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Higher-order and Quotient group symmetry-protected
topological phenomena

ABSTRACT

In this thesis, we study two aspects of interacting bosonic symmetry-protected topo-
logical (SPT) phases. First, we focus on the recently introduced branch of higher-
order SPTs, which were so far mainly considered in non-interacting free-fermion sys-
tems. Second, we study quotient group symmetry-protected topological phenomena for
one-dimensional SPTs and discuss how additional gapped degrees of freedom can en-
dow quantum critical points, separating such states, by topological properties or keep
topological signatures robust even though the actual phase is trivial.

In the first part, we investigate a concrete, strongly-interacting 2D model system that
realizes a higher-order SPT phase. Thereby, using a combination of numerical methods
and analytical treatments, we construct an experimentally accessible topological invari-
ant for which we provide experimental relevant data, discover signatures of the non-trivial
topology in the entanglement spectrum and establish a bulk-boundary correspondence—
the Achilles’ heel of topological states of matter. These findings significantly increase the
understanding of these states and, in particular, allow experimentalists to verify those
phases in the lab.

In the second part, we consider quotient group symmetry-protected topological phe-
nomena for two concrete cases using a combination of numerical and analytical tools.
Thereby, among other things, we contribute to the understanding of quantum phase tran-
sitions between those states. More precisely, for a particular class of one-dimensional
SPTs we discover that there are more direct and stable transitions as initially expected.
We explain that this is due to the fact that the global symmetry group acts as a quo-
tient group at low-energies and, thus, leaves additional gapped degrees of freedom at
quantum criticality, which can endow the latter with additional topological properties.
Furthermore, by a similar mechanism, we demonstrate that topological signatures of
the Haldane phase remain robust over a large parameter regime even though the global
symmetry (in the fermionic Hilbert space) cannot protect the non-trivial SPT and, conse-
quently, the bulk is strictly speaking in a trivial phase. As a consequence, we introduced
a new branch in this field, dubbed quotient group symmetry-protected topological phases.
This discovery opens the door for experimentalists to measure signatures of SPT phases
without the necessity to realize an actual SPT.
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Quotientengruppen symmetriegeschützte topologische
Phänomene und symmetriegeschützte Phasen höherer

Ordnung

KURZFASSUNG

In dieser Dissertation untersuchen wir zwei Aspekte wechselwirkender bosonischer
symmetriegeschützter topologischer (SGT) Phasen. Zu Beginn fokussieren wir uns auf
den kürzlich entdeckten Zweig der SGT Phasen höherer Ordnung, die bisher überwiegend
in nicht wechselwirkenden Systemen freier Fermionen betrachtet wurden. In der zweiten
Hälfte untersuchen wir Quotientengruppen symmetriegeschützte topologische Phänomene
für eindimensionale SGT Phasen und diskutieren, wie zusätzliche Freiheitsgrade quan-
tenkritische Punkte, zwischen solchen Zuständen, mit topologischen Eigenschaften verse-
hen oder topologische Signaturen schützen können, obwohl die zugrundeliegende Phase
trivial ist.

Der erste Teil der Arbeit beginnt mit der Analyse eines konkreten, stark wechsel-
wirkenden 2D Modellsystems, das eine SGT Phase höherer Ordnung realisiert. Dabei
konstruieren wir eine experimentell zugängliche topologische Invariante, für die wir
zusätzlich experimentell relevante Daten bereitstellen. Anschließend diskutieren wir
nichttriviale Signaturen im Verschränkungsspektrum dieser Phasen. Des Weiteren be-
weisen wir mithilfe dieses Modells die Korrespondenz zweier topologischer Invarianten,
die Eigenschaften des Randes und des Innern charakterisieren – ein fundamentales Merk-
mal topologischer Phasen. Diese Ergebnisse verbessern das Verständnis dieser Zustände
erheblich und ermöglichen es insbesondere Experimentatoren, diese Phasen im Labor zu
verifizieren.

Im zweiten Teil betrachten wir Quotientengruppen symmetriegeschützte topologische
Phänomene für zwei konkrete Fälle mit einer Kombination aus numerischen und ana-
lytischen Methoden. Damit tragen wir unter anderem zum besseren Verständnis von
Quantenphasenübergängen zwischen diesen Zuständen bei. Genauer gesagt, entdecken
wir für eine bestimmte Klasse von eindimensionalen SGT Phasen, dass es weitaus mehr
direkter Phasenübergänge gibt als ursprünglich erwartet. Dies ist darauf zurückzuführen,
dass die globale Symmetriegruppe bei niedrigen Energien als Quotientengruppe fungiert
und somit zusätzliche Freiheitsgrade mit endlicher Energielücke am quantenkritischen
Punkt hinterlässt, die Letzteren mit zusätzlichen topologischen Eigenschaften ausstatten
können. Des Weiteren zeigen wir, dass aufgrund desselben Mechanismus, die topologis-
chen Eigenschaften der Haldane Phase über ein großes Parameterregime robust bleiben,
obwohl die globale Symmetrie (im fermionischen Hilbertraum) die SGT Phase nicht
schützen kann und sich der Zustand streng genommen in einer trivialen Phase befindet.
Um diesem Phänomen Rechnung zu tragen, haben wir den Begriff der Quotientengrup-
pen symmetriegeschützten topologischen Phasen etabliert. Diese Entdeckung eröffnet
Experimentatoren die Möglichkeit, Signaturen von SGT Phasen zu messen, ohne eine
tatsächliche SGT Phase realisieren zu müssen.
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Chapter 1

Introduction

Condensed matter physics is the study of large assemblies of interacting, dense arrays
of particles. In solids, for example, the interatomic distances are of the order of ∼ 1Å,
which corresponds to the size of individual atoms. Because matter is made up of atoms,
studying these systems requires knowledge of atomic and molecular physics. Further-
more, depending on temperature, quantum mechanics becomes more or less important.
Since particle numbers in such systems are enormous ∼ 1023, it is practically impossible
to solve single equations of motion and, thus, condensed matter systems are completely
characterized in terms of macroscopic properties, requiring knowledge of statistical me-
chanics and thermodynamics. Consequently, condensed matter physics is not only the
study of many interacting particles, but also connects many branches of physics.

In (condensed matter) systems in which constituent particles are closely packed to-
gether, i.e., interparticle distances are of atomic size, physics is not governed by prop-
erties of individual atoms or molecules; instead, such systems behave fundamentally
different as expected from single particle physics. A crystal, for instance, is a highly-
correlated regular arrangement of atoms; thus, knowing the position of a single atom
immediately tells us the position of all other atoms (up to fluctuations around the equi-
librium position). Typical excitations of solid materials are lattice vibrations, a collective
phenomenon in which all atoms participate. Energy scales of such excitations are com-
monly much smaller than energy scales set by individual atoms (∼ 10−2 eV ≪ 13 eV).
There are many other collective phenomena such as superfluidity, superconductivity,
magnetism and various quantum Hall effects that are a consequence of interacting, many
particle systems that cannot be understood from the perspective of a few degrees of free-
dom. This fundamental principle, which occurs almost everywhere in nature, is known
as emergence. The message is simple: even if we know the functionality of all parts of
the system, the collection can behave fundamentally different [1].

Condensed matter systems can realize different phases of matter, and the task of
physicists is to classify and specify their properties. For this, temperature plays an
important role, namely, there are phases of matter, so-called quantum phases, which
strictly only exist at zero temperature and are not stable to thermal fluctuations [2].
In this thesis, we focus exclusively on such states of matter. For the classification of
phases of matter, symmetries are crucial. In fact, symmetries are the Achilles’ heel
for the quantum phases studied in this work—that is, without symmetries we cannot
distinguish those states of matter. This also applies to spontaneous-symmetry-breaking
phases, for which Lev Landau developed an enormously successful theory more than

1



Chapter 1 Introduction

80 years ago, the so-called “Landau theory of symmetry breaking” [3]. This theory
successfully describes many phases of matter, such as crystal formation [spontaneous-
symmetry-breaking of translations and rotations], (anti-)ferromagnetism [spin-rotational
symmetry] or superfluidity [U(1) phase rotations]. However, there are new types of orders
for which this classification does not differentiate distinct phases of matter. In 2016
Kosterlitz, Thouless and Haldane were awarded the Nobel Prize for their discovery of
topological phases and their transitions. Among other things, they explained why there
is a (thermal) phase transition in the classical 2D XY model—although the Mermin-
Wagner-Hohenberg-Coleman theorem forbids spontaneous-symmetry-breaking for two-
dimensional systems at finite temperatures1.

In fact, it is the case that topological phases lack local order parameters and long-
range order that characterize these phases of matter. What are topological phases of
matter? Xiao-Gang Wen summed this up very clearly in his colloquium on the “Zoo
of Topological Phases of Matter” [4]. According to this, topological phases of mat-
ter are zero-temperature orders characterized by a finite bulk gap and rich patterns of
many-body entanglement. There are many topological phases of matter, including the
quantum Hall states [5–7], first discovered in 1980. These states are characterized by
long-range entanglement—the origin of topological order. This is reflected in two in-
triguing properties of topologically ordered states, which are the non-trivial exchange
statistics of their excitations, which in 2D can take arbitrary values and, thus, called
anyons [8] and, second, the degeneracy of their ground states depends on the topology
of the manifold. This is a clear-cut implication that these states are truly different from
product states. Importantly, these states of matter require no symmetry protection.

For the second class of topological phases, symmetries are crucial, that is, these phases
of matter exist only in the presence of symmetry; thus named symmetry-protected topo-
logical phases of matter. These states of matter have no intriguing bulk properties, but,
as we shall see several times in this thesis, are characterized through anomalies at their
boundaries. For instance, such anomalies can be zero-energy modes at the boundary,
which are hallmarks of non-interacting free-fermion topological insulators. A well-studied
example is the quantum Spin Hall effect [9–12], a time reversal symmetric topologi-
cal insulator (Z2 classified), whose bulk is insulating, and its edge is characterized by
extended-zero energy states, that are robust to symmetry-preserving perturbations—i.e.,
are symmetry-protected. In this thesis, however, we mainly focus on strongly-interacting
bosonic systems, among which is the antiferromagnetic spin-1 Heisenberg model, whose
ground state is known to be a symmetry-protected topological phase protected by spin-
rotation symmetry, time reversal symmetry and bond-centered reflections [13–17]. In
fact, these phases of matter occur in very different variations, and their topological
properties can be protected by on-site symmetries, spatial symmetries and combinations
thereof [18–20]. Recently, different orders of symmetry-protected topological phases
have been introduced, which got named higher-order topological insulators—in the non-
interacting case [21–23]. Thereby, higher-order characterizes the dimension on which

1Indeed, this transition cannot be explained by Landau’s theory, since it is a topological phase transi-
tion.

2



Chapter 1 Introduction

anomalies occur. For example, a second-order symmetry-protected topological phase in
2D is characterized by anomalies at the corners, or hinges in three dimensions.

As already mentioned, these orders cannot be detected by methods used for symmetry
breaking phases; however, there is another intriguing property of these states, and that
is, the way how these phases can be transformed to a trivial state. A common way, of
course, is to simply break all symmetries that are essential to protect this phase. How-
ever, for topological phases protected by symmetry, there is another way—without the
necessity of symmetry breaking—that is, symmetry extension. This means that the pro-
tecting symmetry group is enlarged, which can be achieved, for example, by introducing
additional degrees of freedom, thereby trivializing the state of interest. In theoretical
models, for example, we very often use spin chains as an effective description, which
certainly can be very successful. However, if we remember that these approximations
remain true only in certain limits, then symmetry-protected topological phases can be
trivialized if we take these additional degrees of freedom into account.

1.1 Motivation, Questions & Methods
This thesis is mainly concerned with the classification and characterization of symmetry-
protected topological phases. First, we consider a higher-order symmetry-protected
topological phase in a bosonic setup, where one of our main intentions is to propose
an experimentally accessible model, whose topological nature can be probed in labora-
tories. However, before this is possible, we first need to argue that the system of interest
literally realizes such phase and, importantly, propose measurable invariants.

Second, in the introduction, we said that symmetry-protected topological phases of
matter can be trivialized by extending the symmetry group. If a symmetry group G is
extended by another group H, then the inverse operation is taking the quotient group,
that is G = G̃/H. As we shall see, a crucial step towards understanding quotient group
symmetry-protected topological phenomena is a separation of energy scales. Thereby,
low-energy properties are fully governed by the quotient group, while the subgroup—
to which we take the quotient—acts non-trivially on high-energy degrees of freedom.
In such setups, there can be additional degrees of freedom that can endow quantum
criticality with non-trivial topological properties. Moreover, we will demonstrate that
this gives also rise to a new phenomenon, called quotient group symmetry-protected
topological phases.

1.1.1 Higher-order topological phases
When higher-order topological phases were discovered in the mid of 2018, there have
already been many theoretical results [20–26], in particular, for non-interacting sys-
tems [21–24, 27], to classify these states of matter and, importantly, arguing its robust-
ness. However, at that time, most theoretical models developed so far have been either
non-interacting or consisted of complicated spin interactions [20]. After Bernevig, Benal-
cazar and Hughes [21, 22] found a 2D free-fermion generalization of the Su-Schrieffer–Heeger [28]
model, a two-dimensional higher-order topological insulator, which, however, requires a

3
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non-trivial gauge flux to be gapped, we asked if there is a bosonic analogue, which is
easier accessible in experiments. The most promising candidate was the Bose-Hubbard
model, which is experimentally well-controlled [29–32]. Moreover, in one dimension—
for infinite strong on-site repulsion—it can be transformed to the Su-Schrieffer-Heeger
model [28, 33], a one-dimensional fermionic symmetry-protected topological phase. Con-
sequently, we asked if the two-dimensional Bose-Hubbard model on a square lattice with
dimerization also gives rise to a higher-order symmetry-protected topological phase—
and—indeed, it does. However, aside from the advantage that this model does not need
gauge fluxes to be gapped, it allows physicists to study interactions and their effects on
the robustness of these phases. While initially the main motivation for studying this
model was to pave the way towards an experimentally accessible higher-order topolog-
ical setup, we have been interested in a more profound understanding of higher-order
topological phases in this particular model. To this end, we answered the following
questions:

1. Does the 2D Bose-Hubbard model on square lattice with alternating hopping am-
plitudes realize a higher-order topological phase, and is it robust?

2. What are genuine topological invariants characterizing this phase, and how can
they be accessed in experiments?

3. Can we find a relation between these topological invariants, in particular, a bulk-
boundary correspondence—relating bulk topology to anomalies at the corners?

These were the questions at the beginning of the PhD, but as time proceeded, many
other questions came to our mind, which we answered during the PhD.

1.1.2 Quotient group symmetry-protected topological phenomena
In 2017 Tsui et. al [34] studied quantum phase transitions among fixed-point models of
one-dimensional symmetry-protected topological phases protected by a direct product of
cyclic groups, Zn×Zn. For each n, there are n distinct phases, and each is characterized
by a fixed-point Hamiltonian. However, the authors only considered phase transitions
among neighboring classes and did not consider transitions between phases whose in-
dex differ by more than one. But, the authors speculated that those transitions split
into successive transition of neighboring phases, which we showed is not the case. For
instance, in the case of Z4 × Z4 symmetry, we found that all transitions in this symme-
try group are direct (for a single parameter interpolation of fixed-point Hamiltonians).
Thereby, we realized that non-neighboring transitions of this symmetry group can be
fully understood by neighboring transitions of the lower-dimensional Z2 ×Z2 symmetry
group, or said differently, the transition between the two topologically distinct phases of
Z2 × Z2 symmetry is embedded into a higher-dimensional Hilbert space. This was the
first time we encountered that low-energy properties, in particular, quantum criticality is
governed by the quotient group, and that there are additional gapped degrees of freedom
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at quantum criticality. At the beginning of the PhD, this opened many ways to pro-
ceed, upon which we choose the following two: On one hand, we investigated quantum
criticality of these models even further, and have been interested in:

1. How robust are these direct transitions, and if so, what causes their robustness?

2. Is it fine-tuned for this particular symmetry group, Z4 × Z4, or does it hold for
other n as well?

3. How generic are the observations made for this particular model?

On the other hand, it has been known that the Haldane phase, a symmetry-protected
topological phase—among others protected by spin-rotation symmetry and often studied
in spin chains—can be trivialized by fluctuating charges. As previously said, spin chains
often arise as an effective, low-energy description of more complicated degrees of free-
dom, which in this particular case can be obtained from strongly-interacting fermions
subjected to a bipartite lattice, the so called (Fermi-)Hubbard model [35]. The mech-
anism behind this trivialization process is symmetry extension, which has been known
before [36–39], but what has not been studied at this point was the robustness of topo-
logical signatures. Thus, the following questions needed to be answered:

1. How robust are topological signatures if the Haldane phase is trivialized by fluc-
tuating charges?

2. If they are robust, what causes their robustness, and how general is this?

3. How are the quotient symmetry-protected topological phenomena found previously
and here are related?

This list is by no means exhaustive and many more interesting questions have been
addressed during this PhD, but those are the question we started with.

1.1.3 Methods
To tackle the above questions, we used a combination of analytical and numerical tools.
On the analytical side, we mostly used the standard formalism of quantum mechanics and
only a very few concepts of field theory. For numerical purposes we used exact diagonal-
ization and the overwhelming successful algorithm, the so-called density renormalization
group ansatz, first introduced by Steve White in 1992 [40, 41]. This variational method
is the optimal ansatz to numerically consider one-dimensional symmetry-protected topo-
logical phases because these states fulfill an area law and, thus, only a few eigenstates of
the reduced density matrix contribute significantly to the entanglement. This is exactly
the property on which the truncation scheme of this algorithm is build on, and that is
also the reason why it is so successful. In particular, with the help of this algorithm the
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excitation gap of the spin-1 Heisenberg model was found to very high precision [41]. Al-
though for two-dimensional systems the algorithm is much less powerful2, it nevertheless
allows us to gain insight into fascinating states of matter [42].

1.2 Outline of the thesis and publications
Here we first give an overview of how this thesis is structured. A detailed outline is given
at the beginning of each individual chapter. Further, we list all publications that have
been obtained during this PhD. There, we briefly summarize the main contributions of
individual authors.

1.2.1 Thesis overview
Below, we summarize the most important aspects of each individual chapter.

Part I: Higher-order symmetry-protected topological phenomena

Chapter 2

This chapter serves as a review of the most important concepts we are using during this
thesis. Thereby, we start with reviewing two equivalent definitions when two quantum
states belong to the same phase of matter, and how states can be differed according
to their entanglement properties. Further, we give a rather general introduction to
symmetry-protected topological phases, and name the most important characteristics.
Since in this thesis we exclusively consider bosonic phases, we discuss various examples of
bosonic symmetry-protected topological states of matter, and along this, we introduce
many concepts used in this thesis. This chapter ends with a discussion on possible
processes to trivialize symmetry-protected topological phases, which is demonstrated
for a particular example.

Chapter 3

Here we introduce the 2D Bose-Hubbard model on a square lattice with alternating hop-
ping amplitudes at half-filling. This chapter starts with a definition of the Hamiltonian
and its symmetries. Further, we consider the exactly solvable cases and argue that it
indeed realizes a higher-order topological phase. Afterwards we discuss its relation to
models known in the literature, in particular, its relation with the aforementioned 2D
generalization of the Su-Schrieffer-Heeger model. Given this, using numerical methods,
we demonstrate that this model for strong enough on-site repulsion among the bosons,
realizes two distinct gapped phases. After this is settled, we study the topological clas-
sification of this model. For this, we discuss a higher-order generalization of the Zak

2In one dimension the entanglement entropy is constant because here the area consists of two points,
while in 2D the area grows proportional to the length of the boundary.
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phase, and in full detail argue that fractional charges at the corners serve as a gen-
uine topological invariant—that is experimentally accessible. To this end, we provide
full counting statistics to which experimentalists can compare to. This chapter ends
with a brief estimation of parameters to argue that this particular model studied here is
experimentally accessible.

Chapter 4

In chapter four we study higher-order topological phases of the 2D Bose-Hubbard model
on a super-lattice at various fillings from two different points of view: First, we introduce
a many-body invariant that is, on one hand, accessible in experiments, and, on the
other hand, related to previously introduced fractional corner charges. Moreover, we
discuss in full detail that this many-body invariant is related to the Wen-Zee response—
characterizing the non-trivial interplay of gravitational and electromagnetic degrees of
freedom. This has been first discussed in the quantum Hall effect, and it was shown that
non-trivial topology of space affects the filling of Landau Levels [43]. Later, this response
was generalized to symmetry-protected topological phases protected by a direct product
of an on-site symmetry and a spatial symmetry [44]. The first part ends with a numerical
demonstration of this many-body invariant for small clusters of the Bose-Hubbard model
at different fillings, using exact diagonalization.

In the second part, we study non-trivial signatures of the entanglement spectrum of
higher-order topological phases. For this, we consider two different cases: In the first
case, the anomaly at the corner is related to a Kramers degeneracy, a two-fold degeneracy
protected by symmetry. Here we demonstrate that if we cut out a corner of the system
that the entanglement spectrum is fully degenerate in even multiplicities, which we
numerically demonstrate using the 2D super-lattice Bose-Hubbard model. Second, we
introduce a new entanglement property dubbed “higher-order entanglement”, that is,
several (i.e., more than one) symmetric bipartitions of the system are needed to reveal
the non-trivial degeneracy of the entanglement spectrum. This chapter ends with a
numerical calculation of the higher-order entanglement spectrum of the half-filled super-
lattice Bose-Hubbard model.

Chapter 5

This is the last chapter where we consider higher-order topological phases in the context
of the 2D super-lattice Bose-Hubbard model. The main achievement here is a strict
bulk-boundary correspondence of a true bulk quantity and the fractional charges at the
corners. To this end, we show that full periodic boundary conditions are not the op-
timal choice for describing higher-order topological systems and introduce a new type
of boundary conditions, so-called corner periodic boundary conditions. Further, we in-
troduce a new variant of a higher-order Zak (Berry) phase, which opens the door for
proving the aforementioned bulk-boundary correspondence. To argue this, we make use
of Thouless pumps, that are, adiabatic, cyclic variations of parameters along a sym-
metry breaking path encircling the gapless region—separating the distinct higher-order

7



Chapter 1 Introduction

topological phases of the half-filled 2D Bose-Hubbard model. Along such path, we have
pumped one charge through the corners of the system, which is related to a non-trivial
change of the higher-order Zak (Berry) phase. This is demonstrated by various numerical
calculations. To literally prove this, we use two main tools: First, we extend Resta’s con-
struction [45] of the polarization in the many-body context to higher-order systems and,
second, use an adiabatic approximation to evaluate the charge transport, upon which we
find a relation of the fractional corner charge and the higher-order Zak (Berry) phase.
This new variant of the higher-order Zak (Berry) phase differs from the one introduced
in chapter 3, namely, it is only well-defined in the limit of hardcore bosons (infinitely
strong on-site repulsion); however, we demonstrate—at least numerically—that the pre-
vious version of the higher-order Zak (Berry) phase leads to identical conclusions. The
chapter ends with a sketch of a possible solution to this problem.

Part II: Quotient group symmetry-protected topological phenomena

Chapter 6

Here we discuss quotient group symmetry-protected topological phenomena in Zn × Zn
symmetric one-dimensional lattice models. In particular, we focus on fixed-point Hamil-
tonians of Zn×Zn symmetry-protected topological phases and their transitions. Thereby,
we discover that there are many more direct quantum phase transitions as initially ex-
pected; however, in terms of central charges, specifying the underlying conformal field
theory, there are only three different possibilities (for paths considered here). Since
the low-energy properties are fully governed by the quotient group, there are remaining
gapped degrees of freedom that can lead to further distinction of conformal field theories.
Indeed, we demonstrate that these additional degrees of freedom can endow the critical
theory with topological properties. To demonstrate this, we study the Z4×Z4 symmet-
ric case in full detail. In particular, we show that at quantum criticality the quotient
group, together with another symmetry, gives rise to an emergent anomaly, that is, it
forbids a gapped, symmetric ground state. Upon perturbing this transition by another
fixed-point Hamiltonian of this class (Z4 × Z4), we show that quantum criticality can
be gapped out, but it is parametrically stable. This we argue analytically as well as
numerically by providing a full phase diagram. In the second part, we generalize these
observations to transitions in higher Zn×Zn symmetry groups. Further, we argue that a
Hamiltonian, which consists of an equal-weighted super position of all fixed-point models
cannot have a gapped, symmetric ground state, and that the additional Zn symmetry
appearing there, can be enhanced to a global U(1) symmetry. This chapter ends with a
generalization of observations made for this concrete lattice model, in particular, when
to expect additional gapped degrees of freedom on phase transitions between distinct
classes of symmetry-protected topological phases.
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Chapter 7

While in the previous chapter the global symmetry group, Zn × Zn, is able to protect
a non-trivial SPT, this is not the case for the Haldane phase in the fermionic Hilbert
space and, thus, the bulk is strictly speaking in a trivial phase. Consequently, there
is no bulk phase transition required to trivialize this phase, which is thus dubbed a
“quotient group symmetry-protected topological phase”. The name results from the
observation that topological signatures remain robust as long as low-energy degrees of
freedom are fully characterized in terms of the quotient group. To showcase this, we
consider the Haldane phase in the bond-alternating ionic Hubbard model, a descendant
of the (Fermi-)Hubbard model. At weak interactions among fermions, the Haldane phase
can adiabatically be connected to its trivial phase without encountering a quantum phase
transition—thereby trivializing the Haldane phase by fluctuating charges. One of the
main questions of this chapter is to ask, how immediate topological signatures of the
Haldane phase disappear if charges start to fluctuate. Second, we show that there is
an unnecessary quantum criticality separating the Haldane phase from its trivial coun-
terpart, which remains robust beyond the limit of perturbation theory. To argue its
robustness, we introduce a quantized invariant that reflects an emergent anomaly of the
quotient group with a duality symmetry—exchanging the two possible alternations of
the Hamiltonian. This anomaly forbids a gapped, symmetric ground state, and is para-
metrically stable due to a finite gap associated with gapped degrees of freedom. With
lowering interactions, the anomaly is lifted—by symmetry extension—towards a gapped,
symmetric phase. To support analytical claims, we map out a full phase diagram in a
two-dimensional parameter space, explicitly demonstrating that topological signatures
remain robust over a large parameter regime, and that the unnecessary quantum criti-
cality persists as long as there is an emergent anomaly. The chapter ends with a brief
discussion on general emergent anomalies for other symmetry groups and dimensions.

Chapter 8

Here, we summarize for each chapter the most relevant results of this thesis, which
together with the former paragraphs give already a good overview of this thesis.

1.2.2 Summary of publications
Below, we summarize all publications that have been obtained during this PhD. For this,
we first list publications contained in this thesis.

Publications contained in this thesis

[P1] “Fractional corner charges in a two-dimensional superlattice Bose-Hubbard model”
by Julian Bibo, Izabella Lovas, Yizhi You, Fabian Grusdt, and Frank Pollmann,
appeared in Phys. Rev. B 102, 041126(R). Julian Bibo has written the manuscript,
and did the numerical calculations as well as worked out the details together with
Izabella Lovas. Yizhi You supported this work with fruitful discussions. Fabian
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Grusdt initialized the project, and together with Frank Pollmann, supervised this
project.

[P2] “Higher-order entanglement and many-body invariants for higher-order topological
phases” by Yizhi You, Julian Bibo, and Frank Pollmann, appeared in Phys. Rev.
Research 2, 033192. This work separates into two parts, where the first part has
been worked out by Yizhi You, and the second part as well as numerical calculations
have been done by Julian Bibo and Frank Pollmann.

[P3] “Thouless Pumps and Bulk-Boundary Correspondence in Higher-Order Symmetry-
Protected Topological Phases” by Julian F. Wienand, Friederike Horn, Monika
Aidelsburger, Julian Bibo, and Fabian Grusdt, appeared in Phys. Rev. Lett.
128, 246602. The project was initialized and supervised by Julian Bibo and
Fabian Grusdt, which got support from Monika Aidelsburger. Julian F. Wien-
and, Friederike Horn and Julian Bibo have written the main text, and did the
numerical calculations. The analytical arguments have mainly been developed by
Julian Bibo and Fabian Grusdt.

[P4] “Quantum criticality and quotient group protected topological phenomena of quan-
tum chains with Zn×Zn symmetry” by Julian Bibo, Ruben Verresen, and Frank
Pollmann. The manuscript is already prepared, but this work has not been pub-
lished yet. The project was initialized by Ruben Verresen, which together with
Frank Pollmann supervised this work. Julian Bibo wrote the manuscript, did all
numerical calculations and together with Ruben Verresen worked out the analytical
arguments.

[P5] “Quotient symmetry protected topological phenomena” by Ruben Verresen, Ju-
lian Bibo, and Frank Pollmann, arXiv:2102.08967. This work is currently in
the review process of Physical Review Letters. Julian Bibo and Ruben Verresen
contributed equally to this work. Julian Bibo did all numerical calculations, and
together with Ruben Verresen worked out the analytical arguments of this work.
Ruben Verresen has written main parts of the manuscript and Frank Pollmann
supervised the project.

Publications not contained in this thesis

[P6] “Skeleton of matrix-product-state-solvable models connecting topological phases of
matter” by Nick G. Jones, Julian Bibo, Bernhard Jobst, Frank Pollmann, Adam
Smith, and Ruben Verresen, appeared in Phys. Rev. Research 3, 033265. Julian
Bibo contributed substantially to the analytical arguments, numerical calculations
and writing of the manuscript.

[P7] “Realizing the symmetry-protected Haldane phase in Fermi–Hubbard ladders” by
Pimonpan Sompet, Sarah Hirthe, Dominik Bourgund, Thomas Chalopin, Julian
Bibo, Joannis Koepsell, Petar Bojović, Ruben Verresen, Frank Pollmann, Guil-
laume Salomon, Christian Gross, Timon A. Hilker and Immanuel Bloch, appeared

10

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033192
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033192
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.246602
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.246602
https://arxiv.org/abs/2102.08967
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.033265


Chapter 1 Introduction

in Nature (2022). Julian Bibo did the numerical calculations and substantially,
together with Ruben Verresen and Frank Pollmann, contributed to the theory
aspects of this work.

[P8] “Fracton Critical Point in Higher-Order Topological Phase Transition ” by Yizhi
You, Julian Bibo, Frank Pollmann, Taylor L. Hughes, appeared in Phys. Rev. B
106, 235130. Yizhi You and Taylor Hughes worked out the analytical arguments,
Julian Bibo and Frank Pollmann contributed with numerical calculations.

[P9] “Fractonic critical point proximate to a higher-order topological insulator: How
does UV blend with IR?” by Yizhi You, Julian Bibo, Taylor L. Hughes, Frank
Pollmann, arXiv:2101.01724. This work has substantial overlap with the previ-
ous one. Yizhi You worked out the analytical arguments, Julian Bibo and Frank
Pollmann contributed with numerical calculations, and Taylor Hughes and Frank
Pollmann supervised the project.
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Chapter 2

Review of quantum phases and
symmetry-protected topological phases

For classifying quantum phases of matter, we first need to define when two different
quantum states belong to the same phase. If, according to such a definition, two states
are in the same phase, they can still differ in certain aspects such as local expectation
values of observables, but, nevertheless, share the same universal features that charac-
terize the phase. This is a great advantage because it is impossible to study all variants
of condensed matter systems, and secondly, to understand matter around us, it is not
necessary to investigate each representative individually. From statistical mechanics, as
well as from daily experiences, we know that a given phase of matter is stable if we
adjust parameters such as the temperature in a suitable range. For example, if we boil
water at atmospheric pressure in a temperature regime 0◦C < T < 100◦C, then although
the temperature of the fluid changes, it remains water. Alternatively, in the quantum
context, if we slightly tune interactions among bosons, the system remains in a super-
fluid state. Thus, pictorially, we can visualize phases of matter as extended islands in
parameter space. In more formal language, the state of a system is described in terms
of a state variable such as the free energy, which is in one-to-one correspondence with
the partition function derived from microscopic degrees of freedom. A given phase of
matter is stable as long as the free energy or its derivatives are changing continuously.

Phase transitions are signaled by discontinuities in the thermodynamic state variables
or their derivatives [46, 47]. For quantum systems operating at zero temperature, the
partition function is fully specified by the ground state associated with a given Hamilto-
nian and, consequently, quantum phase transitions are expected when the ground state
changes discontinuously [2, 48]. Such discontinuities can be, for example, a level transi-
tion between two energy levels (first-order transition) or a gap closure to the continuum
of states (second-order transition), which can be detected from jumps in the expectation
value of derivatives of the Hamiltonian.

Built on these observations, Refs. [49, 50] have given a precise definition, when two
quantum states belong to the same phase of matter, or said differently, are equiva-
lent. Although the first formulation of this definition gives a conceptual understanding
when two quantum states are equivalent, it is less useful for practical purposes, since
this formulation is based on spectral properties and eigenstates of the Hamiltonian for
which we often—due to complexity—have very limited access1. Nevertheless, there is a

1The complexity of quantum systems grows exponentially with the number of degrees of freedom. For
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second—yet equivalent—definition in terms of local unitary circuits that does not require
knowing spectral properties of a given Hamiltonian, and is therefore more appropriate
for practical applications.

According to this formulation, quantum states can be differed by their entanglement
patterns [49, 50], that is, not all wave functions describing a given state of matter can be
converted into a product state with zero entanglement. For a subclass of states, which
we mainly consider in this chapter, this only holds if symmetries are taken into account.
In fact, symmetries play an important role in classifying phases of matter. For example,
different phases of water can be distinguished based on their symmetries; while water
retains continuous translations and rotations, ice does not. Here, due to the lattice
structure of ice, translations, and rotations are discrete symmetries. However, with the
discovery and understanding of the quantum Hall effect [5, 51], it was realized that not
all phases of matter can be distinguished in this way, in fact, there are phases of matter
that share the same symmetry properties—yet they are not equivalent [4]. Such phases
include so-called symmetry-protected topological (SPT) phases that have a symmetric
bulk, but behave anomalously if considered with boundaries.

Overview. This chapter is divided into two main parts: In the first part, we mainly fo-
cus on the equivalence relation of two states of matter, thereby reviewing the definitions
given by Refs. [49, 50], and, in particular, consider its peculiarities in the thermodynamic
limit. Building on the previous definition, we discuss in Sec. 2.1.1 that there are two
fundamentally different quantum states in nature, which can be distinguished according
to their entanglement patterns. Further, we show that symmetries play an important
role in defining equivalent states of matter. In fact, as we demonstrate in Sec. 2.1.2,
symmetries can lead to further differentiation of quantum states and, thus, impose ad-
ditional restrictions on how parameters can be changed. After introducing symmetries,
the first part ends with an alternative formulation of equivalence of states using local
unitary circuits (Sec. 2.1.3).

Based on the previous formulation, we start Sec. 2.2 with a rather general definition of
symmetry-protected topological phases, specify their characteristic properties, and give
a brief overview of what these phases look like. Furthermore, we consider different vari-
ations of these states of matter, starting with one-dimensional bosonic SPTs, Sec. 2.2.1,
and their classifications. We then consider a two-dimensional example of bosonic SPTs,
Sec. 2.2.2, before introducing the notion of higher-order SPTs in Sec. 2.2.3. Similar to
the previous case, we demonstrate the characteristic properties of higher-order topology
on a particular example. Finally, in Sec. 2.2.4 we briefly consider different mechanisms
how SPT phases can be trivialized and demonstrate this explicitly using the former ex-
ample of a 2D bosonic SPT (A more detailed overview can be found at the beginning of
Sec. 2.2.).

example, for a spin-1/2 chain with L sites, the number of states is given by 2L.
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2.1 Two equivalent states of matter
Very often in this thesis we will come across the question when a pair of two quantum
states |Ψ⟩ and |Φ⟩, which we assume to be the ground states of a local, gapped Hamil-
tonian, belongs to the same phase of matter. According to Refs. [49, 50] two quantum
states are a representative of a common quantum phase if they can be smoothly (con-
tinuously) connected.

(I) Equivalence of states: Two quantum states |Ψ⟩ and |Φ⟩ are said to be in the
same phase of matter if and only if there is a path of local, gapped Hamiltonians Ĥ(g)
with g ∈ [0, 1] and ground states |ψ(g)⟩ such that |ψ(0)⟩ = |Ψ⟩ and |ψ(1)⟩ = |Φ⟩.

Such a definition defines an equivalent relation among two quantum states |Ψ⟩ ∼ |Φ⟩.
It is said that the corresponding Hamiltonians belong to the same universality class.
Before we proceed, let us briefly elaborate on the following question: Why is this a
sensible definition? As stated in the introduction, at zero temperature the partition
function—fully characterizing the thermodynamic properties of the system—is given
by the ground state of the Hamiltonian. Thus, a phase transition is signaled by a non-
analytic behavior of the ground state and its expectation values. However, as long as the
gap is finite, observables, and, in particular, the expectation values of the Hamiltonian
and its derivatives are an analytic function of all of its parameters and, thus, change
smoothly [2, 52]. With this definition, a given phase of matter corresponds to a finite
region in parameter space (see, for example, Fig. 2.1).

Furthermore, such a definition allows us to study simple representatives of a given
phase, often denoted as fixed-point models. These models are exactly soluble and, hence,
give us the possibility to investigate specific properties of a phase of matter2. In addition
to that, we are not always interested in particular values of observables. For example,
to characterize spontaneous-symmetry-breaking (SSB) phases it is sufficient to know if
the corresponding order parameter has a finite expectation value in the thermodynamic
limit3. For topological phases, a similar argument holds. As we will see, such phases are
commonly classified in terms of discrete quantum numbers that remain unchanged if the
Hamiltonian is continuously deformed, i.e., only perturbations are added that respect
the symmetry and keep the bulk gap finite.

Thermodynamic limit

For the above definition to be meaningful, another aspect is important, namely, it must
be well-defined in the thermodynamic limit, where particle number (or number of spins)
and volume tend to infinity, N → ∞, V → ∞, but the density n = N/V is fixed.

2In Chap. 6 we study fixed-point models of a particular class of symmetry-protected topological phases
in one dimension.

3Sometimes the expectation value vanishes, although there is SSB. Then, SSB can be detected from the
two-point correlation function, which approaches a finite value even if distances extend to infinity.
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Why is this important? The bulk gap of a generic quantum system, whose spectrum
becomes gapless in the thermodynamic limit, is always finite if the system is considered
on a finite size geometry [2, 52]. Thus, at finite sizes, the above definition of equivalence
is always satisfied. If this were allowed, this would lead to wrong physical conclusions.
For example, a quantum system whose thermodynamic limit state exhibits spontaneous-
symmetry-breaking has always a symmetric ground state at finite size, i.e., V <∞ [53].
Consequently, for any finite system we would expect the state to be equivalent to its
symmetric companion, which is clearly not the case. A paradigmatic example of such a
case is the one-dimensional transverse field Ising model, governed by the Hamiltonian [2],

ĤIsing(g, J) = −g
∑
n

X̂n − J
∑
n

ẐnẐn+1, g ≥ 0, J ≥ 0. (2.1)

This Hamiltonian has a Z2 symmetry generated by ∏n X̂n. For large g/J → ∞, the
ground state is a symmetric product state given by |Ψ⟩ = ∏

n |→⟩n, where |→⟩n denotes
the eigenstate of X̂n with eigenvalue +1. This state remains symmetric—even in the
thermodynamic limit. On the other hand, if g/J → 0 there are two degenerate ground
states |Ψ⟩↑ = ∏

n |↑⟩n and |Ψ⟩↓ = ∏
n |↓⟩n. Here |↑ (↓)⟩n denotes the eigenstate of Ẑn with

eigenvalue +(−)1. Clearly, none of these states are symmetric. However, for any finite
size system we always find a symmetric ground state, independent of g/J . For g/J → 0,
there are two symmetric states that are exponentially close in energy. If L → ∞ the
ground state spontaneously breaks the Z2 symmetry [2, 53], and the order parameter
gains a non-zero expectation value ⟨Ẑn⟩ ̸= 0. Moreover, from the exact solution it is
known that at J = g the bulk gap scales as ∆ ∼ 1/L [54]4. Consequently, for any finite
L we would conclude that, according to the definition above, both states are in the same
phase, which is clearly not the case. In summary, this example clearly illustrates that
for the definition above to be meaningful, we have to require that the bulk gap along
the path must be finite and system size independent as we approach the thermodynamic
limit.

2.1.1 Short-ranged versus long-ranged entangled states
According to classifications of quantum phases of matter [49, 50], there are two funda-
mentally different quantum states, which can be distinguished based on their entangle-
ment properties. A quantum state that hosts no correlations and entanglement is called
a product state [52]. A d-dimensional product state, upon blocking of sites, is character-
ized by the fact that its density matrix can be written as a tensor product ρ̂ = ⊗

x ρ̂x
over building blocks labelled by x5. Building on this definition, there are two sepa-
rate classes of quantum states: On one hand, there are quantum states for which exist

4If one solves the transverse field Ising model for finite L with PBC, then there is a subtlety if we apply
the Jordan-Wigner transformation. Indeed, the Hamiltonian becomes block diagonal with sectors
labeled by fermion parity. The ground state is then found in the sector with even number of fermions
and anti-PBC. From this, we find that ∆ ∼ 1/L.

5For example, for a system having a two-site translation symmetry, the unit cell consists of two-sites
and the building blocks are unit cells and not individual sites.
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no path of local, gapped Hamiltonians such that they can be connected to a product
state. Quantum states falling into this category are called long-ranged entangled (LRE)
states [4, 49]. Examples of such states are intrinsically topologically ordered states, such
as the fractional quantum Hall states [7, 55, 56] or the toric code [57]. A hallmark of
such states is that the ground state degeneracy of these states depends on the topology
of the underlying geometry. The toric code, for example, considered on a torus has
four degenerate ground states, while on a cube, the ground state is unique. Such a
feature—the topology dependent ground state degeneracy—is a sufficient condition for
the ground state not being connectable with a product state6.

Contrary, a quantum state |Ψ⟩ is called short-ranged entangled (SRE) if it can be,
according to definition (I), transformed into a product state [4, 49, 50]. Typical represen-
tatives of such states are phases of matter that exhibit spontaneous-symmetry-breaking.
As we will discuss next, symmetries can distinguish different SRE entangled states—even
forbid that states can be converted into product states. However, up to this point, we
have not yet considered symmetries. Hence, the two ground states of the foregoing in-
troduced quantum Ising model are two examples of SRE states that can be continuously
transformed into a product state (without symmetry).

2.1.2 Symmetries and restrictions of paths
So far, the only requirement was that the bulk gap is finite as the thermodynamic limit
is approached; however, if paths are further restricted by symmetry, then not all SRE
states belong to the same phase anymore, and can be transformed into a product state.
For example, the two different states of the one-dimensional transverse field Ising model
become distinct only in the presence of Z2 symmetry. If this symmetry is explicitly
conserved along a path connecting the two different states, then unavoidably the bulk gap
has to close. Thus, in the presence of symmetries the definition gains further constraints:

(II) Equivalence of states with symmetries: Two quantum states |Ψ⟩ and
|Φ⟩ are said to be in the same phase of matter if and only if there is a path of local,
gapped and symmetric Hamiltonians Ĥ(g) with g ∈ [0, 1] and ground states |ψ(g)⟩
such that |ψ(0)⟩ = |Ψ⟩ and |ψ(1)⟩ = |Φ⟩.

In a given parameter space, symmetries lead to further differentiation of SRE entan-
gled states, see Fig. 2.1, which give rise to isolated regions that cannot be adiabatically
connected. For SRE states such phases are SSB phases or symmetry-protected topolog-
ical phases, which, unlike SSB phases, cannot be captured by local order parameters or
long-range correlations associated to it. Although LRE states are distinct—even in the
absence of symmetry—symmetries can also enrich phase diagrams including LRE states
called symmetry-enriched topological order [4, 49].

6The topology dependent degeneracy of ground states exhibiting intrinsic topological order gives a
non-trivial contribution to the entanglement entropy [4]. By construction, the entanglement entropy
of a product state—independent of the geometry—is always zero and, thus, a product state can never
have a topology dependent degeneracy.

16



Chapter 2 Review of quantum phases and symmetry-protected topological phases

SRE

P1P1

P2 P2

No Symmetries Symmetries

SRE 1

SRE 2

SRE 3

SRE 4

Figure 2.1: SRE phases and symmetries. If no symmetries are considered all SRE
states, for a given set of parameters {P1,P2}, belong to the same phase
(left). On the other hand, in the presence of symmetries formerly equivalent
states become different (right).

2.1.3 Local unitary circuits
Up to this point, we argued that two states of matter belong to the same phase if there
is a path of local, gapped (and symmetric) Hamiltonians that connects these states.
However, in practice it is difficult to find such paths and—in particular—prove that its
bulk gap stays finite as we approach the thermodynamic limit. Therefore, Chen and
co-workers [49, 58] came up with an alternative—yet equivalent—definition when two
quantum states belong to the same phase of matter:

(III) Local unitaries: Two quantum states |Ψ⟩ and |Φ⟩ are said to be in the same
phase of matter if and only if there is a local (symmetric) unitary transformation
such that: |Φ⟩ = Û |Ψ⟩, where Û is parametrized as follows:

Û = P̂ exp
(
−i
∫ 1

0
dg Ĥ(g)

)
. (2.2)

The operator P̂ denotes path ordering and Ĥ(g) is a local, gapped (symmetric)
Hamiltonian.

The definition of local unitary operations is reminiscent of time evolution of quantum
states in quantum mechanics [59]. The former requirement of a system size independent,
finite bulk gap translates here to a finite evolution time in the thermodynamic limit that
does not grow with system size. Upon using the Suzuki-Trotter7 decomposition, the local

7Given an exponential of operators, the formally exact Suzuki-Trotter decomposition is defined as
exp(Â + B̂) = limN→∞

(
exp(Â/N) exp(B̂/N)

)N . For any practical purpose, N is large but finite,
which cause an approximation error depending on the order of the decomposition [60].
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unitary operation can be transformed into a finite-depth quantum circuit [52] given by,

ÛM =
M∏
l=1

Û (l), Û (l) =
∏
x

Û (l)
x , (2.3)

where Û (l)
x acts on finite, non-overlapping regions labelled by x and M <∞ is the finite

number of layers (see Fig. 2.2). On-site symmetries, for instance, are represented as
finite-depth quantum circuits with M = 1, and x labels actual building blocks.

Note the local unitary operator defined in Eq. (2.2) has an important property: It can
be continuously connected to identity, and in the presence of symmetry, it is symmetric
at each step. Thus, if such a unitary operation is represented by a quantum circuit, only
those quantum circuits are allowed for which this property is satisfied. This constraint
is important, and without it, actual distinct states would be equivalent. To illustrate
this, let us consider the following Z2 × Z2 symmetric Hamiltonian with PBC [52, 61]8:

Ĥcluster(g, J) = −g
∑
n

X̂n + J
∑
n

Ẑn−1X̂nẐn+1, g ≥ 0, J ≥ 0, (2.4)

where the symmetry is generated by∏n X̂2n−1 and∏n X̂2n. The non-trivial Hamiltonian
∼ Ẑn−1X̂nẐn+1 can be obtained from the paramagnet by a two-site gate, two-layer
quantum circuit,

Û =
∏
n

exp
(
i
π

4 ẐnẐn+1

)
, Û †X̂nÛ = Ẑn−1X̂nẐn+1, (2.5)

that is symmetric with respect to Z2 ×Z2 symmetry. As we will show later, the ground
state for g/J → 0 is a non-trivial SPT and, thus, cannot be transformed into a product
state via a symmetric path of local, gapped Hamiltonians. Without the constraint
that a quantum circuit—connecting two quantum states of the same phase—must be
continuously and symmetrically connectable to identity, we falsely would conclude that
both states of Ĥcluster can be connected by a finite-depth quantum circuit. However, the
caveat is that this circuit cannot be continuously connected to identity if we require it
to be symmetric at each step of the transformation.

If a local unitary transformation is represented as a quantum circuit, then an evolution
with finite time corresponds to a finite-depth quantum circuit. From Fig. 2.2 we see that
if the number of layers becomes of the order of system size, then correlations spread all
over the system and states are certainly no longer short-ranged entangled. Indeed, it
was shown that if the number of layers reaches system size, that SRE state can be
transformed into LRE states [62]. Without restrictions due to symmetry, all SRE states
can be transformed into each other using local unitary operations.

8Note the relative sign is not relevant here, it can be changed by the following unitary V̂ =∏
n
X̂4n−3X̂4n−2.
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Figure 2.2: Finite-depth quantum circuit with causal cone. A finite-depth quan-
tum circuit with a two-site gate x = 2 is shown. The number of layers is
finite, which thus results in a finite causal cone. Outside the causal cone,
quantum correlations are negligible.

2.2 Symmetry-protected topological phases
In the previous section, we discussed when two quantum states of matter can be consid-
ered as equivalent. Thereby, we argued that in practice it is often very hard to prove that
a given path of local, gapped Hamiltonians has a finite bulk gap in the thermodynamic
limit. However, we demonstrated that this is not necessary if we use local unitary cir-
cuits. Based on this formulation, we can give a rather general definition of SPT phases,
another class of SRE states. These states can be defined as follows [49, 50, 58]:

Symmetry-protected topological states. A short-ranged entangled quantum
state |Ψ⟩ that is symmetric with respect to a given symmetry S, is called an SPT
state if it cannot be connected to a product state via a symmetric, local unitary
transformation defined in Eq. (2.2).

Given this rather general definition of SPT states, how do we in practice know that
there is no such unitary circuit? Since SPT states are symmetric, we cannot make use of
local order parameters to distinguish different SPTs; thus Landau’s theory of symmetry
breaking [3, 63] fails to classify such phases of matter. Instead, we will show that distinct
classes of SPTs can be differed by invariants that are quantized by symmetries:

Distinction of SPT phases. For a given symmetry S that protects distinct
classes of non-trivial SPTs, we can associate a discrete set of quantized invariants
Q = {q1, ..., qn} with |Q| > 1 and n <∞ that assigns a label to each class of SPTs.
The values of the quantized invariants are unchanged by continuous deformations of
the Hamiltonians (see definition (II)). Each set of quantized invariants characterizes
a universality class.

For example, if we consider Fig. 2.1, then each bubble can be a different SPT to which
we can assign a quantum number. Note, there can also be more symmetries that protect
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a given phase. Thus, in general, we need to consider a set of symmetries denoted as
S = {S1, S2, S3, ..., }, where to each symmetry we define a set of quantized invariants.
If we add or remove certain symmetries, then formerly two equivalent states become
distinct or vice versa. In practice: To be able to assign labels to SPT phases, we first
have to define the set of protecting symmetries and their representations.

SPT phases—an overview

SPT phases of matter appear in various ways and can be protected by different kinds of
symmetries such as on-site symmetries (time reversal, spin rotations), spatial symmetries
(bond-centered inversion, Cn-rotations) or combinations thereof [19, 20, 26, 64–66]. For
bosons, SPTs exist only in the presence of strong interactions because weakly-interacting
bosons have the tendency to cluster—thereby forming a Bose-Einstein condensate [67,
68]. For fermions, however, SPTs exist irrespective of interactions, which is a consequence
of Pauli blocking, but note that interactions can non-trivially change the classifications
of fermionic SPTs [69, 70]. SPTs in non-interacting, free-fermion systems usually appear
in the context of topological insulators [71–75]. However, not every topological insulator
is an SPT, but every free-fermion SPT is a topological insulator. For example, Chern
insulators are topological insulators but not an SPT. Indeed, these phases of matter do
not require any symmetry to be topologically non-trivial.

SPTs and boundaries

If SPT phases are considered on closed manifolds, then the ground state is unique,
gapped, and symmetric. Since SPTs are SRE states, the bulk has featureless excita-
tions [4, 52]. This contrasts with LRE states that exhibit topological order. For ex-
ample, for the formerly introduced toric code model, a Z2 topologically ordered state,
excitations are so-called Abelian anyons that are particles that have non-trivial exchange
statistics9, which can even be fractional [76–78] or non-Abelian [77–79], that is, the ex-
change of two particles does not simply result in a phase factor; instead, corresponds to
a linear transformation of the state. It appears that the bulk of SPTs is by no means
different from that of a trivially disordered product state. However, this is not the full
story. If an SPT is coupled to gauge fields, then the resulting model can have excitations
that have non-trivial exchange statistics, revealing its non-trivial nature [80, 81].

The situation is different if SPTs are subjected to a manifold with edges because then
its non-trivial nature does not require further manipulations. This can be seen from
the argument given in Ref. [82]. Considering an SPT with boundary is equivalent to
an interface of a non-trivial SPT with the vacuum, which we denote as trivial phase.
Since on either side of the interface, phases are gapped and symmetric, we can contin-
uously tune parameters inside each phase without crossing a discontinuity. However,
by assumption both phases have been different such that there must be a gap closing
once we cross the interface. If this was not the case, then according to our definition,

9For Abelian anyons, the two particle wave function picks up an arbitrary phase factor under exchanging
two particles, Ψ(x2,x1) = eiθΨ(x1,x2), θ ∈ R.

20



Chapter 2 Review of quantum phases and symmetry-protected topological phases

both phases must be equivalent. Since the gap closing is spatially confined, this sig-
nals a zero-energy mode10. In general, SPT phases are characterized by anomalies at
the boundary of the system, which can be gapless zero-energy modes, SSB, or even
topological order11 [18, 71, 72, 82, 85–91].

Stacking property

Previously, we argued that to each class of an SPT, we can associate a quantized invari-
ant. As it turns out, the sets of quantized invariants form groups [64, 74]. From this,
we can deduce a so-called stacking property of SPTs, that is, forming a tensor product
of two SPTs, labeled by invariants qA and qB, results in a third SPT phase, which has
a label qA ⊕ qB12. For example, if there are only two different quantum numbers ±1,
then stacking a non-trivial SPT with itself results in a trivial phase. For a non-trivial
SPT, we cannot remove the anomaly at the edges by adding symmetric perturbations;
however, if we stack SPTs such that the quantized invariant becomes trivial, then we
can find symmetric perturbations coupling the two SPTs such that the anomaly along
the boundary is removed.

Section overview

Up to this point, we have considered SPT phases from a general perspective. In the
following, however, we will demonstrate the general definitions along various examples
of bosonic SPTs in different dimensions and variations. Thereby, in Sec. 2.2.1, we start
with bosonic SPTs in one dimension, reviewing the former introduced cluster model and
show that its ground state is actually a non-trivial SPT. Afterwards we give a summary
of the general classification of these phases, and show how the Berry phase can serve as a
label for such states. This part is followed by two-dimensional bosonic SPTs, Sec. 2.2.2,
whose properties are discussed along an exactly solvable model of a 2D SPT. After these
two subsections, where we give an introduction to conventional bosonic SPTs, that have
nowadays been well-understood, we introduce in Sec. 2.2.3 the notion of higher-order
topology, that is, anomalies can not only appear at the one-dimensional boundary of a
2D SPT, but also on its 0D corners, while the 1D edge remains gapped. This section
starts with a concrete lattice example, and is then followed by a brief summary of
a general classification of these higher-order topological phases. Finally, in Sec. 2.2.4
we discuss a particular mechanism of trivializing SPTs without breaking the symmetry
or using its stacking property, and illustrate this, using the former discussed 2D SPT
example.

10Detailed examples of such interfaces are discussed in Refs. [83, 84]
11Note for bosonic systems the boundary must at least have dimension two since there is no topological

order for bosonic systems in one dimension [39, 49].
12Here “⊕” denotes the addition of group elements.
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2.2.1 Bosonic SPTs in one dimension
After the seminal works of Haldane [13, 14], who showed that integer spin antiferromag-
netic Heisenberg models behave fundamentally different from their half-integer counter-
parts, namely, in contrast to the former, integer spin chains have a bulk gap and ex-
ponentially decaying correlation functions, Affleck, Kennedy, Lieb and Tasaki (AKLT)
constructed an exactly solvable spin-1 model [15, 92], whose symmetric ground state
has zero-energy, spin-1/2 excitations exponentially confined to the boundary. Later,
Gu, Wen, Pollmann and others [16, 17, 93] uncovered the topological properties of these
phases, which, among other things, have been the aforementioned fractional zero-energy
excitations at the boundaries and degeneracies in the entanglement spectrum. The SPT
phase associated with the AKLT model, or the spin-1 Heisenberg model, is known as
Haldane phase, an SPT protected by spin rotations SO(3)13, time reversal symmetry and
bond-centered inversion symmetry. A few years later, it turned out that one-dimensional
bosonic SPTs can be fully classified in terms of projective representations [94], whose
labels are given by the second cohomology group denoted as H2(G,U(1)). A systematic
classification and construction of such phases was given by Ref. [50, 64].

In this section we start with a concrete example, the Z2 × Z2 cluster model, and
consider the model for different boundary conditions—illustrating that its ground state
is actually a non-trivial SPT. Afterwards, we give the general classification in terms of
projective representations and summarize implications on ground states characterized
by non-trivial projective representations.

