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Virtual Reality is commonly applied as a tool for analyzing pedestrian behavior in a safe and
controllable environment. Most such studies use high-end hardware such as Cave
Automatic Virtual Environments (CAVEs), although, more recently, consumer-grade
head-mounted displays have also been used to present these virtual environments.
The aim of this study is first of all to evaluate the suitability of a Google Cardboard as
low-cost alternative, and then to test subjects in their home environment. Testing in a
remote setting would ultimately allow more diverse subject samples to be recruited, while
also facilitating experiments in different regions, for example, investigations of cultural
differences. A total of 60 subjects (30 female and 30 male) were provided with a Google
Cardboard. Half of the sample performed the experiment in a laboratory at the university,
the other half at homewithout an experimenter present. The participants were instructed to
install a mobile application to their smartphones, which guided them through the
experiment, contained all the necessary questionnaires, and presented the virtual
environment in conjunction with the Cardboard. In the virtual environment, the
participants stood at the edge of a straight road, on which two vehicles approached
with gaps of 1–5 s and at speeds of either 30 or 50 km/h. Participants were asked to press
a button to indicate whether they considered the gap large enough to be able to cross
safely. Gap acceptance and the time between the first vehicle passing and the button
being pressed were recorded and compared with data taken from other simulators and
from a real-world setting on a test track. A Bayesian approach was used to analyze the
data. Overall, the results were similar to those obtained with the other simulators. The
differences between the two Cardboard test conditions were marginal, but equivalence
could not be demonstrated with the evaluation method used. It is worth mentioning,
however, that in the home setting with no experimenter present, significantly more data
points had to be treated or excluded from the analysis.
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1 INTRODUCTION

Pedestrian simulators are used in a similar way to driving
simulators to explore pedestrian behavior in a safe and
controlled environment. Participants experience a virtual
traffic scenario from the perspective of a pedestrian. The
hardware used to display these virtual worlds has
undergone significant changes since the launch of
pedestrian simulators.

Desktop-based applications have been used in a variety of
studies to train children in pedestrian safety (McComas et al.,
2002; Josman et al., 2008; Schwebel et al., 2008). The virtual
environment is generally displayed either on a single screen or on
three screens arranged in a circle. Due to the generally low
hardware requirements, desktop solutions are often low-cost
and flexible, but they also suffer from a low degree of
immersion and limited possibilities of interaction.

CAVE-like (Cave Automatic Virtual Environments) systems,
on the other hand, can overcome these limitations. Here, the
participant is surrounded by projection screens on which a rear-
projected virtual traffic scenario is displayed. The perspective of
this virtual world changes as the participant moves his or her
head. Possible interactions include natural walking, and crossing
a virtual road, if permitted by the size of the structure (Mallaro
et al., 2017; Cavallo et al., 2019; Kaleefathullah et al., 2020). A
combination of stereo projectors and shutter glasses creates a 3D
representation of the virtual scene (Mallaro et al., 2017;
Kaleefathullah et al., 2020).

CAVE-like setups require a high implementation and
maintenance effort and, they can be expensive, depending on
the size and the hardware configuration. Head-mounted devices
(HMDs) are available at a far lower price. Participants experience
the virtual scenario trough VR glasses, and the displayed content
is dynamically updated according to the position and rotation of
the person’s head. As long ago as 2003, Simpson et al., 2003 used
an HMD to study the road-crossing behavior of children and
young adults. They used the V8 by Virtual Research Systems, with
a resolution of 640 × 480 per eye, a 60° diagonal field of view
(FoV) and stereoscopic rendering (which was, however, not used
in their experiment). Since then, the hardware has improved
drastically. Since the release of consumer-grade VR glasses [cf.
second wave of VR (Anthes et al., 2016)], HMDs have often been
employed in pedestrian simulators, such as in the context of
safety research (Deb et al., 2017) into smartphone distraction
(Sobhani et al., 2017) or interaction with autonomous vehicles
(Prattico et al., 2021), for instance.

An extensive overview of technologies and research designs
used in pedestrian simulator studies in the last decade can be
found in Schneider and Bengler (2020). All of these setups have in
common that they are located in university laboratories or
research facilities, which sometimes has implications for the
demographic composition of the study sample. For instance, if
certain groups are not explicitly addressed by the research
question (e.g., traffic safety in the context of the elderly or
children), recruitment often concentrates on the immediate
environment, which results in an over-representation of
healthy university students (Schneider and Bengler, 2020).

By providing low-cost alternatives, VR can be made accessible
to a broader and more diverse set of subjects. Unlike conventional
HMDs, mobile HMDs do not rely on an external computer
(usually with high hardware requirements). Anthes et al.
(2016) divide mobile HMDs into three categories: 1)
standalone solutions that integrate the computing hardware
into the headset and do not rely on any other technology, and
devices that provide only a smartphone housing and use the
phone’s processing power and screen as an HMD. They further
differentiate between 2) ergonomically designed cases and 3)
simple cases, the latter generally offering lower degree of wearer
comfort and a poorer optical display. However, the benefit of
simple cases are the low acquisition costs. One prominent
example of the latter variant are Google Cardboards, which
were released in 2014. The combination of high smartphone
ownership and low-cost Cardboards enables a wide range of
applications, such as a training program to increase the safety of
child pedestrians (Schwebel et al., 2017a; Schwebel et al., 2017b).
The authors compared the Cardboard approach to a semi-
immersive virtual environment with a sample of 68 college
students (Schwebel et al., 2017a). The participants assessed
both systems as having a similar degree of realism, and the
Cardboard-based system was generally regarded by the authors
as a usable and valid system.

In order to generalize results from simulator experiments to
reality, a certain degree of validity is essential. Validity describes
the degree to which observations in a simulator experiment
match real-world behavior (Kaptein et al., 1996; Wynne et al.,
2019; Schneider et al., 2021). Like driving simulators (Wynne
et al., 2019), pedestrian simulators are in wide use, but validation
studies are rare (Schneider and Bengler, 2020). There are two
forms of validity (Wynne et al., 2019): absolute validity is when
the same values are observed in the simulator and in reality, for
example, for walking speeds. Relative validity is when the same
effects are observed in both cases, even when the absolute values
differ, for example, smartphone use influencing walking speed.
Feldstein and Dyszak (2020) investigated decisions as to whether
to cross a street in reality and in an HMD. Subjects stood at the
edge of a single-lane road and a vehicle approached from the
right. The subjects were asked to take a step backwards as soon as
they judged the road to be unsafe to cross. The results could not
confirm either relative or absolute validity, and in the virtual
environment, smaller temporal distances were accepted. Unlike
in the virtual environment, no effect in terms of different vehicle
speeds was observed in reality. However, the relative validity of
the effect of vehicle color (light vs dark) on the crossing decision
was demonstrated in the very same study (Feldstein and Peli,
2020). Schneider et al. (2021) conducted a gap acceptance task on
a test track, in a CAVE and in an HMD. By taking a step forward,
participants signaled whether the gap between two vehicles was
deemed safe enough to enable a single-lane road to be crossed.
The most (i.e., also smaller) gaps were accepted on the test track.
In both simulators, crossing was initiated later. Again, a
correlation between increased vehicle speed and gap
acceptance could be observed in both simulators, but not in
reality, indicating that participants in the virtual environment
relied on the total distance between the vehicles rather than on the
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temporal gap (Schneider et al., 2021). Similar results were
observed in an augmented reality approach, with the same
experiment (Maruhn et al., 2020).

