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Abstract: Vehicle self-localization is one of the most important capabilities for automated driving.
Current localization methods already provide accuracy in the centimeter range, so robustness becomes
a key factor, especially in urban environments. There is no commonly used standard metric for the
robustness of localization systems, but a set of different approaches. Here, we show a novel robustness
score that combines different aspects of robustness and evaluate a graph-based localization method
with the help of fault injections. In addition, we investigate the influence of semantic class information
on robustness with a layered landmark model. By using the perturbation injections and our novel
robustness score for test drives, system vulnerabilities or possible improvements are identified.
Furthermore, we demonstrate that semantic class information allows early discarding of misclassified
dynamic objects such as pedestrians, thus improving false-positive rates. This work provides a
method for the robustness evaluation of landmark-based localization systems that are also capable of
measuring the impact of semantic class information for vehicle self-localization.

Keywords: self-localization; robustness; automated driving; landmark classification; sensor data fusion

1. Introduction

Vehicle self-localization is a crucial task for automated driving. Besides detecting
dynamic traffic participants and pedestrians, the automated vehicle has to determine its
pose in the static environment. Especially for public transport vehicles such as buses,
an accurate and robust pose determination is necessary. Levinson et al. [1] defined a
requirement of less than 10 centimeters in localization precision for passenger cars. Due
to the dimensions of a city bus, the robustness must be further increased in order to stay
within the lane boundaries.

Especially in city environments, the use of GNSS is excluded due to bad signal cover-
age or double reflections in street canyons. Over the last few years, research has shown that
the needed accuracy can be achieved by different localization or simultaneous localization
and mapping (SLAM) methods using static landmarks detected with different sensors such
as LiDAR or cameras. In previous work [2], we presented that misclassification between
static objects such as lamp poles and still-standing pedestrians occurs during landmark
detection. In particular, if the person starts moving, the assumption of a static environment
model is no longer valid. This reduces the robustness of the localization. Therefore, misclas-
sifications should be detected and the respective measurements should not be considered.
Not only the localization robustness is improved, but also the safety for pedestrians is
increased in scenarios such as the approach to a bus stop with a public transport vehicle.

For measuring the robustness of a localization system, there are various approaches,
but most of them focus widely on localization accuracy. A common metric is currently not
used to measure robustness for map-relative localization.
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In this work, we present methods to detect and prevent misclassification by sensor
data fusion in Section 3. Furthermore, different approaches for measuring robustness are
combined to define a new metric and exemplarily evaluate it on a graph-based system
for vehicle self-localization. Section 4 introduces our test vehicle, the environment the
test drives took place in, and how robustness is measured for the respective test drives.
The influence of detecting and omitting misclassified landmarks on the system robustness
with the novel metric for localization modules is presented in Section 5 and discussed in
Section 6. Section 7 gives a short conclusion and outlook.

2. Related Work

For a robust vehicle self-localization, landmarks have to be detected and classified.
Furthermore, it is helpful to measure and evaluate the robustness of a localization system.
In the following subsections, we provide a brief review of landmark-based localization,
landmark detection, sensor data fusion, and the robustness of vehicle localization. From the
current state, we derive the research gap and state our scientific contribution.

2.1. Landmark-Based Localization

The main task of a localization system is to determine a vehicle’s position relative
to a reference system with the help of detected landmarks. Static objects such as posts
of traffic signs, traffic lights, or street lamps are well suited as landmarks [3–5]. These
can be detected by analyzing the geometry within a sensor’s field of view. In contrast
to SLAM, localization is performed with a pre-recorded highly detailed (HD) map [6].
Such a map offers detailed information about the environment, and landmarks are marked
within centimeter accuracy [7]. The basic idea is to detect and classify physical objects
using onboard sensors. The detected landmarks are then co-registered in the HD map [8].
Localization methods are usually split into a landmark detection module (front end) and
a sensor-agnostic pose estimation part (back end) [9]. The front and back end can be
separately exchanged.

Whereas some methods use a particle filter for pose estimation [10,11], most current
localization methods make use of a factor-graph for the vehicles poses [12,13]. Graph-based
approaches rely on optimization and are often called least-squares methods. After the
construction of a graph, an optimization is performed to find a configuration that is
maximally consistent with the measurements [9]. One advantage of graph-based methods
is that the mathematical representation can be modified, because sensors or information
can be added as new constraints [14].

2.2. Landmark Detection

For the detection and classification of landmarks, various approaches have been
investigated. Landmark detectors based on LiDAR point clouds either use the full point
cloud [15,16], a projection to the surface plane [4], or the projection into a range view
image [17,18]. For the latter, the sensor geometry is used to transform the azimuth and
elevation angle into the x and y coordinates. Due to the lack of camera information,
a detailed classification is not performed and only geometric information can be extracted
from the found landmarks.

Cameras are also used to detect landmarks for localization. Thanks to the higher reso-
lution in contrast to laser scanners, curbs, lane markings, traffic lights, and traffic signs can
be recognized [19]. Methods either use depth jump detection with stereo image pairs [3]
or convolutional neural networks (CNNs) [4] to detect landmarks in camera images.

Since a feature-based approach to object detection is vulnerable to bad weather condi-
tions, semantic segmentation of camera images was used in [20]. During semantic segmen-
tation, a class label is assigned to each pixel of an image by a neural network [21]. Examples
of current semantic segmentation networks are ERFNet [22] and SegNet [23]. Common
object classes include vehicles, pedestrians, vegetation, poles, or buildings. Not only static
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landmarks, but also dynamic objects are often classified by the semantic segmentation
networks. This can be beneficial to ignore certain landmark candidates.

2.3. Sensor Data Fusion of LiDAR Point Clouds and Camera Images

By only relying on LiDAR data, people standing next to static landmarks might be
detected as pole-like objects and falsely included in the position estimation. We showed
in [2] that this case often appears at road crossings. A combination of camera and LiDAR
data can be used to classify pedestrians correctly.

