809194

3/1 43.6 45.1 1.12 2.3 7.9 16.7 47.4 35.9 2266865 803064
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Figure 7.3: Proportion of belief mass > 0.95 from laser range measurements of epoch 1, 2 and 3 con�rming
each BIM version 1 and BIM version 2.

7.2.2 Change detection point cloud vs. BIM

Change detection in terms of voxel based progress monitoring can also be performed directly using
a 3D point cloud and a BIM that is given in the IFC format, instead of exclusively using point
clouds from di�erent epochs (Sec. 4.1.3). A point cloud vs. BIM comparison was conducted for
construction site 1 and according BIM version 1 (old state before conversion Fig. 6.5), where both
the BIM and three measurement epochs were transferred into voxel space using 1 cm voxel size.
The advantage of this approach is that, due to the complete knowledge of the target occupancy
of space from the model, signi�cantly more spatial change statements can be made. When com-
paring two point clouds, on the other hand, only two incomplete spatial occupancy models are
available, the quality of which strongly depends on the on-site acquisition geometry. The voxel
clouds classi�ed into demolished and con�rmed as a result of change detection point cloud vs.
BIM for construction site 1 are depicted in Fig. 7.7. The distribution of voxel classes across the
measurement epochs clearly re�ects the progress of demolition work on site.

7.3 Geometric BIM veri�cation results

A method for the geometric veri�cation of a given BIM was proposed in Chapter 5. In order to
assess the presented theories, several experiments on real construction sites were conducted as
described in Sec 6.3. The obtained results for TLS based and image based geometry veri�cation
are presented in the following. For the latter, a distinction is made between the photogrammetric
sparse cloud given unique viewpoint information in terms of coordinates of the projection center,
and the photogrammetric dense cloud, which lacks this information for occupancy modeling.

7.3.1 BIM veri�cation using laser scanning point clouds

The point-wise evaluation for scanning epoch 1 with BIM version 1 yielded an almost complete
con�rmation of the investigated model area of construction site 1 (see Fig 6.2 for original TLS
data). Except for two cable ducts (Fig. 7.2.b detail A) that were already open during the scanning
survey due to the starting conversion, but not included in the BIM (Fig. 6.5), the modeled and
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(a)

(b)

(c)

(d)

(e)

(f)

A

Figure 7.4: Change detection results of construction site 2: a) TLS point cloud with RGB colors from epoch
1, b) TLS point cloud with RGB colors from epoch 2, c) color coded voxel cloud form change detection
epoch 2 (new) vs. epoch 1 (old), d) detail TLS point cloud from epoch 1, e) detail TLS point cloud from
epoch 2, f) detail voxel cloud (green = con�rmed, yellow = new, red = dissappeared, blue = unknown),
Detail A: newly installed ceiling in the area of a former staircase.
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(a) (b) (c)

Figure 7.5: E�ect of the magnitude of voxel threshold on the amount of spatial information: an increase
of t goes hand in hand with a reduced amount of spatial voxel information in the investigated area of the
construction site: a) t = 3, spatial extend = 11 x 15 x 3 m, No. classi�ed voxel = 1.7 M; b) t = 10, spatial
extend = 10 x 13 x 3 m, No. classi�ed voxel = 0.7 M; c) t = 20, spatial extend = 7 x 10 x 3 m, No.
classi�ed voxel = 0.5 M

(a) (b) (c)

Figure 7.6: E�ect of the magnitude of voxel threshold t on noise: an increase of t goes hand in hand with
a reduction of noise and mixed pixel in the point cloud: a) t = 3, b) t = 10, c) t = 20

(a) (b) (c)

Figure 7.7: Voxel based change detection in the version TLS point cloud vs. BIM: a) epoch 1 vs. BIM
version 1, b) epoch 2 vs. BIM version 1, epoch 3 vs. BIM version 1 (green = con�rmed, red = disappeared/
demolished).
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Table 7.4: Results of point-to-BIM veri�cation for scenario 1: BIM version 1 and 2 and point clouds of
epochs 1, 2 and 3 (σ = 2.5mm).

epoch No. points
BIM version 1 BIM version 2

m(o) >0.68 m(o) >0.95 m(o) >0.68 m(o) >0.95

1 32,689,442 299,158 73.1% 161,460 39.5% 83,894 50.3% 47,198 28.3%

2 27,653,150 188,347 46.0% 111,492 27.3% 78,051 46.8% 44,396 26.6%

3 34,626,046 138,415 33.8% 75,320 18.4% 123,604 74.1% 68,840 41.3%

Table 7.5: Results of point-to-BIM veri�cation for scenario 2: BIM of section 1 and 2, each carried out
with point clouds of epochs 1 and 2 (σ = 2.5mm).

epoch
section 1 section 2

No. points m(o) >0.68 m(o) >0.95 No. points m(o) >0.68 m(o) >0.95

1 213,246 14.9% 0.0% 457,741 18.1% 9.5%

2 1,305,770 42.5% 4.4% 5,197,094 57.8% 35.3%

real wall surface coincide. The belief functions were initiated based on the parameter setting
documented in Sec. 6.3.1. The resulting belief masses are in the range [0, 1] and hence allow for
more sophisticated analyses. Figure 7.8 depicts the queried locations Qn color coded from red:
m(o) = 0.5 to green: m(o) = 1. It can be seen that the correspondence of BIM and point cloud
sightly decreases in the front right area. Since point clouds from epochs 2 and 3 give almost the
same result, it can be assumed that the BIM does not fully correspond to the actual as-built
condition at this area. Nevertheless, this proportion of weak correspondence is relatively small,
as can be seen from the overall distribution of all masses (histograms in Fig. 7.8). Furthermore,
by looking at the di�erent survey epochs, one can see how the model and the actual conditions
diverge more and more as the construction work progresses. As expected, the results are inversely
proportional when using BIM version 2 (Fig. 7.3). Detailed results can be seen in Table 7.4 and
Figure 7.8.