Besides simulator properties, other effects can influence
participant behavior and the transferability of the results to
reality. Feldstein (2019) conducted a review of the technical,
compositional and human factors at play when judging
approaching objects in real and virtual environments. The
presence of an experimenter or observer can also have an
effect on the subjects’ behavior. This phenomenon is known as
the Hawthorne effect, for which a variety of definitions exist. For
example, Oswald et al. (2014) describe the Hawthorne effect as “a
change in the subject’s normal behavior, attributed to the
knowledge that their behavior is being watched or studied.”
For example, if subjects in a driving simulator feel observed, it
can cause them to exhibit more socially desirable behavior
(Knapper et al., 2015). One way of preventing this is to ensure
complete anonymity. It has been shown in several psychological
questionnaire studies that anonymously interviewed participants
were more likely to report socially undesirable attributes (Lelkes
et al., 2012). On the other hand, anonymity also reduces
accountability and, in turn, the motivation to complete
questionnaires accurately. Lelkes et al. (2012) compared three
studies and confirmed that although, in some cases, anonymity
led to an increase in socially undesirable responses, in all cases it
led to lower accuracy and survey satisficing. The question is to
what extent an anonymous setting influences the behavior
displayed in a traffic simulation.

Motivated by the need for easier ways of testing diverse subject
collectives and to validate the methods used on the basis of real
data, this work replicates the study design byMaruhn et al. (2020)
and Schneider et al. (2021) in a Google Cardboard setting,
conducted under two different sets of conditions, in which one
group of subjects does the experiment in a conventional
laboratory session, while the other group performs the
experiment at home with no experimenter present. By
comparing results of this study with data from Maruhn et al.
(2020) and Schneider et al. (2021), it is possible to assess the
effects of a low-fidelity but cost-efficient hardware setup. The
additional remote setting enables the influence of a laboratory
setting with a human observer to be analyzed. This leads to the
two research questions posed in this work: 1) How does a low-
cost solution rank within the current pedestrian simulator
hardware landscape and 2) What differences or similarities
result from subjects performing the experiment alone at home
as compared to a laboratory setting?

2 METHODS

The German-French PedSiVal research project involved cross-
platform validation of pedestrian simulators. As is the case with
many studies of pedestrian simulators (Schneider and Bengler,
2020), crossing decisions were also the subject of the present
investigation. For this purpose, crossing decisions were recorded
on a test track with real vehicles and compared with the results
obtained using a CAVE, HMD (Schneider et al., 2021) and

augmented reality (AR) (Maruhn et al., 2020). This study
protocol is herein replicated with Google Cardboards (see
Section 2.1) in two different environments: half of the subjects
completed the experiment in a dedicated room located at the
university in the presence of an experimenter (condition: CBLab).
The other half completed the experiment at home, with no
experimenter present (condition: CBRemote). The subjects
were free to determine the timing of experiments conducted at
home. Under the laboratory condition, on the other hand, a fixed
appointment system was used. To prevent possible sources of
error in the remote setting (e.g., ambiguities in the instructions or
technical problems), the data were first collected under laboratory
conditions.

2.1 Study Protocol
In the experiment, the subjects stood at the edge of a single-lane
road at a distance of 0.65 m (cf. Figure 1). In each trial, two
vehicles approached from the right at a constant speed. The
actual experiment trials were preceded by two practice trials.
The speeds varied between 40 km/h in the two practice trials and
30 km/h or 50 km/h in the actual experiment trials. In each
individual trial, the gap between the vehicles was constant, but it
varied from trial to trial from 1 to 5s. In the two practice trials,
one 2s and one 4s gap was presented. Subsequently, every
possible combination of the two speeds and five gap sizes
was presented once in a random order, resulting in a total of
10 trials after the two practice trials. These combinations of
vehicle gaps and speeds were thus identical to the data collected
previously on the test track, with Cave, or with an HMD
(Schneider et al., 2021), and AR (Maruhn et al., 2020).
Likewise, the position of the participant and his or her
distance to the road was approximately the same under all
conditions (small variations were however possible since the
participants in the other settings were able to move, whereas the
position in the Cardboards was fixed).

The aim of this study is to evaluate a low-cost alternative to
current, commonly applied approaches in pedestrian simulators
such as consumer grade desktop-based VR HMDs and CAVEs as
well as more recent approaches like AR. A simple Cardboard
casing was used, without any padding. To limit discomfort while
wearing the Cardboard, the duration of exposure to VR was
minimized as far as possible. However, the aim was for the
experiment to resemble the previous experiments as far as
possible. Balancing these two objectives led to the following
modifications compared to Maruhn et al. (2020) and
Schneider et al. (2021): The number of trials was halved, and
each combination of speed and gap size was presented once
instead of twice. On the test track, the vehicles had to turn around
after each run, drive back to the starting point and reposition
themselves. However as in Maruhn et al. (2020), these waiting
times were eliminated here. The vehicles disappeared at the end of
the virtual road before being re-spawned at the starting point.
Before starting their experiment, Maruhn et al. (2020) and
Schneider and Bengler (2020) checked visual acuity using a
simple paper-based test and determined each individual’s
walking speed for the subsequent purpose of calculating safety
margins. However, this was omitted in the present study as it was

Frontiers in Virtual Reality | www.frontiersin.org December 2021 | Volume 2 | Article 7469713

Maruhn Pedestrian Simulator Studies at Home

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


impractical in a remote setting in which there was no
experimenter.

The overall experiment lasted about 30 min, including about
10 min of VR exposure. The study design was approved by the
university’s ethics committee.

2.2 Apparatus
Participants of both Cardboard conditions were provided with an
unassembled Google Cardboard along with instructions and with
a QR code for installing the mobile application. Participants were
encouraged to install the application on their own smartphone.
Participants under the lab condition who did not have their own
Android smartphone were provided with a Nexus 5 device.

2.2.1 Cardboard Viewer
A Google Cardboard version 2.0 was used for this experiment (cf.
Figure 2A). By pressing a button on the upper right of the
Cardboard causes a pillowed hammer covered with conductive
strip to be pressed against the smartphone display (Linowes and
Schoen, 2016). This enables button presses can be registered as
touch events. The Cardboard has two lenses (∅ 37.0 mm). It
weighs 140g, has the dimensions (145 × 87 × 87 mm), and
supports smartphone display sizes of between 3.7” and 6”
(9.4–15.2 cm). The originally introduced Google Cardboards
(2015) claimed to have a Field of View (FoV) of 80° and a
lens diameter of ∅ 34.0mm (Linowes and Schoen, 2016) in
comparison to 85° in AR (Maruhn et al., 2020) and 110° in the
HMD (Schneider et al., 2021). The Cardboard has a printed QR
code, which the test persons were asked to scan before they
started. This adapts the display to the lenses and dimension
parameters of the device [cf. Linowes and Schoen (2016)]. Neither
the distance to the display nor between the lenses are adjustable.
The Cardboard can be worn hands-free using an adjustable elastic
headband. In practice, however, the use of a headband is not
recommended. Holding the Cardboard with the hands limits the
head’s rotation speed, which can prevent kinetosis (Linowes and
Schoen, 2016). But as only a few rotations were to be expected in
the present study design, mainly when the vehicles pass by, and as
no interaction with the button on the Cardboard was necessary

while waiting for the vehicles, the subjects were still provided with
a headband. However, the participants were free to decide
whether to use it (no instructions were provided for the
headband) or to hold the Cardboard in place with their hands.

2.2.2 Mobile Application
The virtual environment from Maruhn et al. (2020) and
Schneider et al. (2021) was transferred to an Android app (cf.
Figure 2B), and the virtual environment was created in Unity
2019.3 and Google VR SDK 2.0. The experimental data was
stored in an online database (Google Firebase). The app was
distributed via Google Play Store.

