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Recent studies have suggested that 95% of modern runners land with a rearfoot strike

(RFS) pattern. However, we hypothesize that running with an RFS pattern is indicative

of an evolutionary mismatch that can lead to musculoskeletal injury. This perspective is

predicated on the notion that our ancestors evolved to run barefoot and primarily with

a forefoot strike (FFS) pattern. We contend that structures of the foot and ankle are

optimized for forefoot striking which likely led to this pattern in our barefoot state. We

propose that the evolutionary mismatch today has been driven by modern footwear that

has altered our footstrike pattern. In this paper, we review the differences in foot and ankle

function during both a RFS and FFS running pattern. This is followed by a discussion of

the interaction of footstrike and footwear on running mechanics. We present evidence

supporting the benefits of forefoot striking with respect to common running injuries such

as anterior compartment syndrome and patellofemoral pain syndrome. We review the

importance of a gradual shift to FFS running to reduce transition-related injuries. In sum,

we will make an evidence-based argument for the use of minimal footwear with a FFS

pattern to optimize foot strength and function, minimize ground reaction force impacts

and reduce injury risk.

Keywords: forefoot striking, mismatch theory of evolution, running injuries, running mechanics, foot structure and

function

INTRODUCTION

Early images of humans running depict them landing on their forefoot (Figure 1). However, there
have been lively debates among scientists (Davis et al., 2017; Hamill and Gruber, 2017) and among
the lay public1,2 regarding footstrike patterns in runners. These debates have focused on whether
a forefoot strike (FFS) is more natural than a rearfoot strike (RFS). and whether it reduces the risk

1Murphy S. “Heel striking – is it really the enemy of good running form?” The Guardian. Available online

at: https://www.theguardian.com/lifeandstyle/the-running-blog/2014/oct/09/is-heel-striking-the-enemy-of-good-running-

form (accessed September 20, 2021).
2Dunne J. “Is forefoot running better for your knees? – Running technique.” Kinetic Revolution – Run Strong. Available

online at: https://www.kinetic-revolution.com/is-forefoot-running-better-for-your-knees/ (accessed September 20, 2021).
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FIGURE 1 | Depiction of runners during the Panatheniaic games 323-322 BC.

Note the forefoot strike pattern of the runners. https://en.wikipedia.org/wiki/

Hoplitodromos.

for injury. Unfortunately, there are no long-term observational
studies to date to settle these debates. The purpose of this paper
is to present the perspective that we evolved for forefoot strike
running. As it is our most natural form, we propose that this
will lead to reduced musculoskeletal injuries. We posit that our
foot structure is optimized for a FFS pattern. We postulate that
many of the injuries runners sustain are due to an evolutionary
mismatch between the way we were adapted to run and the way
we run today. Based upon the evidence, we believe that this
mismatch is driven, in part, by the footwear we run in. However,
it is important to understand that RFS runners habituated to
modern cushioned and supportive shoes must make transitions
in footwear and foot strike pattern gradually. A rapid change
can lead to an overload of the musculoskeletal structures of the
lower extremity resulting in a greater risk of injury. Starting our
children in minimal footwear that promotes a FFS pattern in
running avoids transition injuries and may reduce their overall
risk for lower extremity musculoskeletal injuries.

MISMATCH THEORY OF EVOLUTION

The mismatch theory of evolution, proposed by evolutionary
biologists, states that our environment is changing faster than
our bodies can adapt (Stearns, 1989; Lieberman, 2012). This
creates a mismatch between the way our bodies have evolved
and how they are being used today. While mismatches can
be beneficial at times, they can also create health problems.
For example, our overall activity level has been significantly
reduced from that of our ancestors (Lieberman, 2012). This has
contributed to the increased obesity we have as well as other
non-communicable diseases such as diabetes and cardiovascular
disease. More sedentary lifestyle is a mismatch to our biological
systems. This mismatch can be extended to musculoskeletal
injuries as well. For example, we evolved with strong lumbopelvic
core musculature to support us during upright physical activities
such as walking, running, climbing, etc. However, in our modern