Construction site 2 represents a major remodeling project, which includes a large-scale gutting
of the entire building (Fig. 6.3). Construction works within the documented survey area include
the demolition of walls, removal of wall plaster, construction of new walls, and a new ceiling in the
area of a former stairwell (Fig. 7.4.c detail A). The applied point cloud-to-BIM veri�cation reveals
areas, which actually match the planning state according to the BIM and areas with a discrepancy
between as-is and as-planned. Such deviations either result from construction work that has not
yet been carried out, from execution errors or from an incorrect geometry of the reference model
despite from its assigned LOA. Figure 7.9 shows the point cloud-to-BIM veri�cation for two certain
sections of construction site 2. The walls are very uneven and rough due to the demolition work.
In some cases, there are also old tiles on the walls, which cause a deviation in geometry and shape.
These circumstances are clearly visible in the evidence based analysis of the model with the TLS
measurements. It is also clear to see how a new ceiling was installed between epoch 1 and 2, and
how the surface of this structural element is slightly uneven. Detailed results on the achieved
con�dences can be found in Table 7.5.

7.3.2 E�ects of scanning geometry

Terrestrial laser scanning in a building's interior is often challenging due its geometrically con-
straint conditions. Especially in long corridors, it is often not possible to maintain a su�cient
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Figure 7.8: Results of point-to-BIM veri�cation for construction site 1 and BIM version 1: a) belief masses
of TLS epoch 1, b) belief masses of TLS epoch 2, c) belief masses of TLS epoch 3.

distance between the scanner source S and the wall, and this in turn results in a weak overlap of
neighboring point clouds, low observational redundancy and critically low incidence angles. A low
angle between incoming laser beam and a surface normal causes incomplete object sampling and
usually a signi�cant decrease in measurement accuracy due to noise. This common weakness of
indoor point clouds is clearly noticeable in the point cloud-to-BIM veri�cation using belief func-
tions. While the parameters setting described in Sec. 6.3.1 brings very good results for reasonable
scanning con�gurations i.e. approx. orthogonal incidence angles, it causes conspicuous results for
geometrically weak con�gurations as depicted in Fig. 7.10. In case of a low incidence angle, the
laser beam runs very close to the wall. The transverse distance dy from the ray r to the wall is so
small that query points Qn located in the negative range of the longitudinal distance dx appear
to be traversed and are therefore classi�ed as empty.

In order to compensate for this e�ect, the parameter c which a�ects the longitudinal extend
of occupied space has to be increased e.g. by factor 2-3 (Fig. 7.11). It should be noted that a
user must decide for himself in each individual case whether weak data should be compensated
for by parameter adjustment, or whether areas of low quality should be marked as suspicious and
therefore discarded. A compensation of belief assignments in case of too low incidence angles from
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Figure 7.9: Results of point cloud-to-BIM veri�cation for construction site 2: a) and b) show TLS point
clouds, visualizations of magnitude and distribution of belief masses for epoch 1 and 2 for section 1 whereas
c) and d) show TLS point clouds, visualizations of magnitude and distribution of belief masses for epoch
1 and 2 for section 2.
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S r1

r2 P2

P1

Q

Figure 7.10: E�ect of a geometrically weak scanning con�guration: a low incidence angle indicating state
empty at Q.

m({occ})

dy dx

Figure 7.11: Adjusted parameters for the mass function m(o) (occupied) in order to compensate for small
incidence angles: κ = 20000, λ = 600 and c = 7.

parameter adjustment is shown in Fig. 7.12. In particular, it can be observed that the inconsistent
areas are those that are farther away from the scanner stations S in the long, narrow hallway of
construction site 1. The e�ect of a weak scanning geometry also becomes visible in the data of
construction site 2 - section 1: The wall piece under consideration has hardly changed between
epoch 1 and 2. Nevertheless, there are di�erences in the obtained con�dences. This is due to
the fact that the laser scanner could not be optimally placed in the building during the �rst
measurements in epoch 1 due to the conditions on site. In turn, this resulted in a low incidence
angle of the incoming laser beam and a low point density on the wall (Fig. 7.9.a).

7.3.3 Results of empirical dense cloud evaluations

Individual uncertainty information is important for the evidence based reasoning approach pre-
sented in Chapter 5. In case of using photogrammetric dense points for a geometric veri�cation,
these uncertainty information is not accessible. In order to verify whether the uncertainties for
tie points as sparse cloud from bundle adjustment can be used to infer the uncertainty of DPs by
spatial interpolation, an empirical evaluation based on TLS point clouds and the M3C2 algorithm
was performed as described in Sec. 6.3.4.

Table 7.6 provides detailed numerical results of the M3C2 calculations in comparison to the
bundle adjustment results of the corresponding sparse cloud areas. Generally, the magnitude
of the deviation d and its associated signi�cance threshold follow the pattern that results from
the interrelation of scanner-object and camera-object distance, mean local tie point residual and
registration error. The diagram in Figure 7.13 illustrates this correlation. From the distinct
evaluation of subsections, it is evident that the overall TP accuracy alone is not meaningful to
the overall DP quality. Rather, DPs accuracies and corresponding belief assignments should be
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areas of inconsistent belief assignments

(a)

(b)

Figure 7.12: Compensating TLS geometry on evidence based BIM veri�cation: a) point cloud-to-BIM
veri�cation result with original parameter setting, where areas with low incidence angles are erroneously
classi�ed red = empty, b) point cloud-to-BIM veri�cation result with adjusted parameters for the mass
function m(o) (occupied) in order to compensate for small incidence angles: κ = 20000, λ = 600 and c = 7.

estimated from the individual σ of local tie points and point densities, as these best re�ect the
local geometric quality of a dense cloud as depicted Fig. 7.14.