On running the app, users stated whether they were working
under the CBLab or the CBRemote conditions. They then had to
confirm the subject information and informed consent. Users
were asked to scan the QR code on the Cardboard. Since
difficulties were observed when assembling the Cardboard
under the lab condition, an explanatory stop motion
animation was added for use under the remote condition.
Finally, users entered their body height and the app switched
to Cardboard mode. The virtual camera height was then adjusted
to the subject’s body height. To reduce the number of draw calls
and thus increase the performance, the virtual parking lot
environment was converted into a 360° image from this
camera position. This meant that no translational movements
were possible (however, only rotations can currently be reliably
tracked in Cardboards anyway). The two vehicles remaining as
the sole dynamic objects featured 3D spatial sound. Upon
entering the virtual environment, text boxes were displayed to
introduce participants to the experimental task.

2.3 Experimental Task
Participants were told that they could interact with the virtual
buttons in the VR by pressing the physical button in the
Cardboard and using a gaze pointer to select a virtual button.
The gaze pointer is a small white circle in the middle of the screen,
that is only visible while the instructions are being displayed. The
subjects were informed that the two vehicles would always
approach from the right, with a constant gap and speed.

FIGURE 1 | Schematic sketch of the experimental setup. The virtual vehicles appear at a distance of 320 m on a 4.8 m wide road, pass by the subject at a
predefined speed and distance, and disappear at the end of the road.
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Participants were asked whether they were standing and using
headphones for audio output. They were asked to rate only the
gap between the two vehicles in terms of whether they considered
it safe to cross the road. If so, they were asked to signal their
intention to cross the street at the moment that they would
commence crossing. Since it was not possible to cross the actual
test track for safety reasons, only the intention to cross was
assessed. In Maruhn et al. (2020) and Schneider et al. (2021), this
was signaled by taking a step forward towards the street. Since it is
not possible to reliably track translational movements with
Cardboards, this was signaled by pressing a button at the
upper right of the Cardboard in the present study. Each press
of the button caused an audible beep sound to be emitted. Each
button press was recorded in the online database to calculate the
objective measurements.

2.4 Objective Measures
Crossing initiation time (CIT) and gap acceptance were
recorded as objective dependent measures. Gap acceptance
was recorded as a dichotomous measure, indicating whether
or not participants deemed a gap large enough to cross. If a
participant decided to cross, the CIT was also calculated. CIT
describes the time difference from the moment the first vehicle
has passed until the subject presses the button. A negative CIT
thus means that a crossing was initiated before the preceding
vehicle had completely passed by the subject. A button press
such as the one shown in the situation in Figure 1 would thus
result in a CIT of 0s.

2.5 Subjective Questionnaires
After the trials were completed, the subjective data was recorded
using the questionnaires contained in the app and results were
also stored in the online database. The questions were the same as
in Maruhn et al. (2020) and Schneider et al. (2021) and concerned
demographics, how subjects rated the situations in which they did
or did not cross the road, how easy they found it to make the
decisions, and how likely it was that a collision would have
occurred. The exact wordings can be found in Figure 10.

Online surveys or crowd-sourced data are often deemed to
produce a low data quality as a result of careless behavior
(Brühlmann et al., 2020). In long questionnaires, for example,
attention checks are often used to identify deficient data sets. In
this study, however, the focus was not only on the quality of the
questionnaire but also on that of the simulator data. Another way
of identifying careless behavior is to use self-reported single item
(SRSI) indicators (Meade and Craig, 2012). At the end,
participants were asked the following question, adapted from
Meade and Craig (2012), using a continuous slider (extrema
labels No–Yes): “It is critical for our study to include data only
from individuals who give their full attention to this study.
Otherwise, years of effort (by the researchers and other
participants’ time) could be wasted. Hand on heart, should we
use your data for our analyses in this study?”

2.6 Recruitment
Members of the university (staff and students) were recruited as
subjects. They were approached spontaneously on campus,
largely without any personal connection. However, this led to
considerable data collection problems in the remote setting. To
ensure anonymity, no contact information was collected from the
participants. They were only provided with the Cardboard and
printed instructions on how to install the app. An email contact
address was provided in case of any further questions. However,
data from the first subjects recruited in this way were for the most
part never received. Technical reasons can be excluded here, as
continuous monitoring of the app did not indicate any problems.
It appeared to be down to a lack of incentive or commitment
resulting from the complete anonymity. To circumvent this
problem, participants whose contact data was available from
the extended social environment of employees and students
were recruited for the remote component. One week after the
Cardboards were given out, a reminder was sent to the subjects to
perform the experiment at home. However, the experimental data
remained anonymous. Subjects were only allowed to participate if
they had not taken part in a previous study by Maruhn et al.
(2020) and Schneider et al. (2021).

FIGURE 2 | (A) Google Cardboard Version 2.0 Viewer with a Google Nexis 5 Smartphone. (B) View from the subject’s perspective during the experiment. Shown
here is a 3-second gap at 30 km/h.
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2.7 Study Population
Thirty subjects completed the experiment in each of the two test
environments CBLab and CBRemote. Male and female
participants were equally represented in both settings. The age
distributions under the laboratory condition (M � 26.53, SD �
3.15, N � 30) and under the remote condition (M � 29.13, SD �
3.60, N � 30) were comparable to the data previously collected in
reality (M � 27.50, SD � 2.08, N � 30), CAVE (M � 27.93, SD �
3.42,N � 30), HMD (M � 27.73, SD � 3.00,N � 30), and AR (M �
27.62, SD � 3.55, N � 13). Although the idea was to be able to
recruit more diverse samples for the Cardboards used in a remote
setting, this was not done here on grounds of comparability.

2.8 Hardware Performance
The current frame rate, measured in frames per second (fps), was
continuously tracked during the trials. So as not to affect the
performance, the frame rate was measured with a frequency of
4 Hz. The number of frames was divided by the elapsed time,
i.e., the average frame rate of the previous 250 ms. The minimum
and maximum frame rates were then logged for each trial. The
phone’s display resolution was also logged. The results are
presented in Figure 3. Overall, the smartphones used under
the remote condition were higher performing. The minimum
frame rates measured (Figure 3A) are in many cases well below
the frequently recommended level of 60fps (CBLab:M � 25.84fps,
SD � 14.09fps, CBRemote: M � 31.85fps, SD � 13.29fps).
However, it should be noted that these minimum frame rates
usually only occur for a very short time, for instance, during a
rapid head movement or when rendering complex 3D objects.
Unfortunately, this generally happens when the vehicles are going
past the test persons, who follow the vehicle movements with
their heads. It can therefore not be completely ruled out that it
affects the estimation task. In many smartphones, the maximum
frame rate is limited to 60 fps (Linowes and Schoen, 2016), or
even lower values, particularly in older models. The smartphones
used under the remote condition achieved slightly higher
maximum frame rates (M � 57.66fps, SD � 4.59fps) than
those in the laboratory (M � 52.90fps, SD � 9.70fps), see
Figure 3B. Regarding the display resolutions, only minimal
differences between the smartphones used in the lab

(M � 2.15MP, SD � 0.62MP) and those employed at home
(M � 2.03MP, SD � 0.47MP) can be determined (Figure 3C).

2.9 Data Exclusion
If participants wished to mark a trial response as erroneous, for
example, if they had clicked by mistake, they were asked to signal
this by pressing the button three times. However, this did not
happen in any of the trials. But there were several occasions on
which a button was pressed well before or after the vehicles had
passed. These cases were then deleted (CBLab: 2, CBRemote: 1). A
CIT of ± 20s was defined as the threshold value. After this
cleanup, a number of duplicate button presses still remained.
In such cases (CBLab: 2, CBRemote: 8), the first of the two button
presses was used in the onward analysis. Subsequently, there still
remained cases in which the CIT was larger than the actual vehicle
gap. Furthermore, very late button presses, i.e., thosemade shortly
before the second vehicle passes cannot be considered as
representing a time to start crossing. Consequently, CITs
larger than half the gap size were excluded (CBLab: 2,
CBRemote: 19) in CIT comparisons and only considered as
gap acceptance. Under the laboratory condition, these data
points were distributed among six subjects, and under the
remote condition, among 13 subjects. It is possible that several
of these excluded data points might occur for one subject. There
was one participant in the remote group for whom five cases of
double button presses occurred accompanied by five cases with
excessively large CITs. This subject also accepted every gap.
However, the cleaned data seemed plausible. Accordingly, it
cannot be ruled out that the subject actually found all gaps
passable and that the instructions had not been
misunderstood. This subject was therefore not excluded from
the analysis. The other cases were evenly distributed among the
test subjects. Overall, more data points had to be cleaned under
the remote condition than in the laboratory.