The Z2 × Z2 cluster model

The previously introduced cluster model, Eq. (2.4), is an exactly solvable bosonic SPT
protected, among others, by Z2 × Z2 symmetry14. For illustrating the characterizing
properties, we focus on the limit g = 0, J > 0. In this limit, the Hamiltonian reduce to

Ĥcluster =
∑
n

Ẑn−1X̂nẐn+1, Z2 × Z2 :
∏
n

X̂2n−1,
∏
n

X̂2n. (2.6)

Note each term inside the Hamiltonian commutes and squares to identity.
Closed boundaries. For a closed manifold consisting of L sites, there are exactly L

terms in the Hamiltonian. Consequently, the ground state is obtained from the condition
that:

Ẑn−1X̂nẐn+1 |Ψcluster⟩ = − |Ψcluster⟩ , ∀n. (2.7)

Since there is only a single ground state, it must be symmetric. The first excited state is
obtained by flipping a sign of a single term, which results in a finite energy gap. Thus,
as stated, for a closed manifold the ground state is gapped, unique and symmetric.

Open boundaries. On the other hand, if the system is considered with edges, then there
is a two-fold degeneracy on each edge. Although at first sight this degeneracy looks fine-
tuned, it is actually not. To illustrate this, consider the action of symmetry generators
13Actually, the Z2 × Z2 subgroup is sufficient to protect this phase.
14For an extended discussion of this model and its protecting symmetries see, for example, Ref. [38].
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on the ground state of a finite size system. Upon using that Ẑn−1X̂nẐn+1 = −1, we
obtain (up to a sign):∏

n

X̂2n−1 |ΨOBC
cluster⟩ ∼ X̂1Ẑ2ẐL |ΨOBC

cluster⟩ ,
∏
n

X̂2n |ΨOBC
cluster⟩ ∼ Ẑ1ẐL−1X̂L |ΨOBC

cluster⟩ .

(2.8)
This clearly shows that for SPTs symmetry acts only non-trivially near the edges of
the system, which is known as symmetry fractionalization [95] (for a brief review see
App. C). If we focus on the left edge of the system, then we see from the Hamiltonian
and the former result, that we can freely choose the Ẑ eigenvalue on the first site, which
results in a two-fold degeneracy. Upon applying the Z2 symmetry on odd sites, the two
states are transformed into each other.

Projective transformations. Although globally symmetries commute, this is no longer
true if its action is considered in the ground state subspace (gs) restricted to a single
edge:

1 =
(∏

n

X̂2n−1

)(∏
n

X̂2n

)(∏
n

X̂2n−1

)†(∏
n

X̂2n

)†

gs=
[(
X̂1Ẑ2

)
ẐL
] [
Ẑ1
(
ẐL−1X̂L

)] [(
X̂1Ẑ2

)
ẐL
]† [

Ẑ1
(
ẐL−1X̂L

)]†
=
(
X̂1Ẑ1X̂

†
1Ẑ

†
1

) (
ẐLX̂LẐ

†
LX̂

†
L

)
, (2.9)

where we used that bosonic operators defined on disjoint regions commute. Hence, on
a single edge, the low-energy representation of the global symmetry anticommutes. If a
representation has such a property, then it is called a projective representation [50, 94].
Let us emphasize an important point: This property is not fine-tuned and is protected
by the finite gap of this Hamiltonian. If the Hamiltonian is perturbed, then the effective
low-energy representations of the symmetry operators remain no longer on-site, but stay
exponentially close to the edge region [94, 95].

Zero-energy modes. The anticommutation relations found on a single edge imply
the existence of zero-energy modes, which we mentioned earlier. For two matrices to
anticommute, their dimension must be at least two,

det
(
X̂1Ẑ1X̂

†
1Ẑ

†
1

)
= (−1)D = det

(
X̂1X̂

†
)

det
(
Ẑ1Ẑ

†
1

)
= 1, (2.10)

which implies D > 1 and even. This property causes a two-fold degeneracy on each edge
of the system.

Entanglement spectrum. If we consider the ground state on a half-infinite chain, then
the anticommutation relation on the remaining edge is responsible for even degeneracies
in the entanglement spectrum. To illustrate this, we need two ingredients: First, the
two ground states are transformed into each other by an operator that is localized near
the edge, and leaves the bulk unchanged. Second, we need to bipartite the systems into
two parts; an edge region E and a bulk region B, with the condition that the size of
the edge region is much larger than the localization length associated to the edge mode.
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Then, from the Schmidt decomposition of the ground states

|Ψ1
cluster⟩ =

∑
α

Λα |α1
E⟩ |α1

B⟩ , |Ψ2
cluster⟩ =

∑
α

Λα |α2
E⟩ |α2

B⟩ , (2.11)

upon using that |α1
B⟩ = |α2

B⟩ for each α, we conclude that for each Schmidt state in
the bulk, there are two Schmidt states associated with the edge region. Since the two
states are orthogonal, each Schmidt value is at least two-fold degenerate, implying an
even degeneracy of the entanglement spectrum15.

Paramagnetic phase

If we repeat the above analysis for the paramagnetic phase defined in Eq. (2.4), then
we find that there is a unique, gapped and symmetric ground state for closed and open
boundary conditions. This implies that symmetries have a trivial projective representa-
tion in the low-energy subspace, or said differently, form a faithful representation of the
symmetry. Thus, according to our definition of SPTs, we find two quantized invariants
Z2 = {1,−1, } for the Z2 × Z2 symmetry defined above.

Classification in terms of group cohomology

In the previous example, we showed that all non-trivial properties followed from the
low-energy representation of the global symmetry, which were denoted as projective
representations. Indeed, one-dimensional bosonic SPTs were fully classified in terms of
projective representations [50, 64, 85, 94, 96]. Different classes of projective represen-
tations are labeled by the second cohomology group, denoted as H2(G,U(1)). For the
cluster model and the paramagnet, we argued that projective representations can either
commute or anticommute. Thus, we find that H2(Z2 × Z2, U(1)) = Z2 [64].

For the general classification, let us consider a local, gapped and symmetric Hamil-
tonian and a representation Ûg of the corresponding (Abelian) symmetry group G.
Thereby, Ûg is a faithful representation, that is, they obey the group multiplication
law

ÛgÛh = Ûgh, ∀g, h ∈ G. (2.12)

Similar to the previous example, the low-energy representation of the symmetry is ob-
tained from the action of Ûg on the ground state, for which we thus write Ûg = ÛgLÛ

g
R.

For projective representations such as ÛgL, the group multiplication law is obeyed only
up to a U(1) phase factor

ÛgLÛ
h
L = ω(g, h)ÛghL , ÛgRÛ

h
R = ω̄(g, h)ÛghR , (2.13)

where the complex conjugate results from the condition that: Ûgh = ÛghL Û
gh
R and Ûgh =

ÛgÛh = ÛgLÛhLÛ
g
RÛhR. Hence, knowing the projective representations on a single edge is

sufficient; thus, we drop the subscript L(R) in the following and denote the low-energy

15The eigenvalues of the reduced density matrix are given by the square of the Schmidt values.
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representation of the symmetry as Ûg. From the definition of ω(g, h), we see that it
is not invariant under rephasing, i.e., Ûg → β(g)Ûg, which thus defines an equivalence
relation. Two phase factors, related by,

ω′(g, h) = ω(g, h)β(g)β(h)
β(gh) , (2.14)

are considered to be the same element in H2(G,U(1)) [64, 85]. The phase factors (or
equivalence classes) {ω(g, h)} are denoted as 2-cocycles. Moreover, if it is possible to find
a set of phase factors {β(g)} such that ω(g, h)′ = 1, then it is called a 2-coboundary16.

Topological invariant: To define a proper topological invariant, we have to find an
expression that is invariant under gauge transformations (here rephasing). For Abelian
symmetry groups, such a gauge-invariant phase factor can be obtained from the quotient
of two 2-cocycles [94],

q(g, h) = ω(g, h)
ω(h, g) = ÛgÛh

[
Ûg
]†[Ûh]†, (2.15)

which is nothing else than the commutator previously used to classify the SPT of the
cluster model. Note, it is possible to find gauge-invariant phase factors for more com-
plicated groups as well, which has been discussed in Ref. [94].

Implications of non-trivial projective representations

For the concrete example of the cluster model, we proved that all non-trivial properties
such as zero-energy modes and degeneracies in the entanglement spectrum can be ob-
tained from the projective representations. Here, we will show that this is generically
the case.

Zero-energy modes. If we assume that the quantized invariant q(g, h) has a Zn clas-
sification, then the number of zero-energy modes on each edge is determined by the
irreducible dimension of the projective representations. The irreducible dimension can
be deduced by taking the determinant of the commutator:

det
(
ÛgÛh

[
Ûg
]†[Ûh]†) =[q(g, h)]D

= det
(
Ûg
[
Ûg
]†) det

(
Ûh
[
Ûh
]†)

=1. (2.16)

which implies that D ≤ n. If q(g, h) is an element of a subgroup of Zn, then the
dimension can be less than n. Hence, for such classification, the number of edge modes
is bounded by the dimension of the irreducible representation.

Entanglement spectrum. Pollmann and co-workers [93] showed that the entanglement
spectrum of non-trivial SPTs have degeneracies in multiples of the irreducible dimension
of projective representations. A crucial point for this to hold is that projective represen-
tations are exponentially localized near the edge of the system. Then, using a Schmidt
16For a detailed introduction to this, see, for example, Ref. [64].
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decomposition of a half-infinite chain with an edge region much larger than the local-
ization length, proves, similar to the cluster model, the degeneracy of the entanglement
spectrum. This property remains even if we consider the entanglement spectrum of an
infinite chain and, consequently, the degeneracy of the entanglement spectrum is a true
bulk property. Thus, this proves a bulk-boundary correspondence: The number of edge
modes determines the degeneracy of the entanglement spectrum.

Stacking property. Since projective representations are labeled by group elements, the
stacking property naturally follows. Indeed, if we consider a Z2 label, similar to the clus-
ter model, then the SPT is trivialized17 by tacking two copies of the same Hamiltonian.
Such Hamiltonian can be written as:

Ĥstack = ĤA ⊗ 1B + 1A ⊗ ĤB, (2.17)

where A,B label the two copies of the same Hamiltonian. With this, the projective
representations have been lifted to a linear one. By adding symmetric perturbations,
coupling these two Hamiltonians, the edge modes disappear and, thus, the ground state
is in a trivial phase.

In practice. Since SPT states are ground states of local, gapped Hamiltonians, these
states can be well approximated by tensor networks [97–99]. Once the tensor network
representation is found, either analytically or numerically, we can use the methods devel-
oped by Ref. [94] to obtain the projective representations and evaluate their commutation
relations.

Zak (Berry) phase

Another way of classifying certain bosonic SPT phases is to make use of the many-
body generalization of the Zak phase. In 1984 Berry [100] discovered that a quantum
mechanical wave function picks up a non-trivial, measurable geometric phase factor if
we adiabatically18 tune a parameter λ ∈ R of the Hamiltonian on a closed contour. The
phase depends solely on the path in parameter space and is defined as follows:

γ(C) = i

∮
C

dλ ⟨Ψ(λ|∂λ|Ψ(λ)⟩ ∈ R. (2.18)

Whenever we talk about the Berry phase, we actually mean eiγ , which is the physi-
cal relevant quantity since, unlike γ, it is invariant under gauge transformations, i.e.,
|Ψ(λ)⟩ → eiΩ(λ) |Ψ(λ)⟩. In free-fermion systems, the Berry phase is known as Zak
phase [102]. There it was shown that if evaluated in the one-dimensional Brillouin zone,
it is quantized due to symmetry properties of the Bloch functions. Later, Hatsugai [103]
generalized this to the many-body context. Here, we will demonstrate its usefulness for
a relative of the paramagnet and the cluster model.

17Here we assume that there is no other symmetry that might protect a non-trivial SPT.
18A change of parameters is adiabatically if the rate at which the parameter is changed is much slower

than the characteristic frequency of a quantum system ∆E/ℏ, where ∆E is the energy gap [101].
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Quantum XY model. Upon a unitary transformation, given in App. B.5, Hamilto-
nian (2.4) map onto a dimerized quantum XY chain denoted by

ĤXY(λ) =
L−1∑
n=1

fn(λ)
(
Ŝ+
n Ŝ

−
n+1 + Ŝ−

n Ŝ
+
n+1

)
+ (1 + λ)

(
Ŝ+
L Ŝ

−
1 + Ŝ−

L Ŝ
+
1

)
, (2.19)

where we introduced fn(λ) = (1+(−1)nλ) and consider PBC. For −1 ≤ λ < 0 the trivial
phase dominates, while for 0 < λ ≤ 1 the ground state is a non-trivial SPT19. In this
representation, the global U(1) symmetry is more apparent, namely, this Hamiltonian
conserves the total magnetization. The remaining Z2 symmetry is generated by ∏n X̂n.
To probe the topology of the system, we have to introduce a symmetry twist, which
inserts non-trivial flux into the ring on which the Hamiltonian is defined. The resulting
Hamiltonian is given as follows:

ĤXY(λ, ϕ) =
L−1∑
n=1

fn(λ)
(
Ŝ+
n Ŝ

−
n+1 + Ŝ−

n Ŝ
+
n+1

)
+ (1 + λ)

(
eiϕŜ+

L Ŝ
−
1 + e−iϕŜ−

L Ŝ
+
1

)
, (2.20)

where ϕ ∈ [0, 2π). The total flux is, according to Peierls substitution [104], given by the
sum of all phases, which here is ϕ. The corresponding Zak (Berry) phase reads:

γ(λ) = i

∫ 2π

0
dϕ ⟨Ψ(λ, ϕ)|∂ϕ|Ψ(λ, ϕ)⟩ . (2.21)

In the presence of the Z2 symmetry this phase is quantized, i.e., eiγ(λ) = ±1—independent
of λ. To see this, note that under the action of this symmetry the twisted Hamiltonian
change as:∏

n

X̂n : ĤXY(ϕ)→ ĤXY (−ϕ)⇒
∏
n

X̂n : |Ψ(ϕ)⟩ → eiΩ(ϕ) |Ψ(−ϕ)⟩ , (2.22)

which implies that γ = −γ + 2πZ. In the topological phase γ = π mod 2π, while in the
trivial phase γ = 0 mod 2π, which gives another Z2 label.

Gauge transformations. There is a subtlety with this phase, namely, only its difference
is well-defined. To illustrate this, note that there are many possibilities to introduce the
flux ϕ into the ring on which the model is defined. To this end, let us consider the
following gauge transformation:

V̂ (ϕ) = exp
[
i
ϕ

L

∑
n

n

(
Ẑn −

1
2

)]
. (2.23)

If we apply this transformation on the Hamiltonian ĤXY(λ, ϕ), then the resulting model
is given by,

V̂ †(ϕ)ĤXY(λ, ϕ)V̂ (ϕ) =
L∑
n=1

fn(λ)
(
ei

ϕ
L Ŝ+

n Ŝ
−
n+1 + e−i ϕ

L Ŝ−
n Ŝ

+
n+1

)
. (2.24)

19For λ = 0 the model has quantum critical point, see App. B.5.
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Under this transformation the Zak (Berry) phase, obtained from the new Hamiltonian,
is non-trivially shifted

γ(λ)→ γ(λ) +
∑
n

n

L

∫ 2π

0
dϕ ⟨Ψ(λ, ϕ)|

(
Ẑn −

1
2

)
|Ψ(λ, ϕ)⟩ . (2.25)

In the presence of the Z2 symmetry this shift is quantized and independent of λ. In fact,
we find: ∑

n

n

L

∫ 2π

0
dϕ ⟨Ψ(λ, ϕ)|

(
Ẑn −

1
2

)
|Ψ(λ, ϕ)⟩ = −π2 (L+ 1) . (2.26)

Since L is even, which we here assume to be a multiple of four, we finally obtain that
the Zak (Berry) phase is non-trivially shifted to γ(λ)→ (γ(λ)− π/2) mod 2π for all λ,
but the difference, γ(1)− γ(0) = π, remains unchanged.

2.2.2 Two-dimensional bosonic SPTs
In the previous section, we showed that one-dimensional bosonic SPTs protected by on-
site symmetries are completely classified in terms of the second cohomology group. For
higher-dimensional SPTs a similar classification exists20 and was systematically devel-
oped by Ref. [64]. In the case of two-dimensional interacting bosonic SPTs protected
by an on-site symmetry G, the classification is given in terms of the third cohomol-
ogy group H3(G,U(1)) and its elements are called 3-cocycles ω(g, h, k) depending on
three elements g, h, k ∈ G. A way to evaluate these 3-cocycles, knowing the low-energy
representation, has been developed by Else and Nayak [85]. The quintessence of this
approach is based on dimensional reduction. Thereby, the 3-cocycle is obtained from
the low-energy representation of the symmetry on the edge of a finite subsystem of the
boundary of the 2D SPT. In App. B.4 we review this approach in the context of gauge
anomalies. Another way to detect the 3-cocycle has been introduced in Refs. [18, 107]
using tensor network methods. In this section, however, we do not consider the general
classification; instead, we will study a concrete example of a 2D SPT known as the CZX
model [18] protected by Z2 symmetry.

CZX model

In the consideration of this model, we follow closely the discussion of Ref. [39]. The
CZX model is defined on a square lattice with a four-site unit cell. Each site is made of
a spin-1/2 degree of freedom. The Hamiltonian for this model is a sum of commuting
terms,

ĤCZX =
∑
p

Ĥp ⊗
(
P̂ rl ⊗ P up ⊗ P̂ lp ⊗ P̂ dp

)
Ĥp =− (|↑↑↑↑⟩ ⟨↓↓↓↓|+ |↑↑↑↑⟩ ⟨↓↓↓↓|)p , P̂αp = (|↑↑⟩ ⟨↑↑|+ |↓↓⟩ ⟨↓↓|)αp , (2.27)

20However, for higher-dimensional SPTs there are cases beyond the group cohomology classification [105,
106].
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(a) (b)

(c)

Figure 2.3: CZX model. Panel (a) illustrates the action of the Hamiltonian on a single
plaquette. Each plaquette is surrounded by four projection operators (green
links) to ensure that the Hamiltonian is symmetric. Fig. (b) displays the
action of the global Z2 symmetry on a given site, which consists of an on-site
part ∼ X̂s and a two-site operation ∼ ÛCZ. In panel (c) a possible boundary
of the CZX model is shown, where effective degrees of freedom are labeled
by {σi}. The figure is adapted from Refs. [18, 39].

whose action is illustrated in Fig. 2.3. The Z2 symmetry of this model consists of an
on-site term that acts on each individual spin separately and a two-body term. The
symmetry operator inside each unit cell (uc) is defined as follows [18]:

ÛCZX,uc =
( 4∏
s=1

X̂s

3∏
s=1

ÛCZ,ss+1

)
uc

ÛCZ,ss+1 = (|↑↑⟩ ⟨↑↑|+ |↑↓⟩ ⟨↑↓|+ |↓↑⟩ ⟨↓↑| − |↓↓⟩ ⟨↓↓|)ss+1 (2.28)
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Individual components of ÛCZX,uc commute and square to identity. Finally, the global
symmetry is then defined as a product over all unit cells,

ÛCZX =
∏
uc
ÛCZX,uc, Û2

CZX = 1. (2.29)

The first term of the symmetry operator ∼ ∏
x X̂s flips all spins simultaneously and,

thus, commutes with the Hamiltonian. For the second transformation, the situation is
a bit more complicated. If there was no the minus sign in the last term of ÛCZ,ss+1,
then this transformation would commute with the plaquette term. But since this not
the case, we have to introduce additional projectors P̂αp , surrounding the plaquette, to
ensure that the symmetry commutes with the Hamiltonian. The projectors make sure
that neighboring spins are equal and, thus, there are always at least two terms that come
with a minus sign canceling each other (see also Fig. 2.4).

Closed manifold. On a closed manifold, the number of constraints is equal to the
number of unit cells. Since plaquette terms act on four spins simultaneously, all degrees
of freedom are fixed by the condition that:

Ĥp ⊗
(
P̂ rl ⊗ P up ⊗ P̂ lp ⊗ P̂ dp

)
|ΨCZX⟩ = − |ΨCZX⟩ (2.30)

The unique ground state is given by,

|ΨCZX⟩ =
∏
p

1√
2

(|↑↑↑↑⟩+ |↓↓↓↓⟩)p . (2.31)

Since the ground state is unique, it must be symmetric. Clearly, if we flip all spins

-1

-1

Figure 2.4: Symmetry action. The action of the Z2 symmetry on a particular con-
figuration. Since the signs of two neighboring plaquettes cancel each other,
the ground state is left invariant. Similarly, this holds for the Hamiltonian
of the 2D CZX model.

simultaneously of this state, then it is left invariant. For the other term to leave the
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state invariant, we use the same argument as above. Whenever there is a minus sign, it
always comes twice, see Fig. 2.4, which thus leaves the state invariant. The first excited
state is obtained if one of the constraints in Eq. (2.30) is violated. Hence, on a closed
manifold, there is a unique, gapped and symmetric ground state.

Open boundary conditions. If we consider the same model on a manifold with edges,
then the boundary is either gapless or SSB. To see this, let us consider the configuration
shown in Fig. 2.3c. The spins at the boundary (marked in purple) are not contained in
any plaquette, but their configuration is not arbitrary due to the action of the projectors.
For minimizing the energy, two neighboring spin-1/2 degrees of freedom either point
up |↑↑⟩ or down |↓↓⟩. Thus, in the ground state subspace two spin-1/2 degrees of
freedom give rise to an effective spin-1/2 degree of freedom, denoted by {σi} in this
figure. Consequently, the edge of the CZX model can be considered as an effective
one-dimensional chain of spin-1/2 degrees of freedom. To proceed, we need to find the
effective symmetry action for the composite spins, which is given by,

Ûeff =
∏
i

x̂i
∏
i

ûCZ,ii+1, Û2
eff = 1, (2.32)

where we used different symbols to emphasize that these operators act on effective de-
grees of freedom. In the following we consider the edge as an effective one-dimensional
system and argue that there exists no gapped, symmetric ground state ⇒ it must be ei-
ther gapless or SSB. Before we move on, let us shortly evaluate the following expression:

(ûCZ,i−1i) (ûCZ,ii+1) x̂i (ûCZ,i−1i) (ûCZ,ii+1) = ẑi−1x̂iẑi+1. (2.33)

Thus, the two-site unitary transformation acts, up to a sign, exactly the same way as
the unitary circuit defined in Eq. (2.5)—mapping the paramagnet to the cluster model.
Hence, a possible Hamiltonian defined on the boundary degrees of freedom can be written
as:

Ĥedge = −
∑
i

(x̂i + ẑi−1x̂iẑi+1) . (2.34)

However, as previously mentioned, this one-dimensional model is gapless if both Hamil-
tonians have the same weight21 (see also Sec. 6.1.3). Another Hamiltonian that is com-
patible with Ûeff is given by the Ising model,

Ĥedge = −
∑
i

ẑiẑi+1, (2.35)

which, however, has SSB with respect to Ûeff . Indeed, Chen and others [18, 108] have
shown that for a symmetry that corresponds to a non-trivial 3-cocycle there cannot be
a gapped, symmetric ground state in one dimension—implying SSB or gaplessness. In
App. B.4 we explicitly evaluate the 3-cocycle of this symmetry using the approach of
Else and Nayak [85], and demonstrate that it is indeed non-trivial. In fact, for this
symmetry group there are only two different SPTs, i.e., H3(Z2, U(1)) = Z2 [18].

21The relative sign among the two terms in the Hamiltonian is not relevant.
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2.2.3 Higher-order bosonic SPT phases
In the language of higher-order topological phases, which we will introduce soon, all
examples considered so far have been first-order SPTs, that is, the anomaly of the d-
dimensional SPT occurred on the (d−1)-dimensional boundary. However, recent studies
have refined the classification of SPT phases to also include crystalline symmetries,
leading to anomalies on the (d − k)-dimensional submanifold, thus the naming of a
k-th order SPT. For example, instead of having gapless modes on the one-dimensional
boundary of a 2D SPT, there can be symmetry-protected gapless corners modes or hinge
states in the three-dimensional case. In one dimension, there is only one order of SPTs,
while in two dimensions, there is a first-order and a second-order SPT. The latter is
characterized by anomalies at the corners, which can be gapless modes and/or fractional
charges (e.g., see Chap. 3).

Higher-order topological phases of matter have been extensively explored in non-
interacting fermionic systems, referred to as higher order topological insulators (HOTI)
[21–24, 109–111] or fragile phases [112–114], and their classification is well-understood,
which, however, is based on momentum state representation, where non-interacting
fermions are exactly solvable. In the interacting setup, those phases are known as higher-
order symmetry-protected topological (HOSPT) phases [19, 20, 25, 26, 65, 115–117].
Similar to conventional SPTs (first-order SPTs), interacting bosonic HOSPT phases are
partially classified in terms of group cohomology, based on the interplay of global and
crystalline symmetries [26, 65]. Let us emphasize that for further discussions we focus
solely on second-order SPTs in two dimensions, where the global symmetry group of
interest is given by a direct product G = G0 ×Gc. Thereby, G0 is an on-site symmetry
and Gc the spatial symmetry such as Cn rotations.

In the following section we first consider a concrete example of a bosonic HOSPT
phase, the so-called 2D dimerized quantum XY model, first introduced by Ref. [25] in
this context. Thereby, following this reference, we show that it has typical signatures of
ordinary SPTs, but the anomalies are at the corners and require spatial symmetry to be
robust. Finally, we give a brief introduction to the classification of these phases.

2D dimerized quantum XY-model

The higher-order topological nature of the 2D dimerized quantum XY model was first
discussed by Ref. [25]. This model is defined on a square lattice, where, similar to the
CZX model, each unit cell consists of four spin-1/2 degrees of freedom and individual
terms of the Hamiltonian act on plaquettes, as shown in Fig. 2.5. Thus, the Hamiltonian
is given by,

ĤXY =
∑
p

Ĥp, Ĥp =
4∑
s=1

(
X̂p,sX̂p,s+1 + Ŷp,sŶp,s+1

)
. (2.36)

This model is symmetric with respect to a global Z2 × Z2 symmetry generated by,

Z2 × Z2 :
∏
s

X̂s,
∏
s

Ẑs, (2.37)
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where the product is over all sites of the lattice. In addition, the Hamiltonian preserves
a global C4 symmetry around the center of the lattice (see Fig. 2.5).

Figure 2.5: 2D dimerized quantum XY-model. Hamiltonian (2.36) defined on a
square lattice with open boundary conditions. The C4 symmetry center
(cross) is defined with respect to the center of the model, and C4 rotations
are clockwise. The corners, labeled by {ci}, are completely decoupled; thus
spins can be freely chosen, which, however, in the presence of C4 symmetry
have to be in a spatially symmetric configuration.

Closed Manifold. On a closed manifold, the ground state is unique: each spin is part
of a plaquette, i.e., there are as many constraints as sites. The ground state is given
by [25],

|ΨXY⟩ =
∏
p

[ 1
2
√

2
(|↑↑↓↓⟩+ |↓↓↑↑⟩+ |↑↓↓↑⟩+ |↓↑↑↓⟩)− 1

2 (|↑↓↑↓⟩+ |↓↑↓↑⟩)
]
p

. (2.38)

This state is clearly invariant if we flip all spins simultaneously, which is the case for
the Z2 symmetry generated by ∏

s X̂s. On the other hand, since down spins always
appear twice, the ground state is also invariant under ∏s Ẑs and, consequently, Z2 ×Z2
symmetric. The spatial symmetry maps different plaquettes to each other, and given
that all plaquettes look the same, the state is left invariant under such transformation.
For the plaquettes containing the symmetry center, we recognize that the Hamiltonian
here is equivalent to a one-dimensional XY model with PBC and, thus, translation
symmetric. Indeed, for these plaquettes C4 acts as a single-site translation. The first
excited state is obtained if a single plaquette is not in its ground state. The energy gap
evaluated by Ref. [25] is given by ∆p = 4(

√
2− 1). Hence, as expected, the ground state

considered on a closed manifold is unique, gapped, and symmetric.
Open boundary conditions. If the system is considered with edges and corners, then

on the boundary the two spins, as shown in Fig. 2.5, form a singlet state, which is the
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ground state to a perfectly dimerized one-dimensional quantum XY model,

Ĥboundary
XY =

∑
b

Ĥb
XY, Ĥb

XY =
2∑
s=1

(
X̂b,sX̂b,s+1 + Ŷb,sŶb,s+1

)
, (2.39)

where |Ψb
XY⟩ =

√
2−1 (|↑↓⟩ − |↓↑⟩)b. Thus, in contrast to first-order SPTs, edges of

second-order SPTs are gapped and symmetric. The corners of this model are completely
decoupled and can be chosen at will. However, for a C4 symmetric configuration, all
spins at the corners must be in the same state; either point up (as shown in Fig. 2.5) or
point down. Since we can change between both configurations without any energy cost,
there are zero-energy modes at the corners.

Projective transformations. Similar to the one-dimensional cluster model, the ground
state on a geometry with edges and corners is not symmetric. Indeed, we find:∏

s

X̂s |ΨOBC
XY ⟩ = X̂c1X̂c2X̂c3X̂c4 |ΨOBC

XY ⟩ ,
∏
s

Ẑs |ΨOBC
XY ⟩ = Ẑc1Ẑc2Ẑc3Ẑc4 |ΨOBC

XY ⟩ .

(2.40)
Hence, analogously to the one-dimensional case, symmetry fractionalize and acts only
non-trivially near the corners of the systems. While globally symmetry commutes, that
is not the case at a single corner; instead, we find:

X̂ciẐciX̂ciẐci = −1. (2.41)

This leads to a two-fold degeneracy at the corner of the system and a sixteen-fold de-
generacy in total, which is reduced to a two-fold degeneracy if we require C4 symmetry.
As we will discuss in Chap. 4, projective representations at the corners cause non-trivial,
symmetry-protected degeneracies of the entanglement spectrum of the reduced density
matrix of a single corner.

Zero-energy modes/stability of the phase. Since the corners are completely decoupled,
we can choose the corner spins at will, as long as the final configuration is compatible
with the spatial symmetry. In the following we will argue that C4 symmetry is essential
to the keep phase, and—in particular—the corner modes robust. The authors of Ref. [20]
argued that corner modes require C4 symmetry because otherwise we can attach one-
dimensional systems along the boundaries to gap out the corners. For the current model,
we could for example add another one-dimensional dimerized quantum XY model along a
single edge, and then couple boundary spins22. However, in the presence of C4 symmetry
we need to add one-dimensional chains along each boundary and, consequently, there are
three spin-1/2 degrees of freedom meeting at each corner, which thus remain half-integer.

There is also another argument, which does not require adding degrees of freedom to
the boundary. So far, we argued that two phases remain separate if there is no gapped,
symmetric path of local Hamiltonians. In this definition, we require the bulk gap to stay
finite along the transformation. Here we will show that HOSPTs without spatial pro-
tection can be trivialized by a gap closing along the one-dimensional edge of the system.
Such a procedure is shown in Fig 2.6, where we transformed the state, upon an edge gap
22Recall that the one-dimensional XY model has a Z2 classification and, thus, a stack of two of them

can be trivialized.
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I II III IV

V VI

Figure 2.6: Trivialization of the 2D XY model. Panels I-VI show a trivialization
process of the 2D XY model into a product state. Such process exists if we
allow for a gap closing along the edge, which happens in step II. The bulk
gap stays finite along the transformation.

closing, into a trivial product state. An essential point for this procedure to work is that
in the absence of C4 symmetry we can deform the central plaquette, as shown in the
figure. The ground state inside the unit cell is identical to Eq. (2.38). If we, on the other
hand, enforce C4 symmetry, then the hole boundary must be gapless, but since two edges
share a single corner (see also Ref. [22]), the corner mode cannot be removed regardless
of how we couple sites along the boundary, while respecting symmetry. Moreover, C4
symmetry also forbids any deformation of the central plaquette. Thus, if we in addition
preserve C4 rotations, the two phases remain separate. In Chap. 3 we consider this in
more detail for a related model, which in a specific limit is identical to the 2D dimerized
quantum XY model discussed here.

Thus, unlike first-order SPTs, higher-order SPTs require in addition spatial symmetries
to be well-defined, although there are exceptions, namely, if there are subsystem symme-
tries, that are, symmetries that are conserved along one-dimensional subsystems [118].
For example, such symmetry could be particle number conservation along each row and
column of the system.

Group cohomology classification of bosonic HOSPTs and beyond

As briefly mentioned in the introduction, strongly-interacting bosonic HOSPTs protected
by a symmetry group G = Gc ×G0 are classified in terms of cohomology groups. Here,
we exclusively focus on two-dimensional second-order SPTs, where spatial symmetry is
given by Gc = Cn rotations. Then, according to Ref. [26] the classification of these
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phases is in terms of the first cohomology group H1(Zn, H2(G0, U(1))23 with coefficients
taken from the second cohomology group of the on-site symmetry. For the example
above, the global symmetry is G = C4×Z2×Z2, which results in H1(Z4,Z2) = Z2 [26],
where we used that H2(Z2 × Z2, U(1)) = Z2. Thus, there are two distinct HOSPTs
associated to this symmetry. Hence, according to our definition of SPTs, there are two
different quantized invariants {−1, 1} distinguishing these two phases. In general, the
classification with H2(G,U(1)) = Zm is given by [26]

H1(Zn,Zm) = Zgcd(n,m), n,m ∈ N. (2.42)

Physically, the classification is understood using the domain wall picture [26]: To this

Figure 2.7: Construction of HOSPTs. The classification of HOSPTs can be under-
stood in terms of the domain wall picture. Left: Each Cn domain wall (beige
line) is decorated with a one-dimensional SPT such that in the center pro-
jective representations combine to a linear representation, which guarantees
a gapped, symmetric bulk. At the corners, there remain projective repre-
sentations. Right: The 2D XY model can be adiabatically transformed into
the shape shown here. Along the diagonals (beige and red) there are one-
dimensional topological XY chains that are symmetrically coupled in the
center of the chain.

end, we imagine that each Cn domain wall is decorated with a one-dimensional SPT,
whose topological index is an element of H2(G,U(1)). However, the SPTs cannot be
chosen at will. There is a compatibility condition, namely, the projective representations
in the center of the chain have to become a linear representation such that the bulk is
gapped and symmetric. What remains is a projective representation at the corners. This
is schematically shown in Fig. 2.7. In the same figure, we show how this construction
is realized in a concrete lattice model, the 2D dimerized quantum XY model. Upon an

23In the classification, spatial Cn rotations become an internal Zn symmetry [65].
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adiabatic transformation, the diagonals carry two topologically non-trivial 1D dimer-
ized quantum XY models, which are symmetrically coupled in the center to ensure a
symmetric, gapped bulk.

HOSPTs falling into this category of classifications have zero-energy excitations, which
are exponentially localized near the corners. The reasoning is similar to the one-
dimensional case discussed above. In addition, the projective representation at the cor-
ners will cause a non-trivial degeneracy in the entanglement spectrum of these phases,
which we discuss in more detail in Chap. 4.

HOSPTs beyond this classification. In the next three chapters we will demonstrate
that there are HOSPT phases beyond this classification, which, however, do not have
protected zero-energy modes. Nevertheless, these phases show non-trivial topological
signatures, such as fractional charges at the corners. For these cases, we consider
only a global G0 = U(1) symmetry, which cannot protect one-dimensional SPTs, i.e.,
H2(U(1), U(1)) = Z1 [64]. According to the classification of Ref. [26], we obtain:
H1(Zn,Z1) = Z1 and, thus, do not expect non-trivial HOSPTs, which, however, is
not the case. In this sense, the classification given by Ref. [26] characterizes strong
HOSPTs—having zero-energy excitations exponentially localized near the corners.

2.2.4 Symmetry extension and trivialization of SPT phases
Symmetry-protected topological phases are only different in the presence of symmetries.
If the protecting symmetry is explicitly broken, then formerly distinct states become
equivalent. Consequently, such phases of matter can be transformed to a product state by
symmetry breaking. Alternatively, SPTs can be trivialized using their stacking property.
For instance, if a given class of SPTs has a Zn classification, we need to form a tensor
product of n copies (or stack with its inverse) such that we can trivialize the state by
introducing symmetric couplings. However, there is a third option how SPTs can be
trivialized, namely, by symmetry extension, which has been first discussed by Refs. [36–
38] in the context of the Haldane phase, and then systematically analyzed by Ref. [39].
Symmetry extension means that instead of considering a symmetry group G, we focus on
its extension G̃ such that G = G̃/H is the quotient group of G̃ by a normal subgroup24 H.
A paradigmatic example of such case, which is also discussed in Chap. 7, is the Haldane
phase, protected, among others, by spin-rotation symmetry SO(3). This phase is often
discussed in terms of spin chains, such as the bond-alternating antiferromagnetic spin-
1/2 Heisenberg model. In fact, this particular model results as an effective low-energy
description of fermions in terms of the Hubbard model25. In the fermionic Hilbert space,
the actual symmetry is SU(2) and not SO(3). For SU(2), however, it is known that it
cannot protect one-dimensional SPTs [64]. Thus, the Haldane phase can be trivialized
by fluctuating charges, which has been discussed in Refs. [36–38]. However, as shown by
Ref. [39] it is actually not necessary that the extended symmetry group cannot protect
non-trivial SPTs. The authors argued that in the extended symmetry group G̃ a non-
trivial cocycle associated to a groupG, withG = G̃/H, becomes a coboundary—meaning
24A normal subgroup is a group such that for any g̃ ∈ G̃ and h ∈ H the following holds: (g̃)−1hg̃ ∈ H.
25See Refs. [35, 119] for a derivation of the low-energy description.
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it can be transformed to identity upon a gauge transformation (cf. Eq. (2.14) for the
one-dimensional case).

Although the Haldane phase is a paradigmatic example to study this phenomenon, we
will not do this at this point because it investigated later in this thesis, Chap. 7, where
we reconsider such trivialization process from a different perspective, namely, asking
how immediate topological signatures disappear if we allow for fluctuating charges in
the low-energy description. Thereby, we introduce a new kind of SPT phases, so-called
quotient group symmetry-protected topological phases, that unlike conventional SPTs,
do not require a bulk phase transition to be trivialized—yet topological signatures such
as edge modes and degeneracies in the entanglement spectrum remain parametrically
stable (for more details see Chap. 7).

In this section, we will reconsider the 2D CZX model, following closely Ref. [39],
and show that for a different lattice termination, the boundary can get symmetric and
gapped, but this has as a consequence that the Z2 symmetry near the boundary acts as
a Z4 symmetry. In this way, we have trivialized the SPT by symmetry extensions.

CZX model with a symmetric boundary

If we consider a different boundary termination of the 2D CZX model such that bound-
ary spins are fully contained in a plaquette, defined in Eq. (2.27) (see also Fig. 2.8),
then the boundary is gapped and symmetric. To achieve this, we have to modify the
lattice as follows: Previously, we argued that our building blocks are unit cells consisting
of four sites. However, very often the concept of unit cells is associated with transla-
tion symmetry. The idea is to group sites such that the full lattice can be built from
translating these building blocks. If we now terminate the system, then commonly it is
terminated such that we do not divide unit cells, as it is the case in Fig. 2.3c. However,
in principle there is no need to consider unit cells if translations symmetry is not relevant
or not a symmetry at all. Since the only constraint is that the lattice is square, we can
choose our individual building blocks to be single spin-1/2 degrees of freedom. With
that choice, the boundary in Fig. 2.8 is well-defined. To this end, we can define bulk
cells and edge cells, where the former contain four and the latter two spin-1/2 degrees
of freedom, respectively. To be consistent with the former discussion, Sec. 2.2.2, we still
use the wording of unit cells, but keep the discussion above in mind. Given this, we also
have to slightly modify the Hamiltonian near the edge, namely, whenever we consider a
boundary plaquette, then such plaquette is only surrounded by three projectors P̂αp in-
stead of four. Finally, the ground state of this Hamiltonian—including its boundary—is
symmetric and gapped,

|ΨCZX⟩ =
∏
p

1√
2

(|↑↑↑↑⟩+ |↓↓↓↓⟩)p . (2.43)

Hence, by choosing a different boundary of the 2D CZX model, the anomaly at the
one-dimensional edge of the system disappears—resulting in an overall trivial phase.

Symmetry action. So far, we have seen that with a different boundary termination,
the edge is symmetric and gapped. However, this also changes the action of symmetry
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Figure 2.8: CZX model with a symmetric boundary. A possible boundary of the
CZX model is shown. In contrast to Fig. 2.3c, the “unit cell” along the
boundary consists of only two spins instead of four (for an explanation, see
text). This way, the boundary spins are fully contained in a plaquette term
of the Hamiltonian. Thus, unlike the case shown in Fig. 2.3c, this boundary
is symmetric and gapped. However, as a consequence, symmetry acts in
an extended way, i.e., it becomes a Z4 symmetry along the boundary. The
spin-1/2 degrees of freedom inside a unit cell i have additional labels, where
“+” denotes the upper and “−” the lower spin, respectively. The figure is
adapted from Ref. [39].

along the boundary. To this end, let us consider the symmetry representation inside a
half unit cell denoted by i, where the two spin degrees of freedom are labeled by “+”
and “−”, respectively (following the notation of Ref. [39]). Then, the symmetry is given
as follows [39]:

ÛCZX,i = X̂i,+X̂i,−ÛCZ,i+i−. (2.44)

If we evaluate the square of this operator, then it does not square to identity; instead,
we obtain [39]: (

X̂i,+X̂i,−ÛCZ,i+i−
)2

= −Ẑi,+Ẑi,−, (2.45)

i.e., the symmetry on the boundary does no longer act as Z2; instead, it becomes a
Z4 symmetry. However, note that in the bulk, the symmetry still squares to identity.
Nonetheless, choosing this termination of the lattice, the global symmetry is extended
from Z2 → Z4. Given that a non-trivial SPT does not admit a gapped, symmetric
boundary, this state must be in a trivial phase and, consequently, the SPT is trivialized.

Symmetric, gapped ground state. In the previous analysis of the CZX model, Sec. 2.2.2,
we argued that the effective representation of symmetry along the boundary, Eq. (2.32),
is associated to a non-trivial 3-cocycle and, thus, forbids a gapped, symmetric ground
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state. Here we will do the converse, namely, by showing that there exists a gapped,
symmetric state, we prove that the 3-cocycle associated to this representation must be
trivial26. Indeed, using that ÛCZ,i+i− = (|↑↑⟩ ⟨↑↑|+ |↑↓⟩ ⟨↑↓|+ |↓↑⟩ ⟨↓↑| − |↓↓⟩ ⟨↓↓|)i+i−,
it is easily shown that the following state:

|Ψi+i−⟩ = 1√
2

(|↑↓⟩+ |↓↑⟩)i+,i− , (2.46)

is symmetric with respect to the symmetry defined in Eq. (2.44), A possible symmetric
Hamiltonian to which this state is the unique ground state is given by,

Ĥ = −
∑
i

(
X̂i+X̂i− + Ŷi+Ŷi− − Ẑi+Ẑi−

)
, |Ψ⟩ =

∏
i

|Ψi+i−⟩ . (2.47)

Hence, we constructed a Hamiltonian that is invariant under this symmetry, and its
ground state is unique, gapped, and symmetric, which thus implies that the current
representation of symmetry is associated to a trivial 3-cocycle of Z4. Thus, this is an
example how a 3-cocycle of Z2 has been trivialized in the extended symmetry group27.

2.3 Summary & Outlook
In summary, we reviewed two equivalent definitions when two quantum states, being
the ground states of a local and gapped Hamiltonian, belong to the same phase. First,
we argued this is the case if there exists a path of local and gapped Hamiltonians that
connect these states. Second, a more practical definition was given in terms of local
unitary circuits. While for the first formulation we required that the bulk gap must
be system size independent, in the second version, this translates into a finite evolution
time or depth, if the local unitary transformation is given by a quantum circuit. More-
over, only those quantum circuits were allowed that can be continuously transformed to
identity, which was crucial in the presence of symmetry. Indeed, we argued that sym-
metries can lead to further restriction of paths/local unitary transformations and, thus,
formerly equivalent states can become distinct. From these definitions, we argued that
there are two fundamentally different quantum states. All states that can be connected
to a product state via such local unitary circuit are short-ranged entangled states, and
otherwise named long-ranged entangled states. Without symmetries, all SRE belong to
the same phase. In contrast, LRE states do not require any symmetries to be topological
non-trivial, but symmetries can also enrich these phases.

After a discussion of equivalent states of matter, we discussed a particular class of
SRE states, so-called SPT phases that have a symmetric bulk and, consequently, cannot
be detected using Landau’s theory of symmetry breaking; however, if we consider such
phases with boundaries, there can be zero-energy modes, SSB, or even topological order.
While for first-order SPTs such anomalies occur on the (d−1)-dimensional boundary, for
26In the proofs of Refs. [18, 108] it was shown that for any gapped symmetric state, the 3-cocycle

associated to the representation of symmetry must be trivial.
27Note this last discussion is not part of Ref. [39].
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k-th order SPTs, also named higher-order SPTs, anomalies are on the (d−k)-dimensional
boundary, which can be corners in 2D, or hinges in 3D.

To demonstrate the properties of SPT phases, we studied various examples of bosonic
SPTs. We started from the one-dimensional cluster model, a bosonic SPT phase pro-
tected by Z2 × Z2 symmetry. Thereby, we showed that for one-dimensional bosonic
SPTs all characteristic properties such as edge modes or degeneracies in the entangle-
ment spectrum follow from projective representations labeled by the second cohomology
group H2(G,U(1)).

Further, we argued that related groups also classify SPTs in higher dimensions: Indeed,
many first-order, d-dimensional bosonic SPTs are classified by the (d+1)-th cohomology
group Hd+1(G,U(1)), which for two dimensions result in the third cohomology group.
This we explicitly demonstrated for an exactly solvable 2D SPT phase, the CZX model,
an SPT protected by Z2 symmetry, whose boundary is either gapless or SSB because
the low-energy representation of the symmetry at the boundary is associated to a non-
trivial 3-cocycle. A similar classification exists for higher-order bosonic SPTs protected
by a direct product of a spatial symmetry and an on-site symmetry. In contrast to
conventional SPTs, these phases are classified by the first cohomology group, which in
the case of Cn rotations is given by H1(Zn, H2(G,U(1)). The coefficients are taken
from the second cohomology group of the on-site symmetry. The intuition is that one-
dimensional SPTs are aligned on domains walls of the spatial symmetry such that in the
bulk, projective representations trivialize each other. To demonstrate this explicitly, we
studied the 2D dimerized quantum XY model on a square lattice, thereby exploring its
non-trivial HOSPT phase. In particular, we showed that these phases are only robust
in combination with spatial symmetries because otherwise they can be trivialized by
aligning one-dimensional systems at the boundary or by an edge gap closing.

In the final part, we considered different possibilities to trivialize SPTs. Since SPTs
are only different from product states in the presence of symmetries, one way to make
them trivial is to break the protecting symmetry. Alternatively, we can use the stacking
property of SPTs. However, there is another method of trivializing SPTs, namely, by
symmetry extension. This we demonstrated along the previously introduced 2D CZX
model. Here, we showed that the SPT can be trivialized by choosing a different boundary
termination, which naturally leads to an extension from Z2 to Z4. Thereby, the non-
trivial 3-cocycle of Z2 symmetry has been trivialized in Z4 (Note since we have already
cited the corresponding references in individual sections, we did not do it here again.).

Outlook. In the following three chapters we focus on higher-order SPTs, which are
not captured by the aforementioned classification of these phases; however, share many
properties, in particular, the degeneracy of the entanglement spectrum and anomalies
at the corners. In the second part of this thesis, we study how symmetry extension
can change the low-energy properties of underlying systems. On one hand, we consider
cases where the extended symmetry group itself protects non-trivial SPTs. Thereby,
we study, among other things, how the process of symmetry extension change low-
energy properties, in particular, at quantum criticality. On the other hand, we study
the trivialization of the Haldane phase, and ask, how immediate topological signatures
disappear.
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Higher-order
symmetry-protected topological phenomena
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Chapter 3

The super-lattice Bose-Hubbard model—an
experimentally accessible HOSPT phase

In this chapter, we investigate higher-order topology in a strongly-interacting system.
We propose an experimentally accessible, two-dimensional ultracold atomic system, a
super-lattice Bose-Hubbard model (SL-BHM), supporting an HOSPT phase protected
by a combination of a U(1) charge conservation and C4 lattice symmetry. This model is
the strongly-interacting counterpart of the non-interacting Benalcazar-Bernevig-Hughes
model (BBH) [21]—a generalization of the one-dimensional Su-Schrieffer–Heeger (SSH) [28]
model. The BBH model is a non-interacting higher-order topological insulator (HOTI)
protected, among others, by C4 and chiral symmetry—hosting gapless modes on its
corners. However, unlike in one dimension, where there is an exact mapping between
the SSH model and the 1D SL-BHM at infinitely strong on-site repulsion [33], the 2D
SL-BHM and the BBH model are only related at two, very fine-tuned points. Thus, it
is initially not clear to which extent the signatures of the non-interacting model survive
in the presence of interactions. For instance, the integer classification of topological
free-fermion systems reduce to a Z8 classification in the presence of interactions [69].

Another important aspect is the experimental verification of theoretical concepts.
Thus, it is crucial for theorists to construct models and observables that can be mea-
sured in experiments. Unfortunately, the experimental realization of the BBH model is
challenging, as it requires a non-trivial gauge flux per plaquette to guarantee a finite
bulk gap. This is not the case for the 2D SL-BHM. Another advantage of the latter is
that it directly allows studying the influence of interactions on higher-order topological
phases. To this end, we construct a genuine topological invariant—a fractional corner
charge—which is experimentally accessible. Moreover, we provide a full counting statis-
tics (FCS) to which experimentalists, using ultracold atomic setups [30–32], can compare
to.

This chapter is based on [P1] and structured as follows: In Sec. 3.1 we introduce the
Hamiltonian and the relevant symmetries of the 2D SL-BHM. Thereby, we briefly discuss
its limiting cases and its connection to the two-dimensional dimerized quantum XY
model, introduced in Sec. 2.2.3, and the BBH model. Afterwards, in Sec. 3.2 we consider
the phase diagram of the 2D SL-BHM obtained using the density matrix renormalization
group (DMRG) and give a short summary of the main ideas of the algorithm. Then,
in Sec. 3.3 we classify the two distinct topological phases of the 2D SL-BHM using a
higher-order Zak (Berry) phase and a fractional corner charge and discuss their relation.
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Finally, in Sec. 3.4 we show the FCS for both the 1D SL-BHM and the 2D SL-BHM,
supporting our claim that the fractional corner charge is a genuine topological invariant.
In addition, we argue that the parameters used in our considerations are experimentally
accessible.

3.1 Introduction of the two-dimensional SL-BHM
As initially pointed out, the non-interacting BBH model has severe drawbacks. On one
hand, it requires a gauge flux to have a gapped bulk and, second, it does not allow
studying interactions and their consequences for higher-order topological phases. These
problems can be solved if we instead consider the two-dimensional SL-BHM, a stronlgy-
interacting model. To argue this, we first need to introduce the Hamiltonian and its
symmetries. Moreover, we will briefly talk about its relation to other models realizing a
higher-order topological phase.

3.1.1 The SL-BHM on a square lattice
We consider the following SL-BHM on a two-dimensional square lattice of size L × L
with L even,

Ĥ =−

L−1∑
x=1

L∑
y=1

(
t(x)â†

x,yâx+1,y + h.c.
)

+ x↔ y


+ U

2

L∑
x,y=1

n̂x,y (n̂x,y − 1)− µ
L∑

x,y=1
n̂x,y, (3.1)

where â†
x,y (âx,y) is the creation (annihilation) operator at site (x, y), and n̂x,y = â†

x,yâx,y.
The particles can tunnel between neighboring sites with modulated hopping amplitudes
t(ζ), ζ ∈ {x, y},

t(ζ) =
{
t, for ζ ∈ {1, 3, ..., L− 1}
1− t, for ζ ∈ {2, 4, ..., L− 2}

(3.2)

where t ∈ [0, 1], while the parameter U ≥ 0 controls the on-site repulsion between the
particles and µ is the chemical potential (see Fig. 3.1a). If the on-site interaction is
infinitely strong, i.e., U → ∞, then the Hamiltonian describes the physics of hardcore
bosons characterized by n̂2

x,y = n̂x,y. Whenever we consider hardcore bosons, we denote
local operators as follows: âx,y → b̂x,y and â†

x,y → b̂†
x,y with commutation relations:{

b̂†
x,y, b̂x,y

}
= 1x,y,

[
b̂†
x,y, b̂x′,y′

]
= 0, x ̸= x′ ∨ y ̸= y′. (3.3)

Thus, locally hardcore bosons fulfill fermionic commutation relations; however, globally
bosonic commutation relations are preserved.
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Trivial (TR)
Topo. (TO)

Figure 3.1: 2D SL-BHM showing an HOSPT phase with quantized fractional
corner charges. a) The SL-BHM has a 2 × 2 unit cell, with two different
hopping amplitudes inside and between unit cells, t and 1 − t, respectively.
The ground state is topological trivial (non-trivial) for t = 1 (t = 0). b) Aver-
age occupation number of lattice sites in the topological phase with particle
number N = L2/2−2, displaying four holes localized around the corners, giv-
ing rise to fractional charges Qcorner = 1/2. c) The full distribution function
of corner charges for the trivial (topological) phase, peaked around a quan-
tized fractional part 0 (1/2). We used the parameters N = L2/2 (L2/2− 2),
t = 0.9 (0.1), U = 32 and ξenv = 3.2 (3.08).

3.1.2 Symmetries of the SL-BHM
Hamiltonian (3.1) is C4 symmetric with respect to the center of the lattice and preserves
the total particle number N̂ = ∑

x,y n̂x,y, which gives rise to a global U(1)×C4 symmetry.
In the case of hardcore bosons, U → ∞, the system has two additional antiunitary ZT2
symmetries denoted by Ŝ = ∏

x,y

(
b̂x,y + b̂†

x,y

)
K and Ĉ = ∏

x,y

(
b̂†
x,y − b̂x,y

)
K, where K

is the operator of complex conjugation. Under these transformations, local operators
change as follows:

Ŝ : b̂†
x,y ↔ b̂x,y, Ĉ : b̂x,y → −b̂†

x,y, Ĉ : b̂†
x,y → −b̂x,y (3.4)

Note on-site Ŝ squares to identity Ŝ2
x,y = 1x,y, while Ĉ squares to minus identity Ĉ2

x,y =
−1x,y
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3.1.3 Fixed-point phases and relation to others
Here we briefly discuss the exactly solvable cases of the 2D SL-BHM and consider its
relation with other models discussed in literature. Thereby, we mainly focus on the
sector at half-filling and set the chemical potential µ = 0.

Fixed-point phases

To get a feeling for the two topological distinct phases of the 2D SL-BHM at half-filling,
we briefly discuss the exactly solvable limits t = 0 and t = 1, respectively. In both cases,
there is a finite bulk gap; for strong interactions U ≫ max(t, 1 − t), the bulk gap is of
order ∆ ∼ O(max(t, 1− t)).

In the trivial phase (TR) with t = 1, the ground state at half-filling is unique and
C4-symmetric (see Fig. 3.3a). In the topological phase (TO) with t = 0, the four corners
are decoupled and each of them can be either filled or empty (see Fig. 3.3b). To obtain a
C4-symmetric ground state with bulk and edges at half-filling, the total particle number
has to deviate from exact half-filling N = N0, as N = N0 ± 2 with N0 = L2/2.

This filling anomaly1, giving rise to quantized fractional corner charges (see Fig. 3.1),
was already discussed in the context of non-interacting higher-order topological phases [27].
For hardcore bosons, the antiunitary symmetry Ĉ protects in addition a two-fold degen-
eracy at each corner, which is a consequence of the property that Ĉ2

x,y = −1x,y on-site.
This implies that corners can be occupied or empty, i.e., the particle sectors N = N0±k
with k ∈ {−2, ..., 2} are degenerate. However, note that not all configurations are com-
patible with the spatial symmetry. Once U is lowered, this degeneracy is lifted, but the
filling anomaly remains. Comparing the charge distributions of the two phases, we find
a fractional charge Qcorner = 1/2 localized around the corners in the topological phase,
Fig. 3.1, measured with respect to the average bulk filling n0 (for a rigorous definition
of Qcorner see Eq. (3.20) below).

Quantum XY model

The SL-BHM considered in the limit of hardcore bosons is equivalent2 to the two-
dimensional spin-1/2 quantum XY model, which was studied in Ref. [25] and reviewed
in Sec. 2.2.3. The identification of operators read:

2Ŝxx,y = b̂†
x,y + b̂x,y, 2Ŝyx,y = i

(
b̂†
x,y − b̂x,y

)
2Ŝzx,y = 1x,y − 2n̂x,y. (3.5)

The chemical potential introduced in Eq. (3.1) corresponds (up to a constant shift) to
an external magnetic field in the XY model. In Ref. [25] it was argued that for t≫ 1− t
the ground state realizes a HOSPT phase protected by Z2 × Z2 × C4 symmetry (see
also Sec. 2.2.3). The protecting on-site symmetries are generated by ∏x,y e

iπŜx
x,y and

1The filling anomaly is a consequence of open boundary conditions. For periodic boundary conditions,
both phases have a unique, C4-symmetric ground state at the same filling n0 = 1/2.