7.3.4 BIM veri�cation using image sensors

The geometric veri�cation method based on image data named Pho-to-BIM veri�cation was de-
veloped in Sec. 5.1.2 and applied on three photogrametric data sets of indoor construction sites
that were introduced in Sec. 6.3.3. As the point-to-point distances of large photogrammetric scene
captures may strongly vary, which makes it di�cult to model belief assignments homogeneously,
it is reasonable to conduct the geometrical veri�cation for manageable sub-areas. Additionally,
in the sense of a BIM compliant building model as an object-oriented spatial database system,
the photogrammetric points are also considered group-wise as closed units characterizing certain
spatial objects. Therefore, the geometrical veri�cations were performed on �ve subsections, which
are assigned individual wall objects, i.e. TPs and DPs were pre-selected based on spatial queries
with the BIM.

In addition to the parameter setting of the belief functions, the Pho-to-BIM veri�cation result
is also a�ected by the sampling resolution of the BIM object's surface. In order to decide for a
density of query locations Q, there were mainly two aspects to consider: First, the number of
Q was chosen such that transitions between di�erent accuracies and gaps in the dataset could
be reliably revealed, i.e. the object sampling su�ciently re�ects the real conditions. Second, the
number of Q was reasonable in terms of processing time and the BIM's level of detail (Sec. 5.4).
The sampling distance for Q was chosen to be 1 cm for the conducted experiments. A comprehen-
sive documentation of the input parameters for the investigated subsections, including accuracy
assumptions, point-to-point distances and inferred parameters κ, λ and c can be found in the
upper rows of Tab. 7.7.
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Table 7.6: Results of empirical dense cloud evaluation: for scenarios 1-3 using TLS point clouds and M3C2
approach

Scenario 1 (interior) 2 (conversion) 3 (gutting)

Laser scanner

Faro Focus 3D Z+F Imager 5016

Ranging err. 2 mm Lin.err. 1 mm + 10 ppm/m

Noise 0.3-0.4 mm Noise 0.2 -0.3 mm

Scanner-object distance 2-4 m 3-6 m 5-13 m

Camera-object distance 2.5-4.5 m 4-7 m 5-13 m

Mean σ TP from BA 9.6 mm 2.8 mm 2.7 mm

Control points 5 4 7

Registration error (reg) 10 mm 1 mm 3 mm

Section 1.1 1.2 2.1 2.2 3

Number of scan points 74,000 110,000 5.8 mio 2.2 mio 4.5 mio

Number of dense points 4.8 mio 3.9 mio 5.5 mio 4 mio 3.1 mio

Mean local σ TP 14 mm 19 mm 5 mm 11 mm 8.5 mm

M3C2 dist. ±1mm 18% 10 % 44% 16% 4%

M3C2 dist. ±5mm 61% 34% 92% 63% 29%

M3C2 dist. ±10mm 84% 59% 97% 87% 81%

Mean dist. uncertainty 20 mm 21 mm 2.4 mm 2.6 mm 6.8 mm

Signi�cant deviations |d| > 19mm |d| > 20mm |d|> 2 mm |d|> 2 mm |d|> 6mm

1.1 1.2 2.1 2.2 3.1

Object
distance

Local TP
residual reg

Signi�cant
d

[mm]

Figure 7.13: Correlation of in�uencing parameters on M3C2 results: there is a correlation between scanner-
object and camera-object distance, mean local tie point residual, registration error and the according
magnitude of di�erences d assumed to be signi�cant.
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(b)(a)

Figure 7.14: Empirical evaluation of dense point quality for section 1-1: a) tie points from BA (green color
indicates high accuracy), b) dense points from stereo matching colored with M3C2 distances to TLS point
cloud (green color indicates low distances).

For each Q of a BIM object, its belief mass is calculated from its neighboring TPs and DPs.
Both tie points XTP and dense points XDP deliver metric values for dx and dy representing
variables of the mass functions according to Eq. 5.3 and 5.13. The belief committed to the
singeltons m({occ}), m({emp}) and m({U}), resp. bel({occ}), bel({emp}) and bel({U}) as a
result of processing dx and dy in the belief functions is to be balanced based on the individual
accuracy of the associated DP or TP and the BIM's LOA requirement by applying Eq. 5.24.
Then, Dempster's Rule allows for the combination of multiple balanced belief masses bel()LOA in
an arbitrary order, as the join operation ⊕ is commutative and associative (Eq. 5.14 and ??).
Table 7.7 shows the amount of con�rmed query locations Q for the �ve subsections, each for an
accuracy requirement of LOA40, LOA30 and LOA20. An according graphical representation is
given by Fig. 7.15.

Sections 1.1 and 1.2 of scenario 1 both represent rough brick walls with MEP (Mechanical,
Electrical and Plumping) installations under construction and show similar Pho-to-BIM veri�ca-
tion results. The given as-built BIM was derived from a former 3D reconstruction in an early
construction phase and is thus considered to be compliant with LOA20, which corresponds to
2σ = 5 cm. This LOA was con�rmed 36% and 29% and the uniform spatial distribution of con-
�rmed Q suggests that no tilting or strong deformation is to be assumed at the wall objects. Due
to the fact that the datasets of scenario 1 do not even a tiny bit con�rm a higher LOA, it is clear
that the TPs and DPs do actually deviate form Q in the magnitude of LOA 20 and that the
quality of the photogrammetric scene capture performed with the IPhone camera simply does not
allow for more sophisticated geometric analysis.

In contrast to the photogrammetric point measures of scenario 1, those of the sections 2.1
and 2.2 of scenario 2 do commit some amount of con�rming belief masses to two LOAs, namely
LOA20 (44% and 18% ) and LOA30 (11% and 13%). Since the standard deviation of section
2.2 is worse than that of section 2.1 by a factor of 2 (see Tab. 7.7), it is not surprising that the
percentage of con�rmation is much lower here. Scenario 2 had already been subject of a former
as-built measurement with walls in their �nal condition, which is why the given BIM is supposed
to be LOA30 compliant 2σ = 1.5 cm. The latest photogrammetric 3D point clouds show the
scene which is now composed of partially plastered walls where covering and wall papers had been
removed in the course of the ongoing indoor conversion project. Therefore, deviations that were
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Table 7.7: Results of geometric veri�cation based on images: Pho-to-BIM veri�cation conducted on �ve
subsections of the test scenarios 1-3.