Performing sensor data fusion is either possible based on raw sensor data, which
is called early fusion, or on detected objects, which is called late fusion. A promising
early fusion approach is to attach information from other sensors to points of a LiDAR
point cloud. Semantic class information from the camera was attached in [24]. Late fusion
considers all sensors separately, and object detection is performed on the respective sensor
input. The detections are then merged into a combined robust object. A stereo camera and a
laser scanner can be used to detect pole-like structures in urban environments [8]. Another
option is using a range sensor for landmarks and a camera for road markings [25,26].

2.4. Robustness of Vehicle Self-Localization

An extensive review of SLAM and localization methods was conducted concluding
robustness to be a key parameter in localization [27]. Accuracy and real-time capability
have drastically improved over the past decade, whereas robustness remains a major
challenge [28]. This is illustrated by comparing and ranking six indoor open-source SLAM
methods with respect to accuracy, illumination changes, dynamic objects, and run-time.

Localization sometimes fails in areas where few or no landmarks are available [5,29].
To overcome that, additional information from OpenStreetMap [30] or multiple prior
drives [31] can be matched to find robust landmarks. Furthermore, changes in the envi-
ronment can lead to a bad performance of the localization method [32]. In contrast to
that, other work implies robustness with the use of multiple sensors and the fusion of the
combined input data [33].

For vehicle self-localization, there is no standard definition for robustness. Robustness
equals localization accuracy over time, as shown in [1] and [16]. In addition to that, [34]
separated position and heading errors and incorporated object detection quality following
the average precision metric [35] for 2D object detection.

Robustness can also be defined as the system operating with a low failure rate for
an extended period of time in a broad set of environments [27]. This also implies fault
tolerance and robustness tests applying adverse situations consisting of sensor malfunction,
sensor silence, and kidnapped robot scenarios [36]. Further robustness challenges can be
found in environment changes and dynamic objects [1]. The first metrics to analyze certain
areas of robustness of a localization system were defined in [37], namely the following:

• Valid prior threshold (VPT): the maximum possible pose offset the system can still
initially localize with correctly.

• Probability of the absence of updates (PAU): the absence of global pose updates leads
to potentially significant dead-reckoning error with an associated increase in the
uncertainty of the pose.

A system is robust if predictions remain unchanged when the input signal is subject
to perturbations [38]. Specifically, the Styleless Layer for DNNs was introduced for a
more robust object detection. For quantifying the robustness of CNN object detectors,
a novel label-free robustness metric was proposed in [39]. The reliability of a perception
system is defined as its robustness to varying levels of input perturbations [13]. The IEEE
Standard defines error tolerance as the “ability of a system or component to continue
normal operation despite the presence of erroneous inputs” and fault tolerance as the
“degree to which a system, product or component operates as intended despite the presence
of hardware or software faults” [40].
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2.5. Research Gap and Scientific Contribution

From the current state-of-the-art, we derive the need for investigating the robustness
of self-localization systems. Current approaches using sensor data fusion to detect robust
landmarks are provided. Most approaches focus on improving the system’s accuracy over
time and robustness. Nevertheless, a common metric for robustness does not exist in the
presented literature.

The scientific contribution of this work consists of the following points:

• A layered model for hierarchical landmark classification based on geometry and
semantic class information.

• A method for the classification of landmarks with the layered landmark model using
the sensor data fusion of LiDAR point clouds and camera images with semantic
segmentation.

• A novel metric for robustness in landmark-based localization. The metric is further-
more used to evaluate the impact on the robustness of further classifying landmarks
with semantic class information from camera images.

3. Methodology

In this work, we investigate the influence of perturbations to the robustness of a vehicle
self-localization system with a robustness score and evaluation of a graph-based localization
method. Furthermore, the influence on robustness when using semantic information from
camera images and sensor data fusion is analyzed.

In Section 3.1, we present a short description of the methods used in this paper. A lay-
ered model for landmark classification is described in Section 3.2. The classification method
presented in Section 3.3 uses this layered landmark model to classify detected landmarks.
Sections 3.4 and 3.5 describe the concept and the calculation of a novel robustness score to
evaluate the baseline system and evaluate the influence of sensor fusion.

3.1. Methods’ Overview

Figure 1 shows the information flow in the localization system. We used the graph-
based method for vehicle self-localization from [12] as a baseline method. In Figure 1, the
baseline method is presented on the left side. Only LiDAR information is used to detect
landmarks based on geometry. These landmarks are co-registered within a 2D map.

The right path shows the processing pipeline for landmark classification with the help
of camera information and sensor data fusion. The images are semantically segmented with
an adapted version of ERFNet [22]. An exemplary output of the segmentation network
is shown in Figure 2. The colors represent the respective classes and can be seen as a
per-pixel classification of the whole image. The same geometry-based detectors as in the
baseline method are used, but now, the detections are classified with camera information by
projection into the segmented image obtained by the camera. By combining the geometry
information from the LiDAR and the class information from the semantic segmentation,
a layered classification model was developed. This is presented in Section 3.2. The semantic
landmark classification is further presented in Section 3.3.
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Figure 1. Concept of using semantic information for vehicle self-localization using a high-definition
map, diverse sensor types, and the optimization of a pose-graph including landmarks. The two
methods described in Section 3 are brought into context with the localization framework. Our impact
is highlighted in gray.



Vehicles 2022, 4 450

Figure 2. Top: original front camera image; bottom: semantic segmentation output of the given image
using the ERFNet segmentation network [22].

3.2. Layered Landmark Model

Instead of utilizing geometry to determine a landmark’s type, we aim to introduce
camera information for landmark classification. Because an a priori HD map is used in the
localization procedure, the classification task is split into two parts. Firstly, the information
gathered by sensors has to be enhanced by class labels. Furthermore, the HD map must
hold the information needed for map matching on a semantic class label.

Most current approaches use a 2D feature map based on geometric shapes. For map
matching, this is helpful to reduce run-time, whereas it is not sufficient for projection to
camera images, because the height information is missing. In this work, we use maps in
the OpenDrive Format 1.4H with a high variety of different class types and 3D information
for certain objects.

Figure 3 shows the landmark information provided by sensors on the left and informa-
tion gathered from the HD map on the right. The arrows represent possible map matching
configurations. The upper arrow shows the map matching utilized by the baseline model
only depending on geometric information. There is no need for further semantic class
information on either side. In this case, a pole-like landmark on the sensor side can be
matched only with pole-like objects in the map. Without further distinction, a tree could be
matched with a sign post of the same radius.