world, we spend 6–8 h sitting (Ussery et al., 2018), reducing
the demand on our lumbopelvic core muscles and leading to
their weakening. Weak lumbo-pelvic core muscles can lead to
instability and faulty lower extremity mechanics. Chronic sitting
is a mismatch for our lumbopelvic core muscles. Relevant to
this paper, we propose that modern running footwear, as well as
rearfoot strike running patterns have altered our foot function.
This has led to mismatches to the way that our bodies were
adapted to run, thereby increasing our risk for injury.

WE ARE OPTIMIZED TO RUN WITH A
FOREFOOT STRIKE PATTERN

Tissue Characteristics
The human foot contains specialized fibroelastic fat pads beneath
the heel and forefoot. The heel fat pad is thought to provide
three main mechanical functions during ambulation (Aerts et al.,
1996). The first is shock reduction, During the initial contact
phase of walking, the fat pad undergoes considerable vertical
deformation, approximately 10.3 ± 1.9mm (Wearing et al.,
2009, 2014) but the energy required to compress the heel pad
(1.5 J) is relatively low (Wearing et al., 2009) compared to the
impact energy of the foot and only about 1% of the total energy
exchanged during walking (in a 70 kg adult walking at 4.5 km/h)
(Cavagna et al., 2000). Hence, the initial loading rate of the
heel pad during in running is extremely high [∼250 kN.s−1]
and the heel pad offers minimal resistance to deformation
(Lieberman et al., 2015). This suggests it has only a minor shock
reduction capacity during walking, let alone running. The second
function of the heel pad is protection against excessive plantar
pressure. Deformation of the heel pad also serves to increase
the contact area and lower the peak pressure at the calcaneus,
and thereby protecting it from injury (De Clercq et al., 1994).
Estimated limits of pain tolerance for impacts of the heel pad
equates to deformation of approximately 10.7mm. The limit
of pain tolerance for impacts involving the heel pad occurs at
energy levels higher than 2.12 J (Cavanagh et al., 1984), which
corresponds to a predicted heel pad deformation of 10.7mm,
which is marginally greater than that which typically occurs with
walking (10.3 ± 1.9mm) (Wearing et al., 2009, 2014). Hence,
even at relatively slow walking speeds, deformation of the heel
fat pad is close to the limits of pain tolerance. Thus, at higher gait
speeds barefoot runners likely assume a more anterior footstrike
pattern as a pain avoidance strategy. Indeed, Lieberman et al. have
shown that the more time runners spend barefoot, the greater
their tendency to run with a FFS pattern (Lieberman et al., 2015).
The third function of the heel pad is energy dissipation. However,
the energy dissipated by the heel pad is relatively low compared
to other soft tissues of the foot and ankle (Wearing et al., 2014).
This makes the heel pad a less than ideal structure for dissipating
the impacts associated with running. Fibroelastic fat pads of the
forefoot, on the other hand, have been shown to have a higher
material stiffness and greater energy dissipation than those of
the heel pad (Ledoux and Blevins, 2007; Pai and Ledoux, 2010;
Chao et al., 2011). For instance, Pai and Ledoux (Pai and Ledoux,
2010) demonstrated that cadaveric fat pads of the forefoot were
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20–35% stiffer and dissipated 10–20% more energy than those
of the heel when tested under physiologically relevant cyclic
loading conditions. This makes the forefoot padmore resistant to
deformation but also more suited for attenuating loads of landing
during running. This innate difference between the rearfoot and
forefoot pads suggests that we are optimized to run with a
FFS pattern.