Scenario 1 2 3

Section 1.1 1.2 2.1 2.2 3

BIM LOA 20 20 30 30 40

Number of Q 49,000 35,000 120,000 80,000 210,000

Number of TPs 1,564 810 3,675 766 2,599

TP-to-TP distance 5 cm 5 cm 8 cm 16 cm 15 cm

Mean σ TP 14 mm 16 mm 5.6 mm 9.8 mm 7 mm

TP parameters κ; λ; c 70,000;
1,500; 4

70,000;
1,500; 4

75,000;
1,500; 4

45,000;
1,500; 4

25,000;
1000; 4

Number of DPs 4.7 mio 3.9 mio 5.5 mio 3.8 mio 2.7 mio

DP-to-DP distance 2 mm 2 mm 1.5 mm 3 mm 4 mm

Mean σ DP 11 mm 20 mm 5.5 mm 10 mm 8.3 mm

DP parameters κ; λ; c 65,000;
2000; 4

65,000;
2000; 4

70,000;
2,500; 4

30,000;
2000; 4

25,000;
1500; 4

Con�rmed LOA 40 0% 0% 0% 0% 0.4%

Con�rmed LOA 30 0.6% 0% 10.9% 12.5% 8.6 %

Con�rmed LOA 20 36.2 % 28.6% 44.3 % 12.5% 8.7%

revealed from the Pho-to-BIM veri�cation were largely to be expected and it was furthermore to
be expected that there is a relatively great amount of Q being con�rmed to be LOA20 compliant.

The third scenario has by far experienced the largest structural changes from the last as-
built survey. Although the given BIM was assigned LOA40 with 2σ = 5mm, the gutting of
the building has left only rough structures where surfaces deviate by a few centimeters from the
previously modeled surface. Only in a few areas where the surface plaster has not yet been removed
completely (9% of the total area) the model could still be con�rmed within LOA20 and LOA30.
Yet, due to the quality of the photogrammetric survey, mutually reinforcing belief masses and the
high quality of the BIM, it is assigned some tiny amount of belief (0.4%) con�rming LOA40.
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Section LOA 40 2σ = 0.005 m LOA 30 2σ = 0.015 m LOA 20 2σ = 0.050 m

1.1 0% 0.6% 36.2%

1.2 0% 0% 28.6%

2.1 0% 10.9% 44.3%

2.2 0% 12.5% 17.5%

3.0 0.4% 8.6% 8.7%
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Figure 7.15: Veri�cation results for �ve subsections of the photogrammetric test scenarios 1-3 (blue color indicates low belief assignments whereas green color
indicates strong belief in the associated BIM's geometrical correctness)
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8 Discussion

This research focuses on three aspects of geodetic tasks in the �eld of indoor BIM. These involve
image-to-BIM co-registration, 3D point cloud based change detection and the geometric validation
of a given building model. The previous chapters introduced methodologies, experiments and
results in these contexts. The general �ndings, interpretations and outcomes but also limitations
on the main research aspects are presented in this chapter.

8.1 Discussion on image-to-BIM co-registration

With the advent of spatial indoor applications such as navigation, augmented reality and change
detection, the general need for self localization of mobile camera systems within a buildings interior
emerges. At the same time, with the implementation and dissemination of digital planning and
building, the general availability of digital building models increases. The idea of utilizing the
fact that the indoor environment is already known in the form of a BIM for visual localization
is obvious. While edge extraction and line matching are well investigated research topics in the
�eld of image-to-model matching, utilizing a statistically uncertain BIM for the co-registration of
images for change detection has hardly been addressed yet. The potential accuracy of an image-
to-BIM co-registration was investigated based on the constraint optimization model presented
in Chapter 3 and experimental parameter estimations utilizing synthetic data as ground truth
according to Sec. 6.1 and 7.1.

The tested con�guration of a roughly oriented synthetic image and line references resulted
in an optimized image-to-BIM co-registration provided the assigned BIM-edges were modeled at
least LOA 30 compliant. According to the U. S. Institute of Building Documentation, LOA 30 and
LOA 40 are the most common ones that apply for BIM related objects in indoor environments,
such as doors, walls and windows. Therefore, it can be concluded that the proposed method for
image-to-BIM co-registration is suitable for an optimized alignment between image and BIM as a
prerequisite for change detection under explicit consideration of image and BIM related uncertain-
ties. However, with a view to further re�nement of the proposed method towards practicability,
there are some points and remarks open for discussion:

❑ Although BIM elements should be modeled with some level of geometric accuracy, and the
USIBD suggests not only providing LOA information but also applying certain methods
for validation during as-built documentation, BIM-related geometry and LOA assignments
should not be considered completely error-free. Instead, it has to be expected that some
model edges are faulty regardless of their associated LOA de�nition. Additionally, the
correspondence analysis of model edges and detected straight lines in an image will in some
cases and situations fail and lead to miss-matches. With these possible di�culties in mind,
the adjustment procedure shall be improved in a way towards robustness. In case of both
local imprecisions and gross errors within the data, an option for reasonable re-weighting
observations is needed. Additionally, the estimation procedure is to be extended to a robust



94 8. Discussion

optimization by the embedding into a RANSAC loop. A hierarchical estimation pipeline
with the ability of revealing observational errors and the veri�cation of the reference BIM's
geometry that is used for the alignment of an image should be implemented.