2.10 Data Analysis
Null hypothesis significance testing (NHST) is the predominant
method of data evaluation used in human factors research, which
includes driving simulator studies (Körber et al., 2016), although
it does have some limitations and problems. NHST is often used

FIGURE 3 |Hardware performance indicators for the smartphones used in the two test environments. (A) shows the minimum frame rates that occurred in the test
runs, and (B) the maximum frame rates achieved. (C) compares the display resolutions.
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to render a dichotomous statement, such as “Does an
independent, manipulated variable have a significant effect on
a dependent, observed variable?” This decision is then usually
based on a previously defined α error level. The p value of a
frequentist test indicates how likely the observation was,
assuming the manipulated variable has no influence. However,
the p value depends on a number of factors that must be taken
into account by the researcher, such as sampling stopping rules
and test selection (Kruschke, 2015a). Besides this single point
estimate in the form of a p value, plausible limits around this
estimator, i.e., confidence intervals, are also increasingly used in
the social and behavioral sciences (Cumming and Finch, 2001).
However, since confidence intervals are based on the same
assumptions as p values, they suffer from the same limitations
as those described above (Kruschke, 2015a). Moreover,
confidence intervals only provide bounds, not a distribution
function of the estimator (Kruschke, 2015a). This is in
contrast with Bayesian statistics. Here, the outcome is actually
a distribution function of the estimator. Bayesian approaches also
avoid approximation assumptions (Kruschke, 2015b, p. 722) and
allow for equivalence testing. These and other benefits have led to
a rapid rise of Bayes methods in a variety of disciplines (Kruschke
et al., 2012), but not in social and behavioral research [e.g.
Kruschke et al. (2012); Körber et al. (2016)]. This work is a
first step in applying Bayes statistics in the context of pedestrian
simulator studies. Data analysis and model creation for this work
were performed in Python, version 3.8.

3 RESULTS

As stated at the beginning of this work, this study replicates a
design that has already been performed in reality, as well as in
CAVE, HMD (Schneider et al., 2021), and AR (Maruhn et al.,
2020). To better understand the results of this work in the overall
context (Research Question 1), the data from previous studies are
given in figures and analyses. The number of trials in the present
setting was half that used in previous studies, and each
combination of gap size and speed was presented only once.
Accordingly, only the first 10 trials from the previous studies were
considered. The data analysis focuses on two comparisons: the
difference compared to the test track and the difference between
the two Cardboard conditions (laboratory and remote, Research
Question 2).

3.1 Gap Acceptance
In addition to the 300 crossings (10 trials x 30 participants)
performed under each of the two Cardboard conditions (lab
and remote), the analysis also includes crossings made in
previous studies: REAL (300), CAVE (300), HMD (298,
whereby 2 data points were excluded because the subjects
were too far in front of the virtual light barriers) and AR
(130, as there were only 13 subjects). Figure 4 presents a
summary of acceptance rates isolated for the variables: test
environment (Figure 4C), gap size (Figure 4D), and speed
(Figure 4E), as well as the combination of test environment
and gaps (Figures 4A,B). In total, 654 of the 1,628 crossing

opportunities were rated as passable, representing an
acceptance rate of 40%. Acceptance rates for each factor
were calculated from combinations of the remaining two
factors (cf. Figure 4). Acceptance rates were highest in the
real environment on the test track (M � 0.48, SD � 0.5)
followed by CAVE (M � 0.43, SD � 0.5), CBRemote (M �
0.42, SD � 0.49), CBLab (M � 0.39, SD � 0.49), HMD (M �
0.34, SD � 0.47), and AR (M � 0.28, SD � 0.45). More gaps
were accepted overall at 50 km/h (M � 0.43, SD � 0.5) than at
30 km/h (M � 0.37, SD � 0.48).

A mixed logistic regression model was generated to analyze
the binary outcome of gap acceptance. The gap sizes were re-
centered around 0 to accelerate data processing and simplify
model interpretation. To account for this, the factor gap size is
referred to as GapC in the model descriptions and summaries.
The base model included condition (categorical, 6 levels:
REAL, CAVE, HMD, AR, CBLab and CBRremote), speed
(categorical, 2 levels: 30 and 50 km/h), gap size centered
(continuous, 5 levels: −2, −1, 0, 1, and 2s) and participant
as a random factor (ID). The REAL condition served as a
baseline. Speed was treated as a categorical variable, since only
two velocities were used in the experiment. Two additional
models were created by adding random slopes for either gap
size or speed as was one more model, in which two fold
interactions of the condition with the speed and gap were
added to the base model. The models were created with Bambi
(Capretto et al., 2020) which is built on top of PyMC3
(Salvatier et al., 2016). Bambi allows for formula-based
model specification and automatically generates weakly
informative priors (Capretto et al., 2020). The Hamiltonian
Monte Carlo algorithm in combination with No-U-Turn
Sampler (Homan and Gelman, 2014) is then used to
compute the posterior distribution depending on the priors
and the likelihood function of the observed data. Each model
was created with 4,000 draws and 4 parallel chains. The target
accept (sampler step size) was increased to 0.99 to remove any
divergences, especially in the more complex model with
interactions. ArviZ (Kumar et al., 2019) was used to analyze
and compare the Bayesian models created. The results are
shown in Table 1. Despite being only ranked second, the base
model will be used for further data analysis. Since there is only
a marginal difference in the information criterion (loo: leave-
one-out cross validation), the base model was chosen due to its
simpler model complexity and parameter interpretation. The
structure of the base model is illustrated in Figure 5 as a
distogram, according to the convention by Kruschke (2015b).
The model’s output is summarized in Table 2. No divergences
occurred in the model. For none of the fixed effects did a rank
normalized R-hat R̂> 1.00 occur [cf. Vehtari et al. (2021)].
Visual inspection of the trace plots indicated a sufficient
exploration of the parameter space and mixing of the chains.

Contrary to NHST, Bayes analysis provides a distribution of
estimators instead of a point estimate. The further analyses are
limited to the estimators for the different conditions. If the beta
estimators for condition are considered in isolation, this
corresponds to a model equation in which Gap xS and Speed
xG are set equal to zero (cf. Figure 5). Since Gap was re-centered,
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this corresponds to an estimate for 3s gaps at 30 km/h (baseline
speed). The distributions of the beta estimators for the different
conditions can be subtracted from each other. For example, if the
CBLab distribution is subtracted from the CBRemote
distribution, a conclusion can be drawn about how the
estimation for a crossing differs between the two conditions
relative to the REAL condition. The result of a linear
combination from a logistic regression are given in logits. By
applying an exponential function, the logits can be converted to
odds. Dividing the odds by 1 + odds results in probabilities
(Equation 1).

probability � elogit

1 + elogit
(1)

Of particular interest are the differences in the crossing
probabilities between the simulators and reality (Research
Question 1) as well as between the two Cardboard conditions
(Research Question 2). Figure 6 contrasts these differences in a
ridge plot. The plot shows the respective posterior distributions’
94% highest density interval (HDI). HDIs are often given as 94%
to emphasize their difference to confidence intervals. As with
classical NHST, there are now several ways of describing the
magnitude of these differences and, in contrast to NHST, about
their equivalence as well (Kruschke, 2015b, p. 335 ff.). One way is
to define a region of practical equivalence (ROPE). The
boundaries of this region can be specified individually,
depending on the use case. In this work, a data-driven
approach was chosen. Kruschke (2018) defines ROPEs based

FIGURE 4 | Descriptive data of gap acceptance rates. (A,B) show the acceptance rates as a combination of vehicle gap and test environment subdivided for both
levels of speed. The bottom three plots each represent one independent variable in isolation. The acceptance rates are shown as a function of (C) the experimental
environment, (D) the gap sizes and (E) the levels of speed. The box plots show the distributions based on the other two respective factors. For example, (D) shows that
there are combinations of test environment and speed that lead to a gap acceptance of 0 at 3s. In (A) it can be seen that these are AR at 30 km/h. The experimental
data in REAL, CAVE and HMD were collected in Schneider et al. (2021). The experimental data in AR were collected in Maruhn et al. (2020).