The plantar fascia also plays an important role in the
energetics of the foot during running. With deflection of the foot
arch, the plantar fascia and associated deep ligaments of the foot
are strained and subsequently return around 6% to 17% of the
total mechanical work of running (Ker et al., 1987; Stearne et al.,
2016). There is emerging evidence that a FFS pattern may induce
greater deflection of the arch than RFS (Ker et al., 1987; Chao
et al., 2011; Stearne et al., 2016), thus further increasing the peak
strain within these structures. As such, a FFS pattern has greater
potential to store and return elastic strain energy via the passive
components of the arch than a RFS pattern, although this has
yet to be determined. FFS runners have also been shown to have
a greater volume and activation of the intrinsic foot muscles.
This activation assists in the function of the plantar fascia, when
compared to habitual RFS runners (Miller et al., 2014; Kelly
et al., 2018). However, it should be noted that other aspects of
foot kinematics, such as toe flexion, that can influence plantar
fascial strain.

The Achilles tendon and the triceps surae are the major
contributors to energy storage and return during running
(Alexander, 1994). Around 95% of the elastic strain energy stored
in the Achilles tendon during the early stance is returned to
propel the gait at late-stance (Peltonen et al., 2013). However,
during the initial contact phase of RFS running, there is a rapid
reduction in Achilles tendon force that is not present in FFS
running (Komi, 1990). Thus, the Achilles tendon experiences
higher loads in FFS running as they assist in dissipating much
of the impact energy associated with eccentrically controlling
the ankle dorsiflexion moment (Yong et al., 2020). Greater
gastrocnemius activation in the eccentric phase, combined with
high stretch velocity induces greater stiffness within the muscle-
tendon unit in forefoot striking. This activation also results in
an earlier and higher rate and magnitude (8%−24%) of Achilles
tendon loading (Komi, 1990), which over time enhances its
structural properties. Based on cadaveric studies, a 24% increase
in Achilles tendon load with an FFS pattern would result in
an additional 6 J energy returned by the tendon (Ker et al.,
1987; Alexander, 1994). These results favor a FFS pattern when
it comes to leveraging the Achilles tendon for energy return.
In fact, habitual forefoot strike runners have greater Achilles
tendon stiffness than habitual rearfoot strike runners (Wearing
et al., 2019), and thus greater ability to store and release energy
(Kyröläinen et al., 2003). This ability has been shown to reduce
metabolic work and increase efficiency (Monte et al., 2020).

Sprinting is typically associated with a FFS pattern and
sprinters have stiffer Achilles than distance runners (Arampatzis
et al., 2007; Hatala et al., 2013). Running in minimal footwear has
also promoted a FFS pattern. Runners habituated to this footwear
exhibit greater stiffness and cross-sectional area of the Achilles
tendon compared to those in conventional footwear (Histen

et al., 2017). These studies collectively suggest that a habituated
FFS pattern may invoke the necessary stimulus required for
tendon adaptation and homeostasis, which leads to stronger
calf muscles and Achilles tendons. Indeed, habitual FFS runners
exhibit greater ankle plantarflexion strength than habitual RFS
runners (Liebl et al., 2014). Future studies of habitual FFS runners
are needed to determine whether the adaptations associated with
an FFS pattern will result in fewer injuries to these structures.

