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Abstract: Design of new materials is quite a difficult task owing to various time and length scales
and affiliated uncertainties. The major challenge is to include all these in a conventional model.
Hyperparameter models in machine learning can be used to overcome these issues. In this paper, an
artificial neural network (ANN) model is developed to estimate the effective elastic parameters of
unidirectional fiber reinforced composites using representative volume elements (RVE) considering
uncertainty in the fiber diameter. The diameter probability distribution is constructed from the
acquired gray images by employing image processing operations. The generalized Polynomial Chaos
(gPC) expansion is then used to represent the distribution as a random input parameter for finite
element analysis, from where the effective parameters are realized. Similarly, the outputs of the FE
model, i.e., elastic parameters, are approximated by gPC expansions having unknown deterministic
coefficients and random orthogonal Hermite polynomials. A set of collocation points are generated
from roots of the random polynomials; from there, the unknown coefficients are estimated. The
realization samples are utilized to train an ANN algorithm based on supervised deep learning. The
developed ANN model is later tested and validated for a new sample set of data. It is shown that the
ANN model with few hidden layers and neurons has a high accuracy for estimation of the elastic
parameters directly from the information on the distribution of fiber diameters.

Keywords: constitutive equations; machine learning; fiber composites; deep learning; representative
volume elements; uncertainty; image processing

1. Introduction

Under many situations, the conventional modeling and simulations for calculation
of state parameters break down due to material being nonlinear, multiscale, unknown,
and high dimensional, as well as uncertainty, etc. The estimation of such parameters
for the heterogeneous materials based on multiscale micromechanics models have been
widely explored in past decades [1], analytically and numerically [2–5]. The experimental
determination of such parameters is, however, a very expensive process. Furthermore,
deterministic analysis leads to nominal design due to the inherent randomness in consti-
tutive components. Uncertainty in material and geometrical parameters can be captured
very well [6] in Monte Carlo based finite element (FE) analysis but applicability in the
design phase is limited by the computational time. The major challenge is to include all
these in conventional models. On the other hand, the availability of large data on such
material motivates to develop databased numerical models from which the parameters can
be estimated.

Designing of new materials to achieve tunable properties is an important task in
engineering. The process is, however, quite difficult, and the modeling process faces
an inverse problem. In contrast to the forward modeling problem, here, the structure of
material and combination ratios are unknown. In many cases, any explicit knowledge about
the physical behavior of such parameters is unavailable or limited. Consequently, various
models at different length and time scales have to be investigated to achieve the desired
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properties. Furthermore, it is mandatory to include the details of each scale, including
uncertainties between scales. Involving all these in a physics-based conventional modeling
tool such as the FE method is not possible, or at least very difficult for implementation.
Machine learning (ML) based algorithms provide such facilities where the available data
or information on the material is fed to a hyperparameter computer algorithm to detect the
governing rules or relationships between the data. The rules are later used for constructing
a prediction model. Such nonconventional modeling has a great benefit when one deals
with uncertainty in the state variables. The application of ML, particularly Artificial Neural
Networks (ANN), in composite materials has been reported in the past few years [7–11].
In most of these studies, the impact of uncertainties in the microstructure and material
properties have been ignored.

In this paper a supervised Deep Learning (DL) model is developed to predict the
elastic parameters of unidirectional (UD) fiber composites considering uncertainty in the
fiber geometrical parameters. Image processing techniques [12] are used to realize the
probability distribution of the fiber diameter. The distribution is then approximated by
the generalized Polynomial Chaos (gPC) expansion to be used as input for FE simulation.
The FE analysis is carried out using RVE to realize the elastic parameters employing
micromechanical models. The realizations are utilized to construct an ANN predictive
model having a predefined architecture. The ANN model is trained on a random set of the
available data based on the supervised machine learning algorithms. The prediction model
is then validated on a set of new data generated from FE simulations for new a probability
distribution of fiber diameter.

This paper is organized as follows: in the next section, we present the basic theory of
micromechanics for parameter estimation. The theory of machine learning for microme-
chanics under uncertainty is presented in Section 3. Numerical results are given in Section 4
and Section 5 discusses the conclusions.