2It is actually the same. The Hilbert space of hardcore bosons and spin-1/2 degrees of freedom is
identical.
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∏
x,y e

iπŜy
x,y . In the same reference, it was argued that these symmetries protect a tow-

fold degeneracy at each corner, which is robust as long as in addition C4 symmetry is
preserved. Such a two-fold degeneracy is also protected by a combination of ZT2 × C4
which, in the case of spin-1/2 degrees of freedom, corresponds to time reversal symmetry
Ĉ → T̂ = ∏

x,y e
iπŜy

x,yK. As showed previously, on a single site, this symmetry squares
to minus identity leading to a Kramers degeneracy—a twofold degeneracy of half-integer
spin states. Note, the other representation of the antiunitary symmetry cannot protect
a Kramers degeneracy.

Benalcazar-Bernevig-Hughes model

The BBH model is a free-fermion model, which is the two-dimensional generalization
of the famous one-dimensional SSH model. The BBH model was first introduced in
Ref. [21] and is one of the first examples of higher-order topological systems protected,
among others, by a combination of chiral symmetry and C4 rotations. Similar to the 2D
SL-BHM, the BBH model is a collection of plaquette Hamiltonians defined as follows:

ĤF
P =

3∑
j=1

(
ĉ†
j ĉj+1 + h.c.

)
−
(
ĉ†

4ĉ1 + ĉ†
1ĉ4
)

ĤB
P =

4∑
j=1

(
b̂†
j b̂j+1 + h.c.

)
, b̂5 ≡ b̂1, (3.6)

where we introduced the superscripts “F” for fermions and “B” for bosons, respectively.
Graphically, the plaquette Hamiltonians are illustrated in Fig. 3.2. The edges can be
written in a similar way. In the perfect dimerized limits, i.e., t = 0 or t = 1 and
U →∞ (hardcore bosons) there is an exact mapping between the 2D SL-BHM and the
BBH model. The mapping is given by the Jordan-Wigner transformation (JW) relating
bosonic and fermionic operators in the following way:

b̂†
j = e

iπ
∑

i<j
n̂i ĉ†

j , b̂j = ĉje
−iπ

∑
i<j

n̂i . (3.7)

Inserting this transformation in ĤB
P we arrive at ĤF

P (here we explicitly used that the
systems are at half-filling). We note that the plaquette Hamiltonian of the BBH model
contains a π-flux per plaquette, since it can be written as

ĤF
P =

4∑
j=1

(
eiϕj ĉ†

j ĉj+1 + h.c.
)
, (3.8)

with ϕ1 = ϕ2 = ϕ3 = 0 and ϕ4 = π. According to Peierls substitution [104], the total
magnetic flux per plaquette is the sum of all phase factors Φ = ∑

j ϕj = π. Indeed,
for the two-dimensional SSH model to have a finite bulk gap, plaquettes must contain a
π-flux [21, 120], which naturally arise if obtained from the bosonic model at half-filling.

The bosonic antiunitary symmetry ŜB = ∏
P

∏
j

(
b̂†
j + b̂j

)
K (formerly called Ŝ) with

plaquettes defined as shown in the trivial cases t = 1, Fig. 3.2, maps to the fermionic
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1 2

34

1 2

34

Figure 3.2: 2D lattice models. a) 2D BBH model with a π-flux insertion per plaquette
for t = 0 (topological) and t = 1 (trivial). b) 2D SL-BHM at infinite
interaction strength U → ∞ for t = 0 (topological) and t = 1 (trivial).
For the limits t = 0 (t = 1), both models are in one-to-one correspondence.
They can be mapped to each other using the Jordan-Wigner transformation
applied to each plaquette and edge Hamiltonian individually.

chiral symmetry ŜF = ∏
P

∏
j

(
ĉ†
j + (−1)j ĉj

)
K, which together with C4 symmetry pro-

tects the non-trivial topology of the BBH model [21]. It is important to note that the
exact relationship only holds for the perfect dimerized limits at U → ∞. There have
been attempts to apply the JW transformation away from the dimerized limits (using
hardcore bosons) [25], but after the transformation one obtains the BBH model in an ex-
ternal gauge field. To circumvent this problem, the authors used a mean-field treatment,
which is, nevertheless, not an exact relation.

3.2 A numerical study: Robustness of gapped phases at
half-filling

Before we discuss the numerical results obtained using DMRG, we briefly give an insight
into the main idea of this algorithm.

DMRG in a nutshell

DMRG, which was first introduced by S. White [40, 41], has shown to be a powerful tool
to study ground states of one-dimensional gapped and local Hamiltonians. The success
of this algorithm is based on the fact that ground states of such systems fulfill an area
law [97, 121], that is, the entanglement entropy of a subsystem grows with the size of the
boundary, which in one dimension is a point and, thus, constant. Consequently, if a wave
function is written in a Schmidt decomposition3 only a few eigenvalues of the reduced

3A Schmidt decomposition of a state |Ψ⟩ can be written as |Ψ⟩ =
∑

α
Λα |αA⟩ |αB⟩, where {Λα} are

the Schmidt values and {|αA(B)⟩} the Schmidt states of the region A(B).
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density matrix contribute significantly to the entanglement [98, 122]. This is precisely the
property on which the truncation scheme of DMRG is built on, namely, in the algorithm
we keep only those states that contribute most to the weight of the spectrum of the
reduced density matrix. As many other algorithms, the DMRG method is a variational
Ansatz for finding the lowest energy eigenstate of a given Hamiltonian4. Commonly, this
algorithm is formulated in terms of matrix product states (MPSs) [98, 122], a particular
class of tensor network states [99, 123, 124], which have turned out to approximate true
ground states of one-dimensional many-body systems extremely well. The reason is that
those states inherently fulfill the area law (as we shall see soon). For a generic quantum
system, the complexity grows exponentially with the number of degrees of freedom;
however, the number of states contributing to ground states of one-dimensional local
and gapped systems is very little [99, 124]. This is where MPSs become so powerful;
the idea of MPSs is to approximate the coefficient of the wave functions by a matrix
product cσ1,...,σL = tr (Aσ1 . . . AσL)5, with L sites and Aσi ∈ Cχ×χ, which reduces the
number of parameters drastically, namely, this way the number of parameters grows
only polynomially instead of exponentially as L is increased [99, 124]. The maximal
entanglement captured by MPSs is S ∼ logχ, which is indeed a constant for a given
χ. Hence, MPSs inherently fulfill the area law. The bond dimension χ controls the
quality of the approximation in DMRG calculations. For gapless systems, however, the
entanglement entropy grows indefinitely and, thus, the MPS bond dimension.

DMRG in two dimensions. DMRG has been successfully generalized to two-dimensional
systems [125], but it is much less powerful as the computational costs scale exponen-
tially with the system width (along y)6. Nevertheless, DMRG is a good starting point,
and it gives first insight into the nature of a two-dimensional system7—in particular—if
Quantum Monte Carlo suffers from a sign problem [125]. For calculating bulk prop-
erties, the two-dimensional system is considered on a cylinder with infinite extension
along x and finite circumference along y. Numerical results can then be extrapolated
in bond dimension χ and circumference Ly. If correlations of a two-dimensional system
are short-ranged and the correlation length is much less than the circumference of the
cylinder, then this a faithful approximation.

Phase diagram

In the previous section, we argued that the 2D SL-BHM in the limit of U → ∞ and
strongly anisotropic hopping amplitudes realizes two distinct quantum phases. To study
the robustness of the gapped phases, we mainly focus on a parameter regime (t, U, µ = 0)
where the bulk is incompressible8 and the average filling in the bulk is n0 = 1/2. Thereby,

4One wishes to minimize the functional E[Ψ] = ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ .

5Here we assumed the simplest case of a translation invariant MPS.
6All the information of neighboring stripes is contained in a single MPS bond. For two-dimensional

systems, the area law predicts that the entropy scales with the length of the boundary S ∼ l, which
implies χ ∼ el.

7In 2011 Yan et al. [42] uncovered a gapped spin-liquid state of the antiferromagnetic spin-1/2 Heisen-
berg model on a kagome lattice using DMRG in two dimensions.

8This means that the density is insensitive to small changes of the chemical potential κ = ∂n
∂µ

= 0 [30].
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Figure 3.3: Phase diagram and fixed-point states. Exactly solvable limits of both
phases are shown for the trivial (TR) and topological phase (TO) in a) and
b), respectively. In the topological phase, the corner of the lattice is com-
pletely decoupled from the rest of the system. Panel c) shows the bulk corre-
lation length ξ against the interpolation parameter t obtained from DMRG
on an infinite cylinder with circumference Ly = 6. The diverging correlation
length is characteristic for the superfluid (SF) phase. The Hilbert space was
truncated to maximal four bosons per site, and we kept χ = 500 states for
the simulations.

we want to answer the question to which extent the gapped phases remain as we decrease
U and the anisotropy of hopping amplitudes, such that they become of the same order
t ∼ (1−t). Therefore, we applied the infinite DMRG method [40, 122, 126, 127] to the 2D
SL-BHM and considered the system on an infinite cylinder Lx →∞ with circumference
Ly = 6 and evaluated the bulk correlation length ξ9 shown in Fig. 3.3c. To uncover
the gapped regions, we evaluated the bulk correlation length for various values of the
bond dimension χ (for more details, see App. A). The phase diagram, Fig. 3.3c, clearly
shows that the 2D SL-BHM has two extended gapped phases denoted as topological
and trivial, respectively. The gapped regions are separated by a gapless superfluid (SF)
regime.

9Similar to the entanglement entropy of a subsystem, the bulk correlation length diverges for gapless
systems.
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3.3 Topological classification of the 2D SL-BHM
This section is at the heart of this chapter, as it contains the topological classification
of the 2D SL-BHM. We briefly argue why concepts of non-interacting systems cannot
be used to classify the topology of the 2D SL-BHM and explain why higher multipole
moments such as a quadrupole operator is not a faithful quantity to distinguish different
phases of the 2D SL-BHM. Afterwards, we consider the higher-order Zak (Berry) phase,
first introduced by Araki et al. [128], and then the fractional corner charge. Thereby,
we argue that it serves as a genuine topological invariant.

3.3.1 Failure of non-interacting classifications and higher multipole
moments

Concepts of non-interacting HOTIs [21–24, 109–111] very often rely on the momentum
state representation at which non-interacting fermionic systems become exactly solvable.
In the case of strongly-interacting systems there is no advantage of transforming the
system to momentum space as it does not simplify the problem—it remains not solvable.
Thus, many concepts developed in the non-interacting setup cannot be used for strongly-
interacting systems.

Quadrupole operator. There have been other attempts to classify higher-order topology
by generalizing the many-body polarization introduced by Resta [45] to a many-body
quadrupole operator [129, 130]. However, it was shown that for U(1) conserving systems,
such an operator is not well-defined in the presence of periodic boundary conditions [131].
Any state of a given Hilbert space on which such operator acts, must obey the same
boundary conditions, which is not the case if the system does not conserve the dipole
moments along x and y. Nevertheless, if a system conserves the total charge and dipole
moments, a quadrupole operator can be meaningfully defined [132]. In Sec. 5.2.3 we
review this discussion from a more physical point of view using Thouless pumps, which
clearly demonstrates that a quadrupole operator is indeed not sufficient to characterize
the HOSPTs of the 2D SL-BHM.

3.3.2 Higher-order Zak (Berry) phase
The higher-order Zak (Berry) phase, classifying HOSPTs, was first introduced in Ref. [128]
and is a proper topological invariant if the ground state is non-degenerate10. In the pres-
ence of C4 symmetry, it is quantized. To this end, we consider the 2D SL-BHM with
PBC. The higher-order Zak (Berry) phase is defined with respect to a local twist of the
central plaquette, Fig. 3.2 at t = 0, see also Fig. 3.4, while the remaining part of the
Hamiltonian, Eq. (3.1), is unchanged. The local twist is introduced via a product of
three unitary operations

Û =
3∏
j=1

Ûj , Ûj = e−in̂jϕj , (3.9)

10We will elaborate more on this in Sec. 5.1
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θ4

θ2

θ1 θ3

Figure 3.4: Local twist. The resulting Hamiltonian after inserting the local twist in the
central plaquette. The hopping terms responsible for PBC are not shown.
Although four variables are displayed, only three of them are independent.
One of the variables is fixed by the zero flux condition ∑j θj = 0.

such that the central plaquette transforms as follows:

Û †ĤPÛ = ei(ϕ2−ϕ1)â†
2â1 + ei(ϕ3−ϕ2)â†

3â2 + e−iϕ3 â†
4â3 + eiϕ1 â†

1â4 + h.c.. (3.10)

Finally, we define ϕj = ∑j
i=1 θi together with a zero flux condition, i.e., ∑j θj = 0.

The resulting Hamiltonian is shown in Fig. 3.4. After inserting the local twist, the
ground state, |Ψ(θ1, θ2, θ3, θ4)⟩, depends on four variables; however, only three of them
are independent, with (θ1, θ2, θ3) ∈ R3.

Paths in parameter space

Although we have introduced three independent variables, it turns out that for the
particular paths we choose a single parameter l ∈ [0, 1) is sufficient. To this end, we
consider four C4 symmetry related paths, L1, ...,L4, which are defined as follows:

L1 = O → G0 → 2πe1, L2 = 2πe1 → G0 → 2πe2

L3 = 2πe2 → G0 → 2πe3, L4 = 2πe3 → G0 → O, (3.11)

where {ei} denotes the standard basis of R3, G0 = π
2
∑
i ei and O is the origin. Along

each path, the higher-order Zak (Berry) phase reads11:

γj = i

∮
Lj(l)

dl ⟨Ψ(l)|∂l|Ψ(l)⟩ mod 2π, l ∈ [0, 1). (3.12)

To obtain γ1, for example, the parametrization is as follows:

L1 :=
{

θ1 = θ2 = θ3 = 2πl, θ4 = −6πl, 0 ≤ l ≤ 1
4

θ1 = 2πl, θ2 = θ3 = 2
3π(1− l), θ4 = −2

3π(l + 2), 1
4 < l < 1

, (3.13)

and similarly for the other trajectories.
11This phase is well-defined modulo 2π, which is a consequence of the fact that wave functions are only

defined up to a U(1) phase factor.
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Quantization of the higher-order Zak (Berry) phase

A first step towards a quantization of the higher-order Zak (Berry) phase is to note that
the sum over all paths vanishes,∑

i

Li = O ⇒
∑
i

γi = 0 mod 2π. (3.14)

Second, C4 symmetry maps individual paths to each other C4 : Li → Li+1. From this,
we obtain that all four higher-order Zak (Berry) phases are identical (modulo 2π),

γ1 = γ2 = γ3 = γ4 mod 2π. (3.15)

This property, together with Eq. (3.14), implies quantization of the higher-order Zak
(Berry) phase, ∑

i

γi ≡ 4γ = 0 mod 2π ⇒ γ = π
Z
4 . (3.16)

For the 2D SL-BHM at half-filling the higher-order Zak (Berry) phase is given by γ =
{0, π}, which can be deduced from the non-degenerate ground states at the exactly
solvable limits t = 0 and t = 1, respectively. Note that the difference ∆γ = γ(t =
0)−γ(t = 1) is invariant under continuous, symmetric deformations of the Hamiltonian12.
To numerically evaluate the higher-order Zak (Berry) phase, we considered the 2D SL-
BHM on a 4 × 4 torus with fixed-particle number N = 8. The numerical results are
shown in Fig. 3.5b, clearly indicating that the gapped phases realizes two distinct HOSPT
phases. The quantized plateaus of the higher-order Zak (Berry) phase in Fig. 3.5b persist
in the SF phase purely due to finite size effects.

3.3.3 Fractional corner charges
The higher-order Zak (Berry) can distinguish the two distinct topological phases realized
by the 2D SL-BHM at half-filling. However, for an actual experiment to measure this
topological invariant is a very challenging task, since artificial gauge fields at arbitrary
values are required. In this part, we show that the fractional corner charge distinguishes
the two gapped phases of the 2D SL-BHM and is a genuine topological invariant that is
experimentally accessible.

Filling anomaly

In Sec. 3.1.3 we argued that in the topological phase, t = 0, the system suffers from
a filling anomaly if the model is considered with open boundary conditions. Namely,
the C4-symmetric ground states have particle numbers N = N0 ± 2, where N0 is the
particle number at half-filling. For hardcore bosons, the ground states of these particle
sectors have the same energy; however, once U < ∞ the degeneracy is lifted, but the

12Continuous symmetric deformations are defined such that the bulk gap of a given Hamiltonian does
not close (see also Sec. 2.2.1).
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filling anomaly remains. This is also the reason the 2D SL-BHM at finite U cannot
be captured by the group cohomology classification discussed in Sec. 2.2.3. For a C4-
symmetric state, the average particle number in each quadrant must be the same

⟨N̂q1⟩ = ⟨N̂q2⟩ = ⟨N̂q3⟩ = ⟨N̂q4⟩ , (3.17)

from which we obtain ⟨N̂qi⟩ = N/4, where {qi} labels different quadrants. Note here
we used that the Hamiltonian, Eq. (3.1), conserves the total particle number and, thus,
replaced the operator N̂ → N by its quantum number. From the trivial phase, we know
that N0 mod 4 = 0, which implies that each quadrant in the topological phase with
N = N0 ± 2 carries on average a fractional charge ∼ 1/2 (mod 1).

Corner charge

If bulk and edges are at half-filling n0 = 1/2, then fractional charges must sit near the
corners. If we define individual charges with respect to the average filling ∼ ⟨n̂x,y − n0⟩,
then the following holds13:

4Qcorner + 4Qedges +Qbulk = 2, (3.18)

where C4 symmetry ensures that edges and corners must have the same total charge.
By assumption, bulk, and edges are at half-filling, i.e., Qbulk = Qedge = 0, which implies

Qcorner = 1/2 mod 1. (3.19)

For the exactly solvable case at t = 0, we find that Qcorner = ⟨n̂corner − n0⟩ = 1/2 with
zero fluctuations (∆Qcorner)2 = ⟨Q̂2

corner⟩ − ⟨Q̂corner⟩
2 = 0. If t > 0, then the fractional

charge is no longer on-site and starts to penetrate into bulk and edge regions—resulting
in non-trivial quantum fluctuations. For the fractional corner charge to be a well-defined
invariant, its quantum fluctuations in the thermodynamic limit must vanish. To keep
track of this, we equip the operator of the fractional corner charge Q̂corner with an
exponentially decaying envelope function14

Q̂corner =
∑
x,y

e−r2/ξ2
env (n̂x,y − n0) , (3.20)

where r = (x, y)T gives the position on the lattice. The width of the Gaussian envelope
function is determined by ξenv, which has to be much larger than the localization length
ξp,h of a particle or hole state pinned at the corner ξp,h ≪ ξenv and much smaller than
the system size ξenv ≪ L. The first constraint is needed because within a region of ∼ ξ2

loc
particle number fluctuations are of order one (∆n)2 ∼ O(1)—destroying the quantization

13Since the system is insulating with a finite correlation length, there is a clear notion of how to divide
such a system using envelope functions [133, 134]. However, for the argument the precise definitions
are not necessary.

14This way we ensure a smooth cut-off, which would be not the case if we were using a Heaviside step
function. A hard cut-off would cause particle number fluctuations of order one at the end of the cut.
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of the corner charge. The second constraint ensures that we do not pick up contributions
from other corners. For sufficiently large system sizes, ξenv becomes independent of L—
rendering the fractional corner charge as a genuine topological invariant as L→∞. The
localization length is defined through the participation ratio [135],

ξ2
p,h =

(∑
x,y

∆nx,y
)2

/
∑
x,y

(∆nx,y)2, (3.21)

where ∆nx,y = |⟨n̂x,y⟩ − n0| × Θ (±(⟨n̂x,y⟩ − n0)), with “+(−)” for ξp(h) and with Θ
denoting the Heaviside step function. Similar to the higher-order Zak (Berry) phase, the
fractional corner charge distinguishes the two distinct HOSPT phases of the 2D SL-BHM
with Qcorner = 0(1/2) mod 1 in the trivial (topological) phase. The numerical results
are shown in Fig. 3.5a.

Figure 3.5: Topological invariants. a) Corner charge Qcorner as a function of hopping
t at half-filling N = N0, quantized to Qcorner = 0 (1/2) in the gapped triv-
ial (topological) phase. We used DMRG on an 8 × 8 square lattice, taking
U = 32, ξenv = 2.8. b) Higher-order Zak (Berry) phase γ as a function of the
hopping parameter, quantized around γ = 0 (π) in the gapped trivial (topo-
logical) phase. The result is obtained for a 4× 4 square lattice with periodic
boundary conditions at half-filling (N0 = 8).

Stability of the fractional corner charge

To be a proper topological invariant, the fractional corner charge must be immune to
continuous deformations of the Hamiltonian, i.e., any symmetric perturbations that do
not close the bulk gap. Note, this does not forbid terms that lead to an edge gap
closing (which we partly discussed in Sec. 2.2.3). Indeed, even if the edge gap closes,
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the fractional part of the corner charge cannot change. To demonstrate this, we define
polarizations denoted by P edge for each edge15. Concentrating on a single corner, the
change of the corner charge ∆Qcorner, due to arbitrary edge manipulations, is directly
related to the change of the polarizations of the two edges meeting at this corner, ∆P edge

x

and ∆P edge
y , by the King-Smith-Vanderbilt relation [134]

∆Qcorner =
∑

ζ∈{x,y}
∆P edge

ζ mod 1. (3.22)

Due to C4 symmetry, the contributions of the edge polarizations ∆P edge
x and ∆P edge

y

cancel each other, confirming that Qcorner is robust against edge manipulations, even if
the edge gap closes and, thus, reflects the properties of the bulk. This argument again
emphasizes the need of spatial protections for higher-order topological phases.

3.3.4 Relation of topological invariants
In the previous discussions we argued that both the higher-order Zak (Berry) phase and
the fractional corner charge classify the gapped phases of the 2D SL-BHM; however,
unlike in one dimension, where the fractional charge at the edge and the many-body
generalization of the Zak (Berry) phase are related by a bulk-boundary correspondence,
this relation is not yet clear in higher dimensions and is part of Chap. 5. Nevertheless, it
is worthwhile to briefly repeat the argument of the one-dimensional SL-BHM because it
also manifests that the fluctuations of the fractional charge in the thermodynamic limit
must vanish.

One-dimensional SL-BHM

The gapped phases of the 1D SL-BHM with a bulk at half-filling16 also realize two dis-
tinct topological phases, labelled by the bulk polarization P1D,bulk, proven to be quan-
tized to P1D,bulk = 0 (1/2) mod 1 for a system with periodic boundary conditions [33].
This quantization relies on inversion symmetry only and P1D,bulk is directly related to
a Zak (Berry) phase picked up by the interacting many-body wave function for twisted
boundary conditions [45, 103], similar to what we discussed in Sec. 3.3.2. In a system
with sharp edges, bulk-boundary correspondence manifests in a charge localized around
the edge, Q1D,edge, such that the changes of Q1D,edge are related to changes of the bulk
polarization through ∆Q1D,edge = ∆P1D,bulk [134]. Since the latter is quantized and di-
rectly related to a topological invariant (the many-body Zak (Berry) phase [33, 45]), the
quantum fluctuations of ∆Q1D,edge have to vanish in the thermodynamic limit L→∞.

15From the limiting case t = 0, we observe that the edges itself form a one-dimensional SL-BHM, which
has extensively discussed in Ref. [33].

16The 1D SL-BHM also shows a filling anomaly; for the same chemical potential the two phases differ
in their total particle number, with N = N0 (N0 − 1) in the TR (TO) phase. (See Fig. 1 of Ref. [33]).
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3.4 Fractional corner charges in the context of experiments
The final part of this chapter considers the measurement of the fractional corner charge
and briefly discusses the experimental realization of the 2D SL-BHM. Thereby, we ex-
plicitly provide data that can be measured in ultracold atomic setups using single-site
resolution of quantum gas microscopes [30–32].

3.4.1 Measurement of fractional corner charges
For the fractional corner charge to be a proper topological invariant, we argued that
its quantum fluctuations must vanish in the thermodynamic limit. To demonstrate
this, we evaluated the full counting statistics of the edge and corner charges for both
phases of the 1D and 2D SL-BHM, respectively. We obtained the ground state of the
system using DMRG, and then generated single snapshots according to the probability
distribution given by the wave function using perfect sampling [136]. Figs. 3.6a and 3.6b
display the FCS of the 1D system in both phases for two different system sizes L, clearly
demonstrating that the distributions centered around Q1D,edge = 0 (1/2) get sharper as L
increases. Figs. 3.6c and 3.6d show the 2D FCS in the TR and TO phases, respectively.
Here the accessible system size L is more limited and the FCS still shows significant
finite size effects, in contrast to the 1D case. This results in a broader distribution that
is, however, clearly centered around Qcorner = 0 (1/2).

Let us emphasize, that the data shown in Fig. 3.6 could have taken from an actual
experiment, where after each state preparation a single snapshot is made, and the data
are drawn in a histogram [32]. This makes the fractional corner charge such a powerful
topological invariant. It is experimentally accessible and allows for a direct confirmation
of theoretical predictions.

3.4.2 Discussion of experimental realizations
Here, we argue that the parameter ratios used in the numerical calculations are in an
experimentally accessible regime. Since the 2D SL-BHM is considered in the strongly-
interacting regime, i.e., U ≫ max(t, (1−t)) ≡ τ the relevant ratio is given by τ/U . From
Ref. [30], page 905, we see that this ratio for the SL-BHM can be estimated to be

τ

U
∼ d

a
exp−2

√
V0
Er
, (3.23)

where d is the lattice spacing, a the s−wave scattering length, V0 the lattice depth and
Er the recoil energy. In the same reference [30], page 900, it is mentioned that typical
values of these parameters are a ∼ 5nm and d ∼ 0.5µm. Thus, the ratio d/a is of order
O(d/a) ∼ 104. For the 2D SL-BHM, the ratio of τ/U is of order O(τ/U) ∼ 10−2−10−3,
and therefore, the ratio of V0/Er is of magnitude,

O
(
V0
Er

)
∼ 50, (3.24)
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Figure 3.6: Full counting statistics of edge and corner charges. a) and b) FCS of
fractional edge charge Qedge of the 1D SL-BHM (defined in Ref. [33]) in the
TR and TO phases, for two different system sizes L = 24 and L = 200. The
distribution is peaked around the quantized value 0 (1/2) in the TR (TO)
phase and gets sharper with increasing L, confirming that Qedge is a good
quantum number in the thermodynamic limit. Parameters for the TR (TO)
phase: N = N0 (N0 − 1), t1 = 0.2 (1), t2 = 1 (0.2), U = 10. The envelopes
are ξenv = 12 (12) for L = 24 and ξenv = 53 (45) for L = 200, respectively. c)
and d) FCS of fractional corner charge Qcorner, measured in the TR (TO)
phase of the 2D SL-BHM for system size 10 × 10, peaked around 0 (1/2).
The width of the distribution should approach to zero in the thermodynamic
limit, similar to the 1D case. Results were obtained for N = N0 (N0 − 2),
t = 0.9 (0.1), U = 32 and ξenv = 3.2 (3.08).

which is in a regime of experimental accessibility, see, for example, Ref. [137], where the
ratio was even three times higher than the estimate in Eq. (3.24).

3.5 Summary & Outlook
In summary, we have proposed an experimentally accessible ultracold atomic system,
a 2D SL-BHM around half-filling, with alternating hopping amplitudes t and 1 − t re-
alizing an interacting HOSPT phase protected by charge conservation and C4 lattice
symmetry. We identified the hardcore boson model with the dimerized spin-1/2 quan-
tum XY model and discussed its connection with a non-interacting HOTI—the BBH
model—and showed that these two models are only equivalent at two points, namely,
for hardcore bosons, U → ∞, and t = 0 or t = 1. Further, relying on DMRG simula-
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tions, we explored the phase diagram of the 2D SL-BHM and showed that it hosts two
gapped topological phases17, separated by a gapless superfluid region. Concentrating on
the gapped phases, we argued that they are topologically distinct and differ in terms
of a quantized fractional charge localized around the corners, intimately connected to a
quantized higher-order Zak (Berry) phase. This fractional charge is robust against edge
manipulations and reflects the properties of the bulk. By sampling snapshots of the
ground state wave function in the Fock basis, we have demonstrated that the full dis-
tribution of the corner charge is peaked around the fractionally quantized value 0 (1/2)
in the trivial (topological) phase. A similar sampling can be experimentally realized in
ultracold atomic settings by using state-of-the-art quantum gas microscopes [31, 32].

Outlook. Although we showed that the fractional corner charge and the higher-order
Zak (Berry) phase give the same results, a precise connection as in the one-dimensional
case is missing. This is puzzle is partially solved in Chap. 5 of this thesis. Furthermore,
for one-dimensional SPTs, there are non-trivial signatures of topology reflected in the
entanglement spectrum. Namely, it was shown that a non-trivial SPT exhibit degenera-
cies in the spectrum of the reduced density matrix [93] (see also Sec. 2.2.1). Naturally,
the question arises if such signatures extend to higher-order topological systems, which
will be part of a discussion of the next chapter.

17The trivial phase is a topological phase with vanishing higher-order Zak (Berry) phase and fractional
corner charge, respectively, which are protected by symmetry.
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Higher-order entanglement and many-body
invariant

In this chapter, we extend the discussion on higher-order topological systems and con-
sider it from two different points of view: On one hand, we still lack an experimen-
tally accessible many-body invariant that recognizes higher-order topology in a strongly-
interacting setup, that captures bulk properties and is related to the fractional corner
charges discussed earlier. On the other hand—a more theoretical point of view—is the
study of the many-body entanglement spectrum, which has been shown to contain char-
acteristic information on topological properties of quantum phases of matter [17, 138–
144].

To this end, using the 2D SL-BHM as toy model, we first introduce a many-body
invariant that differentiates non-trivial HOSPT phases from trivial ones, based on the
fact, that the corresponding flux insertion operator does not commute with Cn rotation
symmetry—resulting in a non-trivial shift of angular momentum. This non-commutative
algebra uniquely characterizes HOSPT phases with fractional charges at the corners.
One can further relate this many-body invariant to the discrete Wen-Zee [43, 44, 145]
response, which intertwines the U(1) gauge field and spin-connection. The Wen-Zee
response can be probed either by tracking the angular momentum shift under a 2π
gauge flux insertion or via measuring the charge density distribution in the presence
of disclinations [20, 44, 114, 145, 146]. Remarkably, such topological response could
potentially be probed and simulated in ultracold atom systems with synthetic gauge
fields created by laser-assisted tunneling or rotating traps.

Second, we propose a general recipe to detect HOSPT phases from a new higher-
order entanglement perspective. Different from conventional one-dimensional symmetry-
protected topological phases, where the entanglement spectrum displays gapless (or de-
generate) modes akin to the edge spectrum [17, 93], some HOSPT phases might exhibit
gappable (non-degenerate) and featureless entanglement spectra under any arbitrary,
symmetry allowed spatial cut. More precisely, if we merely cut out a Cn-wedge or perform
a Cn-symmetric bipartition, the entanglement spectrum could display a unique ground
state even though the state is in a non-trivial HOSPT phase. This implies that the con-
ventional diagnosis of entanglement spectra fails to detect many HOSPT phases. Thus,
naturally, the question arises whether we can still reveal fingerprints of HOSPT phases
using entanglement spectroscopy. To this end, we introduce a new type of entanglement
property, dubbed “higher-order entanglement” as a fingerprint to differentiate topological
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distinct HOSPT phases. The entanglement branching structure refers to a hierarchical
sequence of entanglement spectra instead of a single spectrum. By symmetrically bipar-
titioning a Cn-symmetric wave function, we initially obtain the first-order entanglement
spectrum, which might contain non-degenerate eigenstates. Each non-degenerate eigen-
state, upon further bipartitions, should then eventually at some order exhibit a fully
degenerate spectrum with respect to each Cn-wedge. Consequently, the entanglement of
HOSPT phases manifests a branching structure, where any non-degenerate eigenvector
of the initial entanglement spectrum contains a degenerate entanglement spectrum upon
further cuts.

Overview. This chapter is based on [P2] and divided into three main sections: First,
in Sec. 4.1 we demonstrate using iDMRG that the 2D SL-BHM realizes, aside from the
half-filled case, stable and gapped phases of matter for filling factors n0 ∈ {1/4, 3/4}.
Moreover, we shortly discuss the exactly solvable ground states of different fillings and
review their topological classifications.

Second, in Sec. 4.2 we introduce the previously mentioned many-body invariant and
discuss its relation to the generalized Wen-Zee response. To this end, we start with
showing that the higher-order Zak (Berry) phase measures the C4 eigenvalue after a 2π
flux insertion. From this observation, we then construct a U(1) flux insertion operator.
Further, from the non-trivial commutation relations of the symmetry operators, we
deduce that the same flux can be introduced via a symmetry twist related to a Z4
subgroup. This implies that the Z4 × C4 subgroup is sufficient to protect the HOSPT
phases.

In the second half of this section, we study the response of the system to topological
defects such as disclinations—starting from a lattice perspective—and reveal the con-
nection to curvature. Afterwards, we briefly review how disclinations are treated in a
continuum approximation and discuss their relation to the spin-connection. Based on
this, we can study the discrete Wen-Zee response from a field theory point of view. This
section ends with a numerical study of small clusters of the 2D SL-BHM, where we
evaluate the many-body invariant for various fillings. Moreover, we briefly discuss how
the many-body invariant can be implemented in experimental setups.

Lastly, in Sec. 4.3 we consider entanglement properties of HOSPT phases. To this end,
we start with the case, where the SL-BHM has an additional antiunitary particle-hole
symmetry that has projective representations at the corners.

Second, focusing solely on cases with U(1)× C4 symmetry, we show that, upon a bi-
partition of the system into two C4-symmetric related regions, certain fillings have exact
degeneracies in their entanglement spectrum, while for others we find both; degenerate
and non-degenerate Schmidt states. At this point, we introduce the notion of higher-
order entanglement, where we explicitly show that further bipartitions of non-degenerate
Schmidt states result in a fully degenerate entanglement spectrum.
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4.1 HOSPTs in plateaus of the SL-BHM
In the previous chapter, Chap. 3, we showed that the 2D SL-BHM has two extended
gapped phases at half-filling. In this first part, we show that it also has stable, gapped
phases for fillings n0 = {1/4, 3/4}.

Figure 4.1: Lattice with flux insertion. Super-lattice hardcore boson model on a
square lattice with a 2×2 unit cell with couplings t within and 1− t between
unit cells, respectively. Gapped HOSPT phases occurring at commensurate
bulk fillings factors n0 = {1/4, 1/2, 3/4} exhibiting different HOSPT orders
(a) t = 0 and (b) t = 1. A flux insertion of ϕ at the central plaquette is used
to define a many-body invariant (see text for details).

4.1.1 Gapped phases of the SL-BHM at different fillings
To detect possible gapped phases of the 2D SL-BHM at different fillings n0, we evaluated
the ground state of Hamiltonian (3.1) (see also Fig. 4.1) using hardcore bosons on an
infinite cylinder along x and finite circumference along y with Ly = 6. For this, we
fixed the hopping amplitudes to t = 0.1 and tuned the chemical potential µ. The results
are shown in Fig. 4.2, where we see that there are indeed extended plateaus for fillings
n0 = {1/4, 1/2, 3/4}—separated by a superfluid gapless region, as expected. While we
show here the case t = 0.1, an identical structure shows up for t = 0.9 (more generally,
exchanging t↔ 1− t leaves the spectral bulk properties unchanged).

Exactly solvable cases

The ground states in the plateaus are adiabatically connected to the zero-correlation
length limits at t = 0 and t = 1, respectively. In these limiting cases, both ground states
can be represented as a plaquette product state |ψ0⟩ = ∏

{□} |ψ□
n0⟩ (assuming PBC),

where the product is over all plaquettes with strong bonds and n0 is the average bulk
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Figure 4.2: Gapped phases. Particle density n0 as function of the chemical poten-
tial µ for the 2D SL-BHM obtained from DMRG simulations on an infinite
cylinder with circumference Ly = 6 and t = 0.1. Extended plateaus occur at
commensurate bulk particle densities n0 = {1/4, 1/2, 3/4}.

filling,

|ψ□
1/4⟩ = 1

2 (|1000⟩+ |0100⟩+ |0010⟩+ |0001⟩) (4.1)

|ψ□
1/2⟩ = 1

2
√

2
(|1100⟩+ |0110⟩+ |0011⟩+ |1001⟩) + 1

2 (|1010⟩+ |0101⟩) (4.2)

|ψ□
3/4⟩ = 1

2 (|0111⟩+ |1011⟩+ |1101⟩+ |1110⟩) . (4.3)

Topological classification

According to Sec. 3.3.2 each of these states is characterized by a non-trivial higher-order
Zak (Berry) phase γ = {π2 , π,

3
2π}, clearly distinguishing these phases from the trivial

case, t = 1, which itself has a vanishing higher-order Zak (Berry) phase. Equivalently,
as claimed in Sec. 3.3.3, if HOSPT phases at fillings n0 ∈ {1/4, 1/2, 3/4} are considered
with open boundary conditions, then the non-trivial topology is reflected by fractional
corner charges Qcorner = {1/4, 1/2, 3/4}. As in the half-filled case, the fractional corner
charges are a consequence of the filling anomalies ±1 and ±3, respectively. Note that,
unlike in the half-filled case, we have to add additional, symmetry preserving terms to
the Hamiltonian to guarantee gapped edges with appropriate filling factors. Despite the
existence of fractional corner charges, the gapless modes at the corners can be symmet-
rically gapped out by turning on a chemical potential at each corner to pin the particle
configurations. Subsequently, the degeneracy at the corner is merely a consequence of
the filling anomaly and is not protected by symmetry.
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4.2 Many-body invariant for HOSPT phases
Although the mathematical structure and classification of interacting HOSPT phases
(or topological crystalline phases, broadly defined) is now well understood [19, 20, 26,
65, 115, 116, 147, 148], experimentally accessible bulk many-body invariants [128–130]
for the characterization of such phases are still lacking. The obstacle lies in the fact that
the associated topological or entanglement structure cannot be measured by any local
operator. To tackle this problem, we introduce in this section a many-body invariant for
HOSPT phases, which is closely related to the discrete Wen-Zee response [43, 44, 145],
where a flux insertion changes the angular momentum in specific ways, and leverage its
relationship with the fractional corner charge.

The section is structured as follows: We first prove, Sec. 4.2.1, that the previously
introduced higher-order Zak (Berry) phase measures the C4 eigenvalue after a 2π flux
insertion. Based on this, we define in Sec. 4.2.2 an experimentally accessible many-body
invariant, a U(1) flux insertion operator, and after a short excursion on disclinations
and their relation to differential geometry, we discuss the connection of the many-body
invariant to the discrete Wen-Zee response. This section ends with numerical calcula-
tions, demonstrating that the new invariant indeed distinguishes different HOSPTs and
a brief discussion on its experimental realization (see Sec. 4.2.3).

4.2.1 Higher-order Zak (Berry) phase and its relation to the C4 eigenvalue
We demonstrate now that the higher-order Zak (Berry) phase measures the C4 eigenvalue
of the ground state of the non-trivially twisted Hamiltonian. To see this, let us recall
from Sec. 3.3.2 that the higher-order Zak (Berry) phase is obtained from a local twist of
the central plaquette equipped with a zero flux condition ∑j θj = 0 (which, e.g., fixes
θ4). The twisted plaquette Hamiltonian reads (see also Fig. 3.2)1:

ĤP (Θ) =
4∑
j=1

eiθj+1 b̂†
j+1b̂j + h.c., Θ = (θ1, θ2, θ3, θ4)T . (4.4)

Note that the central plaquette contains the C4 symmetry center. From the paths defined
in Eq. (3.11), we conclude that the central plaquette Hamiltonian is invariant under C4
rotations at initial and final points of each path, and at G0

2. At this point, the phases
are given by Θ(G0) = (π2 ,

π
2 ,

π
2 ,−

3π
2 )T .

C4 eigenvalue

Here, we prove that the higher-order Zak (Berry) phase measures the C4 eigenvalue of
the ground state at Θ(G0). For this, we use that the higher-order Zak (Berry) phase

1Although this is written for hardcore bosons, this equally well holds for finite U < ∞.
2This vector is defined by G0 = π

2 (1, 1, 1)T .
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can be evaluated by the following discretized formula [101, 149]:

γi = − lim
M→∞

Im log
M∏
p=1
⟨Ψ(Θi

p)|Ψ(Θi
p+1)⟩ , Θi =

(
θi1, θ

i
2, θ

i
3, θ

i
4

)T
(4.5)

where θij corresponds to the path Li, Eq. (3.11), which itself is divided into M little
pieces. Moreover, we identify |Ψ(Θi

M+1)⟩ ≡ |Ψ(Θi
1)⟩ since individual paths Li form

closed loops; thus initial and final states are identical. As each state in Eq. (4.5) appears
twice, this expression is inherently gauge invariant, which is also the reason it is used
for numerical purposes. Using a particular gauge, called parallel-transport gauge3 [101],
the expression of the higher-order Zak (Berry) phase reduce to (for clarity, we choose
γi = γ1):

γ1 =− lim
M→∞

Im log ⟨Ψ̃(Θ1
M )|Ψ̃(Θ1

1)⟩

=− Im log ⟨Ψ̃(2π, 0, 0,−2π)|Ψ̃(0, 0, 0, 0)⟩ (4.6)

where |Ψ̃(Θ1
p⟩ denotes the state defined with respect to the parallel transport gauge. To

arrive at the conclusion, we make use of the fact that we are free to shift all phases by
a constant term. Hence, we obtain (φ ≡ π

2 ),

γ1 =− Im log ⟨Ψ̃(2π − φ,−φ,−φ,−2π + 3φ)|Ψ̃(−φ,−φ,−φ, 3φ)⟩
=− Im log ⟨Ψ̃(3φ,−φ,−φ,−φ)|Ψ̃(−φ,−φ,−φ, 3φ)⟩
=− Im log ⟨Ψ̃(−φ,−φ,−φ, 3φ)|C−1

4 |Ψ̃(−φ,−φ,−φ, 3φ)⟩

= −Im log ⟨Ψ̃(Θ(G0))|C4|Ψ̃(Θ(G0))⟩ (4.7)

where in the last step we used that K |Ψ̃(Θ⟩ = |Ψ̃(−Θ)⟩4. Given that formula (4.5) is
inherently gauge invariant and all higher-order Zak (Berry) phases—in the presence of
C4 symmetry—are equal, we proved that γi measures indeed the C4 eigenvalue of the
ground state at Θ(G0).

4.2.2 Constructing a many-body invariant and Wen-Zee response
In the last section, we proved that the higher-order Zak (Berry) phase, introduced by
Araki et al. [128], measures the C4 eigenvalue of the ground state of the twisted Hamil-
tonian. However, to study the interplay between the U(1) symmetry and the spatial
C4 symmetry, the higher-order Zak (Berry) phase is not the optimal choice. Instead,
we will introduce a many-body invariant that reveals the non-trivial interplay of those

3The main idea is to choose a gauge such that ∀p < M : Im log ⟨Ψ̃(Θi
p)|Ψ̃(Θi

p+1)⟩ = 0. However,
choosing such a gauge introduces a phase difference between the initial and final state, which is
exactly the higher-order Zak (Berry) phase.

4There is another subtlety, namely, if we act with C4 on a particular state, the transformed state can in
general pickup a phase. However, using the gauge degree of freedom, we can choose an initial gauge
such that this phase is trivial, and the last step is justified.
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symmetries based on symmetry twists of the global U(1) and C4 symmetry. Thereby, we
show that the subgroup Z4 × C4 is sufficient to protect the phase. Finally, considering
topological defects such as disclinations in a continuum approximation, we study the
generalized Wen-Zee response using topological field theory.

U(1) flux insertion

At the C4-symmetric point Θ(G0), the Hamiltonian is unchanged if we choose all four
phases to be equal, i.e., θ1 = θ2 = θ3 = θ4 = π

2 (instead of θ4 = −3
2π). If we do this,

then we have introduced a 2π flux into the central plaquette, schematically shown in
Fig. 4.1. Bosons hopping around the central plaquette pick up a phase. If we label the
lattice sites by polar coordinates (rj , ϕj), with the origin in the C4 symmetry center,
then the 2π flux can be introduced via the following unitary operator:

Û2π = exp

i ∑
j∈ sites

ϕjn̂(rj , ϕj)

 , (4.8)

while there is no net flux in any other plaquette. To insert this 2π flux into the central
plaquette, we first need to separate the hoppings that lead to PBC. Therefore, we write
the Hamiltonian as follows:

Ĥ = ĤOBC + δĤPBC , (4.9)

where ĤOBC contains all hoppings shown in Fig. 4.1 and δĤPBC leads to PBC. Finally,
the 2π flux is inserted by acting with Û2π on the Hamiltonian with open boundary
conditions,

Ĥ2π = Û †
2πĤOBCÛ2π + δĤPBC . (4.10)

This is important because if we acted on the full Hamiltonian, then we would introduce
the 2π flux in two plaquettes. For what follows, we consider the Hamiltonian with open
boundary conditions; however, for numerical purposes it is more suitable to take PBC
because then, we do not have to consider edge effects.

Commutation relations and angular momentum shift

At this point, we can study the interplay between flux insertion and C4 symmetry. To
this end, we define the action of the spatial symmetry on local operators as follows:

C4n̂(rj , ϕj)C−1
4 := n̂(rj , ϕj − π/2), (4.11)

rotating each site clockwise by an angle of π
2 . Hence, the commutation relation of the

flux insertion operator and C4 reads:

Û †
2πC4Û2π = exp

(
i
π

2 N̂
)
C4, (4.12)

which depends on the total particle number modulo four. Thus, for HOSPTs suffering
from a filling anomaly, the angular moment is shifted. To demonstrate this explicitly,
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let us act with the gauged spatial symmetry on the exactly solvable plaquette states
defined in Eqs. (4.1, 4.2, 4.3). Before flux insertion, all plaquette states have zero
angular momentum; however, after flux insertion the angular momentum is shifted:

exp
(
i
π

2 N̂
)
C4|ψ□

1/4⟩ = ei
π
2 |ψ□

1/4⟩

exp
(
i
π

2 N̂
)
C4|ψ□

1/2⟩ = eiπ|ψ□
1/2⟩

exp
(
i
π

2 N̂
)
C4|ψ□

3/4⟩ = ei
3π
2 |ψ□

3/4⟩. (4.13)

Thus, the U(1) flux insertion leads to a shift of the angular momentum5 J → J+ l
4 with

l ∈ Z4. Note this property remains true even away from the exactly solvable limits since
the symmetry eigenvalue cannot change unless the bulk gap closes.

A discrete gauge flux

From the commutation relation with the flux insertion operator, Eq. (4.12), we see that
it is the particle number modulo four which plays an important role. Indeed, if we insert
the 2π flux in the central plaquette via the Z4 subgroup generated by P̂4 = exp iπ2 N̂ ,
then the previous results, i.e., the commutation relation Eq. (4.12) and the non-trivial
angular momentum shift remain. The symmetry twist, generated by the Z4 subgroup,
is defined by (using polar coordinates),

V̂2π = exp
(
i
π

2 N̂
π
4

)
exp

(
iπN̂ 3π

4

)
exp

(
i
3π
2 N̂ 5π

4

)
exp

(
2πiN̂ 7π

4

)
, (4.14)

where introduced a particle number operator for each quadrant. This also shows that
the Z4×C4 symmetry is sufficient to protect the four distinct HOSPT phases of the 2D
SL-BHM. This is in agreement with the result of the previous chapter, Chap. 3, where we
saw that it is the fractional part of the charge per quadrant that distinguished different
HOSPT phases. Since we enforced a global U(1) symmetry, together with a second
condition, namely, that edges and bulk have on average a filling n0 ∈ {1/4, 1/2, 3/4}—
the fractional charge was found at the corner of the system6.

Disclinations and charge

So far, we studied the response of the system after flux insertion associated to the internal
U(1) symmetry. In this part, we want to consider the response of the HOSPT phases
by introducing flux associated to the spatial symmetry. A symmetry twist associated to
a spatial symmetry is equivalent to a topological defect in the lattice [20, 65], which for
the model considered here means to introduce disclinations. Physically, this corresponds
to remove a part of the system and recombine the remaining sites. For C4 symmetry, we

5The eigenvalues of C4 are given by e2πiJ .
6Without the global U(1) symmetry we can in principle remove all particles in a C4-symmetric manner,

except the particles in the central plaquette, see Fig. 4.4.

67



Chapter 4 Higher-order entanglement and many-body invariant

Figure 4.3: A π
2 -disclination after removing one quadrant. The remaining sites are

reconnected, introducing a topological defect in the lattice. The red circles
highlight the corners and the disclination core. The blue star denotes the
observer and the blue arrow his/her view at the beginning of the cycle. The
observer is following the path marked with orange arrows. To perform the
closed loop, the observer has to be rotated by 90◦ as a first step. The figure
is adapted from Ref. [150].

can remove one, two, three, or four quadrants (see Fig 4.3). Each of these procedures
corresponds to a 2π

4 n, n ∈ Z4 disclination flux7. For HOSPT phases with filling anomaly,
the disclination core binds a fractional charge. Before we argue this explicitly, let us
emphasize that there is a sum rule (see also Ref. [151]). From the previous chapter,
Chap. 3, we know that the sum over all corner charges modulo integer is zero. Thus,
this must remain true before and after we removed a quadrant of the system. Recall for
a system with total particle number N = 4k ± l, upon subtracting the average filling,
the corner charge takes values ±l/4 with l ∈ Z4 labeling different HOSPTs8. Thus, the
sum of the corner charges is equal to l (or vanishes modulo an integer).

Trivial phase: To understand the physics of the trivial phase, it is sufficient to study its
fixed-point limit, shown in Fig. 4.1b. If we remove a quadrant9 of this phase, displayed
in Fig. 4.4, then we simply obtain a copy of the total system with just one quarter of the
total particle number. Since there was not any corner charge before, there is no charge
bound to the disclination core. This result is consistent with previous discussion, where
the trivial phase did not experience an angular momentum shift after flux insertion.

Topological phase: For the topological fixed-point limit, Fig. 4.1a, the situation is a bit
more complicated. However, as sketched in Fig. 4.4, we can first symmetrically localize all
particles—except the one in the central plaquette—and then remove one quadrant. From
the same figure, we see that the upper-left corner, arising from the central plaquette,

7Below, we will explicitly show that a disclination corresponds to a curvature flux.
8In the following we do not differentiate between positive and negative corner charges; what is important

is the fractional part.
9We assume that the size of this quadrant is much larger than ξ2 where ξ denotes the correlation length.
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Figure 4.4: Disclinations of fixed-point phases. Left: Removing a quadrant of the
trivial fixed-point limit. The removed subsystem is a copy of the total sys-
tem. Right: Removing a quadrant of the topological fixed-point limit at
half-filling. In addition, the blue points label particles, which can be C4
symmetrically localized, demonstrating that the removed subsystem is again
a copy of the total system with vanishing total fractional charge.

can have different occupations depending on the overall filling. Nevertheless, the total
fractional charge of the removed quadrant is zero10, which implies that there must be a
fractional charge l/4 bound to the disclination core. This is a consequence of the fact
that initially each quadrant carries a fractional charge, whose total sum is equal to l
(or vanishes modulo an integer). The fractional charge bound to the disclination core
exactly agrees with the angular moment shift discussed previously.

From Fig. 4.4 we see once more that if we give up the global U(1) symmetry and
only preserve its Z4 subgroup that we can symmetrically remove all particles in the
trivial case, and all particles, surrounding the central plaquette, in the topological case.
However, what remains is the fractional charge inside each quadrant!

Disclinations and differential geometry

To develop a field theoretical argument, describing the previous interplay of electromag-
netic and gravitational degrees of freedom, we need to understand how one deals with
disclinations in the framework of differential geometry, using a continuum approximation
of crystals, where the crystalline background is considered as a continuous medium [152–
154].

Lattice. As a starting point, however, we first study this connection from a lattice
point of view, following closely Ref. [155]. To this end, we imagine an observer inside
the lattice, performing closed loops in either configuration, i.e., in the ideal crystal or the
crystal containing a disclination. Thereby, he/she is able to run along the lines, shown
in Fig. 4.3, whenever his/her view is oriented along the lines. In the ideal crystal, the
observer encircles the central plaquette, while in the second case the disclination core.

10Note, we assumed that the removed system can be considered as a copy of the large system.
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The amount of rotation and translation he/she gathered, while performing the closed
loop counter-clockwise, defines the holonomy of the path. If the observer starts facing
south, then the holonomy of the closed loop shown in Fig. 4.3 is given by11,

r̂4 · T̂3ex · r̂4 · T̂3ex · r̂4 · T̂3ex · r̂4 · T̂3ex = T̂0 · r̂4
4 = 1, (4.15)

where r̂4 rotates the observer by π/2, T̂ex is a translation along x and we used that
r̂4 · T̂ex = T̂ey · r̂4. If we consider the view of the observer as a vector, then we have
parallel transported a vector around a closed loop. Since the observer did neither pick
up translations nor rotations, the holonomy of this path is trivial, which is generically
the case for flat spaces such as the Euclidean space12. Instead, in the presence of a
disclination, the path has non-trivial holonomy,

r̂4 · T̂2ex · r̂4 · T̂2ex · r̂4 · T̂2ex = T̂−2ex r̂
3
4. (4.16)

Indeed, a non-trivial holonomy implies a non-trivial curvature of space. This is the
connection to differential geometry we want⇒ disclinations are a source of curvature13.

For what follows, we consider only the amount of rotation picked up when encircling
the disclination core. The angle Ω accumulated during the path is called the Frank
angle and uniquely determines the disclination. For the given example here, we find
that Ω = −π/2 (r̂3

4 is a rotation counter-clockwise by 3π/2). The negative sign tells us
that material has been removed; however, the sign is not consistently used in literature.
Very often a positive sign is associated with removing material, while adding additional
material is associated with a negative sign (see, for example, Ref. [47]).

Continuum approximation. In this second part, we follow the sign conventions that
whenever material is removed, the Frank angle Ω is positive. As said in the begin-
ning, topological defects such as disclinations can be treated within the framework of
differential geometry if we assume that the crystalline background can be considered as
a continuous medium [152–154]. In this setup, a perfect crystal is characterized by a
flat Riemannian manifold with Euclidean metric δij = diag(+,+,+) (considering three
dimensions), i.e., there is neither curvature nor torsion, which implies the absence of
disclinations and/or dislocations. A crystal with disclinations, however, corresponds to
a Riemannian manifold with non-trivial curvature [152, 156], i.e., the metric describing
space is no longer flat14. If on such manifold, a vector is parallel transported around
a closed loop, then the initial and final vector differ. How these vectors differ is de-
termined by the Riemann curvature tensor. Indeed, if a vector with components vp is

11On each corner the local xy frame is rotated by 90◦.
12We already learned in school how to parallel transport a vector in Euclidean space. After performing

a closed loop, initial and final vector are identical.
13An intuitive approach to disclinations: Imagine the following situation: Take a piece of paper and

scissors. First, we cut the paper such that all its sides have the same lengths. Afterwards, we remove
one quadrant, and then try to reconnect the remaining edges. If we do this, then unavoidably the
paper near the disclination core starts to curve.

14The 2-sphere is an example of a curved Riemannian manifold. The metric tensor is given by gθθ = 1
and gϕϕ = sin2 θ. All other components are zero.
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parallel transported around a closed loop, on an infinitesimal square, on a manifold with
sides dx and dy, we obtain [157]15:

v′p − vp = dxmdynRmnpqvq, (4.17)

where the indices m,n, p, q label coordinates of an arbitrary curvilinear coordinate sys-
tem16 and Rmn

p
q is the Riemann curvature tensor17. For a flat manifold, the Riemann

curvature tensor is identically zero. Moreover, in two dimensions it is completely speci-
fied by the Levi-Cevita tensor and the Gaussian curvature [157]18:

Rmnpq = Kϵmnϵpq, ϵmn = √gϵ̃mn, ϵpq = √gϵ̃pq (4.18)

where ϵ̃mn denotes the Levi-Cevita symbol with ϵ̃12 = 1 and √g the square root of the
determinant of the metric tensor.

Alternatively, the Riemann curvature tensor can be fully expressed in terms of the
spin-connection denoted by ωmpq19, which in two dimensions reduce to [157]

Rmnpq = (∂mωn − ∂nωm) ϵpq. (4.19)

Comparing the results of Eq. (4.18) and Eq. (4.19), we obtain:

(∂mωn − ∂nωm) = K
√
gϵ̃mn. (4.20)

Finally, we can make the connection to the Frank angle characterizing disclinations. For
a two-dimensional system, the Frank angle Ω is defined through the following integral [44,
152]:

Ω =
∮
C(xm)

dxmωm = 1
2

∫
S(xm)

dxm ∧ dxn (∂mωn − ∂nωm) , (4.21)

where the curve encircles the disclination core20. For this, we used the generalized Stokes
theorem. Using Eq. (4.20), we arrive at the final result

Ω =
∫
S

d2x
√
gK, d2x = dx1 ∧ dx2. (4.22)

This definition is reminiscent of electromagnetism, where Φ is the flux of the magnetic
flux density through a surface Φ =

∫
S B, associated to some closed curve C [44, 158].

Consequently, as stated previously, a disclination is a non-trivial source of curvature.

15Here we used a symmetry property of the Riemann curvature tensor, namely, that Rk
lij = Rij

k
l.