The Role of Intrinsic Foot Muscles in
Locomotion
Intrinsic foot muscles are a bundle of small-volumetric muscles
that originate and insert within the foot. Most of the intrinsic
foot muscles lie beneath the dome of the foot skeleton and serve
as the primary local stabilizers to the foot arch (Kelly et al.,
2014). They act collectively to control the deformation of the
foot arch (Soysa et al., 2012; Kelly et al., 2014; Miller et al., 2014;
McKeon et al., 2015) and assist other leg muscles in actuating
joint movements (McKeon et al., 2015; Zelik et al., 2015). The role
of intrinsic foot muscles in human locomotion is mainly twofold.
They maintain the integrity of the foot arch as a solid foundation
for force production. Additionally, they allow certain compliance
to arch deformation for energy recycling (Soysa et al., 2012).
In the early stance, intrinsic foot muscles are mildly activated
and tensioned (Kelly et al., 2015) to regulate segment movement
and force transmission within the foot (Caravaggi et al., 2010;
McKeon et al., 2015; Kirby, 2017). They become strongly engaged
at push-off to consolidate the foot arch as an effective lever (Kelly
et al., 2015), to which the calf muscle is anchored. This drives
the body forward by producing large plantarflexion power (Lee
and Piazza, 2009). Meanwhile, deformations of the foot arch and
intrinsic foot muscles in the early stance absorb the impacts of
landing and store elastic energy (Fukano and Fukubayashi, 2009;
Kelly et al., 2019). This energy is later returned to propel the body
when the foot arch recoils and intrinsic foot muscles contract
(Soysa et al., 2012; Kelly et al., 2019). Evidence shows that the
activation of intrinsic foot muscles can be enhanced to stiffen the
foot arch in response to increased activity intensity (Kelly et al.,
2012, 2014, 2015; Okamura et al., 2018). Weak or dysfunctional
intrinsic foot muscles compromise gait performance and lead
to injuries associated with foot deformities and tissue overload
(Headlee et al., 2008; Huffer et al., 2017; Okamura et al., 2019;
Taddei et al., 2020).

How the Intrinsic Foot Muscles Function
Differently in RFS and FFS
The most outstanding difference between RFS and FFS in
kinematics is that the heel is off the ground in FFS at the
initial contact of running (Morales-Orcajo et al., 2018). This
position exposes the foot arch to a higher bending moment in
FFS (Bruening et al., 2018; Kelly et al., 2018). The Achilles tendon
force and ground reaction force act upward on the heel and
forefoot respectively (Hashizume and Yanagiya, 2017; Rice and
Patel, 2017). Concurrently, there is a compressive force from
body mass applied over the top of the foot arch. Under this
circumstance, FFS is estimated to increase arch compression and

Frontiers in Sports and Active Living | www.frontiersin.org 3 May 2022 | Volume 4 | Article 794005

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Davis et al. Reversing the Mismatch With Forefoot Striking

tensile stress within the plantar connective tissues (Chen et al.,
2019a). However, many studies observe comparable foot arch
deformation between RFS and FFS (McDonald et al., 2016;Wager
and Challis, 2016). A possible explanation for the mismatch is
that the intrinsic foot muscles are more activated in FFS to
retain the foot arch height. Electromyography measurements
show increased contract intensity and intensity duration of the
intrinsic foot muscles in FFS compared to RFS (Kelly et al., 2018).
This indicates that successful FFS has greater demands on foot
muscle recruitment and foot strength. In this given, habitual
RFSers are frequently suggested to complete a foot strength
training program before transitioning to FFS (Mulligan and
Cook, 2013; Davis et al., 2017; Taddei et al., 2020). Development
of foot strength is considered a necessity to withstand burdens
on the foot arch in FFS and protect the plantar soft tissues from
painful pathologies, e.g., plantar fasciitis (Chen et al., 2019b).
The greater activation of intrinsic foot muscles in FFS leads to
greater arch stability and suggests that we were optimized for this
strike pattern.