In Figure 3, the lower boxes represent subtypes of the provided geometric landmark
types. All landmark types are extended with subtypes in a layered model. A set of subtypes
for the landmark type “Pole” is displayed as an example. On the sensor side, the detected
pole can be further classified as vegetation or a traffic sign post with the help of camera
information. If the same information also is present in the map, a robust matching of
pole-like structures is possible. This means that a tree will only be matched with a tree and
a sign post will only be matched with a sign post.
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Figure 3. Matching patterns for sensor and map landmarks. Upper level: only geometrical informa-
tion; lower level: additional semantic class information (e.g., from camera images).

The layered model also enables map matches between different levels of detail on the
sensor and map side represented by the diagonal arrows. One possibility is a localization
system with semantic information matching against an HD map with only geometric
landmark representations. The other possibility is a LiDAR-only localization system using
an HD map with extended landmark types. If the sensor system lacks cameras and no
classification is performed, a detected “Pole”-type landmark without semantic classification
can either be matched to a “Tree” or a “Sign post” subtype marked in the map.

The types and subtypes of the layered landmark model are described in Table 1.
Whereas the main landmark types focus more on geometric information, the subtypes
further divide the landmarks into semantic classes of the same geometric type.

Table 1. Definition of a layered model for landmark classification. The type is based on geometry,
whereas subtypes are added for further semantic distinction of the landmark types.

Type Subtype Comment

Pole Pole General pole type (not further specified)
Delineator Pole Permanent delineators for traffic guidance

Street Lamp Pole structure of a street lamp
Traffic Light Pole structure of a traffic light
Traffic Sign Post carrying a traffic sign

Bollard Short vertical post
Vegetation Tree stumps detected as cylinders

Wall Building Building wall
Wall flat Any flat wall not belonging to a building

Corner Building Corner Corner constructed of two building walls
Barrier Guard Rail Guard rail structure

Fence Barriers that are not full walls
Jersey Barrier Mid-high barrier to separate driving lanes
Sound Barrier Sound-absorbing barriers on motorways

Curb Curb Elevated road border, could be extended
Dashed Line No subtypes

Solid Line No subtypes
Stop Line No subtypes

Zebra No subtypes
Road Mark Text Text on the road, e.g., BUS, TAXI

Number Number on the road, e.g., 30 for speed limit
Symbol Symbol on the road, e.g., wheelchair
Arrow Arrow direction symbol

3.3. Semantic Object Classification

In prior work [2], we stated that the avoidance of the misclassification of pedestrians
and poles can be achieved by using semantic information. The semantic object classification
uses the landmark detectors for poles from [16] to retrieve the geometric type and then
uses camera information to estimate a semantic subtype.
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As depicted in the concept overview in Figure 1, the data used in this method include
one LiDAR sample, which consists of a set of points generated from one 360-degree turn
of the laser scanner and one camera image. In our case, we focus on the front of our
test vehicle, so only the front camera is used for semantic classification. As stated above,
an ERFNet implementation is used to perform a semantic segmentation on the image.

The detected pole-like landmarks in the 3D LiDAR point cloud are used to generate 2D
bounding boxes in the semantic image. With the information of each landmark’s position,
radius, and height, a bounding box is generated in 3D space. With the known calibration
parameters of the LiDAR and camera, the 3D bounding box is projected into the camera
image. The bounding boxes in the 2D frame determine the pixels in the semantically
segmented image used for landmark classification. The label that occurs most frequently in
the bounding box defines the subtype of the landmark in addition to the geometric type
received from the landmark detection. An exemplary output of the method can be found
in Figure 4.

Figure 4. Projection of detected poles into the front camera image and classification based on the
semantic segmentation image.

In this work, we focus on four semantic classes only: pole, pedestrian, vegetation,
and else. These types can be differentiated with the used ERFnet segmentation network
with pre-trained weights. The method describes the principle, although not all landmark
subtypes from Table 1 are used in this method. Using these four classes already promises
several advantages:

• Pole-like landmarks are confirmed by the camera, and landmarks that cannot be
classified properly (e.g., type Else) can be omitted from the position estimation if
sufficient information with a high belief score is present.

• Pole-like structures that are not static can be omitted instantaneously. Landmarks
classified as Pedestrian will be deleted and not further used.

• The distinction between Pole and Vegetation is expected to increase robustness due to
fewer false-positive map matches.

Based on the current state of the graph in terms of the number of landmarks, map
matches, and the current estimated relative accuracy, landmarks are processed slightly
differently. The more landmarks are available, correctly matched, and have a strong
belief score, and the fewer new measurements need to be added to the graph to maintain
a good accuracy. The threshold for adding landmarks to the graph will therefore be
adjusted at runtime, and subtype-classified landmarks will be preferred over geometry-
based measurements. This not only decreases complexity, but also the run-time of the
optimization algorithm.

3.4. Metrics of Robustness

The International Standard for Systems and Software Engineering defines robustness
as “the degree to which a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” [40]. Based on this definition
and the inputs from [27,28] as described in Section 2, a specific robustness definition
approach for localization systems is defined. The three key indicators, namely “correct
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function”, “invalid inputs”, and “stressful environmental conditions”, serve as the basis of
the robustness evaluation in this work.

As stated by [9], the localization problem is split into two parts. Firstly, landmarks
are detected in a localization front end. The front end processes raw sensor inputs and,
so, is dependent on the sensor type. The detected landmarks are then provided to the
sensor-agnostic localization back end to estimate the current pose. Based on this system
definition, the three indicators will be applied to the localization system under test as black
box model:

(a) The subsystem detection;
(b) The subsystem matching;
(c) The localization system as a whole.

This leads to the three pillars of the robustness of landmark-based localization systems,
also depicted in Figure 5:

Sensor sensitivity: Only the detection subsystem is provided with the raw sensor
data. The subsequent matching subsystem, being provided with detected landmarks and
thus without a direct link to the sensor input, can be considered sensor-agnostic. Sensor
sensitivity therefore evaluates the performance of the detection system and is used to
evaluate its robustness against false or noisy sensor input and the variety of different input
sensor types.