TABLE 1 |Model comparison for predicting crossings as a function of condition, gap size, and speed as fixed factors and participant as a random factor. In addition to this
base model, the other models include either a random slope for gap or speed, while one model features two-way interactions of gap and speed with condition.

Rank loo p_loo d_loo Weight se dse Warning loo_scale

Random Slope Gap 0 −526.04 135.99 0.00 0.37 23.60 0.00 False log
Base Model 1 −526.34 111.50 0.30 0.29 23.72 3.29 False log
Random Slope Speed 2 −526.75 116.88 0.70 0.00 23.80 3.40 False log
Interactions 3 −527.99 126.96 1.95 0.35 23.79 4.79 False log

Frontiers in Virtual Reality | www.frontiersin.org December 2021 | Volume 2 | Article 7469718

Maruhn Pedestrian Simulator Studies at Home

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


on the population standard deviation and half the size of a small
effect (δ � ±0.1) according to Cohen (1988). Since no standard
deviation of the population is available in the present case, the
sample standard deviation is used. With a dichotomous outcome
variable, no standard deviation can be calculated initially.
However, since each subject (i) repeated the experiment 10
times, the mean crossing probability of each subject (p̂i �
accepted crossings/number of repetitions) and the mean

crossing probability of all subjects (p̂0) can be used to
calculate the standard deviation of the crossing decisions of all
participants (Eq. 2). The ROPE limits were then defined by
multiplying σcrossing by ± 0.1 (Eq. 3). This results in a ROPE
of ±0.018. Thus, differences of ±1.8% are treated as practically
equivalent.

σcrossing �
������������
ΣN
i�1(p̂i − p̂0)2
N − 1

√
(2)

ROPE � ±0.1pσcrossing (3)

As can be seen in Figure 6, the combination of weakly
informative priors and a relatively small set of data points
results in very broad distributions relative to a narrowly
defined ROPE. Accordingly, none of the distributions lies
entirely within the ROPE and no practical equivalence can be
assumed for any of the comparisons. The HDIs of HMD-REAL
(HDI [ − 0.426, −0.103]), AR-REAL (HDI [0.472, −0.149]) and
CBLab-REAL (HDI [− 0.374, −0.026]) are completely outside the
ROPE. Fewer gaps are accepted in these conditions than on the
test track. For the remaining comparisons CAVE-REAL (HDI [−
0.313, 0.069]), CBRemote-REAL (HDI [− 0.318, 0.059]) and
CBRemote-CBLab (HDI [− 0.083, 0.213]), no statement can be
made, because they are neither completely enclosed by the ROPE
nor completely outside the ROPE. Makowski et al. (2019)
describe another way of defining ROPEs for logistic models.
For completeness, the evaluation is included in the analysis
script provided online.

ROPE � ±0.1p π�
3

√ (4)

They propose converting the parameters from log odds ratio to
standardized difference using Eq. 4, resulting in a ROPE of
±0.181 on the logit scale. This approach yields the same
results in this context, except that the CBLab-REAL
comparison is just no longer completely outside the ROPE.

3.2 Crossing Initiation
Of the 654 gaps accepted, CITs were calculated for 633 deemed as
potential crossings. Twenty-one cases were dismissed for which
the CIT was greater than half the gap size (cf. Section 2.9). Since
gap acceptance rates varied between the test conditions, so did the
number of CITs: REAL (N � 145), CAVE (N � 128), HMD (N �

FIGURE 5 | Model structure for predicting each binary outcome of a
possible crossing (yi) depending on the simulation environment (j) and based
on a Bernoulli distribution. Its μ value results from a linear logistic function with
condition (C, 6 categorical levels referenced by index (j), speed (S) and
gap size (G) as fixed effects. Due to the repeated measures design, the
participants’ ID was treated as a random effect (c). The estimators were
assigned weakly informative priors: normal distribution for the fixed effects and
half-normal for the σ of the normal distribution for the random effect.

TABLE 2 | Summary for crossing model: Crossing ∼ Condition + Speed + GapC +(1|ID). REAL served as a baseline. GapC refers to the centered gap size variable [−2s, 2s]
rather than [1s, 5s].

Mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

Intercept −0.579 0.362 −1.273 0.084 0.005 0.003 5966.0 9313.0 1.0
CAVE −0.622 0.504 −1.563 0.333 0.006 0.004 7275.0 10392.0 1.0
HMD −1.650 0.508 −2.606 −0.687 0.006 0.004 7025.0 9687.0 1.0
AR −2.304 0.663 −3.502 −1.009 0.007 0.005 8201.0 10628.0 1.0
CBLab −1.083 0.503 −2.013 −0.136 0.006 0.004 7559.0 10259.0 1.0
CBRemote −0.666 0.501 −1.585 0.293 0.006 0.004 7071.0 10244.0 1.0
Speed 0.745 0.172 0.431 1.082 0.001 0.001 32756.0 10812.0 1.0
GapC 2.211 0.120 1.980 2.431 0.001 0.001 16983.0 13108.0 1.0
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101), AR (N � 37), CBLab (N � 114) and CBRemote (N � 108).
The overall mean CIT was 0.16s (SD � 0.52s), whereas in REAL
(M � −0.27s, SD � 0.45s), distinctly lower CITs were observed
than in the simulators: CAVE (M � 0.35s, SD � 0.51s), HMD
(M � 0.16s, SD � 0.47s), AR (M � 0.38s, SD � 0.46s), CBLab (M �
0.24s, SD � 0.34s) and CBRemote (M � 0.34s, SD � 0.49s). As the
gap size increased, CITs also increased slightly: 2s (M � −0.04s,
SD � 0.48s), 3s (M � 0.06s, SD � 0.47s), 4s (M � 0.15s, SD �

0.52s) and 5s (M � 0.21s, SD � 0.52s). At 30 km/h, participants
made the decision to cross earlier (M � 0.03s, SD � 0.55s) than at
50 km/h (M � 0.26s, SD � 0.46s). Figure 7 shows the CITs as a
function of condition (Figure 4C), gap (Figure 4D), speed
(Figure 4E) or a combination of condition and gap for the
two levels of speed (Figure 4A and Figure 4B).

In a similar way to the gap acceptance analysis above (cf.
Section 3.1), different models were created with which to predict

FIGURE 6 | Difference in posterior probabilities of crossing the street (for a 3s gap and at 30 km/h) between the simulators and the real-world setting, and between
the two Cardboard settings.