16An example of such coordinates is given by polar coordinates where {x1, x2} = {r, ϕ}.
17Indices can be raised and lowered using the metric tensor gmn.
18For the sphere, with det(g) = R2 sin2 θ and K = R−2, we find Rθϕθϕ = sin2 θ.
19In two dimensions this can be written as ωmpq = ωmϵpq [157].
20The integration is on a manifold with non-trivial curvature and the wedge product is defined as follows:

dx ∧ dy = −dy ∧ dx.
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Wen-Zee response

Now we have set the stage to study the interplay of electromagnetic and gravitational
degrees of freedom using topological field theory. Thereby, we demonstrate from the
field theory point of view that a magnetic flux carries fractional angular momentum and
a disclination (≡ curvature flux) carries fractional charge. This is exactly described by
the discrete Wen-Zee response. The Wen-Zee response has been first discovered in the
context of the quantum Hall effect (QHE) [43], which is shortly reviewed in the box
below.

Wen-Zee response and QHE

For the integer QHE effect on a plane, the electron number Ne and the number
of magnetic flux quanta Nϕ are related by an integer ν, the filling factor, Ne =
νNϕ [159, 160]. Moreover, a longitudinal electric field along x causes a current
density along y, jy = σxyEx where σxy = ν

2π
a is the quantized Hall conductivity.

The response of the Hall states to an external electromagnetic field in curved
space-time can be described by an effective topological field theory (≡ independent
of the metric); the Chern-Simons theory in (2+1)D [159–162]

SCS = ν

4π

∫
d3x ϵ̃µρλAµ∂ρAλ −

∫
d3x
√
g jµAµ +

∫
d3x
√
g ρ0A0 (4.23)

where Aµ is the external electromagnetic U(1) gauge potential, √g the square root
of the determinant of the metric tensor and ϵ̃µρλ is the Levi-Cevita symbol. The
current density of the system can be obtained from the principle of least action
with respect to Aµ [161, 162],

0 = 1
√
g

δSCS
δAµ

⇒ ρ = ν

2π
B0 + δB
√
g

, ji = ν

2πϵ
ij Ej√

g
, (4.24)

where j0 = ρ and ρ0 is the ground state density of the unperturbed system. For
a system on a two-dimensional plane, we find that √g = 1. Thus, integrating the
zeroth component over the two-dimensional space, we obtain: Ne = νNϕ. So far,
we considered the QHE on a two-dimensional plane; however, if considered on a
compact manifold such as a 2-sphere, the relation between the electron number
and magnetic flux quanta experiences a non-trivial shift: Ne = νNϕ → Ne =
νNϕ + ν2 [43, 159]. This shift is solely a consequence of the non-trivial topology
of the sphere and related to its curvature. Indeed, Wen and Zee showed that if the
QHE is considered on a compact manifold, there is another topological term that
needs to be included into the effective field theoretic description [43] (following
the conventions of Ref. [163]):

SCS → SCS + SWZ = SCS + κ

2π

∫
d3x ϵ̃µρλωµ∂ρAλ (4.25)
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The second field ωµ, behaving like a U(1) gauge field, is the spin-connection and
is related to the Gaussian curvature K as follows [162, 163] (see also Eq. (4.19)):

∂1ω2 − ∂2ω1 = K
√
g (4.26)

Again, from the principle of least action we obtain the particle number density,

ρ = ν

2πB + κ

2πK, B = B0 + δB
√
g

, (4.27)

which is non-trivially shifted. Integrating this over the 2-sphere, using the Gauss-
Bonnet theorem, we get the total particle number,

Ne = νNϕ + κ

2π

∫
S2

d2x
√
g K = νNϕ + κχ(S2) = νNϕ + 2κ, (4.28)

which implies κ = ν2/2. Note for a torus there is no shift, since χ(T 2) = 0.
Replacing ωi → Ai and K → B, we see that the curl of ω is a source of flux.
Given this analogy, let us recall that a charged particle moving in a magnetic
field acquires an Aharanov-Bohm phase exp (iq

∮
A), thus similarly we can define

a quantum number s, which was called spin (not the spin of electrons) such that
a particle with spin s, moving on a manifold with curvature acquires a phase
exp (is

∮
ω) [43]. Wen and Zee interpreted this spin semiclassically as angular

momentum of the Larmor orbits, for which they found that sn = (n − 1/2) for
the n-th Landau level [43].

aHere we choose units such that ℏ = c = e = 1.

Recently, the ideas of the Wen-Zee response have been generalized to classify SPTs
protected by a combination of spatial and internal symmetries such as C4 × Z4 [44],
which is a generalization of Ref. [164]. There the authors have classified SPTs protected
by a direct product of cyclic groups using topological field theories such as Chern-Simons
or Dijkgraaf-Witten field theories. In the generalization of the Wen-Zee response, the
authors of Ref. [44] studied only those field theories that are irreducible in the sense
that any non-trivial subgroup of the total symmetry group contributes to the protection
of the SPT. Indeed, the authors concluded that in 2+1D the symmetry group C4 × Z4
is sufficient to protect bosonic SPT phases, which agrees perfectly with our previous
results, namely, that the HOSPT phases of the 2D SL-BHM are protected by C4 × Z4
symmetry21. To arrive at this conclusion, the authors of Ref. [44] considered the following
topological field theory on a compact manifold M3 (using the notation of differential
forms):

SWZ = l

2π

∫
M3

ω ∧ dA, l ∈ Z4, (4.29)

where l labels the level of the field theory. As we will see soon, this integer characterizes
21However, for the fractional corner charges to be meaningful we need to enforce U(1) × C4.
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the fractional charge as well as the fractional angular momentum. The fields ω22 and
A are non-dynamical Z4 gauge fields associated to gravitational and electromagnetic
degrees of freedom, respectively. To study the classification, there have been three
conditions: (i) the large gauge transformations of the fields have periodicity of 2π,∮

δA = 0 mod 2π,
∮
δω = 0 mod 2π, (4.30)

(ii) the fields have Z4 gauge symmetry,∮
A = nA

2π
4 ,

∮
ω = nω

2π
4 , (nA, nω) ∈ Z4 × Z4, (4.31)

and (iii) a Dirac quantization condition (≡ the total flux is multiple of 2π)∫
M2

dA = 0 mod 2π,
∫

M2
dω = 0 mod 2π. (4.32)

For the partition function ∼ eiSW Z to be invariant under large gauge transformations,
we must require that l ∈ Z. The second constraint, i.e., the level identification, l ∼ l+ 4
can be obtained from flux identification [164]. Although globally the total flux must be
multiple of 2π, locally we can allow for fractional fluxes so called monodromy defects,
which can be viewed as external flux insertions or symmetry twists [44, 164]. On the lat-
tice, for example, such an isolated defect corresponds to a disclination. From Eq. (4.31)
we see that if a given region contains exactly four defects, then this is equivalent to no
defect (modulo 2π)23. Again, from the lattice point of view, this is consistent with the
fact that only the fractional charge is relevant.

Response. To study the response of the system, we need to evaluate the variation of
the action with respect to the fields ωµ and Aµ, from which we obtain the associated
currents. From the integral over the zeroth component of the currents, we obtain the
fractional values of the charge and angular momentum [44]:

Q = 1
4

∫
M2

d2x
√
g
δSWZ√
gδω0

= l

4 , J = 1
4

∫
M2

d2x
√
g
δSWZ√
gδA0

= l

4 . (4.33)

Note that the charge is associated with respect to a variation of ω0 (the gauge field
belonging to gravitational degrees of freedom), while the fractional angular momentum
is the response of a variation with respect to A0 (the gauge field linked to electromagnetic
degrees of freedom). This result agrees perfectly with what we found in the previous
discussion. A 2π flux insertion leads to an angular momentum shift24 J → J + l

4 and a
disclination binds a fractional charge l

4 .

4.2.3 Numerical measurement of the Wen-Zee response
We now numerically compute the previously introduced many-body invariant, using
exact diagonalization of small clusters (see Fig. 4.5). For this, we calculate the shift of
22The field ω corresponds to the previously defined spin-connection (cf. Eq. (4.19)).
23If the fields had different gauge symmetries, say ZN1 and ZN2 , then flux identification would give

l ∼ l +N12, where N12 = gcd(N1, N2) is the greatest common divisor.
24Recall, the eigenvalues associated to C4 symmetry are defined by e2πiJ .
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Figure 4.5: Numerical data of Wen-Zee response. Angular momentum shift of
Hamiltonian (3.1) after inserting a 2π flux through the central plaquette.
The numerical data is shown for 4 × 4 clusters at different commensurate
filling factors n0 = {1/4, 1/2, 3/4} with gapped corners. Panel (a) shows the
response for a π/2 rotation of the full lattice and (b) for a partial rotation
that only involves the central plaquette.

the angular momentum quantum number modulo four defined by:

l = 2
π

(arg ⟨C4⟩2π − arg ⟨C4⟩0) mod 4, (4.34)

where l = 1, 2, 3 and the expectation values are taken with respect to the ground states
with |ψ⟩2π and without flux insertion |ψ⟩0, respectively. Thereby, the former state is the
ground state of Hamiltonian (4.10) and |ψ⟩0 is the ground state of Hamiltonian without
flux (4.9). We expect that there is only a non-zero shift if the ground state has non-
trivial topology, or more precisely, describes one out of three different HOSPT phases
with non-zero fractional corner charges. To illustrate the results, let us consider the case
t = 0, at filling n0 = 1/2 with |ψ□

1/2⟩0 defined in Eq. (4.2) and

|ψ□
1/2⟩2π = 1

2
√

2
(−|1100⟩+ |0110⟩ − |0011⟩+ |1001⟩)

− i

2(|1010⟩ − |0101⟩). (4.35)
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Using Eq. (4.34), we find a non-trivial shift l = 2 and, hence, the ground state is
topological non-trivial. Analogously, we can understand the response for filling factors
n0 = 1/4 and n0 = 3/4. As the quantized Wen-Zee response l

2πω ∧ dA is local, a
2π flux insertion changes the configuration of the wave function only within an area
spanned by the correlation length around the center. Moreover, the non-trivial topology
can already be detected by a partial rotation of a symmetric block of sites around the
center (e.g., the central plaquette ≡ C̃4). Since C̃4 does generally not commute with the
Hamiltonian, except in the limits t = 0 and t = 1, we find ⟨C̃4⟩2π ∼ e−αℓ̃Beil

π
2 , where ℓ̃B

is the linear size of the rotated block and α > 0 some constant. The angular momentum
shift l extracted from this quantity can still be used to characterize the phases, as shown
in Fig. 4.5b. Furthermore, let us emphasize that the partial rotation serves as a bulk
invariant as long as the ground state is locally C4-symmetric. Importantly, it does not
depend on a symmetric termination of the lattice.

Experimental realization

We expect that the invariant can be probed in cold atom or ion trap experiments by in-
troducing an artificial U(1) gauge flux created by rotating traps or coherent light–matter
interaction and measuring the angular momentum shift implemented by local random
unitaries [165–167].

4.3 Entanglement diagnosis for HOSPT phases
The study of many-body entanglement, as obtained from the reduced density matrix
ρ̂A for a bipartition of the system into two disjoint parts A and B, has been shown
to be a very useful tool for the characterization of quantum phases of matter [168].
Moreover, the relation between the topological structure and the entanglement spectrum,
i.e., the spectrum of the reduced density matrix ρ̂A, has been widely explored [17, 138–
144]. Remarkably, most salient topological properties including quasi particle statistics,
edge excitations, central charge and topological Berry phase can be readily reached by
scrutinizing the entanglement spectrum.

In Ref. [169] it has been proposed that certain HOSPT phases can be characterized by
the entanglement spectrum, more precisely, it was suggested that the low-lying eigenval-
ues eα of the entanglement Hamiltonian Ĥ25 (i.e., the logarithm of the reduced density
matrix) reflects the energy spectrum of the in-gap states and, hence, can be treated as
a fingerprint of topological phases. However, such straightforward correspondence be-
tween bulk topology and entanglement spectrum might not apply to strongly-interacting
HOSPT states. First and foremost, some interacting HOSPT states contain a feature-
less gapped entanglement spectrum, equivalently to their trivial phase counterparts. In
addition, the correspondence between the low-lying part of the entanglement spectrum
and the bulk topology cannot be taken too literally [143]. Since the reduced density

25For free-fermion systems, the spectrum eα is given by eα = − log ξp

1−ξp
where ξp are the eigenvalues of

the reduced density matrix [170].
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matrix is the partition function of the entanglement Hamiltonian (EH) at finite temper-
atures, the high-energy modes in the entanglement spectrum (ES) also contribute to the
intertwined features of the ground state. In particular, the low-lying states of the ES
may undergo a phase transition, while the bulk phase remains unchanged [143].

In this section, we analyze the universal features of the many-body EH in various
interacting HOSPT phases. It is worthy to emphasize that both the low-lying states and
the highly excited part of the ES are responsible for the ground state pattern of HOSPT
phases, so there is no reason to overlook the excited states in the EH. To set the stage,
we will first establish a Kramers theorem for the EH in HOSPT phases:
If the symmetry operator acting on each Cn corner is projective, then the reduced den-
sity matrix with respect to each Cn corner cut exhibits level degeneracies for the whole
entanglement spectrum.
However, for generic Cn×U(1) symmetric HOSPT phases, which do not render a projec-
tive symmetry at the corner, the ES upon spatial bipartition might be non-degenerate
and, hence, cannot be treated as a fingerprint for HOSPT states. To conquer this
obstacle, we introduce a new entanglement property—higher-order entanglement, as il-
lustrated in Fig. 4.6b. The basic idea is that we implement further bipartitions for the

Figure 4.6: Higher-order entanglement branching structure. In panel (a) the
ground state is divided into four symmetric regions and in (b) the hierarchi-
cal sequencing of the entanglement spectrum is shown. First, we trace out
region (2-4) to obtain the reduced density matrix for region (1-3). Second,
for any single-valued eigenvector of the entanglement Hamiltonian the entan-
glement spectrum between regions 1 and 3 is calculated, showing a two-fold
degeneracy for the full spectrum.

non-degenerate part of the spectrum, which in turn shows degeneracies. This higher-
order entanglement branching phenomena is a unique feature of HOSPT phases, and is
closely connected to the fractional corner charge and Wen-Zee response. In particular,
the higher-order entanglement indicates that the traditional ES is inadequate for charac-
terizing the topological feature of the ground state. A complete viewpoint of the ground
state structure requires a hierarchical sequence of the entanglement branch.
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4.3.1 Entanglement spectrum for HOSPTs with projective symmetry at the
corner

In this part, we explore the ES of HOSPT phases protected by Cn × G symmetry, in
which G renders a projective representation at the Cn corner. For example, the HOSPT
phase in the SL-BHM with µ = 0 and n0 = 1/2 has particle (hole) states localized at
the corners, which are protected by Ĉ (with Ĉ2

xy = −1xy), Eq. (3.4), and C4 symmetry,
respectively. We denote this as the generalized Kramers theorem of the entanglement
Hamiltonian.

To this end, let us consider a Schmidt decomposition, with Schmidt values {Λα}, that
cuts out one quadrant of the ground state |ψ0⟩,

|ψ0⟩ =
∑
α

Λα|Aα⟩1|Bα⟩234, (4.36)

where the regions (1) and (2-3-4) are defined as in Fig. 4.6a. The Schmidt states {|Aα⟩1}
and {|Bα⟩234} form an orthogonal basis of the two parts, respectively (see Fig 4.7). The

Figure 4.7: Entanglement spectrum of a corner. Corner entanglement spectrum for
the particle-hole symmetric case (µ = 0) with even degeneracies of the low-
energy part in the HOSPT phase with half-charge corner states. The weak
symmetry breaking potential at the corners, which we use to obtain a unique
ground state, leads to a breaking of degeneracies at higher entanglement
energies. In the trivial phase, we obtain a gapped featureless entanglement
spectrum.

reduced density matrix ρ̂1 is diagonal in the Schmidt basis ρ̂1 = ∑
α Λ2

α|Aα⟩11⟨Aα| and
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the entanglement spectrum is given by eα = −2 log Λα. We first demonstrate that the
Schmidt spectrum is block diagonal in the G basis, provided G is a symmetry of the
ground state. Let us act with the symmetry operation G on the ground state such that,

G|ψ0⟩ =
∑
α

ΛαG|Aα⟩1G|Bα⟩234. (4.37)

As G is an internal on-site symmetry, it acts on the two regions independently. We then
set G|Aα⟩1 as the new basis for the Schmidt decomposition and by doing so, the reduced
density matrix for region (1) is,

ρ̂1 =
∑
α

GΛ2
α|Aα⟩11⟨Aα|G−1 = Gρ̂1G

−1. (4.38)

This implies that G commutes with the reduced density matrix ρ̂1 and the Schmidt
spectrum is block diagonal with blocks labelled by the symmetry eigenvalues. Now
assume G has a projective representation at the corners. We start with a simple example
where G = Ĉ. This is precisely the case in Eq. (3.1) at µ = 0 and U → ∞ (≡ hardcore
bosons). As the reduced density matrix ρ̂1 commutes with Ĉ, we can regard the EH
ρ̂1 = e−Ĥ1 as a many-body system with Ĉ symmetry. Since Ĉ is projective for each
corner, we have Ĉ2 = −1 for ρ̂1, which indicates Ĉ is projective when acting on the
reduced density matrix with respect to the corner region. Consequently, all eigenstates
in the EH come in Kramer pairs. For the last statement to be true, it is crucial that Ĉ
is antiunitary26.

Numerical evaluation

To demonstrate the previous result, we take the model in Eq. (3.1) at the Ĉ symmetric
point µ = 0, U → ∞, i.e., hardcore bosons at half-filling. In the HOSPT state (t → 0),
the corner is decoupled—resulting in a two-fold level degeneracy and in a projective
representation of Ĉ symmetry at the corner. In numerical simulations, these zero energy
states at the corner would unavoidably couple with each other due to finite size effects.
To avoid such long-range entanglement from the corner zero modes, we apply a weak local
chemical potential at each corner to pin the corner configurations without affecting the
bulk. Although Ĉ symmetry is weakly broken near the corners, the two-fold degeneracy
of the low-lying states in the ES, contributed from the local entanglement near the cut-
center, still persists. However, the degeneracy of the highly excited spectrum is slightly
lifted as a consequence of the weak symmetry breaking near the corners. In Fig. 4.7 we
plot the ES with respect to the relative hopping amplitude t. In the HOSPT phase, the
low-lying part of the ES exhibits a robust two level degeneracy. As already mentioned,
the high-energy part displays level splitting due to Ĉ symmetry breaking at the corners.
In the trivial phase, the ES is featureless with a unique ground state.

26The antiunitary part is crucial for the proof of Kramers theorem. Assume there is a unique ground
state such that C |Ψ⟩ = c |Ψ⟩. Applying C twice on this state gives: C2 |Ψ⟩ = |c|2 |Ψ⟩; however, with
C2 = −1 this implies |c|2 = −1, which is a contradiction. Hence, there cannot be a unique state.
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4.3.2 Higher-order entanglement in HOSPT phases
We will now explore the properties of the entanglement spectrum of HOSPT phases that
do not exhibit projective representations at the corners. We begin by demonstrating
that the HOSPT model in Eq. (3.1) with C4 × U(1) symmetry can host featureless
entanglement spectra for any spatial cut away from µ = 0 (i.e., broken particle-hole
symmetry). Let us again focus on the reduced density matrix ρ̂1 with respect to the
C4-symmetric quadrant cut in Figs. 4.6a and 4.7. For HOSPT phases with corner charge
Qcorner = 1/4 (3/4), away from the points with fine-tuned t, the ES for region (1) has
a unique ground state. This non-degenerate spectrum is a consequence of the broken
Ĉ symmetry27. Thus, the configurations with even or odd number of charges in each
quadrant have different weights. Let us consider a typical fixed-point wave function of
the HOSPT phases with 1/4 charge at the corner, which can be written as a product of
plaquette entangled states, analogously to Eq. (4.1). If we trace out a corner site from the
plaquette, the reduced density matrix has unique eigenvalues 1/4 and 3/4, respectively.
Meanwhile, if we make a C4-symmetric cut as shown in Fig. 4.6a by tracing out the

Figure 4.8: Higher-order entanglement. Higher-order entanglement spectrum for a
C4-symmetric bipartition (1-3)-(2-4) (see Fig. 4.6a) of the ground state of
Hamiltonian (3.1) (µ = 0, U →∞) by tracing out the two diagonal corners.
The simulation is made for t = 0.1 with corner charges 1/4 (a) and 1/2 (b),
respectively. The latter case shows a featureless entanglement spectrum with
a unique ground state.

region (2-4), we find a robust degeneracy and all eigenvalues appear in pairs as shown
in Fig. 4.8a. If we, however, consider a HOSPT phase with corner charge Qcorner = 1/2,
the ES for region (1-3) has unique and degenerate low-lying states (see Fig. 4.8b). To
summarize, the traditional ES is insufficient for recognizing generic HOSPT phases,
since it provides only limited information about the ground state topology. We therefore
introduce a new entanglement property—higher-order entanglement with a hierarchical
sequence of the ES to categorize distinct HOSPT phases.

27Note, such a state can never be particle-hole symmetric since the number of holes and particles is
different.
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C4 × U(1) symmetry

We now elaborate the power of higher-order entanglement branching for HOSPT phases
with C4 × U(1) symmetry, but the argument can be generalized to any C2n symmetry.
As a starting point, we bipartite the system into two C4 symmetry related regions (1-3)
and (2-4), respectively (see Figs. 4.6a and 4.9a). The Schmidt decomposition for the two
regions is given by,

|ψ0⟩ =
∑
α

Λα|Aα⟩13|Bα⟩24. (4.39)

The two halves are related by symmetry, and thus the Schmidt states are transformed
into each other |Aα⟩13 ↔ C4|Bβ⟩24. Since the ground state |ψ0⟩ is C4-symmetric, no
matrix elements connecting states with different Schmidt eigenvalues Λα can occur. A
unique Schmidt value Λα implies that |Aα⟩13 = C4|Bα⟩24 with two equal configurations.
When |Aα⟩13 ̸= C4|Bα⟩24, the Schmidt spectrum has to be degenerate to ensure that
the state is C4-symmetric. Moreover, as the theory is U(1) symmetric, each Schmidt
state has a well-defined charge number. When the HOSPT phase contains fractional
corner charges Qcorner = 1/4 (3/4), the total charge number of the ground state is odd
4N + 1 (4N + 3). Under this circumstance, the Schmidt states |Aα⟩13 and |Bα⟩24 must
have different U(1) charges to ensure that the total charge number is odd. This in
turn implies that |Aα⟩13 ̸= C4|Bα⟩24 and, consequently, all Schmidt values Λα must be
degenerate for a C4-symmetric ground state |ψ0⟩.

Higher-order entanglement

When the HOSPT phase contains fractional corner charges Qcorner = 1/2, with the total
charge being even 4N + 2, it is possible to have unique Schmidt values. For this specific
case, the ground state wave function of the C4×U(1) symmetry-protected HOSPT phase
is adiabatically connected to two, in the C4 symmetry center crossing, one-dimensional
SL-BHMs along the diagonal and off-diagonal direction, respectively (see also Fig. 2.7).
Although the corner still carries fractional charge, there is no entanglement between
regions (1-3) and (2-4) resulting in a single-valued ES.

This is where the higher-order entanglement becomes crucial: We first separate the
Schmidt spectrum into a degenerate part (with |Aα⟩13 ̸= C4|Bα⟩24) and a unique part
(with |Aα⟩13 = C4|Bα⟩24), as shown in Fig. 4.9a. Let us further bipartite each unique
Schmidt state to obtain a hierarchical sequence of the higher-order ES (see Fig. 4.9b),

|Aα⟩13 =
∑
γ

Λγ |Cγ⟩1|Dγ⟩3. (4.40)

Note that equivalently we could have considered the corresponding state |Bα⟩24. The
two halves are related by C2 = C2

4 symmetry and, consequently, the Schmidt states
are transformed into each other |Cγ⟩1 ↔ C2|Dδ⟩3 with Λγ = Λδ. Moreover, all unique
Schmidt states |Aα⟩13 must have charge number 2N + 1 to guarantee the total charge of
the ground state is 4N+2. Thus, we can use a similar argument to show that all Schmidt
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Figure 4.9: Higher-order entanglement spectrum. Entanglement spectra of the
HOSPT phase with half-corner charge at t = 0.1. (a) Entanglement spectrum
for a bipartition in which the two parts are related by the C4 symmetry. (b)
Higher-order entanglement branches of the unique Schmidt states with exact
degeneracies.

values must come in degenerate pairs. In particular, there cannot be a single state in the
decomposition with |Cγ⟩1 = C2|Dγ⟩3 and, thus, the entire spectrum must be degenerate.
The argument flows as follows: If there is a single state with |Cγ⟩1 = C2|Dγ⟩3, then
|Cγ⟩1 should carry 1/2 charge number to guarantee the total charge for |Aα⟩13 being
odd. However, as the elementary charge is an integer, half charges only appear as a cat
state |0⟩ + |1⟩ and, consequently, breaking U(1) symmetry. Numerically, as shown in
Fig 4.9, we confirmed the expected higher-order entanglement branching structure for
the SL-BHM defined in Eq. (3.1).

Generalizations to C2n

A similar argument holds for C2n symmetric HOSPT phases: The entanglement branch-
ing structure is similar, but we just need to duplicate the bipartition step further as the
initial Schmidt spectrum might contain a series of non-degenerate eigenstates. If we take
such state out and redo the bipartition n − 1 times, the resultant n-th order spectrum
should always contain two-fold degeneracies. In particular, it is worth emphasizing that
if we merely make a C2n symmetric corner cut and calculate the ES of that region, the
ES may not display any robust degeneracy. This is obvious for the plaquette entangled
state |ψ□

3/4⟩ defined in Eq. (4.3) with ES eigenvalues 1/4 and 3/4, respectively.
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4.4 Summary & Outlook
In this chapter, we took two different routes to characterize higher-order topology in
strongly-interacting models, such as the two-dimensional SL-BHM. Thereby, starting
from the higher-order Zak (Berry) phase, we derived a topological many-body invari-
ant that characterizes HOSPTs by revealing a non-commutative algebra with Cn rota-
tions that is closely related to fractional corner charges found in the previous chapter
(Chap. 3). The interplay of electromagnetic and gravitational degrees of freedom is de-
scribed by the discrete Wen-Zee response. To study the corresponding topological field
theory, we first argued that lattice defects such as disclinations are a source of curvature
and in a continuum description are closely related to the spin-connection28. Finally,
using exact diagonalization of small clusters, we demonstrated the practical relevance of
the many-body invariant.

Second, we studied the entanglement spectrum of HOSPT phases and revealed its
non-trivial relation to fractional corner charges as well as the discrete Wen-Zee response.
To this end, we first considered the entanglement spectrum of HOSPTs that have an ad-
ditional symmetry rendering projective representations at the corners and established a
generalized Kramers theorem. Further, we introduced a new concept called higher-order
entanglement, to scrutinize and differentiate various higher-order topological phases from
a hierarchical sequence of the entanglement structure. Namely, certain HOSPTs, upon a
Cn-symmetric bipartition, have at first-order a featureless entanglement spectrum, that
is, the spectrum contains both; degenerate and non-degenerate Schmidt states. However,
if a HOSPT phase is non-trivial, we showed that if we further bipartite non-degenerate
Schmidt states, we finally obtain a fully degenerate entanglement spectrum.

Outlook. So far, we studied the discrete Wen-Zee response only for a particular model;
however, as several times said, we believe that the Ansatz is true in general and holds
for all U(1)× Cn symmetric HOSPTs. To this end, it might be useful to study another
concrete example. Alternatively, another route we could take is to study HOSPTs in
higher dimensions and ask, to which extent those ideas can be generalized. Definitely,
all of those are certainly valid questions/thoughts; however, at this stage we are mostly
interested in another point: Although we made a significant step forward in finding a
bulk-boundary correspondence, we have not yet found a relation that equates changes
of the fractional corner charge and the higher-order Zak (Berry) phase, similar to the
one-dimensional case (see Sec. 3.3.4). A first step towards such a relation is shown in
the next chapter.

28Recall, the spin-connection forms the second gauge field in the field theory description of the Wen-Zee
response.
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Thouless pumps and bulk-boundary
correspondence in higher-order
symmetry-protected topological phases

Protected (gapless) modes on submanifolds of topological phases of matter are a charac-
teristic phenomenon of such states. For one-dimensional systems such as the SSH model,
charge accumulation at the 0D boundary results from a non-trivial bulk polarization,
which, discovered by King-Smith and Vanderbilt [171], was shown to be a manifestation
of the Zak (Berry) phase of the underlying Bloch bands [102, 172]. Resta generalized
this soon to interacting many-body systems with periodic boundaries by relating the
polarization to the many-body position operator and the generalized Zak (phase) [45]
(see also Sec. 3.3.4). Intuitively, the bulk-boundary correspondence for such systems can
be understood as follows: Changing the bulk polarization is intimately linked to changes
of the charges residing at the boundary. Such quantized charge transport is exactly
described by topological Thouless pumps [29, 173–177].

As we have seen in Chap. 3 the one-dimensional SL-BHM at half-filling is character-
ized by a filling anomaly resulting in fractional edge charges, which are in one-to-one
correspondence with a bulk polarization [29, 177]. Since the construction of the 1D
and 2D system is closely connected, it is tempting to believe that such bulk-boundary
correspondence can be straightforwardly generalized. As partially discussed in Chap. 3,
there were proposals by recent works [129, 130] that tried to generalize the many-body
polarization of Resta to a many-body quadrupole operator; however, these approaches
have sparked controversy for U(1) conserving systems [131] because the definition of
such operator has led to inconsistent results.

Although we saw that the C4 higher-order Zak (Berry) phase and the fractional corner
charge signal non-trivial topology of the 2D SL-BHM, there has been no exact corre-
spondence between those two invariants so far. As a first step towards such relation, we
introduce a simplified version of a higher-order Zak (Berry) phase that, however, is only
well-defined for HOSPTs with hardcore bosons at half-filling. Nevertheless, by extend-
ing the ideas of Resta’s seminal work [45] to higher-order topology, upon using Thouless
pumps and quantized charge transports, we can find an exact correspondence between
a topological bulk invariant and fractional corner charges—obtaining a bulk-boundary
correspondence for strongly-interacting higher-order topological systems.

Overview. This chapter is based on [P3] and divided into four main sections: In the
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first part, Sec. 5.1, we reconsider the C4 higher-order Zak (Berry) phase introduced by
Ref. [128] and consider peculiarities of the invariant as we approach the thermodynamic
limit. To resolve these, we introduce a new kind of boundary conditions so-called Cor-
ner Periodic Boundary Conditions (CPBC), upon which we construct a simplified Z2
quantized higher-order Zak (Berry) phase.

Further, in Sec. 5.2 we consider two different Thouless pumps connecting topologically
distinct HOSPT phases and characterize the charge transport in terms of four Chern
numbers that are directly linked to the windings of the Z2 higher-order Zak (Berry)
phases, defined for each corner. Thereby, the Chern numbers have to fulfill a sum rule to
guarantee net charge conservation. Moreover, we briefly argue that the Z2 higher-order
Zak (Berry) phase can characterize Thouless pumps even at finite interaction strength,
although its quantizing symmetry is broken. This section ends with a numerical case
study of Thouless pumps of the SL-BHM and a brief discussion on quadrupole operators,
based on insights we obtained from the Thouless pumps.

Section 5.3 is at the heart of this chapter, since it proves the bulk-boundary corre-
spondence by extending Resta’s idea [45] to higher-order topological systems. Moreover,
using an adiabatic expansion, we can relate the change of the corner charge during one
cycle to a current through the corner, which is sensed by the Z2 higher-order Zak (Berry)
phase introduced at this corner. Moreover, to build on this, using a half-Thouless pump
cycle, we can directly relate a non-trivial, quantized change of the Z2 higher-order Zak
(Berry) phase to the emergence of quantized fractional corner charges.

Lastly, in Sec. 5.4 we shortly discuss a possible extension of the bulk-boundary corre-
spondence for the C4 higher-order Zak (Berry) phase, which we extensively discussed in
Chap. 3. Thereby, we shed light on aspects that directly generalize and sketch a possible
way how the bulk-boundary correspondence remains true for this invariant—although
we have not worked out the details yet.

5.1 The higher-order Zak (Berry) phase revised
In the previous chapters we have seen that the higher-order Zak (Berry) phase introduced
by Ref. [128] distinguishes the topologically distinct HOSPT phases of the 2D SL-BHM
at different fillings. However, up to this point, we have not yet justified that this invariant
is actually well-defined if we approach the thermodynamic limit. To this end, we start in
this section with discussing certain difficulties of the higher-order Zak (Berry) phase as
we approach L→∞. Then, we present a possible solution to overcome these problems
by defining new boundary conditions, and finally we introduce a simplified higher-order
Zak (Berry) phase quantized for HOSPTs with U(1) × Z2 × C4 symmetry using two
different gauge choices.

5.1.1 Deficiencies of the higher-order Zak (Berry) phase
In Chap. 3 we showed that the higher-order Zak (Berry) phase can be obtained from
twisting the central plaquette of the many-body Hamiltonian (see Fig. 3.4). Although
there is a zero flux condition for the central plaquette, there is, however, non-zero flux
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in the neighboring plaquettes, which can be seen from Fig. 3.4. For finite systems, this
is not problematic because there is always a finite gap1; however, for infinite systems,
L → ∞, we are not guaranteed that the bulk gap under flux insertion remains finite.
If the bulk gap was not finite in the thermodynamic limit, that would imply that the
higher-order Zak (Berry) phase is not a genuine topological invariant. One solution to
this problem would be to find a gauge transformation that distributes the local twists
over many links such that locally the flux is proportional to ∼ 1/L and, hence, locally
the flux vanish as we approach the thermodynamic limit. However, here we will present
another solution, namely, introducing new boundary conditions.

5.1.2 Corner periodic boundary conditions
To circumvent the previous problem of inserting finite flux in the bulk, we introduce
new boundary conditions so-called Corner Periodic Boundary Conditions (CPBC) con-
necting only the links at the corners, as displayed in Fig. 5.1. Compared to PBC, such a

(a) (b)

Figure 5.1: CPBC and higher-order Zak (Berry) phases. Corner periodic bound-
ary conditions for the 2D SL-BHM, with fluxes (shaded regions) at the
corner-connecting links. Compared to PBC, such a system has edges. (a) If
we apply the construction of the higher-order Zak (Berry) phase of Ref. [128]
to the corner-connecting links, then we are guaranteed to not introduce flux
in the bulk of the system. Panel (b) shows the Z2 higher-order Zak (Berry)
phase. Only two out of our links are twisted, and there is only a single pa-
rameter θ.

system has edges and, consequently, we can clearly distinguish bulk and edge properties.
Moreover, this allows us to move the Ansatz of Ref. [128] to the outside of the system,
which guarantees that there is no flux in the bulk of the system and renders the higher-

1Clearly, there are exceptions. In particular, there might be level crossings due to changes of quantum
numbers.
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order Zak (Berry) phase to be a well-defined, genuine topological invariant as L → ∞.
However, this Ansatz has also drawbacks, in particular, for fillings n0 ∈ {1/4, 3/4}.
While for the half-filled case the edges in the thermodynamic limit are well-defined, the
situation is different for other fillings. Here we must add terms to the boundary that,
on one hand, ensure the correct filling, and, on the other hand, keep edges gapped as
L→∞.

5.1.3 A Z2 quantized higher-order Zak (Berry) phase
For studying a bulk-boundary correspondence, we first introduce a simplified higher-
order Zak (Berry) phase that distinguishes the HOSPTs of the SL-BHM for hardcore
bosons at half-filling. In Sec. 3.1 we showed that the SL-BHM in this limit has two
additional antiunitary symmetries. One of those we denoted by Ŝ, Eq. (3.4), which
has the property that Ŝ2

x,y = 1. For what follows, we redefine this operator, namely, we
remove the operation of complex conjugation in the definition and consider it as a unitary
Z2 symmetry, i.e., Ŝ−1iŜ = i. However, the action on local operators is unchanged and
given as follows: b̂†

x,y ↔ b̂x,y
2.

Construction of the Z2 higher-order Zak (Berry) phase

The construction is similar to the higher-order Zak (Berry) phase introduced in Sec. 3.3.2.
To this end, we decompose the Hamiltonian into two parts ĤCPBC = ĤOBC+ĤC , where
ĤC contains the corner-connecting links and ĤOBC is defined in Eq. (3.1). If we label
the corners counter-clockwise, starting from the upper-left corner, then this Hamiltonian
is given by3

ĤC = −t
(
â†
c1 âc2 + â†

c2 âc3 + â†
c3 âc4 + â†

c4 âc1 + h.c.
)
. (5.1)

The phase twist is then introduced by applying the gauge transformations Ûi, i ∈
{1, 2, 3, 4} on ĤC only:

ĤC
i (θ) = Û †

i (θ)ĤCÛi(θ), (5.2)

with Ûi(θ) = eiθn̂ci . Here n̂ci is the particle number operator at the i-th corner. Since
there are four corners, there are four possible ways to introduce the phase twist, as
shown in Fig. 5.2. Although C4 is not crucial for the quantization of this phase, it,
nevertheless, relates different gauge choices C4 : Ûi → Ûi+1, where rotations are defined
counter-clockwise. Compared to the C4-quantized higher-order Zak (Berry) phase, this
simplified version depends entirely on a single parameter. Again, we have a zero flux
condition, namely, summing up all phase factors along the corner-connecting links results
in zero total flux. Finally, the Z2 higher-order Zak (Berry) phase is evaluated via the
following formula:

γi = i

∫ 2π

0
dθ ⟨ψi(θ)|∂θ|ψi(θ)⟩ . (5.3)

2Recall that for hardcore bosons we use a different notation.
3Since this is true for any value of U we use the general notation of bosonic operators.
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Figure 5.2: Direction-dependent sensing of charge flow. Model with corner-
periodic boundary conditions (CPBC). We propose four gauge choices Û1
(a), Û2, Û3, Û4 (b) that are connected by C4-symmetry, Eq. (5.2). The
higher-order Zak (Berry) phases defined on these choices act as sensors of
charge flow. They are only sensitive in the direction of the electric field
(blue) that is induced when the flux in the outer super-cells becomes time-
dependent.

Quantization of the Z2 higher-order Zak (Berry) phase

To show quantization of the Z2 higher-order Zak (Berry) phase, we assume U →∞ and
use that the twisted Hamiltonians transforms under Ŝ as follows4:

ŜĤCPBC
i (θ)Ŝ = ĤCPBC

i (−θ), (5.4)

which implies that Ŝ |ψi(θ)⟩ = eiφ(θ) |ψi(−θ)⟩. Using this, we obtain:

γi =i
∫ 2π

0
dθ ⟨ψi(θ)|Ŝ2∂θ|ψi(θ)⟩

=i
∫ 2π

0
dθ ⟨ψi(−θ)|∂θ|ψi(−θ)⟩ −

∫ 2π

0
dθ ∂θφ(θ)

=− γi + 2πZ, (5.5)

which implies that 2γi = 0 mod 2π and consequently γi ∈ {0, π}5. Indeed, as shown
in Fig. 5.3, we see that the Z2 higher-order Zak (Berry) phase distinguishes the two
topologically inequivalent phases of the SL-BHM at half-filling and U → ∞. Thereby,

4Note that Ŝ2 = 1.
5In the last step of the derivation we used that |ψi(θ + 2π)⟩ = |ψi(θ)⟩.
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Figure 5.3: Quantized Z2 higher-order Zak (Berry) phase. We show γ1 (γ2,γ3
and γ4 look identical) as a function of the tunneling parameter t at half-
filling (N = L2/2) and with CPBC for L = 4. The insets show the density
expectation values of a 4×4 system at filling N = L2/2+2. Even though the
non-trivial phase (t > 0.5) does not exhibit any corner states due to CPBC,
the two extra particles above half-filling lead to an occupation imbalance
between edge doublets and bulk plaquettes that is unique to the non-trivial
phase.

C4 symmetry ensures that the Z2 higher-order Zak (Berry) phases on each corner are
the same, i.e., γ1 = ... = γ4 mod 2π.

A different gauge choice

Later, in Sec. 5.3 we prove a rigorous bulk-boundary correspondence for the Z2 higher-
order Zak (Berry) phase. However, this necessitates that we are able to apply perturba-
tion theory, which requires the phase twists locally to be of order ∼ 1/L. To this end,
we use the degree of freedom that there are many ways of how we can introduce the
phase twists into the system (cf. Sec. 2.2.1). Up to this point, we chose to twist the
corner-connecting links; however, choosing another gauge transformation V̂i(θ)—defined
with respect to each corner—we can distribute the phase twists over all hoppings in
a triangle Ti spanned by the corners ci−1 ← ci → ci+1. This is graphically shown in
Fig. 5.4 (for i = 1). Thereby, as desired, each phase twist is of order ∼ 1/L. For the
triangle T1, for example, the gauge transformation is given by

V̂1(θ) = exp
(
i
θ

L
X̂1

)
, X̂1 =

∑
x,y∈T1

fx,y;1n̂x,y, fx,y;1 = (y − x). (5.6)
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Figure 5.4: A different gauge choice. In the new gauge, the phase twist is distributed
over all hoppings contained in the upper triangle T1 spanned by the corners
c2 ← c1 → c4. Each hopping is modulated by a phase factor with angle θ/L.
The direction is such that a particle hopping from right (bottom) to left (top)
acquires a phase factor eiθ/L. Inside the bulk there is no flux, but there is a
flux Φ = θ in the outer rings formed by CPBC. The gauge transformations
for the other triangles can be obtained by applying C4 symmetry on this
configuration.

Other triangles and gauge choices can be obtained from applying C4 rotations counter-
clockwise. The new Hamiltonian, obtained from this gauge choice, reads:

ĤCPBC
i;V (θ) = V̂i(θ)ĤCPBC

i (θ)V̂ †
i (θ). (5.7)

Note, unlike ĤCPBC
i (θ), this Hamiltonian is not invariant under a shift of 2π, instead:

ĤCPBC
i;V (θ + 2π) = V̂i(2π)ĤCPBC

i;V (θ)V̂ †
i (2π). After applying the gauge transformation

to the Hamiltonian, the resulting Z2 higher-order Zak (Berry) phase experiences a non-
trivial shift:

γi;V = γi −
∫ 2π

0
dθ ⟨ψi(θ)|

X̂i

L
|ψi(θ)⟩ . (5.8)

However, by applying the same trick as shown in Eq. (5.5), it is easily derived that the
shift, in the presence of Ŝ symmetry, is quantized and given by,∫ 2π

0
dθ ⟨ψi(θ)|

X̂i

L
|ψi(θ)⟩ = π

L

∑
x,y∈Ti

fx,y;i. (5.9)

Although individual values of the Z2 higher-order Zak (Berry) phase are shifted, the
difference is unchanged, i.e., ∆γi = ∆γi;V mod 2π, which is sufficient because in actual
experiments only differences are accessible [172].
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5.2 Introduction to Thouless pumps and their application
A Thouless pump is a cyclic adiabatic variation of external parameters along a sym-
metry breaking path. If the path encircles a gapless point (or region) separating two
topologically distinct quantum phases, then it leads to quantized charge transport that
characterizes the topology of the bulk [29, 173–177]. Before we proceed, let us briefly
explain the keywords: The path must be cyclic because to characterize the topology
of the path, using Chern numbers, we need to have a two-dimensional compact mani-
fold such as a torus, which is defined by the corresponding parameters. For example,
for non-interacting systems, the parameter space is usually given by the 2D Brillouin
zone [71, 178]. Further, the path must be adiabatic6 since we want to relate changes of
ground state properties to Chern numbers. Moreover, by definition, such a path only
exists if we explicitly break those symmetries that distinguish the two topologically dis-
tinct phases (see Sec. 2.1.2). Lastly, it is important that the path encircles the gapless
point/region. From a physical standpoint, we can interpret this as a source of flux, which
is quantized, if integrated over a compact manifold. Otherwise, the Chern number can
be rewritten as a winding number of the Z2 higher-order Zak (Berry) phase. A curve
not encircling the gapless point/region can be continuously shrunk to a point. Clearly,
such a path cannot have a non-trivial winding number.

For the 2D SL-BHM, the pumping cycle consists of a closed trajectory in a ∆-t param-
eter space characterized by a single parameter λ. The path crosses two Z2-symmetric
(as well as C4-symmetric) points and avoids—by explicit symmetry breaking—closing
the bulk gap, see Fig. 5.5b. Here, ∆ controls the strength of additional on-site poten-
tials. The arrangement of the local density terms dictates the direction of the charge
transport, while the Z2 higher-order Zak (Berry) phases serve as direction dependent
sensors of charge flow (see Fig. 5.2).

In this section, we first introduce the pumping procedures, which are used to inves-
tigate the quantized charge transport in the 2D SL-BHM. Second, we discuss how to
characterize Thouless pumps using Chern numbers and their relation to the Z2 higher-
order Zak (Berry) phase and charge transport. Lastly, we consider a concrete case study
of the 2D SL-BHM on small clusters using exact diagonalization. From these results,
we briefly argue why a quadrupole operator cannot characterize the HOSPTs of the 2D
SL-BHM.

5.2.1 Pumping procedures
In this part, we introduce two different pumping procedures, from which we gain inside
into the topology of the 2D SL-BHM at half-filling and U →∞.

6i.e., at each point along the path the system is in its instantaneous ground state and there is a finite
gap to the excited states.
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Diagonal pump

trivial

non-trivial

Non-diagonal pump

(b)(a)

(c)

Figure 5.5: Thouless pumps in the 2D SL-BHM. (a) Interacting bosons on a square
lattice with staggered tunneling (strengths t and 1 − t, respectively) and
OBC. (b) Thouless pump parametrized by λ ∈ [0, 2π), as defined in the text,
with ∆ controlling additional on-site potentials shown in (c). (c) Density
evolution during a diagonal (upper panel) and a non-diagonal (lower panel)
half-Thouless pump cycle, ending in a quadrupole and a dipole configuration,
respectively. On the left, the corresponding arrangements of the additional
on-site potentials are sketched: For creating a diagonal Thouless pump, we
add in each plaquette shifts of equal sign on diagonally opposite sites. For
creating a non-diagonal Thouless pump, we add shifts of the same sign on
the same side.

Diagonal Charge transport (diagonal pump)

For the diagonal pump, each plaquette is decorated with on-site potentials in a cross-
diagonal arrangement, Fig. 5.5c top left. The corresponding Hamiltonian is defined as
follows:

ĤCPBC
i;diag (λ, θ) = ĤOBC(λ) + ĤC

i (λ, θ) + ∆(λ)
D∑

x,y=−D
(−1)[(x+D)+(y+D)]n̂x,y, (5.10)

where D = (L−1)/27. The parameter θ is associated to the Z2 higher-order Zak (Berry)
phase, while λ controls the pump procedure. The subscript “i” tells us on which corner

7These coordinates are measured from the C4 symmetry center placed in the center of the lattice.
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we introduce the phase twist, as shown in Fig. 5.2. The trajectory in ∆-t parameter space
is a shifted circle with t(λ) = (1 + cosλ)/2 and ∆(λ) = sinλ (see Fig. 5.5b). If we apply
this pumping procedure for a Hamiltonian with open boundary condition at half-filling
and track the density evolution over a half-cycle, then charge accumulates such that
there is a quadrupole configuration, which is displayed in Fig. 5.5c. All corners carry
fractional charge, where the sign of fractional charges on diagonally opposite corners is
different. In total, there are two fractional charges with positive +1/2 and two with
negative sign −1/2, respectively.

Symmetry transformations. For finding a sum rule of the four Chern numbers asso-
ciated to each corner, and a characterization of the half-cycle, it is useful to study how
Hamiltonian (5.10) transforms under symmetries. Indeed, the arrangement of local den-
sity terms in Hamiltonian (5.10) transforms nicely under C4 symmetry (setting θ = 0),
namely,

C4 : ĤCPBC
diag (λ)→ ĤCPBC

diag (−λ). (5.11)

Similarly, it transforms under Ŝ, which, however, leads to a constant shift,

Ŝ : ĤCPBC
diag (λ)→ ĤCPBC

diag (−λ) + const. (5.12)

resulting from Ŝ : n̂x,y → 1x,y − n̂x,y.

Horizontal charge transport (non-diagonal pump)

For the second procedure, each column has the same sign of the on-site potentials. The
corresponding Hamiltonian reads:

ĤCPBC
i;hor (λ, θ) = ĤOBC(λ) + ĤC

i (λ, θ)−∆(λ)
D∑

x,y=−D
(−1)(x+D)n̂x,y. (5.13)

The parameters have the same parametrization as previously. However, this time, if we
track the density for a system with open boundary conditions over a half-cycle, then the
final charge configuration has the form of a dipole, i.e, on the left the two corners carry
fractional charge with positive sign +1/2, while the corners on the right have a particle
missing and, thus, carry a fractional charge with a negative sign −1/2.

Symmetry transformations. Likewise to the previous path, this trajectory transforms
nicely under C2 = C2

4 symmetry with (θ = 0):

C2 : ĤCPBC
hor (λ)→ ĤCPBC

hor (−λ), (5.14)

while for Ŝ, we again obtain a constant shift,

Ŝ : ĤCPBC
hor (λ)→ ĤCPBC

hor (−λ) + const.. (5.15)
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5.2.2 Characterization of Thouless pumps
Here, we first argue that the four Chern numbers characterizing the Thouless pump

are the winding numbers of the Z2 higher-order Zak (Berry) phases. Second, we show
how charge transport and Chern numbers are related. Using the symmetry properties
of the pumping procedures and the Z2 higher-order Zak (Berry) phases, we relate the
fractional corner charge to the Z2 higher-order Zak (Berry) phase. Lastly, we argue that
although the global Z2 symmetry for softcore bosons, i.e., U < ∞ is broken, the Z2
higher-order Zak (Berry) phase can still be used to characterize the Thouless pumps.

Chern numbers and the Z2 higher-order Zak (Berry) phases

In seminal works [173–176] Thouless, Niu and others showed that the many-body Chern
number for a two parameter dependent wave function, |ψ(λ, θ)⟩, where parameter space
defines a torus, (λ, θ) ∈ T 2, can be written as:

Ci = i

2π

∫ 2π

0
dλ

∫ 2π

0
dθ (⟨∂λψi(λ, θ)|∂θψi(λ, θ)⟩ − ⟨∂θψi(λ, θ)|∂λψi(λ, θ)⟩) (5.16)

where the subscript on the Chern number is explained soon. This integral formula
is precisely the flux of the Berry curvature through the surface of a compact mani-
fold [71, 178] and, thus, integer quantized C ∈ Z. On the other hand, using that
⟨∂θψi(λ, θ)|ψ(λ, θ)⟩ = −⟨ψi(λ, θ)|∂θψ(λ, θ)⟩, the Chern number reads:

Ci = i

2π

∫ 2π

0
dλ ∂λ

∫ 2π

0
⟨ψi(λ, θ)|∂θ|ψi(λ, θ)⟩ = 1

2π

∫ 2π

0
dλ ∂λγi(λ), (5.17)

which is nothing else than the winding number of the i-th Z2 higher-order Zak (Berry)
phase. Note that in the definition of the Chern number we could have also used γi;V
because the shift, defined in Eq. (5.8), is gauge-invariant and, thus, periodic in λ →
λ+ 2π.

Sum rule. The sum over all four Chern numbers of the diagonal and horizontal pump
is zero, which can be deduced from the symmetry properties of the paths defined in
Eq. (5.11) and Eq. (5.14). For example, if we consider the diagonal arrangement, then
we obtain (by a similar trick as used in Eq. (5.5)):

Ci = 1
2π

∫ 2π

0
dλ ∂λγi(λ)

C4= 1
2π

∫ 2π

0
dλ ∂λγi+1(−λ)

=− 1
2π

∫ 2π

0
dλ ∂λγi+1(λ)

=− Ci+1. (5.18)

A similar argument we can use for the horizontal path. There we find that C1 = −C3
and C2 = −C4. As we will see in the next section, the sum rule guarantees charge
conservation.
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Chern number and quantized charge transport

Later, in Sec. 5.3 we will prove that the charge transport is related to the Chern number
by extending Resta’s argument [45] to higher-order topological systems. A key step in
this process is, that the adiabatic flux insertion in Eq. (5.7) can be directly related to
a current passing diagonally through a corner, Ĵi = ∂θĤi;V (θ)|θ=0 for i = {1, ..., 4}8.
Integrating up these currents along an adiabatic path, touching two HOSPTs, gives the
total charge pumped during one cycle,

∆qci = −Ci. (5.19)

From Eq. (5.17) it follows that this is given by the change of the Z2 higher-order Zak
(Berry) phase over one cycle. Thus, the sum rule of the Chern numbers indeed corre-
sponds to charge conservation along a cycle. Moreover, this shows that we need in total
four Chern numbers to fully specify the charge flow in HOSPT phases.

Half-Thouless pump cycle

From the density plots of Fig. 5.5c, we conclude that after a half-cycle, charges at the
corners pile up. Under assumption of Eq. (5.19), which is proved in Sec. 5.3, we show
that after a half-cycle the change in corner charge is given by

∆qhalf
ci

= −Ci/2. (5.20)

To this end let us consider the following path: For λ ∈ {0, π} we follow the path
introduced above, also shown in Fig. 5.5b, which we denote as L0. On the second half;
however, we use the path ŜL0. This path is obtained as follows: From each state of L0,
the state on the second half can be obtained via applying Ŝ. Thus, the total path reads:
L = L0 ∪

(
−ŜL0

)
. The minus sign is needed since we have to reverse the orientation of

the path to have a closed trajectory. Hence, we obtain:

2πCi =
∮

L
dλ ∂λγi(λ) =

∫ π

0
dλ ∂λγi(λ)−

∫ π

0
dλ ∂λγi(−λ) Ŝ= 2

∫ π

0
dλ ∂λγi(λ), (5.21)

which implies that
∆qhalf

ci
= −Ci2 = − 1

π

∫ π

0
dλ ∂λγi(λ). (5.22)

For getting this result, we used the symmetry properties of the pumping procedures,
Eq. (5.12) and Eq. (5.15), and of γi, defined in Eq. (5.5). Note if we, on the other hand,
write:

∆qhalf
ci

= −γi(π)− γi(0)
π

mod 1, (5.23)

then this equation defines the corner charge only modulo integer because γi is only
defined modulo 2π. This happens since we have lost the information about the path
(see also Ref. [179]). The previous result clearly shows that after a half-cycle we moved
from the trivial to the topological phase, and the emergence of fractional corner charges
is directly related to quantized changes of the Z2 higher-order Zak (Berry) phase.

8However, for the evaluation of the Chern number it does not matter which gauge choice we use.
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Softcore bosons

If we consider the SL-BHM with finite interactions, then the additional Z2 symmetry is
broken and the remaining symmetries are U(1)×C4—still distinguishing HOSPTs of the
SL-BHM. This clearly implies that our Z2 higher-order Zak (Berry) phase is no longer
quantized in individual HOSPT phases; however, the associated Chern numbers defined
as the winding number of these phases are unchanged. Consequently, this particular
higher-order Zak (Berry) phase can still be used to characterize Thouless pumps of
softcore bosons, although its quantizing symmetry is broken. However, if the Z2 higher-
order Zak (Berry) phases loses its quantization, we can no longer use it to characterize
the change of the fractional charge during a half-cycle. But, in Sec. 5.4 we show that
this relation remains true if we instead consider the C4 higher-order Zak (Berry) phase.

5.2.3 Numerical evaluation of Thouless pumps and quadrupole operators
Having characterized Thouless pumps in terms of Chern numbers and quantized charge
transports, we now numerically evaluate the previously introduced pumping procedures,
using exact diagonalization of an 4× 4 SL-BHM at half-filling and hardcore bosons with
CPBC. To this end, we evaluate the Chern numbers and the Z2 higher-order Zak (Berry)
phase, using the following discretized formulas [149]:

γi(λ) =−
N∏
n=1
⟨ψn(λ)|ψn+1(λ)⟩ , |ψn(λ)⟩ ≡ |ψ(λ, 2π n

N
)⟩

Ci = 1
2π

∫ 2π

0
dλ ∂λγi(λ) =

∑
n

[
γi(λn+1)

2π − γi(λn)
2π

]
, (5.24)

with a sufficiently large number of discrete points in the intervals (λn, θn) ∈ [0, 2π) ×
[0, 2π).

Diagonal pump: As shown in Fig. 5.6b, the four Chern numbers are extracted from
the windings of the Z2 higher-order Zak (Berry) phases and read Cdiag = (−1, 1,−1, 1).
Clearly, the total charge is conserved. Moreover, a negative (positive) Chern number
means charge transport towards (away from) the corner. Furthermore, as predicted,
consecutive Chern numbers have opposite sign.

Horizontal pump: Here, in Fig. 5.6c,d, the four Chern numbers are specified by Chor =
(−1,−1, 1, 1), i.e., charge flows towards (away from) left (right) corner such that a dipole
configuration after a half-cycle appears. Furthermore, as stated above, sequential Chern
numbers have the same sign.