Map congruence: The input of the matching subsystem consists of the detected
landmarks and a prior recorded map of the environment. The three main sources of
potential errors in matching can come from an error in the matching algorithm, an incorrect
or deviant input in detected landmarks, or a map error. Our focus is on evaluating the
robustness with respect to falsely matched landmarks and incongruence between the real
environment and the map.

Consistency: In Section 1, the overall localization accuracy tolerance for urban au-
tonomous applications was set to tolpos < 10 cm in [1]. The position calculated by the
localization system is measured and compared to the position given by the reference system.
The absolute error eabs = |poseloc− posere f | is then compared to the position tolerance tolpos.
Observing the correct function (current pose accuracy within tolerance) of the localization
system over multiple consecutive timestamps leads to the term consistency. It is seen as
one major pillar contributing to the overall robustness of the localization system.

Figure 5. Composition of the robustness score. The metrics from Section 3.4 are combined to create a
key indicator for robustness.

3.5. Robustness Score

A robustness score for neural network benchmarking was introduced in [13] and
applied to localization benchmarking in this work. To evaluate the robustness to different
types of faults, perturbations p in three degrees of severity s are applied to the system.
For example, Gaussian noise is applied to the GPS data for initialization at different
levels. The ability to cope with these input changes is evaluated for different levels, and
the influence on the localization tasks is measured, then an error term Es,p is calculated.



Vehicles 2022, 4 454

The full list of perturbations used to calculate the robustness score’s parts can be found in
Section 4.3.

All perturbations are applied one by one to separate their individual influences.
Grouping the perturbation types as described in Section 3.4 leads to the perturbation error
(PE) terms:

PEdet =
3

∑
s=1

Edetection
s,p , PEmat =

3

∑
s=1

Ematching
s,p , PEacc =

3

∑
s=1

Epose
s,p (1)

where the detection and matching performance and localization accuracy with respect to
perturbation type and severity are denoted. The robustness score (RS) is then calculated by
a weighted sum of all the given error terms.

RS = α ∗ PEdet + β ∗ PEmat + γ ∗ PEacc (2)

Figure 5 shows the composition of the different metrics. The parameters α, β, and γ
are used to weight the influence of the error terms PE. α represents the mean variance of
all terms Edetection

s,p . β and γ are defined by the variances for Ematching
s,p and Epose

s,p . The values
are normalized to sum up to 1 and are defined by evaluating the variances for multiple test
drives in different environments.

4. Experiments

Several experiments were performed to evaluate the robustness and the influence of
semantic information for vehicle self-localization. Since the localization task can be seen
as an open-loop method, the raw input is the same regardless of the localization method.
Furthermore, the output will no change the driven path or the sensor positions during a
recorded test drive.

For a qualified comparison of the influence on the robustness for different fault injec-
tions, a measure for robustness is defined and applied to a set of test drives with different
localization parameters. As a baseline system, the graph-based method for vehicle self-
localization from [12] is used. The system robustness is then evaluated with the robustness
score from Section 3.5. Furthermore, the influence of semantic information on the detection
and matching performance is examined.

Section 4.1 shows the test vehicle and sensor configuration. The test drives used for
robustness evaluations are listed in Section 4.2. Section 4.3 gives detailed information on the
perturbation injections used to calculate the robustness score for the respective test drives.

4.1. Experimental Setup

The methods from Section 3.3 were implemented for real-time use in a 12 m-long
MAN Lion’s City bus, which served as a test vehicle. This vehicle is equipped with various
sensor types. The main sensors used in this work are a 32-layered rotating laser scanner
and cameras with a resolution of 2.3 MP and a horizontal field of view (FOV) of 120◦.
The mounting positions are shown in Figure 6. The laser scanner was mounted to the front
right of the vehicle to perceive a 270◦ FOV to the front and right of the bus. Three cameras
were mounted facing the front, right, and left. Furthermore, the vehicle is equipped with
a real-time kinematic (RTK) system, which consists of a GNSS sensor and acceleration
sensors. The algorithms were programmed in C++ and make use of the Point Cloud Library
(PCL) and OpenCV. The modules were executed on industrial PCs with an x86 architecture
and on an NVIDIA AGX Xavier with an ARM architecture. This system is capable of
giving the current pose within a few centimeters and was used as a reference system for
our localization.
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Lidar Camera

Figure 6. Test vehicle: a MAN Lion’s City 12 bus with positions for LiDAR and camera sensors.

4.2. Real-World Test Drives

Eight test drives with the test vehicle were selected for comparison. For the evaluation
of the generalization performance of the selected methods, different operational design
domains (ODDs) were used. Routes in Karlsfeld, Germany, a suburban environment,
as well as in the Aldenhoven Testing Center (ATC), Germany, were selected for comparison.
Table 2 shows the ODDs and the detectable landmarks of the respective test drives.

Table 2. Overview of the selected drives: ODD definitions, length, and number of existing landmarks
based on pre-built HD maps of the respective areas.

Test Drive 01 02 03 04 05 06 07 08

ODD
Karlsfeld

urban/suburban
Aldenhoven TC
optimal cond.

Length (m) 62.3 61.4 65.1 39.3 42.5 85.3 85.4 139.8

Number of map LM 107 85 88 89 163 175 85 109

4.3. Perturbation Injections for Robustness Calculation

As proposed by [9], the localization system under test was divided into two parts.
The front end includes landmark detectors and the classification of landmarks. The output
is a collection of landmarks that are semantically labeled, if the camera information is
available. Otherwise, the landmarks will only be defined by their geometry. The front end’s
output is directed to the localization back end, in this case, a graph-based optimization.
The back end uses the sensor-agnostic measurements to build up a factor graph and
calculate the current pose based on prior measurements and matches against an HD map.