Using Minimalist Shoes With FFS
Strengthens the Foot Core Muscles
The past decade witnessed the revival of minimalist shoes in
the running community. This was due to the thought that
minimalist shoes reap the benefits of barefoot running, an
allegedly more natural and healthier form of running (Franklin
et al., 2018). Minimalist shoes are most characterized by the
absence of motion-control and stability elements (Esculier et al.,
2015). Due to this fact, minimalist shoes are expected to increase
the involvement of foot structures in supplementing foot arch
stability (Lieberman et al., 2010; Davis, 2014) and provoke a
higher degree of intrinsic foot muscle activation in running
(Franklin et al., 2018). Because landing on a cushionless heel
is uncomfortable for habitual shod runners, minimalist shoes
also promote a non-RFS running style (Lieberman et al., 2010;
Squadrone et al., 2014), which adds to the requirements of
strong foot musculature for injury-free usage (Bonacci et al.,
2013). Research shows that runners having a healthy career with
minimalist shoes exhibit stiffer foot arch and larger size of the
intrinsic foot muscles (Holowka et al., 2018; Zhang et al., 2018).
Therefore, many training protocols have been developed to help
runners adopt minimalist shoes. The results demonstrate that
running in minimalist shoes can stimulate the growth of intrinsic
foot muscles, more specifically on the forefoot region (Chen
et al., 2016), including the abductor hallucis and flexor digitorum
brevis (Braunstein et al., 2005; Miller et al., 2014; Johnson et al.,
2015; Campitelli et al., 2016). These muscles are particularly
useful in stabilizing the longitudinal foot arch in a heel-rise
position (Wong, 2007; Miller et al., 2014), correcting forefoot
deformity (Xiang et al., 2018), and evening pressure distribution
(McKeon et al., 2015) for running with minimalist shoes.

The Interaction of Footwear and Footstrike
The work of Pai and Ledoux (2010) underscores the interaction
of footwear and footstrike. These authors demonstrated that the
more time a runner barefoot, the greater the tendency to run with
a FFS pattern (Figure 2). A FFS pattern places greater demand

FIGURE 2 | Relationship between footwear history and footstrike angle in

Kenyan runners. Note that as footwear usage decreased, runners adopted a

more forefoot strike (FFS) pattern. From Lieberman et al. (2015).

on the calf muscles and Achilles tendon (Gruber et al., 2014),
as well as the intrinsic foot muscles of the arch (Kelly et al.,
2018). This demand requires greater activation of these muscles
and therefore more muscular work. Placing a wedge of rubber
under the heel allows a runner to land with a less demanding
rearfoot strike pattern, and without pain that would likely occur
with landing with a RFS barefoot. However, while it may take less
calf work to land with a RFS pattern, this evolutionary mismatch
results in harder landings with greater vertical impact forces
leading to greater rates of loading (Pohl et al., 2009; Zadpoor and
Nikooyan, 2011; Bonacci et al., 2013). These increased impacts
and rates of loading have been associated with common running-
related injuries (Pohl et al., 2009; Zadpoor and Nikooyan, 2011;
Davis et al., 2016; Futrell et al., 2018; Johnson et al., 2020; Johnson
and Davis, 2021).