❑ The test scenario re�ected typical indoor conditions with a general image view on walls,
windows and some indoor installations. These objects commonly provide a su�cient num-
ber of edges for an image-to-BIM co-registration. Nevertheless, in practice, these optimal
geometric references may not always be available. Sub-optimal conditions are to be expected
in case of a too large image scale as a result of a short distance between camera and object,
narrow and con�ned areas, e. g. in a hallway and in the presence of furniture and clutter
that hide object edges. Although the experiments on synthetic data have shown that the
image-to-BIM co-registration works in principle and produces su�ciently accurate results, it
has not been investigated yet how weak geometric con�gurations can a�ect the estimation.
The experiments still lack an investigation of critical geometric con�gurations. These would
include two cases in particular: i) A small number of geometric references and ii) uneven
spatial distribution of geometric references, e.g. cluster of lines and edges with uniform
orientation.

❑ The co-registration was applied for a single digital image with a BIM. However, the method
shall be applicable for a series of consecutive images as it is already assumed that the coarse
orientation of the image sensor results from SfM and visual odometry. In order to obtain
a robust solution for a series of overlapping images, the constrained estimation has to be
extended to a global optimization. This requires an adjustment of the functional model, since
geometric correspondences are treated as observations and receive numerical corrections in
order to achieve minimal contradictions for a single image. Given a �xed geometric frame,
it should be possible to co-register a set of images optimized for the model. By combining
relative orientation over the image sequence using SfM and absolute co-registration with the
model at selected image frames, it would be possible to bridge regions of weak geometric
reference. In the sense of global optimization, the principle of loop closure should also be
introduced.

8.2 Discussion on point cloud based change detection

Due to their high resolution, close-range laser scanning point clouds hold immense information
potential that is rarely exploited because there is often still a lack of suitable application-speci�c
and, above all, automated strategies for interpretation and analysis. The voxel based method
presented in Chapter 4 is an e�cient method for occupancy based change detection for progress
monitoring and AEC applications. Due to the fact that it exclusively utilizes geometric relations
between the scanner viewpoint and 3D points, it is considered extremely robust. The change
detection results that were obtained from TLS data of real indoor construction sites demonstrated
the practical applicability of the proposed high resolution voxelization.

A voxel based approach inherently involves a discretization and a loss of geometric information.
But that is precisely why it is so remarkable that there are still many details to be seen in the
resulting classi�ed voxel clouds of Sec. 7.2. Amongst others, these details refer to reinforcement
steel, sharp breako� edges, construction props and thin iron rods as part of a fall protection. A
voxel size of 1 cm leads to a maximum point shift error of d = 0.86 cm (Eq 4.1). At this point, it is
assumed that the measurement and co-registration error of the original TLS measurement is much
smaller than the discretization e�ect, although systematic and gross errors may occur but are not
considered in the progress monitoring phase. The level of voxel-detail still enables a re-modeling
of the entire scenes only from voxel, considering LOA 30 for absolute measurement accuracy
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Figure 8.1: Combined analysis of volumetric voxel within a spatial building database: original, uninter-
preted 3D point cloud (left) and voxel classi�ed as demolished prior to a 3D intersection operation with
the geometric model of the wall.

according to the USIBD. Relative measurements according to the LOA speci�cation require a
tolerance computation either using the squared or linear approach (Eq. 4.4 and Eq. 4.5). In case
of 1 cm voxel size, both of them exceed LOA 30 but rather meet the relative accuracy requirements
of LOA 20, which is for service installations, equipment, furnishings and building sitework still
su�cient [USIBD, 2019]. In the experiments however, only 1 cm voxel size was tested on standard
scanning resolution of 6 mm point-to-point distance at 10 m scanner-object distance. This scan
con�guration was chosen because it is considered a good compromise in terms of worklad on site*

and data quality. In further experiments, the scan resolution could be doubled while the voxel
size is halved in order to achieve even more detailed voxel clouds for change detection. Depending
on the speci�c accuracy requirements, the presented high resolution voxel approach can be used
as a stand-alone application for progress monitoring with non-maximum accuracy requirements
or as a pre-processing step for the detection of areas of interest towards a single point evaluation
as introduced in Chapter 5.

Although the reliable classi�cation of construction site areas in disappeard, new and con�rmed

is valuable spatial information, the process of construction progress monitoring is still not consid-
ered complete. As the results of Sec. 7.2 show, the task of change detection was solved robustly and
well on the part of the geodesy. Nevertheless, there is a need for research on the interface between
geodetic measurement data and according result interpretations, and the combined analysis with
the building database. In order to utilize the full potential of BIM, classi�ed voxel should be used
for continuously updating a BIM' geometry in the sense of permanent monitoring. Volumetric
voxel could be used for spatial intersections with BIM objects. In this way it would be possible for
example to document the demolition of a wall "as-is" (Fig 8.1) in order to enable spatio-temporal
near real time BIM. Nevertheless, the integration of massive 3D data in the form of voxel requires
the implementation of 3D indices, 3D topology and a 3D spatial query language as proposed by
Borrmann et al. [2006].

*The con�guration resulted in a scan time of about 5-6 minutes per station.
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Table 8.1: Conversion of con�dence levels using a standard normal table.

LOA σ [mm] con�dence

40 2.5 0.412 0.683 0.750 0.850 0.955

50 0.5 0.087 0.159 0.182 0.228 0.304

30 7.5 0.901 0.997 0.999 ≈1 ≈1
20 15 0.999 ≈1 ≈1 ≈1 ≈ 1

8.3 Discussion on geometric BIM veri�cation

The geometric correctness of a building information model is very important for the quality of
any analysis and further planning for project management that is based on it. The model is
only as valuable as its correspondence to the real object. However, there are still no established
methods, speci�cations and guidelines for the geometric validation of a BIM for 3D point clouds
that go beyond a simple point-to-model distance criterion. For this reason, this research gap was
addressed with a novel method for geometric validation. The conducted experiments show the
practical applicability of the developed method in this research. In the following discussion of the
results, a distinction is made between geometric veri�cation based on terrestrial laser scanning
and photogrammetric 3D point clouds.