To determine robustness, we injected perturbations into the system at different points.
Perturbations were chosen considering possible real-world implications on the environ-
ment, sensors, or system. The first set of perturbations is introduced right before the
front end. The initial sensor input is altered to evaluate the resilience of the landmark
detectors against sensor faults. The modeled sensor faults used in this work were noisy
inputs for the odometry estimation and the GNSS signal, as well as random offsets to the
odometry signal. Furthermore, the sample rate of the laser scanner was lowered to mimic a
lower-priced sensor. The last perturbation injection is a static rotation to the LiDAR sensor
to simulate the wrong calibration. Another way to test robustness is to alter the landmarks
that were detected by the localization front end before they are provided to the back end.
This mainly influences the matching performance within the position estimation. Here,
multiple detections were added to the set of found landmarks or random landmarks were
deleted, representing false-positive or false-negative measurements, respectively. Another
modification is to add an offset to the positions of landmarks or filter landmarks further
away from the vehicle than a specific distance. This simulates a foggy or rainy environment.
In this work, no distinction between LiDAR and camera measurements is made, and all
landmarks detected further away than the given distance were removed. All types of
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perturbations p, their applied parameter changes, and the respective values for each of the
three levels of severity s can be found in Table 3.

Table 3. List of used injections for perturbations p with altered parameters in the localization system
and values for the three severity levels s.

Perturbation Method Parameter
Severity

L 1 L 2 L 3

D
et

ec
ti

on

Odometry noise Gaussian noise

mean (m) 1 1 5

StDev X (m) 1 3 5

StDev Y (m) 1 3 5

StDev Yaw (rad) 1 3 5

Odometry offset Translation and
rotation

X (m) 1 5 10
Y (m) 1 5 10
Yaw (rad) 0 3.14 4

GPS offset Translation and
rotation

X (m) 1 5 10

Y (m) 1 5 10

Yaw (rad) 0 3.14 4

LiDAR downsample Sample blocker min. difference (ms) 15 35 50

LiDAR rotational offset Rotation Yaw (rad) 0.0175 −0.087 0.175

M
at

ch
in

g

Adding detected LM
⇒more f /p

Gaussian
distribution

Random seed 1 1 1
StDev X (m) 0.1 0.3 0.5
StDev Y (m) 0.1 0.3 0.5

Removing detected LM
⇒ less t/p & t/n Random selector Removal percentage 40% 60% 80%

Offset detected LM Static translation
X (m) 1 5 10

Y (m) 1 5 10

Removing detected LM
by distance Filter by distance max. radius (m) 30 20 10

All test drives were evaluated with all listed perturbations. The perturbation injections
were furthermore performed on the baseline system and the localization with semantic
landmark classification separately. Therefore, the influence of perturbation injections can
be differentiated from the influence of semantic information on robustness.

5. Results

The robustness of all recorded test drives outlined in Section 4.2 was evaluated with the
novel robustness metric described in Sections 3.4 and 3.5. This section is split into two parts.
Section 5.1 shows the results for the baseline system robustness score in different operational
design domains. Here, the focus lies on the evaluation metrics and the evaluation method.
Section 5.2 highlights the impact of semantic information for vehicle self-localization.

5.1. Robustness Evaluation of the Baseline System

The perturbation errors Es,p were calculated for each test drive, each perturbation p,
and severity level s. The mean value of all errors per perturbation are clustered to the error
term Ep. The error terms for the respective test drives are listed in Table 4. The baseline
system only uses the rotating laser scanner to detect landmarks. The cameras are not used
in this step of the work.
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Table 4. Error terms for detection and matching measured over the baseline, nine perturbation
injections over eight test drives. Values are avaraged over all three levels of severity s. The position
error term for Test Drive 06 could not be retrieved.

Error Terms 01 02 03 04 05 06 07 08

Odometry Noise 0.98 1.00 1.00 0.97 1.00 1.00 1.00 1.00
Odometry Offset 0.98 0.71 1.00 0.97 1.00 1.00 1.00 1.00
GPS Offset 0.98 1.03 1.00 0.98 1.00 1.00 1.00 1.00
LiDAR Downsample 0.33 0.42 0.30 0.35 0.32 0.29 0.30 0.29
LiDAR Rotational Offset 0.98 1.99 2.00 1.94 1.00 1.00 1.00 1.00

Adding dLM (Gauss) 0.79 0.49 0.69 0.79 0.90 0.83 0.97 0.98
Removing dLM (Random) 0.81 0.78 0.80 0.79 0.81 0.81 0.91 0.97
Offset dLM 0.68 0.68 0.63 0.62 0.65 0.77 0.69 0.70
Remove dLM by Distance 0.42 0.49 0.66 0.49 0.51 0.53 0.31 0.33

Position Error Term 0.83 0.71 0.80 0.78 0.87 N/A 0.54 0.59

To further investigate the influence of the individual perturbations, the distributions
of error terms for detection are displayed in Figure 7 and for matching the distributions are
shown in Figure 8.

For detection perturbations, the variances for the first four fault injections were within
5%, while the impact of LiDAR offset had a greater influence on the robustness. Although re-
ducing the LiDAR frequency gave similar output in all ODDs, the mean robustness score
for detections was reduced to about 40% with respect to unlimited LiDAR frequency.
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Figure 7. Distribution of perturbation errors per detection perturbation type.
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Figure 8. Distribution of perturbation errors per matching perturbation type.
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In contrast to the sensor perturbation errors, all fault injections directly on landmarks
resulted in a higher variance on the robustness score for matching. While adding or
removing random landmarks still gave high robustness terms between 70% and 90% with
respect to the baseline, the robustness decreased by offsetting the detected landmarks
or limiting the maximum range where landmarks can be detected. The latter led to a
reduction of the matching performance of 30% to 50% and also had the biggest impact on
the perturbation error term for matching.

To visualize the reduction of the detection range and its influence on the matching
performance, all matched landmarks for Test Drive 02 in Karlsfeld (Table 2) are presented
in Figure 9 for the respective severity levels. The top left image shows the baseline model
as a reference for all detectable pole landmarks. The other images present the three levels
of severity for the fault injection where the range was limited to 30 m, 20 m, and 10 m.
The number of matched poles decreased with shorter detection ranges.
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Figure 9. Example for the number of matched pole landmarks with different levels of range limitation
for detections. The red dots are the matched landmarks over the course of Test Drive 02, whereas
the grey dots and lines represent the HD map. (a) Baseline. (b) Maximum range 30 m. (c) Maximum
range 20 m. (d) Maximum range 10 m.