FIGURE 7 | Descriptive data of crossing initiation times (CIT). (A) and (B) show CITs as a combination of vehicle gap and test environment, subdivided for both
levels of speed. The bottom three plots each represent a single independent variable. The CIT is shown as a function of (C) the experimental environment, (D) the gap
sizes and (E) the speed levels. The experimental data in REAL, CAVE and HMD were collected in Schneider et al. (2021). The experimental data in AR were collected in
Maruhn et al. (2020).
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CITs. Again, the base model featured condition, speed, gap size
centered (GapC) plus the participant as a random factor (ID),
while the additional models included either interactions or
random slopes. The loo values for the models were again very
similar, and therefore, the simple base model was chosen. The
exact values can be found in the accompanying data analysis
script. It should be noted that warnings appeared in the course of
the model comparison [based on loo using Pareto-smoothed

importance sampling (Vehtari et al., 2017)] to the effect that
the estimated shape parameter of Pareto distribution was greater
than 0.7 for some observations. Observations where κ > 0.7
indicate influential data points, and errors in loo estimation
(Vehtari et al., 2017). Further analysis of these data points
revealed that they are extreme values under the CAVE (N �
6), HMD (N � 6), and CBRemote (N � 3) conditions with
comparatively very low or very high CITs. However, since the
data points represent plausible CITs, they are not excluded from
the model. The visual inspection of trace plots and auto-
correlation plots, as well as the posterior predictive checks and
the absence of divergences otherwise imply a sufficient model fit.
The resulting model summary is presented in Table 3 and the
model schema is shown in Figure 8.

Here, too, further analysis focuses on the differences in the
CITs between the simulation environments and reality and on
comparing the two Cardboard conditions. The ROPE was
determined on the basis of the standard deviation of all CITs
as ± 0.1*σCIT. Based on σCIT � 0.52s, this results in a ROPE of
±0.052s. Figure 9 plots the difference in posterior distributions.
Compared to the test track, the participants indicated their
crossing decisions later in all simulated environments: CAVE-
REAL (HDI [0.474, 0.843]), HMD-REAL (HDI [0.252, 0.625]),
AR-REAL (HDI [0.374, 0.885]), CBLab-REAL (HDI [0.283,
0.664]), CBRemote-REAL (HDI [0.398, 0.766]). No statement
can be made regarding a practical equivalence for the
comparison between CBRemote and CBLab (HDI [ − 0.090,
0.300]).

3.3 Subjective Data
Figure 10 presents all the questionnaire’s results along with the
wordings of the questions. Table 4 gives an overview of means
and standard deviations for each item and experimental setting.
Overall, participants rated it quite safe to cross the street (Q1,
Likert scale [1, 4]), with the highest scores achieved in reality on
the test track, followed by AR, CBRemote, HMD, CAVE and
CBLab. Collisions (Q2, Likert scale [1, 4]) were assessed as
somewhat unlikely with the lowest values in AR, followed by
CBRemote, REAL, CBLab, HMD and CAVE. The severity of
collisions (Q3, Likert scale [1, 4]) was rated highest in AR
followed by CBLab, REAL, CBRemote, HMD and CAVE. The
two questions on similarity of behavior compared to reality (Q4
and Q5, continuous scale) were normalized to obtain values
between 0 and 1. Both questions produced similar results. In

TABLE 3 | Summary for CIT model: CIT ∼ Condition + Speed +GapC + (1|ID). REAL served as a baseline. GapC refers to the centered gap size variable [−2s, 2s] rather than
[1s, 5s].

Mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

Intercept −0.430 0.073 −0.575 −0.301 0.002 0.001 2305.0 4860.0 1.0
CAVE 0.650 0.099 0.474 0.843 0.002 0.001 2416.0 5053.0 1.0
HMD 0.442 0.100 0.252 0.625 0.002 0.001 2457.0 5338.0 1.0
AR 0.638 0.136 0.374 0.885 0.002 0.002 3229.0 6233.0 1.0
CBLab 0.477 0.101 0.283 0.664 0.002 0.001 2397.0 4880.0 1.0
CBRemote 0.581 0.099 0.398 0.766 0.002 0.001 2763.0 5557.0 1.0
Speed 0.213 0.025 0.166 0.259 0.000 0.000 21679.0 12188.0 1.0
GapC 0.058 0.016 0.028 0.087 0.000 0.000 19890.0 13045.0 1.0
Sigma 0.300 0.010 0.282 0.318 0.000 0.000 13749.0 12077.0 1.0

FIGURE 8 | Model structure for predicting CIT (yi) depending on the
simulation environment (j) and based on a Gaussian distribution. Its μ value
results from a linear function with condition (C, 6 categorical levels referenced
by index (j), speed (S) and gap size (G) as fixed effects. The standard
deviation of the Gaussian distribution σ is estimated on the basis of a weakly
informative normal prior distribution. Due to the repeated measures design,
the participants’ ID was treated as a random effect (c). The estimators were
assigned weakly informative priors: normal distribution for the fixed effects and
half-normal for the σ of the normal distribution for the random effect.
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cases in which the participants crossed the street, behavior was
rated the most similar in CBRemote followed by REAL, HMD,
AR, CAVE, and CBLab. Again, in cases in which they did not
cross, CBRemote scored highest, followed by CAVE, HMD,
REAL, CBLab, and AR. This high correspondence to real road
traffic situations was also reflected in the following question.
The subjects indicated that their decisions were neither
particularly safe nor unsafe compared to other situations
(Q6, Likert scale [−2, 2]). Deciding to cross the street (Q7,

Likert scale [−2,2]) was more difficult than usual, with the
highest scores obtained in AR, followed by CBLab,
CBRemote, HMD, REAL and CAVE. The participants also
reported that taking this decision took longer (Q8, Likert
scale [−2, 2]), being the shortest in CBLab, followed by
CAVE, REAL, AR and CBRemote, and the longest in HMD.

Again, a Bayesian approach was chosen for analysis. For each
question, a separate model was set up and fitted. In all models, the
test environment served as the fixed (and only) factor, with REAL

FIGURE 9 | Difference in posterior estimates for CIT (for a 3s gap and at 30 km/h) between the simulators and the real setting, and between the two Cardboard
settings.

FIGURE 10 | Descriptive data from the questionnaires. Questions with Likert response scales are represented by point plots, questions with continuous response
scales by box plots. For the Likert-scaled items, only the most extreme response options are indicated at the edges of the X axis in each case.
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as the baseline. Likert-scaled items (Q1–3 and Q6–8, cf.
Figure 10) were evaluated using ordered logistic regression.
Since Bambi (Capretto et al., 2020) does not support ordered
logistic regression at the time of writing, it was modeled in
PYMC3 (Salvatier et al., 2016). Following McElreath (2020,
Chapter 12) and consistent with previous analysis in this
paper, weakly informative priors were used. Visual inspection
of trace and auto-correlation plots indicated sufficient sampling,
and posterior predictive plots evidenced an adequate fitting of the
separate models. The two questions with continuous response
scales were fitted with Bambi. Again, the test environment served
as the sole factor. Here, posterior predictive checks indicated a
poor fit between the Gaussian model and the heavily left-skewed
data (cf. Figure 10). Data with a range from 0 to 1 was mirrored at
0.5 to obtain a right-skewed distribution and fitted to a Gamma
distribution with log link functions to avoid divergences

appearing with canonical link functions. Since these
distributions do not support the observed values of 0, 1e − 5
was added to these data points. Ideally a truncated distribution
that accounts for left-skewed data should be used. However, none
is available at the current state of the libraries used. For both
questions and the respective models, a model comparison
revealed a higher model fit (based on loo values) for the
Gamma models. However, the Gamma model for Q4 resulted
in implausible posterior distributions under HMD and
CBRemote conditions. The Gaussian model was therefore
applied. Differences in posterior distributions were calculated
to enable comparison of the two Cardboard conditions.

Similar to Figures 6, 9, 11 shows the differences in estimator
distributions for the above mentioned comparisons for each
question. The outputs for the Likert-scaled items (Q1–3 and
Q6–8) are displayed in logits, the results of Q4 on a log scale. In

TABLE 4 | Summary of questionnaire data. See Figure 10 for questions wordings.