Decision making with TLS point clouds and di�erent LOA

A BIM can be assigned a certain level of geometric accuracy. Thus, any BIM compliant model
veri�cation also has corresponding accuracy requirements that must be taken into account. On the
one hand, the accuracy of the measuring device, i. e. a terrestrial laser scanner in the experiments,
is important for subsequent evaluations. It must be ensured that the measurement accuracy meets
at least the case speci�c accuracy requirement de�ned by the LOA guideline. Otherwise, the ver-
i�cation result based on belief functions must be downgraded respectively, since the con�dence
of belief does not meet the certain demands. This is the case when an LOA 50 model is to be
evaluated with conventional TLS. A TLS related standard deviation σP = 2.5mm is assumed.
This σ corresponds to LOA 40 and relates to a con�dence of ≈ 0.68. However, LOA 50 requires
σQ = 0.5mm. Even a maximum belief in a hypothesis that was acquired with a point cloud from
TLS does not su�ciently con�rm a maximum accuracy BIM. This is shown numerically in Table
8.1: assuming a belief of 0.95 at σP = 2.5mm corresponds to only 0.30 when σQ = 0.5mm is
requested. Practically such a demanding level of accuracy is very rarely expected in real projects.
In practical applications, it can be assumed that essential interior elements such as doors, windows
and walls are modeled LOA 30 or 40 compliant [USIBD, 2019]. Thus, in most cases, TLS with
a common quality is suitable for the veri�cation of a BIM. In the best case, the measurement
accuracy is even signi�cantly higher than that of the model under test. In the experiments and
results of Sec. 7.3.1 and the assumed accuracy of the LOA 30 BIM could be almost completely
con�rmed by the laser measurements.

Point cloud-to-BIM veri�cation using TLS

The two processed datasets of real construction sites re�ect typical indoor scanning conditions
and are representative for the demonstration and evaluation of the presented method in practical
use. The optimal set up of the parameters of the belief functions was determined, such that the
experimental point cloud-to-BIM veri�cation resulted in proper joint masses with the associated
model accuracy. The standard deviation of the TLS measurements is an a priori assumption
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and input parameter for this method. Achievable TLS measurement accuracies and the e�ect of
systematic errors is a topic that is already well investigated by other researchers such as Gordon &
Lichti [2007], Wujanz et al. [2018] and Holst et al. [2018]. In practical, observational redundancy,
geodetic network design, scanning geometry and noise have an e�ect on the accuracy which is
considered in the proposed method. Weak scanning con�gurations are revealed in the phase of
point cloud-to-BIM veri�cation. Noise will be assigned low belief masses, as following the proposed
parameter setting, the longitudinal and transverse distance (dx and dy) to query positions (Q) will
be too large. A generally su�ciently large number of correct scan points will in turn compensate
for this e�ect. Further more, suspicious scanning con�gurations, which, from experience, entail
an increased risk of low point qualities, are revealed from the parameter c of the belief functions
(5.3), which a�ects the longitudinal extend of occupied space. This e�ect becomes visible in case
query points Q are classi�ed as empty if c = 2 (Fig. 7.3.2).

While the special properties of surface materials can cause systematic errors during scanning
that a�ect the result, more obvious errors such as from clutter, strong measurement noise or point
artifacts have only little e�ect on the point cloud-to-BIM veri�cation method. These error sources
can be handled in the phase of pre-processing by applying the high resolution voxel approach
of Chapter 4. A small voxel size (e.g. 1 cm for high resolution indoor TLS) and the threshold
parameter T , which controls the minimum number of laser points within a voxel for being consid-
ered as relevant for further processing. In the phase of point cloud-to-BIM veri�cation, remaining
noise and false returns will be assigned low belief masses, which are compensated by the usually
great number of proper laser points. Related strategies for dealing with clutter and occlusions in
building point clouds can be found in Maalek et al. [2018] and Pexman et al. [2021].

Pho-to-BIM veri�cation using images

According to the USIBD, the speci�cation of a building-object's level of geometric accuracy is
essentially important for meeting quality requirements in context of the digitization of construction
and BIM. Reliable con�rmation of the level of accuracy of exterior walls and interior partitions, as
demonstrated Sec. 6.3.3, 6.3.5 and 7.3.4 is therefore valuable for the AEC practice. The detailed
results of photogrammetric geometry veri�cation are to be interpreted from di�erent points of
view:

❑ Accuracy: The results of the three real construction datasets show, the given geometric
models could be con�rmed on the basis of the image measurements to certain proportions
mostly within LOA20 and LOA30. As expected, areas where the deviations were too large
clearly correlate with areas of insu�cient measurement accuracy, where there is just not
enough con�dence (e.g. section 1.1) and insu�cient consistency between model and reality,
e.g. due to ongoing construction work (section 3). Furthermore, a signi�cant loss of belief
is observed each in the corners of the wall objects, where the multi-view geometry is con-
sidered sub optimal as a result of a limited range of sensor motion in this areas. Prior to
measurement, predictions could be made about the achievable accuracies based on the given
BIM. For most practical applications and BIM-object categories, compliance with LOA30
is commonly satisfying and the evaluated experiments show, that this LOA can actually
be veri�ed with professional image sensors and reasonable e�ort. Future developments in
the �eld of autonomous indoor-UAVs are particularly promising regarding e�ciency and
safety. However, LOA40 and highest LOA50 with 2σ = 1 mm are very hard to verify by
photogrammetric scene captures on site as this would require a signi�cantly higher quality
of ground control points, camera calibration and multiple view geometry. In order to meet



98 8. Discussion

these requirements, tests under laboratory conditions should be conducted prior to on site
surveys.