The robustness scores for the analyzed localization system were calculated according
to Equation (2) over all test drives, as well as clustered to the respective characteristics.
Table 5 shows the perturbation errors for detection, matching, and pose, respectively.
In addition to that, the robustness score was calculated for the scenarios of Karlsfeld and
Aldenhoven separately to show the influence of their respective ODD. The variances of
the clustered error term from Table 4 define the values for α, β, and γ. The value of α was
therefore calculated from the variance for “Odometry Noise”, “Odometry Offset”, “GPS
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Offset”, “LiDAR Downsample”, and “LiDAR Rotational Offset” and then averaged over
all test drives. The three values were then normalized and set as follows:

α = 0.35, β = 0.2, γ = 0.45 (3)

Table 5. Robustness score composition for all test drives and clustered by test drive location
and characteristics.

Test Drives 01–08 01–06 07–08

ODD all test drives Karlsfeld
urban/suburban

Aldenhoven test track
optimal conditions

PEdet 0.93 0.95 0.86
PEmat 0.70 0.68 0.73
PEpose 0.73 0.80 0.57

RS 0.79 0.83 0.70

5.2. Robustness Evaluation with Semantic Class Labels

The perturbation injections from Section 4.3 were performed also on a localization
system with the semantic classification of landmarks. For the semantic classification, LiDAR,
as well as cameras were used. As this work highlights the semantic classification of pole-
like landmarks, only landmarks with geometric type “Pole” were considered. Furthermore,
the LiDAR’s field of view was not fully covered by the camera image. Landmarks that
were not in the camera image cannot be classified and, therefore, were considered as type
“Pole” and subtype “Pole” (Table 1).

Figure 10 shows the distribution of the subtypes for pole-like landmarks for Test
Drive 01 per fault injection. It is clearly seen that the raw number of used landmarks
did not change, but the classification can be used to discard non-static landmarks such as
pedestrians or landmarks that cannot be confirmed to be actual poles.
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Figure 10. Distribution of class labels added by semantic segmentation for every perturbation
injection p and clustered for all three levels of severity s. The baseline performance is displayed on
the left for reference.

Although the number of landmarks can be reduced by only using valid and confirmed
landmarks, the impact of perturbations on robustness was similar for the same faults.
Reducing LiDAR frequency or limiting the landmark range also reduced the number of
landmarks in a similar way as without semantic information.
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6. Discussion

All nine perturbations were deployed on all test drives. In Section 5, we presented
the error values for the respective fault injections, as well as their distributions over the
different test drives. From the small changes in landmark detections after inserting offsets
or Gaussian noise to odometry or the GPS signal, we derived a high resilience of the system
under test for these system errors. In contrast to that, changes to the LiDAR inputs had a
high influence on the detection performance. Reducing the frequency of the sensor reduced
the number of measurements and, therefore, also the number of detections. Defining every
landmark detection as a constraint to the current pose, this also led to less confirmations
for the pose estimate. The same holds for limiting the range of the sensors. In reality, this
might be the case in bad weather situations such as fog or heavy rain. Figure 8 shows not
only that the variance of the fault injection was high, but also the number of successful
matches was the lowest. In the baseline system, the LiDAR scanner was the only sensor
used, so the impact on the whole system was high. By using redundant sensors or different
sensor modalities, the robustness is expected to be higher.

Removing or adding random landmarks reduced the matching robustness of the sys-
tem. Nevertheless, with a mean value of about 80% of the baseline matching performance,
this still provided good results for pose estimation. In a real-world application, landmark
detectors are also subject to false-positive and false-negative measurements. Some land-
marks cannot be detected, e.g. due to occlusions. On the other hand, temporary objects
in construction sites can be detected as landmarks, but these are not marked in a map.
The number of these faulty measurements can be reduced by using semantic class labels
for the detected landmarks.

The relative impact of perturbation injections stays similar when using the semantic
segmentation. Furthermore, here, the reduction of the LiDAR frequency and limiting the
landmark detection range led to significantly lower detections. In contrast to the baseline
system, 25% of the pole-like landmarks were classified as “Pedestrian”, “Vegetation”, or
“Unknown”. “Pedestrian” landmarks were ejected immediately, and landmarks with class
“Unknown” were only considered if not enough confirmed poles were present. Another
advantage of the semantic labels was that “Vegetation” landmarks were only matched to
trees in the map and “Pole” landmarks were matched with road furniture. This led to
lower mismatches.

7. Conclusions

In this work, we presented a method to evaluate the robustness of systems for map-
based self-localization and a novel robustness score. Different perturbations were injected
on sensor inputs and measurements to assess the localization system’s resilience against
these influences. The influence of these injections was tested for eight drives in urban areas
and on a test track for automated driving.

The separation of the different perturbation injections enabled the identification of
system vulnerabilities. Besides finding that limiting the main sensors for landmark detec-
tion led to lower detection and matching rates, the evaluated system was resilient to noise
or offset on GNSS sensors and vehicle odometry. By adapting the used perturbations to
specific use cases, the system can be further investigated based on the users’ needs.

Furthermore, we identified the potential to reduce false-positive rates for landmark
detection by using semantic class labels. We presented a method to enhance the detected
landmarks with information from semantically segmented camera images to detect and
omit dynamic objects such as pedestrians. Observing the matching rates, this led to a lower
false-positive rate than without class labels for the landmarks.

With the novel robustness score, it is possible to evaluate a localization framework
with or without the use of semantic class information. This work gave a set of perturbation
injections to test a LiDAR-based localization framework. In the future, this set can be
adapted to other sensors such as radar or ultrasonic, if they are used for localization. This
work highlighted test drives in an urban environment and on test tracks. Other ODDs such
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as motorways may lead to different results for the robustness score. Future work will have
to evaluate the influence of the ODD on the values used for the respective perturbations.
Furthermore, test drives in non-optimal conditions such as rain, fog, or at night can be used
to provide a more general and complete assumption of the localization robustness.

Using semantic information for landmark classification not only increases the robust-
ness of current localization frameworks, it acts as a door opener for robust mapping by
increasing the system reliability. Instead of using only geometric features, false landmark
candidates can be discarded and will not occur in the updated map. As we already used an
HD map as prior information, we did not focus on mapping in this work.