2. Micromechanics Based Estimation of Elastic Parameters

In this section, the classical computational micromechanics is employed for estimation
of elastic parameters of UD fiber composites. The procedure deals with strictly methods, i.e.,
empirical adjusting factors are not required [13]. It is assumed that materials have isotropic
cylindrical infinite fibers embedded in an elastic matrix, see Figure 1a. Furthermore, the
Ruess model (constant strain), cf. Figure 1b, is used to estimated the modulus E11, E22, the
shear modulus G12 and Poisson’s ratio ν12.

(a) (b)

ε0

ε0

ε 0 ε 0

(c)

σ0

σ0

σ
0

σ
0

Figure 1. (a) Cross section of composite material. Representing the RVE based on (b) Vogit and (c)
Reuss models.

Assuming the orthotropic material properties at the mesoscale (lamina), the 6× 6
random stiffness tensor D(ξ) is estimated as

D(ξ)=σ(ξ)ε(ξ)T (1)
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in which σ and εT are row and column vectors, respectively, and ξ={ξk}, k=1, 2, . . . , n
denotes vector of n random dimensions of the random space Ω representing material and
geometry uncertainties. To evaluate the elastic tensor, the RVE is subjected to a constant
strain εij0 at all its boundary conditions, i.e.,

u+
i (x1, x2, x3)− u−i (x1, x2, x3) = aεij0 (2)

where −a ≤ xi ≤ +a and (u+
i , u−i ) are the values of ui at xi =+a and xi =−a, respectively.

This yields in the state of uncertain strain εij(x1, x2, x3, ξ) at each point (x1, x2, x3) inside
the RVE having volume V, represented as

1
V

∫
Ω

∫
V

εij(x1, x2, x3, ξ)dVdξ= εij0 (3)

This results in state of stress in the RVE. By setting a unit value for εij0 , one can
calculate the components of the elastic tensor as

Dij(ξ)=σi(ξ)=
1
V

∫
V

σi(x1, x2, x3, ξ)dV, ε j0 =1 (4)

In terms of FE calculations, the uncertain components of D=
[
Dij(ξ)

]
, i, j=1, 2, . . . , 6

are estimated by averaging the element stress field in Equation (4) over the element volume
given by

Dij(ξ)= σ̄ij(ξ)=
1

∑e v(e) ∑
e

σ̄(e)(ξ)v(e) (5)

where σ̄ij denotes the average stress, v(e) is the element volume and σ̄(e) represents the
average elemental stress. Once the components of tensor D are estimated, the uncertain
elastic parameters are calculated, e.g., for E11(ξ)

E11(ξ)=D11(ξ)−
2D12(ξ)

D22(ξ) + D23(ξ)
(6)

The random vector ξ, in this paper, is limited only to geometric uncertainty in the
diameters of fibers. In FE simulations, it is represented as an input random variable and
approximated by the generalized Polynomial Chaos (gPC) expansion [14]. In analogy to
this, the uncertain elastic parameters are represented as gPC expansions having unknown
coefficients and a random orthogonal basis. Here, in this paper, orthogonal Hermite
polynomials are used as the expansion basis. The unknown coefficients are then calculated
on a set of elastic parameters generated on sample collocation points, cf. [6].

3. Deep Learning for Micromechanics under Uncertainty

In this section, the supervised DL method is adopted for estimation of uncertain
elastic parameters of lamina considering randomness in fiber diameters. It was assumed
that the UD composite material has cylindrical fibers with random diameters and infi-
nite lengths embedded in an elastic matrix. Samples of RVE cells [15] were considered
with the fiber diameter as the random variable. The finite element model of each RVE
was then developed to estimate the vector of macro-scale elastic parameters represented
as eq = {E11, E22, G12, ν12}q, q = 1, 2, . . . , n. The DL process begins with a set of input
data collection E= {e1, e2, . . . , en}T on the assigned target output, E = {E1, E2, . . . , En}T ,
approximated by a functional Ê, in the form of

Ê(E, w) = f

(
m

∑
j=1

wj ϕj(E)

)
= f
(

wTϕ(E)
)

(7)

The row vector wT = {w0, w1, w2, . . . , wm} denotes unknown adaptive parameters
associated with each hidden layer in the artificial neural network (ANN), cf. Figure 2.
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Figure 2. Feedforward ANN for predicting of elastic parameters from microcells with uncertain fiber
diameters, d f = 2r f .