❑ Resolution and generalization: In the experiments, the veri�ed BIM objects are geomet-
rically characterized by �at, continuous wall surfaces that are sampled according to the
agreed resolution. Optimal resolution is achieved when the point-to-point distance of the
measurement and the number of sample points correspond to an application's required level
of detail. Although in the scenarios 1-3 only the geometric primitive "planar surface" was
searched for, the resolution of section 2.1, for example, would be high enough to also reveal
�ner structures such as wall recesses for pipes, if targeted searches were performed. The
problem however is, that MEP related structures are not true to shape modeled within a
BIM, but commonly heavily generalized and represented only by symbolic (Fig. 8.2). Hence,
an exclusively geometry based point-to-model veri�cation is not reasonable but should be
combined with semantic image interpretation, e.g. deep learning supported object detection.

❑ Representation of uncertainty: A BIM-compliant 3D model of a buliding follows certain rules
of procedural and parametric modeling. The speci�cation of geometric primitives in addition
to topological constraints ensure extensive model validity and data consistency. However,
such geometric restrictions limit the ability of modeling true to shape, based on an as-built
scene capture for BIM. As a result, detected deviations between model and reality from
a Pho-to-BIM veri�cation may not necessarily lead to a geometrical update of the BIM.
Instead, the revealed uncertainty information could be stored as an additional attribute
within the object oriented spatial database. By extension, photogrammetric digitization of
MEP installations would also relate to these uncertainty-attributed base components. If for
example a power outlet and according electric cable are to be captured by photogrammetric
3D point measures from forward intersections, although despite potentially high precision,
these newly created reference points would lead to a violation of topology rules as they do not
perfectly join the planar base component "wall". Therefore, information from interior work
phase should be projected onto their uncertainty-attributed base components and extended
with uncertainty attributes themselves. For example, augmented reality applications in
which cables underneath wall plaster are visualized could be enriched with reliable accuracy
information so that, for example, a cable is not accidentally damaged during drilling.
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(a) (b)

(c) (d)

Figure 8.2: Room with MEP installations: a) Floor plan with general electrical and plumbing symbols,
b) 3D visualization of the initial BIM, c) Image based 3D point cloud, taken at the time when the walls
had open slots with cable and cavity wall boxes for electrical outlets to be installed. In addition, the as-
built capture already documents the horizontally laid drainpipe and pipes for water supply in the kitchen,
d) Updated BIM showing the as-built condition of the electrical cables in the walls, overlaid with the
georeferenced point cloud.
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9 Conclusions and Outlook

This concluding chapter summarizes the research topic addressed in this thesis. In particular, the
most important results are discussed, the answering of which was set as an objective at the begin-
ning. Finally, the thesis ends with a concluding remark and an outlook on future developments
and research in this �eld.

9.1 Conclusions

As-built models are the next evolutionary step and form the basis for rapid action by decision
makers. In this context, many engineering companies have found a new focus in their range of
services. In "as-built" surveying for BIM, they rely on high-resolution 3D point clouds from TLS
and photogrammetry. The methods presented in this thesis refer to image-to-BIM co-registration,
progress monitoring and the geometric veri�cation of a given building model. They are based on
the geometric evaluation and interpretation of as-built image and point cloud data and consider
the individual statistical uncertainties of geodetic measurements and the geometric uncertainties
of a reference BIM according to the LOA speci�cation.

Regarding these topics, three research questions were posed at the beginning of this thesis,
which will now be answered in the following.

Research question Ia: To what extend do geometric uncertainties of BIM related

reference objects e�ect the accuracy of an image-to-model co-registration?

The aspect of image-to-model co-registration in indoor environments was addressed by the de-
velopment of a constraint estimation model based on corresponding straight lines in an image and
BIM related model edges, which serve as geodetic references. Experiments using synthetic data
as ground truth were carried out to assess the e�ects of di�erent levels of geometric uncertainty.
In order to not only evaluate the numerical behavior of uncertainties, but also to be able to assess
the practical applicability, the simulations have referred to the Level of Accuracy speci�cation for
BIM. The results showed that by using the proposed method, a coarse image orientation can be
optimized provided the reference BIM can be assigned to LOA 30 or higher. According to the
U.S. Institute of Building Documentation LOA 30 is the most common one that applies for indoor
BIM objects. Thus, it can be concluded that the geometric building model can serve as a geodetic
reference itself in the proposed way.

Research question Ib: Is the geometric quality of common BIM-compliant interior

models su�cient to serve as a geodetic reference itself and to make statements about

the compliance with metric tolerances?

Considering the principles of variance propagation, the accuracy of subsequent measurements
is limited by the accuracy of the image-to-BIM co-registration. When considering whether metric
tolerances can be con�rmed based on an image-to-BIM co-registration, a distinction must be made
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between two cases. First, metric tolerance evaluations in context of engineering and construction
require a con�dence interval of the measurement to be signi�cantly smaller than the speci�ed
tolerance of the object to be tested. An LOA 50 BIM would be necessary for image-to-BIM
co-registration to enable the detection of material defects and workmanship faults after the manu-
facture or installation of individual components during construction phase for example according
to ISO 1803 and DIN 180202. In practice, however, LOA 50 models are not expected to actually be
encountered. Second, metric tolerances in the context of building documentation according to the
LOA speci�cation refer to the acceptable tolerance range for the building measurements acquired
during the "scan-to-BIM" acquisition process, and the tolerance range for the representation of
these measurements in the model. The LOA speci�cation not only takes up common measurement
accuracy standards (DIN 18710), but especially provides detailed guidance on the representation,
modeling and veri�cation of as-built data. According to the LOA standard, LOA 30 (15 mm) and
LOA 40 (5 mm) can be assumed for interior constructions and �nishes (e.g. interior doors, wall
�nishes and �ooring). In contrast to the requirements in building construction, an indoor BIM
itself can be used for common tolerance requirements in as-built documentation according to the
USIBD.

Research question II: What are the limits of automated 3D point cloud based

change detection in terms of detail and resolution? Is it su�cient for interior building

documentation with associated accuracy requirements?