Author Contributions: Conceptualization, C.R.A., S.J. and U.S.; methodology, C.R.A., J.B. and E.H.;
software, S.J., C.R.A., J.B. and E.H.; validation, C.R.A. and E.H.; formal analysis, C.R.A. and E.H.;
investigation, C.R.A.; resources, C.R.A., J.B. and E.H.; data curation, C.R.A. and S.J.; writing—original
draft preparation, C.R.A.; writing—review and editing, C.R.A., J.B., E.H., S.J. and U.S.; visualization,
C.R.A., J.B. and E.H.; supervision, S.J. and U.S.; project administration, U.S.; funding acquisition, U.S.
All authors have read and agreed to the published version of the manuscript.

Funding: Part of the research was conducted within @CITY-AF (Research Project No. 19 A 1800 3J),
funded by the German Federal Ministry for Economic Affairs and Energy (BMWi).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some or all data or models that support the findings of this study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Levinson, J.; Thrun, S. Robust vehicle localization in urban environments using probabilistic maps. In Proceedings of the IEEE

International Conference Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 4372–4378. [CrossRef]
2. Albrecht, C.; Névir, D.; Hildebrandt, A.C.; Kraus, S.; Stilla, U. Investigation on Misclassification of Pedestrians as Poles by

Simulation. In Proceedings of the IEEE Intelligent Vehicles Symposium, Nagoya, Japan, 11–17 July 2021; pp. 804–809. [CrossRef]
3. Spangenberg, R.; Goehring, D.; Rojas, R. Pole-Based localization for autonomous vehicles in urban scenarios. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2161–2166.
[CrossRef]

4. Kampker, A.; Hatzenbuehlerm, J.; Klein, L.; Sefati, M.; Kreiskoether, K.; Gert, D. Concept Study for Vehicle Self-Localization
Using Neural Networks for detection of Pole-like Landmarks. In Proceedings of the International Conference on Intelligent
Autonomous Systems(IAS), Singapore, 11–15 June 2018; pp. 689–705. [CrossRef]

5. Weng, L.; Yang, M.; Guo, L.; Wang, B.; Wang, C. Pole-Based Real-Time Localization for Autonomous Driving in Congested
Urban Scenarios. In Proceedings of the IEEE International Conference on Real-time Computing and Robotics (RCAR), Kandima,
Maldives, 1–5 August 2018; pp. 96–101. [CrossRef]

6. Hertzberg, J.; Lingemann, K.; Nüchter, A. Mobile Roboter: Eine Einführung aus Sicht der Informatik; Springer: Berlin/Heidelberg,
Germany, 2012.

7. Liu, R.; Wang, J.; Zhang, B. High Definition Map for Automated Driving: Overview and Analysis. J. Navig. 2020, 73, 324–341.
[CrossRef]

8. Sefati, M.; Daum, M.; Sondermann, B.; Kreisköther, K.D.; Kampker, A. Improving vehicle localization using semantic and
pole-like landmarks. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017;
pp. 13–19. [CrossRef]

9. Grisetti, G.; Kümmerle, R.; Stachniss, C.; Burgard, W. A Tutorial on Graph-Based SLAM. IEEE Intell. Transp. Syst. Mag. 2010,
2, 31–43. [CrossRef]

10. Thrun, S.; Fox, D.; Burgard, W.; Dellaert, F. Robust Monte Carlo localization for mobile robots. Artif. Intell. 2001, 128, 99–141.
[CrossRef]

11. Steß, M. Ein Verfahren zur Kartierung und Präzisen Lokalisierung mit Klassifizierten Umgebungscharakteristiken der Straßenin-
frastruktur für Selbstfahrende Kraftfahrzeuge. Ph.D. Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, Hannover,
Germany, 2017. [CrossRef]

12. Wilbers, D.; Merfels, C.; Stachniss, C. A Comparision of Particle Filter and Graph-based Optimization for Localization with
Landmarks in Automated Vehicles. In Proceedings of the IEEE International Conference on Robotic Computing, Naples, Italy,
25–27 Febuary 2019; pp. 220–225. [CrossRef]

http://doi.org/10.1109/robot.2010.5509700
http://dx.doi.org/10.1109/IV48863.2021.9575583
http://dx.doi.org/10.1109/iros.2016.7759339
http://dx.doi.org/10.1007/978-3-030-01370-7_54
http://dx.doi.org/10.1109/rcar.2018.8621688
http://dx.doi.org/10.1017/S0373463319000638
http://dx.doi.org/10.1109/ivs.2017.7995692
http://dx.doi.org/10.1109/MITS.2010.939925
http://dx.doi.org/10.1016/S0004-3702(01)00069-8
http://dx.doi.org/10.15488/9074
http://dx.doi.org/10.1109/irc.2019.00040


Vehicles 2022, 4 462

13. Hendrikx, R.; Pauwels, P.; Torta, E.; Bruyninckx, H.P.; van de Molengraft, M. Connecting Semantic Building Information Models
and Robotics: An application to 2D LiDAR-based localization. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11654–11660. [CrossRef]

14. Stachniss, C. Simultaneous Localization and Mapping. In Handbuch der Geodäsie; Freeden, W.; Rummel, R., Eds.; Springer
Reference Naturwissenschaften, Springer Spektrum: Berlin/Heidelberg, Germany, 2016.

15. Brenner, C. Global Localization of Vehicles Using Local Pole Patterns. In Pattern Recognition; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 61–70. [CrossRef]

16. Wilbers, D.; Merfels, C.; Stachniss, C. Localization with Sliding Window Factor Graphs on Third-Party Maps for Automated
Driving. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24
May 2019; pp. 5951–5957. [CrossRef]

17. Meyer, G.P.; Laddha, A.; Kee, E.; Vallespi-Gonzalez, C.; Wellington, C.K. Lasernet: An efficient probabilistic 3d object detector for
autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 21–26 July 2019; pp. 12677–12686. [CrossRef]

18. Dong, H.; Chen, X.; Stachniss, C. Online Range Image-based Pole Extractor for Long-term LiDAR Localization in Urban
Environments. In Proceedings of the European Conference on Mobile Robots (ECMR), Bonn, Germany, 31 August–3 September
2021; pp. 1–6. [CrossRef]