Quadrupole operator

In Sec. 3.3.1 we already discussed that a quadrupole operator, defined as the generaliza-
tion of the many-body polarization, is not well-defined for classifying U(1) conserving
HOSPT phases without conservation of dipole moments. From the Thouless pumps dis-
cussed in this section, Fig. 5.5 and Fig. 5.6, we can also physically understand that a
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(a)

(c) (d)

(b)

Figure 5.6: Chern number tuples for diagonal and non-diagonal Thouless
pumps. (b, d) Evolution of the Z2 higher-order Zak (Berry) phases γi along
the diagonal (upper panel) and non-diagonal (lower panel) Thouless pumps,
Eq. (5.10) and Eq. (5.13), respectively. (a, c) The charge flows towards (away
from) a corner are characterized by a negative (positive) Chern number Ci.

quadrupole operator is not sufficient to describe the system because there can be both:
a quadrupole and a dipole configuration.

5.3 A bulk-boundary correspondence
A unifying feature of certain topological phases of matter is the correspondence between
bulk and edge properties. In this sense, changes of bulk topology are directly related to
changes on the edges [21, 22, 29, 71, 74, 75, 177, 178]. This correspondence reflects the
fact that, unlike SSB phases, such states of matter are symmetric and, hence, no local
order parameter distinguishes them. If we form a spatial interface of two such phases,
then there must occur a phase transition, which is locally confined near the interface.
Hence, if such interface is between the vacuum (trivial phase) and a topological phase,
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there can be, among other things, gapless edge modes. Such interfaces, for instance, can
easily be constructed from Chern insulators with different Chern numbers [84, 180].

In this section, we will prove such bulk-boundary correspondence for the 2D SL-BHM
with hardcore bosons at half-filling and relate the Z2 higher-order Zak (Berry) phase
to fractional charges sitting at the corner9. To this end, we first introduce a lattice
Hamiltonian in Sec. 5.3.1 and briefly repeat the discussion on flux insertion. Afterwards,
we generalize in Sec. 5.3.2 the Ansatz of Resta [45] to higher-order topological systems,
and then in Sec. 5.3.3, we define a current operator as well as consider charge transport.
By relating two initially distinct phases factors, we finally arrive at the desired bulk-
boundary correspondence (see Sec. 5.3.4).

Before we proceed, let us emphasize that no step in this section requires the limit of
hardcore bosons and, thus, remains true for finite U . Thus, whenever necessary, we stick
to the general labelling of operators.

5.3.1 Lattice Hamiltonian
For proving a bulk-boundary correspondence, it turns out to be useful to define a lattice
Hamiltonian that depends on a parameter α ∈ Rd, where d is the dimension of parameter
space. A given Hamiltonian can be written as follows:

ĤCPBC
α = ĤOBC

αOBC
+ ĤC

αC
(5.25)

where ĤOBC
αOBC

is the Hamiltonian for open boundaries and ĤC
αc

includes the links con-
necting different corners. Note in the definition ĤOBC

αOBC
we allow for arbitrary on-site

chemical potentials ∼ ∑
x,y ∆x,yn̂x,y that might break global symmetries of ĤCPBC

α ,
while keeping global charge conservation10. An example of such Hamiltonian is given in
Eq. (5.10).

Flux insertion

Another essential ingredient for the upcoming proof is to introduce phase twists, as
discussed in Sec. 5.1.3. To this end, we first apply the gauge transformation Ûi(θ), and
then subsequently the gauge transformation V̂i(θ) to finally arrive at the Hamiltonian

ĤCPBC
α,i;V (θ) = V̂i(θ)

(
ĤOBC

αOBC
+ Û †

i (θ)ĤC
αC
Ûi(θ)

)
V̂ †
i (θ), (5.26)

which is graphically shown in Fig. 5.4. Recall that this Hamiltonian does not return to
its initial form after a 2π shift, namely, ĤCPBC

α,i;V (θ + 2π) = V̂i(2π)ĤCPBC
α,i;V (θ)V̂i(2π).

5.3.2 Generalizing Resta’s construction
The main ideas of Resta’s construction [45] are to use non-degenerate perturbation
theory, to relate the generator of the gauge transformation, defined in Eq. (5.6), to

9In the presence of this additional symmetry, the modes at the corner are actually gapless.
10It is assumed that the overall filling is not changed by adding such terms.
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another phase, which is in direct correspondence with the Z2 higher-order Zak (Berry)
phase and, second, to make the parameters time-dependent, to connect changes of this
phase to an adiabatic current and charge transport.

A new phase

As a starting point, we assume that the initial lattice Hamiltonian, i.e., with no flux
ĤCPBC

α,i;V (0) ≡ ĤCPBC
α , has a unique ground state ĤCPBC

α |Ψ0
α⟩ = E0

α |Ψ0
α⟩. Hence, if

θ = 2π (or equivalently Φ = 2π, see Fig. 5.4)11, then we find that

ĤCPBC
α,i;V (2π) V̂i(2π) |Ψ0

α⟩ = E0
α V̂i(2π) |Ψ0

α⟩ . (5.27)

From non-degenerate perturbation theory up to first-order, we obtain (L→∞):

V̂i(2π) |Ψ0
α⟩ = eiγ̃i(α)

|Ψ0
α⟩+ 2π

L

∑
j>0
|Ψj

α⟩
⟨Ψj

α| ∂θ̃ĤCPBC
α,i;V (θ̃)|θ̃=0 |Ψ0

α⟩(
E0

α − E
j
α

)
 , (5.28)

where the sum runs over all excited states. Moreover, as pointed out by Resta [45],
there can in general be a global phase in the expansion denoted by γ̃i(α). Later, we
show that the phase γ̃i(α) is related to the Z2 higher-order Zak (Berry) phase considered
previously. To arrive at this result, we used the following expansion:

ĤCPBC
α,i;V (2π) = ĤCPBC

α,i;V + ∂θ̃Ĥ
CPBC
α,i;V (θ̃)|θ̃=0

2π
L
, (5.29)

where we introduced the notation θ̃ = θ/L12.

Expectation value of X̂i

Due to CPBC, the expectation value of ⟨X̂i⟩α = ⟨Ψ0
α|X̂i|Ψ0

α⟩ is not well-defined. How-
ever, similar to the one dimensional case [45], we can define the expectation value of a
many-body operator as:

⟨X̂i⟩α = L

2π Im log ⟨Ψ0
α| e

2πi
L
X̂i |Ψ0

α⟩ (mod L), (5.30)

which is well-defined modulo L. Using Eqs. (5.28) and (5.30), we obtain:

⟨X̂i⟩α = L

2π γ̃i(α) . (5.31)

11Note, compared to Ref. [45], we put the factor 1/L in the definition of the gauge transformation V̂i(θ).
12Since we put the factor 1/L in the definition of the gauge transformation, taking the derivative w.r.t

θ means we have to make use of the chain rule.
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Time dependence and adiabatic change of parameters

Similarly to Ref. [45], we now want to relate Eq. (5.31) to a physical observable. There-
fore, we assume an adiabatic change of parameters, i.e., α→ α(τ) where τ denotes time
to not confuse it with the hopping parameter t. Using the corresponding instantaneous
eigenstates |Ψj

α(τ)⟩ (shorthand we write |Ψj
α⟩), we can calculate the time derivative of

Eq. (5.30)

d
dτ ⟨X̂i⟩α = L

2π Im
(
⟨Ψ̇0

α|e
2πi
L
X̂i |Ψ0

α⟩
⟨Ψ0

α|e
2πi
L
X̂i |Ψ0

α⟩
+ ⟨Ψ

0
α|e

2πi
L
X̂i |Ψ̇0

α⟩
⟨Ψ0

α|e
2πi
L
X̂i |Ψ0

α⟩

)
. (5.32)

Inserting the results of Eq. (5.28), and keeping only first-order terms we obtain:

d
dτ ⟨X̂i⟩α =

∑
j>0
⟨Ψ̇0

α|Ψj
α⟩
⟨Ψj

α|(−i)∂θ̃ĤCPBC
α,i;V (θ̃)|θ̃=0|Ψ0

α⟩
E0

α − E
j
α

+ c.c. , (5.33)

where c.c. means complex conjugation. Here, similar to Resta [45], we use that Ĥα

is time reversal symmetric. Since particles are spinless, this is just given by complex
conjugation T̂ = K̂ with T̂ −1âx,yT̂ = âx,y, T̂ −1â†

x,yT̂ = â†
x,y and T̂ −1iT̂ = −i. This

symmetry guarantees that all instantaneous eigenstates can be chosen to be real and that
the overlap ⟨Ψ̇0

α|Ψ0
α⟩ = 013. The imaginary unit “i” appears because the derivative is of

the form ∂θ̃Ĥ
CPBC
α,i (θ̃)|θ̃=0 ∼ i(Â† − Â) with T̂ −1ÂT̂ = Â. Thus, taking its imaginary

part corresponds to multiplying it with an additional factor of (−i) or i, for the complex
conjugate part, respectively.

5.3.3 Adiabatic current and total charge transport
Here, following Ref. [174], we construct an expression for the adiabatic current and
connect it to the time derivative in Eq. (5.33). Similar to our previous discussion,
we use a shorthand notation, i.e., ĤCPBC

α(τ) ≡ ĤCPBC
α . As we are at this point only

interested in the adiabatic change of parameters, we do not consider a θ dependence
here. Moreover, we assume that after one period, τ = T , the Hamiltonian returns to
itself ĤCPBC

α(τ+T ) ≡ Ĥ
CPBC
α(τ) .

Adiabatic approximation

The density matrix associated with the adiabatic evolution is defined as:

ρ̂α ≡ ρ̂α(τ) = |Ψ0
α(τ)⟩ ⟨Ψ0

α(τ)|︸ ︷︷ ︸
=ρ̂I

α(τ)

+∆ρ̂(τ), (5.34)

13The argument goes as follows: The ground state can always be chosen to be an eigenstate of T̂ with
T̂ |Ψ0

α⟩ = |Ψ0
α⟩. From ∂τ ⟨Ψ0

α|Ψ0
α⟩ = 0 if follows that ⟨Ψ̇0

α|Ψ0
α⟩ must be imaginary. However, if |Ψ0

α⟩
is real, then also its time derivative is real. Thus, ⟨Ψ̇0

α|Ψ0
α⟩ = 0.
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where ρ̂Iα(τ) ≡ ρ̂Iα is the density matrix associated with instantaneous eigenstates. The
time evolution of the complete density matrix is governed by,

i∂τ ρ̂α =
[
ĤCPBC

α ,∆ρ̂(τ)
]
. (5.35)

Dropping higher-order terms such as ∂τ∆ρ̂(τ) [181], we obtain for the instantaneous
density matrix:

i∂τ ρ̂
I
α ≈

[
ĤCPBC

α ,∆ρ̂(τ)
]
. (5.36)

Further, we can write,

⟨Ψ0
α|i
(
∂τ ρ̂

I
α

)
|Ψj

α⟩ =i ∂τ ⟨Ψ0
α|ρ̂Iα|Ψj

α⟩︸ ︷︷ ︸
=0

−i ⟨Ψ̇0
α|ρ̂Iα|Ψj

α⟩︸ ︷︷ ︸
=0

−i ⟨Ψ0
α|ρ̂Iα|Ψ̇j

α⟩

=i ⟨Ψ̇0
α|Ψj

α⟩ . (5.37)

Here we used the following identities: First, the instantaneous eigenstates are orthogonal
⟨Ψ0

α|Ψ
j
α⟩ = δ0j . Second, the time derivative of ∂τ ⟨Ψ0

α|Ψ
j
α⟩ = 0 vanishes and, thus,

⟨Ψ̇0
α|Ψ

j
α⟩ = −⟨Ψ0

α|Ψ̇
j
α⟩. Moreover, we find that

⟨Ψ0
α|
[
ĤCPBC

α ,∆ρ̂(τ)
]
|Ψj

α⟩ =
(
E0

α − Ejα
)
⟨Ψ0

α|∆ρ̂(τ)|Ψj
α⟩ . (5.38)

Note that the term proportional to j = 0 vanish. Inserting Eq. (5.36) into Eq. (5.38)
and, using the result of Eq. (5.37), gives:

⟨Ψ0
α|∆ρ̂(τ)|Ψj

α⟩ = i
⟨Ψ̇0

α|Ψ
j
α⟩

E0
α − E

j
α

, j > 0. (5.39)

Charge transport

The total charge transport over one period T averaged over space14 is defined as follows:

C = 1
L

∫ T

0
dτ tr

(
ρ̂αĴ

)
, (5.40)

where Ĵ is the current operator, which at this point is just a general operator and will
be defined later. To evaluate the trace, we choose instantaneous eigenstates as our basis
and replace ρ̂α by Eq. (5.34). Thus, the total charge transport reads:

C = 1
L

∫ T

0
dτ tr

(
ρ̂αĴ

)
= 1
L

∫ T

0
dτ

(1 + ⟨∆ρ̂⟩00
α

)
⟨Ĵ⟩00

α +
∑
j>0
⟨∆ρ̂⟩0jα ⟨Ĵ⟩

j0
α + ⟨∆ρ̂⟩j0α ⟨Ĵ⟩

0j
α

 . (5.41)

14The generator of the gauge transformation is linear in coordinates, which, as we shall see, results in a
charge transport along the diagonals, which thus gives rise to the factor 1/L.
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where ⟨·⟩jj
′

α ≡ ⟨Ψj
α| · |Ψj′

α⟩. Moreover, we used that there is no population of higher-
energy instantaneous eigenstates, i.e., ⟨∆ρ̂⟩jj′ = 0 for j > 0 and j′ > 0 (adiabatic
theorem [181]). Since the current is odd under time reversal symmetry, we have that
⟨Ĵ⟩00 = −⟨Ĵ⟩00. Because the total charge current per length is real, the first term
proportional to ⟨Ĵ⟩00 vanish, and we are left with:

C = 1
L

∫ T

0
dτ tr

(
ρ̂αĴ

)
= 1
L

∑
j>0

∫ T

0
dτ

(
⟨∆ρ̂⟩0jα ⟨Ĵ⟩

j0
α + ⟨∆ρ̂⟩j0α ⟨Ĵ⟩

0j
α

)
(5.39)= 1

L

∑
j>0

∫ T

0
dτ

(
i
⟨Ψ̇0

α|Ψ
j
α⟩

E0
α − E

j
α

⟨Ĵ⟩j0α + c.c.
)
. (5.42)

The expression of the integral looks almost like the expression of Eq. (5.33). Thus, if
we replace the current operator with Ĵ → −∂θ̃ĤCPBC

α,i;V |θ̃=0 and C → Ci, we obtain the
charge transport associated to corner ci,

Ci = 1
L

∑
j>0

∫ T

0
dτ

(
⟨Ψ̇0

α|Ψ
j
α⟩

E0
α − E

j
α

⟨(−i)∂θ̃Ĥ
CPBC
α,i;V |θ̃=0⟩

j0
α

+ c.c.
)

(5.33)= 1
L

∫ T

0
dτ d

dτ ⟨X̂i⟩α

(5.30)= ∆γ̃i
2π , (5.43)

which is given by the change γ̃i over one period, normalized by 2π.

Current operator

Now we need to justify that ∂θ̃ĤCPBC
α,i;V |θ̃=0 indeed corresponds to a current. Evaluating

the derivative15 for i = 1 gives:

∂θ̃Ĥ
CPBC
α,1 |θ̃=0 =i

∑
y∈Λ

∑
x∈T ′

1

t(x)
(
â†
x+1,yâx,y − â

†
x,yâx+1,y

)
−
∑
x∈Λ

∑
y∈T ′

1

t(y)
(
â†
x,y+1âx,y − â

†
x,yâx,y+1

)
− it

[(
â†
c4 âc1 − â†

c1 âc4

)
−
(
â†
c1 âc2 − â†

c2 âc1

)]
=i
(

∆ĥx,T
′
1 −∆ĥy,T

′
1

)
+ i

(
−∆ĥx,c1 + ∆ĥy,c1

)
=i

∆ĥx,T
′
1

∆ĥy,T
′
1

 · ( 1
−1

)
+ i

(
∆ĥx,c1

∆ĥy,c1

)
·
(
−1
1

)

=ĴT
′
1 (↘) + Ĵc1(↖), (5.44)

15Note by applying C4 symmetry we can generate all other derivatives ∂θ̃Ĥ
CP BC
α,i |θ̃=0 and currents,

respectively.
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where Λ is the set of all lattice points, T ′
1 is defined such that the sums in the above

equation do not contain the corner-connecting hopping terms. The operator ∆ĥx(y),T ′
1

defines the difference of particles hopping along the x(y)-direction in T ′
1, and the operator

∆ĥx(y),c1 defines a similar expression for the corner c1 only. Multiplying those terms with
the imaginary unit gives indeed a current. Note that the sign of each term is chosen
such that a positive expectation value of i∆hν,T

′
1(c1) with ν ∈ {x, y} means a current

along x(y). The final result shows that a non-zero expectation value of the derivative
∂θ̃Ĥ

CPBC
α,1 |θ̃=0 is equal to the projection of the current along the diagonal in the triangle

T1. Thus, this expectation value measures the net charge ∆qc1 that passes the corner
over one period of time T . Hence, using Eq. (5.43), we obtain:

∆qci = ∆γ̃i
2π . (5.45)

5.3.4 The relation to the Z2 higher-order Zak (Berry) phase
To arrive at the conclusion, we have to find a relation between the Z2 higher-order Zak
(Berry) phase and the phase γ̃i(α), which is done in this last part.

Perturbation theory

To this end, we first evaluate the ground states of ĤCPBC
α,i;V (θ) using non-degenerate

perturbation theory up to first-order, similar to Eq. (5.28),

|Ψ0
α,i;V (n∆θ)⟩ = eiϕn

|Ψ0
α⟩+ n∆θ

L

∑
j>0
|Ψj

α⟩
⟨Ψj

α| Ĵi |Ψ0
α⟩(

E0
α − E

j
α

)
 , (5.46)

where n∆θ = n2π
N , n ≤ N . Moreover, we defined Ĵi = ∂θ̃Ĥ

CPBC
α,i;V (θ̃)|θ̃=0. As a next step,

we evaluate the overlap of two states differing by ∆θ:

⟨Ψ0
α,i;V (n∆θ)|Ψ0

α,i;V ((n+ 1)∆θ)⟩ =ei∆ϕn+1,n

1 + n(n+ 1)∆θ2

L2

∑
j

∣∣∣⟨Ψj
α| Ĵi |Ψ0

α⟩
∣∣∣2(

E0
α − E

j
α

)2

 ,
(5.47)

where the term inside the brackets is real. Note if we went to higher-order perturbation
theory, then there would also be imaginary terms inside the bracket16. However, the first
imaginary term is proportional to L−3, which results from the cross term of first-order
and second-order perturbation theory.

16Note, from time reversal symmetry it follows that the expectation value ⟨Ψj
α| Ĵi |Ψl

α⟩ for j ̸= l is
purely imaginary. Thus, a product of three such terms is also purely imaginary.
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Relation of phases and charges

As a next step, we use that in the limit N →∞ the Z2 higher-order Zak (Berry) phase,
Eq. (5.8), can be written in a discretized form [149] given by17,

γi;V (α) = − lim
N→∞

Im log [⟨Ψα,i(0)|Ψα,i;V (∆θ)⟩ ⟨Ψα,i;V (∆θ)|Ψα,i;V (2∆θ)⟩

· · · ⟨Ψα,i;V (N∆θ)|V̂i(2π)|Ψα,i(0)⟩
]
. (5.48)

Since the Hamiltonian ĤCPBC
α,i;V (θ) after a 2π flux insertion does not return to itself,

the same is true for its ground state. This explains why we need to include the gauge
transformation V̂i(2π) in the last step of Eq. (5.48). If we finally insert the result of
Eq. (5.47) into the discretized version of the higher-order Zak (Berry) phase, Eq. (5.48),
we obtain:

γi;V (α) L→∞= −Im log ⟨Ψ0
α,i|V̂i(2π)|Ψ0

α,i⟩ = −γ̃i(α) . (5.49)

Given this result, we can finally confirm Eq. (5.19),

∆qci

(5.45)= −∆γi
2π

(5.17)= −Ci . (5.50)

Hence, we showed that the pumped charge during one cycle is quantized and given by
the change of Z2 higher-order Zak (Berry) phase. From the result of the half-cycle,
Eq. (5.20), we also conclude that—in the presence of the Z2 symmetry—a non-trivial,
quantized change of the Z2 higher-order Zak (Berry) phase corresponds to a non-trivial
change of quantized fractional charges at the corners.

5.4 Generalization to the C4 higher-order Zak (Berry) phase
Up to this point, we have considered the simplified Z2 higher-order Zak (Berry) phase,
from which we obtained a rigorous bulk-boundary correspondence, relating the fractional
corner charge and a bulk invariant. Naturally, the question arises to which extent the
previous results hold for the higher-order Zak (Berry) phase introduced in Chap. 3.
Since we have not answered this in full detail yet, we only outline the most relevant and
promising steps.

Flux insertion and Resta’s construction

Flux insertion. The starting point of the previous proof was to distribute the phase twists
over many links, Fig. 5.4, such that we were able to exploit non-degenerate perturbation
theory, starting from a Hamiltonian ĤCPBC

i;V (2π), Eq. (5.27), that locally has a phase
twist ∼ 2π/L. This Ansatz can be straightforwardly generalized to the C4 higher-order
Zak (Berry) phase if the phase twists are at the corner-connecting links. To this end,
we use that the gauge choices, Eq. (5.6), distribute only one out of four phases over an
17Recall that |Ψα,i;V (0)⟩ = |Ψα,i(0)⟩.
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entire region, which implies that the resulting Hamiltonian for θi = 2π looks the same
as for the Z2 higher-order Zak (Berry) phase.

Resta’s construction. From the previous result, it directly follows that we can again
apply perturbation theory up to first-order, to introduce the phase γ̃i and time depen-
dency, from which we then derive the same adiabatic current and total charge transport.

Relation of phases, bulk-boundary correspondence and half-cycles

Relation of phases. The argument we used to arrive at Eq. (5.49) cannot be straight-
forwardly generalized, since the perturbative expansion of Eq. (5.46) is not justified in
this case. The reason is that not all phase twists are small—meaning that twists contain
a factor of 1/L once we applied the gauge choice of Eq. (5.6). Moreover, unlike the Z2
symmetry, which quantizes γ̃i to {0, π}, upon subtracting the average charge, this is no
longer true for the C4 symmetry. This symmetry only guarantees that γ̃1 = ... = γ̃4. The
reason C4 symmetry does not lead to a quantization of this phase is that the generator
of the gauge choice, Eq. (5.6), is linear in coordinates and acts only on a subregion of
the total system.

Bulk-boundary correspondence. However, for proving the bulk-boundary correspon-
dence, it is actually not necessary that the individual phases coincide. It turns out to
be sufficient to argue that the loop integrals defining the Chern numbers, up to a sign,
match18 ∮

dλ ∂λγi(λ) != −
∮

dλ ∂λγ̃i(λ). (5.51)

Since the dependence on the parameter λ is the same in both integrals (which comes
through the ground states of the Thouless pumps) we believe that integrals indeed coin-
cide. To confirm this expectation—at least numerically—we redid the above numerical
experiment for the diagonal Thouless pump, Sec. 5.2.3, where we in addition added a Z2
symmetry breaking term. From Fig. 5.7b, we clearly see that the result of the Thouless
pump is unchanged. This means it does not matter which higher-order Zak (Berry) we
use to evaluate the charge transport. Furthermore, in the same figure, Fig. 5.7a, we see
that loop integrals—as expected—coincide. This clearly underpins the interpretation of
the higher-order Zak (Berry) phase as a sensor of charge flow.

Half-cycle. If we consider a half-cycle of the diagonal pump and use the symmetry
properties defined in Eq. (5.11), and of the C4 higher-order Zak (Berry) phase, we obtain:

Ci = 1
2π

∮
dλ ∂λγi(λ) C4= − 1

2π

∮
dλ ∂λγi+1(λ) = −Ci+1. (5.52)

Second, if we consider the total path to be L = L0 ∪ (−C4L0) (similar to Sec. 5.2.2),
then the Chern number reads:

Ci = 1
2π

∫ π

0
dλ ∂λγi(λ)− 1

2π

∫ π

0
dλ ∂λγi(−λ) C4= 1

2π

∫ π

0
dλ [∂λγi(λ)− ∂λγi+1(λ)]

(5.53)
18The sign difference can be understood as follows: To obtain γ̃i we evaluate the overlap of a state at 0

flux with a state containing a 2π flux, while for the C4 higher-order Zak (Berry) phase it is precisely
the opposite case (due to the global minus sign in the definition of γi, see Eqs. (5.24, 5.31)).
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(a) (b)

Figure 5.7: Chern number tuples for diagonal Thouless pumps. (a) The Chern
numbers obtained from evaluating the loop integral corresponding to γ̃i,
while (b) shows the Chern numbers using the C4 higher-order Zak (Berry)
phases γi. As expected, the loop integrals over both phases are identical,
although individual phases differ. (To evaluate γ̃i, we subtracted the average
charge.)

Finally, knowing that the sum of overall higher-order Zak (Berry) phases vanishes, we
can write:

Ci = 2
2π

∫ π

0
dλ ∂λγi(λ). (5.54)

Hence, as stated, ∆qhalf
ci

= −Ci/2. Similarly, this works for the non-diagonal pump. Con-
sequently, for C4 symmetry—assuming the identity in Eq. (5.51)—we have shown that
a non-trivial, quantized change of the C4 higher-order Zak (Berry) phase corresponds to
a non-trivial, quantized change of the fractional charge at the corner.

Generalizations

The advantage of using the C4 higher-order Zak (Berry) is that none of the previous
results require hardcore bosons. Moreover, this allows us to study Thouless pumps of
HOSPT phases with other filling factors. However, the generalization for other fillings is
not straightforward: First, we need to find suitable terms that keep edges gapped and,
second, we need to find an appropriate path in the enlarged parameter space.
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5.5 Summary & Outlook
In summary, starting from a reconsideration of the C4 higher-order Zak (Berry) phase,
we introduced new boundary conditions that render the C4 higher-order Zak (Berry)
phase, as constructed by Ref. [128], as a genuine topological invariant in the thermody-
namic limit. From this, we constructed a simplified Z2 higher-order Zak (Berry) phase
that distinguishes HOSPTs of the SL-BHM with hardcore bosons at half-filling and sets
the stage to prove a bulk-boundary correspondence. However, before that, we investi-
gated quantized charge transports in terms of two different Thouless pumps, a diagonal
and horizontal pump, respectively. We fully characterized these pumps in terms of four
Chern numbers linked to the windings of the Z2 higher-order Zak (Berry) phases as-
sociated with the four corners. Thereby, we argued that the latter acts as a direction
dependent sensor of charge flow. Moreover, we showed that after a half-cycle, the quan-
tized fractional corner charge is in one-to-one correspondence with a quantized change
of this phase. After a numerical case study of the two different Thouless pumps, we
explained why a quadrupole operator is not sufficient for the description of this phase,
namely, because we saw that after a half-cycle both configurations can appear: a dipole
and a quadrupole configuration, respectively. Further, we proved a bulk-boundary corre-
spondence for HOSPTs by extending Resta’s earlier work [45] to higher-order topological
systems and related changes of the Z2 higher-order Zak (Berry) phase to the emergence
of fractional charges at the corners. Lastly, we discussed a generalization of the bulk-
boundary correspondence for the C4 higher-order Zak (Berry) phase, showed to which
extent the former results generalize and provided numerical evidence that the bulk-
boundary correspondence remains true. However, this has to be worked out with more
details in the future. Moreover, as briefly stated, it is an open question how to construct
Thouless pumps for HOSPTs with fillings n0 ∈ {1/4, 3/4}.
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Chapter 6

Quotient group symmetry-protected
topological phenomena in Zn × Zn chains

In previous chapters, we extensively discussed classifications and properties of higher-
order SPTs along a particular model, the 2D SL-BHM. Here, however, we focus on
one-dimensional interacting bosonic SPT phases that have been fully classified in terms
of the second cohomology group [50, 64, 93–95]. The elements of such groups label
distinct classes of projective representations of a global symmetry, that is—intuitively
speaking—how symmetries act on the edges of such systems1. To this end, we are par-
ticularly interested in quantum phase transitions among distinct classes of SPT phases
and want to give partial answers to the following questions: When are there direct
transitions between SPT phases, and how fine-tuned are they? How to characterize the
corresponding conformal field theory (CFT)? When will the transition itself have certain
remnant topological properties?

Some general results are known: Firstly, previous works argued that certain SPT
transitions naturally come with (emergent) anomalous symmetries forbidding a flow
to an intermediate gapped, symmetric phase2, i.e., implying a direct (continuous or
discontinuous) transition or an intermediate spontaneous-symmetry-breaking phase3 [18,
82, 91, 108]. This was shown to be the case for SPTs, which cannot be written as
the square of another SPT phase [82]. A second insight is that a CFT describing a
continuous SPT transition can be enriched by additional symmetries. I.e., in the presence
of certain symmetries, a given CFT can form distinct symmetry-enriched versions [183],
some of which exhibit protected edge modes at criticality, giving rise to gapless SPT
phases [183, 184]. Most examples studied so far have focused on critical points between
SSB phases and SPT phases. This is in part due to the focus, thus far, on simple
symmetry groups, which do not realize several non-trivial SPT phases, whereas it would
be interesting to understand such cases better.

To gain further insight into the above questions and general results, we study the
universe of 1D SPT phases protected by Zn × Zn symmetry. Certain properties of
these models and, in particular, of their transitions are already known [34, 185]. In-

1For example, if we consider π rotations, then if the edge has half-integer spin representations, genera-
tors anticommute, while for integer representations they commute.

2A well-known anomaly is the Lieb-Schultz-Mattis anomaly [182] of the spin-1/2 Heisenberg chain,
which can also be interpreted as arising at an SPT transition: explicit dimerization flows to two
distinct SPT phases, which are related by single site translations.

3In higher dimensions, certain intrinsic topological order is also an option.
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deed, Ref. [34] considered transitions between neighboring SPT classes—here we note
that the classification H2(Zn × Zn, U(1)) ∼= Zn gives a natural notion of whether two
SPT classes are (non-)neighboring. The authors found that for all n < 5 neighboring
transitions are direct and continuous, and can be characterized by a CFT with central
charge c ∈ {1, 8/5, 2} (corresponds to n ∈ {2, 3, 4}). Otherwise, such transitions cross an
intermediate gapless phase, which is as well characterized by a CFT with central charge
c = 2. However, the nature of CFTs, i.e., its topological properties, and transitions
between non-neighboring classes have not been studied yet. Instead, the authors ex-
pected that transitions between non-neighboring phases generically split into successive
transitions between neighboring ones. However, we will show that this is not the case.

Based on previous results, we gain insight into the Zn × Zn critical points by asking
which degrees of freedom remain gapped at criticality, finding that it is determined by
the nature of nearby SPT phases. These gapped degrees of freedom lead to an effective
low-energy description of the global symmetry group G = Zn×Zn in terms of a quotient
group, that is, at low-energy degrees of freedom the action of G is given by G/H, where
H is normal subgroup of G4. This has the following consequences:
(1) There can be direct, continuous quantum phase transitions between non-neighboring
classes of SPTs. In fact, we find that in the presence of certain gapped degrees of freedom,
it is impossible to perturb the critical point to certain intermediate SPT phases, thereby
stabilizing the direct transition.
(2) The gapped degrees of freedom can be non-trivial, giving rise to symmetry-enriched
quantum criticality [183, 184] with edge modes and degenerate entanglement spectra of
critical states. Those states, living on the quantum critical point (QCP) of two SPTs
or in intermediate gapless phases, form so called gapless SPTs protected by Zn × Zn
symmetry.
(3) Finally, we find emergent anomalies related to the low-energy symmetry being given
by a quotient symmetry group, where we quotient out by the symmetries, which act
purely on gapped degrees of freedom.

Aside. This work has not been published yet and is based on [P4]. Moreover, certain
parts of this chapter I obtained during my masters, in particular, the observation of
direct transitions between non-neighboring classes of SPT phases. Furthermore, the
numerical calculations of the central charges as well as parts of the analytical arguments
have already been given there. However, for the ease of readability, we included the
results in this chapter.

Overview. The remainder of this work is structured in three parts. Sec. 6.1 illustrates
the above features in Z4×Z4 for ease of reading because this simpler case already exhibits
many of these general features. We refer to the introduction of that section for a detailed
outline. The second part of this work, Sec. 6.2, generalizes these findings to all Zn ×Zn
cases. In addition to this, we discuss that if one considers an equal-weighted sum of
all fixed-point models, that a Zn symmetry, that shifts the index of each fixed-point
model by one, enhances to a U(1) symmetry (a detailed outline is again found in the
introduction of this section). Lastly, in Sec. 6.3 we argue on general grounds that our

4A subgroup H is normal if for any h ∈ H and g ∈ G the following holds: ghg−1 ∈ H.
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findings are not particular to this class of models and can be generalized to other classes
and dimensions.

6.1 Illustrative case: Z4 × Z4 SPT transitions
This section studies quantum phase transitions between fixed-point models of Z4 ×
Z4 symmetry, also known as (generalized) cluster chains. As necessary background
information, we review these fixed-point Hamiltonians in Sec. 6.1.1, and in Sec. 6.1.2 we
briefly recap their classifications in terms of projective representations and symmetry
fluxes. In Sec. 6.1.3 we then turn to direct interpolations between these cluster chains,
showing that all quantum phase transitions are direct, and we specify the CFT and its
central charge. This generalizes the findings of Tsui et al. [34], who only considered the
interpolation between neighboring SPT classes. For transitions between non-neighboring
SPTs, there are additional gapped degrees of freedom at the QCP, such that we effectively
obtain a c = 1 transition of Z2 × Z2.

At low energy, the resulting quotient group Z4 × Z4/(Z2 × Z2) shares an anomaly
with the SPT duality transformation, exchanging the two SPTs. In combination with
another symmetry, this stabilizes quantum criticality (see Sec. 6.1.4). To verify this,
we perturb the QCP with a symmetry preserving perturbation and numerically confirm
that the critical line is stable up to a finite value of the perturbation (Sec. 6.1.5). In
the penultimate part, Sec. 6.1.6, we show that for certain fixed-point models the SPTs
do not require the Z4 × Z4 symmetry itself to be robust; instead, we find that the
embedding of the quotient group in the full Hilbert space can protect the SPTs. Finally,
in Sec. 6.1.7 we argue that in the presence of additional gapped degrees of freedom, the
CFTs characterizing the QCPs have the same central charge but realize topologically
distinct RG fixed-points in the presence of symmetries, some of which protect edge
modes.

6.1.1 Z4 × Z4 fixed-point models
We consider SPTs protected by Z4 × Z4 symmetry. This symmetry group protects four
distinct topological phases, labeled by d ∈ {0, 1, 2, 3} where d characterizes the Zn charge
(see Eq (6.6)) classifying the SPT phase. The fixed-point Hamiltonians, realizing these
distinct phases, are defined as follows [34, 185]:

Ĥd = −
∑
j

(
Ẑ†d
j−1,BX̂j,AẐ

d
j,B + h.c.

)
−
∑
j

(
Ẑdj,AX̂j,BẐ

†d
j+1,A + h.c.

)
(6.1)

with sublattices A and B, respectively. Here the operators X̂j,σ and Ẑj,σ are (generalized)
Pauli matrices,

Ẑ4 = 1, X̂4 = 1, X̂Ẑ = −iẐX̂. (6.2)

111



Chapter 6 Quotient group symmetry-protected topological phenomena in Zn × Zn
chains

(a) (b)

Figure 6.1: Local Hilbert space. Graphical representation of basis states of the local
Z4 Hilbert space on the unit circle. The operator X̂, panel (a), change among
different “time” states, while the operator Ẑ, panel (b), measures the “time”
of a given state.

In the eigenbasis of Ẑj,σ, the operators read:

X̂ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 , Ẑ =


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

 , (6.3)

and the action on local basis states—reminiscent of a Z4 clock—is graphically illustrated
in Fig. 6.1. The Z4 × Z4 symmetry is generated by two operators,

Gσ =
∏
j

X̂j,σ, σ ∈ {A,B}, (6.4)

acting on disjoint sublattices A and B, respectively. By construction (for details, see
Ref. [64]) all four phases can be generated from the trivial phase by successively applying
the SPT-Entangler5 denoted by Û ,

Ĥ0
Û−→ Ĥ1

Û−→ Ĥ2
Û−→ Ĥ3

Û−→ Ĥ0. (6.5)

6.1.2 Projective representations and symmetry fluxes of Z4 × Z4 fixed-point
models

Here we recall the classification of SPTs protected by Z4×Z4 symmetry, first using pro-
jective representations and, second, string operators constructed from symmetry fluxes.
Further, we briefly consider how gapped degrees of freedom can be detected using string
operators.

Projective representations

As briefly mentioned in the introduction and also in Sec. 2.2.1, one-dimensional interact-
ing bosonic SPT phases are classified in terms of the second cohomology group [64], which

5See Eqs. (6.31) and (6.32) for a definition.
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for the particular example results in four topological distinct phases H2(Z4×Z4, U(1)) =
Z4. Each element of this group labels a distinct class of projective representations6.
These elements, which we in the following call charges qdσ ∈ Z4, are related to the
anomalous action of symmetry on the boundary if the SPT is considered with edges
[85, 86, 88, 94, 95]. Since the bulk of SPT states is symmetric, we say symmetry frac-
tionalizes [95] (see also App. C.1) and we can write Gσ = GL,σGR,σ, where GL(R),σ is an
operator localized on the left (right) boundary of the system and σ ∈ {A,B}. These
operators form projective representations of the symmetry group and, thus, commute
up to a U(1) phase factor7

G−1
σ+1GR,σGσ+1 = qdσ+1GR,σ, qdσ+1 ∈ Z4. (6.6)

with A+ 1 ≡ B (and vice versa), and charges given by qdA = ωd4 and qdB = ω̄d4 . Details on
projective representations for the fixed-point models have been evaluated by Geraedts et
al. [185].

String order parameters

There is an alternative way of detecting the charges qdσ, using so-called symmetry fluxes [94,
183]. A symmetry flux associated to Z4×Z4 symmetry is a half-infinite string operator,
where the string consists of on-site symmetry operators X̂j,σ,

Ŝdr,A =
∏
j≤r

X̂j,AOdr,B, Ŝdr,B =
∏
j≤r

X̂j,BOdr+1,A, (6.7)

whose end-point is decorated by an operator that has a well-defined charge w.r.t Z4×Z4
symmetry defined by,

G−1
σ+1Ŝ

d
r,σGσ+1 = Qdσ+1Ŝdr,σ, Qdσ+1 ∈ H2(Z4 × Z4, U(1)) = Z4. (6.8)

For a given SPT phase, the string operator,

⟨Ŝ†d
r−r0,σŜ

d
r,σ⟩

r0→∞−−−−→ const. (6.9)

has long-range order if we choose the end-point operator appropriately8. Indeed, for the
correlator not to vanish, the charges qdσ and Qdσ have to fulfill the following compatibility
conditions [94]:

qdAQ
d
A = 1, qdBQ

d
B = 1. (6.10)

For models considered here, the end-point operators read [186]:

Odr,B = Ẑdr,B, Odr+1,A = Ẑ†d
r+1,A, d ∈ {0, 1, 2, 3}. (6.11)

6For Abelian symmetry groups, this simply means that group multiplications are obeyed up to a U(1)
phase factor. For example, the on-site operators X̂d′

j,σ and Ẑd
j,σ form a projective representation of

Z4 × Z4 symmetry, X̂d′
j,σẐ

d
j,σ = (−i)dd′

Ẑd
j,σX̂

d′
j,σ with (d, d′) ∈ Z4 × Z4

7Using symmetry fractionalization, we can safely replace GR,σ+1 → Gσ+1.
8Note the “†” in the definition of Ŝ†d

r−r0,σ means that we replace all operators by its hermitian conjugate,
but the string of the symmetry flux still starts at −∞ and ends at r − r0.
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String operators and gapped degrees of freedom

For gapped degrees of freedom that are charged under a certain symmetry, a string
operator associated to the corresponding symmetry flux has long-range order [183]. This
makes symmetry fluxes an appropriate tool to diagnose gapped degrees of freedom on
QCPs. For some QCPs of transitions of Z4 × Z4 symmetric fixed-point models, we will
show that there are two topologically distinct (i.e., end-point operators have distinct
charges w.r.t to Z4×Z4 symmetry) symmetry fluxes associated to the Z2×Z2 subgroup
such that the resulting string operators have long-range order even though the underlying
state is critical. The corresponding symmetry fluxes are given by,

ŝ2,d
r,σ =

(
Ŝdr,σ

)2
, d ∈ Z4. (6.12)

If a string operator built from such symmetry fluxes has long-range order, we say the
associated symmetry is gapped.

6.1.3 Quantum phase transitions
Quantum phase transitions among different classes of SPTs protected by Z4 × Z4 sym-
metry can be described by the following Hamiltonian:

Ĥdδ(λ) = (1− λ)Ĥd + λĤd+δ, d ∈ {0, 1, 2, 3}, δ ∈ {1, 2}. (6.13)

In Ref. [34] it was shown that any quantum phase transition between adjacent classes
(δ = 1) of SPTs, protected by Z4 × Z4 symmetry, is direct, continuous and its critical
point λc = 1/2 is characterized by a CFT with central charge c = 2. Quantum phase
transitions among non-neighboring classes of SPTs have not been considered so far.
Naively, one might expect that, for example, the transition for (d, δ) = (0, 2) splits into
the following sequence of transitions 0 → 1 → 2, where the numbers label different
classes of SPTs. However, it turns out that this not the case and for Hamiltonian (6.13)
it is actually not possible (see below). Instead, the following scenario applies:

Direct transition. Any quantum phase transition described by Hamilto-
nian (6.13) is direct and continuous. The QCP is characterized by a CFT with
central charge c = 2 if δ = 1 and c = 1 otherwise (see Fig. 6.2).

To show that models with (d, δ = 2) have a direct transition, it is sufficient to consider
the case d = 09 for which the Hamiltonian reads:

Ĥ02(λ) = −
∑
j

[
(1− λ)X̂j + λẐ2

j−1X̂jẐ
2
j+1 + h.c.

]
, (6.14)

where we used that Ĥ02(λ) is translation symmetric and, thus, there is no need for a
sublattice index. The Hamiltonian conserves a local Z2 symmetry generated by X̂2

j ,[
Ĥ02(λ), X̂2

j

]
= 0, ∀ j, λ, (6.15)

9Other cases are related by applications of the SPT-Entangler Û .

114



Chapter 6 Quotient group symmetry-protected topological phenomena in Zn × Zn
chains

where all X̂2
j = 1 in the ground state subspace (gs) (see App. B.3). In this sector, local

operators of Hamiltonian (6.14) reduce to Pauli operators X̂j := X̂j and Ẑ2
j := Ẑj and,

hence, the effective Hamiltonian is given by,

Ĥ02(λ) gs= −2
∑
j

[
(1− λ)X̂j + λẐj−1X̂jẐj+1

]
, (6.16)

describing the interpolation between the Z2×Z2 cluster model [61] and a paramagnetic
phase. Upon tuning λ, there is a single QCP at λ = 1/2 characterized by a CFT with
central charge c = 1 [34]. Since the central charge of a CFT is related to spectral prop-
erties of a Hamiltonian [187], unitary transformations cannot change its value. Thus,
the quantum phase transition of Hamiltonian Ĥ12(λ)—related to Ĥ02(λ) by applying
the SPT-Entangler Û once—has to have the same central charge. (However, this trans-
formation changes the nature of the underlying CFT, see Sec. 6.1.7). Thus, we showed

Figure 6.2: Phase diagram of Z4 × Z4 interpolation. The symmetry group Z4 × Z4
allows for four distinct SPT phases. Transitions at λc = 1/2, described by
Hamiltonian (6.13), are characterized by a central charge c = 2 if δ = 1 and
central charge c = 1 if δ = 2. In fact, for the case δ = 2 we show that the two
different choices (i.e., Ĥ0 + Ĥ2 and Ĥ1 + Ĥ3) are distinct symmetry-enriched
CFTs, where the latter is topologically non-trivial with exponentially local-
ized edge modes (see Sec. 6.1.7).

that the low-energy theory of Ĥ02(λ) is completely specified in terms of the Z2×Z2 fixed
point models. As we shall see, this is not fine-tuned and is robust to finite perturbations.

A comment on notation: Whenever a Hamiltonian is equal-weighted, we write Ĥ02(λ =
1/2) ≡ Ĥ02

6.1.4 Stability of quantum criticality
Previously, we showed that Ĥ02(λ) conserves a local Z2 symmetry. Given that its gener-
ator is equal to identity in the ground state subspace, X̂2

j
gs= 1, ∀j, this implies that the

string operators associated to symmetry fluxes of the Z2×Z2 subgroup have long-range
order—even at criticality (λ = 1/2),

⟨ŝ†2,0
l,σ ŝ2,0

l+r0,σ
⟩ = ⟨X̂2

l,σ...X̂
2
l+r0,σ⟩

r0→∞−−−−→ const. (6.17)

Thus, degrees of freedom charged under this symmetry are massive—meaning excitations
associated to these degrees of freedom require a finite amount of energy. On the other
hand, the action of the Z2 × Z2 subgroup on low-energy degrees of freedom is trivial.
Hence, in the low-energy subspace the global Z4×Z4 symmetry acts as a quotient group,

z2 × z2 = (Z4 × Z4) / (Z2 × Z2) , (6.18)
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for which we used small letters to distinguish it from the gapped Z2 × Z2 subgroup.
(We emphasize that the quotient group z2 × z2 is not a subgroup of Z4 ×Z4.) Note the
long-range order of the string operator, Eq. (6.17), has an important consequence. As
long as it has long-range order, starting from d = 0, it is impossible to enter the SPTs
associated to the fixed-point Hamiltonians Ĥ1 and Ĥ3.

Intrinsic anomalies

To argue the stability of low-energy properties, let us emphasize that Hamiltonian (6.14)
has an additional Z2 symmetry at the QCP generated by Û2, which exchanges Ĥ0 ↔ Ĥ2.
Together with the Z4×Z4 symmetry, this imposes a powerful constraint on the possible
phase diagram:

Absence of gapped, symmetric phases. There is no Z4 × Z4 × Z2 symmetric
perturbation that gaps out the QCP of Ĥ02 towards a gapped, symmetric phase
(where the latter Z2 symmetry is generated by Û2). Moreover, the effective symmetry
group in the low-energy subspace is given by z2 × z2 × Z2.

To see this, first note that any gapped, symmetric phase must be equivalent10 to
one of the four possible SPTs associated to Z4 × Z4 symmetry. Thus, according to
Sec. 6.1.2, there must exist a pair of symmetry fluxes such that their associated string
operators have long-range order. However, no symmetry flux is invariant under the
action of Û2. Consequently, there cannot be a perturbation towards a gapped, symmetric
phase. We say the symmetry Z4 ×Z4 ×Z2 has a gauge anomaly also called an intrinsic
anomaly [91, 188] (see App. B.4).

Emergent anomalies

In the following we will show that perturbations can non-trivially change the representa-
tion of the duality symmetry in a way such that the intrinsic anomaly becomes emergent,
and finally can be lifted for sufficiently strong perturbations. To this end, we perturb
the criticality of Hamiltonian Ĥ02 with Ĥ1 resulting in the following Hamiltonian:

Ĥ021(γ) = 1− γ
2

(
Ĥ0 + Ĥ2

)
+ γĤ1. (6.19)

The perturbation preserves the additional Z2 symmetry, but non-trivially changes its
generator

Û2 → ŜABÛ
2, (6.20)

where ŜAB denotes a sublattice symmetry exchanging A↔ B. This new generator still
exchanges Ĥ0 ↔ Ĥ2—but unlike Û2—it maps Ĥ1 to itself.
Given this new generator, what does change? Previously, we argued none of the symme-
try fluxes is invariant under the duality transformation, but given its new representation,
10See Chap. 2 for a definition of equivalence.
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this is no longer true. Indeed, since Ĥ1 is invariant under this symmetry, also its symme-
try fluxes are unchanged. However, as long as the string operators defined in Eq. (6.17)
have long-range order, no string operator associated to Ĥ1 can have long-range order.
The reason is that charges are not compatible, which can be deduced from symmetry
fluxes. To be compatible, such symmetry flux must square to ŝ2,0

r,σ, which is not the case
for Ŝ1

r,σ.

Emergent anomaly. The QCP of Ĥ02 cannot be symmetrically gapped out by
Ĥ1 as long as the Z2 × Z2 ⊂ Z4 × Z4 subgroup remains gapped, and the string
operators associated to ŝ2,0

r,σ have long-range order.

For the emergent anomaly to persist, it is crucial that the action of the Z2 × Z2
subgroup on low-energy degrees of freedom is trivial. This ensures that the global Z4×Z4
symmetry acts as a quotient group, which together with the duality symmetry has an
anomaly. If the anomaly is lifted, i.e., the long-range order of the string operators,
Eq. (6.17), disappears, then the effective symmetry group at low energies is lifted: z2 ×
z2 → Z4 ×Z4. Mathematically, this is called symmetry extension, which is known to be
a mechanism of lifting anomalies11 [39, 188–192]. If the long-range order of the string
operators, Eq. (6.17), disappears, nothing forbids the existence of a gapped, symmetric
state (see Fig. 6.3).

Field theory. In accordance with the results obtained from the lattice perspective,
there is also a field theoretic argument why quantum criticality is stable to finite per-
turbations of Ĥ1, which is discussed in detail in App. B.5. The low-energy theory of
Hamiltonian (6.16) is described by a Luttinger liquid (LL) and for the particular symme-
tries, we argue that the LL cannot be gapped out as long as symmetries are preserved,
and the Z2 × Z2 subgroup remains gapped.

6.1.5 Numerical evaluation of the phase diagram and emergent anomaly
Next we show that, upon increasing the coupling of Ĥ1, the emergent anomaly is robust
to a finite value of γ, where the system enters an SSB phase, and then finally arrive
in the gapped, symmetric phase of Ĥ1. To study the stability of the direct transition
of Ĥ02 and also its emergent anomaly, we numerically evaluated the phase diagram
of the following Hamiltonian using the infinite density matrix renormalization group
(iDMRG) [40, 41, 122] Ansatz:

Ĥ021(α, β, γ) = αĤ0 + βĤ2 + γĤ1, (6.21)

where α + β + γ = 1. Note, along the line α = β the Hamiltonian reduce to Ĥ021(γ)
defined in Eq. (6.19). The phase diagram is shown in Fig. 6.3 (for numerical details,
see App. B.1). As theoretically predicted, the critical point of Ĥ02 stays stable, upon
11On the Hilbert space the global symmetry is always Z4 ×Z4, but its action in the low-energy subspace

can be different. In this sense, we say that the low-energy action is lifted upon considering the
high-energy degrees of freedom.
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Figure 6.3: Phase diagram and emergent anomaly of Ĥ021 (α, β, γ). (a) There are
three topologically distinct phases labeled by Ĥ0, Ĥ1 and Ĥ2, respectively.
The phase in the middle is SSB, where one of the Z4 symmetries and sublat-
tice symmetry are broken spontaneously. (b) The central charge, obtained
with iDMRG from S = c

6 log ξ + const. [193, 194], of the CFT along the di-
rect transition between Ĥ0 and Ĥ2 is unchanged even in the presence of Ĥ1
(data are evaluated at the red encircled point in (a)). Panel (c) shows the
string operators Oνσ, Eq. (6.22), along the line α = β, γ ∈ [0, 1] (indicated by
the white arrow in (a)) characterizing the emergent anomaly. Note, for the
evaluation of the string operator in the SSB phase we explicitly conserved
the Z4 symmetry on the A sublattice.

increasing Ĥ1 to a finite value of γ. Up to this point, the renormalization group fixed-
point, given by the CFT with central charge c = 1, is unchanged, see Fig. 6.3b. The SSB
phase in the middle spontaneously breaks the sublattice symmetry ŜAB, introduced in
Eq. (6.20), and one of the global Z4 symmetries. To measure the emergent anomaly, we
evaluated the following four string operators (see also Eq. (6.12)):

Oνσ = lim
r0→∞

∣∣∣⟨ŝ†2,ν
l,σ ŝ2,ν

l+r0,σ
⟩
∣∣∣ , σ ∈ {A,B}, ν ∈ {0, 1}. (6.22)

What behavior do we expect? If there is an emergent anomaly we expect O0
A = O0

B ̸= 0
and O1

A = O1
B = 0, while in the symmetric, gapped phase of Ĥ1 the behavior is exactly

opposite. Note, long-range order of the non-charged string operators O0
σ is forbidden
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in any gapped SPT that is neither Ĥ0 nor Ĥ2. Given the nature of the SSB phase, we
expect all string operators on the symmetry preserving sublattice to be non-zero. The
results of the string operators are shown in Fig. 6.3c, which very well agree with the
theoretical predictions. As we tune towards the SSB phase, the emergent anomaly is lost
since the Z2 × Z2 subgroup becomes gapless. Indeed, this subgroup is (partly) broken
in the SSB phase, which means it cannot remain gapped along the transition.

Note upon relabelling Ĥi → Ĥi+1 and O0
r,σ ↔ O1

r,σ in Fig. 6.3a and Fig. 6.3c, respec-
tively, the phase diagram shows the stability of the QCP of Ĥ12.

6.1.6 The embedding of the quotient group
The Hamiltonian Ĥ02(λ) has a salient feature, namely, the SPTs are stable even if the
global Z4 × Z4 symmetry is broken. Given that the individual Hamiltonians are fixed-
point models of this symmetry, this is somewhat surprising. It turns out that if the
quotient group is embedded into the full Hilbert space, it becomes an exact symmetry of
the Hamiltonian. Formally, this additional Z2 × Z2 symmetry (which is not a subgroup
of the above Z4 × Z4 symmetry) is generated by two operators

Q̂σ =
∏
j,σ

(
1⊗ X̂

)
j,σ
, σ ∈ {A,B}, (6.23)

which transform local operators as follows (see App. B.2):

Q̂σ : X̂j,σ ↔ X̂†
j,σ, Q̂σ : Ẑ2

j,σ ↔ −Ẑ2
j,σ. (6.24)

This clearly shows that both Ĥ0 and Ĥ2 are invariant under this transformation. Ac-
cording to Sec. 6.1.2 we can define symmetry fluxes whose end-point operators have a
discrete charge w.r.t this symmetry. Given that this a Z2 ×Z2 symmetry, there are two
different charges. Since in the low-energy subspace this symmetry is indistinguishable
from the quotient symmetry, we know that—depending on λ—a pair of its associated
string operators has long-range order. Thus, as long as this symmetry is preserved, the
SPTs are well-defined. A possible perturbation that keeps the embedding of the quotient
group but breaks the global Z4 × Z4 symmetry is given by12,

V̂ =
∑
j,σ

(
Ẑ ⊗ 1

)
j,σ

(6.25)

for which the ground states of the individual Hamiltonians can be calculated exactly.

6.1.7 Symmetry-enriched quantum criticality
In Sec. 6.1.3 we argued that the CFTs of Ĥ02 and Ĥ12 (Hdδ with (d, δ) = (1, 2); interpo-
lation between Ĥ1 and Ĥ3) have the same central charge. However, as we demonstrate
now, their CFTs are topologically distinct—following Ref. [183] we say that the under-
lying CFT is symmetry-enriched by Z4×Z4 symmetry. On each of the QCPs, there are
12This operator does not commute with the generator of the Z4 × Z4 symmetry, see App. B.2.
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additional gapped degrees of freedom, which is reflected in long-range order of string
operators associated to the Z2 × Z2 subgroup. However, the end-point operators of the
symmetry fluxes are oppositely charged w.r.t Z4×Z4 symmetry. While symmetry fluxes
ŝ2,0
r,σ are trivially charged, the symmetry fluxes ŝ2,1

r,σ
13, according to which string operators

have long-range order at the QCP of Ĥ12, have a non-trivial charge (Q1
r,σ+1)2 = −1 (see

Eq. (6.12)).

Topologically distinct CFTs. In the presence of Z4×Z4 symmetry, the CFTs of
Ĥ02 ∝ Ĥ0 + Ĥ2 and Ĥ12 ∝ Ĥ1 + Ĥ3 carry topologically distinct charges (Q0

r,σ+1)2 =
1 and (Q1

r,σ+1)2 = −1, respectively, measured by the long-range order of string
operators of the gapped Z2 × Z2 subgroup.

These charges assign the CFTs discrete quantum numbers, which are protected by a
finite energy gap associated to the gapped degrees of freedom (see Secs. (6.1.4, 6.1.5)).
What does this imply? Since symmetry-enriched CFTs carry distinct quantum numbers
w.r.t Z4 × Z4 symmetry, they represent two distinct renormalization group fixed-points
that cannot be smoothly connected, i.e., there exists no path connecting the QCPs of
Ĥ02 and Ĥ12 along with the central charge is unchanged [183].