Generally, the basis ϕ is a set of nonlinear orthogonal functions. The activation func-
tion f is considered as the identity in the case of parameter estimation. The goal of this
is to develop a model by adjusting the basis functions ϕj depending on the set of initial
parameters w which have to be updated during training. The process requiring the most
effort in the DL process during this step is the estimation of the parameters. Furthermore,
the input data have to be preprocessed, including data labeling [16] and dimension re-
duction methods such as Singular Value Decomposition (SVD) [17] and Dynamic Mode
Decomposition (DMD) [18]. The refined data are then used for the featurization step where
the most informative and nonredundant features of the data, e.g., statistical moments, are
extracted. This facilitates the subsequent learning step in which the data are initially split
into training and testing sets. The training data set is employed to train the algorithm via a
supervised learning method to estimate the unknown parameters using an optimization
method such as gradient descent or stochastic gradient descent [19]. A cost function is
usually defined based on the least squares to estimate the parameters, i.e.,

arg min
w
‖`2(w)‖ = 1

2

n

∑
i=1

[
wTϕ(ei)− Ei

]2
+

λ

2
‖w‖2 (8)

with λ as the regularization factor. The second term, known as the penalty term, is often
used to control the over-fitting phenomenon in order to discourage the coefficients from
reaching large values, cf. [20]. The training step comprises estimation of the parameter set
w via an optimization process by minimizing the cost function. The data samples, here a
set of elastic parameters, are then split into two sets: training and testing sets. As a rule of
thumb, this can be 70% and 30% for training and testing sets, respectively. The training
set was used to estimate the unknown parameter set w. A common approach is to employ
the gradient descent to update the parameters at each step k in the negative direction of
gradient, that is

w(k+1)=w(k) − η(k)∇`(k)2 (w) (9)

The parameter η > 0 represents a positive step size, known as the learning rate. Both
training rate and the descent direction ∇`2(w) are determined at each step, so that the
sequence converges to the local or global minimum of the cost function. The step size
was decreased after each successful step and increased only when a tentative step would
increase the cost function. In this way, one can make sure that the cost function is always
reduced at each iteration of the algorithm. The estimated error was then propagated to the
ANN back to update the parameters. As the cost function has the form of a sum of squares,
the gradient can be computed as

∇`(k)2 (w)=J (k)(w)TE (10)
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in which J is the Jacobian matrix that contains first derivatives of the network errors with
respect to the weights, and E is the vector of network errors. The Jacobian matrix is com-
puted through a standard backpropagation technique [21]. This has a major advantage over
computing the Hessian matrix owing the fact that information on the second derivatives is
not required.

The major goal of using the above DL model is to achieve generalization by developing
an accurate prediction model for new data. Once the parameter set is estimated, the
developed model in Equation (7) can be used to predict the elastic parameters of lamina by
introducing the fiber diameter as new input data. This has been demonstrated in Figure 3.

Microstructure Image ML Image Processing Fiber Radius

ANN Prediction ModelDistribution of
Elastic Parameters

Figure 3. DL based prediction model for estimating the elastic parameters of the composite.

As shown, high-resolution digitally acquired micrographs of microstructure images
can be used to extract the probability distribution of fibers [22,23]. One can obtain the elastic
parameters by considering a separate data test comprising a set of fiber diameters using
image processing [24]. As the predictive model estimates samples of elastic parameters,
the statistical properties of the estimated parameters, e.g., probability density function
(PDF), can then be evaluated using any post-processing analysis. Here, in this paper, the
statistical moments of the estimated data are used to construct the gPC, from which the
PDF of parameters are evaluated [25]. A summary of the numerical procedure is given in
Algorithm 1.

Algorithm 1: Supervised ANN algorithm for estimation of elastic parameters.
Data: samples of fiber radius
Result: elastic parameters
Set optimal ANN architecture (no. layers and neurons);
Construct gPC of PDF of fiber radius;
Generate collocation samples, cf. [6];
Run FE model to realize a set of elastic parameters;
Split the set to training and testing;
Initialization: k=1, λ, w(k), ε;
while error ≤ ε do

Feedforward ANN model for each sample of training set;
Calculate error function `2(w);
Backpropagation of the error to ANN model;
Update parameter set w(k+1);

end
Validate the ANN model for new parameters;
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4. Case Study

In this section, the above procedure is applied to estimate the elastic parameters of
lamina under uncertainty in the fiber diameter. The material properties of the considered
unidirectional composite with isotropic fibers and matrix are given in Table 1.