19. Woo, A.; Fidan, B.; Melek, W.W. Localization for Autonomous Driving. In Handbook of Position Location; Zekavat, S.A.; Buehrer,
R.M., Eds.; IEEE Series on Digital & Mobile Communication; John Wiley & Sons, Ltd: Hoboken, JY, USA, 2018; pp. 1051–1087.
[CrossRef]

20. Toft, C.; Olsson, C.; Kahl, F. Long-Term 3D Localization and Pose from Semantic Labellings. In Proceedings of the IEEE
International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 650–659. [CrossRef]

21. Xie, Y.; Tian, J.; Zhu, X.X. Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci.
Remote Sens. Mag. 2020, 8, 38–59. [CrossRef]

22. Romera, E.; Alvarez, J.M.; Bergasa, L.M.; Arroyo, R. ERFNet: Efficient residual factorized convnet for real-time semantic
segmentation. IEEE Trans. Intell. Transp. Syst. 2017, 19, 263–272. [CrossRef]

23. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

24. Patel, N.; Krishnamurthy, P.; Khorrami, F. Semantic Segmentation Guided SLAM Using Vision and LIDAR. In Proceedings of the
ISR 2018; 50th International Symposium on Robotics, Munich, Germany, 20–21 June 2018; pp. 1–7.

25. Li, L.; Yang, M.; Wang, B.; Wang, C. An overview on sensor map based localization for automated driving. In Proceedings of the
Joint Urban Remote Sensing Event (JURSE), Dubai, United Arab Emirates, 6–8 March 2017; pp. 1–4. [CrossRef]

26. Wu, C.; Huang, T.A.; Muffert, M.; Schwarz, T.; Gräter, J. Precise Pose Graph Localization with Sparse Point and Lane Features. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 4077–4082. [CrossRef]

27. Cadena, C.; Carlone, L.; Carillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present, and Future of
Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

28. Bujanca, M.; Shi, X.; Spear, M.; Zhao, P.; Lennox, B.; Luján, M. Robust SLAM Systems: Are We There Yet? In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October
2021; pp. 5320–5327. [CrossRef]

29. Brenner, C. Vehicle Localization Using Landmarks Optained by a LIDAR Mapping System. Int. Arch. Photogramm. Remote Sens.
Spatial Inf. Sci. 2010, XXXVIII , 139–144. [CrossRef]

30. Vysotska, O.; Stachniss, C. Improving SLAM by Exploiting Building Information from Publicly Available Maps and Localization
Priors. J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, pp. 53–65. [CrossRef]

31. Berrio, J.S.; Ward, J.; Worrall, S.; Nebot, E. Identifying robust landmarks in feature-based maps. In Proceedings of the IEEE
Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019; pp. 1166–1172. [CrossRef]

32. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]

33. Xia, Z.; Tang, S. Robust self-localization system based on multi-sensor information fusion in city environments. In Proceedings of
the 2019 International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 20–22
December 2019; pp. 14–18. [CrossRef]

34. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.
[CrossRef]

35. Everingham, M.; Winn, J. The pascal visual object classes challenge 2012 (voc2012) development kit. Pattern Anal. Stat. Model.
Comput. Learn. 2011, 8, 5.

36. Carlone, L.; Bona, B. A comparative study on robust localization: Fault tolerance and robustness test on probabilistic filters for
range-based positioning. In Proceedings of the International Conference on Advanced Robotics (ICAR), Munich, Germany, 22–26
June 2009; pp. 1–8.

http://dx.doi.org/10.1109/icra48506.2021.9561129
http://dx.doi.org/10.1007/978-3-642-03798-6_7
http://dx.doi.org/10.1109/icra.2019.8793971
http://dx.doi.org/10.1109/cvpr.2019.01296
http://dx.doi.org/10.1109/ecmr50962.2021.9568850
http://dx.doi.org/10.1002/9781119434610.ch29
http://dx.doi.org/10.1109/iccvw.2017.83
http://dx.doi.org/10.1109/MGRS.2019.2937630
http://dx.doi.org/10.1109/TITS.2017.2750080
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1109/jurse.2017.7924575
http://dx.doi.org/10.1109/iros.2017.8206264
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/iros51168.2021.9636814
http://dx.doi.org/10.15488/1137
http://dx.doi.org/10.1007/s41064-017-0006-3
http://dx.doi.org/10.1109/ivs.2019.8814289
http://dx.doi.org/10.1109/ACCESS.2020.2983149
http://dx.doi.org/10.1109/itca49981.2019.00011
http://dx.doi.org/10.1109/cvpr.2012.6248074


Vehicles 2022, 4 463

37. Yi, S.; Worrall, S.; Nebot, E. Metrics for the evaluation of localisation robustness. In Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), Paris, France, 9–12 June 2019; pp. 1247–1253. [CrossRef]

38. Rebut, J.; Bursuc, A.; Pérez, P. StyleLess layer: Improving robustness for real-world driving. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021;
pp. 8992–8999. [CrossRef]

39. Shekar, A.; Gou, L.; Ren, L.; Wendt, A. Label-Free Robustness Estimation of Object Detection CNNs for Autonomous Driving
Applications. Int. J. Comput. Vis. 2021, 129, 1185–1201. [CrossRef]

40. ISO/IEC/IEEE 24765:2017(E); Systems and Software Engineering—Vocabulary. ISO: Geneva, Switzerland, 2017.

http://dx.doi.org/10.1109/ivs.2019.8814106
http://dx.doi.org/10.1109/iros51168.2021.9636204
http://dx.doi.org/10.1007/s11263-020-01423-x

	Introduction
	Related Work
	Landmark-Based Localization
	Landmark Detection
	Sensor Data Fusion of LiDAR Point Clouds and Camera Images
	Robustness of Vehicle Self-Localization
	Research Gap and Scientific Contribution

	Methodology
	Methods' Overview
	Layered Landmark Model
	Semantic Object Classification
	Metrics of Robustness
	Robustness Score

	Experiments
	Experimental Setup
	Real-World Test Drives
	Perturbation Injections for Robustness Calculation

	Results
	Robustness Evaluation of the Baseline System
	Robustness Evaluation with Semantic Class Labels

	Discussion
	Conclusions
	References