Edge modes and a degenerate entanglement spectrum

The non-trivial charges of end-point operators of ŝ2,1
r,σ further imply that the ground state

of Ĥ1 +Ĥ3 has (at least) a two-fold degenerate entanglement spectrum and, moreover, if
we consider a half-infinite chain, then there are exponentially localized edge modes [93–
95, 183]. For Hamiltonian Ĥ12, this can be shown explicitly: If the system is considered
as a half-infinite chain, then Ĥ12 commutes with two locally confined operators ϵ̂1 = Ẑ1,A
and ϵ̂2 = X̂2

1,AẐ
2
1,B, which themselves anticommute {ϵ̂1, ϵ̂2} = 0. This algebra implies

a two-fold degeneracy of the ground state manifold14. Moreover, as neither of the two
operators commutes with the global Z4 × Z4 symmetry, there is SSB at the edge of
the system. The degeneracy of the entanglement spectrum becomes more apparent if a
possible ground state is written as Schmidt decomposition,

|Ψ12⟩ =
∑
α

Λα |αE⟩ |αB⟩ , (6.26)

where the system is bipartite into an edge region E and a bulk region B15. If |Ψ12⟩ is
a common eigenstate of Ĥ12 and ϵ̂1, then the other ground state is obtained from the
action of ϵ̂2 on this state. Given the spatial confinement of this operator, the Schmidt
states in the bulk {|αB⟩} are unchanged upon acting with ϵ̂2. However, as the two
13The Hamiltonians Ĥ02 and Ĥ12 are related by the SPT-Entangler Û : Ĥ02 → Ĥ12, which maps

Û : ŝ2,0
r,σ → ŝ2,1

r,σ.
14Actually, the overall spectrum is at least twofold degenerate, which is, however, not relevant here.
15The size of the edge region can be determined in terms of the localization length of the edge modes.

We then require the edge region to be much larger than the localization length.
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ground states are orthogonal, the Schmidt states associated to the edge region E must
be non-trivially transformed. Consequently, to each bulk state there are two edges states
having the same Schmidt value⇒ each Schmidt value is at least two-fold degenerate (cf.
Sec 2.2.1). Instead of using the operators ϵ̂1 and ϵ̂2, we could have used the projective
representations of the gapped Z2×Z2 subgroup16. Thus, as long as the latter is gapped,
there are exponentially localized edge modes and an entanglement spectrum that is at
least two-fold degenerate.

Gapless SPTs. States characterized by CFTs with symmetry-enriched quantum crit-
icality form gapless SPTs, which similar to their gapped counterparts have edge modes
and degeneracies in the entanglement spectrum protected by symmetry. Commonly,
gapless SPTs occur on QCPs between SSB and SPT transitions [183, 184], here; how-
ever, they appear on QCPs between two SPTs. Their protection requires the global
Z4 × Z4 symmetry and the additional Z2 symmetry.

6.1.8 Summary
In the first part, we considered quantum phase transitions among fixed-point SPT models
with Z4 × Z4 symmetry. Generalizing a previous work of Tsui et al. [34], we showed
that all quantum phase transitions described by Hamiltonian (6.13) have a single QCP
classified by a CFT with central c = 2 for transitions among neighboring classes and
c = 1 otherwise. In the latter case, we showed that the Hamiltonian conserves a local
Z2 symmetry, from which we concluded that the effective low-energy theory is described
by the transition between the fixed-point models of Z2 × Z2 symmetry. Indeed, if the
Z2×Z2 subgroup is gapped, i.e., the string operators associated to the symmetry fluxes,
Eq. (6.17), have long-range order, then starting from d = 0 it is impossible to enter
the SPT phases associated to Ĥ1 and Ĥ3. Afterwards, we argued that there is an
additional Z2 symmetry at the QCP which together with the global Z4 × Z4 symmetry
gives rise to an intrinsic or emergent anomaly—depending on the representation of its
generator. Nevertheless, we found that the QCP point is stable against perturbations
towards a gapped, symmetric phase, and in the case of an intrinsic anomaly, it is even
impossible. To numerically validate our findings, we perturbed the QCP of Ĥ02 with
Ĥ1 and evaluated a full phase diagram, Fig. 6.3, where we also explicitly calculated
the emergent anomaly using string operators. Although the individual parts of Ĥ02(λ)
are fixed-point Hamiltonians of Z4 × Z4 symmetry, we showed that the SPTs do not
require the Z4 × Z4 symmetry to be protected. Indeed, we argued that the embedding
of the quotient group becomes an exact symmetry protecting these phases. Lastly, we
discussed that although the CFTs of Ĥ02 and Ĥ12 have the same central charge, the
topological nature—in the presence of Z4 × Z4 symmetry—is distinct. In the latter
case, we argued that the gapped degrees of freedom form a non-trivial topological state
resulting in exponentially localized edge modes and an entanglement spectrum that is
at least two-fold degenerate.

16These are exponentially localized near the edge of the system.
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6.2 The general case: Zn × Zn SPT transitions
Having discussed an illustrative case, we now turn over to redo the previous analysis
and consider fixed-point models of Zn × Zn symmetry (see Sec. 6.2.1). To this end, in
Sec. 6.2.2 we will show that there are many more direct transitions among fixed-point
models, as initially expected. Moreover, for the particular choice of paths, we show that
there are only three different central charges c ∈ {1, 8/5, 2} characterizing the CFTs. To
verify our analytical predictions, Sec. 6.2.2, we numerically evaluated the central charges
of several transitions. Afterwards, unlike in the previous section, we demonstrate that
for certain classes of SPTs subgroups of Zn × Zn symmetry can stabilize the phase. In
this context, Sec. 6.2.3, we show that the embedding of the quotient group is an exact
symmetry only for two particular classes of Hamiltonians. Subsequently, in Sec. 6.2.4
we will prove that for odd n there are no intrinsic anomalies, and discuss when to
expect emergent anomalies. At the end of this section, Sec. 6.2.6, we consider the equal-
weighted sum of all fixed-point Hamiltonians and discover an additional Zn symmetry
that together with Zn×Zn symmetry leads to an intrinsic anomaly, and can be enhanced
to a global U(1) symmetry.

6.2.1 Zn × Zn fixed-point models
The fixed-point models associated to SPT phases protected by Zn × Zn symmetry are
given by the following Hamiltonian [34, 185]:

Ĥ
(n)
d = −

∑
j

(
Ẑ†d
j−1,BX̂j,AẐ

d
j,B + h.c.

)
−
∑
j

(
Ẑdj,AX̂j,BẐ

†d
j+1,A + h.c.

)
, (6.27)

with d ∈ Zn. In the eigenbasis of Ẑj,σ, the operators X̂j,σ and Ẑj,σ can be written as:

Ẑ =
n−1∑
l=0

ωln |l⟩ ⟨l| , X̂ =
n−1∑
l=0
|l + 1⟩ ⟨l| , ωn = e2πi/n, ω̄n = e−2πi/n. (6.28)

Moreover, the defining properties of the operators read:

Ẑn = 1, X̂n = 1, X̂Ẑ = ω̄nẐX̂. (6.29)

SPT-Entangler

By construction17, every non-trivial fixed-point model can be constructed from Ĥ
(n)
0 via

the following sequence,

Ĥ
(n)
0

Û(n)
−−−→ Ĥ

(n)
1

Û(n)
−−−→ ...

Û(n)
−−−→ Ĥ

(n)
n−1

Û(n)
−−−→ Ĥ

(n)
0 , (6.30)

where the SPT-Entangler is a quantum circuit consisting of two layers of two-qudit gates
(see Fig. 6.4):

Û (n) = Û
(n)
ABÛ

(n)
BA, (6.31)

17This is an inherent property of fixed-point models constructed using the methods given by Ref [64].
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with operators Û (n)
AB and Û

(n)
BA

Û
(n)
AB =

∏
j

CZ̄
(n)
j,AB, Û

(n)
BA =

∏
j

CZ
(n)
(j,B),(j+1,A). (6.32)

The notation CZ(n) refers to the Controlled-Z gate, known from quantum information
theory. These two-site gates have a rather simple definition18,

CZ =


Ẑ0 0 0 0
0 Ẑ 0 0
0 0 . . . ...
0 0 · · · Ẑn−1

 , CZ̄ = (CZ)∗ , (6.33)

where we suppressed the index. For n = 2, this reduces to the two-qubit Controlled-Z
gate CZ = diag (1, 1, 1,−1). The SPT-Entangler transforms local operators as follows:

Û (n) : X̂j,A → Ẑ†
j−1,BX̂j,AẐj,B, Û (n) : X̂j,B → Ẑj,AX̂j,BẐ

†
j+1,A, (6.34)

while it commutes with Ẑj,σ and Û (n) acts on the right. The Zn × Zn symmetry is

Figure 6.4: Quantum circuit representation. To obtain the SPT wave function
|Ψ(n)

1 ⟩, we have to act with inverse circuit
(
Û (n)

)†
on the ground state of

Ĥ
(n)
0 .

generated by the operators (GA,GB) already defined in Eq. (6.4). For more details about
these fixed-point models and their properties, we refer to Ref. [185].

Detection and classification of Zn × Zn fixed-point models

All information on symmetry fluxes of Sec. 6.1.2 can straightforwardly be generalized
to all n. Hence, to each fixed point model, d ∈ {0, ..., (n − 1)}, we can define a pair of
symmetry fluxes,

Ŝdr,A =
∏
j≤r

X̂j,AOdr,B, Ŝdr,B =
∏
j≤r

X̂j,BOdr+1,A (6.35)

with end-point operators

Odr,B = Ẑdr,B, Odr+1,A = Ẑ†d
r+1,A, (6.36)

18For an alternative definition, see Sec. 6.2.6.
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that have a well-defined charge w.r.t Zn × Zn symmetry defined by:

G−1
σ+1Ŝ

d
r,σGσ+1 = Qdσ+1Ŝdr,σ, Qdσ+1 ∈ Zn, (6.37)

and Qdσ+1 ∈ H2(Zn × Zn, U(1)). For a relation of charges qdσ and Qdσ, see Eq. (6.10). If
the end-point operator is chosen appropriately, then for a particular SPT the associated
string operators have long-range order19

⟨Ŝ†d
r−r0,σŜ

d
r,σ⟩

r0→∞−−−−→ const.. (6.38)

In summary, for a given n, there are n distinct possible SPTs classified by charges of
H2(Zn × Zn, U(1)) = Zn.

Gapped degrees of freedom

Symmetry fluxes associated to gapped degrees of freedom are again denoted by,

ŝnδ,d
r,σ =

(
Ŝdr,σ

)nδ
, d ∈ Zn (6.39)

with nδ ≡ n/δ integer-valued and δ characterizes the corresponding subgroup Zδ × Zδ
of Zn × Zn symmetry.

6.2.2 Direct quantum phase transitions
Having introduced the models and notations, we now turn over to study (direct) quantum
phase transitions between distinct classes of SPT phases protected by Zn×Zn symmetry.
In particular, we are interested in a single parameter interpolation between two fixed-
point Hamiltonians Ĥ(n)

d and Ĥ
(n)
d+δ with d ∈ Zn and δ ∈ {1, ..., ⌊n/2⌋}20. For such

interpolations, we find the following result:

Direct transitions. If two Zn × Zn fixed-point models Ĥ(n)
d and Ĥ

(n)
d+δ satisfy

nδ := n
δ ∈ {2, 3, 4} , then there exists a path Γ(n)

dδ (λ, µ), connecting the two fixed-
point models, which has a single continuous quantum phase transition and whose
QCP is characterized by a CFT with central charge c = {1, 8/5, 2}, respectively.

A path that realizes such transition is given by (here we set d = 0),

Γ(n)
0δ (λ, µ) = (1− λ)Ĥ(n)

0 + λĤ
(n)
δ − µ

∑
j,σ

(
X̂nδ
j,σ + h.c.

)
, (6.40)

19Note the “†” in the definition of Ŝ†d
r−r0,σ means that we replace all operators by its hermitian conjugate,

but the string of the symmetry flux still starts at −∞ and ends at r − r0.
20The floor function ⌊x⌋ gives the closest integer, which is smaller or equal to x. For example, take

x = 3/2, then ⌊3/2⌋ = 1 .
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with nδ = n/δ integer-valued and positive µ. Given this, the claim is as follows: If we
choose µ sufficiently large (which does not affect the ground state of the gapped SPT
phases), then the path has a direct, continuous quantum phase transition if nδ ∈ {2, 3, 4}.
This is equivalent to say that the change of the charges characterizing the projective
representations of the SPTs, Eq. (6.6), is given as follows:

∆q := qdBq
−(d+δ)
B = q̄δB ∈ {−1, ω3, i}, (6.41)

where qdB is the charge associated to the fixed-point model Ĥ(n)
d and qB = ω̄n

21. Before
we discuss the construction of this path, let us emphasize two important aspects:

• First, knowing a path for d = 0 is sufficient, since all other cases can be obtained
via application of the SPT-Entangler Û (n), which for certain cases non-trivially
transform the term ∼ µ, see Eq. (6.34).

• Second, if nδ ∈ {2, 3, 4}, then the path Γ(n)
dδ (λ, µ) realizes a direct transition of

symmetry groups Zn′ × Zn′ with 2 ≤ n′ ≤ 4 (as we will now explain).

Construction of the path

The construction of the path hinges on the fact that Hamiltonians given in the definition
of Eq. (6.40) conserve a local Zδ symmetry, which is generated by X̂nδ

j,σ. To see this, it
is sufficient to consider the following commutator (which follows from the definition of
the fixed-point models in Eq. (7.1)):

nδ ∈ N⇒ X̂nδ
j,σẐ

δ
j,σ = Ẑδj,σX̂

nδ
j,σ. (6.42)

For the fixed-point models, we can evaluate the ground states exactly and find that it
has all X̂nδ

j,σ = 1. In this sector, the Hamiltonian Ĥ
(n)
δ reduces to:

Ĥ
(n)
δ

gs= Ĥ
(nδ)
1 , δ ∈

{
1, ...,

⌊
n

2

⌋}
, (6.43)

(see App. B.2 and Fig. 6.5). Models with δ > ⌊n2 ⌋ can be obtained via complex conju-
gation. Although at the beginning and end of the path, the ground state is found in the
sector with all X̂nδ

j,σ = 1, we cannot prove this in general for every λ, and thus need to add
the additional term ∼ µ. Moreover, if nδ ≤ 4, then the path given in Eq. (6.40) realizes
a direct, continuous phase transition of symmetry groups Zn′ × Zn′ with 2 ≤ n′ ≤ 4.

As stated previously, all other paths can be obtained by applying the SPT-Entangler,

Γ(n)
dδ (λ, µ) =

(
Û (n)

)†d
Γ(n)

0δ (λ, µ)
(
Û (n)

)d
, (6.44)

which generically non-trivially affect the representation of the local Zδ symmetry. Note,
the reduction scheme is not limited to particular models and also works for nδ > 4;
however, according to Ref. [34], we do not expect a direct quantum phase transition for
such paths.
21Knowing the charge on the B sublattice is sufficient, since the charge on the A sublattice can be

obtained via complex conjugation, see Sec. 6.1.2.
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Figure 6.5: Reduction scheme. Here we plot charges qdσ (as defined in Eq. (6.6))
characterizing projective representations, which classify fixed-point models
of different symmetry groups. Thereby, all charges are on the unit circle,
plotted in the complex plane. From this figure, we can read off whenever the
ground state of a fixed-point model of a higher-dimensional symmetry group
reduce to the ground state of a lower-dimensional fixed-point model. For
example, the ground states of cetain fixed-point models for Z8 × Z8 reduce
to ground states of fixed-point models for Z4×Z4, which even further reduce
to ground states for the fixed model of Z2 × Z2 if the corresponding charges
coincide. This is the case if symbols associated to different symmetry groups
match.

A related path and numerics

Although at first sight this path looks rather fine-tuned, it turns out that the very natural
choice of a single parameter interpolation (i.e., setting µ = 0),

Γ(n)
0δ (λ, 0) = Ĥ

(n)
0δ (λ) = (1− λ)Ĥ(n)

0 + λĤ
(n)
δ (6.45)

follows the path of Ĥ(nδ)
01 (λ), which we can prove—assuming certain symmetries—for

many cases (see App. B.3). To confirm our analytical results, we numerically evaluated
the central charges for path (6.45). The analytically expected values are listed in Tab. 6.1
and the numerically obtained values are shown in Fig. 6.6. Indeed, the central charges
obtained by iDMRG calculations agree very well with the predicted values.

6.2.3 Protecting symmetry groups
In Sec. 6.1 we showed that the embedding of the quotient group can stabilize SPTs,
while the subgroup cannot. If n > 4, there are cases where subgroups can stabilize the
SPTs.

Embedding of the quotient group

There are only two fixed-point Hamiltonians for which the embedding of the quotient
group can protect the SPT:
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Ĥ
(n)
0δ ∆q Central charge c

Ĥ
(4)
02 −1 1

Ĥ
(6)
02 ω3 8/5

Ĥ
(6)
03 −1 1

Ĥ
(8)
02 i 2

Ĥ
(8)
04 −1 1

Table 6.1: Central charges. Central charges for direct quantum phase transitions of
Hamiltonian (6.45).
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Figure 6.6: Central charges. Central charges c0δ characterizing the CFT
of the critical point of quantum phase transitions (n, 0δ) ∈
{(4, 02), (6, 02), (6, 03), (8, 02), (8, 04)}. The central charge is ob-
tained from the scaling of the half-infinite chain entanglement entropy
S(χ) = c/6 log ξ(χ) + const., where χ is the bond dimension of the corre-
sponding MPS [193, 194].
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Quotient group protection. The embedding of the quotient group is an exact
symmetry of Ĥ(n)

0 and Ĥ
(n)
n/2, i.e., n = 2δ.

For these cases, there exists a unitary operator Ŵ such that the embedding of the
quotient group

Q̂σ =
∏
j,σ

(
Ŵ ⊗ X̂

)
j,σ
, σ ∈ {A,B}, (6.46)

transforms local operators as follows:

Q̂σ : X̂j,σ ↔ X̂†
j,σ, Q̂σ : Ẑ

n
2
j,σ ↔ −Ẑ

n
2
j,σ, (6.47)

where X̂ denotes the Pauli matrix along x (see App. B.2). Since this symmetry be-
comes indistinguishable from the quotient symmetry at low-energies, this implies that
the embedding of the quotient group keeps SPTs non-trivial, even if the global Zn × Zn
symmetry is explicitly broken.

Subgroups

For a fixed-point model Ĥ(n)
d , with d ∈ Zn, the charge associated to a subgroup Znm ×

Znm
22 of Zn × Zn symmetry, according to Eq. (6.6), is given by,

G−m
σ+1G

m
R,σGmσ+1 = qm

2d
σ+1GmR,σ. (6.48)

Subgroup protection. A subgroup Znm × Znm can protect the SPT of a fixed-
point model Ĥ(n)

d if the following equation, for a given triple (n, d,m), can be solved
by an integer p0,

dm2 = p0n+ d, p0 ∈ N. (6.49)

If this is the case, then the classifying charge reduce to qm
2d

σ+1 = qdσ+1. A necessary
condition for a subgroup being able to protect an SPT is that its dimension is equal or
larger than the number of edge modes nm ≥ NE(d)23. For a given fixed-point model
Ĥ

(n)
d , the number of protected edge modes NE is defined as the smallest integer such

that the classifying charge, Eq. (6.6), fulfills:(
qdσ

)NE = 1. (6.50)

22Here we again defined n/m ≡ nm.
23The number of edge modes is determined by the dimension of the irreducible projective representation

of Znm × Znm . For this symmetry, the maximal dimension is given by nm. If two matrices U, V
commute up to a phase factor ωm

n , UV U−1V −1 = ωm
n , then their dimension must be at least nm.

This follows from the determinant of UV U−1V −1, det
(
UV U−1V −1) = 1.
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For example, if we consider the triple (6, d,m), then there are two subgroups with
nm ∈ {2, 3}. For the Z2 × Z2 subgroup, the only relevant fixed-point model is d = 3
because here NE = nm. Inserting the numbers in Eq. (6.49), we see that this can be
solved by an integer p0 = 4 and, consequently, this subgroup protects the phase. For
the other subgroup, there are two possible cases d ∈ {2, 4} for which NE = nm. Here,
Eq. (6.49) can again be solved by integers p0 ∈ {1, 2}, which implies that subgroups can
stabilize the phases as well. For the triple (8, 2, 2), however, there is no integer solution
to this equation. An explicit calculation shows that the resulting charge is trivial and,
hence, the subgroup cannot protect any SPT. We conclude, if Eq. (6.49) cannot be
fulfilled by any integer, then the ground state is either trivial or realize another class of
an SPT.

6.2.4 Anomalies of Zn × Zn chains
To study anomalies of Hamiltonians Γ(n)

dδ (λ, 0), denoted by,

Ĥ
(n)
dδ = (1− λ)Ĥ(n)

d + λĤ
(n)
d+δ, (6.51)

we first introduce two duality transformations, which become an additional symmetry at
λ = 1/2. Since it is already known that there exists an antiunitary transformation [82],
generating an additional ZT2 symmetry at the equal-weighted point24, we will consider
the yet unknown unitary representation of the duality transformation, which, however,
leads to the same conclusions.

Intrinsic anomalies

The unitary representation of the duality symmetry is given by,

D̂
(n)
dδ;σ = Ŵσ

(
Û (n)

)2d+δ
, Ŵσ =

∏
j

Ŵj,σ, (6.52)

where Ŵσ
25 is defined through the action on local operators:

Ŵσ : X̂j,σ ↔ X̂†
j,σ, Ŵσ : Ẑj,σ ↔ Ẑ†

j,σ. (6.53)

Under this transformation, Hamiltonian (6.51) changes as follows:(
D̂

(n)
dδ;σ

)†
Ĥ

(n)
dδ (λ)D̂(n)

dδ;σ = Ĥ
(n)
dδ (1− λ). (6.54)

At λ = 1/2 this duality mapping together with the global Zn×Zn symmetry forms a Zn×
Zn⋊ (Z2 × Z2) symmetry. The semi-direct product results, since Ŵσ does not commute
24The antiunitary representation of the duality transformation is given by,

D̂
(n)
dδ;T = K

(
Û (n))2d+δ

,

where K is the operator of complex conjugation and T denotes the antiunitary representation.
25Locally, in the eigenbasis of Ẑ the operator reads: Ŵ =

∑n−1
l=0 |n− l⟩ ⟨l|.
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with the generators of Zn × Zn symmetry. Because paths with different parameters d
are unitarily related, it is sufficient to consider only cases with d = 0.

Intrinsic anomaly. For any (n, δ) with n even and δ odd, there exists no gapped
ground state that is symmetric under Zn × Zn ⋊ (Z2 × Z2) symmetry.

If a gapped, symmetric state exists, there must be a pair of symmetry fluxes associated
to Zn × Zn symmetry, Eq. (6.35), such that corresponding string operators, Eq. (6.38),
have long-range order. These symmetry fluxes must be invariant under the duality
transformation, which gives the following constraint:

d′ = δ

2 ∨ d
′ = n+ δ

2 , (6.55)

where d′ labels a possible gapped, symmetric SPT. Possible scenarios are:

• For odd n, this equation has always a solution26,
⇒ no intrinsic anomaly if n is odd.

• For even n, this equation has only a solution if δ is even,
⇒ no intrinsic anomaly if both (n, δ) even.

The condition in Eq. (6.55) is equivalent to the non-double stacking condition of Ref. [82],
which says that the charge difference, Eq. (6.41), cannot be written as a square of another
Zn charge. In App. B.4 we explicitly show that this symmetry has a gauge anomaly for
cases mentioned in the golden box above.

Emergent anomalies

Given the interpolation described by the path Γ(n)
0δ (λ, µ)27, when do we expect to have

an emergent anomaly at λ = 1/2?

Emergent anomaly. For any (n, δ) with nδ integer-valued and even, there is no
gapped state that is symmetric under Zn × Zn ⋊ (Z2 × Z2) as long as the Zδ × Zδ
subgroup is gapped.

Recall that for the reduction to work we need that nδ is integer-valued, see Eq. (6.43).
If nδ is even, then at low-energies the effective Hamiltonian is given by Ĥ

(nδ)
01 , which

according to the previous golden box has an intrinsic anomaly28. Upon adding symmetric
perturbations, the anomaly persists as long as the Zδ×Zδ subgroup is gapped⇒ emergent
anomaly.
26If n is odd it can be written as n = 2l+ 1, this, however, implies that δ is odd as well. Since the sum

of two odd numbers is even, d′ = (n+ δ)/2 is always integer.
27Here we assume µ to be sufficiently large such that we are in the correct sector.
28We used again the shorthand notation Ĥ

(nδ)
01 ≡ Ĥ

(nδ)
01 (λ = 1/2). Moreover, the previous discussed

model Ĥ(4)
02 is an example of such case.
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6.2.5 Symmetry-enriched quantum criticality

If the SPT-Entangler Û (n) acts with arbitrary powers on the path described by Γ(n)
0δ (λ, µ),

then, although the central charge of the CFT is unchanged, the CFT itself is non-trivially
transformed. We say the CFT is symmetry-enriched by Zn × Zn symmetry [183]. To
characterize different CFTs, we assign to each symmetry flux of the gapped Zδ × Zδ
subgroup an end-point operator that has a well-defined charge w.r.t Zn × Zn symmetry
(see Eq. (6.37) and Eq. (6.39)),

ŝnδ,d
r,σ =

(
Ŝdr,σ

)nδ
, d ∈ Zn,

(
Qdr,σ+1

)nδ ∈ Zδ. (6.56)

Symmetry-enriched CFTs. For a given (n, δ), with nδ integer-valued, there
are δ distinct CFTs characterized by symmetry fluxes ŝnδ,d

r,σ , d ∈ Zn whose end-point
operators are charged under Zn × Zn symmetry.

Entanglement spectrum and edge modes

In Sec. 6.1.7 we discussed the case (n, δ) = (4, 2), which gave rise to two topologically
distinct CFTs. By similar arguments as given there, we can explicitly show that if the
charges are non-trivial, there is a degeneracy in the entanglement spectrum. Moreover,
if the system is considered with a single edge, there are edge modes. To this end, we
again define two locally confined operators ϵ̂1 and ϵ̂2, which are given by,

ϵ̂1 = Ẑ1,A, ϵ̂2 = X̂nδ
1,AẐ

nδd
1,B , ϵ̂1ϵ̂2ϵ̂

−1
1 ϵ̂−1

2 = ωδ, d > 0 (6.57)

that commute with the Hamiltonian, defined by Γ(n)
dδ (λ, µ) in Eq. (6.44), and itself up to

a phase factor ωδ—resulting in δ degenerate ground states. This implies, equivalently
to Sec. 6.1.7, that there is SSB at the edge and edge modes for a system with a single
edge29. Furthermore, the bulk entanglement spectrum is at least δ-fold degenerate.

Gapless SPTs. Similar to the illustrative case, there are also gapless SPTs for models
with Zn × Zn symmetry. Aside from examples with direct transitions, there are gapless
SPTs that do not require the duality symmetry in addition to be well-defined. Indeed,
in Ref. [34] it was shown that for transitions with n > 4, where the change of the charge
∆q /∈ {−1, ω3, i}, Eq. (6.41), the interpolation crosses an intermediate gapless phase
characterized by a CFT with central charge c = 2. From the previous discussion, we
conclude that such phases—in the presence of gapped degrees of freedom—form gapless
SPTs if associated string operators are non-trivially charged30.

29Note that the edge modes are perfectly localized, which, under symmetry preserving perturbations,
turns over to an exponential decay into the bulk with ξloc < ∞.

30An example of such phase is given by the interpolation between Ĥ10
1 and Ĥ10

3 , which is obtained
from Ĥ10

02 (λ) by applying the SPT-Entangler once. The latter transition effectively reduces to an
interpolation between Ĥ5

0 and Ĥ5
1 crossing an intermediate gapless phase with central charge c = 2.
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6.2.6 Spontaneous-symmetry-breaking and U(1) symmetry
In Sec. 6.1.4 we have seen that, upon increasing the perturbation with Ĥ1, the system
enters an SSB phase, where the emergent anomaly is no longer well-defined. This phase
is characterized by SSB of a single Z4 and sublattice symmetry. However, such a phase
can also arise for cases that do not have an emergent anomaly, which is the case for
odd n. To see this, let us emphasize that all fixed-point models can be obtained from
the trivial phase via successive applications of the SPT-Entangler, which is shown in
Eq. (6.30). Thus, the following Hamiltonian:

Ĥ(n) =
n−1∑
d=0

Ĥ
(n)
d (6.58)

has an additional Zn symmetry generated by the SPT-Entangler Û (n). Such a Hamilto-
nian cannot have a gapped, symmetric ground state that is invariant under the global
Zn×Zn×Zn symmetry31. This follows from the fact that no symmetry flux is invariant
under the action of the SPT-Entangler⇒ the ground state must be gapless or SSB. Thus,
irrespective of n, the given representation of the Zn × Zn × Zn symmetry has a gauge
anomaly (see App. B.4).

A concrete case: Z3 × Z3 fixed-point models

To verify the previous predictions, we evaluated the phase diagram of fixed-point models
of Z3 × Z3 symmetry, shown in Fig. 6.7, where the SSB phase is characterized by spon-
taneously breaking one of the Z3 symmetries and sublattice symmetry ŜAB. Although
Hamiltonian (6.58) is only realized at the center of mass of the triangular, the SSB phase
extends over a large region in parameter space32.

Enhanced U(1) symmetry

It turns out that the additional Zn symmetry of Hamiltonian (6.58) can be enhanced
to a global U(1) symmetry. However, it is important to note that the overall symmetry
is not Zn × Zn × U(1), since the U(1) symmetry does not commute with generators of
Zn × Zn.

Definition. To see this enhancement, we first have to rewrite the SPT-Entangler
differently. Therefore, we define an operator F̂j,σ33 that measures the ZN charge lj,σ of
a local basis state |l⟩j,σ,

F̂j,σ =
n−1∑
l=0

lj,σ (|l⟩ ⟨l|)j,σ ⇒ Ẑj,σ = ω
Fj,σ
n . (6.59)

31Here we assume the system to have no boundaries, otherwise the generators of the Zn ×Zn symmetry
do not commute with the SPT-Entangler Û (n) generating the other Zn symmetry

32Note a similar phase diagram was obtained for a two-dimensional system with SPT phases protected
by Z3 symmetry [195].

33In terms of total spin S, this operator for a given n can be written as F̂ (n) = S ·1+ Ŝz. Thus, all odd
n correspond to integer spin and all even n to half-integer spin representations, respectively.
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SSB

c = 8/5

H1

H0 H2

Figure 6.7: Phase diagram of Ĥ(3)
021 (α, β, γ). There are three topologically distinct

phases labeled by Ĥ0, Ĥ1 and Ĥ2 respectively. The phase in the middle is
SSB, where one of the Z3 symmetries and sublattice symmetry are broken
spontaneously. The critical point is immediately gapped out by perturbing
it with Ĥ(3)

1 . In the center of mass, the Hamiltonian takes the form given by
Eq. (6.58).

Using this, the SPT-Entangler can be written as follows:

Û
(n)
AB =

∏
j

ω̄
F̂j,AF̂j,B
n , Û

(n)
AB =

∏
j

ω
F̂j,BF̂j+1,A
n (6.60)

and, thus, the overall U(1) symmetry is generated by,

Û
(n)
ϕ = ω̄

ϕ
∑

j(F̂j,AF̂j,B−F̂j,BF̂j+1,A)
n , ϕ ∈ R. (6.61)

For a given basis state |l⟩1,A .... |l⟩L,B, the generator of the U(1) symmetry measures the
following charge difference:

∆Q =
∑
j

(lj,Alj,B − lj−1,Blj,A) = QAB −QBA. (6.62)

Commutation relation. To show that the generator of the U(1) symmetry and the
Hamiltonian (6.58) commute, we prove that the action of the Hamiltonian on an arbitrary
basis state does not change its charge difference ∆Q. To this end, we use that the
Hamiltonian (6.58), on each sublattice, can be written as follows:

Ĥ
(n)
A = −n

∑
j

(
X̂j,A + X̂†

j,A

)
P̂j,B, Ĥ

(n)
B = −n

∑
j

(
X̂j,B + X̂†

j,B

)
P̂j+1,A, (6.63)
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where we defined the projection operators

P̂j,B = 1
n

n−1∑
d=0

Ẑ†d
j−1,BẐ

d
j,B, P̂j,A = 1

n

n−1∑
d=0

Ẑdj−1,AẐ
†d
j,A. (6.64)

These projection operators ensure that the local charge lj,σ can only change if neighboring
charges are equal. For example, the charge lj,A can only change if lj−1,B = lj,B. The
local operator X̂j,A changes the charges QAB and QBA of an arbitrary basis state as
follows: QAB → QAB + lj,B and QBA → QBA + lj−1,B, which results in:

∆Q′ = ∆Q+ lj,B − lj−1,B (6.65)

However, such a process is only possible if lj−1,B = lj,B, which implies ∆Q′ = ∆Q.
A similar consideration holds for complex conjugate terms and for the other sublattice.
Thus, no term of the Hamiltonian changes the global charge of any basis state and, hence,
the Hamiltonian is charge conserving. Given the particular form of the SPT-Entangler,
we explicitly checked34 if the ground state, in the center of Fig. 6.7, is symmetric under
this U(1) symmetry, which is indeed the case.

Let us emphasize that such an enhancement is not special to this class of models.
It is very common that different classes of SPT phases can be mapped to each other
via duality transformations35, which—for a half way interpolation between two distinct
classes—generates an additional symmetry. Occasionally, this symmetry enhances to a
U(1) symmetry. In a recent work by Tantivasadakarn et al. [197], a sufficient condition
was provided, when a Z2 symmetry enhances to a global U(1) symmetry.

6.3 Generalizations to other symmetry groups and dimensions
Thus far, we have studied the criticality of Zn × Zn chains in great detail. In this last
section, we emphasize that certain key insights generalize to other symmetry groups
and dimensions. In particular, an essential ingredient in many of the above discussions
was the idea that at an SPT transition, a certain symmetry (sub)group could remain
gapped—with a variety of consequences—which we further explore here.

One-dimensional SPTs

Let us first still consider 1D SPT phases, but for a more general symmetry group G.
As mentioned in the introduction, the SPT phases are classified by projective repre-
sentations, or equivalently, H2(G,U(1)). Suppose we have two distinct SPT classes
α, β ∈ H2(G,U(1)) and would like to gain insight into possible quantum criticality aris-
ing between them. Our above work suggests that it is paramount to find the largest
normal subgroup N ⊂ G where both SPT classes are compatible. (We will discuss in a
moment how to characterize this compatibility condition.) In that case, we argue that N

34This can be easily done using the ITEBD algoritm [196].
35This naturally occurs for fixed-point models constructed by the method of Ref. [64].

134



Chapter 6 Quotient group symmetry-protected topological phenomena in Zn × Zn
chains

can remain gapped when tuning between the two classes, with the effective low-energy
criticality looking like a transition for G̃-SPT phases, where G̃ = G/N is the quotient
group. This way, we can reduce the study of the SPT criticality to a smaller symme-
try group, where remaining degrees of freedom can help in stabilizing criticality. The
simplest example we found is where G = Z4 × Z4 and G̃ = Z2 × Z2, with the effective
low-energy transition looking like the usual cluster chain transition with central charge
c = 1.

Compatibility condition. What does it mean for two SPT phases with a symmetry
group G to have a compatible normal subgroup N? In the simplest case, such as an
Abelian group G, it simply means that all symmetry fluxes for N have the same charge
in both phases. I.e., their string order parameters are compatible. Indeed, if they
agree, there is a priori no need for them to go critical, and they can remain gapped
at criticality, whereas fluxes with different charges need to lose long-range order at
criticality. However, for non-Abelian groups G it is known that string orders do not
necessarily give a full characterization of the SPT phase [95]. In such a case, however,
we can consider symmetry fractionalization of each symmetry g ∈ G: for each on-site
symmetry Ug = ∏

n U
g
n, symmetry fractionalization tells us that when acting with Ug on

a large but finite segment, the ground state only transforms near the boundary of that
segment, i.e., Ug = UgLU

g
R for some “fractionalized” UgL,R. Then UgR gives a projective

representation of G, with different classes leading to different SPT phases labeled by
H2(G,U(1)). We say two SPT phases have a compatible normal subgroup N if all the
fractionalized operators UhR (for h ∈ N) have consistent symmetry transformations when
conjugating by elements in g ∈ G. Note that in the Abelian case, this coincides with
checking the charges of string order parameters, since ghg−1 = h, such that conjugation
always preserves the symmetry string.

Topological properties. The remaining gapped degrees of freedom can endow the crit-
ical point with a topological twist. The gapped symmetries have long-range order for
their symmetry flux, and if the latter carries a non-trivial charge under some symmetries,
it implies that the system has exponentially localized edge modes with open boundaries.
This is consistent with one of the known mechanisms for gapless SPT phases [183, 184]
and it agrees with the above examples we found (such as the Ĥ(4)

1 to Ĥ(4)
3 SPT transition

for Z4 × Z4-symmetric chains).

Higher dimensions

Lastly, let us note that this discussion naturally generalizes to higher dimensions. Instead
of using string order parameters, one can say that two SPT phases (for a symmetry
group G) in d dimensions have a consistent or compatible normal subgroup N ⊂ G if
all symmetry twists [64, 80, 81, 85, 164, 198–204] with respect to elements h ∈ G have
the same transformation properties in both phases. The simplest example in 2+1D is
for G = Z4. Since H3(Z4, U(1)) ∼= Z4, there are four distinct phases (including the
trivial phase). The middle SPT class has the same properties as the trivial phase for
symmetry twists with respect to the normal subgroup Z2 ⊂ Z4. Hence, this subgroup
can remain gapped at the transition between these two, such that at low energies it will
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effectively look like an Z2 ∼= Z4/Z2 SPT transition. A similar statement holds for the
transition between class one and class three in H3(Z4, U(1)); however, in this case the
gapped Z2 subgroup is itself topologically non-trivial and will protect edge modes at
criticality. (While a continuous Z2 SPT criticality is difficult to find in 2+1D, we note
that it has recently been suggested that such a continuous transition can be found for
Z3

2 [197, 205], and by the above this can arise as an effective low-energy description for
Z3

4 SPT transitions.)

6.4 Summary & Outlook
In this chapter, we showed that the fixed-point models of one-dimensional SPTs protected
by Zn × Zn symmetry have much more direct quantum phase transitions as initially
expected [34]. Moreover, for paths considered here, we showed that if a single unique
QCP exists, the CFT is characterized by a central charge c ∈ {1, 8/5, 2}, which we
numerically demonstrated for several examples using iDMRG calculations (see Fig. 6.6).
We argued that the direct transitions are a consequence of additional gapped degrees of
freedom, that is, starting from the trivial phase d = 0 not all SPTs of Zn×Zn symmetry
can be reached if particular subgroups remain gapped along the interpolation.

Aside from this, we discussed the topological nature of the underlying CFTs and
showed that CFTs having the same central charge not necessarily represent the same
RG fixed-points. If the topological nature of a CFT was non-trivial, we argued that if
such a critical system is considered with boundary that there are exponentially localized
edge modes and degeneracies in the entanglement spectrum. These properties and,
in particular, the topological distinction is another feature resulting from additional
gapped degrees of freedom at quantum criticality. These together with the critical bulk
form gapless SPTs on the QCP of two gapped SPTs, or in intermediate, gapless phases
characterized by a CFT. Most examples of such phases have been so far considered on
transitions between SPTs and SSB phases (see Refs. [183, 184] and references therein).

Moreover, we showed that the action of the global Zn × Zn symmetry on low-energy
degrees of freedom is given by a quotient group, which together with a duality mapping
can lead to an emergent anomaly, and in particular cases, Z4 × Z4, together with sub-
lattice symmetry forbids a gapped state; thus stabilizing quantum criticality. To study
this and the former mentioned features, we numerically evaluated the phase diagram
of fixed-point models protected by Z4 × Z4 (see Fig. 6.3). In the context of anomalies,
we proved that emergent anomalies appearing in higher-dimensional symmetry groups,
Zn × Zn, emerge from an effective Hamiltonian that has an intrinsic anomaly and de-
scribes the interpolation in a lower-dimensional symmetry group Zn/δ × Zn/δ, where δ
specifies the distance of two fixed-point Hamiltonians in Zn × Zn.

We also briefly discussed the protection of SPT phases realized by fixed-point Hamil-
tonians of Zn×Zn symmetry and showed that not all of them require the global Zn×Zn
symmetry to realize a non-trivial state. For special cases, we argued that the embedding
of the quotient group or subgroups can protect the SPT.

Penultimately, we proved that if we consider a Hamiltonian consisting of an equal-
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weighted sum of all fixed-point models, that the Zn symmetry together with the global
Zn×Zn symmetry has a gauge anomaly as it forbids a gapped, symmetric ground state.
To demonstrate this, we evaluated the phase diagram of a Hamiltonian consisting of all
fixed-point models of Z3×Z3 symmetry and found that the ground state—for a certain
parameter regime—is spontaneous-symmetry-breaking. Moreover, we explicitly showed
that the Zn symmetry due to the SPT-Entangler can be enhanced to a U(1) symmetry.

Finally, in Sec. 6.3 we generalized our findings to other symmetry groups and higher
dimensions, in particular, when to expect gapped degrees of freedom and topological
properties at quantum criticality.

Outlook. So far, we have studied how gapped degrees of freedom can enrich quantum
criticality. Moreover, we saw that the presence of such degrees of freedom results in
an effective low-energy description of the global symmetry group in terms of a quotient
group, which together with a duality symmetry can lead to an emergent anomaly sta-
bilizing criticality. In this overall work, the global symmetry group itself has been able
to protect non-trivial SPTs, i.e., H2(Zn × Zn, U(1)) = Zn. Since low-energy proper-
ties were completely determined by the quotient group, naturally the question arises
what happens if the global symmetry group G does not allow for non-trivial SPTs,
i.e., H2(G,U(1)) = 0, but if at low-energies the effective symmetry group G/H36 does.
Exactly, this is the question that is answered in the next chapter, where we study a
descendant of the Hubbard model.

36Where H denotes a normal subgroup.
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Chapter 7

Quotient group symmetry-protected
topological phases in the bond-alternating
ionic Hubbard chain

In the previous chapter we have seen that for certain quantum phase transitions among
SPT phases the action of the global symmetry G on low-energy degrees of freedom is
given is by its quotient group G/H, where H is a normal subgroup. Moreover, we
saw that this low-energy representation can have an emergent anomaly, which can be
lifted upon tuning some parameter of the Hamiltonian. In all foregoing cases, however,
the lifting of the emergent anomaly resulted in a gapped, symmetric SPT state. A
necessary condition for this to happen is that G itself can protect non-trivial SPTs, i.e.,
H2(G,U(1)) ̸= 0. In this chapter, we will explore a different scenario, namely, where G
cannot protect non-trivial SPTs, but its quotient group G/H can.

To this end we consider a descendant of the Hubbard model, a bond-alternating ionic
Hubbard model (BIHM) [206–219] where constituents have charge and spin degrees
of freedom. If on-site interactions dominate, charges are immobile and the effective
description is in terms of spin degrees of freedom. The resulting model is given by
the bond-alternating spin-1/2 Heisenberg chain [35, 206], Ĥ = ∑

j(1 + (−1)jδ)Ŝj · Ŝj+1.
Depending on the dimerization, this model is a representative of the Haldane phase,
an SPT protected, among others, by spin-rotation symmetry SO(3). For the bond-
alternating Heisenberg model, the unit cell consists of two sites; thus, two spin-1/2
degrees of freedom form an integer representation of SO(3). If lattice sites start at
j = 1, then δ > 0 is the topological Haldane phase, with a zero-energy spin-1/2 degree
of freedom at each edge. Note, no gapped, spin-rotation symmetric Hamiltonian can
adiabatically connect the two δ < 0 and δ > 0 regimes.

In recent times, it has been realized that the anomalous action of the global symmetry
on the boundary of SPT phases is its Achilles’ heel [18, 50, 64, 86, 93, 95, 220]. Unlike
SSB phases, any SPT phase can be trivialized by extending its symmetry group [39, 189–
192]. For instance, the non-trivial topological phase of the formerly introduced low-
energy description of the BIHM—the Haldane phase of the bond-alternating spin-1/2
Heisenberg chain—is trivialized by extending SO(3) into SU(2). This corresponds to
introducing degrees of freedom (here charges) on which the −1 element of SU(2) acts
as an operator, rather than a number (such that it remains SU(2) even after blocking
sites into unit cells). In the presence of charges this can be achieved by driving the spin

138



Chapter 7 Quotient group symmetry-protected topological phases in the
bond-alternating ionic Hubbard chain

chain away from its Mott limit, such that 2π-rotations equal the fermion parity operator,
rather than a classical number. Such paths—connecting the Haldane phase to a trivial
phase via fluctuating charges—were explicitly constructed in Refs. [36, 37] for related
fermionic models.

However, so far, the following questions have not been addressed: How immediate is
this trivialization? Are topological characteristics—such as edge modes—immediately
gapped out by some exponentially small energy scale? Or do edge modes remain exact
zero-energy edge modes over some finite region of parameter space?

In this chapter, we show that—remarkably—the latter option is realized. When an
SPT phase is—strictly speaking—trivialized by introducing new degrees of freedom on
which the symmetry group acts in an extended way, we argue that while certain features
such as string orders are known to immediately lose their meaning [36], other salient
features, such as edge modes, degeneracies of the low-lying entanglement spectrum and
bulk phase transitions are stable over a finite region in parameter space. We identify
quantized invariants, which characterize this stability. Hence, the original symmetry
group—which is now a quotient group of the extended symmetry group—can still protect
certain topological phenomena; we refer to these as quotient group symmetry-protected
topological (QSPT) phenomena.

Overview. This chapter is based on [P5]. In the first section, Sec. 7.1, we introduce
the Hamiltonian describing the BIHM and discuss its symmetries and, in particular, the
subtlety of π-rotations in the fermionic Hilbert space. Then, we provide a full phase
diagram of the BIHM for a particular value of ionicity. Thereby, we briefly give a
historical review on the ionic Hubbard model, shortly consider different regimes of the
on-site repulsion and demonstrate that there is a gapped, symmetric path along which
the Haldane phase is trivialized.

In the second part, Sec. 7.2, we elaborate on the quotient group symmetry-protected
topological signatures of the BIHM and explicitly verify that edges modes and degen-
eracies in the low-lying entanglement spectrum are parametrically stable as we lower U .
Thereby, we argue that these features can only disappear if the edge has a gap closing.
Moreover, we will explain the robustness of the critical line, Fig. 7.1, which has so far
mainly addressed using field theory or numerical tools. Here we will show that it is due
to an emergent anomaly of the quotient group and a duality symmetry exchanging the
dimerization pattern.

Lastly, in Sec. 7.3 we give a more general understanding of QSPTs starting from
the one-dimensional case, and then briefly, consider a possible generalization to a two-
dimensional case.

7.1 Introduction of the bond-alternating ionic Hubbard model
Here we first introduce the Hamiltonian describing the BIHM and its symmetries, then
we show the phase diagram obtained using iDMRG for a particular value of the ionicity
and discuss different parameter regimes in the phase diagram. Finally, we argue how
the Haldane phase of the effective spin description is trivialized by introducing charge
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degrees of freedom.

7.1.1 The Hamiltonian of the BIHM
The bond-alternating ionic Hubbard model of spinful fermions consists of three terms:

Ĥ = −
∑
j,s

[
tj(δ)ĉ†

j+1,sĉj,s + h.c.
]

+ ∆
2
∑
j,s

(−1)jn̂j,s +U
∑
j

(
n̂j,↑ −

1
2

)(
n̂j,↓ −

1
2

)
(7.1)

with tj(δ) = (1 + (−1)jδ). The interactions among the fermions are controlled by
the parameter U , while ∆ (≡ ionicity) is a local chemical potential that has different
signs on the two sublattices. From the bond-alternating hopping and the local chemical
potential, it follows that each unit cell consists of two sites. The operator ĉ†

j,s(ĉj,s) creates
(annihilates) a fermion with spin s ∈ {↑, ↓} on site j and the particle number operator
is given by n̂j,s = ĉ†

j,sĉj,s with n̂2
j,s = n̂j,s.

7.1.2 Symmetries of the BIHM
Hamiltonian (7.1) conserves the total particle number and, thus, has a global U(1)
symmetry. Aside from global charge conservation, the Hamiltonian is symmetric with
respect to a global SU(2) spin-rotation symmetry generated by,

Ŝ+ =
∑
j

ĉ†
j,↑ĉj,↓, Ŝ− =

∑
j

ĉ†
j,↓ĉj,↑, Ŝz = 1

2
∑
j

(n̂j,↑ − n̂j,↓) , (7.2)

where x, y components are defined as follows:

Ŝx = 1
2
(
Ŝ+ + Ŝ−

)
, Ŝy = 1

2i
(
Ŝ+ − Ŝ−

)
. (7.3)

The two symmetry groups U(1) and SU(2) are not independent (see also Ref. [35]). Since
Ŝz and N̂ commute among each other and with the Hamiltonian, associated quantum
numbers are conserved. Thus, we find:

Ŝz + N̂

2 = 1
2 (N↑ −N↓) + 1

2 (N↑ +N↓) = N↑ ∈ Z. (7.4)

Since the right side is integer-valued both terms on the left must take either integer or
half-integer values, which implies that not all representation of U(1)×SU(2) are allowed.
Hence, the resulting symmetry group is U(2) = (U(1)× SU(2)) /Z2

1 [221].
1There is an alternative way of seeing this: Both symmetry groups share a common element, given by

fermion parity. Indeed, we find that P̂ = eiπN̂ = ei2πŜγ

. Since the generators of U(1) and SU(2)
commute, the representation of U(1)×SU(2) is given by V̂ (ϕ,θ) = eiϕN̂eiθŜ . However, from this, we
see that two different elements in U(1) and SU(2) denoted by V̂ ′(ϕ) = P̂ V̂ (ϕ) and V̂ ′(θ) = P̂ V̂ (θ)
map to the same element under V̂ ′(ϕ,θ) = V̂ (ϕ,θ). Hence, two elements of U(1) × SU(2) differing
by fermion parity need to be considered as equivalent, or said differently, the kernel of this map is
given by Z2 = {(1,1), (P̂ , P̂ )} and from the first isomorphism theorem it follows that the resulting
symmetry group is (U(1) × SU(2)) /Z2.

140



Chapter 7 Quotient group symmetry-protected topological phases in the
bond-alternating ionic Hubbard chain

Fermion parity and π-rotations

A key aspect—which we will often return to—is that 2π rotations, defined by,

P̂ = exp
(
2πiŜγ

)
, γ ∈ {x, y, z}, P̂ 2 = 1, (7.5)

equal the fermion parity operator P̂ rather than a classical number ±1, as in spin chains.
This has an important consequence, namely, even after blocking sites into unit cells, the
symmetry remains SU(2) instead of becoming SO(3)2. A similar result we find for π-
rotations, which in the spin chain limit generates a Z2 × Z2 symmetry; however, in the
fermionic Hilbert space correspond to a group isomorphic to quaternions Q8 ⊂ SU(2).
The group representation of this symmetry is given by,

Q8 = ⟨R̂x, R̂y, R̂z, P̂ |P̂ 2 = 1,
(
R̂x
)2

=
(
R̂y
)2

=
(
R̂z
)2

= R̂xR̂yR̂z = P̂ ⟩ , (7.6)

where R̂γ = eiπŜ
γ . It is important to note that none of the symmetries introduced here

can stabilize a non-trivial SPT phase, i.e., they do not admit any non-trivial projective
representations, or in terms of group cohomology: H2(SU(2), U(1)) = H2(Q8, U(1)) = 0.

Particle-hole transformations and bond-centered inversion symmetry

In the absence of ionicity ∆, Hamiltonian (7.1) is invariant under particle-hole trans-
formations ĉj,s → (−1)j ĉ†

j,s as well as bond-centered inversion symmetry ĉj,s → ĉ−j−1,s
(similarly for complex conjugate terms). For the latter to be well-defined and compatible
with Hamiltonian (7.1), the underlying lattice must consist of 2L sites with L even and
labeling of sites as follows: j ∈ {−L, ..., L− 1}.

In the presence of ionicity ∆, neither particle-hole transformations nor bond-centered
inversion symmetry are symmetries of the Hamiltonian; however, their combined action
is preserved. Thus, if the BIHM has a unique ground state—given this symmetry—it is
naturally at half-filling.

Duality symmetry

Our model has a useful duality symmetry (U,∆, δ)→ (U,∆,−δ), given by the modified
(unitary) translation operator3,

D̂ĉj,sD̂† = (−1)j ĉ†
j+1,s. (7.7)

Consequently, a single direct transition can thus only occur at δ = 0. In the spin chain
limit, D̂ acts as a single-site translation symmetry and an on-site unitary transforming
spin operators as follows:

D̂Ŝγj D̂
† = R̂yŜ

γ
j+1R̂

†
y. (7.8)

2For a spin-1/2 chain, this is different. If a unit cell consist of two spin-1/2 degrees of freedom, the
symmetry is SO(3) rather than SU(2).

3This requires a lattice with PBC or infinite extension.
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7.1.3 Quantum phases: An overview
In this part, we study Hamiltonian (7.1) at half-filling with finite ionicity and different
values of dimerization δ ∈ [−1, 1] and obtain a phase diagram of this model using iDMRG
(for details on this, we refer to App. C.2.1). We start the discussion with a brief historical
review, and then briefly discuss limiting cases. Lastly, we consider how we can trivialize
the Haldane phase using charge fluctuations.

Historical review

The ionic Hubbard model has been extensively studied before at δ = 0 and the nature
of transitions along this line has been under debate for almost forty years [206–219].
In the U → +∞ limit, it reduces to the gapless spin-1/2 Heisenberg chain. Although
∆ ̸= 0 breaks translation symmetry, the effective spin chain is translation-invariant at all
orders in U [206]. Remarkably, criticality persists far beyond this perturbative regime
(see Fig. 7.1). To highlight this, we denote the point (Upert) where perturbation theory
for the translation invariant Hubbard model (δ = ∆ = 0) in 1/U diverges [35]. Along
the line δ = 0, the model shows two quantum phase transitions: first, a BKT-transition
(Uc2) into a spontaneously dimerized insulator (SDI) phase, and afterwards, an Ising
transition (Uc1) into a bond insulator (BI) phase. Note the exact values of the critical
points shifts as a function of ∆ [217]. Most of previous studies have been mainly field-
theoretic or numerical, we, however, will explain the persistence of this critical line as
being a quotient group symmetry-protected topological phenomenon.

Mott limit

In the Mott limit U → ∞, the ground state has exactly one particle per site. At low
energy, the effective description is a spin-1/2 bond-alternating Heisenberg chain. Hence,
fermion parity becomes a classical number: P = −1 per site, or P = 1 for a two-site
unit cell. The symmetry group per unit cell is the quotient group4 SO(3) = SU(2)/Zf2 ,
which is well-known to protect a non-trivial SPT phase, i.e., H2(SO(3), U(1)) = Z2.
Indeed, in the introduction we saw how δ > 0 (δ < 0) is a topological (trivial) phase.
Similarly, Z2 × Z2 = Q8/Zf2 also protects the Haldane phase.

Finite interactions

Although in the limit of large U →∞ the ionicity ∆ ̸= 0 is not relevant, it becomes rele-
vant as U is lowered because it explicitly breaks bond-centered inversion [17], SO(4)5[38]
and antiunitary particle-hole symmetry [38, 222], which would otherwise still distinguish
two SPT phases for arbitrary values of U . Since there is no symmetry distinguishing
different SPTs, we expect to have a single phase realized by Hamiltonian (7.1), which

4If H is a normal subgroup of G, the quotient group G/H is defined by identifying every element of H
with the identity element. Note Zf

2 is generated by fermion parity.
5For the Hubbard model, i.e., ∆ = 0, there is another SU(2) symmetry formed by charge degrees of

freedom that together with the spinful SU(2) symmetry forms this symmetry group [35].
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Figure 7.1: Emergent Haldane phase in the ionic Hubbard chain with ∆ = 0.4.
The Mott limit U →∞ recovers two topologically distinct spin chains which
are connected by the small-U regime. The solid black (white) line is a second
(first) order phase transition. The transition line ends in Ising criticality at
Uc1 . The edge mode of the (emergent) Haldane phase is stable until it gaps
out at small U (blue dashed line) without a bulk phase transition. The red
dashed line indicates where degeneracy of the lowest entanglement level is
lost.

indeed coincides with the results shown in Fig. 7.1. Note, similar results have been
obtained by Refs. [36, 37] in related models.

Zero interactions

At U = 0, the Hamiltonian reduce to two decoupled SSH chains, which—in the presence
of ionicity ∆—realize a single phase. There are two reasons: First, all symmetries that
can distinguish the two topologically distinct phases of the half-filled SSH model are
broken, and second, the bulk gap of the half-filled SSH chain at momentum k = π ∼ |∆|
is finite for all values of the dimerization. Note, for vanishing ionicity and dimerization,
the bulk gap of the SSH model at half-filling closes at k = π [180].

Trivializing the Haldane phase

From Fig. 7.1 we find that the Haldane SPT phase, for small U , is adiabatically con-
nected to the trivial phase. This can even be done analytically by choosing δ = 1, then
tune U down to 0 and finally use that the two-decoupled SSH model have a finite gap
as δ is changed. Group-theoretically, the Haldane phase is thus trivialized by including
fluctuating charges (i.e., finite U). This has been explored before [36, 37] and is a par-
ticular instance of how extending a symmetry group (here, extending SO(3) by fermion
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parity into SU(2)) can trivialize any SPT phase [39, 189–192]. The question of interest,
further explored in this chapter, is to which extent the topological features such as edge
modes or degeneracies in the entanglement spectrum immediately disappear, i.e., are
they fine-tuned or not?