Table 1. Elastic properties of matrix and transverse isotropic fiber for the training phase of the
developed ANN.

Property Matrix Fiber

Young’s modulus (Gpa) 3.12 241
Poisson’s ratio (–) 0.2 0.38

Note that in terms of engineering constants for the 3D orthotropic RVE and taking
into account that the directions x2 and x3 are indistinguishable, the transversely isotropic
material is assumed, i.e., E22 = E33, ν12 = ν13, G12 = G13 and G23 = E22

2(1+ν23)
. The

full size RVE used for FE simulations exhibiting nominal dimensions of (2a1, 2a2, 2a3) =
(5.27, 10.54, 18.26) µm is shown in Figure 4a, whereas an one-eighth 3D model of the RVE
is employed in the numerical simulation due to the symmetry, cd. (Figure 4b).

(a) Dimensions of RVE (b) One-eighth RVE model

Figure 4. The implemented RVE with dimensions in the FE simulation.

The total volume of the RVE was fixed as the fiber radius varied. The model was
set up with the fiber along the x1 axis and symmetry boundary conditions were applied
on the planes x1 = 0, x2 = 0 and x3 = 0, while a uniform displacement was applied
on the plane x1 = a1. It was assumed that the fiber radius r f can be represented by the
normal distribution, i.e., r f ∼ N (µ f , σ2

f ). The radius of fiber used for the ANN training was
considered as a random variable having the mean value of µ f =3.5 µm with the standard
deviation of σf =0.35 µm. The predicted ANN model was then validated by using new
data generated for the PDF shown on the right side of Figure 5.

Due to the randomness in the fiber diameters, the volume fraction is no longer a
constant value. Assuming that each fiber has a circular cross-sectional with the same
diameter, this is shown in Figure 6.
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Figure 5. PDF of the random fiber radius for training (left) and validation (right) of the ANN.

Figure 6. Relation between the volume fraction, v f , and the fiber radius, r f .

As demonstrated, this relationship is not linear.
In order to determine the components of the elastic matrix and, accordingly, the elastic

parameters of lamina, a unit strain was applied to the unit cell in all directions in sequence
while other components of strains were set to zero. This produces a uniform deformation
corresponding to each boundary condition. A classical FE simulation using solid element
was employed to estimate the elastic parameters of the lamina, i.e., E11, E22, G12 and Pois-
son’s ratio ν12. Two elements per thickness of the RVE was set and the static analysis was
performed. A set of 500 samples for each parameter were collected using the constructed
gPC expansions. The data were then preprocessed to detect any outlier due to truncated
numerical error. This is due to the fact that any outlier may affect the optimization process,
particularly when one uses the gradient descent method.

In the first step, a deep learning ANN was employed to construct a predictive model
having a data set on the fiber diameter. The set was then split into training and testing
sets based on the 70/30 rule. The major challenge for setting the ANN architecture is the
optimal number of hidden layers and neurons to prevent any under- or overestimating.
There is no standard and accepted procedure for designing the ANN architecture, i.e., the
number and type of neuronal layers and the number of neurons comprising each layer.
The initial ANN architecture has to be optimized for eliminating redundant layers and
neurons. The number of neurons in the input layer is equal to the number of features of
the data, here a column 500 neurons. The output layer has four neurons corresponding to
the number of parameters, i.e., E11, E22, G12 and ν12. The number of hidden layers is the
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most difficult task. The optimal size of the hidden layer is usually set by considering the
linear dependency and the size of the input and the output layers. Generally, the number
of hidden layers decreases, as the data are linearly separable. Particularly, one needs any
hidden layers if data are linear independent. To this end, one may consider the linear
dependency of the data by detecting the data correlation, cf. Figure 7.

Figure 7. The qualitative relationships between pairs of parameters. The diagonal plots represent the
distribution of parameters. The off-diagonal plots show the linear and nonlinear relationships of the
elastic parameters.