In this thesis, a 3D point cloud based change detection was realized by high resolution 3D
occupancy modeling using voxel. 3D point clouds in a common resolution of 6 mm point-to-point
distance at 10 m scanner-object distance that were obtained from terrestrial laser scanning were
used for the experiments on real construction sites. A voxel size of 1 cm leads to a reasonable num-
ber of classi�ed voxel for change detection analysis and a maximum point shift error of ≈ 0.86 cm.
Given this discretization error, an absolute re-modeling of the 3D construction scene from voxel
centroids is possible up to LOA 30. Regarding relative tolerance computations from voxel clouds
exceeds LOA 30 but meets LOA 40 requirements, e. g. checking the distance between two walls
during construction progress monitoring.

Research question III: Which accuracy classes for BIM can still be veri�ed with

su�cient con�dence using common laser scanners and RGB cameras?

A building's interior is a quite challenging environment for the veri�cation of geometry and
detected changes. A variety of in�uencing factors has to be considered on a geodetic measurement
in order to reveal spatial information with su�cient con�dence for decision making in context
of BIM and AEC applications. These involve co-registration/ georeferencing, geodetic network
design, observational redundancy, noise and random errors but also the resolution in terms of
point sampling distance. In order to manage the uncertainty and fuzziness of geodetic point
measures, a mathematical expression of belief masses within the frame of Dempster-Shafer evidence
theory was developed in this thesis. The experiments were based on di�erent laser scanners and
RGB cameras, including an indoor drone and a smart phone camera as these devices and sensors
represent typical state of the art mapping systems on both professional and consumer level. From
the belief function setup and the obtained results of real construction site data it can be concluded
that TLS can verify a BIM's geometry up to LOA 30, whereas the photogrammetric approaches
yielded a con�rmation in the range of LOA 20-30 for a smart phone, up to LOA 40 when utilizing
a professional system camera.



9.2. Outlook 103

9.2 Outlook

In the AEC industry, there is a great need to implement digital methods and to therefore verify
the quality of building information models in order to conduct valid analysis, progress control and
planning. In this context, the aim of this thesis was to develop methods to further advance progress
monitoring and evaluation, particularly in indoor environments. This goal was achieved through
the successful development of scienti�c methods and research in the �elds of image-to-model co-
registration, point cloud based change detection and geometric BIM veri�cation. Considering the
research results and the current limitations of the proposed methods, further aspects should be
investigated and improved in the future.

The novel method for geometric veri�cation is based on the combination of Dempster-Shafer
theory and 3D point clouds from laser scanning and photogrammetry. The new approach is
particularly capable to manage and infer individual uncertainty information of both, the image
measurements and a pre available BIM according to the LOA speci�cation. For the veri�cation,
there is no 3D reconstruction necessary, no pre-processing (e.g. outlier removal) and every single
point information is used. Thus, there is no discretization nor any kind of approximation of the
original data. The strength of Dempster Shafer theory is decision making for practical applications
from the combination of multiple evidence and the explicit consideration of ignorance. If an
assumption cannot be con�rmed directly, this does not automatically mean that its negation is
advocated. This is a crucial advantage, because in context of as-built veri�cation, it allows to
distinguish model areas that are not con�rmed because of occlusions from those that actually
deviate geometrically. However, the results are sensitive to the geodetic networkdesign on site
and the parameter setting of the belief functions. Therefore, the proposed method should be
tested in some more construction site scenarios with varying geodetic con�gurations and long
term monitoring. In particular, the e�ects of di�erent combination rules for con�icting evidence
and weighting such evidence should be investigated.

It is conceivable to upgrade a BIM's associated LOA if it is veri�ed with su�cient belief from
accurate TLS or image-based measurements. Actually, the geometry of a BIM could be updated
by spatial 3D operations with voxel. In this context, progress is needed in the area of BIM-GIS
(Geo Information Science) integration and enhanced functionality of 3D and especially indoor GIS
frameworks, including 3D topology and level of detail structures as discussed in Borrmann et al.
[2006] and Meyer & Brunn [2019]. Furthermore, modern mobile mapping systems, e.g. backpacks,
(indoor) UAVs or trolleys are promising for as-built documentation and change detection. In
future development, the presented approaches shall be adopted to these types of systems. In case
of a mobile sensor platform, the trajectory, the motion model and the quality of the absolute
orientation have to be considered in stochastic input and in the set up of the belief functions.

Generating image based 3D point clouds is quick and easy with a wide range of camera sensors
and 3D reconstruction software. The developed image-to-BIM co-registration method based on
BIM-edges shall be further extended and optimized for stereo cameras. In this way, a scale
information would be directly obtained, which in turn, increases the robustness of the method.
Either way, once a proper co-registration is achieved, the experiments of this work showed that
caution is required when evaluating and interpreting photogrammetric results. Although the
amount of image overlap and GCP residuals roughly indicate the quality of a photogrammetric
scene capture, professionally quali�ed statements require the consideration of the entire bundle
adjustment result. Only then it is possible to infer single point accuracies as well as to apply
statistical tests in order to reveal possible outliers and systematic errors. Currently, methods for
statistical analysis of photogrammetric point clouds that estimate valid con�dence intervals for
individual points are still lacking. Future work could be dedicated to this topic.



104 9. Conclusions and Outlook

Finally, regarding image based techniques, an extension with semantic image interpretation
and tests on the maximum assessable accuracy with regard to LOA 50 �rst, under laboratory
conditions, shall be part of future work. Additionally, a planning of photogrammetric surveys
for Pho-to-BIM veri�cation based on BIM and forecast adjustments could be developed. In this
way, it cloud be aimed to implement the presented methods in as-built modeling software for
an optimal scene capture, a supported modeling process by kind of permanent and on the �y
point cloud-to-BIM compliance checking as well as uncertainty aware analysis for BIM based on
a draft towards an uncertainty extended spatial data model that supports common level of detail
structures.
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