Condition Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

mean std mean std mean std mean std mean std mean std mean std mean std

AR 3.23 0.73 1.46 0.66 3.17 1.03 0.68 0.23 0.66 0.22 0.15 1.07 0.92 0.86 −0.62 0.65
CAVE 2.87 0.57 1.97 0.72 2.57 0.73 0.67 0.23 0.80 0.21 0.03 0.81 0.23 1.01 −0.27 0.87
CBLab 2.80 0.61 1.80 0.76 3.03 0.61 0.66 0.22 0.71 0.25 0.13 0.73 0.87 0.68 −0.20 0.92
CBRemote 3.10 0.76 1.67 0.76 2.90 0.71 0.78 0.17 0.87 0.16 0.03 0.50 0.79 0.82 −0.62 0.68
HMD 3.07 0.52 1.90 0.55 2.73 0.74 0.75 0.23 0.80 0.25 0.40 0.86 0.60 1.00 −0.80 0.66
REAL 3.43 0.57 1.73 0.83 2.97 0.89 0.76 0.09 0.77 0.22 -0.13 0.63 0.33 0.84 −0.43 0.73

FIGURE 11 | Difference in posterior estimates for each of the subjective items in the questionnaire (cf. Figure 10). The results for Q1-3 and Q6-8 in the upper and
lower rows are given in logits, the results of Q5 in the center plot on a log scale.
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the case of logits, the ROPEs are defined by Eq. 4. The ROPEs’
limits for the continuous items (Q4 and Q5) are again data driven
and defined by the standard deviation of each response item:
±0.1*σQuestion−Item respectively ±0.1*σ log(Question−Item) to account
for the Gamma model’s log link function.

Crossings in CAVE (HDI [ −1.886, −0.353]) and CBLab (HDI
[−2.119, −0.539]) were rated unsafer than REAL based on a ROPE
with the limits [−0.181, 0.181]. The results for HMD-REAL (HDI
[−1.585, −0.013]), AR-REAL (HDI [−1.468, 0.340]), CBRemote-
REAL (HDI [−1.419, 0.155]) and between the Cardboard
conditions CBRemote-CBLab (HDI [−0.111, 1.481]) were
inconclusive. Regarding ratings of how likely a collision would
have been, neither differences nor equalities could be reported. The
same applies to the questions relating to how dangerous a collision
would have been. In cases in which the participants decided to
cross, the behavior was rated closer to the real world traffic (HDI
[0.020, 0.218]) under the remote Cardboard condition compared
to the Cardboard under lab conditions based on ROPE with limits
[−0.020, 0.020]. A similar trend could be observed in those cases
when it was decided not to cross the street. The results regarding
how safe or unsafe the choices were are also inconclusive, although
participants tended to rate their crossings safer with the HMD than
with REAL (HDI [0.066, 1.631]). Likewise, the results for the last
two questions are inconclusive: i.e., 1) rating the decision as to
whether to cross the street as easy/difficult and 2) how long it took
to make the decision.

Finally, participants under the two Cardboard conditions were
asked to rate the quality of their experimental data (SRSI, cf.
Section 2.5) on a scale from 0 to 100. Under both conditions, the
ratings were comparatively high: CBLab M � 96.57, SD � 5.16,
CBRemote M � 97.25, SD � 5.73. The overall minimum was
74.88. Again, the distributions were left-skewed and thus
mirrored and fitted with a Gamma distribution with log links
(again to avoid divergences) and with the test environment as the
only factor. The Gamma model performed better (loo � 159.45,
SE � 45.22) showing a great improvement compared to the
Gaussian base model (loo � −178.24, SE � 10.79). Again, 1e − 5
was added to values of 0 to allow the Gamma distribution to be
fitted. The ROPE was again (cf. Q5) calculated based on the
standard deviation of the observed, log transformed SRSI values.
CBLab served as baseline in the model. The HDI for the effect of
CBRemote compared to CBLab encompasses [−0.318, 0.281] and
is thus completely within the ROPE ([−0.541, 0.541]).

4 DISCUSSION

This research was carried out to answer two research questions,
namely, whether low-cost Cardboard headsets are a suitable
substitute for high-end pedestrian simulator hardware and,
secondly, whether they can be used to conduct studies in a
remote setting with no experimenter present.

4.1 Cardboards and Other Simulators
The results observed in terms of gap acceptance were relatively
similar to those in the other high-end simulation environments.
Here, the two Cardboard conditions rank between the Vive Pro

HMD and CAVE. Compared to the high-end HMD, the subjects
accepted more gaps with the Cardboards and the results were
thus more similar to those on the test track. However, it should be
critically mentioned that the mode of signaling a crossing
decision differs between Cardboards and other data. Since no
translations could be tracked, detecting a step in the direction of
the road was not possible, unlike in the other conditions and was
instead signaled by pressing a button. Schwebel et al. (2017b)
compared Cardboard button presses versus taking a step in a
kiosk environment and detected a correlation in the number of
missed crossing opportunities but only a correlation trend for
CITs. Further studies should investigate the differences between
button presses and naturalistic walking so as to render older
HMD studies (mostly involving button presses) comparable with
newer settings and their larger tracking areas. The need for such
methodological comparisons can be clearly seen by comparing
the results from these studies with those from Mallaro et al.
(2017). In a similar research question, Mallaro et al. (2017)
reported that the gaps accepted in an HMD were smaller than
with a CAVE. The experimental task may also have had an
influence here. In contrast to the study design presented in this
work, in Mallaro et al. (2017), the street was crossed by physically
walking. A comparison of accepted gaps is also interesting: while
the overall rate of acceptance of a 3s gap was 34% here, 3s gaps
were accepted much less frequently in Mallaro et al. (2017). The
question arises what influence the range of the presented gaps
have on the test person. Even if only smaller gaps are presented,
the participant might feel compelled to accept gaps that he or she
would actually consider too small just to fulfill the experimental
task or expectations. However, another reason could be that
participants receive feedback when they actually walk, so they
might not cross the next time if they know that the time was not
enough in a previous trial. It should be noted that the participants
cannot see their own bodies in the Cardboards of any form. This
is, however, possible in REAL, CAVE and AR as well as with a
virtual avatar in HMD, by means of trackers positioned on their
extremities, but this is not immediately feasible using a phone-
based approach. However, the representation of one’s own body
seems to have an impact on the gap sizes accepted (Maruhn and
Hurst, 2022).

Turning our attention to the CITs, the two Cardboard
conditions fit in with the rest of the simulators. Particularly
striking are the similarities of the two Cardboard distributions
with the HMD distribution (cf. Figure 9). The Bayesian analysis
confirmed that in all simulated environments, the crossing was
initiated later than in the real-world setting on the test track.
These results call into question the transfer of measured absolute
values from simulation to reality [absolute validity, (Wynne et al.,
2019)]. This is of particular relevance when determining safety-
relevant measurements in road traffic, for example. Currently,
this does not seem possible on the basis of virtual scenarios. The
evaluation in Schneider et al. (2021) even questions relative
validity: an influence of vehicle speed on gap acceptance could
only be demonstrated in the two simulator environments (CAVE
and HMD), but not on the test track (REAL). Not only the
distorted distance perception in VR (Renner et al., 2013) but also
the lack of resolution could still be a problem. Especially at large
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distances, the display of vehicles is reduced to a few pixels.
Although this problem would be even more drastic under the
Cardboard conditions, the differences in gap acceptance
compared to the test track (Figure 6) and CIT (Figure 9) are
similar to those in the other simulators. Other factors besides
display resolution also seem to play a role.