7.2 Quotient group symmetry-protected topological
phenomena of the BIHM

Previously, we argued that in the limit of large U → ∞ the BIHM has an effective
description in terms of a bond-alternating spin-1/2 Heisenberg chain, which, depending
on the dimerization, realizes two topologically distinct SPTs. Thereby, we argued that
the effective symmetry group protecting these phases is given by the quotient symmetry
SO(3) = SU(2)/Zf2 . Clearly, as long as perturbation theory applies and the low-energy
description is given in terms of spin chains, we expect that topological signatures such
as edge modes and degeneracies in the entanglement spectrum remain. This is not
overly surprising because if we use the effective Hamiltonian derived from perturbation
theory [206], charge degrees of freedom are completely frozen and only spin degrees of
freedom remain. Thus, the effective local state space contains only two states {|↑⟩ , |↓⟩}
and, consequently, the global symmetry—in this Hilbert space—is given by SO(3). Note,
this is precisely what we have in mind if we study models only containing spin degrees
of freedom. In practice, however, spin degrees of freedom are inherently coupled to
electrons (or atoms) and, thus, pure spin models do not exist!

This naturally leads to the question of what happens to the topological signatures
if we consider the bond-alternating ionic Hubbard model in the full fermionic Hilbert
space. Do these features immediately disappear or remain robust to a certain extent?
Interestingly, from the numerical results shown in Fig. 7.1, we see that the critical line
along δ = 0 persists way beyond the value of U , where perturbation theory for δ = ∆ = 0
diverge. Although we do not know how this point changes as ∆ > 0 becomes finite, we,
nevertheless, believe that for the choice we made, ∆ = 0.4, it still diverges much before
Uc2 . Indeed, for ∆ to become relevant it must be of the same order as U6, and given
that Uc2 ≈ 5 ·∆, this assumption seems reasonable.

It turns out that a fundamental ingredient for QSPTs to exist is a separation of energy
scales. This is rather similar to cases we discussed in the previous chapter, Chap. 6,
where, however, the global symmetry group itself protected non-trivial SPTs. For the
one-dimensional Hubbard model, it is known that along the gapless line, δ = 0, charge
and spin degrees of freedom separate [35]. Moreover, along this line spin degrees of
freedom are gapless, while charges remain gapped. We will explicitly demonstrate this
using symmetry fluxes and associated string operators. Consequently, along this line we
naturally have a separation of energy scales and, consequently, the effective action of the
global symmetry is SO(3) rather than SU(2). Note, by the reasoning above, this holds
way beyond the limit of perturbation theory.

6For example, edges modes at δ = 1 disappear if U = ∆.
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In the Mott limit U → ∞, it is known that spin-rotation symmetry and duality
symmetry forbid a gapped, symmetric ground state (Lieb-Schultz-Mattis anomaly). In
the fermionic Hilbert space, this anomaly can be lifted and, thus, is only emergent.
However, as long as it forbids a gapped, symmetric state—to enter a gapped QSPT—we
have to explicitly break duality symmetry by slightly tuning δ away from 0. Clearly,
near the critical line the separation of energy scales remains true and, hence, also the
effective action of the global symmetry on low-energy degrees of freedom. Depending on
how we dimerize the system, we expect to see topological signatures such as edge modes
and degeneracies of low-lying eigenvalues of the entanglement spectrum7. Up to which
point such separation and, hence, topological signatures remain, depends on details of
the model.

In the following two subsections, we discuss the stability of the topological signatures
using DMRG and investigate their robustness upon lowering the on-site interaction U .
First, we study the stability of edge modes and the degeneracy of the entanglement
spectrum. Thereby, we explicitly demonstrate that the fermion parity gap for a system
with open boundary conditions closes and show that a similar scenario applies for the
entanglement spectrum. Second, we explain the robustness of the critical line by showing
that at low-energies the quotient group and the duality symmetry have an emergent
(Lieb-Schultz-Mattis) anomaly, which can be detected using symmetry fluxes associated
to fermion parity.

7.2.1 Stability of edge modes and degeneracies in the entanglement
spectrum

Here, we show that the zero-energy edge modes of the Haldane phase are stable until the
fermion parity gap closes for open boundary conditions. Since gaps are parametrically
stable, this implies that the topological edge modes exist over a finite region of parame-
ter space, i.e., they do not vanish as soon as U is finite.
Per the usual arguments of symmetry fractionalization (see App. C.1), an on-site unitary
symmetry Û acts on a symmetric, gapped chain with edges as Û = ÛLÛR [95, 220]. Here,
ÛL,R are exponentially localized on the boundaries. As discussed above, a fermionic
chain with SU(2) symmetry cannot host a non-trivial SPT phase; hence, these frac-
tionalized symmetries must obey the same group properties as the bulk symmetry, in
particular: R̂Lx R̂

L
y = P̂LR̂Ly R̂

L
x . In the Mott limit U → ∞ for δ > 0, we know that

the edge hosts a spin-1/2, i.e., PL = −1 such that R̂Lx R̂Ly = −R̂Ly R̂Lx implies a twofold
degeneracy. An eigenvalue of P̂L cannot immediately jump such that its associated
twofold degeneracy is parametrically stable. The only way PL can change is if we make
U sufficiently small such that another (non-degenerate) level with PL = +1 crosses it in
energy.

To illustrate this boundary transition, consider the case δ = 1 where the decoupled
edge is a single-site problem. The edge mode is stable until U = ∆, where the energy

7Eigenvalues at higher energies must keep track of charge fluctuations destroying SPT order and,
consequently, will generically not show degeneracies.
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Figure 7.2: QSPT edge phenomena. We evaluate parity quantum numbers for a
vertical slice δ = 0.2 (dotted line in Fig. 7.1). (a) The ground state degen-
eracy and parity quantum numbers (P ) for a system with open boundaries.
We observe a boundary phase transition where the parity gap closes below
(above) which the ground state is unique (degenerate). (b) The three lowest
entanglement levels and the quantum numbers of P̂ = ÛxÛyÛ†

xÛ†
y where Ûγ is

the action of R̂γ on the space of dominant eigenstates of the reduced density
matrix for a bipartition of an infinitely-long chain [93].

levels of a doubly occupied (PL = 1) and a singly occupied (PL = −1) site cross (for a
detailed discussion, see App. C.2). Away from this exactly solvable limit, we numerically
determine this boundary transition as shown in Fig. 7.1. In the many-body system, we
cannot directly read off the eigenvalue of P̂L; instead, we focus on P̂ = P̂LP̂R. The
ground state always satisfies P = +1 (since both edges happen to undergo the boundary
transition at the same time); nevertheless, the above reasoning shows that the gap for
this global parity does close with open boundary conditions (since it must close at each
edge), which we verify in Fig. 7.2a. Note, this gap closing does not exist if the system is
considered with PBC. If it did, then we would have an actual bulk gap closing.
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Entanglement spectrum

The above arguments can be repeated for a virtual bipartition of an infinite system,
with the degenerate low-lying entanglement spectrum being stabilized by the parity
quantum numbers of the dominant eigenstates of the reduced density matrix, confirmed
in Fig. 7.2b. To demonstrate this, we first similar to Eq. (4.38) use that fermion parity
is on-site and, thus, we can write the reduced density matrix as follows:

ρ̂L =
∑
α

ΛαP̂ |α⟩LL⟨α|P̂ = P̂ ρ̂LP̂ . (7.9)

This implies that P̂ commutes with the reduced density matrix ρ̂L and the Schmidt
spectrum is block diagonal with blocks labelled by the symmetry eigenvalues. To obtain
the associated parity quantum numbers, we need to measure the symmetry eigenvalue
of corresponding Schmidt states. The way we technically do this, is to obtain effective
action of symmetry operators R̂γ on the dominant Schmidt states (following Refs. [93,
94]), denoted by Ûγ , and then use that fermion parity is given by,

P̂ = ÛxÛyÛ†
xÛ†

y . (7.10)

The advantage of evaluating fermion parity this way is that P̂ only contains ±1 entries8

for corresponding blocks of the reduced density matrix since the expression remains
invariant under rephasing Ûγ → eiΩÛγ . If we used directly P̂ to obtain P̂, then the
eigenvalues of individual blocks could, in general, be decorated with an arbitrary phase
factor (see also App C.2).

7.2.2 Stability of SPT transition
Here, we explain why the phase transition between a trivial and SPT phase does not
immediately gap out after extending the symmetry group. Consequently, the critical
line in Fig. 7.1 is a generic QSPT phenomenon.

Lieb-Schultz-Mattis anomaly

It is well-known that in spin chain limit the duality symmetry, Eq. (7.7), in combination
with spin-rotation symmetry implies a Lieb-Schultz-Mattis (LSM) anomaly, disallowing
a gapped, symmetric ground state [182, 188, 223–227]: in the absence of symmetry
breaking this stabilizes a direct phase transition. The standard proofs for the LSM
anomaly hinge on the fact that, on a single site, R̂x and R̂y anticommute. This no
longer holds when charges fluctuate: R̂xR̂yR̂−1

x R̂−1
y = P̂ (and indeed, in Fig. 7.1 we see

that small U admits a gapped phase). Nevertheless, we show that there is an emergent
Lieb-Schultz-Mattis theorem for large U , enforcing the parametric stability of the phase
transition.

8To this end note that we explicitly conserve the particle number in our calculations. Thus, each
Schmidt state has a well-defined particle number and, hence, a well-defined eigenvalue with respect
to fermion parity.
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Gapped degrees of freedom and quantized invariant

Above, we understood the parametric stability of edge modes in terms of parity quantum
numbers. To characterize the bulk, we instead identify a quantized invariant associated
to a parity string. As long as charge degrees of freedom remain gapped, the fermion
parity string generically has long-range order9. Moreover, at δ = 0, this must have a
well-defined momentum θ under the duality/translation symmetry D̂ such that (m < n)

⟨P̂mP̂m+1 · · · P̂n−1P̂n⟩ ∼ constant× eiθ(n−m). (7.11)

Using symmetry fractionalization we can rigorously derive the result above. For a parity
string, which is much longer than the fermionic correlation length10, we can write (using
symmetry fractionalization)

P̂m,n :=
∏

m≤k≤n
P̂k = P̂LmP̂

R
n . (7.12)

From D̂P̂m,nD̂† = P̂m+1,n+1, we obtain
(
D̂P̂LmD̂†

) (
D̂P̂Rn D̂†

)
= P̂Lm+1P̂

R
n+1 and, hence,

D̂P̂LmD̂† = αm,nP̂
L
m+1 ∧ D̂P̂Rn D̂† = ᾱm,nP̂

R
n+1, (7.13)

where αm,n is some proportionality factor. Note that the first (second) equation tells us
that it cannot depend on n (m). I.e., the proportionality factor is a genuine constant.
Let us denote it as αn,m = eiθ. Since ⟨P̂m,n⟩ = ⟨P̂Lm⟩⟨P̂Rn ⟩ (due to locality and the
spatial separation between the fractionalized symmetries P̂L,R) and the fact that D̂ is a
symmetry, i.e.,

⟨P̂Lm⟩ = ⟨D̂P̂LmD̂†⟩ = eiθ⟨P̂Lm+1⟩ = eiθk⟨P̂Lm+k⟩, (7.14)

we derive Eq. (7.11):

⟨P̂mP̂m+1 · · · P̂n−1P̂n⟩ = ⟨P̂m,n⟩ = ⟨P̂Lm⟩⟨P̂Rn ⟩ = eiθ(n−m)⟨P̂Ln0⟩⟨P̂
R
n0⟩, (7.15)

where n0 is some reference site that does neither depend on n nor m. Finally, the
quantization of θ follows from P̂2

m,n = 1 since then (P̂Rn )2 ∝ 1 such that e2iθ = 1 from
which we obtain a Z2-valued invariant θ = {0, π}. As an illustration, note that in the
spin chain limit, PRn = (−1)n, which implies θ = π. Hence, θ = π intuitively formalizes
the idea of being close to a Mott limit, where fermion parity coincides with the parity
of the number of sites.

9Following Ref. [183] the claim is that there exist some end-point operator such that a string consisting
of fermion parity has long-range order as long as fermionic degrees of freedom are gapped.

10This length scale can be defined from correlation functions of fermionic operators, that is, operators
that are charged with respect to fermion parity. An example of such correlation function is given
by ⟨ĉ†

j,sĉj+l,s⟩, where individual operators are charged with respect to fermion parity. Since charge
degrees of freedom remain gapped, we expect such correlations to decay exponentially with a length
scale set by the fermionic correlation length.
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Emergent anomaly

We claim that if θ = π, then there is an emergent (Lieb-Schultz-Mattis) anomaly that
forbids a gapped, symmetric ground state. To show this, we first have to find a relation
of spin-rotation symmetry and the quantized invariant θ introduced earlier. To this end,
let us define a composite symmetry Î = R̂yD̂R̂†

yD̂†. Since D̂ and R̂y commute, we find
that Î = 1. As a next step we will show, upon using this symmetry, that

ÎR̂Lx Î† = eiθR̂Lx . (7.16)

This straightforwardly follows from symmetry fractionalization. We will need what we
derived above: D̂P̂Ln D̂† = eiθP̂Ln+1. Similarly, there is a phase factor eiκ such that
D̂
[
R̂Lx
]
n
D̂† = eiκ

[
R̂Lx
]
n+1. Lastly, since group relations are always obeyed up to a phase

factor, there is another phase factor eiµ such that11

R̂†
y

[
R̂Lx
]
n
R̂y =

[
R̂Ly
]†
n

[
R̂Lx
]
n

[
R̂Ly
]
n

= eiµP̂Ln
[
R̂Lx
]
n
. (7.17)

Note that this also implies R̂yP̂Ln
[
R̂Lx
]
n
R̂†
y = e−iµ[R̂Lx ]n. Plugging in these identities, we

obtain:

Î
[
R̂Lx
]
n
Î† = R̂yD̂R̂†

y

(
D̂†[R̂Lx ]nD̂)R̂yD̂†R†

y

= e−iκR̂yD̂
(
R̂†
y

[
R̂Lx
]
n−1R̂y

)
D̂†R†

y (7.18)

= eiµe−iκR̂yD̂P̂Ln−1
[
R̂Lx
]
n−1D̂

†R†
y

= eiµe−iκR̂y
(
D̂P̂Ln−1D̂†)(D̂[R̂Lx ]n−1D̂

†)R†
y

= eiµe−iκeiθeiκR̂yP̂
L
n

[
R̂Lx
]
n
R†
y

= eiµe−iκeiθeiκe−iµ[R̂Lx ]n
= eiθ

[
R̂Lx
]
n
. (7.19)

Let us emphasize again that for the last identity to hold, we need to make use of symme-
try fractionalization, which requires a gapped, symmetric state. Indeed, this is precisely
the key for proving the emergent anomaly.

Proof. Suppose there is a gapped, symmetric ground state, then using the previous
result and that Î = 1, we deduce:[

R̂Lx
]
n

= Î
[
R̂Lx
]
n
Î† = eiθ

[
R̂Lx
]
n
, (7.20)

which implies that θ = 0. Thus, if θ = π the assumption of a gapped, symmetric ground
state must be wrong ⇒ emergent anomaly.

11Here we use that P̂L
n =

[
R̂L

x ]†n
[
R̂L

y ]†n
[
R̂L

x ]n
[
R̂L

y ] and
[
R̂L

x

]
n
P̂L

n = eiµP̂L
n

[
R̂L

x

]
n

. The last equation fol-
lows from the fact that fermion parity commutes with any element of SU(2), which, for fractionalized
operator means, that group relations are obeyed up to a phase.
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Note as long as the Hamiltonian conserves global spin-rotation symmetry and the
ground state is symmetric with respect to duality symmetry, the emergent anomaly im-
plies gaplessness, which follows from the Mermin-Wagner-Hohenberg-Coleman theorem
stating that continuous symmetries cannot be broken spontaneously for one-dimensional
systems—independent of temperature [228–230] (see also Ref. [53]).

Mott limit. In the Mott limit we have θ = π such that we rederive the known LSM
anomaly. However, since θ is a robust quantized invariant, we know that the transition
is parametrically stable to finite U . The only way θ can change is:

(i) by closing the fermion parity gap (such that the parity string does not have long-
range order),

(ii) or by spontaneously breaking the duality symmetry D̂, such that the charge eiθ is
no longer well-defined12.

This particular model, Eq. (7.1), opts for the second option, as we see in Fig. 7.1 (the
white line corresponds to the SDI phase).

Numerical results

To confirm this interpretation of the phase diagram, we measure θ by plotting

O± := lim
|n−m|→∞

|⟨Ŝ±
mŜ±

n ⟩| with Ŝ±
n :=

∏
k<n

P̂k
(
P̂n ± 1

)
, (7.21)

which we obtain using iDMRG, see App. C.2.4. It is easy to see that O± ∝ |1 ± eiθ|,
which is nonzero if eiθ = ±1. From Fig. 7.3, we conclude that the gapless MI (U > Uc2)
has θ = π, the BI (U < Uc1) has θ = 0, and the SDI phase has no well-defined θ since D̂
is broken spontaneously.

7.3 General emergent anomalies
The arguments for the parametric stability of edge modes and phase transitions readily
extend to other symmetry groups and dimensions. Edge modes of 1D SPT phases are
characterized by a non-trivial projective representation of a symmetry group G̃ [50, 93,
95, 96, 220] labeled by the second cohomology group H2(G̃, U(1)). One can always
extend the symmetry group by H13 into a bigger symmetry group G (where G̃ = G/H)
such that the lifted representation becomes linear14, thereby trivializing the SPT phase
[39, 189–192]. However, focusing on a single edge, the quantum numbers of the additional
symmetry group H still label these distinct representations15. Since quantum numbers
12Recall by the MWHC theorem the SU(2) symmetry cannot be broken spontaneously.
13Here we assume H to be a finite group.
14Note this does not require that G itself cannot host non-trivial SPTs. The only requirement is that a

non-trivial cocycle of H2(G̃, U(1)) becomes a trivial element in H2(G,U(1)) [39].
15For example, for fermion parity we found that the eigenvalue of P̂L changed as a function of U from

−1 to +1 and, thus, P̂L = R̂L
x R̂

L
y

[
R̂L

x

]†[
R̂L

y

]† turns over to a linear representation.
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Figure 7.3: QSPT transition and emergent anomaly along the self-dual line
δ = 0 (with ionicity ∆ = 0.4). The observable O± captures whether the
fermion parity string oscillates or not: it measures the Z2 invariant θ = 0, π
in Eq. (7.11). If θ = π (i.e., O− ̸= 0 and O+ = 0), there is an emergent
Lieb-Schultz-Mattis anomaly, preventing a symmetric, gapped state. Inset:
the intermediate phase spontaneously breaks the duality symmetry D̂ such
that both O± are nonzero. Note to have O+(U = 0) ≈ O−(U → ∞) we
rescaled the operator O− by a factor of 5.

are discrete, they can only change if the boundary undergoes a phase transition, which
implies that edge modes remain stable until the gap to excitations, charged under H,
close16. In the above example (where G̃ = SO(3), H = Zf2 and G = SU(2)), we had to
close the fermion parity gap at the boundary to destroy the edge mode.

Emergent anomalies

SPT transitions are stabilized by the mutual anomaly between the protecting symme-
try group G̃ and the duality symmetry at the transition (e.g., the Lieb-Schultz-Mattis
anomaly of the Heisenberg chain, as discussed above) [82, 91, 231]. This anomaly is lifted
when we extend G̃ by H, but we propose that there is always an emergent anomaly en-
coded in the symmetry properties of the string orders associated to the symmetry group
H (such as the fermion parity string in Eq. (7.11) being odd under D̂). It is interesting to
observe that since a QSPT transition involves the whole 1D bulk, the emergent anomaly
is characterized by a 1D object. In contrast, an edge mode is a zero-dimensional QSPT
phenomenon, and correspondingly its parametric stability is encoded in a 0D charge.

16To change from half-integer to integer representation on a single edge, we have to create (annihilate) a
fermion. Such operation clearly changes fermion parity and, thus, is charged with respect to H = Zf

2 .
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Higher dimensions

Note that the same mechanism of emergent anomalies in 1D SPT transitions applies to
the 1D edge modes of 2D SPT phases.

For instance, if one trivializes an Z2-SPT in 2D by extending by a second Z2 symmetry
P̂ into Z4, then we expect that the string order of P̂ will have a non-trivial charge
under Z4—encoding the emergent anomaly. For example, the Z2 bosonic SPT can be
trivialized by introducing fermions, similar to what we considered here [232]. In the
simplest case, where the (now non-anomalous) edge mode is written as a 1D system,
this string order can be directly computed and its non-trivial charge is a mechanism for
the recently discovered intrinsically gapless SPT phases [233]17. In the full 2D model, it
can be challenging to access this string order directly (similar to access PL directly in
Fig. 7.2), but a clear-cut implication is that the edge mode has an emergent anomaly that
can only disappear by spontaneously breaking the symmetry or by driving a boundary
phase transition where the gap associated to the extending symmetry P̂ must close. This
situation is analogous to what we saw for the SPT transition in the ionic Hubbard chain.

7.4 Summary & Outlook
It is commonly known that SPT phases can be trivialized by symmetry breaking. How-
ever, this way all topological signatures immediately disappear. In this chapter, we stud-
ied an alternative way of trivializing SPTs by extending the symmetry group, which, in
contrast to symmetry breaking, leaves various topological phenomena intact over a finite
region of the phase diagram. For the concrete case study of the BIHM, we characterized
this stability in terms of discrete invariants: a parity quantum number P̂L = ±1 label-
ing distinct representations of π-rotations and an Z2 invariant, whose non-trivial element
signals an emergent anomaly of the quotient group and duality symmetry. Thereby, we
argued that different representations on the edges can only change if the fermion parity
gap closes, and the emergent anomaly disappears if fermions become gapless or there
is spontaneous-symmetry breaking. Similar signatures we have found for the low-lying
eigenvalues of the entanglement spectrum. A key observation made in this overall dis-
cussion was that there is a separation of energy scales. We argued that charge degrees
of freedom along the gapless line are gapped, while spin degrees of freedom are gapless,
which was reflected in the long-range order of the fermion parity string. Thus, the Z2
invariant associated to a fermion parity string is protected by a finite gap, which explains
its parametric stability. On the other hand, if the emergent anomaly is gapped out by
explicitly breaking duality symmetry in a way that the resulting state is a non-trivial
QSPT, then edge modes are parametrically stable as long as the separation of energy
scales remains intact.

The results obtained in this chapter are of particular relevance to physical implementa-
tions of SPT phases, where the protecting symmetry group is often a low-energy effective
17Such phase has no gapped analogue—meaning the symmetry group, here Z4, has a trivial second

cohomology group H2(Z4, U(1)) = 0.
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quotient group. For instance, the spin-rotation symmetry protecting the Haldane phase
in a spin chain is typically derived from a fermion symmetry of an underlying Hubbard
model. The results in this work thus show that the experimental realization of such
bosonic SPT phases is meaningful, since many of their topological phenomena are stable
even when the bulk is—strictly speaking—not in a true SPT phase. As an aside, we note
that string observables as in Eq. (7.11) are measurable in cold-atom systems [234–237].

Outlook. In the above lattice model, we saw a (parametrically) stable transition and
edge mode. It is an open question how closely these are linked: it is tempting to think
that the emergent edge mode cannot disappear before the emergent phase transition
gaps out. Indeed, in Fig. 7.1 both features terminate at Uc1 . This is intuitive given the
interpretation of edge modes as being spatially localized phase transitions [238–241], but
it would be interesting to make this correspondence more exact.
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Chapter 8

Conclusion & Outlook

In this thesis, we studied two different branches of bosonic symmetry-protected topolog-
ical phases. In the first three chapters, we considered higher-order topology in the 2D
super-lattice Bose-Hubbard model. Thereby, we discussed various aspects of higher-order
topology, and found an experimentally accessible, strongly-interacting lattice model. In
the second half, we focused on quotient group symmetry-protected topological phenom-
ena in one-dimensional Zn × Zn-symmetric chains and the ionic Hubbard model, where
we found that additional gapped degrees of freedom can endow the quantum critical
point between distinct SPTs (protected by Zn×Zn symmetry) with additional topolog-
ical properties, or protect topological signatures of the Haldane phase even though the
bulk is strictly speaking in a trivial phase. These phenomena are based on the fact that
the global symmetry acts as quotient group at low-energies.

Although at first glance the aforementioned topics seem to be unrelated, that is actu-
ally not the case. In fact, those two topics can be considered from a common standpoint:
From a very general point of view, we studied the interplay of SPTs1 with additional
symmetries. In the first part, when discussing HOSPT phases, we saw that internal
symmetries are not sufficient to protect the non-trivial topology and, thus, we had to
require additional spatial symmetries. Together, these symmetries have been able to dif-
ferentiate distinct phases of matter. On the other hand, in the second part, we learned
that enlarging the symmetry group can trivialize the topology of the underlying state
without a bulk phase transition and can change quantum criticality between two distinct
classes of SPTs. Hence, while one side (additional) symmetries can increase the number
of phases, it can on the other side also decrease the number of distinct states, which,
however, depends strongly on the global symmetry group and models of interest. In
summary, we can say that (additional) symmetries can be “foes” and “friends” of SPTs.

Below we provide a brief summary of the most important results we obtained in this
thesis, and give an outlook.

1Note in the presence of symmetries even a trivial disordered state is a SPT, it is a trivial one.

154



Chapter 8 Conclusion & Outlook

Part I: Higher-order symmetry-protected topological phenomena

Chapter 3

In Chap. 3 we considered the 2D Bose-Hubbard model on a super-lattice and showed
that this model—at half-filling—realizes two robust higher-order SPT phases protected
by U(1) × C4 symmetry. In the limit of hardcore bosons, there is an additional Z2
symmetry that together with U(1) gives rise to exact zero-energy modes at the corners.
In this limit, the 2D SL-BHM fits into the classification of HOSPT phases discussed
in Sec. 2.2.3. To argue non-trivial topology of the two distinct phases realized by this
model, we considered the higher-order Zak (Berry) phase introduced by Araki et al. [128]
for which we found two distinct quantized values in individual phases. Moreover, we in-
troduced fractional corner charges and argued that these serve as a genuine topological
invariant. Since at the beginning of this thesis, one of the main questions was to pro-
vide an experimentally accessible model, we evaluated full-counting statistics for the
one-dimensional and two-dimensional SL-BHM to which experimentalists can compare
to. While in 1D the distribution is sharply peaked (for large enough systems), in 2D we
are limited by our numerical technique to consider systems sizes beyond 10 × 10. Nev-
ertheless, we find reasonable data centered around the expected values of the fractional
corner charge. Moreover, we argued that for the parameters we used, the model is ac-
cessible in the lab. Thus, we have shown that the 2D SL-BHM at half-filling realizes two
distinct and robust higher-order topological phases that can be detected in experiments
and paved the way to verify theoretically predicted higher-order topology.

Chapter 4

So far, we demonstrated that the 2D SL-BHM realizes a gapped, symmetric phase at
half-filling, here, however, we showed that this also the case for commensurate bulk
fillings {1/4, 3/4}, which we numerically verified using iDMRG. Moreover, we also iden-
tified a many-body invariant relating bulk topology to fractional corner charges. To
this end, we showed that the higher-order Zak (Berry) phase, introduced previously,
measures the C4 eigenvalue of the underlying state after a 2π flux insertion into the
central plaquette. From this observation, we constructed a many-body invariant, a U(1)
flux insertion operator, that inserts non-trivial flux into the central plaquette—causing a
non-trivial shift of angular momentum. This non-trivial shift is directly related to bind-
ing of fractional charges at disclinations, a topological lattice defect that in a continuum
approximation of crystals is related to non-trivial curvature of space. This interplay of
gravitational and electromagnetic degrees of freedom we characterized using the discrete
Wen-Zee response, which distinguishes different HOSPT phases of the 2D SL-BHM, and
is related to non-trivial fractional corner charges. To substantiate our analytical results,
we numerically evaluated the many-body invariants for several bulk fillings of the 2D
SL-BHM.

In the second half of this chapter, we asked whether we can deduce non-trivial topology
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of the state by investigating the entanglement spectrum. Indeed, we found that in
the case of exact zero-energy modes (hardcore bosons), i.e., projective presentations at
the corners, the entanglement spectrum of the reduced density matrix at the corner
is degenerate with even multiplicities. For finite interactions among the bosons, there
are no zero-energy modes anymore, but still fractional charges at the corners. Upon
a C4-symmetric bipartition, we showed that for the quarter-filled cases the degeneracy
remains, while for the half-filled case we found both; degenerate and non-degenerate
eigenvalues. However, we demonstrated that the entanglement spectrum becomes fully
degenerate if we further bipartite non-degenerate Schmidt states, which we denoted as
higher-order entanglement—a unique feature of HOSPT phases.

Chapter 5

In this chapter, we showed that the fractional corner charge and a variant of the higher-
order Zak (Berry) phase—for the half-filled case—are in one-to-one correspondence, that
is, a non-trivial, quantized change of the latter implies a quantized change of the former.
To this end, we showed that conventional periodic boundary conditions for studying
HOSPT phases are not the optimal choice, and introduced corner periodic boundary
conditions. As a consequence, the separation of edges and bulk remains intact. This
has the advantage that we can move the symmetry twist—to evaluate the formerly
introduced higher-order Zak (Berry) phase—of the central plaquette to the boundary
plaquette and, thus, avoid non-trivial flux insertion in the bulk, which might cause a
gap closing in the thermodynamic limit. From this, we constructed a new variant of
a higher-order Zak (Berry) phase, which, however, is only quantized in the limit of
hardcore bosons and half-filling.

By explicitly constructing two distinct Thouless pumps, we numerically demonstrated
that a non-trivial, quantized change of this new higher-order Zak (Berry) phase serves
a sensor of charge flow, and measured at each corner, gives us the quantized change
of the fractional corner charge. Afterwards, we explicitly proved that a change of the
higher-order Zak (Berry) phase is directly related to a quantized charge transport. For
this, we generalized Resta’s construction of the many-body polarization to higher-order
systems, and used an adiabatic approximation. This gives rise to a strict bulk-boundary
correspondence in higher-order topological systems. Importantly, although the higher-
order Zak (Berry) phase introduced here is only a well-defined quantized invariant in
the limit of hardcore bosons, we argued that the bulk-boundary correspondence remains
intact even if the on-site repulsion becomes finite, since the change of this phase—during
one Thouless pump cycle—remains quantized.

Although we were unable to prove the bulk-boundary correspondence for the higher-
order Zak (Berry) phase introduced by Araki et al. [128], we, nevertheless, argued it
numerically. Moreover, we showed that the proof hinge on the fact to prove that the
loop integrals in parameter space2 of the higher-order Zak (Berry) phase and the phase
introduced by Resta’s construction must coincide.

2This parameter space characterizes different Thouless pumps.
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In the first three chapters we have characterized higher-order topological phases in the
2D SL-BHM from many points of view, and demonstrated that this model is the opti-
mal choice for comparing theoretical results to experiments, which is essential, then one
major task of theoretical physicists is to provide predictions that can be either verified
or falsified by experimentalists. A theory, without experimental probes, remains what
is—a theory. Even though we already characterized many aspects of this model, there
are still a few open questions: First, up to this point, we have not been able to prove a
strict bulk-boundary correspondence for the higher-order Zak (Berry) phase discussed in
Chap. 3, albeit we already sketched a possible solution. Moreover, the Thouless pumps
considered here were only for a particular filling. In the future, it would be worthwhile
to study Thouless pumps of the quarter-filled cases, although this might be more chal-
lenging because we have to ensure gapped edges if we use corner periodic boundary
conditions.

Part II: Quotient group symmetry-protected topological phenomena

Chapter 6

Here we studied fixed-point models of bosonic SPTs in one-dimensional Zn×Zn symmet-
ric quantum chains, and analyzed their transitions. Thereby, we first generalized previous
results and found that for n < 4 any single parameter interpolation between two-fixed
point models crosses a single, unique QCP. Moreover, we uncovered that direct transi-
tions of lower dimensional symmetry groups, n ≤ 4, reappear in higher-dimensional sym-
metry groups and, consequently, are embedded into a higher-dimensional Hilbert space.
This naturally leads to additional gapped degrees of freedom at quantum criticality,
which also occur for transitions with an intermediate gapless phase. As a consequence,
we found that the action of the global symmetry on low-energy degrees of freedom is
given by the quotient group. This had a number of consequences: First, we found that
in the presence of additional gapped degrees of freedom, not all SPT transition are al-
lowed. Starting from the trivial phase, we can only enter those classes for which certain
compatibility conditions are satisfied. For example, projective representations of gapped
symmetries (subgroups acting on high-energy degrees of freedom) must be trivial. Sec-
ond, the QCP or intermediate gapless phases (n > 5) can be endowed with additional
topological properties, such as edge modes and degeneracy of the entanglement spectrum
and, thus, form so-called gapless SPTs. Hence, in the presence of symmetries, we can
further specify the nature of the underlying CFTs and distinguish them even if they have
the same central charge. Third, for certain transitions the low-energy representation of
the global symmetry together with a duality mapping, which gets a symmetry if both
Hamiltonians have equal weight, has an emergent anomaly—forbidding a gapped, sym-
metric state. This makes criticality parametrically robust to perturbations to a gapped,
symmetric phase. We explicitly demonstrated this by studying a phase diagram of the
Z4×Z4 case, where we indeed found a stable gapless line that ends in a non-trivial SPT.
The results we obtained from the study of these models naturally generalize to other
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SPT transitions. Namely, if certain compatibility conditions are fulfilled and a normal
subgroup3 remains gapped throughout the interpolation, then the low-energy theory is
governed by the quotient group.

By evaluating a second phase diagram of Z3 × Z3 fixed-point models, we showed
that the equal-weighted sum of all fixed-point models cannot have a gapped, symmetric
ground state. At this fine-tuned point, there is an additional Zn symmetry, which
together with the global symmetry has an anomaly. Intriguingly, we discovered that this
additional symmetry enhances to a global U(1) symmetry, but the global symmetry is
not Zn ×Zn ×U(1). What the precise form of this symmetry is, has not been answered
yet, and we leave it to future research.

Chapter 7

In the former case of quotient group symmetry-protected topological phenomena, we saw
that, by lifting the emergent anomaly, quantum criticality can be gapped out towards a
non-trivial SPT. This was possible because the global symmetry group can protect non-
trivial SPTs, here, however, this is not possible. For the bond-alternating ionic Hubbard
model, studied in this chapter, the global symmetry of interest is spinful SU(2) sym-
metry, which cannot protect non-trivial SPTs. Indeed, we found here that the quotient
symmetry, SO(3), together with modified translations has an emergent anomaly, that
is parametrically stable and is gapped out towards a trivial, disordered phase. In fact,
this line, in the limit of strong on-site repulsion among fermions, separates the Haldane
phase from its trivial counterpart, both realized as the low-energy description of the
bond-alternating ionic Hubbard model. Along this line charge degrees of freedom re-
main gapped, which was reflected in long-range order of fermion parity and, thus, the
global symmetry—at low-energy—is given by SU(2)/Zf2 = SO(3).

An important observation made in both chapters is a separation of energy scales.
Upon breaking the duality symmetry, unnecessary quantum criticality (in the bond-
alternating ionic Hubbard model) is gapped out towards a trivial or non-trivial SPT,
and as long as the separation of energy scales remains intact, topological signatures
such as edge modes and degeneracies—at least for low-lying levels—persist, and are
symmetry-protected. Unlike conventional SPTs, we demonstrated that QSPTs do not
require a bulk phase transition to be trivialized; however, if considered with boundaries,
there is a parity gap closing on the edge, where the parity quantum number along the
edge can change. In more formal language, we say projective representations at the
boundary have been lifted to a linear one.

By numerically evaluating a two-parameter phase diagram, we showed that topolog-
ical signatures are stable over a large parameter regime, and that the Haldane phase,
appearing as a low-energy phase in the bond-alternating ionic Hubbard model, is trivial-
ized by fluctuating charges. Since the underlying mechanism here is not model specific,
we dubbed those phases QSPTs and argued that they can appear in higher-dimensions
as well.

3A subgroup H is normal if for any h ∈ H and g ∈ G the following holds: ghg−1 ∈ H.
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In summary, we have shown that quotient group symmetry-protected topological phe-
nomena go hand in hand with a separation of energy scales and, consequently, the low-
energy representation of the global symmetry is a quotient group. Moreover, the presence
of additional gapped degrees of freedom can endow quantum criticality with non-trivial
topological properties, and, in particular, keeps it parametrically stable against symme-
try preserving perturbations. Depending on the overall symmetry group, we showed that
quantum criticality can be gapped out either to non-trivial SPTs or to trivial, disordered
phases. In the latter case, this opens up a new door for experimentalists to realize “SPT”
phases without breaking global symmetries nor ramping trough critical points.

The topological signatures of the Haldane phase have been remarkably stable; however,
we do not know how generic this is. Thus, it would be interesting to study another model
that realizes such phase in certain limits, maybe even in 2D because here we expect the
full one-dimensional edge to go critical, which, unlike the 0D case, is a true quantum
phase transition.
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Appendix A

Finding gapped phases of the 2D SL-BHM
at half-filling

A.1 Bulk correlation length
In Fig. A.1 we show the bulk correlation length ξ of the 2D SL-BHM, which we evaluated
using iDMRG on an infinite cylinder with circumference Ly = 6. To obtain the phase
diagram, we calculated ξ starting from the trivial phase up to t = 0.5. The reason is
that for such geometry there is a duality transformation that exchanges the hopping am-
plitudes t↔ 1− t and, hence, both phases of the 2D SL-BHM. Consequently, the phase
diagram is symmetric around t = 0.5. Thus, to obtain the full phase diagram, we mir-
rored the results with respect to the axis defined by t = 0.5. The duality transformation
is given by single-site translation along x and y, respectively.

From the results shown in Fig. A.1, we clearly see that as the bond dimension increases,
the bulk correlation length ξ in the gapped phases saturates, while in the intermediate
superfluid phase increases as a function of bond dimension. For a gapless phase, the
scaling of the correlation length and MPS bond dimension is given as follows [194]:

ξ ∼ χκ, κ > 0. (A.1)
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Figure A.1: Bulk correlation length. From the ground state at different bond di-
mensions χ, we obtain the bulk correlation length ξ. In regions where ξ
saturates, the 2D SL-BHM has extended gapped phases, while in other re-
gions ξ grows indefinitely, signaling a superfluid phase. Moreover, there is
a duality transformation for the 2D SL-BHM on such geometry and, hence,
the phase diagram is symmetric with respect to t = 0.5. For the simula-
tion, we truncated the local Hilbert space, i.e., we allowed for maximal four
bosons per site.
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Appendix B

Add-ons to quotient group
symmetry-protected topological phenomena
in Zn × Zn chains

B.1 Details of numerical calculations
Here we shortly explain how we obtained the phase diagrams shown in Figs. 6.3 and 6.7,
and, moreover, give details of how we evaluated the central charges for Figs. 6.3 and 6.6.
In addition, we provide information about the calculation of string operators in Fig 6.3c.
All numerical data have been obtained using iDMRG with open boundary conditions,
where, most of the time, we explicitly conserved the global Zn × Zn symmetry.

B.1.1 Calculations of phase diagrams
To obtain the ternary plots, we first evaluated the phase diagram of

Ĥ
(n)
021(λ, µ) = (1− λ)Ĥ(n)

0 + λĤ
(n)
2 + µĤ

(n)
1 , (B.1)

with (λ, µ) ∈ [0, 1] × [0, 1] and n ∈ {3, 4}. To this end, we evaluated the ground states
using iDMRG with a maximal bond dimension of χ = 700 and a resolution ∆λ = ∆µ =
0.01. The phase boundaries are set at those points, where (η, ξ)—the second-largest
eigenvalue of the MPS transfer matrix and correlation length [98]—fulfill the condition:
η = e−1/ξ > 0.99. For the ternary diagram, we need to normalize the couplings by
rescaling the Hamiltonian Ĥ

(n)
021(λ, µ) → (1 + µ)−1Ĥ

(n)
021(λ, µ). Thus, as shown in the

main text, the couplings add up to one
1− λ
1 + µ︸ ︷︷ ︸

≡α

+ λ

1 + µ︸ ︷︷ ︸
≡β

+ µ

1 + µ︸ ︷︷ ︸
≡γ

= 1. (B.2)

Finally, we need to map the ternary coordinates to Cartesian coordinates [242]

x = λ

1 + µ
+ µ

2(1 + µ) , y =
√

3
2

µ

1 + µ
, (B.3)

with (x, y) ∈ [0, 1] × [0,
√

3/2], from which we obtained the phase diagrams shown in
Figs. 6.3 and 6.7.
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B.1.2 Calculations of central charges
To obtain the central charges of Figs. 6.3b and 6.6, we evaluated the ground states using
iDMRG and evaluated the half-infinite chain entanglement entropy S for different MPS
bond dimensions χ. The central charge is then obtained via the formula [193, 194]:

S(χ) = c

6 log ξ(χ) + const.. (B.4)

For Fig. 6.3b, the central charge was evaluated for Hamiltonian (B.1) at (n, λ, µ) =
(4, 0.5, 0.15). The iDMRG calculation stopped if, for a given bond dimension, the relative
change in energy and half-infinite chain entanglement entropy among two successive
sweeps was below ∆E < 10−8 and ∆S < 10−6, respectively.

B.1.3 Calculations of string operators
For obtaining the string operators, shown in Fig. 6.3c, we evaluated the ground state for
Hamiltonian

Ĥ
(4)
021(γ) = 1− γ

2
(
Ĥ

(4)
0 + Ĥ

(4)
2

)
+ γĤ

(4)
1 , γ ∈ [0, 1]. (B.5)

In the SSB phase and the SPT phases, we evaluated the ground states for bond di-
mensions up to χ ∈ {100, 200, ..., 1000} and obtained the string operators for different
numbers of unit cells r0 ∈ {100, 200, ..., 1000}, and then checked convergence in χ as well
as in distance. For iDMRG calculations in the SSB phase, we conserved only one of the
Zn symmetries. The data in Fig. 6.3c are shown for χ = 1000 and r0 = 1000. Along the
gapless line, the situation is different. Here we conserved the full Z4 × Z4 symmetry in
our calculations. The string operators with trivial end-points are quickly converged as
a function of (χ, r0), while this is not the case for the string operators with non-trivial
end-points. There string operators act on both, gapped and gapless degrees of freedom.
In the unperturbed case, the string, consisting of the generators of Z2 × Z2 subgroup,
can be ignored as X̂2

j,σ = 1 for all sites, and it remains to evaluate the correlation func-
tion ⟨Ẑl,σẐl+r0,σ⟩. According to App. B.2, Eq. (B.13), these operators have a non-trivial
action on gapless degrees of freedom. As a consequence, these string operators decay
algebraically (see Fig. B.1.) For a critical state, the MPS approximates true correlations
only up to the MPS correlation length. Thus, for each bond dimension, the length of
the string is set by the MPS correlation length. Afterwards we can do an extrapolation
to obtain the infinite length value of the string operator, which in this case is zero1.

1From the analytical side—given the discrete charges of end-point operators—we know that if the
ground state is Z4 ×Z4 symmetric and the trivially charged string operator has long-range order, the
other string operator must vanish.
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Figure B.1: Algebraic decay. Algebraic decay of non-trivially charged string operators
along the gapless line, explicitly shown for O1

A (γ = 0.02) as a function
of distance, which is fixed by the MPS correlation length depending on
χ ∈ {100, ..., 1000}.

B.2 Operator identities, quotient symmetry and effective
Hamiltonians

In this section we discuss how the quotient symmetry, the effective Hamiltonian and
the embedding of the quotient symmetry in the full Hilbert space arise if a local Zδ
symmetry is conserved. To this end, we first discuss an alternative representation of the
local operator X̂j,σ from which we then derive the representation of local operators in
the ground state subspace.

B.2.1 A new representation and a projection operator
As a first step, we prove that the generator of Zn can be written as:

X̂j,σ = 1j,σ1 ⊗ X̂j,σ2 +
(
X̂j,σ1 − 1j,σ1

)
⊗ Σ+

j,σ2
, (B.6)

where we decomposed the local Hilbert space as follows:

Hj,σ = Hj,σ1 ⊗Hj,σ2 , dim (Hj,σi) = Di, D1 ×D2 = n. (B.7)

The operator X̂j,σi is the generator of the ZDi symmetry, defined in Eq. (6.28), and the
operator Σ+

j,σ2
has a single entry given by Σ+

j,σ2
= (|0⟩ ⟨D2 − 1|)j,σ2 . The basis states of

Hj,σ can be identified with basis states of Hj,σ1 ⊗Hj,σ2 in the following way:

{
|l⟩j,σ

}
=

D1−1⋃
l1=0

D2−1⋃
l2=0

{
|l1⟩j,σ1

|l2⟩j,σ2

}
. (B.8)
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For example, if we take n = 4, Di = 2, then

|0⟩j,σ = |0⟩j,σ1
|0⟩j,σ2

, |1⟩j,σ = |0⟩j,σ1
|1⟩j,σ2

|2⟩j,σ = |1⟩j,σ1
|0⟩j,σ2

, |3⟩j,σ = |1⟩j,σ1
|1⟩j,σ2

. (B.9)

To prove the operator identities, we need to show that both operators act in the same
way on local basis states. From Eq. (6.28) we recall that

X̂j,σ |l⟩j,σ = |l + 1 mod n⟩j,σ . (B.10)

On the other hand, if the operator, defined in Eq. (B.6), is applied on a local basis state
such as |l1⟩j,σ1

|l2⟩j,σ2
we obtain:

X̂j,σ |l1⟩j,σ1
|l2⟩j,σ2

=
{
|l1⟩j,σ1

|l2 + 1⟩j,σ2
, l2 ̸= D2 − 1

|l1 + 1⟩j,σ1
|0⟩j,σ2

, l2 = D2 − 1.
(B.11)

From Eqs. (B.8, B.9) we see that there are D1 blocks of size D2. Inside each block, the
state |l1⟩j,σ1

is unchanged, while the state |l2⟩j,σ2
is shifted:

|l2⟩j,σ2
→ |l2 + 1⟩j,σ2

.

On the other hand, if a basis state |l⟩j,σ is transferred from one block to another, then
the state |l1⟩j,σ1

is shifted:
|l1⟩j,σ1

→ |l1 + 1⟩j,σ1
,

while the state |l2⟩j,σ2
jumps back to zero |l2⟩j,σ2

→ |0⟩j,σ2
. This is exactly what the

operator defined in Eq. (B.6) does, see also Eq. (B.11). For example, if we set D1 = δ
and D2 = nδ (nδ ≡ n/δ), then the operator X̂nδ

j,σ is given by,

X̂nδ
j,σ = X̂j,σ1 ⊗ 1j,σ2 . (B.12)

To see this, note that for this operator any local basis state |l⟩j,σ is always shifted by nδ:

|l⟩j,σ → |l + nδ⟩j,σ ,

and since D2 = nδ, this implies that each time X̂nδ
j,σ is applied, |l1⟩j,σ1

is shifted |l1⟩j,σ1
→

|l1 + 1⟩j,σ1
.

Projection operator

If we now project, with a projector given by,

P̂
(n)
j,σ =

(
|ω0⟩ ⟨ω0|

)
j,σ1
⊗ 1j,σ2 , X̂j,σ1 |ω0⟩σ1

= |ω0⟩j,σ1
, (B.13)

into the nδ-fold degenerate eigenspace with eigenvalue one—e(X̂nδ
j,σ) = 1—then the op-

erator X̂j,σ, in this subspace, reduce to

X̂j,σ

e(X̂nδ
j,σ)=1

−−−−−−→ X̂j,σ2 . (B.14)

165



Appendix B Add-ons to quotient group symmetry-protected topological phenomena in
Zn × Zn chains

If nδ = 2, then the operator X̂j,σ2 reduce to the Pauli operator X̂j,σ2 . Similarly, given
the decomposition of the basis states, Eq. (B.8), it is easily verified that

Ẑδj,σ = 1j,σ1 ⊗ Ẑj,σ2

e(X̂nδ
j,σ)=1

−−−−−−→ Ẑj,σ2 , (B.15)

is up to dimensional reduction, unchanged under projections. Moreover, if nδ = 2, then
Ẑδj,σ reduce to the Pauli operator Ẑj,σ2

B.2.2 Quotient symmetry group
If the generators of the global Zn × Zn symmetry are projected into the ground state
subspace, then the global symmetry reduce to its quotient group given by Znδ

× Znδ
.

This can be seen as follows: In the low-energy subspace the identity element and the
generators of Zδ × Zδ are mapped to the same element, namely:

1j,σ

e(X̂nδ
j,σ)=1

−−−−−−→ 1j,σ2 , X̂nδ
j,σ

e(X̂nδ
j,σ)=1

−−−−−−→ 1j,σ2 . (B.16)

Hence, two elements of Zn × Zn symmetry that differ by an element of Zδ × Zδ belong
to the same element in the low-energy subspace. This is precisely the definition of a
quotient group2. Thus, at low-energies the symmetry group acts indeed as a quotient
group

Znδ
× Znδ

= (Zn × Zn) / (Zδ × Zδ) . (B.17)

B.2.3 Embedding of the quotient symmetry
In the main text, we argued that the embedding of the quotient group becomes an exact
symmetry of Ĥ(n)

0 and Ĥ
(n)
n/2. To see this, we set D2 = 23, then according to Eq. (B.6)

we can write4

X̂j,σ = X̂j,σ2 + 1
2
(
X̂j,σ1 − 1j,σ1

) (
X̂j,σ2 + iŶj,σ2

)
, (B.18)

where we used that—Σ+
j,σ2

—reduce to the raising operator of spin-1/2 degrees of freedom.
Similarly, we find that Ẑn/2

j,σ = Ẑj,σ2 . Now let us define the embedding of the quotient
symmetry as follows:

Q̂σ =
∏
j

Ŵj,σ1 ⊗ X̂j,σ2 , (B.19)

where we identified Ŵ from the main text, Eq. (6.46), with Ŵj,σ1 , which itself is defined
through:

Ŵj,σ1 : X̂j,σ1 ↔ X̂†
j,σ1

, Ŵj,σ1 : Ẑj,σ1 ↔ Ẑ†
j,σ1

. (B.20)

2Aside from the condition that the subgroup H of G must be normal, i.e., for each h ∈ H and g ∈ G
we have that ghg−1 ∈ H, which is clearly the case here.

3For Ĥ(n)
0 the dimensions of how we decompose the local Hilbert space can be chosen arbitrarily.

4Recall that for two-dimensional subspaces we use a different notation for the Pauli operators.
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In the eigenbasis of Ẑj,σ1 , it can be written as:

Ŵj,σ1 =
n
2 −1∑
l1=0

(
|n2 − l1⟩ ⟨l1|

)
j,σ1

. (B.21)

This indeed shows that under the embedding of the quotient symmetry, local operators,
with X̂j,σ given in Eq. (B.18), transform as follows:

Q̂σ : X̂j,σ ↔ X̂†
j,σ, Q̂σ : Ẑ

n
2
j,σ ↔ −Ẑ

n
2
j,σ (B.22)

from which we conclude that the embedding of the quotient group becomes an additional
Z2 × Z2 symmetry of Ĥ(n)

0 and Ĥ
(n)
n/2.

B.2.4 Effective Hamiltonian
Given the local projection operator, Eq. (B.13), we immediately see that the effective
Hamiltonian of Ĥ(n)

δ —with nδ integer-valued—is indeed given by Ĥ(nδ)
1 ,

Ĥ
(n)
δ

e(X̂nδ
j,σ)=1

−−−−−−→ Ĥ
(nδ)
1 , (B.23)

where Ĥ(nδ)
1 acts solely on {σ2} degrees of freedom. The remaining degrees of freedom,

{σ1}, form a trivial product state,

|Ψ(n)
δ ⟩ = |ω0⟩︸︷︷︸

σ1

|Ψ(nδ)
1 ⟩︸ ︷︷ ︸
σ2

, |ω0⟩ =
∏
j,σ1

|ω0⟩j,σ1
, X̂j,σ1 |ω0⟩j,σ1

= |ω0⟩j,σ1
. (B.24)

Thus, the path Γ(n)
0δ (λ, µ), defined in Eq. (6.45), reduce for sufficiently large µ ∈ R+

0 to
the interpolation of Ĥnδ

01 (λ)—up to a constant shift. Note if the representation of the
local Zδ symmetry changes after applying powers of the SPT-Entangler on Γ(n)

0δ (λ, µ), to
arrive at Γ(n)

dδ (λ, µ), the ground state cannot be longer factorized as in Eq. (B.24).

B.3 Ground state sector
In this section, we prove that if certain global symmetries are preserved that the interpo-
lation Γ(n)

0δ (λ, 0) = Ĥ
(n)
0δ (λ)5, Eq. (6.45)—with nδ ≡ n/δ integer-valued—indeed reduce

to the path Ĥ
(nδ)
01 (λ). To this end, we first summarize for which cases we are able to

prove the equivalence of paths:

Main result. If the ground state is symmetric under the product of sublattice
symmetry and Ŵσ, ŜABŴσ, with σ ∈ {A,B} and two-site translations, then the
interpolation Γ(n)

0δ (λ, 0) = Ĥ
(n)
0δ (λ) reduce to the path Ĥ

(nδ)
01 (λ) if δ is odd or if

nδ = 2.

5Note since all paths are unitarily related, it is sufficient to discuss this for d = 0.
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Symmetry transformation

Under the first symmetry, ŜABŴσ, any fixed-point model is mapped to itself. First,
the operator Ŵσ, defined in Eq. (6.53), maps the local operators X̂j,σ and Ẑj,σ to their
complex conjugates and, thus, exchanges a pair of complex conjugate fixed-point Hamil-
tonians

Ŵσ : Ĥ(n)
d ↔ Ĥ

(n)
−d .

Second, sublattice symmetry, by definition exchanges, A↔ B , which results in

ŜAB : Ĥ(n)
d ↔ Ĥ

(n)
−d .

Hence, both symmetries together leave a fixed-point model unchanged. Clearly, by
construction, any fixed-point model is invariant under two-site translations.

Validity of results

Although we cannot prove the above result (golden box) for all cases, we, nevertheless,
believe that it is true for all (n, δ) with nδ integer-valued. To substantiate this, recall
that we have already considered two examples of such scenarios in the main text, which
are given by (n, δ) ∈ {(6, 2), (8, 2)} (see Fig. 6.6). Here the path followed the effective
description.

B.3.1 Proof of effective paths
For all interpolations, with nδ ∈ N, the Hamiltonian conserves a local Zδ symmetry
generated by X̂nδ

j,σ, see Eq. (6.42). By Elitzur’s theorem [243] we guaranteed that local
symmetries are not spontaneously broken and, thus, the ground state is always a common
eigenstate of the Hamiltonian and these operators. Hence, for such basis, we can replace
the operators by their corresponding quantum numbers. From the previous section, we
know that if we can argue that all these local quantum numbers are equal to one, then
we have shown that the interpolation Ĥ

(n)
0δ (λ) reduce to Ĥ(nδ)

01 (λ) (see Eq. (B.23)).

Fixing the local subspace

As a first step, using the additional symmetry, we show that all local quantum numbers
associated to X̂nδ

j,σ must be real and equal for all sites. To this end, assuming a symmetric
ground state, we obtain the following two conditions6:

(i) : ⟨X̂nδ
j,A⟩ = ⟨X̂†nδ

j,B ⟩ , (ii) : ⟨X̂nδ
j,A⟩ = ⟨X̂nδ

j,B⟩ , (B.25)

where in (i) we applied ŜABŴB, while in (ii) we acted with ŜABŴA. This implies that
possible local eigenspaces are: e(X̂nδ

j,σ) = 1 or e(X̂nδ
j,σ) = −1 for all sites7 within a unit

cell. Together with two-site translation symmetry, this must hold for all sites in the
lattice.

6Note that ŜABŴσ acts on the right.
7Recall here e(X̂nδ

j,σ) denotes the eigenspace characterized by its eigenvalue.
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Models with δ ∈ 2N + 1

For these cases, the generator of the local Zδ symmetry has exactly one eigenspace,
which is characterized by a real eigenvalue, namely, e(X̂nδ

j,σ) = 1. Thus, for odd δ

we have shown that the interpolation of Ĥ(n)
0δ (λ) reduce to the path Ĥ

(nδ)
01 (λ)—if the

symmetry generated by ŜABŴσ, with σ ∈ {A,B}, is not spontaneously broken. Note,
since there is no other real eigenspace, we do not need two-site translations for these
cases.

Models with δ ∈ 2N

On the other hand, if δ ∈ 2N, then there are two possible eigenspaces characterized by
real quantum numbers e(X̂nδ

j,σ) = ±1. For these cases, we can prove, given that the ratio
nδ = 2, that the ground state must be in the sector with all local quantum numbers
equal to one.

If nδ = 2 and the Hamiltonian is projected into the eigenspace where all local eigenspaces
are characterized by the negative quantum number, i.e., e(X̂nδ

j,σ) = −1, then the resulting
Hamiltonian vanishes, which can be seen as follows: For nδ = 2, the operator X̂j,σ in
this subspace, Eq. (B.18), reduce to

X̂j,σ

e(X̂nδ
j,σ)=−1

−−−−−−−→ −iŶj,σ2 , (B.26)

where Ŷj,σ2 is the Pauli operator along y. Hence, in this subspace complex conjugate
terms add up to zero

X̂j,σ + X̂†
j,σ = 0, (B.27)

and similarly for terms of Ĥ(n)
n/2.