The plots show the model relationships between pairs of parameters. This relationship
is not linear for all pairs, e.g., E11 and E22. For that reason, while an ANN model without
hidden layers can be used for predication of E11 from randomness in the fiber radius, such
a model results in huge error for prediction of other parameters.

One issue is, however, the achieved performance difference from adding additional
hidden layers. This has been demonstrated in Figure 8 where the mean-squared error is
shown vs. the number of neurons, Nn, for various number of hidden layers, Nl .

Figure 8. The performance of ANN vs. number of neurons, Nn, for various number of hidden
layers, Nl .
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The results show that `2 has minimum error for a single hidden layer with 5 neurons.
This setup is used for further results in this paper.

The designed ANN was then used to reconstruct the data from the FE simulations. A
set of 500 samples from training distribution r f ∼ N (3.5, 0.35), cf. Figure 5, was generated.
The training includes 70% of the sample set where 30% are used in testing phase of the
model. The training set was chosen randomly. The optimization algorithm requires setting
the optimal value for the regulation factor λ to avoid overestimation of the parameters.
This is shown in Figure 9, in which the relative error has been plotted for the training set of
all parameters.

Figure 9. The relative least square error vs. regulation factor λ in Equation (8) for the ANN model in
Equation (7).

It can be seen that for λ=0.1, the error corresponding to each parameter estimation is
minimum. This results in the best fit for all parameters, as shown in Figure 10.

Figure 10. Data fitting models for λ ≈ 0 and the nonzero value of λ = 0.1. The zero value gives
obviously huge error in parameter estimation.
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The results show a obvious difference between λ ≈ 0 and the nonzero value of λ,
i.e., 0.1.

The gradient descent method is used for finding the optimal error function defined
as given in Equation (8) employing a maximum of 1000 epochs in each training step. The
ANN algorithm is examined for the testing set. The reconstructed PDF of data from the
predictive ANN model compared to the original data and the third order Hermite gPC
expansions are shown in Figure 11.

Figure 11. The PDF of the elastic parameters estimated from the ANN model and gPC expansions.

The kernel density method [26] has been used to construct the PDF of the generated
data from the ANN model. As shown, the ANN model for each parameter has high accu-
racy for reconstruction the elastic parameters considering uncertainty in the fiber radius.
The variation in the macro-scale material parameters is considerable due to uncertainty in
the fiber size (and accordingly the matrix size). Particularly, the wide range of E11 is due
to randomness in the diameters of fibers and also randomness in the elasticity in the fiber
direction.

To validate the accuracy of the model, a new set of fiber radii are generated from the
second PDF, see Figure 5. The non-Gaussian distribution has been reported in [27] for a
sample of continuously reinforced polymer (CFRP). The FE code was run for estimation of
the elastic parameters. The trained ANN model for the first case was then used to predict
the data set for each parameter. The results for the PDFs are demonstrated in Figure 12.

As expected, the model has approximately the same accuracy for forecasting the
parameters. This is particularly very accurate for estimation of E11 for the new data set
owing the fact that the physical relationship between this parameter and the fiber radius
is linear.
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Figure 12. The predicted PDF of the new data set from the model compared to original data.

5. Conclusions

A deep learning ANN model has been developed for prediction of the elastic pa-
rameters of the UD fiber lamina using RVE cells from the given probability distribution
of the random fiber diameter. Samples of RVE are virtually generated; from there, the
probability distribution of the fibers are constructed employing the image processing. Ran-
dom realizations of the fiber diameter are fed to FE model of the RVE to estimate elastic
parameters. The parameters are then utilized to train an ANN having an optimal number
of hidden layers and neurons. The predictive model is validated by a set of data from the
new distribution of the fiber diameters. The results show that the model has high accuracy
for forecasting the elastic parameters.

In contrast to the conventional physical based models, supervised ML models have the
ability to be used for future development in material science and engineering. The major
challenge is, however, the setting of the optimal architecture of the deep learning ANN, i.e.,
the number of hidden layers and the affiliated number of neurons. The investigation of
relationships between the data can help in this regard. Generally, the number of hidden
layers decreases, as the data are linearly separable. For linear independent data, one needs
any hidden layer. Once the number of hidden layers has been determined, the number of
neurons at each layer is the minimum number corresponding to the optimal layers. This
avoids any under- or overestimation of the parameters.
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