Similarities were not only found with the objective data but
also between Cardboards and the other simulators in the
subjective ratings. In all simulators, participants indicated
that it would have been less safe to cross the street than
participants in REAL. This could explain why, overall, fewer
crossings were accepted in the simulators and they were
initiated later. The Bayesian analysis confirmed this
difference for CAVE and CBLab. The fact that this was not
confirmed for the remaining simulators is mainly due to the very
broad distributions. There seems to be a trend that collisions
were rated as being more likely to happen in CAVE and HMD
but, at the same time, they would have been less dangerous.
However, the results of the Bayes analysis do not allow for
definitive differences. As for the first question, participants in all
simulators rated their decisions as unsafer, even tough, this is
only a trend. The participants seemed to have slightly greater
problems making a decision with AR, HMD and the two
Cardboard conditions, even though no definitive statements
can be made. This can probably be seen as an effect of wearing
an HMD.

4.2 Laboratory and Remote Setting
Approximately the same number of gaps were accepted under
both Cardboard conditions with slightly more under the remote
condition (cf. Figure 6), whereby the decisions were also taken
slightly later (cf. Figure 9). However, the data quality from the
remote setting must be viewed critically. More data points had to
be treated than in the laboratory setting (cf. Section 2.9). The
chosen criteria led to the exclusion of a large proportion of the
implausible data, but some 1s gap acceptances from the remote
setting remained (cf. Figure 4A). It was not certain whether a
crossing was actually desired. For the evaluation of the CIT,
however, these cases were excluded according to the defined rules.
This is also one of the major disadvantages of a remote setting.
Informal interviews after an experiment, which can help to check
the plausibility of data, are no longer possible. Thus, it is not
possible to determine in the remote condition whether the cause
was misunderstood instructions, the uncontrolled setting, or,
indeed, other effects.

Based on the Bayes analysis, no definitive conclusions can be
drawn between the two Cardboard conditions regarding possible
differences in objective measures. No differences occurred, but no
practical equivalence could be demonstrated either. In particular,
the combination of weakly informed priors, small amounts of
data, and narrowly defined ROPEs meant that in none of the
cases, neither for the objective nor for the subjective measures,
does the ROPE completely enclose the distributions of differences
between CBLab and CBRemote. Nevertheless, the results may be
of value for future studies, for instance, for defining more
informed priors or evaluating the data using other, practically
dedicated, ROPEs.

While no data equivalences were demonstrated, there were
some differences in the subjective measures. There seemed to be a
trend that participants felt it was safer to cross the street in the
remote setting. The differences between CBLab and CBRemote
with the two continuous questionnaire items are worth
highlighting. In both cases (when the participants crossed or
did not cross the street), participants reported a high level of
agreement with their everyday behavior, but this was even higher
in the remote condition. Although no differences in objective data
could be found, subjects in a home setting with no experimenter
present seemed to subjectively perceive a higher degree of
consistency with their everyday behavior. Even though more
data points had to be treated in the remote setting (13
subjects vs 6 subjects in the lab), subjectively, participants rate
their data quality as being equally high. Even if it was not
subjectively perceived that way, the subjects may have
performed the experiment with less accuracy or attention in
the remote setting. It is also not possible to ensure whether
participants in the remote setting were more distracted by
external influences at home. Overall, however, it should be
noted that the data in the two settings are very similar, and a
remote setting can be considered comparable to a laboratory one
and can even induce more subjectively realistic behavior. This
again demonstrates how low cost, mobile-VR headsets can be
seen as a suitable hardware device for experiencing virtual traffic
scenes from a pedestrian perspective (Schwebel et al., 2017a;
Schwebel et al., 2017b), even if it comes with some limitations.

5 LIMITATIONS AND IMPLICATIONS

This work marks a first attempt at conducting pedestrian
simulator studies in a remote setting. Naturally, there are also
limitations. The young age group across all experiments does not
allow a generalization of the results to children or older adults.
However, limitation to one age group was necessary to control for
inter-individual differences in this between-subjects design
(Schneider et al., 2021). A within-subject design would have
increased the statistical power, but this was not possible and
could have induced new effects (learning effects, comparative
judgments) and it can limit comparison with previously collected
data. Many optimizations were made to achieve a sufficiently high
frame rate on mobile devices, but this could not always be
ensured. However, it can be assumed that smartphone
performance and display resolution will continue to increase
over the next few years and that even complex virtual
environments can be displayed smoothly. In the future,
additional cell phone sensors could enable reliable tracking of
translational movements in addition to head rotation, enabling
other forms of interaction than button presses. Some participants
took the opportunity to provide feedback on the experiment in a
text input field in the questionnaire. Five users said that the
vehicles started off at too great a distance or that there was too
much waiting time between trials. This was also the case in other
environments, where the waiting time between trials was even
longer, but the vehicles were discernible at greater distances. In
contrast, the lower display resolution of some of the smartphones
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meant that vehicles were not even recognizable at their starting
position. In order to minimize the discrepancies with the other
studies, these waiting times were nevertheless included. Three
participants stated that the image was slightly blurry. This could
be due either to low screen resolution or to the presence of screen
protectors. Another limitation in imaging is that the lens distance
could not be adjusted to the individual interpupillary distance
(IPD). In the case of a significant deviation (for example in a child
with a very small IPD) this can lead to visual discomfort (Peli,
1999) and it can also potentially affect depth perception
(Woldegiorgis et al., 2018; Hibbard et al., 2020). However, in
this study, none of the participants reported experiencing artifacts
such as double vision. Future studies should evaluate the degree to
which distance perception is influenced, whether this can be
countered by modifying the virtual image to adjust for stereopsis,
the necessity of excluding subjects displaying significant
deviations, and the use of Cardboards with adjustable lenses.
It should be noted that the use of the test subjects’ own
smartphones can itself lead to significant differences. For
example, the instructions told participants to set the display
brightness to the maximum level, but this was not ensured in
any way. Two participants explicitly stated that it was difficult to
estimate distance and time in VR. However, this was also stated
by two test subjects using the high-end headset (under HMD
conditions). In contrast to Schwebel et al. (2017b), two of the
Cardboard participants reported simulator sickness symptoms.
Two subjects also reported suffering from sensor drift, i.e., the
environment continued to rotate slowly even without any head
rotation. These two problems seem to be directly linked. In future
studies, the sensors should be calibrated before commencing the
experiment to minimize this problem.

Most of these limitations, also encountered with the other
simulators, are either technical in nature and will potentially be
solvable with advances in smartphone technology, else they are
due to the nature of the experiment. Using Cardboards in a
remote setting appears to be a feasible method of collecting data
from otherwise underrepresented study populations (Schneider
and Bengler, 2020) and it is also suitable for gathering larger
sample sizes. However, it must be ensured that the participants
are be able to carry out the experiment independently. This can be
done to a certain extent during the development of the
experiment, but for specific groups of people who are required
to have support, a classic laboratory setting with an experimenter
still seems to be more suitable. It has also been shown that the
method of subject recruitment is crucial for the success of the data
collection. Complete anonymity seems to elicit too little
commitment, which, as in this case, can lead to subjects
simply not completing the study. Even subjects with whom
there was social contact needed continuous reminders to
perform the experiment on their own. In this respect, the
remote setting is very different from a trial in a laboratory, in
which the timing is determined by a fixed appointment. For
future trials in remote settings, I would therefore suggest a
procedure that combines the advantages of remote and

laboratory settings. For example, an appointment can be made
directly with anonymously recruited subjects when the trial is
conducted at home, or reminders can be sent from the app for this
purpose. Furthermore, the recruitment of subjects via social
contacts may well have favored the high SRSI values.
Considering mechanisms such as social desirability, a
completely anonymous setting could well lead to lower SRSI
values.

Inevitably, more effort has to be put into the development of a
remote test, since no experimenter is available to help and the
instructions have to be unambiguous and self-explanatory.
However, this yields the benefits of consistent instructions and
a standardized test procedure.
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