Variational principle. Second, using the variation principle, we can prove that the
ground state energy of the Hamiltonian Ĥ

(n)
0n/2(λ) must be negative,

EG ≤ ⟨Ψ(n)
0 |Ĥ

(n)
0n/2(λ)|Ψ(n)

0 ⟩ = −4(1− λ)L (B.28)

where EG denotes the ground state energy, |Ψ(n)
0 ⟩ the ground state of Ĥ(n)

0 and L is the
number of unit cells. Moreover, we used that the expectation value,

⟨Ψ(n)
0 |Ĥ

(n)
n/2|Ψ

(n)
0 ⟩ = 0,

vanishes. If λ = 1, then the expression on the right of Eq. (B.28) vanishes, but at this
point, the Hamiltonian Ĥ(n)

0n/2(λ = 1) reduce to Ĥ(n)
n/2, for which we know that the ground

state energy is negative. In conclusion, if nδ = 2 and there is no SSB of ŜABŴσ with
σ ∈ {A,B} and two-site translation symmetry, then the ground state is found in the
sector with all local eigenvalues equal to one. For instance, for the Hamiltonian Ĥ

(4)
02

discussed in Sec. 6.1 this is the case.
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B.4 Gauge anomalies
In Secs. 6.1.4 and 6.2.4 we saw that if the duality mapping becomes an additional
symmetry that it together with the global Zn×Zn symmetry forbids a gapped, symmetric
ground state. In Sec. 6.2.6 we observed a similar scenario, where we considered the
equal-weighted sum of all fixed-point Hamiltonians and found that—in addition to the
global Zn × Zn symmetry—the SPT-Entangler generates an additional Zn symmetry
such that the representation of the symmetry group, Zn × Zn × Zn, forbids a gapped,
symmetric ground state. To this end, we first give a brief definition of gauge anomalies
and discuss the link to group cohomology and 2D interacting bosonic SPTs. Second, we
introduce the ansatz of Ref. [85] that allows for an explicit calculation of elements of
group cohomology, which we then use for cases mentioned above.

Definition of gauge anomalies

If a representation of a symmetry is anomalous, there cannot be a gapped, symmetric
ground state [18, 86, 88, 91, 108]8. We say such symmetry has a gauge anomaly—also
known as ’t Hooft anomaly [244], which is an obstruction to being able to gauge a global
symmetry [86, 89, 244, 245]. For lattice systems, this means that we cannot promote
a global symmetry to a local one by introducing additional degrees of freedom (cf. Z2
lattice gauge theory [246]). Moreover, if a representation of a symmetry is anomalous,
it does not allow for an on-site representation [86]. Formally, a representation of a
symmetry group G is on-site if the representation U(g), g ∈ G can be written as a
product U(g) = ∏

i Ui(g) of terms acting on disjoint regions [18, 86, 88].
Note, certain authors [91] consider it as a definition of an anomalous symmetry if

a particular representation of a symmetry group forbids a gapped, symmetric ground
state. We follow this convention, but as pointed out by the authors of this reference,
a more fundamental understanding of anomalies can be obtained if its link to group
cohomology is considered. This also allows for a connection of 1D gauge anomalies and
2D interacting bosonic SPTs [86].

B.4.1 Connection to group cohomology
Previously, we defined gauge anomalies as representations of symmetries that forbid
gapped, symmetric ground states. For one-dimensional systems, with a global symme-
try G and a representation U(g), it was shown that there cannot be a gapped, sym-
metric ground state if a given representation belongs to a non-trivial 3-cocycle, which
form the elements of the third cohomology group H3(G,U(1)) [18, 108]. Indeed, gauge
anomalies for one-dimensional systems have been classified by the third cohomology
group H3(G,U(1)) [86, 88, 91]. Such groups also label distinct classes of interacting
bosonic SPTs in two dimensions [64]. This naturally leads to the question: How are
one-dimensional gauge anomalies and 2D SPTs are related? The answer to this has

8Here we mainly focus on 1+1D systems. In higher dimensions there can be gapped, symmetric states
which, however, are topologically ordered.
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been, among others, given by Ref. [85], where the authors showed that 2D interacting
bosonic SPTs protected by on-site symmetries are fully characterized by the anomalous
action of its protecting symmetry on its one-dimensional boundary9. Moreover, the
boundary theory of such two-dimensional SPT can be considered as a model—in one
dimension lower—on its own right [82, 85]. Upon explicit symmetry-breaking, this gives
rise to non-trivial SPTs in one dimension lower [82].

Gauge anomaly of Zn × Zn × ZT2 symmetry

Why is the previous relationship important? When discussing gauge anomalies, Sec. 6.2.4,
we argued that there exists an antiunitary representation of the duality mapping, which
in combination with Zn × Zn symmetry can forbid a gapped, symmetric ground state.
This happens if the relative charge along the transition cannot be written as a square
of another Zn charge, i.e., ∆q ̸= q′2 with q′ ∈ Zn. Indeed, in Ref. [82] it was shown,
that given this condition, the one-dimensional system with Zn×Zn×ZT2 symmetry can
be considered as the low-energy boundary theory of a non-trivial two-dimensional SPT
protected by this symmetry. Hence, the representation of this symmetry amounts to a
non-trivial 3-cocycle of H3(Zn × Zn × ZT2 , U(1)) and, thus, according to the definition,
has a gauge anomaly.

B.4.2 The idea of dimensional reductions
To evaluate the 3-cocycles of H3(G,U(1)), the authors of Ref. [85] made use of dimen-
sional reduction. For example, the 2-cocycle of H2(G,U(1)) classifying one-dimensional
SPTs is obtained on how the symmetry acts on the zero-dimensional boundary. To ob-
tain the 3-cocycle of a two-dimensional SPT, the symmetry action is first restricted to
the one-dimensional boundary of the system. As a boundary itself has no boundary,
the action of the symmetry on the one-dimensional subsystem is further restricted to a
finite segment M . Finally, the 3-cocycle is obtained from how the symmetry acts on the
zero-dimensional boundary of M (see Fig B.2).

2D-SPT

1D-SPT

1D-Stripe M1D-Edge 0D-Edges

0D-Edges

Figure B.2: Dimensional reduction. To obtain the 2-cocycles and 3-cocycles classi-
fying one- and two-dimensional SPTs, respectively, the action of the global
symmetry on a 0-dimensional boundary is considered.

9For detailed examples, see Refs. [18, 80] and also Sec. 2.2.2
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B.4.3 The details of dimensional reductions
For what follows, we assume that the global symmetry, on the one-dimensional bound-
ary, can be represented by a finite-depth quantum circuit10. Then, there is a clear notion
of what is meant to restrict the symmetry action further to a finite strip M . A repre-
sentation UM (g), with g ∈ G, is called a restriction of U(g) on M if deep inside the
strip it is indistinguishable from the global representation U(g). However, this immedi-
ately implies that the restriction is not unique, and only well-defined up to local unitary
transformations residing near the boundary ∂M . If U(g), with g ∈ G, is a faithful
representation of the symmetry group on the one-dimensional submanifold, then given
the ambiguity of restrictions, the group multiplication law for UM (g) holds up to a local
unitary Ω(g1, g2), which is localized near the boundary of ∂M , i.e.,

UM (g1)UM (g2) = Ω(g1, g2)UM (g1g2), (B.29)

which we will see soon for a concrete example. From the associative property of groups,
it follows that:

Ω(g1, g2)Ω(g12, g3) =UM (g1) Ω(g2, g3)Ω(g1, g23) (B.30)

where we followed Ref. [85] in using the conjugation notation yx = yxy−1 and defined
gij ≡ gigj .

Fractionalization and 3-cocycles

Since the boundary of a one-dimensional strip consists of two points, (l, r), and Ω(g1, g2)
is a local unitary acting near the boundaries, we can write:

Ω(g1, g2) = Ωl(g1, g2)Ωr(g1, g2). (B.31)

In Ref. [85] it was proven that for the restriction Ω(g1, g2) → Ωr(g1, g2), Eq. (B.30) is
fulfilled up to a U(1) phase factor:

Ωr(g1, g2)Ωr(g12, g3) =ω(g1, g2, g3)UM (g1)Ωr(g2, g3)
Ωr(g1, g23) (B.32)

where ω(g1, g2, g3) ∈ H3(G,U(1)) is a 3-cocycle. However, note that the 3-cocycle itself
is only well-defined modulo a gauge transformation, which can be seen from Eq. (B.31).
If we simultaneously replace

Ωl(g1, g2)→ β̄(g1, g2)Ωl(g1, g2) ∧ Ωr(g1, g2)→ β(g1, g2)Ωr(g1, g2),

where β(g1, g2) ∈ U(1), then we obtain after insertion into Eq. (B.30):

ω′(g1, g2, g3) = ω(g1, g2, g3)β(g1, g2)β(g12, g3)
β(g2, g3)β(g1, g23) , (B.33)

10This naturally occurs on the boundary of a 2+1D gapped, symmetric system with an on-site symmetry.
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which shows that ω(g1, g2, g3) is not uniquely defined and any other ω′(g1, g2, g3), related
through Eq. (B.33), needs to be considered as equivalent11. Given this degree of freedom,
it is important to construct an invariant that is unchanged—upon rephasing the 3-
cocycle—since finding the invariant to be non-trivial then implies a non-trivial anomaly!
As we shall see, such an invariant can be built from a product of several 3-cocycles.

Inheritance of gauge anomalies

Before we explicitly calculate the gauge anomalies, let us emphasize an important point:
To prove that a given representation of a symmetry group G has a gauge anomaly, it
is sufficient to evaluate the gauge anomaly of a subgroup G̃ ⊂ G. If a symmetry G is
anomaly-free, then the same holds for all of its subgroups. Conversely, an anomalous
subgroup implies that G itself is anomalous.

B.4.4 Gauge anomaly of Zn × Zn ⋊ (Z2 × Z2) symmetry
For demonstrating the gauge anomaly of this symmetry, it is sufficient to consider a
subgroup G̃ = Z2 consisting of two elements Z2 = {1, P}. Since the third cohomology
group is given by H3(Z2, U(1)) = Z2 [64], a non-trivial anomaly corresponds to the
(unique) nonzero element of this. From the group properties, it follows that the product
of two 3-cocycles is again a 3-cocycle. According to Eq. (B.33), the following product is
gauge-invariant:

ω′(P, P, P )ω′(P, 1, P ) = ω(P, P, P )ω(P, 1, P ), (B.34)

and since it is another 3-cocycle of H3(Z2, U(1)) = Z2, it must square to one

ω(P, P, P )2ω(P, 1, P )2 = 1. (B.35)

Consequently, we obtain ω(P, P, P )ω(P, 1, P ) = ±1. Thus, if we find +1, the symmetry
is non-anomalous, whereas −1 implies an anomaly.

Construction of an observable

If we denote the representation of the elements by U(P ) and U(1), respectively, then as
we will see for the relevant Z2 symmetry, Eq. (B.38), the following property holds:

UM (P ) = UM (P )UM (1) ∧ UM (P ) = UM (1)UM (P ), (B.36)

which implies that Ω(g, 1) = Ω(1, g) = 1, defined in Eq. (B.29), for any g ∈ Z2. Thus,
Ωr(1, g) and Ωr(g, 1) can be at most a U(1) phase factor. Inserting the 3-cocycles—
defined through Eq. (B.32)—into the gauge-invariant expression, ω(P, P, P )ω(P, 1, P ),
shows that its sign can be obtained from:

U(P )U2
M,r(P )U−1(P ) = ±U2

M,r(P ) , (B.37)

11Note this property, beside the cocycle condition, defines the third cohomology group H3(G,U(1)).
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where we used that a single end-point is sufficient and, thus, send the left end-point of M
to −∞, which makes U2

M,r(P ) a semi-infinite string with end-point at site r. Moreover,
without changing the final result, we replaced the restriction of UM (P ) by its global
representation. If the sign on the right is non-trivial, then the representation has a
gauge anomaly.

Explicit calculation of the 3-cocycle

On the operator level the Z2 subgroup is given by,

Z2 =
{
1,GAGn/2

B D̂
(n)
dδ;A

}
, U(1) = 1, U(P ) = GAGn/2

B D̂
(n)
dδ;A (B.38)

where Gσ, with σ ∈ {A,B}, generates the Zn × Zn symmetry, and D̂
(n)
dδ;A is the duality

transformation defined in Eq. (6.52). As a first step, we need to evaluate the semi-infinite
circuit U2

M,r,B(P ) terminating at site (r,B). This results in12,

U2
M,r,B(P ) ∼

∏
j≤r

X̂j,A

∏
j≤r

X̂
n/2
j,B

∏
j≤r

Ŵj,A

∏
j<r

(
CZ̄(n)

)2d+δ

j,AB

(
CZ(n)

)2d+δ

(j,B),(j+1,A)

·
(
CZ̄(n)

)2d+δ

r,AB

]2

∼ Ẑ†(2d+δ)
r,B , (B.39)

which becomes a local operator. Here we used Eq. (6.34) and the fact that any operator
X̂j,σ is only affected by nearby gates (see also Fig. B.3)

CZ̄
(n)
j,ABX̂j,A =X̂j,AẐ

†
j,BCZ̄

(n)
j,AB

CZ
(n)
(j−1,B),(j,A)X̂j,A =Ẑj−1,BX̂j,ACZ

(n)
(j−1,B),(j,A), (B.40)

and similarly for X̂j,B. The half-infinite string of ŴM,r,A has no relevant effect, it just
sends ŴM,r,A : GM,r,A → G†

M,r,A.
From Fig. B.3 we see that in Eq. (B.39) the semi-infinite string of Gn/2

M,r,B commutes
with the SPT-Entangler and the non-trivial end-point operator arises from the half-
infinite string of G†

M,r,A, where the complex conjugate appears due to the semi-infinite
string of ŴM,r,A. Inserting Eq. (B.39) into Eq. (B.37) gives

U(P )Ẑ†(2d+δ)
r,B U−1(P ) = ω−δ

2 Ẑ
†(2d+δ)
r,B , (B.41)

where we used that ω2d+δ
2 = ωδ2. As stated in the main text, there is an intrinsic anomaly

if n is even and δ is odd. Note, this results holds for all n ∈ 2N. In particular, if n = 2,
12Since we consider only a single end-point, the final result is well-defined up to phase factor, which,

however, is not relevant for evaluating the gauge anomaly.

174



Appendix B Add-ons to quotient group symmetry-protected topological phenomena in
Zn × Zn chains

(a)

(b)

Figure B.3: Commutation relations. Graphical representation of the commutation
relations of the semi-infinite strings GM,r,A, panel (a), and GM,r;B, panel
(b), with the SPT-Entangler Û (n)

M,r,B. The red arrow denotes the remaining
operator once the half-infinite symmetry generator GM,r,A is pulled through
the half-infinite circuit.

then ŴA = 1 and GAGn/2
B = GAB such that we obtain the Z2 gauge anomaly of Ĥ(2)

01 ,
which was, among others, shown in the CZX model [18, 108] and reviewed in Sec. 2.2.2.

B.4.5 Gauge anomaly of Z4 × Z4 × Z2 symmetry
In Sec. 6.1.4 we showed that the combination of Z4×Z4 symmetry together with the Z2

symmetry generated by
(
Û (4)

)2
≡ Û2 forbids a gapped, symmetric ground state. Unlike

previously, any Z2 subgroup of Z4 × Z4 × Z2 is anomaly-free since their generators are
explicitly on-site. Consequently, we cannot use the foregoing approach to evaluate the
corresponding 3-cocycle.

Slant product

However, there is another way of detecting the gauge anomaly of this symmetry, using a
slant product. Following Refs. [107, 198] a slant product maps a 3-cocycle of H3(G,U(1))
to a 2-cocycle of H2(G,U(1)). Such map is defined as follows:

χg(h, k) = ω(g, h, k)ω(h, k, g)
ω(h, g, k) , g, h, k ∈ G, (B.42)

where χg(h, k) is the corresponding 2-cocycle. As cocycles are not gauge-invariant,
Eq. (B.42) changes by a 2-coboundary if we change ω by a 3-coboundary according to
Eq. (B.33). However, from Sec. 2.2.1 we remember that for Abelian symmetry groups
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the quotient of two 2-cocycles remains invariant under such transformations,

qg(h, k) = χg(h, k)
χg(k, h) . (B.43)

Thus, if qg(h, k) is non-trivial, then the associated representation of a symmetry group
has a gauge anomaly.

Evaluation of qg(h, k)

To evaluate the gauge invariant expression, we first have to find an expression for
ω(g, h, k) considering the full symmetry group Z4 × Z4 × Z2. To simplify notation, we
introduce a shorthand writing: g ≡ (g1, g2, g3). Thus, representations of the symmetry
group are defined as follows:

U(g) = Gg1
A G

g2
B

[
Û2]g3 , g ∈ Z4 × Z4 × Z2. (B.44)

Note for finding ω(g,h,k) it is sufficient to consider a single end-point. Therefore,
similar to the previous case, we define semi-infinite strings,

UM,r(g) =

∏
j≤r

X̂j,A

g1 ∏
j≤r

X̂j,B

g2 ∏
j<r

CZ̄j,ABCZ(j,B),(j+1,A)CZ̄r,AB

g3

, (B.45)

where gates are given by Eq. (6.33). Using Eq. (B.29), we obtain Ωr(g,h) (up to a
phase)

UM,r(g)UM,r(h) ∼ Ωr(g,h)UM,r(g + h) (B.46)

where addition of group elements is defined modulo four for (g1, g2) and modulo two for
g3. Inserting the representation, Eq. (B.45), into this formula, we find13:

Ωr(g,h) ∼ Ẑ2g3h1
r,B . (B.47)

To obtain an expression for ω(g,h,k), we need to plug in this result into Eq. (B.32)
from which we get:

ω(g,h,k) = (−1)g2h3k1 (B.48)

and, thus, using Eq. (B.43) we finally arrive at,

qg(h,k) = (−1)k1(g2h3−h2g3)(−1)h1(k2g3−g2k3)(−1)g1(h2k3−k2h3). (B.49)

For example, if we choose g = (1, 0, 0), h = (0, 1, 0) and k = (0, 0, 1), then qg(h,k) is
non-trivial,

qg(h,k) = −1. (B.50)

Consequently, the representation of Z4 × Z4 × Z2 has a gauge anomaly.

13Note, the calculation is rather similar to the foregoing case, see also Fig. B.3.
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B.5 Robustness and field theory
Here we show from a field theory standpoint that the transition of Ĥ02(λ = 1/2), dis-
cussed in Sec. 6.1.4, is robust to finite perturbations with Ĥ1. If the perturbation is
zero, then the Hamiltonian Ĥ02(λ) in the ground state subspace, upon a unitary trans-
formation, reduce the spin-1/2 quantum XY chain. The corresponding transformation
is given by,

ÛXY =
∏
j

ûj,ABû(j,B),(j+1,A)
∏
j,σ

e−iπ
4 X̂j,σ , (B.51)

where X̂j,σ is a Pauli operator and the two-site gates taken from Ref. [34] read:

ûj,AB = 1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −1 1


j,AB

, (B.52)

and the same for û(j,B),(j+1,A). Using this transformation, we obtain:

Û †
XY Ĥ

(2)
01 (λ = 1/2)ÛXY = 2ĤXY , (B.53)

where Ĥ(2)
01 , defined in Eq. (6.16), denotes the effective Hamiltonian of Ĥ02(λ = 1/2) in

the ground state subspace.

Luttinger liquid

Mapping this model to free-fermions allows for a straight-forward continuum limit of the
lattice model. The derivation of the low-energy field theory of the quantum XY chain
is explicitly shown in Ref. [247], here, however, we use the conventions of Ref. [197],

HLL = 1
2π

∫
dx
[
K (∂xφ(x))2 + 1

4K (∂xθ(x))2
]
. (B.54)

The parameter K is the Luttinger liquid parameter characterizing a one-parameter fam-
ily of compact bosons CFTs, where the compactification radius rc =

√
K [248]. The

two conjugate, 2π-periodic fields are denoted by θ(x) and φ(x). These fields fulfil the
following commutation relation: [∂xθ(x), φ(x′)] = 2πiδ(x− x′). The free-fermion point,
Eq. (B.53), is characterized by a Luttinger parameter K = 1/4. From the vertex op-
erators Vr(x) = eirφ and Vs(x) = eisθ we can construct local perturbations given that
r, s ∈ Z, which keeps the invariance of the theory under a 2π shift of the fields. For
example, adding a perturbation such as V1 + V−1 = 2 cos(φ) to the Hamiltonian results
in a model reminiscent of the sine-Gordon model [246, 249]. The vertex operators have
the following scaling dimensions: [Vr(x)] = r2

4K and [Vs(x)] = s2K. In 1D, the scaling
dimensions of relevant operators must be less than 2 [246], which for K = 1/4 and
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r, s ∈ Z implies: r ∈ {±1} and s ∈ {±1,±2}14. Hence, possible relevant perturbations
can be constructed from:

φ , r := {cosφ, sinφ}
θ, s := {cos θ, sin θ, cos 2θ, sin 2θ} . (B.55)

Symmetries and constraints

Finally, we argue that a particular combination of symmetries at low-energies forbids
adding perturbations—listed in Eq. (B.55)—to the field theory. In the main text, we
showed that if Ĥ1 is added, neither Û2 nor sublattice transformation ŜAB are symmetries
of the resulting Hamiltonian. Only the combined action is preserved (see Eq. (6.20)).
However, as we will show soon, the combined action is not sufficient. Fortunately, there
is an additional on-site unitary that acts trivially on low-energy degrees of freedom,
and, moreover, keeps sublattice symmetry and the duality symmetry separate. In the
full Hilbert space each symmetry operation must be multiplied with Ŵσ defined by
Ŵσ : X̂j,σ ↔ X̂†

j,σ and Ŵσ : Ẑj,σ ↔ Ẑ†
j,σ (see also Eq. (B.20)). This ensures that Ĥ1,

under the action of these symmetries, is mapped to itself, while Ĥ02 stays unchanged
(see Sec. B.3). If one starts from the unperturbed case, then the trivial action of Ŵσ

at low-energies can be inferred from the projector defined in Eq. (B.13). The symmetry
groups generated by Û2Ŵσ and ŜABŴσ are given as follows:

Z2 = {1, Û2Ŵσ}, Z4 = {1, ŜABŴA, ŴAŴB, ŜABŴB}. (B.56)

Again, from the unperturbed case, upon using Eq. (B.13), we find that both symmetry
groups act as an effective Z2 symmetry at low-energy degrees of freedom. This enables
us to find the constraints on the fields imposed by symmetry, which has, among others,
partly answered15 in Ref. [197],

ĜA : φ→ −φ, θ → π − θ
ĜB : φ→ −φ, θ → −θ

Û2Ŵσ : φ→ φ+ π, θ → θ

ŜABŴσ : φ→ −φ, θ → π

2 − θ. (B.57)

It is easily verified that none of the perturbations, listed in Eq. (B.55), is invariant under
the above constraints ⇒ there exist no local perturbation that can be added to the
Hamiltonian (B.54). There are two important comments: First, if we only conserved the
product Û2ŜAB, then a perturbation ∼ sin(φ) would be allowed and since it is relevant, it
would drive the theory to a new RG fixed-point. Second, the absence of any perturbation
remains true as long as the Z2×Z2 subgroup is gapped, i.e, its associated string operators
14For K = 1/4 there is no marginal operator, i.e., operators that have scaling dimension equal to 2.
15In Ref. [197] the authors considered single-site translations instead of sublattice symmetry, but since

both symmetries act in the same way on local operators, namely, exchanging sublattices—their action
on the fields is the same.
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have long-range order and the presence of Ĥ1 keeps the Luttinger parameter above
K > 1/8. If it changes to K = 1/8, then there is a marginal, symmetry allowed term
∼ cos 4θ that can be added to the field theory. In summary, the previous results explain
the robustness of the critical line observed in Fig. 6.3
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Symmetry fractionalization and numerical
details of the bond-alternating ionic
Hubbard model

C.1 Symmetry fractionalization
For discussing symmetry fractionalization, we follow closely Ref. [95] and focus on 1D
systems for concreteness.

If |ψ⟩ is the ground state of a gapped, local Hamiltonian, it has a finite correlation
length ξ [121]. For any block of N sites with size ≫ ξ, we can consider the Schmidt
decomposition,

|ψ⟩ =
∑
α

Λα|ψin
α ⟩ ⊗ |ψout

α ⟩, (C.1)

where |ψin
α ⟩ are quantum states defined purely within the block of N sites. Due to there

being a finite correlation length, all the Schmidt states |ψin
α ⟩ are indistinguishable deep

within the block (i.e., they simply look like |ψ⟩). To see this, let us consider a correlation
function of two operators Oout and Oin that have support only in the outer and inner
region, respectively. Such correlation function can be written as follows:

C(l) = ⟨OoutOin⟩ψ . (C.2)

Now suppose that Oin has only support far way from the edges of the subsystem and that
the distance l is much larger than the bulk correlation length l ≫ ξ, then correlations
factorize (plus exponential corrections)

C(l) l≫ξ−−→ ⟨Oout⟩ψ ⟨Oin⟩ψ . (C.3)

If we initially chose the operator Oout to be a projector on a particular Schmidt state
say, |ψout

β ⟩, then using the previous result, we see that dominant Schmidt states1 must
be indistinguishable from the ground state deep inside the block.

1For area law states, such as ground states of one-dimensional gapped, local Hamiltonians only a few
Schmidt values contribute and others decay exponentially [97, 98].
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Fractionalization

Moreover, due to locality, the two edges of the block are effectively independent (up to
exponentially small errors). We can thus presume that α can be interpreted as a super-
index, which is equivalent to two smaller indices αL, αR such that |ψin

α ⟩ = |ψin
αL,αR

⟩ where
the value of αL (αR) only affects correlation functions on the left (right) end of the block.

Let Û = ∏
n Ûn be a unitary on-site symmetry. If we act with Û only within this

block, it leaves states |ψout
α ⟩ unaffected. Since the states in a Schmidt decomposition

form a complete basis, we can write

Û |ψin
α ⟩ =

∑
β

Uβ;α|ψin
β ⟩ =

∑
βL,βR

UβL,βR;αL,αR
|ψin
βL,βR

⟩. (C.4)

Moreover, as Û is an on-site operator, it will preserve locality, i.e., αL and βR in
UβL,βR;αL,αR

will be uncorrelated. More precisely, we can write (using a shorthand
notation)

UβL,βR;αL,αR
= ULβL;αL

URβR;αR
⇒

L∏
n=1

Ûn|ψ⟩ = ÛLÛR|ψ⟩, (C.5)

where ÛL,R are exponentially localized near the edges of the block of N sites. The
explicit formula in terms of Schmidt states implies that if ∏L

i=1 Ûi|ψ⟩ = ÛLÛR|ψ⟩ and∏L
i=1 V̂i|ψ⟩ = V̂ LV̂ R|ψ⟩ (for a second symmetry V̂ ), then we also have that

L∏
i=1

V̂i

L∏
i=1

Ûi|ψ⟩ = V̂ LV̂ RÛLÛR|ψ⟩. (C.6)

Group relations

The fractionalized symmetries obey the same group relations as the original symmetries
up to potential phase factors (≡ projective representations). For instance, let us suppose
Û and V̂ commute. Let us also assume that ÛL,R are bosonic operators (such that ÛL
commutes with V̂ R). Then

1 = Û V̂ Û−1V̂ −1 = ÛLV̂ L(ÛL)−1(
V̂ L)−1 × ÛRV̂ R(ÛR)−1(

V̂ R)−1
. (C.7)

Since the two factors on the right-hand side act on disjoint regions, yet they multiply to
identity, each of the two factors has to be proportional to a phase:

ÛLV̂ L(ÛL)−1(
V̂ L)−1 = eiα. (C.8)

Moreover, using similar manipulations, one can show that if Û2 = 1, then eiα = ±1.
More generally, the fractionalized symmetries will form a projective representation of
the original symmetry group, which are classified by the second cohomology group
H2(G,U(1)) [64]. Non-trivial projective representations correspond to non-trivial SPT
phases and imply edge modes in the energy spectrum with open boundary conditions, or
degeneracies in the entanglement spectrum for virtual bipartitions (since any projective
representation acting on a 1D vector space is trivial), see also Sec. 2.2.1.
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C.2 Details about numerical calculations and edge gap
To obtain the numerical results, we used DMRG based on the TeNPy library version
(0.3.0) [122]. For all calculations, we conserved the total particle number and the total
magnetization.

C.2.1 Phase diagram of the bond-alternating ionic Hubbard chain
To obtain the critical line for δ = 0, shown in Fig. 7.1, we used a combination of finite
and infinite DMRG with open boundary conditions. To obtain Uc1 , we used the infinite
DMRG approach and calculated the correlation length ξχ(U) for various values of U
and bond dimensions χ. Near the quantum critical point (QCP) we chose dU = 0.001
and the maximal bond dimension was set to χmax = 1000. The number of sweeps was
unbounded and the calculations stopped, when the relative error in the energy per unit
cell ∆E < 10−9 and the relative error in the half-infinite chain entanglement entropy
∆S < 10−5. In this way, the largest energy truncation error was below 10−6. The
critical point Uc1 ≈ 1.96 was found by the maximum value of the correlation length
ξχ(U), as shown in Fig. C.1a. Since this is a continuous phase transition, the half-
infinite chain entanglement entropy diverges at the QCP as well; from Fig. C.1b we see
that the maximum, for the given bond dimension, is at Uc1 . For completeness, we also
show the dimerization order parameter. In the spontaneously dimerized insulator (SDI)
phase, the ground state spontaneously breaks the duality symmetry D̂. As a result, the
dimerization order parameter (and also its density) D = ⟨D̂⟩ /L

D̂ =
∑
n,σ

(−1)n
(
ĉ†
n,σ ĉn,σ + h.c

)
(C.9)

gain a non-zero value (see Fig. C.1c).

BKT-transition

Since the second phase transition along this line is a BKT-transition [207], the previous
approach to estimate the location of Uc2 failed. The reason is that the correlation length
for such a transition diverges exponentially as we approach this QCP [250, 251]. To
tackle this problem, we used finite DMRG calculations to detect this BKT-transition. In
Ref. [252] it was demonstrated that such a QCP can be very precisely located by looking
at bipartite fluctuations. The bipartite fluctuations of a subsystem A are defined by,

FA =
〈∑

j∈A
Ôj

2〉
−
〈∑
j∈A

Ô2
j

〉
, (C.10)

where for our particular case we chose Ôj = Ŝzj because here the BKT-transition into
the gapless phase is associated to spin degrees of freedom, i.e., the spin gap closes [207].
For our calculation, we fixed the subsystem A to be the half of the finite chain with total
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Figure C.1: Second-order phase transition. Panel (a) shows the correlation length
ξχ(U), panel (b) the half-infinite chain entanglement entropy Sχ(U) and
figure (c) the density of the dimerization order parameter Dχ(U) for various
values of U and χ. The QCP Uc1 = 1.96 is determined by the maximum
value of ξχ(U).
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length L ∈ {100, 160, 200, 250}. For a gapless system, it is known that the bipartite
fluctuations scale logarithmically with system size,

F(L) = K

π2 logL+ const., (C.11)

where the constant pre-factor is given by the Luttinger parameter K. The BKT-
transition into the gapless phase is characterized by a Luttinger parameter K = 1/2 (its
value being pinned by spin-rotation symmetry), which then characterizes the Tomonaga-
Luttinger liquid for low-energy degrees of freedom. Numerically, the transition can be
detected if K = 1/2 because above U > Uc2 marginally irrelevant operators lead to loga-
rithmic corrections if K is calculated for finite size systems. The results for different val-
ues of U are shown in Fig. C.2 from which we extracted Uc2 ≈ 2.09. To obtain the ground
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Figure C.2: BKT-transition. Panel (a) − (l) show the bipartite fluctuations FA=L/2
for L ∈ {100, 160, 200, 250}.

states for different system sizes, the bond dimension was set to χ ∈ {800, 800, 1000, 1200}
resulting in an energy truncation error below 10−7 for all system sizes.
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C.2.2 Edge and entanglement gap closing
Here we first consider the exactly solvable case δ = 1, where we can explicitly calculate
the edge gap closing. Moreover, we numerically demonstrate that the phase boundary,
where edge modes disappear, can be extracted from two different approaches: First,
using ground states of different spin sectors but same parity sector and, second, using
ground states of different parity sectors. Finally, we consider the level crossing in the
entanglement spectrum and show that, upon lowering U , the degeneracy of the lowest
eigenvalue changes.

Edge gap

To understand why there is an edge gap closing as we tune U , it is very instructive to
discuss the limit δ = 1, where the boundary consists of two single sites. The Hamiltonian
for these two sites is given by,

Ĥ = −∆
2 N̂1 + ∆

2 N̂2 + U

(
n̂1,↑ −

1
2

)(
n̂1,↓ −

1
2

)
+ U

(
n̂2,↑ −

1
2

)(
n̂2,↓ −

1
2

)
, (C.12)

where N̂i = ∑
σ n̂i,σ. The relevant eigenstates are summarized in Tab. C.1. For

State Energy E0 Parity Sztot

|↑ 0⟩ −∆
2 -1 1/2

|↓ 0⟩ −∆
2 -1 -1/2

|↑↓ ↓⟩ −∆
2 -1 -1/2

|↑↓ ↑⟩ −∆
2 -1 1/2

|0 ↑↓⟩ U
2 −∆ 1 0

|↓ ↓⟩ − U
2 1 -1

|↑ ↑⟩ −U
2 1 1

|↓ ↑⟩ −U
2 1 0

|↑ ↓⟩ −U
2 1 0

Table C.1: Eigenstates, energy levels and quantum numbers. Eigenstates of
Hamiltonian (C.12) with energy levels, parity eigenvalues and total spin Sztot.
For U = ∆, all states are degenerate.

U/∆ ≫ 1, each edge carries a half-integer spin and the overall ground state is fourfold
degenerate and in the opposite limit, U/∆≪ 1, there is a unique ground state with an
empty edge on the right and a doubly filled edge on the left. Except for a single point,
the ground state is always in the even parity sector, but if U/∆≫ 1 there can be states in
different Sztot ∈ {−1, 0, 1} sectors. Since spin degrees of freedom are inherently related to
fermions, this means that once the spin on the edge changes from integer to half-integer,
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Figure C.3: Energies. Energies of the Hamiltonian (C.12) with ∆ = 0.4 and U ∈ [0, 2].
The level crossing happens at U = ∆. In this plot, as well as in Fig. 7.2, we
plotted the following: E0 + U + |E0(U = Uc,edge)| − Uc,edge, where E0 is the
ground state energy in the corresponding sector.

the gap between different parity sectors has to close as well. From Tab. C.1, we observe
that for U = ∆ states of different parity and spin sectors become degenerate. Note, while
states of different spin sectors cross each other at U = ∆, states of different parity sectors
only touch each other (see Fig. C.3). As we tune away from this exactly soluble limit,
bulk and edge do not decouple anymore, and edge modes penetrate exponentially into the
bulk. Nevertheless, the universal features are still present, which we have demonstrated
in Fig. 7.2, which looks similar to Fig. C.3.

Numerics. To numerically detect the vanishing of the edge gap for δ < 1, we first
estimated from the previous calculation, where we expect the edge gap to vanish. After-
wards, we calculated the ground states in two different Sztot = {0, 1} sectors (blue and
black states of Tab. C.1) for ten values of U below our estimation. For each value of U ,
we calculated the edge gap as a function of system size,

|∆edge(L,U)| =|E0 (N = L, Sztot = 0, L, U)− E0 (N = L, Sztot = 1, L, U) |
∼ ∆0,edge(U,L→∞) + e−ξloc(U)/L, (C.13)

from which we could deduce ∆0,edge(U,L → ∞). Lastly, we plotted these constant
terms as function of U and extrapolated to ∆0,edge(Uc,edge, L→∞) = 0 from which we
obtained Uc,edge. For δ ≥ 0.1, we chose system sizes up to L = 76 sites with a maximal
bond dimension χ = 400 to perform our finite DMRG calculations. This results in an
energy truncation error below 10−9. For δ ≤ 0.1, we had to increase the system size up
to L = 380 sites with a maximal bond dimension χ = 600, which results in an energy
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Figure C.4: Edge gap. The beige line is obtained for U ∈ {0.70, ..., 0.80} and the blue
line for U ∈ {0.82, ..., 0.90}. From the extrapolation of both lines, we find
that USpinc,edge = UParityc,edge = 0.817.

truncation error below 10−7. However, we have to admit that the data close to the QCP
are much less accurate.

To illustrate that the gap between different parity and spin sectors—aside from the
exactly soluble limit—close for open boundaries exactly at the same point, we calculated
both gaps for δ = 0.2. From Fig. C.4, we clearly see that both approaches give indeed
the same result. To obtain the gap associated to different parity sectors, we calculated
the difference |E0(N = L, Sztot = 0)− E0(N = L+ 1, Sztot = 1/2)|.

Entanglement gap

To obtain the blue line in Fig. 7.1, we chose a similar approach, except this time we used
iDMRG. The level crossing is obtained from the three lowest eigenvalues (two of them
are degenerate) of the reduced density matrix of a half-infinite chain. The entanglement
eigenvalues are calculated for the same values of δ ∈ {0.01, 0.05, 0.1, 0.2, ..., 1}. For the
simulation, we used a maximal bond dimension χ = 300 for δ ≥ 0.1 and a maximal
bond dimension χ = 700 for δ ≤ 0.1. The calculation stopped if the relative change in
energy per unit cell and entanglement entropy were below ∆E < 10−10 and ∆S < 10−6,
respectively. This way, the energy truncation error is below 10−8.
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C.2.3 QSPT edge phenomena
Parity quantum numbers for a system with OBC

To obtain Fig. 7.2a, we evaluated the ground states for δ = 0.2 in various spin and parity
sectors. This is similar to what we did for the exactly soluble case shown in Fig C.3.
For the calculation, we chose a system with L = 68 and a bond dimension χ = 400,
which results in an energy truncation error below 10−9. The ground states have been
calculated for various values of U ∈ {0.75, 0.76, ..., 0.90}. From Fig. C.4 we know that
the gap between different parity and spin sectors has to close at Uc,edge = 0.817 for open
boundaries.

Parity quantum number of the entanglement spectrum

Since spin rotations commute with the reduced density matrix of a half-infinite chain,
the different blocks of the entanglement spectrum can be labelled by the parity quantum
number, which is defined by P̂ = R̂xR̂yR̂

†
xR̂

†
y. The spin rotations acting on the dominant

eigenstates of the reduced density matrix have a different representation, which we thus
called Uγ with γ ∈ {y, z}. Hence, the action of fermion parity on these states is given by
P = UxUyU†

xU†
y . The reason we chose this particular definition of fermion parity is that

our algorithm can find these unitary operators Uγ only up a to U(1) phase factor. Given
our definition, this phase factor drops out, and we can directly match the eigenvalues
with the corresponding parity eigenvalue [93, 94]. To obtain the entanglement spectrum
and the corresponding parity eigenvalues, we used iDMRG and calculated the ground
state for U ∈ {0.94, 0.95, ..., 1.12} with Uc,ent = 1.054 for a bond dimension χ = 200. The
calculation stopped if the relative change of energy per unit cell was below ∆E < 10−10

and the relative change in the half-infinite chain entanglement entropy below ∆S < 10−6,
which gives an overall energy truncation error below 10−9.

C.2.4 QSPT transition and emergent anomaly along the self-dual line δ = 0
(with ionicity ∆ = 0.4)

To measure the string operator defined in Eq. (7.11), we evaluated the ground state
for several values of U shown in Fig. C.5. The ground state itself was calculated using
iDMRG with a maximal bond dimension of χ = 1000. The calculation stopped if the
relative change of energy per unit cell was below ∆E < 10−10 and the relative change
in the half-infinite chain entanglement entropy below ∆S < 10−6, which gives an energy
truncation error below 10−6 for all values of U . Clearly, for states in the gapped phases,
the energy truncation error is even smaller. To maximize visibility of both operators,
we rescaled the operator O− by a factor of 5. The maximal values of the operators in
the limiting cases are given by,

lim
U→∞

O− = 4, lim
U→0
O+ ≈ 0.4. (C.14)

The former limit is easily obtained because there fermion parity becomes simply the
identity operator P̂n U→∞−−−−→ 1̂n, while for the latter limit we used iDMRG to obtain the
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Figure C.5: Data points for the string order operator. The data points for which
we calculated the string order operators O± defined in the main text.

result (although it could only be obtained using free-fermion calculations).
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Heidelberg, 2002) pp. 167–177.

[210] A. P. Kampf, M. Sekania, G. I. Japaridze, and P. Brune, Journal of Physics:
Condensed Matter 15, 5895 (2003).

[211] S. R. Manmana, V. Meden, R. M. Noack, and K. Schönhammer, Phys. Rev. B 70,
155115 (2004).

199

https://doi.org/10.1103/PhysRevB.101.245160
https://doi.org/10.1103/PhysRevB.103.085130
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1103/PhysRevLett.102.255701
https://doi.org/10.1103/PhysRevLett.102.255701
https://doi.org/10.1103/PhysRevB.93.155163
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.48550/ARXIV.2110.07599
https://doi.org/10.48550/ARXIV.2110.07599
https://doi.org/10.1103/PhysRevB.90.235113
https://doi.org/10.1103/PhysRevB.88.235103
https://doi.org/10.1103/PhysRevB.89.035147
https://doi.org/10.1103/PhysRevLett.112.141602
https://doi.org/10.1103/PhysRevB.90.115118
https://doi.org/10.1088/1367-2630/18/3/035006
https://doi.org/10.1088/1367-2630/18/3/035006
https://doi.org/10.1103/PhysRevB.97.245133
https://doi.org/https://doi.org/10.48550/arXiv.2110.09512
https://doi.org/https://doi.org/10.48550/arXiv.2110.09512
https://doi.org/10.1143/JPSJ.55.2735
https://doi.org/10.1143/JPSJ.55.2735
https://doi.org/10.1103/PhysRevLett.83.2014
https://doi.org/10.1103/PhysRevB.64.121105
https://doi.org/https://doi.org/10.1007/978-3-642-56034-7_15
https://doi.org/https://doi.org/10.1007/978-3-642-56034-7_15
https://doi.org/10.1088/0953-8984/15/34/319
https://doi.org/10.1088/0953-8984/15/34/319
https://doi.org/10.1103/PhysRevB.70.155115
https://doi.org/10.1103/PhysRevB.70.155115


Bibliography

[212] C. D. Batista and A. A. Aligia, Phys. Rev. Lett. 92, 246405 (2004).

[213] H. Otsuka and M. Nakamura, Phys. Rev. B 71, 155105 (2005).

[214] M. E. Torio, A. A. Aligia, G. I. Japaridze, and B. Normand, Phys. Rev. B 73,
115109 (2006).

[215] A. Garg, H. R. Krishnamurthy, and M. Randeria, Phys. Rev. Lett. 97, 046403
(2006).

[216] L. Craco, P. Lombardo, R. Hayn, G. I. Japaridze, and E. Müller-Hartmann, Phys.
Rev. B 78, 075121 (2008).

[217] L. Tincani, R. M. Noack, and D. Baeriswyl, Phys. Rev. B 79, 165109 (2009).

[218] A. Go and G. S. Jeon, Phys. Rev. B 84, 195102 (2011).

[219] M. Hafez Torbati, N. A. Drescher, and G. S. Uhrig, Phys. Rev. B 89, 245126
(2014).

[220] L. Fidkowski and A. Kitaev, Phys. Rev. B 83, 075103 (2011).

[221] C. Teleman, Representation theory (2005).

[222] M. R. Zirnbauer, Journal of Mathematical Physics 62, 021101 (2021).

[223] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107 (2011).

[224] M. Cheng, M. Zaletel, M. Barkeshli, A. Vishwanath, and P. Bonderson, Phys. Rev.
X 6, 041068 (2016).

[225] G. Y. Cho, C.-T. Hsieh, and S. Ryu, Phys. Rev. B 96, 195105 (2017).

[226] X. Yang, S. Jiang, A. Vishwanath, and Y. Ran, Phys. Rev. B 98, 125120 (2018).

[227] C.-M. Jian, Z. Bi, and C. Xu, Phys. Rev. B 97, 054412 (2018).

[228] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

[229] P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

[230] S. Coleman, Communications in Mathematical Physics 31, 259 (1973).

[231] L. Tsui, Y.-T. Huang, and D.-H. Lee, Nuclear Physics B 949, 114799 (2019).

[232] C. Wang, Phys. Rev. B 94, 085130 (2016).

[233] R. Thorngren, A. Vishwanath, and R. Verresen, Phys. Rev. B 104, 075132 (2021).

[234] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross,
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R. Verresen, F. Pollmann, G. Salomon, C. Gross, T. A. Hilker, and I. Bloch, Nature
606, 484 (2022).

[238] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).

[239] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).

[240] T. Fukui, K. Shiozaki, T. Fujiwara, and S. Fujimoto, Journal of the Physical
Society of Japan 81, 114602 (2012).

[241] R. Verresen, Topology and edge states survive quantum criticality between topo-
logical insulators (2020).

[242] C. Stover, Ternary diagram.

[243] S. Elitzur, Phys. Rev. D 12, 3978 (1975).

[244] G. Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry break-
ing, in Recent Developments in Gauge Theories, edited by G. Hooft, C. Itzykson,
A. Jaffe, H. Lehmann, P. K. Mitter, I. M. Singer, and R. Stora (Springer US,
Boston, MA, 1980) pp. 135–157.

[245] R. Thorngren and C. von Keyserlingk, Higher spt’s and a generalization of anomaly
in-flow (2015).

[246] E. Fradkin, Field Theories of Condensed Matter Physics, 2nd ed. (Cambridge Uni-
versity Press, 2013).

[247] T. Giamarchi, Quantum Physics in One Dimension, International Series of Mono-
graphs on Physics (Oxford University Press, Oxford, 2003).

[248] P. H. Ginsparg, Applied conformal field theory (1988), arXiv:hep-th/9108028 [hep-
th] .

[249] E. Fradkin, Quantum Field Theory: An Integrated Approach (Princeton University
Press, 2021).

[250] J. M. Kosterlitz and D. J. Thouless, Journal of Physics C: Solid State Physics 6,
1181 (1973).

[251] V. L. Berezinskii, Journal of Experimental and Theoretical Physics 34, 610 (1972).

[252] S. Rachel, N. Laflorencie, H. F. Song, and K. Le Hur, Phys. Rev. Lett. 108, 116401
(2012).

201

https://doi.org/10.1126/science.aam8990
https://doi.org/10.1126/science.aav9105
https://doi.org/10.1038/s41586-022-04688-z
https://doi.org/10.1038/s41586-022-04688-z
https://doi.org/10.1103/PhysRevD.13.3398
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1143/JPSJ.81.114602
https://doi.org/10.1143/JPSJ.81.114602
https://doi.org/10.48550/ARXIV.2003.05453
https://doi.org/10.48550/ARXIV.2003.05453
https://mathworld.wolfram.com/TernaryDiagram.html
https://doi.org/10.1103/PhysRevD.12.3978
https://doi.org/10.1007/978-1-4684-7571-5_9
https://doi.org/10.48550/ARXIV.1511.02929
https://doi.org/10.48550/ARXIV.1511.02929
https://doi.org/10.1017/CBO9781139015509
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780198525004.001.0001/acprof-9780198525004.
https://arxiv.org/abs/hep-th/
https://arxiv.org/abs/hep-th/9108028
https://arxiv.org/abs/hep-th/9108028
https://books.google.de/books?id=quEIEAAAQBAJ
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
http://www.jetp.ac.ru/cgi-bin/e/index/e/34/3/p610?a=list
https://doi.org/10.1103/PhysRevLett.108.116401
https://doi.org/10.1103/PhysRevLett.108.116401


Acknowledgements

First and foremost, I am deeply indebted to my supervisor, Frank Pollmann, for his
constant support during the last five years. In particular, I am thankful that he brought
me into the absolutely exciting field of topological phases of matter, and shared his
fascination with me. Moreover, he learned me the importance of numerical methods for
understanding such states. From my point of view, Frank was the optimal supervisor
for me because both of us follow the same strategy to tackle new problems and, second,
more importantly, his door was always open, regardless of which nature my problems
have been. That is definitely not self-evident, and without that, I would have never been
at this stage. Thank you!

However, without two other persons, this thesis had never been possible. Thank you,
Ruben Verresen and Fabian Grusdt, for your constant assistance during the last five
years. I do know that patience is not something I was born with, and if I wanted to
know something, I am out of the sudden jumped into your offices and asked you about
my problem, but none of you have ever been annoyed, au contraire, you always took
time to discuss with me about physics.

Ruben, you did not only talk to me about physics, you also shared your advice during
a difficult time that I had during my PhD, that is something I will never forget!

There have been many other people, without whom I could have never managed this
thesis, and, in particular, the results obtained during the PhD. To this end, I need to
say thank you to: Johannes Hauschild, Izabella Lovas, Bernhard Jobst, Sheng-Hsuan
Lin (although we never published something), Julian Wienand, Friederike Horn, Nick
Jones, Josef Willsher, Adam Smith, Yizhi You, Monika Aidelsburger and many others.

Moreover, all the research would not be possible if there was not the administrative
staff. Claudine, thank you very much for your help throughout the last years. Regardless
how often people dropped by, you were always willing to help us to fill out forms or to
answer any other question we had.

Clearly, I thank all my friends and family that supported me during this time, and
always forgave me, when I was again unable to better schedule my time. Thank you,
Lukas, for the last five years and the daily lunches we had together. In particular, I am
deeply indebted to Artöm, who helped me through a very difficult time and offered me
his place, whenever I needed it. Moreover, he made it possible that I had a few hours,
where I did not think about some physics, which is usually very difficult because I am
very passionate about it. For achieving this, he brought me into downhill biking, where
we enjoyed a few, very dangerous and funny days with our bikes.

Friends come and go, but family always stays with you. Thank you mum and dad for
your constant support throughout my whole life. You gave me the freedom to go my own
way, and you always allowed me to do whatever I wanted, especially in the beginning

202



Bibliography

of my school career, where we together decided not to follow the advice of the teachers;
instead, you helped me to successfully proceed with the secondary school. Without that
decision, I certainly would have never been at this stage!

Finally, without the great support of my girlfriend Sandrina my whole studies would
have been impossible. You did not only give me my lovely and beautiful daughter,
Giuliana, you also played the most important part in achieving these results. Although
there have been difficult times for both of us, you never complained, and without batting
an eye you supported me with the daily business.

203


	Abstract
	Kurzfassung
	1 Introduction
	1.1 Motivation, Questions & Methods
	1.1.1 Higher-order topological phases
	1.1.2 Quotient group symmetry-protected topological phenomena
	1.1.3 Methods

	1.2 Outline of the thesis and publications
	1.2.1 Thesis overview
	1.2.2 Summary of publications


	2 Review of quantum phases and symmetry-protected topological phases
	2.1 Two equivalent states of matter
	2.1.1 Short-ranged versus long-ranged entangled states
	2.1.2 Symmetries and restrictions of paths
	2.1.3 Local unitary circuits

	2.2 Symmetry-protected topological phases
	2.2.1 Bosonic SPTs in one dimension
	2.2.2 Two-dimensional bosonic SPTs
	2.2.3 Higher-order bosonic SPT phases
	2.2.4 Symmetry extension and trivialization of SPT phases

	2.3 Summary & Outlook

	Part I: Higher-order symmetry-protected topological phenomena
	3 The super-lattice Bose-Hubbard model—an experimentally accessible HOSPT phase
	3.1 Introduction of the two-dimensional SL-BHM
	3.1.1 The SL-BHM on a square lattice
	3.1.2 Symmetries of the SL-BHM
	3.1.3 Fixed-point phases and relation to others

	3.2 A numerical study: Robustness of gapped phases at half-filling
	3.3 Topological classification of the 2D SL-BHM
	3.3.1 Failure of non-interacting classifications and higher multipole moments
	3.3.2 Higher-order Zak (Berry) phase
	3.3.3 Fractional corner charges
	3.3.4 Relation of topological invariants

	3.4 Fractional corner charges in the context of experiments
	3.4.1 Measurement of fractional corner charges
	3.4.2 Discussion of experimental realizations

	3.5 Summary & Outlook

	4 Higher-order entanglement and many-body invariant
	4.1 HOSPTs in plateaus of the SL-BHM
	4.1.1 Gapped phases of the SL-BHM at different fillings

	4.2 Many-body invariant for HOSPT phases
	4.2.1 Higher-order Zak (Berry) phase and its relation to the C4 eigenvalue
	4.2.2 Constructing a many-body invariant and Wen-Zee response
	4.2.3 Numerical measurement of the Wen-Zee response

	4.3 Entanglement diagnosis for HOSPT phases
	4.3.1 Entanglement spectrum for HOSPTs with projective symmetry at the corner
	4.3.2 Higher-order entanglement in HOSPT phases

	4.4 Summary & Outlook

	5 Thouless pumps and bulk-boundary correspondence in higher-order symmetry-protected topological phases
	5.1 The higher-order Zak (Berry) phase revised
	5.1.1 Deficiencies of the higher-order Zak (Berry) phase
	5.1.2 Corner periodic boundary conditions
	5.1.3 A Z2 quantized higher-order Zak (Berry) phase

	5.2 Introduction to Thouless pumps and their application
	5.2.1 Pumping procedures
	5.2.2 Characterization of Thouless pumps
	5.2.3 Numerical evaluation of Thouless pumps and quadrupole operators

	5.3 A bulk-boundary correspondence
	5.3.1 Lattice Hamiltonian
	5.3.2 Generalizing Resta's construction
	5.3.3 Adiabatic current and total charge transport
	5.3.4 The relation to the Z2 higher-order Zak (Berry) phase

	5.4 Generalization to the C4 higher-order Zak (Berry) phase
	5.5 Summary & Outlook

	Part II: Quotient group symmetry-protected topological phenomena
	6 Quotient group symmetry-protected topological phenomena in ZnZn chains
	6.1 Illustrative case: Z4Z4 SPT transitions
	6.1.1 Z4Z4 fixed-point models
	6.1.2 Projective representations and symmetry fluxes of Z4Z4 fixed-point models
	6.1.3 Quantum phase transitions
	6.1.4 Stability of quantum criticality
	6.1.5 Numerical evaluation of the phase diagram and emergent anomaly
	6.1.6 The embedding of the quotient group
	6.1.7 Symmetry-enriched quantum criticality
	6.1.8 Summary

	6.2 The general case: ZnZn SPT transitions
	6.2.1 ZnZn fixed-point models
	6.2.2 Direct quantum phase transitions
	6.2.3 Protecting symmetry groups
	6.2.4 Anomalies of ZnZn chains
	6.2.5 Symmetry-enriched quantum criticality
	6.2.6 Spontaneous-symmetry-breaking and U(1) symmetry

	6.3 Generalizations to other symmetry groups and dimensions
	6.4 Summary & Outlook

	7 Quotient group symmetry-protected topological phases in the bond-alternating ionic Hubbard chain
	7.1 Introduction of the bond-alternating ionic Hubbard model
	7.1.1 The Hamiltonian of the BIHM
	7.1.2 Symmetries of the BIHM
	7.1.3 Quantum phases: An overview

	7.2 Quotient group symmetry-protected topological phenomena of the BIHM
	7.2.1 Stability of edge modes and degeneracies in the entanglement spectrum
	7.2.2 Stability of SPT transition

	7.3 General emergent anomalies
	7.4 Summary & Outlook

	8 Conclusion & Outlook
	A Finding gapped phases of the 2D SL-BHM at half-filling
	A.1 Bulk correlation length

	B Add-ons to quotient group symmetry-protected topological phenomena in ZnZn chains
	B.1 Details of numerical calculations
	B.1.1 Calculations of phase diagrams
	B.1.2 Calculations of central charges
	B.1.3 Calculations of string operators

	B.2 Operator identities, quotient symmetry and effective Hamiltonians
	B.2.1 A new representation and a projection operator
	B.2.2 Quotient symmetry group
	B.2.3 Embedding of the quotient symmetry
	B.2.4 Effective Hamiltonian

	B.3 Ground state sector
	B.3.1 Proof of effective paths

	B.4 Gauge anomalies
	B.4.1 Connection to group cohomology
	B.4.2 The idea of dimensional reductions
	B.4.3 The details of dimensional reductions
	B.4.4 Gauge anomaly of ZnZn(ȸ0⤀ 猀礀洀洀攀琀爀�
	B.4.5 Gauge anomaly of Z4Z4Z2 symmetry

	B.5 Robustness and field theory

	C Symmetry fractionalization and numerical details of the bond-alternating ionic Hubbard model
	C.1 Symmetry fractionalization 
	C.2 Details about numerical calculations and edge gap
	C.2.1 Phase diagram of the bond-alternating ionic Hubbard chain
	C.2.2 Edge and entanglement gap closing
	C.2.3 QSPT edge phenomena
	C.2.4 QSPT transition and emergent anomaly along the self-dual line = 0 (with ionicity = 0.4)


	Bibliography
	Acknowledgements