The type of shoes also influences the interaction between
footwear and footstrike. Running studies using conventional
footwear have consistently shown that a FFS results in lower
vertical load rates than a RFS. However, a FFS in this footwear
results in greater anteroposterior and mediolateral impacts and
load rates (Boyer et al., 2014; Rice et al., 2016) compared
with a RFS in conventional footwear. Thus the resultant load
rates of a RFS and FFS have been shown to be similar when
running in traditional cushioned shoes. These shoes, with their
elevated heels and flared outsoles, alter the natural FFS pattern
by increasing plantarflexion and inversion at landing. However,
when running with a FFS pattern in minimal shoes, all load
rates are reduced resulting in the lowest resultant load rates
compared with either a RFS or FFS in cushioned shoes (Rice et al.,
2016). Therefore, there is a very important interaction between
footstrike and footwear. Landing impacts in all directions will
be lowest when running with a FFS pattern in minimal shoes.
However, if a RFS pattern is preferred, there should be adequate
cushioning under the heel. Additionally, these shoes should be
replaced once the midsole loses its ability to cushion.
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Strike Pattern and Injury
While there are no prospective investigations of footstrike pattern
and injury, retrospective and intervention studies have been
conducted. A retrospective study of military recruits by Warr
et al. (2015) reported no difference in injury patterns between
RFS and non-RFS runners. However, in this study, runners with
a midfoot strike (MFS) and FFS were combined into one group
which likely confounds the results. Two papers (Ruder et al.,
2019; Tenforde et al., 2020) have reported that that MFS vertical
impact mechanics are similar to those of a RFS runner and
are significantly different from a FFS runner. This suggests that
MFS runners should either be grouped with RFS runners or
considered separately. Therefore, results of the Warr et al. study
need to be interpreted with caution. However, when looking at
RFS and FFS separately, a retrospective study of the Harvard
cross country team (Daoud et al., 2012) reported that RFS
sustained twice the rate of repetitive stress injuries compared
with FFS. In terms of interventions, shifting from a RFS to a
FFS pattern has also been shown to be beneficial in terms of
injuries. Diebal et al. transitioned 10 West Point cadets who
had anterior compartment syndrome that was confirmed with
intra-compartmental pressure testing (Diebal et al., 2011). Rather
than undergo indicated fasciotomies, these cadets participated in
a 6-week training program to adopt a FFS pattern. Following
the program, compartment pressures were reduced to normal
and pain, function and running performance were significantly
improved. These improvements persisted at the 1-year follow-
up as well. Most remarkable was all of the cadets were able to
avoid the recommended surgery. In another intervention study,
Roper et al. (2016) randomized 16 runners with patellofemoral
pain into a control group and a FFS intervention group. Both
groups gradually increased their treadmill runs from 15 to 30min
for 8 sessions over 2 weeks. However, the intervention group was
provided real-time feedback to transition them to a FFS pattern.
This feedback was faded during the last four sessions. Runners
in the FFS group exhibited significant reductions in their pain.
They also exhibited significant reductions in their patellofemoral
contact stresses, an underpinning of patellofemoral pain (Liao
et al., 2018). These improvements also persisted at the 1-month
follow-up. This is an important finding given that patellofemoral
pain is one of the most common injuries runners sustain. These
latter three studies collectively suggest that running with a FFS
pattern may be associated with lower rates of common running-
related injuries.

Transitioning
As a result of becoming reliant on the cushioning of modern
footwear that has led to a habitual RFS pattern, a gradual
transition program is needed to safely shift to a FFS pattern. As a
FFS is best accomplished in minimal footwear, a slow transition

becomes even more important. As previously noted, both the
FFS pattern and minimal footwear, require greater activation of
the calf and arch musculature. This will increase the demand
on these tissues and will place them at risk if the transition is
not done slowly. A gradual transition can simply be a function
of slowly increasing mileage in the FFS condition (Zhang et al.,
2021), allowing the tissues to adapt accordingly to the new
load. This can be accomplished with a simple walk-run program
where running gradually replaces walking (McCarthy et al., 2013;
Chen et al., 2016). However, the addition of a strengthening
program for the calf and feet helps to increase the capacity of the
musculoskeletal system (Mulligan and Cook, 2013; Futrell et al.,
2020; Taddei et al., 2020), thereby further reducing the chance of
an overuse injury.

Final Thoughts
We have presented evidence suggesting that running with
a RFS pattern is an evolutionary mismatch with the way
we were adapted to run. We have supported this thesis by
providing evidence of foot and ankle structure and function
that is optimized for FFS. Transitioning to a FFS pattern shifts
some of the mechanical work done from the vulnerable knee
to the foot and ankle for which we propose it is adapted.
However, if these structures have become deconditioned from
supportive footwear and a habitual RFS pattern, time is needed
to develop the capacity of these structures. Prospective studies
are still needed to compare the long-term risk, beyond the
transition period, of musculoskeletal injuries between RFS
and FFS runners. The holy grail may be with our children
by starting them in shoes that do not influence running
mechanics (no support, cushioning, flares, etc.). This will
allow the development of the running pattern of our ancient
ancestors and hopefully reduce the risk of future lower extremity
musculoskeletal injuries.
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